
Math 351 Homework 11 Solutions The Graders

This assignment is due Tuesday, 28 April, 2020 at 8am on Canvas. Please write
your name, section number, and the names of any collaborators at the top of your
homework. Homework should be written or typed legibly using complete sentences.
Remember to justify all answers fully!

Problem 1. Prove that if N1, N2 are normal subgroups, then

N1N2 = {a · b : a ∈ N1, b ∈ N2}

is a subgroup. Make sure you check it’s closed under multiplication and inverses.
Then verify that N1N2 = N2N1. Hint: because gN = Ng for normal subgroups and
any g ∈ G, you can rewrite g · n as n′ · g for some other n′ ∈ N . This lets you
‘commute’ N1 and N2.

Solution 1. Suppose N1, N2 E G. Since N1 and N2 are both subgroups, eG ∈ N1

and eG ∈ N2. Therefore, by definition, eG = eGeG ∈ N1N2. Next we will show N1N2

is closed under multiplication. Let a1, a2 ∈ N1 and b1, b2 ∈ N2. Our goal is to show
that a1b1a2b2 ∈ N1N2. Since N1 is normal, b1a2b

−1
1 ∈ N1. We have

a1b1a2b2 = a1b1a2(b
−1
1 b1)b2

= (a1(b1a2b
−1
1 ))(b1b2)

Since a1 and b1a2b
−1
1 are in N1, so is their product a1(b1a2b

−1
1 ); and b1b2 ∈ N2. Thus

a1(b1a2b
−1
1 )b1b2 ∈ N1N2, so N1N2 is closed under multiplication. Next, we need to

show N1N2 is closed under inverses. The inverse of ab is b−1a−1. Since N1 is normal,
b−1a−1b ∈ N1. Then

b−1a−1 = b−1a−1(bb−1)

= (b−1a−1b)b−1,

and since b−1a−1b ∈ N1 and b−1 ∈ N2, their product b−1a−1 = (b−1a−1b)b−1 ∈ N1N2.
We remark that the argument up to this point only required that N1 be normal; N2

could have been any subgroup.
It remains to show that N1N2 = N2N1. We make use of the fact that, for any group
H, the inversion map H 3 g 7→ g−1 is a bijection from H to itself. Let a ∈ N1 and
b ∈ N2. Since (ab)−1 = b−1a−1, and b−1 ∈ N2, a

−1 ∈ N1, we see that the inversion
map on N1N2 maps to N2N1. Thus N1N2 ⊂ N2N1. By symmetry the inversion map
on N2N1 maps to N1N2, proving N2N1 ⊂ N1N2. Therefore these two groups are
equal.
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Problem 2. Let N1, N2 / G be two normal subgroups. Prove the lemma that I left
as an exercise from lecture: if N1N2 = G and N1 ∩N2 = {e}, then every g ∈ G can
be uniquely written as g = n1 · n2 with n1 ∈ N1, n2 ∈ N2.

Solution 2. We first show that eG can be written uniquely as a product of an element
of N1 with an element of N2. Suppose we have written eG = n1n2. Then n2 = n−11 ,
so n2 ∈ N1. But then n2 ∈ N1 ∩ N2, so n2 = eG, and it follows that n1 = eG. Thus
the unique way of writing eG as a product of an element from N1 and an element
from N2 is eGeG. Now let g ∈ G be general, and suppose n1n2 = n′1n

′
2 = g are two

distinct ways of writing g as a product of an element of N1 and an element of N2.
Then we can write eG as follows:

eG = gg−1

= n1n2n
′−1
2 n′−11

= n1(n
′−1
1 n′1)n2n

′−1
2 n′−11

= (n1n
′−1
1 )(n′1n2n

′−1
2 n′−11 ).

Then n1n
′−1
1 ∈ N1 and, since N2 is normal, n′1n2n

′−1
2 n′−11 ∈ N2, so we’ve written eG

as a product of an element from N1 and an element from N2. Thus n1n
′−1
1 = eG =

n′1n2n
′−1
2 n′−11 . Since eG = n1n

′−1
1 , we have n′−11 = n−11 , so n1 = n′1. Then

n−11 g = n−11 n1n2 = n2

= n−11 n1n
′
2 = n′2,

so n2 = n′2 as well. We’ve thus shown g can be written in a unique way as a product
of an element from N1 and an element from N2. We remark that we only needed N2

to be normal for our proof.1

Problem 3. Using Theorem 9.3, prove the following isomorphisms:

(a) R× ∼= R>0 × C2, where we think of C2 = {±1} as a subgroup of R×.

(b) (Z/16Z)× ∼= C2×C4. Hint: first find the appropriate subgroups isomorphic to
C2 and C4.

Solution 3. (a) To apply Theorem 9.3, we need to confirm the following condi-
tions: R>0 E R×, C2 E R×, R× = R>0C2, and R>0 ∩ C2 = {e}. Since R× is

1More is true: we only needed N2 to normalize N1, i.e. N2 ⊂ {g ∈ G : gN1g
−1 = N1}.
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abelian, all its subgroups are normal, so the statements R>0ER× and C2ER×
are automatic. If s ∈ R×, then we can write s = sgn(s)|s|, where

sgn :=

{
1 if s > 0

−1 if s < 0.

(We can’t have s = 0, since R× is the set of nonzero real numbers.) Since
sgn(s) ∈ C2 and |s| ∈ R>0, we’ve shown that R× = R>0C2. As for R>0 ∩ C2,
the only positive number in C2 = {1,−1} is 1, and 1 = e is the multiplicative
identity of R×. Therefore, by Theorem 9.3, R× = R>0 × C2.

(b) The elements of (Z/16Z)× are the odd numbers 1,3,5,...,15, mod 16. Since
15 ∼= −1 mod 16, and (−1)2 = 1, we know that the subgroup 〈15〉E (Z/16Z)×

is isomorphic to C2. Checking the powers of 3 mod 16 reveals

31 ≡ 3 32 ≡ 9

33 ≡ 11 34 ≡ 1,

so that 〈3〉E(Z/16Z)× is isomorphic to C4. As with part (a) of this problem, we
know every subgroup of (Z/16Z)× is normal. The next condition of Theorem
9.3 for us to check is that (Z/16Z)× = 〈3〉〈15〉. A complete table of the odd
residue classes mod 16, expressed as products of elements in 〈3〉 with elements
in 〈15〉, suffices to verify this condition.

1 ≡ 1 · 1 3 ≡ 3 · 1
5 ≡ 33 · 15 7 ≡ 32 · 15

9 ≡ 32 · 1 11 ≡ 33 · 1
13 ≡ 3 · 15 15 ≡ 1 · 15.

When building this table, it helped to remember that 15 behaves as −1 in
(Z/16Z)×. The last condition of Theorem 9.3 that we need to verify is that
C2 ∩ C4 = 〈15〉 ∩ 〈3〉 = {e}. Here, e = 1 mod 16. We have

〈15〉 ∩ 〈3〉 = {1, 15} ∩ {1, 3, 9, 11}
= {1}.

Having checked all the conditions of Theorem 9.3, we may conclude that
(Z/16Z)× ∼= C2 × C4.
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Problem 4. Prove by example that if H,K < G are two non-normal subgroups,
then HK is not2 a subgroup and HK 6= KH. Hint: G = S3 was the example I
started in lecture.

Solution 4. Consider G = S3, with subgroups H = 〈(12)〉, and K = 〈(13)〉. Then

HK = {e, (13), (12), (132)},

while
KH = {e, (13), (12), (123)}.

Furthermore, neither of the subsets HK,KH, of G are subgroups, since they’re not
closed under inverses: (132)−1 = (123) /∈ HK, and (123)−1 = (132) /∈ KH.

Problem 5. Verify that the set A[p∞] = {a ∈ A : |a| = pk for some k ∈ N} is a
subgroup for any abelian group A.

Solution 5. We treat A as an additive group (A,+) with identity 0. For n ∈ N and
a ∈ A, we write na to denote a + a + ... + a (added to itself n times). First, A[p∞]
contains the identity element 0 of A, which always has order 1 = p0. Next, suppose
α and β are elements of A[p∞], with

paα = 0 = pbβ.

Then

pa+b(α + β) = pa+bα + pa+bβ

= pb(paα) + pa(pbβ)

= pb(0) + pa(0)

= 0.

Therefore, the order of α+ β divides pa+b, and thus is a power of p. Now, nα = 0 if
and only if n(−α) = 0. Therefore, if the order of α is a power of p, then the order of
−α is (the same) power of p, so A[p∞] is closed under inverses. Since A[p∞] satisfies
all the above criteria, it’s a subgroup of A.

2(HK may be not a subgroup; on the other hand, it may be. For example, H could be any
non-normal subgroup of G, and K a subgroup of H which is also non-normal in G. In that case,
HK = H < G.)
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Problem 6. Prove the following statement: let a ∈ A is an element of order n in an
abelian group A, and let p1, . . . , pr be the prime divisors of n. Then we can write

a = a1 + · · ·+ ar

where ai ∈ A[p∞i ], i.e. ai has pi-power order.

(a) Prove the base case r = 1.

(b) Assume that we have proven the case r − 1. Write n = pα1
1 p

α2
2 · · · pαr

r and let
m = pα2

2 · · · pαr
r . Verify that gcd(pα1

1 ,m) = 1.

(c) As such, we can write 1 = um + vpα1
1 for some u, v ∈ Z. Therefore we know

that
a = (um+ vpα1

1 ) · a = um · a+ vpα1
1 · a

Verify that the vpα1
1 · a has order dividing m and um · a has order dividing pα1

1 .

(d) Conclude that the inductive hypothesis applies to vpα1
1 · a and the base case

applies to um · a, which put together finishes the argument.

This proof is §9.1 if you get stuck.

Solution 6. (See §9.1)

Problem 7. Consider the subset Ap of Q/Z that is comprised of all fractions with
p-power demoninator, that is,

Ap =

{
a

pn
+ Z : n ≥ 1

}
Prove that Ap is an infinite p-group.

Solution 7. First, here is a proof that Ap is infinite. The set{
1

p
+ Z,

1

p2
+ Z,

1

p3
+ Z, ...

}
⊂ Ap

is infinite because it admits an injection from the positive integers,

N ↪→ Ap

n 7→ 1

pn
.
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This map is injective: if
1

pn
− 1

pm
∈ Z,

then, since 1
pn
, 1
pm
∈ (0, 1], we in fact have

1

pn
− 1

pm
= 0.

We can combine the fractions to get 1
pn
− 1

pm
= pm−pn

pn+m = 0
pn+m , which implies pm = pn,

so n = m.
Next, we show that Ap is a p-group, i.e. that the order of every element in Ap is a
power of p. In an additive group G, for all α ∈ G, if

nα = 0,

then |α| divides n. Let ( a
pn

+ Z) ∈ Ap. Then

pn
(
a

pn
+ Z

)
= a+ Z

= 0 + Z.

Therefore, the order of ( a
pn

+ Z) divides pn, and thus the order of a
pn

+ Z is itself a
power of p.
It remains to show that Ap is a subgroup of Q/Z. Since 1

p0
+ Z = 0 + Z ∈ Ap, we

know that Ap contains the identity element of Q/Z. Ap is also closed under addition
and additive inverses, since(

a

pn
+ Z

)
+

(
b

pm
+ Z

)
=

(
pma+ pnb

pn+m
+ Z

)
,

and

−
(
a

pn
+ Z

)
=
−a
pn

+ Z.

Problem 8. We will now finish up the proof of the classification of finite abelian
groups.

(a) Suppose that a ∈ A[p∞]∩A[q∞] for two different primes p, q. Prove that a = 0.
Hint: what is its order?
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(b) Let p1, . . . , pr denote all the prime divisors of |A| = n. Prove that

A[p∞1 ]⊕ · · · ⊕ A[p∞r ]→ A, (a1, . . . , ar) 7→ a1 + · · ·+ ar

is an isomorphism. Hint: you know it is surjective and a group homomorphism
from other problems, so just cite the appropriate ones and prove injectivity
using (a).

(c) Verify that every finite p-group is a direct sum of cyclic p-groups. Let G be
such a group, where |G| = k · p for k ≥ 1 (we haven’t proven this yet but you
may use it for free). We proceed by complete induction on k. Prove the base
case of k = 1.

(d) By the hard theorem, G ∼= 〈a〉 ⊕K. Apply the inductive hypothesis.

(e) We can now put everything together to write each A[p∞i ] as a direct sum of
cyclic pi-groups. Make this last argument.

Solution 8. (a) Suppose a ∈ Ap ∩ Aq for distinct primes p and q. Following the
hint, consider the order of a. By Problem 7, this order is a power of p and also
a power of q. By the fundamental theorem of arithmetic, the order of a have a
unique prime factorization. Thus if |a| = pn = qm for some n,m ∈ N, it must
be the case that n = m = 0. Therefore |a| = 1; thus a = 0.

(b) Call the map of Problem 8 (b) “f”. Problem 6 shows that f is surjective. To
see that it is a group homomorphism, note that since addition commutes:

f(a1, ..., ar) + f(b1, ..., br) = (a1 + ...+ ar) + (b1 + ...+ br)

= (a1 + b1) + ...+ (ar + br)

= f(a1 + b1, ..., ar + br).

As for injectivity, suppose that

f(a1, ..., ar) = 0.

We already know that if A is an abelian group and a, b ∈ A, and |a| is relatively
prime to |b|, then |a||b| = |a + b|. A simple inductive argument shows that
this fact generalizes to r elements whose orders, |a1|, |a2|, ..., |ar|, are pairwise
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relatively prime. The orders of our elements a1, ..., ar are pairwise relatively
prime because each |aj| is a power of a unique prime pj. Therefore,

|a1 + · · ·+ ar| = |a1||a2|...|ar|.

Since a1 + ...+ ar = 0, we have that

|a1 + · · ·+ ar| = 1.

Therefore
|a1||a2|...|ar| = 1.

Since for each i ∈ {1, ..., r}, |ai| is a positive integer, it follows that each |ai|
must equal 1. But then ai = 0, for i ∈ {1, ..., r}. Thus f is injective.

(c) Following the problem’s hint, we take for granted that |G| = kp for some k ≥ 1.
Suppose k = 1. Then |G| = p. The only group of order p, up to isomorphism,
is the cyclic group Z/pZ. Thus, for the base case k = 1, every p-group G of
order kp = p is a direct sum of cyclic groups.

(d) Now assume that for all i ∈ {1, ..., k − 1}, every p-group of order ip is a direct
sum of cyclic groups. Suppose G is a group of order kp, and a is a non-identity
element of G. By the hard theorem, G ∼= 〈a〉 ⊕K. Since K is a subgroup of a
p-group, K is also a p-group, and

|K| = |G|
|a|

= ip

for some i ∈ {1, ..., k − 1}. Therefore, by the inductive hypothesis, K ∼=
(Z/pt1Z)⊕ · · · ⊕ (Z/pt`Z), with ti ∈ N not-necessarily-distinct.

(e) Letting |a| = pt0 ,

G ∼= (Z/pt0Z)⊕K
∼= (Z/pt0Z)⊕ (Z/pt1Z)⊕ · · · ⊕ (Z/pt`Z),

so G is isomorphic to a direct sum of cyclic p-groups. Now, suppose A is a
finite abelian group, and p1, ..., pr are the primes dividing A. Then, by Problem
8 (b),

A ∼= A[p∞1 ]⊕ · · · ⊕ A[p∞r ].

And, since each A[p∞i ] is a finite pi-group,

A[p∞i ] ∼= (Z/pti1i Z)⊕ · · · ⊕ (Z/pti`ii Z)
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is a direct sum of cyclic p-groups. Thus

A ∼=
⊕

i∈{1,...,r}
j∈{1,...,`i}

(Z/ptiji Z)

is a direct sum of prime-power order cyclic groups.

Problem 9. Apply the classification to the following groups. First decompose
them into the respective A[p∞], then apply the inductive process. Recall that
Z/mnZ ∼= Z/mZ⊕ Z/nZ if and only if gcd(m,n) = 1.

(a) Z/24Z

(b) (Z/24Z)× Hint: figure out what this group is in additive notation first.

(c) Z/70Z

Solution 9. (a) The elements of Z/24Z of prime power order are:

Element Order of Element

3 + 24Z 8 = 23

6 + 24Z 4 = 22

8 + 24Z 3

9 + 24Z 9 = 23

12 + 24Z 2,

and the negatives of these elements. Therefore,

(Z/24Z)[2∞] = 3Z/24Z ∼= Z/8Z,

and
(Z/24Z)[3∞] = 8Z/24Z ∼= Z/3Z.

Thus
Z/24Z ∼= (3Z/24Z)⊕ (8Z/24Z) ∼= (Z/8Z)⊕ (Z/3Z).

Alternatively, we could simply factor 24 = 23 ∗ 3 and write Z/24Z ∼= Z/8Z ⊕
Z/3Z which are both cyclic p-groups.
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(b) (Z/24Z)× is a group of order 8, with elements {1, 5, 7, 11, 13, 17, 19, 23} (mod
24). Other than 1 + 24Z, every element of (Z/24Z)× has order 2. Therefore

(Z/24Z)× ∼= (Z/2Z)3.

(c) The elements of Z/70Z of prime power order are:

Element Order of Element

10 + 70Z 7

14 + 70Z 5

20 + 70Z 7

28 + 70Z 5

30 + 70Z 7

35 + 70Z 2,

and the negatives of those elements. Therefore

(Z/70Z)[2∞] = 35Z/70Z ∼= Z/2Z,
(Z/70Z)[5∞] = 14Z/70Z ∼= Z/5Z, and

(Z/70Z)[7∞] = 10Z/70Z ∼= Z/7Z.

Thus

Z/70Z = (35Z/70Z)⊕ (14Z/70Z)⊕ (10Z/70Z) ∼= (Z/2Z)⊕ (Z/5Z)⊕ (Z/7Z).

Alternatively, since 70 = 2 ∗ 5 ∗ 7 we can write Z/70Z ∼= Z/2Z⊕Z/5Z⊕Z/7Z
which is a direct sum of cyclic p-groups.

Problem 10. The elementary divisors of A are exactly those prime powers pαi
i

appearing in the classification:

A ∼= Z/pα1
1 Z⊕ · · · ⊕ Z/pαk

k Z

where, again, we allow repeats. This means that |A| = pα1
1 · · · pαr

r . The above
discussion implies (but does not quite prove) that A ∼= B if and only if they have the
same elementary divisors. As such, the number of finite abelian groups of an order
n depends on the number of ways n can be split up into elementary divisors. For
example there are 4 groups of order 36 corresponding to

36 = 2 · 2 · 3 · 3 = 4 · 3 · 3 = 2 · 2 · 9 = 4 · 9
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Repeat the same process to determine how many3 groups of the following orders
there are: (a) 12, (b) 30, (c) 72, (d) 144, (e) 600, (f) 1160, (g) p4 for p a prime.

Solution 10. For n ∈ N, let p(n) be the number of integer partitions of n, i.e. ways
of expressing

n = α1 + α2 + ...+ α`

with α1 ≥ α2 ≥ ... ≥ α` all positive integers. We saw integer partitions in Problem 3
of Homework 9, for example. If n = pa11 p

a2
2 ...p

am
m with the pis being distinct primes,

then the number of ways n can be split into elementary divisors is p(a1)p(a2)...p(am).

(a)

12 = 22 · 3
= 2 · 2 · 3

(b)

30 = 2 · 3 · 5.

(c)

72 = 23 · 32

= 23 · 3 · 3
= 22 · 2 · 32

= 22 · 2 · 3 · 3
= 2 · 2 · 2 · 32

= 2 · 2 · 2 · 3 · 3.
3(abelian)
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(d)

144 = 24 · 32

= 24 · 3 · 3
= 22 · 22 · 32

= 22 · 22 · 3 · 3
= 23 · 2 · 32

= 23 · 2 · 3 · 3
= 22 · 2 · 2 · 32

= 22 · 2 · 2 · 3 · 3
= 2 · 2 · 2 · 2 · 32

= 2 · 2 · 2 · 2 · 3 · 3.

(e)

600 = 23 · 3 · 52

= 23 · 3 · 5 · 5
= 22 · 2 · 3 · 52

= 22 · 2 · 3 · 5 · 5
= 2 · 2 · 2 · 3 · 52

= 2 · 2 · 2 · 2 · 5 · 5.

(f)

1160 = 23 · 5 · 29

= 22 · 2 · 5 · 29

= 2 · 2 · 2 · 5 · 29.

(g) For p a prime in general, we have

p4 = p4

= p2 · p2

= p3 · p
= p2 · p · p
= p · p · p · p.
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Problem 11. Let A be a finite abelian group with order divisible by p. Prove that
A has an element of order p. Hint: prove that there is a cyclic subgroup of p-power
order in the direct sum decomposition of A, then prove that every p-power cyclic
group has an element of order p.

Solution 11. Let A ∼= (Z/pa11 Z) ⊕ ... ⊕ (Z/pamm Z), using the fundamental theorem
of finite abelian groups (Problem 8). Then |A| = pa11 p

a2
2 ...p

am
m , so p divides pa11 ...p

am
m .

Therefore p is one of the factors in the elementary divisor decomposition, i.e. p = pj
for some j ∈ {1, ...,m}. It suffices then to show that Z/pajZ has an element of
order p, since Z/pajZ E A. And clearly the element paj−1 + pajZ has order p, i.e.
p ∗ [paj−1] = [paj ] = [0].
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