BIOGRAPHICAL SKETCH

Provide the following information for the Senior/key personnel and other significant contributors. Follow this format for each person. **DO NOT EXCEED FIVE PAGES.**

NAME: GROVES, JOHN T.

eRA COMMONS USER NAME (credential, e.g., agency login): itgroves

POSITION TITLE: Hugh Stott Taylor Chair of Chemistry

EDUCATION/TRAINING (Begin with baccalaureate or other initial professional education, such as nursing, include postdoctoral training and residency training if applicable. Add/delete rows as necessary.)

INSTITUTION AND LOCATION	DEGREE (if applicable)	Completion Date MM/YYYY	FIELD OF STUDY
Massachusetts Institute of Technology, Cambridge, MA Columbia University, New York, NY	BS	06/1965	Chemistry
	PHD	06/1969	Chemistry

A. Personal Statement

The major thrust of our research program is at the interface of organic, inorganic, and biological chemistry. We are particularly focused on metalloenzymes and biomimetic redox catalysts, especially those containing iron and manganese that can transform C-H bonds into hydroxyl groups. Our studies, built on the traditions of physical organic chemistry, have defined the oxygen rebound mechanism of oxygen activation and transfer by cytochrome P450 enzymes and has become a central paradigm in the field of bioinorganic chemistry. Our laboratories moved into a completely new facility in the fall of 2010 with space for 16 coworkers that has greatly facilitated our research effort.

B. Positions, Scientific Appointments, and Honors

Positions and Scientific Appointments

1991 -	Hugh Stott Taylor Chair of Chemistry, Princeton University
1985 -	Professor, Department of Chemistry, Princeton University
2006 -	Board of Editors, Journal of Inorganic Biochemistry
1984 -	International Advisory Board, Symposium on Homogeneous Catalysis
2021 -	Founder and scientific advisory board member, Sóliome Inc.
2009 -	Founder and Principal Scientist, HepatoChem LLC
2015 -	Founder and Principal Scientist, Fluoromic Technologies LLC
2022 - 2022	Nichols Distinguished Lecturer, ACS
2019 - 2019	Ritter Memorial, Miami University Ohio
2018 - 2018	Kolthoff Lectureship, University of Minnesota
2018 - 2018	Ross Distinguished Lecturer, Dartmouth College
2015 - 2015	Sigma-Aldrich Award in Inorganic Chemistry, Northwestern University
2015 - 2015	Rayson Huang Prize and Lectureship in Chemistry, University of Hong Kong
2008 - 2011	National Science Foundation Extension Award for Special Creativity, NSF
2007 - 2007	Cady Distinguished Lecturer, University of Washington
2005 - 2005	Chair, Synthetic & Bioorganic Special Emphasis Panel, NIH
2004 - 2005	Co-chair, ACS-NSF Committee and Workshop on the Molecular Basis of Life Processes
1999 - 1999	Ad hoc Member, Metallobiochemistry Study Section, NIH
1998 - 2002	Member, Council of the Society for Biological Inorganic Chemistry
1996 - 1996	Co-chair, 10th International Symposium on Homogeneous Catalysis
1995 - 1998	Editorial Board, Journal of Biological Inorganic Chemistry

1993 - 2005	Board of Editors, Bioorganic and Medicinal Chemistry (and Letters)
1989 - 1989	Nichols Distinguished Lecturer, ACS
1988 - 1993	Chair, Department of Chemistry, Princeton University
1986 - 1986	Ad hoc Consultant, National Advisory General Medical Council
1983 - 1993	Board of Editors, Bioorganic Chemistry
1983 - 1985	Director, Michigan Center for Catalysis and Surface Science
1979 - 1985	Professor, Department of Chemistry, University of Michigan
1979 - 1983	Member, Metallobiochemistry Study Section, National Institutes of Health
1969 - 1979	Assistant/Associate Professor, Department of Chemistry, University of Michigan
1965 - 1969	Faculty Fellow, Columbia University
<u>Honors</u>	
2015 - 2015	American Chemical Society Award in Inorganic Chemistry, ACS
2012 - 2018	Merit Award, National Institute of General Medical Sciences, NIH
2012	Member, National Academy of Sciences
2010 - 2010	Ira Remsen Award, American Chemical Society
2010 - 2010	Hans Fischer Career Award in Porphyrin Chemistry, Hans Fischer Gesellschaft, Munich
2009 - 2009	Frontiers in Biological Chemistry Award, Max Planck Institute, Mülheim
2009	Fellow, Royal Society of Chemistry
2008 - 2011	Extension Award for Special Creativity, NSF
2008 - 2008	Grand Prix, Maison de la Chimie, laureate (for contributions to mankind & nature)
2003 - 2003	Distinguished Visiting Professor, University of Hong Kong
2000 - 2000	Distinguished Lecturer in Inorganic Chemistry, Northwestern University
2000 - 2000	Abbott Distinguished Lecturer in Organic Chemistry, Colorado State University
1996 - 1996	Alfred Bader Award in Bioorganic and Bioinorganic Chemistry, ACS
1993 - 1993	Morris Kharash Visiting Professor, University of Chicago
1993	Fellow, American Academy of Arts and Sciences
1991 - 1991	Arthur C. Cope Scholar Award, American Chemical Society
1990 - 1992	National Science Foundation Extension Award for Special Creativity, NSF
1987 - 1987	Fellow, Japan Society for the Promotion of Science
1984	Fellow, American Association for the Advancement of Science
1978 - 1978	Phi Lambda Upsilon Award, for Graduate Teaching and Leadership
1969 - 1969	L. P. Hammett Fellowship, for Outstanding Graduate Research
1966 - 1969	National Institute of Health Pre-doctoral Fellow, Columbia University

C. Contributions to Science

1995 - 1997 Editorial Board, Inorganic Chemistry

1994 - 1994 Chair, Metals in Biology Gordon Research Conference

1.

- a. Nelp M, Zheng V, Davis K, Stiefel W, Groves J. Potent Activation of Indoleamine 2,3-Dioxygenase by Polysulfides. Journal of the American Chemical Society. 2019 August 22; 141(38):15288-15300. Available from: https://pubs.acs.org/doi/10.1021/jacs.9b07338 DOI: 10.1021/jacs.9b07338
- b. Nelp M, Kates P, Hunt J, Newitt J, Balog A, Maley D, Zhu X, Abell L, Allentoff A, Borzilleri R, Lewis H, Lin Z, Seitz S, Yan C, Groves J. Immune-modulating enzyme indoleamine 2,3-dioxygenase is effectively inhibited by targeting its apo-form. Proceedings of the National Academy of Sciences. 2018 March 12; 115(13):3249-3254. Available from: https://pnas.org/doi/full/10.1073/pnas.1719190115 DOI: 10.1073/pnas.1719190115
- c. Huang X, Groves J. Oxygen Activation and Radical Transformations in Heme Proteins and Metalloporphyrins. Chemical Reviews. 2017 December 29; 118(5):2491-2553. Available from: https://pubs.acs.org/doi/10.1021/acs.chemrev.7b00373 DOI: 10.1021/acs.chemrev.7b00373
- d. Chan KH, Groves JT. Concise Modular Synthesis and NMR Structural Determination of Gallium Mycobactin T. J Org Chem. 2021 Nov 5;86(21):15453-15468. PubMed PMID: 34699221.

2.

- a. Li G, Kates P, Dilger A, Cheng P, Ewing W, Groves J. Manganese-Catalyzed Desaturation of N-Acyl Amines and Ethers. ACS Catalysis. 2019 September 18; 9(10):9513-9517. Available from: https://pubs.acs.org/doi/10.1021/acscatal.9b03457 DOI: 10.1021/acscatal.9b03457
- b. Tang L, Zhu L, Ener ME, Gao H, Wang Y, Groves JT, Spiro TG, Fang C. Photoinduced charge flow inside an iron porphyrazine complex. Chem Commun (Camb). 2019 Nov 7;55(90):13606-13609. PubMed PMID: 31657387.
- c. Coutard N, Goldberg JM, Valle HU, Cao Y, Jia X, Jeffrey PD, Gunnoe TB, Groves JT. Aerobic Partial Oxidation of Alkanes Using Photodriven Iron Catalysis. Inorg Chem. 2022 Jan 17;61(2):759-766. PubMed PMID: 34962799.
- d. Coutard N, Musgrave C, Moon J, Liebov N, Nielsen R, Goldberg J, Li M, Jia X, Lee S, Dickie D, Schinski W, Wu Z, Groves J, Goddard W, Gunnoe T. Manganese Catalyzed Partial Oxidation of Light Alkanes. ACS Catalysis. 2022 April 19; 12(9):5356-5370. Available from: https://pubs.acs.org/doi/10.1021/acscatal.2c00982 DOI: 10.1021/acscatal.2c00982

3.

- a. Nichole A. Schwartz, Shunyan Gu, Bradley A. McKeown, Xiongyi Huang, Nicholas C. Boaz, T. Brent Gunnoe, John T. Groves, Studies of C-H Activation and Functionalization: Combined Computational and Experimental Efforts to Elucidate Mechanisms, Principles and Catalysts, Ch. 34 in Computational Materials, Chemistry, and Biochemistry: From Bold Initiatives to the Last Mile, Sadasivan Shankar, Richard Muller, Thom Dunning, Guan Hua Chen, Eds., Springer Series in Materials Science, Springer Nature Switzerland AG, 2021, Vol. 284, pp 767-806. doi.org/10.1007/978-3-030-18778-1_34
- b. Courtney F. McQueen, John T. Groves, Toxicity of the Iron Siderophore Mycobactin J in Mouse Macrophages: Evidence for a Hypoxia Response, *Journal of Inorganic Biochemistry*, **2022**, 227, 111669. doi.org/10.1016/j.jinorgbio.2021.111669
- c. Dong Wang and John T. Groves, An Energy Landscape for Electrocatalytic Oxidation of Water by a Single-site Oxomanganese(V) Porphyrin. *Inorganic Chemistry*, **2022**, *61*, https://doi.org/10.1021/acs.inorgchem.2c02284
- d. Charles B. Musgrave III, Kaeleigh Olsen, Nichole S. Liebov, John T. Groves, William A. Goddard III, T. Brent Gunnoe, Partial Oxidation of Methane Enabled by Decatungstate Photocatalysis Coupled to Free Radical Chemistry, ACS Catalysis 2023, in press.