

Phonological Learning with Output-Driven Maps

Bruce Tesar

Linguistics Dept. / Center for Cognitive Science
Rutgers University, New Brunswick

Eighth North American Phonology Conference May 9, 2014

Outline

- Simultaneous learning of:
 - constraint rankings
 - underlying forms
- Output-Driven Maps
 - Phono-LOGICAL Reasoning: logical entailment over algebraic lattices
- Exploiting ODM structure in learning

Need Additional Structure

- Joint learning of constraint rankings and underlying forms.
 - Jarosz 2006, Apoussidou 2007, Merchant 2008
- These techniques are still implausibly slow.
- Faster learning requires additional posited structure:
 - relating the space of possible UFs to rankings.
- Proposal: Output-Driven Maps

A System for Illustration

- Words: root + suffix
 - Both roots and suffixes are monosyllabic.
- Each vowel has two features:
 - Vowel length: long (+) or short (-)
 - Main stress: stressed (+) or unstressed (-)
- Example surface words:
 - páka pá:ka paká páka: pa:ká: pa:ká
 - Each word has exactly one main stress in the output.

The Constraints

Six Constraints

MAINLEFT main stress on the initial syllable

MAINRIGHT main stress on the final syllable

*V: no long vowels

WSP long vowels are stressed

ID[stress] correspondents have equal stress value

ID[length] correspondents have equal length value

(McCarthy & Prince 1993, 1995; Prince 1990; Rosenthall 1994)

Language L20

r1=/ <i>pa</i> /	r2=/ <i>pa:</i> /	r3=/ <i>pá</i> /	r4=/ <i>pá:</i> /	
páka	pá:ka	páka	pá:ka	s1=/- <i>ka</i> /
páka	pá:ka	páka	pá:ka	s2=/- <i>ka:</i> /
paká	paká	páka	pá:ka	s3=/- <i>ká</i> /
paká:	paká:	páka	pá:ka	s4=/- <i>ká:</i> /

Ranking: WSP \gg ID[s] \gg ML \gg MR \gg ID[l] \gg *V:

Output-Driven Maps

(Tesar 2008; Tesar 2014)

- A map is output-driven if:
 - for every grammatical candidate A→X of the map:
 - if candidate B →X (same output) has greater similarity than A→X,
 - then B→X is also grammatical.
- Simplified:
 - for every grammatical candidate A→X of the map:
 - if input B is more similar to X than A is,
 - then B also maps to X.

Greater Similarity

- Candidate B→X has greater similarity than candidate A→X if every disparity in B→X has an identical corresponding disparity in A→X.
 - The relation is only defined for pairs of candidates sharing the same output.

```
(+/-stress +/-length)
A \rightarrow X páká \rightarrow paká: [+-+-] \rightarrow [--++]
B \rightarrow X paká \rightarrow paká: [--+-] \rightarrow [--++]
```

Relative Similarity (up = greater similarity)

Relative Similarity (+/-stress +/-length)

Exploiting ODM Structure in Learning

- ODM structure can be exploited in the learning of both:
 - underlying feature values
 - ranking information
- Major benefit: computational efficiency

Phonotactic Learning

- Identity Map Property
 - underlying forms identical to the observed output.
 - Prince & Tesar (2004), Hayes (2004)
- The Identity Map property follows from ODM structure.
 - Phonotactic learning can be done as before.

ODM entails the Identity Map Property

Ranking Information Content of paká:

/paká:/	WSP	ML	MR	*V:	ID[s]	ID[I]
paká: winner		*		*		
paká loser		*				*
ERC paká: ~ paká				L		W

Word r1s4 has surface form paká:

Mapping that form to itself yields $ID[I] \gg *V$:

Learning Underlying Feature Values

- ODM: A→X entails B→X
- Contrapositive: NOT (B→X) entails NOT (A→X)
 - If a given input cannot map to the output, then all inputs with lesser similarity (additional disparities) cannot map to that output.

Testing Individual Disparities

- Observed output (r1s4): paká:
- What is the underlying length of suffix s4?
- paká→paká: disparity for s4 length only.
- If paká→paká: is inconsistent
 - no other input with s4 set to short maps to paká:
 - s4 can be set to long (+).

Setting s4 to +long

Exponential to Linear

- The learner only needs to test one input for each unset feature.
- Linear in the number of unset features
 - rather than exponential.

Features Are Set When Contrastive

- paká→paká: is inconsistent
- because length is contrastive in stressed position
- which the learner knows via ID[I] ≫ *V:
- as determined by phonotactic learning.

Non-Phonotactic Ranking Information

- Find forms in which a set feature is not faithfully realized (Tesar 2006b).
 - Where the feature alternates.
- Indicates neutralization.

Unfaithful Features

- Observed output (r3s4): páka
- s4 has already been set to +long.
- Minimal disparity mapping: páka: → páka

Viable Inputs for r3s4

Ranking Info from r3s4

/páka:/	WSP	ML	MR	*V:	ID[s]	ID[I]
<i>páka</i> winner						*
<i>páka:</i> loser	*			*		
ERC	W			W		L
paká: ~ paká				L		W
Fusion	W			L		L

WSP
$$\gg$$
 ID[I] \gg *V:

Obtained despite incomplete input knowledge.

Contrast and Neutralization

- Underlying feature values are learned in positions of contrast.
- Non-phonotactic ranking information is learned in positions of neutralization.
- In learning, each feeds the other.

Underlying Forms, Not Surface Allomorphs

r1=/ <i>pa</i> /	r2=/ <i>pa:</i> /	r3=/ <i>pá</i> /	r4=/ <i>pá:</i> /	
páka	pá:ka	páka	pá:ka	s1=/- <i>ka</i> /
páka	pá:ka	páka	pá:ka	s2=/- <i>ka:</i> /
paká	paká	páka	pá:ka	s3=/- <i>ká</i> /
paká:	paká:	páka	pá:ka	s4=/- <i>ká:</i> /

r2 always surfaces as pá: or pa (never as pa:)

Learning Conspiracies: L9

r1=/ <i>pa</i> /	r2=/ <i>pa:</i> /	r3=/ <i>pá</i> /	r4=/ <i>pá:</i> /	
paká	pá:ka	páka	pá:ka	s1=/- <i>ka</i> /
paká:	paká:	paká:	pá:ka	s2=/- <i>ka:</i> /
paká	pá:ka	paká	pá:ka	s3=/- <i>ká</i> /
paká:	paká:	paká:	paká:	s4=/- <i>ká:</i> /

r1s1: /paka/ → paká default final stress

r2s3: /pa:ká/ → pá:ka WSP, via stress shift

r4s2: /pá:ka:/ → pá:ka WSP, via vowel shortening

L9 Phonotactic Learning

L9 includes contrasts in stress and length.

```
    ID[I] ≫ *V: (contrast in length)
```

– paká paká:

```
• ID[s] ≫ {ML,MR} (contrast in stress)
```

– paká páka

L9 UF Learning(1)

- r1s2: /paká/ cannot map to paká:
 - $ID[I] \gg *V$:
- s2 can be set underlyingly to +long.
 - Because –long is inconsistent.
 - s2 now has lexical entry /?,+/

L9 Non-phonotactic Ranking Info(1)

- r4s2 surfaces as pá:ka
 - s2 surfaces as –long
 - /pá:ka:/ → pá:ka
- WSP ≫ ID[I]

(vowel shortening)

L9 Contrast Pair UF Learning

- r1s1 paká
- r3s1 páka
- r1 and r3 must contrast in underlying stress.
 - Set r1 to -stress.
 - Set r3 to +stress.

L9 Non-phonotactic Ranking Info(2)

- r3s3 surfaces as paká
 - r3 surfaces as -stress.
 - /páká/ → paká
- MR ≫ ML

(default final stress)

L9 UF Learning(2)

- r4s2: /pá:ká:/ cannot map to pá:ka
 - $-MR \gg ML$
- s2 can be set underlyingly to –stress.
 - Because +stress is inconsistent.
 - s2 now has lexical entry /—,+/

L9 Non-phonotactic Ranking Info(3)

- r3s2 surfaces as paká:
 - s2 surfaces as +stress.
 - /páka:/ → paká:
- ID[I] ≫ ID[s]

(stress shift)

Just Another Grammar

- No special mechanisms for learning conspiracies.
- No special mechanisms for non-allomorphic UFs.

Conclusions

- ODM structure makes much more efficient learning possible.
 - Reduction from exponential to linear.
 - Both underlying forms and ranking information.
- Phono-LOGICAL reasoning: entailment over algebraic lattices.
- Jointly leveraging the two forms of paradigmatic information.
 - contrast
 - alternation