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Abstract. We show that the Weil-Petersson current is a global nonnegative closed
(1, 1)-current in the twisted Kähler-Einstein equation on non-general type canonical
models.

1. Introduction

Let X be a projective manifold of complex dimension n and let

(1.1) Φ : X → Y

be a projective surjective morphism onto a normal variety Y of complex dimension
0 < m < n. If the canonical line bundle KX is the pullback of a Q-line bundle L on Y ,
i,e.,

(1.2) KX = Φ∗L,

then the general fibre of Φ is a smooth Calabi-Yau manifold of complex dimension
n−m. If we let Y ◦ be set of smooth points over which Φ is regular, then Y ◦ is a smooth
quasi-projective variety and we let X◦ = Φ−1(Y ◦).

A projective normal variety is Q-Gorenstein if its canonical sheaf is a Q-Cartier
divisor, in other words, a Q-line bundle. If Y is Q-Gorenstein, the relative canonical
divisor is Q-Cartier. Let Ψ be a holomorphic section of the relative canonical bundle
KX◦/Y ◦ . We define the hermitian metric hWP for KX◦/Y ◦ by

(1.3) |Ψy|2hWP
= (
√
−1)n−m

∫
Φ−1(y)

Ψy ∧Ψy,

for each y ∈ Y ◦. The Weil-Petersson metric ωWP on Y ◦ is defined by

(1.4) ωWP = Ric(hWP ) = −
√
−1∂∂̄ log hWP .

We will extend the Weil-Petersson metric ωWP to a closed current globally on Y . Since
KX is the pullback of L on Y , there exists a smooth volume form Ω on X such that

√
−1∂∂ log Ω = Φ∗χ

for some closed (1, 1)-current χ on Y .

Definition 1.1. We define the Weil-Peterson current on Y for Φ : X → Y to be

(1.5) ωWP =
√
−1∂∂ log Ω−

√
−1∂∂ log Φ∗Ω,

where Φ∗Ω is the push-forward of Ω on Y defined in (2.2).
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It is well-known that formula (1.5) coincides with formula (1.4) on Y ◦ (cf. Lemma
2.1).

A natural question to ask is if ωWP is a positive closed (1, 1)-current on the normal
variety Y . The smoothness and nonnegativity of ωWP over Y ◦ is well-known and proved
in [12, 11]. However, it is not known in general if ω is nonnegative globally on Y
and in general, ωWP can have nonvanishing Lelong number and it might charge mass
somewhere on Y \Y ◦. The global Weil-Petersson currents appear naturally in the study
of canonical Kähler metrics on singular varieties and its positivity will play an important
role to understand the analytic and geometric behavior of the canonical metrics near
the singularities of Y as well as the singular fibers. The following is our main result.

Theorem 1.1. If Y is Q-Gorenstein, the Weil-Petersson current ωWP on Y defined in
Definition 1.1 is a nonnegative closed (1, 1)-current, i.e.,

(1.6) ωWP ≥ 0.

In general, Y is not necessarily Q-Gorenstein and it is not clear how to define the
Ricci current globally for a given Kähler current even if its volume measure behaves
well. We will now give a global definition for the Weil-Petersson current ωWP on Y
when KY is not Q-Cartier. We first resolve singularities of Y and let πY : Y ′ → Y be
a log resolution of Y . πY induces a birational surjective morphism πX : X ′ → X with
the following diagram.

(1.7)

X ′ X

Y ′ Y
?

Φ′

-πX

?

Φ

-πY

X ′ is again a Calabi-Yau fibration over Y ′ and KX′ is also the pullback of some line
bundle L′ on Y ′.

Definition 1.2. Let ω′WP be the Weil-Petersson current of the Calabi-Yau fibration
on Y ′. We define the Weil-Petersson current ωWP on Y for Φ : X → Y to be the
push-forward of ω′WP by πY : Y ′ → Y .

Here the pushforward of currents is defined by the standard procedure using smooth
test forms. The test forms in this case are given by the restriction of a smooth form on
the ambient space via local affine embedding of Y ′ into certain CN .

Theorem 1.2. Let Φ : X → Y be a morphism from a projective manifold X to a
normal variety satisfying (1.2). The Weil-Petersson current ωWP of Definition 1.2 is
a closed nonnegative (1, 1)-current on Y . Furthermore, ωWP does not depend on the
resolution of Y .

We remark that if Y is Q-Gorenstein and π : Y ′ → Y is a blow-up of Y , the
Weil-Petersson current on Y defined in Definition 1.2 as the push-forward of the Weil-
Petersson current on Y ′ coincides with the usual Weil-Petersson current on Y in Defini-
tion 1.1. However, it is not clear if ωWP can be locally represented by

√
−1∂∂f for some

local plurisubharmonic function f on Y due to the presence of normal singularities of
Y unless Y is Q-Gorenstein in the setting of Theorem 1.1.
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We will apply Theorem 1.1 and Theorem 1.2 to canonical metrics on non-general type
canonical models. When the canonical line bundle KX is semi-ample, the canonical ring
of X is finitely generated and when m is large enough the pluricanonical system |mKX |
induces a unique surjective morphism

Φ : X → Xcan,

where Xcan is the unique canonical model of X. The Kodaira dimension of X is defined
to be

kod(X) = dimXcan

and since KX is assumed to be semi-ample, we always have

0 ≤ kod(X) = dimXcan ≤ dimX.

For the rest of this section, we will always assume KX is semi-ample.
When kod(X) = dimX, X is said to be of general type and there exists a unique

Kähler-Einstein current ωKE ∈ [KXcan ] with bounded local potentials ([5, 1]).
When 0 < kod(X) < dimX, Φ : X → Xcan is a fibration of Calabi-Yau manifolds

over Xcan with possible singular fibers. We define X◦can to be the set of all smooth
points of Xcan over which Φ is regular. The twisted Kähler-Einstein current ωcan on the
canonical model Xcan is defined in [8, 9] by the following curvature equation on X◦can

(1.8) Ric(ωcan) = −ωcan + ωWP ,

where ωWP is the Weil-Petersson current define in (1.5). The existence of ωcan is proved
in [9] and ωcan is closed positive (1, 1)-current on Xcan with bounded local potentials. In
particular, ωcan is smooth on X◦can and Φ∗ωcan ∈ [KX ]. The curvature equation (1.8) is
induced by the global complex Monge-Ampère equation and it is only globally defined
when Xcan is Q-Gorenstein. The following corollary shows that indeed equation (1.8)
can be globally defined and the Ricci curvature is a global closed (1, 1) current with
uniform lower bound.

Corollary 1.1. The Weil-Petersson current ωWP in the twisted Kähler-Einstein equa-
tion (1.8) on Xcan is a nonnegative closed (1, 1)-current. In particular, the Ricci current
Ric(ωcan) is a globally defined closed (1, 1)-current on Xcan bounded below by −ωcan.

Corollary 1.1 immediately implies that the twisted Kähler-Einstein equation (1.8) is
globally defined on the canonical model Xcan. A special case of Corollary 1.1 was proved
in [10] when Xcan has at most orbifold singularities and it was applied to show that the
metric completion of (X◦can, ωcan) is homeomorphic to Xcan itself.

When kod(X) = 0, the first Chern class of X must vanish and by Yau’s celebrated
solution [15] to the Calabi conjecture, there exists a unique Ricci-flat Kähler metric in
any Kähler class on X. The degeneration of Ricci-flat Kähler metrics on X is extensively
studied in [13, 14]. A special case of the degeneration is given by a projective morphism

Φ : X → Y

induced by the linear system of a Q-ample line bundle L over Y . The morphism Φ gives
a holomorphic fibration of Calabi-Yau manifolds over Y . The twisted Kähler-Einstein
equation is also defined in [8, 9] for a canonical current ωcan ∈ [L] on Y ◦ as follows

(1.9) Ric(ωcan) = ωWP .
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Such ωcan always exists and is unique with bounded local potentials. In particular, it is
smooth on Y ◦, the set of all smooth points of Y over which Φ is regular.

Corollary 1.2. The Weil-Petersson current ωWP in the twisted Calabi-Yau equation
(1.9) on Y is a nonnegative closed (1, 1)-current. In particular, the Ricci current
Ric(ωcan) is a globally defined nonnegative closed (1, 1)-current on Y .

The significance of Corollary 1.1 and Corollary 1.2 lies in the observation that the
Ricci curvature of the canonical current ωcan is uniformly bounded below by −1 or 0,
in particular, the Ricci current of the canonical Kähler-Einstein currents is globally
well-defined. This would help us understand the local behavior of ωcan near Y \ Y ◦,
moreover, one can make use of pluripotential theory to study the local Ricci potentials
and the geometric blow-up limit of ωcan if exists will always have nonnegative Ricci
curvature. The anomaly flow introduced in [6] is related to the Fu-Yau equations [2, 7]
and shares many properties of the Kähler-Ricci flow and the Weil-Petersson currents
might also appear in the long time collapsing solutions.

2. Proof of Theorem 1.1

In this section, we always assume Y is Q-Gorenstein. By our assumption, KX = Φ∗L
for some Q-line bundle L on Y . Therefore there exist a smooth closed (1, 1)-form
χ ∈ c1(L) on the normal variety Y and a smooth volume form Ω on X satisfying

(2.1) Φ∗χ =
√
−1∂∂ log Ω.

We remark that a smooth real valued function (form) on a normal variety is defined to
be the restriction of a smooth real-valued function (form) from its local embedding. We
define Φ∗Ω to be the push-forward of Ω. For each y ∈ Y ◦, the push-forward of Ω can
be computed by

(2.2) Φ∗Ω =

∫
Φ−1(y)

Ω

as integration over fibres.
We will make use of the semi-Ricci flat metrics ωSF introduced in [4, 8, 9]. For any

ample line bundle A on X and a smooth Kähler metric ωA ∈ c1(A), there exists ψ on
X such that

(2.3) ωSF = ωA +
√
−1∂∂ψ

is a Ricci-flat Kähler metric when restricted on each fibre over Y ◦, i.e.

Ric(ωSF |Φ−1(y)) = 0

for each y ∈ Y ◦. In fact, ψ ∈ C∞(X◦), where X◦ = Φ−1(Y ◦). Without loss of generality
by rescaling A, we can assume that

(2.4) [ωSF |Φ−1(y)]
n−m = [A]n−m · [Φ−1(y)] = 1

for each y ∈ Y ◦.

Lemma 2.1. Let ωSF be a semi-Ricci flat form on X◦ satisfying the normalization
condition (2.4). Then

(2.5) (ωSF )n−m ∧ Φ∗Ω = Ω.
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In particular, we have

(2.6) ωWP = χ−
√
−1∂∂ log Φ∗Ω.

Proof. Let

f =
(ωSF )n−m ∧ Φ∗Ω

Ω
.

Then f is smooth on X◦ and
√
−1∂∂ log f =

√
−1∂∂ log

(
(ωSF )n−m ∧ Φ∗Ω

)
− χ.

In particular, for each y ∈ Y ◦,(√
−1∂∂ log f

)
|Φ−1(y) =

(√
−1∂∂ log (ωSF )n−m

)
|Φ−1(y) − χ|Φ−1(y) = 0.

It implies that f is constant on Φ−1(y) and f must be the pullback of a smooth function
on Y ◦. Now

f (Φ∗Ω) = f

∫
Φ−1(y)

Ω =

∫
Φ−1(y)

(ωSF )n−m ∧ Φ∗Ω =

(∫
Φ−1(y)

(ωSF )n−m
)

Φ∗Ω = Φ∗Ω.

Therefore f = 1 everywhere on Y ◦. For any holomorphic section Ψ of KX/Y ,∫
Φ−1(y)

Ψ ∧Ψ =

∫
Φ−1(y)

(
Ψ ∧Ψ

(ωSF )n−m

)
(ωSF )n−m =

Ψ ∧Ψ

(ωSF )n−m

=
Ψ ∧Ψ ∧ Φ∗Ω

(ωSF )n−m ∧ Φ∗Ω
=

Ψ ∧Ψ ∧ Φ∗Ω

Ω
,

and so

ωWP = χ−
√
−1∂∂ log Φ∗Ω.

�

Let Yreg be the smooth part of Y . Ysing = Y \ Yreg is a subvariety of complex co-
dimension greater than 1. By definition,

Y ◦ ⊂ Yreg.

We can also define a smooth adapted volume measure ΩY on Y as in [1] since Y is
Q-Gorenstein. More precisely, for any y ∈ Y , there is an open neighborhood U of
y such that the pluricanonical sheaf (ωY )K is a rank one locally free sheaf, for some
K = Ky ∈ N. Let α be a local generator of (ωY )K |U if U is sufficiently small. Then α

is a nowhere vanishing holomorphic pluricanonical form on U and (α∧ ᾱ)
1
K is a volume

measure on U and we can define the adapted volume measure ΩY by gluing all such
local volume measures using partition of unity. In particular, ΩY is a smooth volume
form on Yreg. We let

θ =
√
−1∂∂ log ΩY

and define a real-valued function F on X◦ by

(2.7) F = − log
Ω

(ωSF )n−m ∧ ΩY

,
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on X◦ = Φ−1(Y ◦). F is smooth on X◦ satisfying

√
−1∂∂F = −

√
−1∂∂ log

(
Ω

(ωSF )n−m ∧ Φ∗Ω

)
+
√
−1∂∂ log

(
ΩY

Φ∗Ω

)
= −χ+ θ + ωWP .

In particular,

(
√
−1∂∂F )|Φ−1(y) = 0

for each y ∈ Y ◦ . Therefore F must be a constant along each fibre over Y ◦ and F
descends to a smooth function on Y ◦. Immediately we have the following lemma.

Lemma 2.2. F ∈ C∞(Y ◦) ∩ PSH(Y ◦, χ− θ) and it satisfies

(2.8) F = log

(
ΩY

Φ∗Ω

)
and

(2.9) ωWP = χ− θ +
√
−1∂∂F

on Y ◦.

Our goal is to show that formula (2.9) extends globally to Y , or equivalently, F
extends to a (χ− θ)-plurisubharmonic function on Y . We first show that F can indeed
be extended uniquely to Yreg.

Lemma 2.3. F uniquely extends to a (χ− θ)-plurisubharmonic function on Yreg, i.e.,

F ∈ PSH(Yreg, χ− θ).

Proof. Since Yreg is a smooth open manifold and F ∈ PSH(Y ◦, χ−θ), it suffices to show
that F is locally bounded above on Yreg, i.e., for any point p ∈ Yreg, there exists an
open neighborhood Up in Yreg such that

sup
Up∩Y ◦

F <∞.

We will apply the trick in the proof of Proposition 3.2 in [9]. For any p ∈ Yreg, we
choose Up to be an open neighborhood of p such that its closure Up ⊂⊂ Yreg. Then

sup
Φ−1(Up)

(
(ωA)n−m ∧ ΩY

Ω

)
<∞

because Ω and (ωA)n−m ∧ ΩY are smooth volume forms on Φ−1(Yreg). By the mean
value theorem and the fact that for each y ∈ Y ◦,∫

Φ−1(y)

(ωSF )n−m =

∫
Φ−1(y)

(ωA)n−m,

there is a point qy ∈ Φ−1(y) such that

(ωSF )n−m|qy = (ωA)n−m|qy .
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Then

F (y) = − log

(
Ω

(ωSF )n−m ∧ ΩY

∣∣∣∣
qy

)

= − log

(
Ω

(ωA)n−m ∧ ΩY

∣∣∣∣
qy

)

≤ sup
Φ−1(Up)

log

(
(ωA)n−m ∧ ΩY

Ω

)
.

This implies that F is uniformly bounded above in Up ∩ Y ◦ and so by Satz 3 in [3] F
extends to a plurisubharmonic function on Up with respect to χ − θ since χ − θ is a
smooth closed (1, 1)-form on Up.

�

Lemma 2.4. The function F defined in (2.7) on Y ◦ uniquely extends to a (χ − θ)-
plurisubharmonic function on Y , i.e.,

F ∈ PSH(Y, χ− θ).
In particular, F is uniformly bounded above on Y .

Proof. Riemann’s removable singularity theorem for normal complex spaces (see Satz 4
in [3]) says that any plurisubharmonic function defined on the regular part of a normal
space V can extend uniquely to a plurisubharmonic function everywhere on V through
its complex codimensional 2 singularities. Since F ∈ PSH(Yreg, χ − θ) and χ − θ is
a smooth closed (1, 1)-form on Y , F extends uniquely to a (χ − θ)-plurisubharmonic
function on Y with respect to χ− θ.

�

Lemma 2.4 shows that the nonnegative (1, 1)-current ωWP = χ − θ +
√
−1∂∂F can

be extended to Y by extending F and this completes the proof of Theorem 1.1.

3. Generalizations

In this section, we give a second proof of Theorem 1.1 with slight generalization
and we prove Theorem 1.2. We consider the case when the base Y is not necessarily
Q-Gorenstein. Let Y ′ and X ′ be defined as in the diagram (1.7). Since KX′ is the
pullback of a line bundle on Y ′, there exists a smooth volume form ΩX′ on X ′ such that

√
−1∂∂ log ΩX′ = (Φ′)∗χ′,

where χ′ is a smooth closed (1, 1)-form on Y ′. We then let the volume measure on Y ′

(Φ′)∗ΩX′

be the pushforward of ΩX′ . Obviously, away from the exceptional locus of πX ,
√
−1∂∂ log ΩX′−

√
−1∂∂ log(Φ′)∗ΩX′ = (πX)∗

(√
−1∂∂ log Ω−

√
−1∂∂ log Φ∗Ω

)
= ω′WP .

Let ωSF be the semi-Ricci flat metric associated to the fibration Φ′ : X ′ → Y ′, as defined
in (2.3).
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Lemma 3.1.
ΩX′ = (ωSF )n−m ∧ (Φ′)∗ΩX′ .

Proof. The follows by the same argument in Lemma 2.1.
�

The relative canonical bundle KX′/Y ′ is also the pullback of a line bundle over Y ′. Let
Y ◦ be the set of smooth points of Y over which Φ is regular and let (Y ′)◦ = (πY )−1(Y ◦).
Y ◦ is a Zariski open set of Y .

Lemma 3.2. For any point p ∈ Y ′, we let η be a local nowhere vanishing holomorphic
section of KX′/Y ′ in a neighborhood U near p. Then there exists c > 0 such that for any
y′ ∈ U ∩ (Y ′)◦, we have ∫

(Φ′)−1(y′)

(
√
−1)n−mη ∧ η ≥ c.

Proof. We use a trick similarly in [1]. Since X ′ is projective, there exists a projective
embedding ι : X ′ → CPN and we let θ be the Fubini-Study metric on CPN . For any
point p ∈ Y ′, there exists a local holomorphic section η of KX′/Y ′ such that η is nowhere
vanishing near p. For q ∈ (Φ′)−1(p), there exists an open neighborhood Vq of q such
that ι|Vq : Vq → CN induces an affine embedding of Vq. Let z = (z1, z2, ..., zN) be the
local holomorphic coordinates of CN . Then for any (n − m)-holomorphic form in Vq
given by the restriction to Vq of dzI = dzi1 ∧ dzi2 ∧ ...dzin−m with I = (i1, i2, ..., in−m)
and 1 ≤ i1 < i2 < ... < in−m ≤ N , there exists a holomorphic function fI on Vq such
that for any y′ close to p

dzI

∣∣∣
Vq∩(Φ′)−1(y′)

= (fIη)
∣∣∣
Vq∩(Φ′)−1(y′)

.

This implies that

η ∧ η
∣∣∣
Vq∩(Φ′)−1(y′)

=
( ∑
I=(i1,...,in−m)

|fI |2
)−1 ∑

I=(i1,...,in−m)

dzI ∧ dzI
∣∣∣
Vq∩(Φ′)−1(y′)

.

In particular, there exist C > 0 and a neighborhood U of p in Y ′ such that in (Φ′)−1(U)

θn−m ≤ C(
√
−1)n−mη ∧ η.

Since
∫

(Φ′)−1(y′)
θn−m = [OCPN (1)|X′ ]n−m · [(Φ′)−1(y′)] is a topological constant for all

y′ ∈ (Y ′)◦, there exists c > 0 such that for all y′ ∈ U ∩ (Y ′)◦, we have∫
(Φ′)−1(y′)

(
√
−1)n−mη ∧ η ≥ c > 0.

�

Recall the Weil-Petersson current ω′WP on Y ′ is given by

ω′WP =
√
−1∂∂ log ΩX′ −

√
−1∂∂ log(Φ′)∗ΩX′ .

For any y′ ∈ (Y ′)◦, we let

(3.1) H(y′) = log

(
(ωSF |(Φ′)−1(y′))

n−m

(
√
−1)n−mη ∧ η

)
.
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Lemma 3.3. For any point p ∈ Y ′, there exists a neighborhood U of p such that on
U ∩ (Y ′)◦,

(3.2) ω′WP =
√
−1∂∂H.

Moreover, H is uniformly bounded above in U .

Proof. By Lemma 3.1,

ω′WP =
√
−1∂∂ log

(
(ωSF )n−m ∧ (Φ′)∗ΩX′

(
√
−1)n−mη ∧ η ∧ (Φ′)∗ΩX′

)
+
√
−1∂∂ log

(
(
√
−1)n−mη ∧ η

)
=
√
−1∂∂ log

(
(ωSF )n−m ∧ (Φ′)∗ΩX′

(
√
−1)n−mη ∧ η ∧ (Φ′)∗ΩX′

)
=
√
−1∂∂H.

For any y′ ∈ U ∩ (Y ′)◦, by Lemma 3.2 there exists C > 0 such that

eH(y′) =
(ωSF |(Φ′)−1(y′))

n−m

(
√
−1)n−mη ∧ η

=

∫
(Φ′)−1(y′)

(ωSF )n−m∫
(Φ′)−1(y′)

(
√
−1)n−mη ∧ η

≤ C.

�

Lemma 3.4. The Weil-Petersson current ω′WP is a closed nonnegative (1, 1)-current
on Y ′.

Proof. ω′WP is nonnegative on (Y ′)◦. For any point p ∈ Y ′, there exists an open neigh-
borhood U of p such that ω′WP =

√
−1∂∂H on U ∩ (Y ′)◦. Therefore H is a plurisub-

harmonic function on U ∩ (Y ′)◦. Since H is uniformly bounded above and Y ′ \ (Y ′)◦ is
a proper analytic subvariety of Y ′, H uniquely extends to a plurisubharmonic function
on U and so ω′WP is closed and nonnegative.

�

Immediately we have the following lemma using push-forward of currents.

Lemma 3.5. Let ωWP be the push-forward current of ω′WP by πY : Y ′ → Y as in
Definition 1.2. Then ωWP is a closed nonnegative (1, 1)-current on the normal variety
Y .

The next lemma shows that the definition of Weil-Petersson current in Definition 1.2
does not depend on the choice of resolution of singularities for Y .

Lemma 3.6. Suppose π1 : Y1 → Y and π2 : Y2 → Y be two resolution of singularities
for Y . Let ωWP,1 and ωWP,2 be the corresponding Weil-Petersson currents on Y1 and
Y2. Then

(π1)∗ωWP,1 = (π2)∗ωWP,2.

Proof. There exists a projective manifold Y ′ with blow-ups π′1 : Y ′ → Y1 and π′2 : Y ′ →
Y2 such that π1 ◦ π′1 = π2 ◦ π′2. Let ω′WP be the Weil-Petersson current on Y ′. Then
using (3.1), we have

ωWP,i = (π′i)∗ω
′
WP , i = 1, 2

and so
ωWP = (πi ◦ π′i)∗ω′WP = (πi)∗ωWP,i, i = 1, 2.

�
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Theorem 1.2 immediately follows by Lemma 3.5 and Lemma 3.6.

4. Proof of the corollaries

We now prove Corollary 1.1. Let X be an n-dimensional projective manifold of
semi-ample canonical bundle and its Kodaira dimension is 0 < m < n. Then the
pluricanonical system induces a unique surjective morphism Φ : X → Xcan from X to
its canonical model Xcan of dimension m and KX is the pullback of an ample line bundle
L on Xcan.

Let Ω be a smooth volume form on X such that
√
−1∂∂ log Ω = Φ∗χ

for some positive smooth (1, 1)-form χ ∈ [L]. Let Φ∗Ω be the push-forward of Ω by
Φ. The canonical Monge-Ampère equation associated to the twisted Kähler-Einstein
equation on Xcan is defined by

(4.1) (χ+
√
−1∂∂ϕ)m = eϕΦ∗Ω

for ϕ ∈ PSH(Xcan, χ). It is proved in [8, 9] that Φ∗Ω is an Lp-volume measure on Xcan

for some p > 1 and there exists a unique ϕ ∈ PSH(Xcan, χ) ∩ L∞(Xcan) solving the
equation (4.1). Moreover, ϕ is smooth on X◦can. Let ωcan = χ +

√
−1∂∂ϕ. Then on

X◦can, we have

Ric(ωcan) = −
√
−1∂∂ log(ωcan)m

= −ωcan +
√
−1∂∂ log Ω−

√
−1∂∂ log Φ∗Ω

= −ωcan + ωWP .

By Theorem 1.2, the Weil-Petersson metric ωWP extends uniquely to the Weil-Petersson
current defined in Definition 1.2 and it is nonnegative. Immediately, the Ricci current
of ωcan also extends to a closed (1, 1)-current on Xcan and it is bounded below by −ωcan.
This completes the proof of Corollary 1.1. Corollary 1.2 follows by the same argument
with very little modification.
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