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 Introduction
In response to a series of analyses that revealed very low reproducibility of studies in life sciences, 
many initiatives have been launched to assist, establish, and improve standards for rigor and reproduc-
ibility in life sciences research [1]. In 2012, Landis and colleagues published a core set of guidelines 
to establish standards for reporting methods and data [2]. These include standards for randomization, 
blinding, sample-size planning, and data handling. In response to these guidelines, the FAIR Guiding 
Principles for data management and stewardship were published to clearly define good data manage-
ment practices [3], and new repositories have been launched to facilitate sharing of data, analysis 
methods, and codes, including https://fairsharing.org [4]. In addition, as discussed later in this chapter, 
preregistration is becoming more common to prevent statistical negligence [5]. These issues are par-
ticularly relevant to the field of epigenetics, where adherence to these principles is made more difficult 
by the underlying biology of epigenetic marks, rapidly evolving methods, and statistical challenges. 
As this field continues to grow, it is critical that researchers adhere to existing recommendations as 
they plan, execute, and report their studies. In this chapter, we provide an overview of a specific class 
of epigenetic marks, DNA modifications. We discuss why these marks are important, how to measure 
them, and best practices for ensuring rigor and reproducibility in DNA modification research, with a 
focus on epigenome-wide association studies (EWAS).

 DNA modifications
Epigenetics generally refers to a set of mechanisms that affect gene expression without altering the 
DNA sequence, including DNA modifications, histone modifications, noncoding RNAs, and altera-
tions in chromatin accessibility [6–8]. The initiation and maintenance of marks play critical roles in 
many aspects of mammalian development, including stem cell self-renewal, stem cell  differentiation, 

Best practices for 
epigenome-wide DNA 
modification data collection 
and analysis

https://fairsharing.org


262 Chapter 12 DNA modification data collection and analysis

and neurodevelopment [9–11]. Dysregulation of epigenetic mechanisms has been identified in a va-
riety of disorders and it is thought that these mechanisms, in particular DNA modifications, are es-
pecially important for the development and function of the central nervous system (CNS) [10–16]. 
In addition, epigenetic marks are sensitive to the environment, established during cellular differen-
tiation, and regulate gene expression throughout the lifespan [17,18]. Given these unique traits, the 
epigenome has been recognized as a mediator of the relationship between environmental exposures 
and disease [6,19].

Over the past two decades, a rapidly growing number of epigenome-wide association studies have 
investigated the associations between DNA modifications and disease. As this field has exploded, re-
searchers have begun to realize the need to ensure rigor and reproducibility in EWAS, specifically re-
lated to the biological features of DNA modifications, as well as the technical and statistical aspects of 
data analysis. In this chapter, we provide a brief overview of DNA modifications and the methods used 
to measure them and then focus on issues related to rigor and reproducibility in EWAS.

DNA modifications are covalent modifications of DNA that do not alter the genetic sequence 
itself. The most widely studied is methylation of the fifth position of cytosine (5- methylcytosine, 
5-mC), which most commonly occurs at cytosine-phospho-guanine (CpG) dinucleotides. However, 
DNA methylation can also occur at non-CpG sites, including cytosine-phospho-adenine (CpA), 
cytosine-phospho-cytosine (CpC), and cytosine-phospho-thymine (CpT) [15]. Methylation of cy-
tosines is catalyzed by DNA methyltransferase (DNMT) enzymes, which either carry out de novo 
methylation or maintain methylation through DNA replication [20]. Once established, 5-mC is 
recognized by methylation-specific DNA-binding proteins, including methyl-CpG binding protein 
2 (MeCp2) and the methyl-CpG binding domain proteins 1-6 (MDB1-6) [21,22]. DNA methyla-
tion has been demonstrated to play an important role in transcriptional regulation, maintenance 
of chromatin structure, genomic imprinting, X-chromosome inactivation, and genomic stability 
[9,23,24].

While 5-mC is a fairly stable modification, it can be enzymatically oxidized to 5- hydroxymethylcytosine 
(5-hmC) and eventually to 5-formylcytosine (5-fC) and 5-carboxylcytosine (5-caC) through the activ-
ity of ten-eleven translocation (Tet) enzymes [25–36] (Fig. 12.1).

 DNA modifications in health and disease
In the past two decades, an explosion of research has investigated the potential role of DNA modifica-
tions in human health and disease. These studies have documented clear associations between DNA 
modifications and disease risk in multiple contexts [37–41]. This is most well-established in the cancer 
field, such that for some cancers, research findings have been translated to clinical practice using DNA 
modifications as clinical biomarkers and treatments [42–49].

DNA modifications are particularly relevant to work on neurodegenerative diseases [38,50–52],  
as a growing body of research supports a critical role for DNA modifications, particularly 
5- hydroxymethylcytosine (5-hmC), in neurological function and in the response to environmental ex-
posures [38,40,53–55]. The specific enrichment and the temporal and the spatial patterns of 5-mC and 
5-hmC in the mammalian brain suggest that these modifications are critical for brain development and 
function [32,56–58]. Changes in DNA methylation and hydroxymethylation have been associated with 
a range of neurodevelopmental and neurological disorders, including but not limited to Rett syndrome, 
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autism spectrum disorders, schizophrenia, Alzheimer’s disease, Huntington’s disease, and Parkinson’s 
disease [38,40,48,52,59–64].

In addition, the epigenome is recognized as a potential mediator of the relationship between expo-
sures and disease. Epigenetic marks are sensitive to the environment, established during cellular differ-
entiation, and regulate gene expression throughout the lifespan [17,18]. Of note, epigenetic marks can 
change in response to lifestyle changes, diet, and environmental exposures, both during early develop-
ment and into adulthood [6,65–72]. Given this, DNA modifications have emerged as an important area 
of research in understanding the mechanisms of disease etiology for a wide range of human diseases.

FIG. 12.1

DNA modification pathways. Cytosine (C) is methylated to 5-methylcytosine (5-mC) through activity of DNA 
methyltransferase (DNMT) enzymes. From there, 5-mC can be further oxidized to 5-hydroxymethylcytosine  
(5-hmC), 5-formylcytosine (5-fC), and 5-carboxylcytosine (5-caC) through the activity of ten-eleven 
translocation (TET) enzymes. 5-fC and 5-caC can then be converted back to an unmodified cytosine through 
thymine DNA glycosylase (TDG)-mediated base excision repair.
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 Methods for detection of DNA modifications
Over the past two decades, studies have interrogated genome-wide DNA modifications using mul-
tiple methods to measure modifications. These methods operate at three different genomic resolu-
tions: global, regional, and base-pair. The pros and cons of these methods are comprehensively 
reviewed [73–75]. In general, the field is moving away from global and regional methods, as they 
generate data that is difficult to interpret in functional terms. Given this trend, for purposes of 
this chapter, we will focus only on the widely used base-pair resolution methods that are suit-
able for EWAS. EWAS are used to find associations between genome-wide epigenetic marks and 
phenotypes, much as genome-wide association studies are used to identify SNPs associated with 
phenotypes.

 Bisulfite conversion methods
Base-pair resolution methods quantify DNA modifications at individual cytosine bases. Traditionally, 
these methods have relied on the bisulfite (BS) conversion of DNA. BS deaminates unmodified cyto-
sines, 5-caC, and 5-fC to uracil, but not to 5-mC or 5-hmC [76–78]. Converted uracils are then read as 
thymine during PCR amplification, sequencing, or detection on a methylation array. From this data, the 
ratio of cytosines to thymines at a given cytosine is used to estimate a beta value, which represents the 
proportion of cytosines at a given locus that are modified. All of the methods described below produce 
beta values as their output; in EWAS, these beta values are then compared between groups.

The gold standard method in the field is whole-genome bisulfite sequencing (WGBS), which pairs 
BS conversion with next-generation sequencing to provide single base-pair resolution beta values at 
cytosines across the entire sequenced genome [79–81]. While WGBS produces comprehensive data, 
cost remains a huge barrier for most labs, even with declining sequencing prices [82]. Two common 
genome-wide alternatives with lower costs are reduced representation bisulfite sequencing (RRBS) and 
Illumina methylation arrays.

RRBS reduces the number of nucleotides sequenced by incorporating a methylation-insensitive 
restriction enzyme digestion step prior to BS conversion [83–85]. Typically, MspI is used, which cuts 
at C/CGG recognition sites, regardless of the methylation status. When combined with size selection of 
restriction fragments, this generates a “reduced representation” of the genome, enriching for fragments 
containing potentially modified cytosines. RRBS data typically produces beta value data for approxi-
mately 2–4 million cytosines.

Illumina DNA methylation arrays combine sodium bisulfite treatment, whole-genome amplifica-
tion, and sequence-specific probe hybridization using BeadChip technology to estimate DNA methyla-
tion at a preselected set of cytosines across the genome [86]. The current version of this technology, 
the Illumina Methylation EPIC array, covers over 850,000 CpG sites. Unfortunately, as of this writing, 
these arrays are only available for human samples, so their application to animal models is limited. 
Readers interested in detailed comparisons of RRBS, methylation arrays, and WGBS should refer to 
publications on the topic [74,75,87].

Another, newer option for reducing cost is capture hybridization [88], which allows for targeted 
selection of specific sequences prior to BS conversion and sequencing. A disadvantage of this method 
is that it requires prior knowledge of which regions to select, and has not been widely adopted as of 
this writing.
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A major drawback of BS-based methods is that BS treatment does not differentiate 5-mC from 
5-hmC [89]. Both 5-mC and 5-hmC are protected from standard BS-mediated deamination and read 
the same in BS-based sequencing or array output [90].

 Alternatives to BS-based methods
Oxidative BS (oxBS) conversion allows for the detection of only 5-mC without 5-hmC [91]. In oxBS, 
the first step is the selective, chemical-mediated oxidation of 5-hmC to 5-fC by potassium perruthenate 
(KuRO4). The oxidized 5-fC is then sensitive to BS treatment and is converted like an unmodified  
cytosine in a BS conversion step to uracil [91–96].

In addition to comeasurement of 5-mC and 5-hmC, methods have also been developed to address 
the high input requirements for BS-based methods and to allow interrogation of DNA modifications 
from low amounts of input DNA. One of these methods, enzymatic methyl-sequencing (EM-Seq), has 
been commercialized in the NEBNext Enzymatic Methyl-seq Kit (New England BioLabs). This is a 
two-step enzymatic conversion with no chemical conversion step, allowing for successful detection of 
DNA modifications from low input DNA [97,98]. In this method, TET2 and T4-phage β glucosyltrans-
ferase (T4-βGT) convert 5-mC and 5-hmC to 5-caC and 5-(β-glucosyloxymethyl) cytosine (5-gmC), 
respectively. Then APOBEC3A deaminates unmodified cytosines to uracils. EM-seq output mimics the 
output of BS conversion (Fig. 12.2).

Other methods, like apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3A (APOBEC)-
coupled epigenetic sequencing (ACE-seq), and TET-assisted pyridine borane sequencing (TAPS), also 
remove the BS conversion step. Unlike EM-seq, these alternative methods each generate slightly different 
output, detecting either only 5-hmC (ACE-Seq) or both marks (TAPS) (summarized in Refs. [90,99].

 Challenges to reproducibility in DNA modification EWAS research
While methodological advancements provide exciting opportunities in the field, the unique combina-
tion of complicated biology and the massive scale of modern sequencing data present a number of 
challenges for EWAS. These challenges fall into several categories: biology, methodology, statistics, 
experimental planning, and data and method reporting. Overcoming these challenges for epigenome-
wide data hinges upon rigorous and reproducible methodology and analysis. Here, we highlight the 
challenges listed above and present some solutions for addressing them in EWAS research.

 Biology
 Tissue heterogeneity and cell-type specificity
A major challenge standing in the way of producing rigorous, reproducible epigenome-wide results is the 
fact that different cell types exhibit distinct epigenetic profiles [100–102]. As a result, studies that use tis-
sue comprised of a mixture of cell types introduce noise into their data, washing out potentially important 
results with unwanted variability. Recent work has begun to address this issue using both experimental and 
computational tools [103,104]. For example, bioinformatics tools have been developed to estimate cell type 
composition from reference, bulk-tissue epigenetic data, allowing for correction during statistical analysis 
[105]. Some methods even allow for reference-free cell type estimation, enabling researchers to estimate 



FIG. 12.2

Conversion methods to measure base-pair resolution DNA modifications. Over the past two decades, the gold standard method to 
measure base-pair resolution DNA methylation has been whole-genome bisulfite sequencing (WGBS). While reliable, this method involves 
a sodium bisulfite conversion step, which damages DNA, and does not distinguish between 5-mC and 5-hmC. To avoid these issues, 
researchers have used a variety of different enzymatic and chemical treatments to develop improved methods. In some cases, these 
methods allow for specific measurement of either 5-mC (oxBS-seq) or 5-hmC (ACE-seq), or simply improve on the damaging effects of 
sodium bisulfite conversion through the use of enzymatic deamination via APOBEC3A enzymes (TAPS and EM-seq). In the diagram, 
different cytosine modifications are indicated by colored bubbles; green, 5mC; yellow, 5-hmC; blue, 5-fC; purple, 5-caC; gray, 5-(β-
glucosyloxymethyl)cytosine (5-gmC). Abbreviations: WGBS, whole-genome bisulfite sequencing; oxBS-seq, oxidative bisulfite sequencing; 
ACE-seq, APOBEC-coupled epigenetic sequencing; TAPS, TET-assisted pyridine borane sequencing; EM-seq, enzymatic methyl-
sequencing; KuRO4, potassium perruthenate; PCR, polymerase chain reaction; β-GT, b-glucosyltranferase; Tet1/2, ten-eleven translocase 
½; APOBEC3A, apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3A.
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cell types without reference data from their tissue of interest [106,107]. Meanwhile, at the benchtop, cell 
sorting methods, including flow-assisted cell sorting and magnetic-assisted cell sorting [108,109] can be 
used to enrich specific cell populations prior to isolating DNA for downstream epigenetic follow-up.

Another enrichment method is laser capture microdissection (LCM), which allows for targeted 
dissection of individual cells or tissue regions prior to DNA isolation and measurement of DNA modi-
fications [110]. The LCM method is less applicable to genome-wide methods that require high DNA 
inputs, as is often the case for DNA modifications, but as technology improves, this technology will 
become more feasible to pair with EWAS. These types of laboratory-based enrichment tools are critical 
for reducing random variability in EWAS studies, allowing for not only improved biological interpret-
ability but also increased reproducibility. The issue of cell-type heterogeneity is well-recognized in 
epigenetics research, and in an ideal world, all EWAS studies would include techniques to isolate spe-
cific cell populations for analysis. However, universal implementation of cell enrichment approaches 
will require improved compatibility with low amounts of input DNA. Furthermore, to ensure reproduc-
ibility, researchers must not only report their cell type enrichment and/or estimation methods, but also 
share any code or protocols related to these efforts, as they will benefit the entire field.

 Temporal changes in DNA modifications
DNA modifications can change with age [111–115], and preliminary evidence suggests that early-life 
exposures can modify rates of epigenetic aging [116]. As a result, the age at which tissue collection 
takes place could affect DNA modification signatures, complicating interpretation of EWAS results. 
Luckily, there are some simple ways to account for this variability during experimental planning:

• In human studies, researchers can control for the effects of age on DNA modifications by either 
age-matching human samples or including age as a covariate in statistical modeling.

• In animal studies, where greater experimental control is available, animals should always be age-
matched during tissue collection.

 Sex-related changes in DNA modifications
In addition to age, sex affects levels of DNA modification across the genome [117–119]. Of note, evi-
dence shows that sex is not only associated with differences in baseline DNA methylation at specific 
genes, but also the epigenetic response to the environment [51,120–123]. As a result, studies in humans 
and animals that include both males and females must account for sex in their analysis. This can be 
done in a similar fashion to age:

• In human studies, researchers can control for the effects of sex on DNA modifications by either 
sex-matching human samples or including sex as a covariate in statistical modeling.

• In animal studies, where there is greater experimental control, statistical analyses should be 
stratified by sex.

 Methodology
Another major challenge facing the field is the ever-changing landscape of methods to interrogate the 
epigenome [73,74,87,124]. Technologies are changing and updating so quickly that grants often in-
clude methods that are outdated by the time grants are funded. In addition to new conversion  methods, 
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there has also been a flood of new, improved bioinformatics tools for data processing and analysis 
[125–127]. While these new methods and tools present exciting new possibilities in the field, the selec-
tion of the correct analysis pipeline is not always clear, as there are subtle differences between many of 
the statistical approaches employed by these methods.

There are also differences in the structure and scale of EWAS data that affect downstream sta-
tistical inference. A useful example is a comparison of the analysis pipelines for RRBS data and 
Illumina EPIC array data. These two methods cover similar numbers of CpG sites across the ge-
nome (RRBS: ∼2–4 million CpGs; EPIC array: ∼850,000 CpGs). At first glance, one might think 
that similar methods could be used to analyze both of these datasets. However, due to method-
ological differences, the pipelines used to analyze RRBS and EPIC data are vastly different. RRBS 
produces sequencing reads in the form of .fastq files, which must be aligned to the genome using 
specific software settings prior to analysis [128]. Meanwhile, the EPIC array produces probe-based 
red and green channel.idat files, which require a specialized quality control, processing, and nor-
malization pipeline [129]. Furthermore, when running statistical tests on these large datasets, the 
effect of controlling for multiple testing will vary based on the number of sites being analyzed. 
As a result, one chromosomal position that shows a false discovery rate < 0.05 in an EPIC dataset 
may not in an RRBS dataset, even if the effect size and sample size are the same. This is because 
more comparisons are being performed in the RRBS dataset, therefore limiting the power to detect 
changes when correcting for multiple hypothesis testing. These methodological and statistical dif-
ferences between EWAS datasets lead to a lack of reproducibility in the field. While some of these 
differences are inherent to a study’s data structure, epigenetics researchers must work to estab-
lish standard, method-specific pipelines for genome-wide 5-mC and 5-hmC data analysis. Readers 
interested in the specific recommendations regarding methodology in EWAS research, including 
ways to avoid bias in tissue processing and statistical analysis, can find additional information in a 
number of recent articles [82,130–133]. By incorporating existing methodological guidelines, the 
field of epigenetics research could improve its rigor and reproducibility, overcoming the uncertainty 
that has plagued its data for decades.

 Statistics
 Sample size planning and power analysis
The most important statistical consideration for any EWAS is sample-size planning. This process 
should be performed during the initial planning stages of an experiment, and involves analysis of statis-
tical power, or the probability that a statistical test will correctly reject the null hypothesis.

Statistical power analysis requires four main parameters:

1. Estimated effect size.
2. Estimated data variability.
3. Sample size.
4. Selected alpha significance level (e.g., P < .05), and the desired statistical power (e.g., 0.8)

As such, for a scientist to estimate the required sample size for an experiment at a given power, they 
will need to input their estimated effect size, data variability, and alpha significance level. This is a 
foundational power analysis as it is typically applied to a simple statistical test; for example, a Student’s 
T-test. 
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However, when analyzing genome-wide data, researchers are typically conducting tests on thou-
sands of gene regions at once. In this larger-scale scenario, power analysis must consider additional 
parameters, including the false discovery rate to correct for multiple testing, the distribution of read 
counts, and the dispersion coefficients of analyzed genes [134]. To address these additional issues, 
recent work has used existing RNA-sequencing data as a frame of reference to create bioinformat-
ics tools to perform power analysis for EWAS. Examples include the RNASeqPower [134], PROPER 
[135], powsimR [136], and RnaSeqSampleSize [137], among others. The sequencing data produced in 
RNA-sequencing experiments are similar in structure to those generated by RRBS or WGBS, meaning 
the tools developed for RNA-seq experiments can provide some guidance for EWAS studies. However, 
the data dispersion and statistical assumptions used to analyze RRBS or WGBS data are not the same 
as those used for RNA-seq, meaning it would be better to use specialized techniques.

Unfortunately, as of this writing, there are only a few existing tools to specifically performs power 
analysis on WGBS or Illumina Beadchip array data. For WGBS data, power analysis can be performed 
using the Bisulfite sequencing simulator/power analysis shiny app developed by the Tung Lab [138]. 
Meanwhile, for Illumina Beadchip arrays, there are two existing tools in the literature: pwrEWAS, an 
R shiny app [139], and an interactive web application specifically for conducting power calculations 
for Illumina EPIC array datasets [130]. Along with this web application, the authors of the second tool 
also provide a suggested P-value significance cutoff for EPIC array data that accounts for both multiple 
testing and correlation between probes: P < 9 × 10−8. They also provide recommendations regarding 
sample size for studies that utilize this methodology. Based on their simulations, at a sample size of 
N=200 (n=100 case, n=100 control), approximately 85% of analyzed sites will have >80% power to 
detect a beta value difference of 0.05 or greater [130]. Utilization of the highlighted sample size plan-
ning tools is critical for ensuring statistical rigor in future EPIC array studies.

 Human epidemiological studies
Human epidemiological cohorts are heterogeneous and provide little control over environmental and 
lifestyle factors that can affect the epigenome, including diet, stress, chemical exposures, and physi-
cal activity level [18,69,70,140–144]. As such, it can be difficult to determine the effect of a single 
variable, e.g., exposure to a toxicant, on DNA modifications in a human cohort. Generally, epide-
miological studies attempt to control for potential confounders by including them as covariates in 
statistical modeling. In this way, it is possible to account for the heterogeneity of human populations 
while examining DNA modifications as a primary outcome measure. There is certainly value in this 
approach, but variable selection must be performed carefully. Adding too many additional covariates 
can inflate model estimates and lead to multicollinearity, thereby impacting the ability of a model to 
accurately detect significant changes [145]. Of note, these issues are exacerbated by small sample 
sizes, as often occurs in EWAS research. As a result, careful model building is incredibly important 
for producing reliable results for human EWAS. Strategies for variable selection are varied, but 
two of the most common approaches are testing the significance of covariate coefficients or testing 
whether the magnitude of changes in the outcome due to covariate inclusion are biologically mean-
ingful (e.g., above a predetermined threshold) [145]. Unfortunately, specific recommendations are 
difficult to come by, as selection of covariate inclusion criteria will vary based on study design and 
sample size. Despite this uncertainty, it should be emphasized that EWAS investigators must always 
consider variable selection during model building, as inclusion/exclusion of covariates will have a 
significant effect on results.
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 Hypothesis testing in EWAS
While rigorous and reproducible analysis of epigenome-wide datasets is certainly possible, it is not 
simple or straightforward, and epigenome-wide association studies from different labs typically use 
very different methods to test their hypotheses, making it difficult to reconcile data between groups. 
As of now, there are some existing guidelines from the NIH Roadmap Epigenomics Program regarding 
methodology, data reporting, and analysis for epigenome-wide association studies [146]. Unfortunately, 
these guidelines provide only general suggestions regarding data handling and reporting, e.g., investi-
gators report all data handling steps prior to read mapping, and do not give researchers guidance regard-
ing specific analysis parameters. Other large epigenomics consortia, including the NIEHS TaRGET II 
Consortium [147], provide protocol files for their bioinformatics pipelines, which is extremely helpful 
for the field. However, the establishment of best practice guidelines for EWAS analysis is not straight-
forward and represents an area of continuing development.

A major issue in establishing standardized analysis practices is that both 5-mC and 5-hmC beta 
values are heteroscedastic in their data distributions, with most cytosines showing either very high or 
very low beta values [96]. Given this unique distribution, statistical tests to test for differential DNA 
modifications must utilize statistical methods that can account for this unique beta value distribution. 
Although the field has not settled on a single best practice to address this heteroscedasticity, there are 
several methods that are commonly used during hypothesis testing in EWAS.

1. Logit transformation
a. One of the most common method uses logit transformation to generate m-values from the 

beta values [148]. Under this approach, m-values exhibit a homoscedastic distribution and can 
be analyzed using standard linear regression methods.

b. This type of analysis is often implemented in pipelines that rely upon the limma and BSmooth 
R packages [127]. Importantly, linear regression requires logit transformation to m-values 
prior to modeling because linear regression assumes homoscedasticity.

c. A weakness of this method is that m-values are less interpretable than beta values and are 
not recommended for data visualization [148,149]. As such, we only recommend using 
this method, if investigators have no intention of visualizing their data after detection of 
differential DNA modifications.

2. Regression modeling
a. There are several analysis approaches that do not rely upon the generation of m-values; 

these include beta regression, rank-based regression, and beta-binomial regression modeling 
[138,150–152].

b. These types of alternative regression methods, which are more appropriate for analyzing raw 
beta values, are implemented in a number of existing R packages, including DSS, BiSeq, 
MethylSig, and MOABS, among others [127].

c. The exact choice of method will depend on data distribution and the desired modeling 
flexibility, but in general, we recommend using one of these alternative regression-based 
methods when investigators want to keep their untransformed beta values for improved data 
interpretation and visualization (Box 12.1).

Even when using these more appropriate analysis methods, the validity and sensitivity of genome-wide 
analyses of DNA modifications can break down when test assumptions do not match data distributions. 
To ensure that investigators are using the most appropriate methods for their data, they should 
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always double-check their modeling output to determine the rigor of their experiment. For ex-
ample, when conducting a large number of hypotheses tests in EWAS, the authors recommend visual-
ization of the P-value distribution to diagnose potential issues with error rates [153]. By comparing an 
experimental P-value distribution shape to the expected uniform distribution under the null hypothesis, 
it is possible to determine whether an analysis is problematic. When P-value histograms do not show 
a peak near zero and/or broadly deviate from uniformity, investigators should consider adjusting their 
model, stratifying data to control for uncontrolled confounders, or revisiting power analysis to deter-
mine whether their data is adequately testing the question of interest. While it is difficult to provide 
specific recommendations given that each experiment will vary in its hypothesis testing, we strongly 
recommend examining P-value histograms for all EWAS research. 

 Reconciling paired 5-mC and 5-hmC data
Recent technological advances have made it possible to measure both 5-mC and 5-hmC from the same 
tissues, providing opportunities to tease apart associations between these two marks and gene regula-
tion. However, there are not yet standard statistical methods for co-analyzing 5-mC and 5-hmC data. 
Recent studies have either examined the distribution of 5-hmC alone across the genome [93,154,155] 
or treated 5-mC and 5-hmC as independent outcomes, analyzing each as a separate epigenetic mark 
[94,156,157]. While these approaches are not wrong, they ignore the biological interdependence of 
5-mC and 5-hmC.

In a recent publication, the authors proposed a new statistical approach for reconciling combined 
5-mC and 5-hmC data [96]. In this streamlined analysis pipeline, rather than treating 5-mC and 
5-hmC as separate outcomes, a mixed-effects (ME) modeling approach is proposed that treats the 
two epigenetic marks as “repeated” measures of a single outcome variable. An interaction term is 
used to determine whether the relationship between the outcome (i.e., beta value) and experimental 
treatment varies by DNA modification. One limitation of this approach is that it is specific to sites 
with measurable beta values for both 5-mC and 5-hmC; for those sites that show only 5-mC or 
5-hmC, separate analyses for each mark are still needed. Implementation of mixed modeling for 
5-mC and 5-hmC data is still in its infancy, and as of now, there is no specialized software to perform 
only this analysis method. However, it can be achieved using mixed-effects regression modeling in 
the existing gamlss R package [158]. To improve the co-analysis of paired 5-mC and 5-hmC data, 
future bioinformatics tools should work to streamline this process, implementing a mixed-effects 
modeling approach on a genome-wide scale into an R package or shiny application. We also hope 
that other groups will take up this challenge and develop additional methods for coanalyzing 5-mC 
and 5-hmC data.

Box 12.1 Heteroscedasticity
Although, it sounds like a difficult concept to understand, heteroscedasticity (or "different dispersion") is actually 
relatively simple. It refers to data in which the variability of an outcome variable (i.e., DNA modification beta value) is 
unequal across the range of values for a second, independent variable (i.e., experimental treatment). Homoscedasticity, 
meanwhile, refers to data in which the variability of an outcome variable is equal across the range of values for a second 
variable. Linear regression assumes homoscedastic data, but DNA modification data often shows inherently unequal 
variance across its own distribution, with the majority of values close to 0 or 1. As such, it is important to account for the 
potential effects of heteroscedasticity when applying regression methods to DNA modification data.
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 Experimental planning & reporting: Methods, code, and data
 Preregistration
Another way to improve experimental planning in general is through preregistration. This is partic-
ularly important in epigenetics, as methodologies and analysis pipelines are continually changing. 
Preregistration refers to the process of defining one’s research questions and proposed analyses 
prior to data collection [5]. By preregistering a research project, it is possible to distinguish data gen-
erated as part of predictive hypothesis testing as opposed to exploratory analyses.

A variety of services are available online to preregister studies; as one example, the Open Science 
Framework (OSF) is a free, open-access service that provides workflows for preregistration [159]. This 
service is maintained by the Center for Open Science, a nonprofit organization committed to improving 
rigor and reproducibility in scientific research. By completing a preregistration, researchers can avoid 
hindsight bias and P-value hacking, common analysis pitfalls that can occur when working with large-
scale datasets that present many possible avenues for statistical analysis.

 In vivo animal colony reporting
A crucial component of in  vivo EWAS studies is careful reporting of animal breeding schemes. 
Many EWAS studies utilize animal models to examine the link between developmental exposures 
and the later-life epigenome in offspring. This type of intergenerational and/or transgenerational 
research is critical to improving our understanding of the Developmental Origins of Health and 
Disease (DOHaD) hypothesis [19,160,161], but the field has been hampered by a lack of reproduc-
ibility [162]. One of the major reasons for the poor reproducibility in these types of studies is a lack 
of transparency regarding animal breeding schemes. In particular, many studies fail to account for 
litter effects [163,164].

To address these persistent deficiencies, researchers recently released the animal research: reporting 
of in vivo experiments (ARRIVE) guidelines, a checklist of items to include in animal model publica-
tions [165]. These guidelines include reporting suggestions for study design, sample size, inclusion/
exclusion criteria, randomization, and more. It is recommended that investigators utilize these guide-
lines both during experimental planning and reporting. By adhering to these criteria for publication, 
scientists who use animals in their EWAS research can improve the transparency of their projects, 
thereby increasing rigor and reproducibility.

 Sharing data through repositories
Another major area of continued improvement is in data publication. Recently, there has been a signifi-
cant push toward data publication in public, online repositories. Some well-known examples include 
the Gene Expression Omnibus (GEO), Sequence Read Archives (SRA), and BioStudies, which are 
the repositories maintained by funding agencies. More recently, independent repositories have been 
created, including Dryad and Mendeley Data. Specific to epigenetics data, the National Center for 
Biotechnology Information (NCBI) recently established an Epigenomics database [166]. Given these 
readily available resources, no published EWAS should ever use the term “data not shown.” 
Rather, all data, both raw and processed, should be provided in an online repository as part of a manu-
script’s publication. Furthermore, all data tables resulting from statistical analysis should be shared as 
supplementary tables. This will ensure that all aspects of a study’s results are reported, allowing for 
verification of findings by other researchers.
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 Code sharing
Given the evolving EWAS methodology and analysis tools highlighted earlier in this chapter, code 
sharing is critical for ensuring rigor and reproducibility in EWAS. Many research groups use their 
own custom pipelines to analyze data, yet they do not publish code alongside their publications. There 
is nothing inherently wrong with using an in-house analysis pipeline, especially given the number of 
choices and methods available, but doing so limits the interoperability of data, decreasing the potential 
for shared procedures and results. In essence, an anticollaborative culture is created not by intention but 
by necessity. Groups only know how to process their own data, which reduces the chances for coopera-
tion that might spur innovation in the field.

To combat this trend, it is critical for researchers to share their code along with their publications 
so that their analysis is clear. When shared, code should be usable and editable; preferably in a format 
that can be easily rerun. Related to this, it is recommended that researchers avoid simply sharing raw 
code, and instead provide annotations or comments that explain the parameter choices that were made 
during initial analysis. In many cases, default software settings are not used, so the selection of specific 
parameters must be clear for users. We also recommend that all quality control figures and metrics 
produced in data processing be shared publicly. The exact implementation of these recommendations 
will vary based on the selected analysis software, but they could be implemented through the Github 
platform or through the use of R Notebooks. This will increase a future user’s ability to recreate past 
analyses, thereby improve the reproducibility of a bioinformatics pipeline.

 FAIR principles for data sharing
Data repositories and code sharing are certainly steps in the right direction, but data files and code 
provided by the authors are often difficult to interpret, with obtuse, nondescriptive file names, and little 
annotation available to recreate analyses. In response to this lack of standardization, a diverse group of 
scientists recently came together to design the FAIR Data Principles, which act as a set of guidelines 
for improving the reusability of data after publication [3]. Under these principles, publicly hosted data 
are suggested to be four things: Findable, Accessible, Interoperable, and Reusable (FAIR). Under this 
framework,

Findable—refers to registration in a searchable resource along with rich metadata, including a 
unique identifier variable.
Accessible—refers to the data being retrievable through a free, user-friendly communications 
portal or protocol.
Interoperable—refers to the inclusion formal, shared language (e.g., code), clear references to 
related data, and a consistent vocabulary. Finally,
Reusable—refers to providing a rich metadata and linking data to a usage license.

By adhering to these principles, scientists can not only increase the believability of their results, but 
also provide clear opportunities for rigorous data validation. 

Existing data repositories in the life sciences have variable implementations of FAIR principles, 
putting much of the responsibility for accurate and complete data reporting on users [167,168]. 
Furthermore, the lack of standardized language in these repositories can make it difficult to utilize 
publicly available data. For example, specific information regarding experimental samples may be 
lacking, including tissue heterogeneity, age, and collection methods. To help investigators identify their 
best options for data sharing, https://fairsharing.org is a publicly available resource that provides data 

https://fairsharing.org
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and metadata standards as well as ratings for existing repositories [4]. To improve the interoperability 
of public EWAS data, investigators must aim to adhere to FAIR principles when submitting their data 
to a repository.

 Conclusion
In this chapter, we describe a number of existing methods for analyzing DNA modification data. We 
also presented challenges related to modern sequencing datasets, including biology, methodology, 
statistics, experimental planning, and data and method reporting. Overcoming these challenges for 
epigenome-wide data hinges on rigorous and reproducible methodology and analysis. Related to this 
point, we highlighted a number of specific recommendations for EWAS research.

To address the biological heterogeneity of the epigenome across cell types, we recommend cell type 
enrichment methods (e.g., flow-assisted cell sorting) and/or computational estimation. For statistical 
analysis, we recommend specific tools for analysis planning and power analysis in EWAS, including 
pwrEWAS. We also discuss covariate inclusion criteria in human EWAS, methods for addressing beta 
value heteroscedasticity, P-value histograms as a diagnostic tool, and mixed effects regression methods 
for coanalyzing paired 5-mC and 5-hmC data. After that, we provided recommendations regarding 
reporting in EWAS research. In particular, we highlight areas of potential improvement in the field: 
preregistration to avoid p-hacking, adherence to the ARRIVE principles for in vivo studies, data report-
ing via public repositories, code and parameter sharing, and the FAIR principles for data sharing.

Through careful implementation of the provided recommendations, we believe the field can begin 
to produce epigenome-wide association studies that are both rigorous and reproducible.
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