Math 351
Homework 11 Solutions
The Graders
This assignment is due Tuesday, 28 April, 2020 at 8am on Canvas. Please write your name, section number, and the names of any collaborators at the top of your homework. Homework should be written or typed legibly using complete sentences. Remember to justify all answers fully!

Problem 1. Prove that if N_{1}, N_{2} are normal subgroups, then

$$
N_{1} N_{2}=\left\{a \cdot b: a \in N_{1}, b \in N_{2}\right\}
$$

is a subgroup. Make sure you check it's closed under multiplication and inverses. Then verify that $N_{1} N_{2}=N_{2} N_{1}$. Hint: because $g N=N g$ for normal subgroups and any $g \in G$, you can rewrite $g \cdot n$ as $n^{\prime} \cdot g$ for some other $n^{\prime} \in N$. This lets you 'commute' N_{1} and N_{2}.

Solution 1. Suppose $N_{1}, N_{2} \unlhd G$. Since N_{1} and N_{2} are both subgroups, $e_{G} \in N_{1}$ and $e_{G} \in N_{2}$. Therefore, by definition, $e_{G}=e_{G} e_{G} \in N_{1} N_{2}$. Next we will show $N_{1} N_{2}$ is closed under multiplication. Let $a_{1}, a_{2} \in N_{1}$ and $b_{1}, b_{2} \in N_{2}$. Our goal is to show that $a_{1} b_{1} a_{2} b_{2} \in N_{1} N_{2}$. Since N_{1} is normal, $b_{1} a_{2} b_{1}^{-1} \in N_{1}$. We have

$$
\begin{aligned}
a_{1} b_{1} a_{2} b_{2} & =a_{1} b_{1} a_{2}\left(b_{1}^{-1} b_{1}\right) b_{2} \\
& =\left(a_{1}\left(b_{1} a_{2} b_{1}^{-1}\right)\right)\left(b_{1} b_{2}\right)
\end{aligned}
$$

Since a_{1} and $b_{1} a_{2} b_{1}^{-1}$ are in N_{1}, so is their product $a_{1}\left(b_{1} a_{2} b_{1}^{-1}\right)$; and $b_{1} b_{2} \in N_{2}$. Thus $a_{1}\left(b_{1} a_{2} b_{1}^{-1}\right) b_{1} b_{2} \in N_{1} N_{2}$, so $N_{1} N_{2}$ is closed under multiplication. Next, we need to show $N_{1} N_{2}$ is closed under inverses. The inverse of $a b$ is $b^{-1} a^{-1}$. Since N_{1} is normal, $b^{-1} a^{-1} b \in N_{1}$. Then

$$
\begin{aligned}
b^{-1} a^{-1} & =b^{-1} a^{-1}\left(b b^{-1}\right) \\
& =\left(b^{-1} a^{-1} b\right) b^{-1}
\end{aligned}
$$

and since $b^{-1} a^{-1} b \in N_{1}$ and $b^{-1} \in N_{2}$, their product $b^{-1} a^{-1}=\left(b^{-1} a^{-1} b\right) b^{-1} \in N_{1} N_{2}$. We remark that the argument up to this point only required that N_{1} be normal; N_{2} could have been any subgroup.
It remains to show that $N_{1} N_{2}=N_{2} N_{1}$. We make use of the fact that, for any group H, the inversion map $H \ni g \mapsto g^{-1}$ is a bijection from H to itself. Let $a \in N_{1}$ and $b \in N_{2}$. Since $(a b)^{-1}=b^{-1} a^{-1}$, and $b^{-1} \in N_{2}, a^{-1} \in N_{1}$, we see that the inversion map on $N_{1} N_{2}$ maps to $N_{2} N_{1}$. Thus $N_{1} N_{2} \subset N_{2} N_{1}$. By symmetry the inversion map on $N_{2} N_{1}$ maps to $N_{1} N_{2}$, proving $N_{2} N_{1} \subset N_{1} N_{2}$. Therefore these two groups are equal.

Problem 2. Let $N_{1}, N_{2} \triangleleft G$ be two normal subgroups. Prove the lemma that I left as an exercise from lecture: if $N_{1} N_{2}=G$ and $N_{1} \cap N_{2}=\{e\}$, then every $g \in G$ can be uniquely written as $g=n_{1} \cdot n_{2}$ with $n_{1} \in N_{1}, n_{2} \in N_{2}$.

Solution 2. We first show that e_{G} can be written uniquely as a product of an element of N_{1} with an element of N_{2}. Suppose we have written $e_{G}=n_{1} n_{2}$. Then $n_{2}=n_{1}^{-1}$, so $n_{2} \in N_{1}$. But then $n_{2} \in N_{1} \cap N_{2}$, so $n_{2}=e_{G}$, and it follows that $n_{1}=e_{G}$. Thus the unique way of writing e_{G} as a product of an element from N_{1} and an element from N_{2} is $e_{G} e_{G}$. Now let $g \in G$ be general, and suppose $n_{1} n_{2}=n_{1}^{\prime} n_{2}^{\prime}=g$ are two distinct ways of writing g as a product of an element of N_{1} and an element of N_{2}. Then we can write e_{G} as follows:

$$
\begin{aligned}
e_{G} & =g g^{-1} \\
& =n_{1} n_{2} n_{2}^{\prime-1} n_{1}^{\prime-1} \\
& =n_{1}\left(n_{1}^{\prime-1} n_{1}^{\prime}\right) n_{2} n_{2}^{\prime-1} n_{1}^{\prime-1} \\
& =\left(n_{1} n_{1}^{\prime-1}\right)\left(n_{1}^{\prime} n_{2} n_{2}^{\prime-1} n_{1}^{\prime-1}\right)
\end{aligned}
$$

Then $n_{1} n_{1}^{\prime-1} \in N_{1}$ and, since N_{2} is normal, $n_{1}^{\prime} n_{2} n_{2}^{\prime-1} n_{1}^{\prime-1} \in N_{2}$, so we've written e_{G} as a product of an element from N_{1} and an element from N_{2}. Thus $n_{1} n_{1}^{\prime-1}=e_{G}=$ $n_{1}^{\prime} n_{2} n_{2}^{\prime-1} n_{1}^{\prime-1}$. Since $e_{G}=n_{1} n_{1}^{\prime-1}$, we have $n_{1}^{\prime-1}=n_{1}^{-1}$, so $n_{1}=n_{1}^{\prime}$. Then

$$
\begin{aligned}
n_{1}^{-1} g & =n_{1}^{-1} n_{1} n_{2}=n_{2} \\
& =n_{1}^{-1} n_{1} n_{2}^{\prime}=n_{2}^{\prime}
\end{aligned}
$$

so $n_{2}=n_{2}^{\prime}$ as well. We've thus shown g can be written in a unique way as a product of an element from N_{1} and an element from N_{2}. We remark that we only needed N_{2} to be normal for our proof. ${ }^{1}$

Problem 3. Using Theorem 9.3, prove the following isomorphisms:
(a) $\mathbb{R}^{\times} \cong \mathbb{R}^{>0} \times C_{2}$, where we think of $C_{2}=\{ \pm 1\}$ as a subgroup of \mathbb{R}^{\times}.
(b) $(\mathbb{Z} / 16 \mathbb{Z})^{\times} \cong C_{2} \times C_{4}$. Hint: first find the appropriate subgroups isomorphic to C_{2} and C_{4}.

Solution 3. (a) To apply Theorem 9.3, we need to confirm the following conditions: $\mathbb{R}^{>0} \unlhd \mathbb{R}^{\times}, C_{2} \unlhd \mathbb{R}^{\times}, \mathbb{R}^{\times}=\mathbb{R}^{>0} C_{2}$, and $\mathbb{R}^{>0} \cap C_{2}=\{e\}$. Since \mathbb{R}^{\times}is

[^0]abelian, all its subgroups are normal, so the statements $\mathbb{R}^{>0} \unlhd \mathbb{R}^{\times}$and $C_{2} \unlhd \mathbb{R}^{\times}$ are automatic. If $s \in \mathbb{R}^{\times}$, then we can write $s=\operatorname{sgn}(s)|s|$, where
\[

\operatorname{sgn}:=\left\{$$
\begin{array}{l}
1 \text { if } s>0 \\
-1 \text { if } s<0
\end{array}
$$\right.
\]

(We can't have $s=0$, since \mathbb{R}^{\times}is the set of nonzero real numbers.) Since $\operatorname{sgn}(s) \in C_{2}$ and $|s| \in \mathbb{R}^{>0}$, we've shown that $\mathbb{R}^{\times}=\mathbb{R}^{>0} C_{2}$. As for $\mathbb{R}^{>0} \cap C_{2}$, the only positive number in $C_{2}=\{1,-1\}$ is 1 , and $1=e$ is the multiplicative identity of \mathbb{R}^{\times}. Therefore, by Theorem $9.3, \mathbb{R}^{\times}=\mathbb{R}^{>0} \times C_{2}$.
(b) The elements of $(\mathbb{Z} / 16 \mathbb{Z})^{\times}$are the odd numbers $1,3,5, \ldots, 15, \bmod 16$. Since $15 \cong-1 \bmod 16$, and $(-1)^{2}=1$, we know that the subgroup $\langle 15\rangle \unlhd(\mathbb{Z} / 16 \mathbb{Z})^{\times}$ is isomorphic to C_{2}. Checking the powers of 3 mod 16 reveals

$$
\begin{array}{lr}
3^{1} \equiv 3 & 3^{2} \equiv 9 \\
3^{3} \equiv 11 & 3^{4} \equiv 1
\end{array}
$$

so that $\langle 3\rangle \unlhd(\mathbb{Z} / 16 \mathbb{Z})^{\times}$is isomorphic to C_{4}. As with part (a) of this problem, we know every subgroup of $(\mathbb{Z} / 16 \mathbb{Z})^{\times}$is normal. The next condition of Theorem 9.3 for us to check is that $(\mathbb{Z} / 16 \mathbb{Z})^{\times}=\langle 3\rangle\langle 15\rangle$. A complete table of the odd residue classes mod 16, expressed as products of elements in $\langle 3\rangle$ with elements in $\langle 15\rangle$, suffices to verify this condition.

$$
\begin{array}{rlrl}
1 & \equiv 1 \cdot 1 & 3 & \equiv 3 \cdot 1 \\
5 & \equiv 3^{3} \cdot 15 & 7 & \equiv 3^{2} \cdot 15 \\
9 & \equiv 3^{2} \cdot 1 & 11 & \equiv 3^{3} \cdot 1 \\
13 & \equiv 3 \cdot 15 & 15 & \equiv 1 \cdot 15 .
\end{array}
$$

When building this table, it helped to remember that 15 behaves as -1 in $(\mathbb{Z} / 16 \mathbb{Z})^{\times}$. The last condition of Theorem 9.3 that we need to verify is that $C_{2} \cap C_{4}=\langle 15\rangle \cap\langle 3\rangle=\{e\}$. Here, $e=1 \bmod 16$. We have

$$
\begin{aligned}
\langle 15\rangle \cap\langle 3\rangle & =\{1,15\} \cap\{1,3,9,11\} \\
& =\{1\} .
\end{aligned}
$$

Having checked all the conditions of Theorem 9.3, we may conclude that $(\mathbb{Z} / 16 \mathbb{Z})^{\times} \cong C_{2} \times C_{4}$.

Problem 4. Prove by example that if $H, K<G$ are two non-normal subgroups, then $H K$ is not ${ }^{2}$ a subgroup and $H K \neq K H$. Hint: $G=S_{3}$ was the example I started in lecture.

Solution 4. Consider $G=S_{3}$, with subgroups $H=\langle(12)\rangle$, and $K=\langle(13)\rangle$. Then

$$
H K=\{e,(13),(12),(132)\}
$$

while

$$
K H=\{e,(13),(12),(123)\}
$$

Furthermore, neither of the subsets $H K, K H$, of G are subgroups, since they're not closed under inverses: $(132)^{-1}=(123) \notin H K$, and $(123)^{-1}=(132) \notin K H$.

Problem 5. Verify that the set $A\left[p^{\infty}\right]=\left\{a \in A:|a|=p^{k}\right.$ for some $\left.k \in \mathbb{N}\right\}$ is a subgroup for any abelian group A.

Solution 5. We treat A as an additive group $(A,+)$ with identity 0 . For $n \in \mathbb{N}$ and $a \in A$, we write $n a$ to denote $a+a+\ldots+a$ (added to itself n times). First, $A\left[p^{\infty}\right]$ contains the identity element 0 of A, which always has order $1=p^{0}$. Next, suppose α and β are elements of $A\left[p^{\infty}\right]$, with

$$
p^{a} \alpha=0=p^{b} \beta
$$

Then

$$
\begin{aligned}
p^{a+b}(\alpha+\beta) & =p^{a+b} \alpha+p^{a+b} \beta \\
& =p^{b}\left(p^{a} \alpha\right)+p^{a}\left(p^{b} \beta\right) \\
& =p^{b}(0)+p^{a}(0) \\
& =0 .
\end{aligned}
$$

Therefore, the order of $\alpha+\beta$ divides p^{a+b}, and thus is a power of p. Now, $n \alpha=0$ if and only if $n(-\alpha)=0$. Therefore, if the order of α is a power of p, then the order of $-\alpha$ is (the same) power of p, so $A\left[p^{\infty}\right]$ is closed under inverses. Since $A\left[p^{\infty}\right]$ satisfies all the above criteria, it's a subgroup of A.

[^1]Problem 6. Prove the following statement: let $a \in A$ is an element of order n in an abelian group A, and let p_{1}, \ldots, p_{r} be the prime divisors of n. Then we can write

$$
a=a_{1}+\cdots+a_{r}
$$

where $a_{i} \in A\left[p_{i}^{\infty}\right]$, i.e. a_{i} has p_{i}-power order.
(a) Prove the base case $r=1$.
(b) Assume that we have proven the case $r-1$. Write $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$ and let $m=p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$. Verify that $\operatorname{gcd}\left(p_{1}^{\alpha_{1}}, m\right)=1$.
(c) As such, we can write $1=u m+v p_{1}^{\alpha_{1}}$ for some $u, v \in \mathbb{Z}$. Therefore we know that

$$
a=\left(u m+v p_{1}^{\alpha_{1}}\right) \cdot a=u m \cdot a+v p_{1}^{\alpha_{1}} \cdot a
$$

Verify that the $v p_{1}^{\alpha_{1}} \cdot a$ has order dividing m and $u m \cdot a$ has order dividing $p_{1}^{\alpha_{1}}$.
(d) Conclude that the inductive hypothesis applies to $v p_{1}^{\alpha_{1}} \cdot a$ and the base case applies to $u m \cdot a$, which put together finishes the argument.

This proof is $\S 9.1$ if you get stuck.
Solution 6. (See §9.1)
Problem 7. Consider the subset A_{p} of \mathbb{Q} / \mathbb{Z} that is comprised of all fractions with p-power demoninator, that is,

$$
A_{p}=\left\{\frac{a}{p^{n}}+\mathbb{Z}: n \geq 1\right\}
$$

Prove that A_{p} is an infinite p-group.
Solution 7. First, here is a proof that A_{p} is infinite. The set

$$
\left\{\frac{1}{p}+\mathbb{Z}, \frac{1}{p^{2}}+\mathbb{Z}, \frac{1}{p^{3}}+\mathbb{Z}, \ldots\right\} \subset A_{p}
$$

is infinite because it admits an injection from the positive integers,

$$
\begin{aligned}
& \mathbb{N} \hookrightarrow A_{p} \\
& n \mapsto \frac{1}{p^{n}} .
\end{aligned}
$$

This map is injective: if

$$
\frac{1}{p^{n}}-\frac{1}{p^{m}} \in \mathbb{Z}
$$

then, since $\frac{1}{p^{n}}, \frac{1}{p^{m}} \in(0,1]$, we in fact have

$$
\frac{1}{p^{n}}-\frac{1}{p^{m}}=0
$$

We can combine the fractions to get $\frac{1}{p^{n}}-\frac{1}{p^{m}}=\frac{p^{m}-p^{n}}{p^{n+m}}=\frac{0}{p^{n+m}}$, which implies $p^{m}=p^{n}$, so $n=m$.
Next, we show that A_{p} is a p-group, i.e. that the order of every element in A_{p} is a power of p. In an additive group G, for all $\alpha \in G$, if

$$
n \alpha=0,
$$

then $|\alpha|$ divides n. Let $\left(\frac{a}{p^{n}}+\mathbb{Z}\right) \in A_{p}$. Then

$$
\begin{aligned}
p^{n}\left(\frac{a}{p^{n}}+\mathbb{Z}\right) & =a+\mathbb{Z} \\
& =0+\mathbb{Z}
\end{aligned}
$$

Therefore, the order of $\left(\frac{a}{p^{n}}+\mathbb{Z}\right)$ divides p^{n}, and thus the order of $\frac{a}{p^{n}}+\mathbb{Z}$ is itself a power of p.
It remains to show that A_{p} is a subgroup of \mathbb{Q} / \mathbb{Z}. Since $\frac{1}{p^{0}}+\mathbb{Z}=0+\mathbb{Z} \in A_{p}$, we know that A_{p} contains the identity element of $\mathbb{Q} / \mathbb{Z} . A_{p}$ is also closed under addition and additive inverses, since

$$
\left(\frac{a}{p^{n}}+\mathbb{Z}\right)+\left(\frac{b}{p^{m}}+\mathbb{Z}\right)=\left(\frac{p^{m} a+p^{n} b}{p^{n+m}}+\mathbb{Z}\right)
$$

and

$$
-\left(\frac{a}{p^{n}}+\mathbb{Z}\right)=\frac{-a}{p^{n}}+\mathbb{Z}
$$

Problem 8. We will now finish up the proof of the classification of finite abelian groups.
(a) Suppose that $a \in A\left[p^{\infty}\right] \cap A\left[q^{\infty}\right]$ for two different primes p, q. Prove that $a=0$. Hint: what is its order?
(b) Let p_{1}, \ldots, p_{r} denote all the prime divisors of $|A|=n$. Prove that

$$
A\left[p_{1}^{\infty}\right] \oplus \cdots \oplus A\left[p_{r}^{\infty}\right] \rightarrow A,\left(a_{1}, \ldots, a_{r}\right) \mapsto a_{1}+\cdots+a_{r}
$$

is an isomorphism. Hint: you know it is surjective and a group homomorphism from other problems, so just cite the appropriate ones and prove injectivity using (a).
(c) Verify that every finite p-group is a direct sum of cyclic p-groups. Let G be such a group, where $|G|=k \cdot p$ for $k \geq 1$ (we haven't proven this yet but you may use it for free). We proceed by complete induction on k. Prove the base case of $k=1$.
(d) By the hard theorem, $G \cong\langle a\rangle \oplus K$. Apply the inductive hypothesis.
(e) We can now put everything together to write each $A\left[p_{i}^{\infty}\right]$ as a direct sum of cyclic p_{i}-groups. Make this last argument.

Solution 8. (a) Suppose $a \in A_{p} \cap A_{q}$ for distinct primes p and q. Following the hint, consider the order of a. By Problem 7, this order is a power of p and also a power of q. By the fundamental theorem of arithmetic, the order of a have a unique prime factorization. Thus if $|a|=p^{n}=q^{m}$ for some $n, m \in \mathbb{N}$, it must be the case that $n=m=0$. Therefore $|a|=1$; thus $a=0$.
(b) Call the map of Problem 8 (b) " f ". Problem 6 shows that f is surjective. To see that it is a group homomorphism, note that since addition commutes:

$$
\begin{aligned}
f\left(a_{1}, \ldots, a_{r}\right)+f\left(b_{1}, \ldots, b_{r}\right) & =\left(a_{1}+\ldots+a_{r}\right)+\left(b_{1}+\ldots+b_{r}\right) \\
& =\left(a_{1}+b_{1}\right)+\ldots+\left(a_{r}+b_{r}\right) \\
& =f\left(a_{1}+b_{1}, \ldots, a_{r}+b_{r}\right) .
\end{aligned}
$$

As for injectivity, suppose that

$$
f\left(a_{1}, \ldots, a_{r}\right)=0
$$

We already know that if A is an abelian group and $a, b \in A$, and $|a|$ is relatively prime to $|b|$, then $|a||b|=|a+b|$. A simple inductive argument shows that this fact generalizes to r elements whose orders, $\left|a_{1}\right|,\left|a_{2}\right|, \ldots,\left|a_{r}\right|$, are pairwise
relatively prime. The orders of our elements a_{1}, \ldots, a_{r} are pairwise relatively prime because each $\left|a_{j}\right|$ is a power of a unique prime p_{j}. Therefore,

$$
\left|a_{1}+\cdots+a_{r}\right|=\left|a_{1}\right|\left|a_{2}\right| \ldots\left|a_{r}\right| .
$$

Since $a_{1}+\ldots+a_{r}=0$, we have that

$$
\left|a_{1}+\cdots+a_{r}\right|=1
$$

Therefore

$$
\left|a_{1}\right|\left|a_{2}\right| \ldots\left|a_{r}\right|=1
$$

Since for each $i \in\{1, \ldots, r\},\left|a_{i}\right|$ is a positive integer, it follows that each $\left|a_{i}\right|$ must equal 1. But then $a_{i}=0$, for $i \in\{1, \ldots, r\}$. Thus f is injective.
(c) Following the problem's hint, we take for granted that $|G|=k p$ for some $k \geq 1$. Suppose $k=1$. Then $|G|=p$. The only group of order p, up to isomorphism, is the cyclic group $\mathbb{Z} / p \mathbb{Z}$. Thus, for the base case $k=1$, every p-group G of order $k p=p$ is a direct sum of cyclic groups.
(d) Now assume that for all $i \in\{1, \ldots, k-1\}$, every p-group of order $i p$ is a direct sum of cyclic groups. Suppose G is a group of order $k p$, and a is a non-identity element of G. By the hard theorem, $G \cong\langle a\rangle \oplus K$. Since K is a subgroup of a p-group, K is also a p-group, and

$$
|K|=\frac{|G|}{|a|}=i p
$$

for some $i \in\{1, \ldots, k-1\}$. Therefore, by the inductive hypothesis, $K \cong$ $\left(\mathbb{Z} / p^{t_{1}} \mathbb{Z}\right) \oplus \cdots \oplus\left(\mathbb{Z} / p^{t_{e}} \mathbb{Z}\right)$, with $t_{i} \in \mathbb{N}$ not-necessarily-distinct.
(e) Letting $|a|=p^{t_{0}}$,

$$
\begin{aligned}
G & \cong\left(\mathbb{Z} / p^{t_{0}} \mathbb{Z}\right) \oplus K \\
& \cong\left(\mathbb{Z} / p^{t_{0}} \mathbb{Z}\right) \oplus\left(\mathbb{Z} / p^{t_{1}} \mathbb{Z}\right) \oplus \cdots \oplus\left(\mathbb{Z} / p^{t_{\ell}} \mathbb{Z}\right)
\end{aligned}
$$

so G is isomorphic to a direct sum of cyclic p-groups. Now, suppose A is a finite abelian group, and p_{1}, \ldots, p_{r} are the primes dividing A. Then, by Problem 8 (b),

$$
A \cong A\left[p_{1}^{\infty}\right] \oplus \cdots \oplus A\left[p_{r}^{\infty}\right]
$$

And, since each $A\left[p_{i}^{\infty}\right]$ is a finite p_{i}-group,

$$
A\left[p_{i}^{\infty}\right] \cong\left(\mathbb{Z} / p_{i}^{t_{i 1}} \mathbb{Z}\right) \oplus \cdots \oplus\left(\mathbb{Z} / p_{i}^{t_{i i_{i}}} \mathbb{Z}\right)
$$

is a direct sum of cyclic p-groups. Thus

$$
A \cong \bigoplus_{\substack{i \in\{1, \ldots, r\} \\ j \in\left\{1, \ldots, \ell_{i}\right\}}}\left(\mathbb{Z} / p_{i}^{t_{i j}} \mathbb{Z}\right)
$$

is a direct sum of prime-power order cyclic groups.
Problem 9. Apply the classification to the following groups. First decompose them into the respective $A\left[p^{\infty}\right]$, then apply the inductive process. Recall that $\mathbb{Z} / m n \mathbb{Z} \cong \mathbb{Z} / m \mathbb{Z} \oplus \mathbb{Z} / n \mathbb{Z}$ if and only if $\operatorname{gcd}(m, n)=1$.
(a) $\mathbb{Z} / 24 \mathbb{Z}$
(b) $(\mathbb{Z} / 24 \mathbb{Z})^{\times}$Hint: figure out what this group is in additive notation first.
(c) $\mathbb{Z} / 70 \mathbb{Z}$

Solution 9. (a) The elements of $\mathbb{Z} / 24 \mathbb{Z}$ of prime power order are:

Element	Order of Element
$3+24 \mathbb{Z}$	$8=2^{3}$
$6+24 \mathbb{Z}$	$4=2^{2}$
$8+24 \mathbb{Z}$	3
$9+24 \mathbb{Z}$	$9=2^{3}$
$12+24 \mathbb{Z}$	2,

and the negatives of these elements. Therefore,

$$
(\mathbb{Z} / 24 \mathbb{Z})\left[2^{\infty}\right]=3 \mathbb{Z} / 24 \mathbb{Z} \cong \mathbb{Z} / 8 \mathbb{Z}
$$

and

$$
(\mathbb{Z} / 24 \mathbb{Z})\left[3^{\infty}\right]=8 \mathbb{Z} / 24 \mathbb{Z} \cong \mathbb{Z} / 3 \mathbb{Z}
$$

Thus

$$
\mathbb{Z} / 24 \mathbb{Z} \cong(3 \mathbb{Z} / 24 \mathbb{Z}) \oplus(8 \mathbb{Z} / 24 \mathbb{Z}) \cong(\mathbb{Z} / 8 \mathbb{Z}) \oplus(\mathbb{Z} / 3 \mathbb{Z})
$$

Alternatively, we could simply factor $24=2^{3} * 3$ and write $\mathbb{Z} / 24 \mathbb{Z} \cong \mathbb{Z} / 8 \mathbb{Z} \oplus$ $\mathbb{Z} / 3 \mathbb{Z}$ which are both cyclic p-groups.
(b) $(\mathbb{Z} / 24 \mathbb{Z})^{\times}$is a group of order 8 , with elements $\{1,5,7,11,13,17,19,23\}(\bmod$ $24)$. Other than $1+24 \mathbb{Z}$, every element of $(\mathbb{Z} / 24 \mathbb{Z})^{\times}$has order 2 . Therefore

$$
(\mathbb{Z} / 24 \mathbb{Z})^{\times} \cong(\mathbb{Z} / 2 \mathbb{Z})^{3}
$$

(c) The elements of $\mathbb{Z} / 70 \mathbb{Z}$ of prime power order are:

Element	Order of Element
$10+70 \mathbb{Z}$	7
$14+70 \mathbb{Z}$	5
$20+70 \mathbb{Z}$	7
$28+70 \mathbb{Z}$	5
$30+70 \mathbb{Z}$	7
$35+70 \mathbb{Z}$	2,

and the negatives of those elements. Therefore

$$
\begin{aligned}
& (\mathbb{Z} / 70 \mathbb{Z})\left[2^{\infty}\right]=35 \mathbb{Z} / 70 \mathbb{Z} \cong \mathbb{Z} / 2 \mathbb{Z} \\
& (\mathbb{Z} / 70 \mathbb{Z})\left[5^{\infty}\right]=14 \mathbb{Z} / 70 \mathbb{Z} \cong \mathbb{Z} / 5 \mathbb{Z}, \text { and } \\
& (\mathbb{Z} / 70 \mathbb{Z})\left[7^{\infty}\right]=10 \mathbb{Z} / 70 \mathbb{Z} \cong \mathbb{Z} / 7 \mathbb{Z}
\end{aligned}
$$

Thus

$$
\mathbb{Z} / 70 \mathbb{Z}=(35 \mathbb{Z} / 70 \mathbb{Z}) \oplus(14 \mathbb{Z} / 70 \mathbb{Z}) \oplus(10 \mathbb{Z} / 70 \mathbb{Z}) \cong(\mathbb{Z} / 2 \mathbb{Z}) \oplus(\mathbb{Z} / 5 \mathbb{Z}) \oplus(\mathbb{Z} / 7 \mathbb{Z})
$$

Alternatively, since $70=2 * 5 * 7$ we can write $\mathbb{Z} / 70 \mathbb{Z} \cong \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 5 \mathbb{Z} \oplus \mathbb{Z} / 7 \mathbb{Z}$ which is a direct sum of cyclic p-groups.

Problem 10. The elementary divisors of A are exactly those prime powers $p_{i}^{\alpha_{i}}$ appearing in the classification:

$$
A \cong \mathbb{Z} / p_{1}^{\alpha_{1}} \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} / p_{k}^{\alpha_{k}} \mathbb{Z}
$$

where, again, we allow repeats. This means that $|A|=p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}}$. The above discussion implies (but does not quite prove) that $A \cong B$ if and only if they have the same elementary divisors. As such, the number of finite abelian groups of an order n depends on the number of ways n can be split up into elementary divisors. For example there are 4 groups of order 36 corresponding to

$$
36=2 \cdot 2 \cdot 3 \cdot 3=4 \cdot 3 \cdot 3=2 \cdot 2 \cdot 9=4 \cdot 9
$$

Repeat the same process to determine how many ${ }^{3}$ groups of the following orders there are: (a) 12 , (b) 30 , (c) 72 , (d) 144 , (e) 600 , (f) 1160 , (g) p^{4} for p a prime.

Solution 10. For $n \in \mathbb{N}$, let $p(n)$ be the number of integer partitions of n, i.e. ways of expressing

$$
n=\alpha_{1}+\alpha_{2}+\ldots+\alpha_{\ell}
$$

with $\alpha_{1} \geq \alpha_{2} \geq \ldots \geq \alpha_{\ell}$ all positive integers. We saw integer partitions in Problem 3 of Homework 9 , for example. If $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{m}^{a_{m}}$ with the p_{i} s being distinct primes, then the number of ways n can be split into elementary divisors is $p\left(a_{1}\right) p\left(a_{2}\right) \ldots p\left(a_{m}\right)$.
(a)

$$
\begin{aligned}
12 & =2^{2} \cdot 3 \\
& =2 \cdot 2 \cdot 3
\end{aligned}
$$

(b)

$$
30=2 \cdot 3 \cdot 5
$$

(c)

$$
\begin{aligned}
72 & =2^{3} \cdot 3^{2} \\
& =2^{3} \cdot 3 \cdot 3 \\
& =2^{2} \cdot 2 \cdot 3^{2} \\
& =2^{2} \cdot 2 \cdot 3 \cdot 3 \\
& =2 \cdot 2 \cdot 2 \cdot 3^{2} \\
& =2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 .
\end{aligned}
$$

[^2](d)
\[

$$
\begin{aligned}
144 & =2^{4} \cdot 3^{2} \\
& =2^{4} \cdot 3 \cdot 3 \\
& =2^{2} \cdot 2^{2} \cdot 3^{2} \\
& =2^{2} \cdot 2^{2} \cdot 3 \cdot 3 \\
& =2^{3} \cdot 2 \cdot 3^{2} \\
& =2^{3} \cdot 2 \cdot 3 \cdot 3 \\
& =2^{2} \cdot 2 \cdot 2 \cdot 3^{2} \\
& =2^{2} \cdot 2 \cdot 2 \cdot 3 \cdot 3 \\
& =2 \cdot 2 \cdot 2 \cdot 2 \cdot 3^{2} \\
& =2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 .
\end{aligned}
$$
\]

(e)

$$
\begin{aligned}
600 & =2^{3} \cdot 3 \cdot 5^{2} \\
& =2^{3} \cdot 3 \cdot 5 \cdot 5 \\
& =2^{2} \cdot 2 \cdot 3 \cdot 5^{2} \\
& =2^{2} \cdot 2 \cdot 3 \cdot 5 \cdot 5 \\
& =2 \cdot 2 \cdot 2 \cdot 3 \cdot 5^{2} \\
& =2 \cdot 2 \cdot 2 \cdot 2 \cdot 5 \cdot 5 .
\end{aligned}
$$

(f)

$$
\begin{aligned}
1160 & =2^{3} \cdot 5 \cdot 29 \\
& =2^{2} \cdot 2 \cdot 5 \cdot 29 \\
& =2 \cdot 2 \cdot 2 \cdot 5 \cdot 29 .
\end{aligned}
$$

(g) For p a prime in general, we have

$$
\begin{aligned}
p^{4} & =p^{4} \\
& =p^{2} \cdot p^{2} \\
& =p^{3} \cdot p \\
& =p^{2} \cdot p \cdot p \\
& =p \cdot p \cdot p \cdot p .
\end{aligned}
$$

Problem 11. Let A be a finite abelian group with order divisible by p. Prove that A has an element of order p. Hint: prove that there is a cyclic subgroup of p-power order in the direct sum decomposition of A, then prove that every p-power cyclic group has an element of order p.

Solution 11. Let $A \cong\left(\mathbb{Z} / p_{1}^{a_{1}} \mathbb{Z}\right) \oplus \ldots \oplus\left(\mathbb{Z} / p_{m}^{a_{m}} \mathbb{Z}\right)$, using the fundamental theorem of finite abelian groups (Problem 8). Then $|A|=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{m}^{a_{m}}$, so p divides $p_{1}^{a_{1}} \ldots p_{m}^{a_{m}}$. Therefore p is one of the factors in the elementary divisor decomposition, i.e. $p=p_{j}$ for some $j \in\{1, \ldots, m\}$. It suffices then to show that $\mathbb{Z} / p^{a_{j}} \mathbb{Z}$ has an element of order p, since $\mathbb{Z} / p^{a_{j}} \mathbb{Z} \unlhd A$. And clearly the element $p^{a_{j}-1}+p^{a_{j}} \mathbb{Z}$ has order p, i.e. $p *\left[p^{a_{j}-1}\right]=\left[p^{a_{j}}\right]=[0]$.

[^0]: ${ }^{1}$ More is true: we only needed N_{2} to normalize N_{1}, i.e. $N_{2} \subset\left\{g \in G: g N_{1} g^{-1}=N_{1}\right\}$.

[^1]: ${ }^{2}$ (HK may be not a subgroup; on the other hand, it may be. For example, H could be any non-normal subgroup of G, and K a subgroup of H which is also non-normal in G. In that case, $H K=H<G$.)

[^2]: ${ }^{3}$ (abelian)

