Cancer Pharmacology (CP) Program

X.F. Steven Zheng, PhD Stephen K. Burley, MD, DPhil

April 26, 2023

RUTGERS

Cancer Institute of New Jersey RUTGERS HEALTH

Cancer Pharmacology Program Leadership

XF Steven Zheng, PhD

University Professor

- NCI R01
- NIDDK R01

Zheng's Role in Program

- Lead activities among basic science Members
- Lead CP seminar series
- Organize Program retreats

Stephen K Burley, MD, DPhil

University Professor and Henry Rutgers Chair Director, RCSB Protein Data Bank (PDB)

- NIGMS R01
- NSF
- NCI PDB

Burley's Role in Program

- Lead activities among applied science/engineering Members
- Build drug-discovery eco-system
- Organize joint IQB Crash Courses and Boot Camps

Shared Program Responsibilities

- Collaborate with AD Basic Research (Shen) and AD Translational Research (Ganesan) in translation
- Foster consortium-wide collaborations, especially with CETI and CIPT program to enhance bi-directional translational efforts
- Enable research activities that address CINJ Catchment Area Priorities
- Promote IDEA (Inclusion, Diversity, Equity, and Access) throughout the membership
- Recruit and mentor new Members across the Consortium

Program Aims

To **understand the biology of key molecular targets** in cancer that drive cell growth, proliferation, and survival so that they can be effectively targeted for cancer therapy

AIM 1

Baker	Muir 😽
Burley	Rameshwar
Cartegeni	Sadoshima
Chen	Scotto
Dutta	Тао
Goodsell	Vallat
Herranz	Wuhr 😽
Hou	Yan 😽
Jang	Zheng
Kleiner 😽	Zamudio
H. Li	

Program Aims

To **understand the biology of key molecular targets** in cancer that drive cell growth, proliferation, and survival so that they can be effectively targeted for cancer therapy

To determine **mode of action and mechanisms of resistance** for anticancer agents

AIM 2

An	Minko
Burley	Muir 😽
Cartegeni	Pasqualini
Chen	Staquicini
Glytsou	Scotto
Hatefi	Vallat
Herranz	Wuhr 😽
Hou	You
Jin	Zheng
Kaelber	

Program Aims

AIM 1 To **understand the biology of key molecular targets** in cancer that drive cell growth, proliferation, and survival so that they can be effectively targeted for cancer therapy

aim 2 To determine **mode of action and mechanisms of resistance** for anticancer agents

AIM 3

To discover and develop novel therapies and enabling technologies for more effective cancer treatment

AIM 3

Burley	Laskin
Gormley	Minko
Groves 😽	Moghe
latefi	Rabitz 😽
Herranz	Sinko
lavanmard	Skezely
Jin	Tromp 😽
_ee	Tyagi
Kagan	Wang
Khare	Yarmush
Kim 😽	

Program Membership Profile

R01 Equivalents

2018: 14 PIs/PDs 2023: 21 PIs/PDs

Program Productivity and Collaborations

Total Publications

Collaborative Publications

High impact publications (IF \ge 10): 36% (236) Publications with citations \ge 10: 41% (271)

Collaborative Publications with Other Institutions

Response to Prior Critique

Scored Outstanding to Excellent

Increased Princeton Representation, Collaborations

- Membership increased from 3 to 7
- Multiple intra/inter-programmatic collaborations

Increased Multi-Pl and Program Project Grants

- Multi-PI grants increased
- 5 P01/P01-equivalent grants

Enhanced Drug Discovery Efforts

- SHIN2 for leukemia: Kim♥, Rabinowitz♥, Herranz
- MB1-47 for leukemia and liver metastases of colorectal and pancreatic cancers: Jin, Herranz
- CSSTRESAC peptide for TNBC: Pasqualini, Staquicini, Burley, Arap, Libutti

Expanded Translation Scope and Commercialization

- Close interactions with CETI/CIPT and Biopharma Alliance AD
- RGD4C-AAVP-TNF in advanced solid tumors Pre-IND: Pasqualini, Arap, Libutti; Related Co: PhageNova Bio
- High-resolution ultrasound diagnostic imaging technology for breast cancer, NSF funded: Tromp \$\$, Ganesan, Haffty
- Bench discovery to clinical trials (Troriluzole, Chen: CINJ Phase I NCT03229278; International GBM AGILE Multi-center Phase II/III NCT03970447)

Scientific Impact of Program

Advances in Scientific Knowledge

- Landscape of cancer epigenetics and chromatin remodeling: Muir \$
- mTOR inhibitor response/resistance: Zheng, Burley, Vallat, Su
- Structural basis of cancer painkiller action: Yan 🕏 (former Member)
- Resistance to EGFR inhibitors: Burley, Vallat, Ganesan

Innovative Technologies

- Precision CRISPR single-base editing for CAR-T engineering: Jin
- Al-driven design, engineering and synthesis of nanomaterials: Gormley \$\$
- Chemical biology of epigenetics and chromatin remodeling: Muir \$
- Multiplex quantitative proteomics: Wuhr

Novel Therapeutics

- Targeting mitochondria in leukemia and colorectal cancer: Jin, Herranz
- Targeting SHMT in leukemia: Herranz, Kim 🕏, Rabinowitz 🕏
- Targeting PDIA3 in TNBC: Pasqualini, Staquicini, Burley, Arap, Libutti

Understanding the Biology of Molecular Targets

Shared Resources

- Biomedical Informatics
- Comprehensive Genomics
- Genome Editing
- Biostatistics

Grants

- P01CA196539
- R01CA259365
- R21CA262491
- R01CA242158
- R01HL138720

Publications

- Mashtalir, Science 2021
- Valencia, Cell 2019
- Oliveros, PNAS 2022
- Nagarajan, *J Clin Invest* 2022
 Kashihara. *J Clin Invest* 2021
- Kashinara, J Clin Invest 2021

Major Discoveries

- Muir *: Landscape of cancer chromatin remodeling and epigenetics
- Jang, Baker, Cole (CIPT): Molecular mechanisms of chemo brain
- Sadoshima, Li: Understand cancer targets in the heart

Epigenetic Marks Dictate Activity of Chromatin Remodeling Complexes

Impact

Global understanding of epigenetics/chromatin remodeling Understand and reduce adverse effects of chemo brain

Catchment Priority Breast and Lung Cancers

Understanding the Biology of Molecular Targets

Shared Resources

- Biomedical Informatics
- Comprehensive Genomics
- Genome Editing
- Biostatistics

Grants

- P01CA196539
- R01CA259365
- R21CA262491
- R01CA242158
- R01HL138720

Publications

- Mashtalir, Science 2021
- Valencia, Cell 2019
- Oliveros, PNAS 2022
- Nagarajan, J Clin Invest 2022
 Kashihara, J Clin Invest 2021

Major Discoveries

- Muir *: Landscape of cancer chromatin remodeling and epigenetics
- Jang, Baker, Cole (CIPT): Molecular mechanisms of chemo brain
- Sadoshima, Li: Understand cancer targets in the heart

Epigenetic Marks Dictate Activity of Chromatin Remodeling Complexes

Impact

Global understanding of epigenetics/chromatin remodeling Understand and reduce adverse effects of chemo brain

Catchment Priority Breast and Lung Cancers

Drug Action and Resistance Mechanisms

(CIPT)

Pasqualini Pine (former GICG)

R01CA226537

R01CA240516

Burlev

Arap

(CIPT)

Shared Resources

- Biomedical Informatics
- Comprehensive Genomics Genome Editing
- Biostatistics
- Grants
- R01CA260006
- R01DK124897
- R01GM133198

Publications

- Zhang, Theranostics 2022
- Zhang, Cancer Res 2021
- Wang, Nat Comm 2021
- Tsang, Mol Cell 2018
- Castellano, J Thoracic Oncol 2019
- Butner, Sci Adv 2021
- Butner. eLife 2021

Major Discoveries

- Zheng, Vallat, Burley, Su (CMI): Mechanism of **Response to mTOR Inhibitors** and Chemotherapy
- Vallat, Burley, Ganesan (CIPT), Pine (former GICG): Mechanism of Acquired **Osimertinib Resistance**
- Pasqualini, Arap (CIPT): **Computational Prediction of Responses to Immune Checkpoint and Chemotherapies**

Mechanism of Response to mTOR Inhibitors

Impact

Understand and overcome resistance to targeted agents

Catchment Priority

Breast, Colorectal, Lung, and Prostate Cancers

Novel Therapies and Drug Delivery

Shared Resources

- Biomedical Informatics
- Comprehensive Genomics
- Genome Editing
- Biostatistics

Grants

- R01CA236936
 R00CA197869
- R01CA204517

R01CA163591

R01CA240516

- ACS133916
- Publications
- García-Cañaveras, Leukemia 2020
- Ghergurovich, Nat Chem Biol 2020
- da Silva-Diz, Blood 2021
- Alasadi, Oncogene 2021
- Staquicini, PNAS 2021
- Staquicini, eLife 2021
- Suwan, PNAS 2019

Major Discoveries

- Kim \$, Rabinowitz \$ (CMI), Herranz Small-Molecule: First-in-class SHMT inhibitor SHIN2 with activity in adult and pediatric acute leukemia models HO_
- Jin, Herranz Small-Molecule: 2nd generation mitochondrial uncoupler MB1-47 with activity in T-cell acute lymphoblastic leukemia, colon, and pancreatic cancer
- Pasqualini, Staquicini, Arap (CIPT) Biologics: Cyclic nona-peptide targeting PDIA3 for triple-negative breast cancer; Monoclonal antibody targeting GRP78 for breast and prostate cancers

Impact

First-in-class targeted agents SHIN2 and Biologics

Catchment Priority

Breast, Colorectal, and Prostate Cancers

García-Cañaveras, Leukemia 2021

Translational Research

In collaboration with CIPT and CETI and AD for Biopharma Alliances Molloy

Small-Molecule Drugs

- Troriluzole: Drug discovery and demonstration of anti-cancer efficacy by CP Member Chen; CINJ Phase I led by Saraiya (CIPT) (*NCT03229278*, completed 2020); <u>BioHaven Ltd.</u> – International GBM AGILE Phase II/III Multi-center, Interventional Trial (*NCT03970447*, ongoing)
- SHIN2: Adult and pediatric anti-leukemic activity; <u>Barer Institute</u> IND-enabling studies
- MB1-47: Activity against T-cell acute lymphoblastic leukemia and metastatic colorectal carcinoma; <u>Mito BioPharma, Inc</u>. - IND-enabling studies

Biologics Drugs and Cell Engineering

- CSSTRESAC cyclic peptide targeting PDIA3 for triple-negative breast cancer; <u>PhageNova Bio, Inc</u>. – IND-enabling studies
- Monoclonal antibody targeting GRP78 for breast and prostate cancers; <u>MBrace Therapeutics, Inc</u>. – IND-enabling studies
- Antibody-Drug Conjugate XCN-010 targeting activated matriptase (Warhead: monomethyl auristatin-E); <u>Xiconic Pharmaceuticals, Inc</u>. – IND-enabling studies
- Precision CRISPR technology for CAR-T cell engineering; <u>Horizon Discovery, Ltd</u>. Pre-clinical development

Commercialization: 43 Innovation Disclosures, 31 Patents Filed, 21 Patents Issued, 8 License Agreements

Research Responsive to Catchment Area

Ganesan

(CIPT)

Kagan

R01GM124046

NSF1941241

Minkc

Pine (former GICG)

(CIPT

Shared Resources

- Biomedical Informatics
- Genome Editing
- Biostatistics
- Metabolomics

Grants

- R01CA238871
- R01CA209818
- R01CA269513 NSF1906883

Publications

- Shen. J Control Release 2020
- Garbuzenko, Theranostics 2020
- Garbuzenko, Theranostics 2020

Major Discoveries

Novel Ultrasound Imaging Technology

- Tromp \$\$, Ganesan, Haffty: High-resolution ultrasound technology for precision diagnosis of breast cancer
- Reducing diagnostic imaging costs to lower barrier for early detection and treatment of breast cancer among underrepresented and economically-disadvantaged groups

Targeted Delivery of Lung Cancer Therapies

- Minko, Kagan, and Pine (former GICG): delivery technology for inhaled nano-formulated anti-lung cancer drugs
- Reducing systemic side effects

Catchment Area Responsive Research

- A majority of CP publications and most CP grants are relevant to **Catchment Area priorities**
- Addresses diagnosis, and therapeutic development and resistance in breast, colorectal, and lung cancers, and melanoma

High-Resolution Ultrasound Detection of Early Breast Tumors

Tromp and colleagues

Additional Examples of Catchment Area Responsiveness

Collaboration with Cancer Health Equity Center of Excellence

- CP Program Leaders and Program Liaison meet quarterly with the Internal Catchment Advisory Committee
- Rameshwar engaged the Community Cancer Action Board in discussion of research
- Herranz and Zheng participated in Science to Sidewalk

168

Bidirectional Community Engagement

- Herranz and Jang discussed leukemia therapies and chemo brain, respectively, at the Community Science Cafés (COE sponsored)
- Community feedback led to new focus on developing therapeutic interventions for chemo brain
- Burley, Dutta, and Zheng organized and judged the 2022 RCSB Protein Data Bank Video Challenge on "Molecular Mechanisms of Cancer" for High School Students across the US

Education and Training over Grant Period

Peer-Reviewed Training Grants

- NIH NRSA Training Grant for the New Jersey Alliance For Clinical Translational Science (Scotto)
- NIH Rutgers Biotechnology Training Program (Yarmush)
- NIH Summer Research and Education Program for Health Professional Students (Rameshwar)

Faculty Development Awards

- NCI Award K22CA251491 (Hou)
- NCI Award K99CA252602 / R00CA252602 (Glytsou)
- American Cancer Society Scholar Award 133916-RSG-19-161-01-TBE (Herranz)

Specialized Training Courses

- 2022, 2023 IQB Winter Boot Camp on cancer biology and mechanisms of cancer drug action for Underrepresented Minority undergraduate students
- 2022 RCSB PDB High School Video Challenge on Molecular Mechanisms of Cancer
- 2022 IQB Crash Courses on "Intrinsically Disordered Biological Macromolecules in Cellular Signaling/Regulation" and "Cancer Immunology and Metabolism"

Value Added: Program to Center

- Paradigm-Shifting Science: Breakthroughs driven by Program aims
- Translation: Clinical trials; Biopharma startups; Drug discovery infrastructure; and the Protein Data Bank
- Addressing Catchment Area Priorities and COE: Research and development for breast, lung, and colon cancers, and melanoma; Bidirectional community engagement

- Education and Training: Undergraduate Boot Camps; Crash Courses for Graduate Students and Postdocs; Mentoring new CINJ faculty and Rutgers basic and applied researchers in Cancer Biology
- Diversity Enhancement: Working closely with members and their Schools/Departments to enhance CP-related diversity recruitment of faculty/trainees
- These activities demonstrate CP Program roles in supporting the Comprehensiveness of the Cancer Center Consortium

Glytsou Co-recruited with CMI

Zamudio Co-recruited with GICG

🚍 Future Plans

Enhance Collaborative Drug Discovery and Translation

- Pilot Awards to stimulate P01, U01 and MPI-R01 submissions
 - 3D-Stucturalyzer for Oncology Drug Discovery: Burley, Zheng, Ganesan (CIPT)
 - Higher-Resolution Ultrasound Diagnostics: Tromp, Ganesan (CIPT), Haffty (CIPT)
- Work with CETI and CIPT Program to advance preclinical candidates to human trials
 - e.g., SHIN2, MB1-47, and cyclic-nonapeptide CSSTRESAC
- Work with AD BioPharma Alliances to develop strategic industry collaborations

2 Leverage Artificial Intelligence and Protein Data Bank to Accelerate Research

- Develop the Protein Data Bank as a global resource for basic and applied oncology research
- Build upon multi-PI NSF DMREF grant to promote AI-based design and synthesis of small molecules and nanomedicines

280 EGF/EGFR PDB Structures Enable Studies of Targeted Drug Action and Resistance

🚍 Future Plans

- 3 Enhance Integration of Princeton Members and Build Team Science
- Explore molecular targets of cancer pain: Tao, Kim, Baker, Wang
- Advance quantitative proteomics technology in drug response and resistance: Wuhr, Zheng, Li

4 Recruit to Strengthen Diversity and Catchment Area Priority Research

- Rutgers Cancer Institute of New Jersey
- Medicinal Chemistry Rutgers School of Pharmacy
- Chemical Biology Princeton University and Rutgers School of Arts and Sciences

L858R/M766Q EGFR Inhibited by Neratinib Modeled using PDB ID 2JIV Castellano *et al.* (2019)

Thank You

Q&A Segment

RUTGERS Cancer Institute of New Jersey RUTGERS HEALTH

