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Abstract

Following the method developed by Waldspurger and Beuzart-Plessis in their proof
of the local Gan-Gross-Prasad conjecture, we are able to prove a local trace formula for
the Ginzburg-Rallis model. By applying this trace formula, we proved a multiplicity
formula for the Ginzburg-Rallis model for tempered representations. Then by applying
this multiplicity formula, we proved the multiplicity one theorem for all tempered L-
packets. In some cases, we also proved the epsilon dichotomy conjecture which gives a
relation between the multiplicity and the exterior cube epsilon factor. Finally, in the
archimedean case, we proved some partial results for the general generic representations

by applying the open orbit method.
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Chapter 1

Introduction and the Main
Results

1.1 The Ginzburg-Rallis Models

D. Ginzburg and S. Rallis found in their paper (JGR00]) a global integral representation
for the partial exterior cube L-function L(s,m, A3 ® x~!) attached to any irreducible
cuspidal automorphic representation m of GLg(A). By using the regularized Siegel-
Weil formula of Kudla and Rallis([KR94]), they discovered that the nonvanishing of
the central value of the partial exterior cube L-function L (%,w, A @ x71) is closely
related to the Ginzburg-Rallis period, which will be defined as follows. The relation
they discovered is similar to the global Gan-Gross-Prasad conjecture ([GP92], [GP94],
[GGP12]), but for a different setting.

Let k be a number field, and let A be the ring of adeles of k. Take P = P20 = MU
be the standard parabolic subgroup of G = GLg whose Levi part M is isomorphic to

GLs x GLg x GL9, and whose unipotent radical U consists of elements of the form

L X Z
u=u(X,Y,Z):=10 I, Y|. (1.1)
0 0 I
We define a character £ on U(k)\U(A) by
Eu(X, Y, 2)) = dlatr(X) + bir(Y)) (1.2

1



where v is a non-trivial additive character on k\A, and a,b € k*.

It’s clear that the stabilizer of £ is the diagonal embedding of GLs into M, which is
denoted by H. For a given idele character x of A*/k*, one induces a one dimensional
representation w of H(A) given by w(h) := x(det(h)), which is clearly trivial when
restricted to H (k). Now the character { can be extended to the semi-direct product

R(A) := H(A) x U(A) (1.3)

by making it trivial on H(A). Similarly we can extend the character w to R(A). It
follows that the one dimensional representation w ® £ of R(A) is well defined and it is
trivial when restricted to the k-rational points R(k). Then the Ginzburg-Rallis period
for any cuspidal automorphic form ¢ on GLg(A) with central character x? is defined to
be

Pruwee(¢) = / d(hu)é (w)w ™ (h)dudh. (1.4)

H(k)Za(A)\H(A) /U(k)\U(A)

As in the Jacquet conjecture for the trilinear period of GLg (JHK04]) and in the global
Gan-Gross-Prasad conjecture ([GGP12]) more generally, Ginzburg and Rallis found that
the central value of the partial exterior cube L-function LS(%, 7, A3 ® x~1) may also be
related to the quaternion algebra version of the Ginzburg-Rallis period Pg s0¢. More
precisely, let D be a quaternion algebra over k, and consider Gp := GL3(D), a k-inner

form of GLg. In the group Gp, define

g 0 0
Hp={hp=1|0 g 0||geD*} (1.5)
0 0 g¢g
and
1 =z 2
Up ={up(z,y,2)=10 1 y||z,y,2€ D} (1.6)
0 0 1

In this case, the corresponding character {p of Up is defined in same way except
that the trace in the definition of £ is replaced by the reduced trace of the quaternion
algebra D. Similarly, the character wp on Hp is defined by using the reduced norm
of the quaternion algebra D. Now the subgroup Rp is defined to be the semi-direct

product Hp X Up and the corresponding one dimensional representation wp ® £p of
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Rp(A) is well defined. The D-version of the Ginzburg-Rallis period for any cuspidal
automorphic form ¢p on GL3(D)(A) with central character x? is defined to be

Prpwpsep (@D) = / / op(hu)épt (w)opt (h)dudh. (1.7)
Hp (k) Zap (M\Hp(A) JUp(k)\Up(A)

In [GROOQ], they form a conjecture on the relations between the periods above and

the central value L5 (1,7, A3 @ x71).

Conjecture 1.1.1 (Ginzburg-Rallis, [GRO0]). Let 7 be an irreducible cuspidal automor-
phic representation of GLg(A) with central character wy. Assume that there exists an
idele character x of AX /k* such that wy = x*. Then the central value LS(%, T, A3@x 1)
does not vanish if and only if there exists a unique quaternion algebra D over k and
there exists the Jacquet-Langlands correspondence mp of m from GLg(A) to GL3(D)(A),
such that the period Pr, o ¢, (¢D) does not vanish for some ¢p € wp, and the pe-
riod PRy, .op0¢, (0pr) vanishes identically for all quaternion algebra D' which is not

isomorphic to D over k, and for all ppr € wpr.

Remark 1.1.2. Here L(s, 7, A3®x 1) stands for the L-function of (A3¢)®@x "t (NOT
N3 (¢r ® x71)) where ¢y is the Langlands parameter of .

It is clear that this conjecture is an analogy of the global Gan-Gross-Prasad conjec-
ture for classical groups ([GGP12|]) and the Jacquet conjecture for the triple product
L-functions for G Lo, which is proved by M. Harris and S. Kudla in [HK04]. It is also
clear that Conjecture is now a special case of the general global conjecture of Y.
Sakellaridis and A. Venkatesh for periods associated to general spherical varieties ([SV]).

Similarly to the Gan-Gross-Prasad model, there is also a local conjecture for the
Ginzburg-Rallis model, which is the main result of this paper. The conjecture at local
places has been expected since the work of [GR00], and was first discussed in details
by Dihua Jiang in his paper [J08]. Now let F' be a local field of characteristic zero, and
let D be the unique quaternion algebra over F' if ' # C. Then we may also define
the groups H,U, R, Hp,Up, and Rp as above. The local conjecture can be stated as

follows, using the local Jacquet-Langlands correspondence established in [DEKV&4].

Conjecture 1.1.3 (Jiang, [JO8]). For any irreducible admissible representation m of

GLg(F), let mp be the local Jacquet-Langlands correspondence of w to GL3(D) if it exists,
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and zero otherwise. In particular, mp is always zero if F = C. Assume that there exists
a character x of F* such that w, = x?. For a given non-trivial additive character 1 of
F, similar to the global case, we can define the one dimensional representation w ® £ of

R(F) and wp @ {p of Rp(F), respectively. Then the following identity
dim(Hompgp) (7, w ® §)) + dim(Hompg, (7 (7p,wp ® €p)) = 1 (1.8)

holds for all irreducible generic representation m of GLg(F).

As in the local Gan-Gross-Prasad conjecture ([GGP12]), Conjecture can be
reformulated in terms of the local Vogan L-packets and the assertion in the conjecture
is expressed as the local multiplicity one over the local Vogan L-packets. Here although
GLg(F') does not have non-trivial pure inner form, as we already make the central
character assumption, we are actually working with the pair (PGLg, PGLg x U) which
have non-trivial pure inner form. For any quaternion algebra D over F' which may be
F-split, define

m(mp) = m(rp,wp ® &p) = dim(Homp, ) (7p,wp @ &p)). (1.9)

The local multiplicity one theorem for each individual irreducible admissible represen-

tation mp of GL3(D) asserts that
m(mp) = m(mp,wp ®&p) <1 (1.10)

for any given wp ® &p. This local multiplicity one theorem was proved in [NO6] over a
p-adic local field and in [JSZII] over an archimedean local field. Then ((1.8) becomes

m(m) +m(mp) = 1.

Another aspect of the local conjecture is the so-called e-dichotomy conjecture, which
relates the multiplicity with the value of the exterior cube epsilon factor. The conjecture

can be stated as follows.

Conjecture 1.1.4. With the same assumptions as in Conjecture [1.1.53, the followings
hold.

6(1/2,71',/\3 ® X_l)
e(1/2,m, N> @ x7")

— 1,
— —1.
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In this paper, we always fix a Haar measure dxr on F' and an additive character v
such that the Haar measure is selfdual for Fourier transform with respect to v. We use
such dz and % in the definition of the € factor. For simplicity, we will write the epsilon

factor as e(s, m, p) instead of (s, p,dx, ).

Remark 1.1.5. In the definition of the character £, we introduce two coefficients a,b €
F>*. It is easy to see that the multiplicity is actually independent of the choice of a and
b. The reason we introduce these two coefficients is for the proof of the geometric side
of the trace formula (i.e. Chapter 9 to Chapter 12). For all the rest chapters, we will
just take a = b =1.

1.2 Main Results

The main goal of this paper to prove the local conjectures stated in the previous section

for tempered representations. We first talk about our results for Conjecture [1.1.3

Theorem 1.2.1. For every tempered representation m of GLg(F') with central character
x?, Conjecture holds. In particular, we have

m(m) +m(mp) = 1.

Our proof of Theorem [1.2.1] uses Waldspurger’s method in his proof of the local
Gan-Gross-Prosad conjecture (orthogonal case) in [W10] and [W12]; and also some
techniques introduced by Beuzart-Plessis in his proof of the local Gan-Gross-Prosad
conjecture (unitary case) in [B12] and [B15]. In the p-adic case, the key ingredient of
the proof is a local trace formula for the Ginzburg-Rallis model, which will be called
the trace formula in this paper for simplicity, unless otherwise specified.

To be specific, let f € C°(Zg(F)\G(F),x ?) be a strongly cuspidal function (see
Section 3.4 for the definition of strongly cuspidal functions). We define the function
I(f,-) on R(F)\G(F) to be

I(f,x) = / f@ tha)w @ &(h)dh.
R(F)/Zg(F)

We then define
1= | 1(f.9)dg. (1.11)
R(F)\G(F)
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We will prove in Section 8.1 that the integral defining I(f) is absolutely convergent.
The distribution in the trace formula is just I(f).

Now we define the spectral and geometric sides of the trace formula. To each strongly
cuspidal function f € C°(Zg(F)\G(F),x2), one can associate a distribution 65 on
G(F) via the weighted orbital integral (see Section 3.4). It was proved in [W10] that
the distribution 6 is a quasi-character in the sense that for every semisimple element
x € Ggs(F), Oy is a linear combination of the Fourier transform of the nilpotent orbital
integrals of g, near x. For each nilpotent orbit O of g,, let ¢y fp(:c) be the coefficient. It
is called the germ of the distribution 6y. Let T be a subset of subtorus of H as defined
in Section 5.1. For any t € Tyey(F) and T' € T, define cy(t) to be ¢y, o,(t) where O is
the unique regular nilpotent orbit in g;. For detailed description of O, see Section 5.1.

Then we define the geometric side of our trace formula to be

Leom(f) = S [W(H, T)[1o(T) / ¢4 (£) D (1) A (£)y(det(t)) dt

= Za(F\T(F)

where D (t) is the Weyl determinant and A(t) is some normalized function as defined

in Section 5.1. For the spectral side, define
Ispec(f) = / ef(ﬂ')m(ﬁ)dﬂ
Htemp(Gaxz)

where ey (G, X?) is the set of irreducible tempered representations of G(F) = GLg(F)
with central character x2, dr is some measure on Hiemy (G, x?) defined in Section 2.9,
and O¢(m) is the weighted character as defined in Section 3.5. Then the trace formula

we proved in this paper is just

Ispec(f) = 1(f) = Igeom(f)- (1.12)

The proof of the spectral side of the trace formula will be given in Chapter 8, while the
geometric side will be proved in Chapter 12. Similarly, we can also have the quaternion
version of the trace formula.

After proving the trace formula, we are going to prove a multiplicity formula for the

Ginzburg-Rallis model:

m(m) = Mgeom (), M(TD) = Mgeom(TD). (1.13)
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Here mgeom (m) (resp. mgeom(mp)) is defined in the same way as Igeom (f) except replac-
ing the distribution 6 by the distribution character 6, (resp. 6r,) associated to the
representation 7 (resp. 7p). For the complete definition of the multiplicity formula, see
Section 13.1. Once this formula has been proved, we can use the relations between the
distribution characters 6, and 6, under the local Jacquet-Langlands correspondence
to cancel out all terms in the expression of Mmgeom () + Mgeom (Tp) except the term
Cor,0yeq> Which is the germ at the identity element. Then the work of Rodier ([Rod81])

shows that cp, 0,., = 0 if 7 is non-generic, and cp =1 if 7 is generic. Because all

ﬂaOTEg

tempered representations of GL,,(F) are generic, we get the following identity

m9€0m(7r) + mgeom(ﬂ'D) =1. (1.14)

And this proves Theorem [1.2.1] The proof of the multiplicity formula uses the trace
formula we mentioned above, together with the Plancherel formula and Arthur’s local
trace formula. For details, see Chapter 13.

In the archimedean case, although we can use the same method as in the p-adic case
(like Beuzart-Plessis did in [B15] for the GGP case), it is actually much easier. All we
need to do is to show that the multiplicity is invariant under the parabolic induction,
and this will be done in Chapter 6 for both p-adic and archimedean case. Then if
F =R, since only GL;(R), GL;(D) and GL2(R) have discrete series, we can reduce the
problem to the trilinear GLy model case which has been considered by Prasad and Loke
in [P90] and [LO1]. If F = C, every generic representation is a principal series. So we
can reduce the problem to the reduced model associated to the torus whose multiplicity
is always 1. For details, see Chapter 7.

For the epsilon dichotomy conjecture, our results can be stated as follows.

Theorem 1.2.2. Let 7 be an irreducible tempered representation of GLg(F') with central

character x2. The followings hold.

1. If F is archimedean, Conjecture[1.1.4] holds.

2. If F is p-adic, and if m is not a discrete series or the parabolic induction of a

discrete series of GLy(F) x GLa(F'), Conjecture holds.

The proof of the archimedean case will be given in Chapter 7, and the p-adic case

will be proved in Chapter 13. Our methods is to show that both the multiplicities and



8
the epsilon factor are invariant under the parabolic induction. Then if F' = R, we can
reduce to the trilinear GLg model case, which has already been proved by Prasad and
Loke. If F = C, we can show that both the multiplicity and the epsilon factor are always
equal to 1. This proves the theorem. If F' is p-adic, under our assumptions, there are
only two possibilities. One is that the representation is induced from a discrete series of
GL2(F) x GL2(F') x GLa(F'), then we can still reduce to the trilinear GL2 model case.
The other possibility is that the representation is induced from some Type II parabolic
subgroup (see Section 4.5 for the definition of Type II models). In this case, one can
show that the multiplicity and the epsilon factor are both equal to 1. This proves the
theorem.

Moreover, our methods can also be applied to all reduced models of the Ginzburg-
Rallis model coming from the parabolic induction. For some models such results are
well known (like the trilinear GLg model); but for many other models, as far as we
know, such results never appear in literature. The reduced models will be discussed in
Section 4.5. The trace formulas and the multiplicity formulas for those models will be
discussed in Section 5.4.

After we proved the tempered case, it is naturally to ask how about the general
generic representations. In this case, we only have partial result for the archimedean
case. Before we state it, we need some preparation.

If F = C, by the Langlands classification, any generic representation 7 is a principal
series. In other word, let B = MUy be the lower triangular Borel subgroup of GLg, here
Moy = (GL1)% is just the group of diagonal matrices. Then 7 is of the form I§ () where
X = ®%_,x; is a character on My(F) and I§ is the normalized parabolic induction. For
1 <4 <6, we can find an unitary character o; and some real number s; € R such that
xi = oi| |**. Without loss of generality, we assume that s; < s; for any ¢ > j. Then if
we combine those representations with the same exponents s;, we can find a parabolic
subgroup Q = LU containing B with L = x¥_ GL,,, a representation 7 = ®@F_, 7| |
of L(F) where 7; are tempered representations of GL,,(F) and the exponents ¢; are
strictly increasing (i.e. t; < t2 < --- < t), such that 7 = IS(T). On the other hand,
we can also write 7 as Ig(wo) with mg = 7 ® m9 ® w3 and 7; be the parabolic induction

of x2i—1 ® x2i-

Theorem 1.2.3. Assume that F = C, with the same assumptions as in Conjecture



[1.1.3 and with the notation above, the followings hold.

1. If P C Q, Conjecture and Conjecture hold. In particular, both conjec-

tures hold for the tempered representations.

2. If Q € P and if mo satisfies the condition (40) in [LO1)], Conjecture m and
Conjecture hold.

The main ingredient of our methods for Theorem is the open orbit method,
which allows us to reduce our problems to the tempered case or the trilinear GLo model
case. To be specific, if P C @, by applying the open orbit method, we can reduce to
the model related to the Levi subgroup L. Then after twisting 7 by some characters,
we only need to deal with the tempered case which has already been proved in the
first place. If Q C P, by applying the open orbit method, we reduced ourselves to the
trilinear GLo model case. Then by applying the work of Loke in [LO1], we can prove
our result. The extra condition in part (2) of Theorem also comes from [LO1].

It is worth to mention that in Theorem 2), the requirement we made for the
parabolic subgroup @) forces some types of generalized Jacquet integrals to be absolutely
convergent, this allows us to apply the open orbit method. If one can prove such integrals
have holomorphic continuation, we can actually remove this requirement. This will be
discussed in Chapter 14.

If F' = R, again by applying the open orbit method, we will have some partial results
about Conjecture [1.1.3| and Conjecture for general generic representations. To be
specific, let 7 be a irreducible generic representation of G((F') with central character x?.
By the Langlands classification, there is a parabolic subgroup @) = LUg containing the
lower Borel subgroup and an essential tempered representation 7 = ®F_ 7;| | of L(F)
with 7; tempered, s; € R and s1 < s9 < -++ < 8, such that 7 = IS(T). We say @ is
nice if Q C P or P C Q.

Theorem 1.2.4. With the notations above, the followings hold.

1. If 7p = 0, assume that Q 1is nice, then Conjecture [I.1.3 and Conjecture [1.1.7)
hold.

2. If tp # 0, we have
m(m) +m(rp) > 1,
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and
6(1/2,71',/\3 ®X71) =1l=m(r)=1, m(r)=0= 6(1/2,71',/\3 ®X71) = —1.

As in the complex case, the assumption on () can be removed if we can prove the
holomorphic continuation of certain generalized Jacquet integrals. This will also be

discussed in Chapter 14.

1.3 Organization of the Paper and Remarks on the Proof

In Chapter 2, we will introduce the basic notations and conventions of this paper. We
will also talk about the definitions and some basic facts of weighted orbital integral,
weighted character, intertwining operator and the Harish-Chandra-Schwartz space. In
Chapter 3, we will study quasi-characters and strongly cuspidal functions. For Chapter
2 and 3, we follow [W10] and [B15] closely, and only include the proofs if necessary.

In Chapter 4, we study the analytic and geometric properties of the Ginzburg-Rallis
model. In particular, we show that it is a wavefront spherical variety and has polynomial
growth as a homogeneous space. This gives us the weak Cartan decomposition for
the archimedean case. The p-adic case will be proved in Appendix A by the explicit
construction. Then by applying those results, we proved some estimations for various
integrals which will be used in later chapters. Some proofs are similar to the GGP case
in [B15], we only include them here for completion. At the end of Chapter 4, we will also
talk about the reduce models of the Ginzburg-Rallis model coming from the parabolic
induction.

In Chapter 5, we will state our trace formula. For the geometric side, we will also
consider the Lie algebra version of the trace formula, which will be used in the proof.
We will also show that in order to prove the geometric side, it is enough to consider
the functions with trivial central character. Finally, we will also introduce the trace
formulas for the reduced models. By induction, we will assume that the trace formulas
for those reduced models hold.

In Chapter 6, we study an explicit element £, in the Hom space coming from the
(normalized) integration of the matrix coefficient. The goal is to prove that the Hom

space is nonzero if and only if £, is nonzero. It is standard to prove such a statement
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by using the Plancherel formula together with the fact that the nonvanishing property
of L, is invariant under parabolic induction and unramified twist. However, there are
two main difficulties in the proof of such a result for the Ginzburg-Rallis models. First,
unlike the Gan-Gross-Prasad case, we do have nontrivial center for the Ginzburg-Rallis
model. As a result, for many parabolic subgroups of GLg(F') (the one which don’t have
an analogy in the quaternion case, i.e. the one not of type (6), (4,2) or (2,2,2), we will
call theses models " Type II models”), it is not clear why the nonvanishing property of
L, is invariant under the unramified twist. Instead, we show that for such parabolic
subgroups, L, will always be nonzero.

Another difficulty is that unlike the Gan-Gross-Prasad case, when we do parabolic
induction, we don’t always have the strongly tempered model (in the GGP case, one
can always go up to the codimension one case which is strongly tempered, then run the
parabolic induction process). As a result, in order to prove the nonvanishing property of
L is invariant under parabolic induction, it is not enough to just change the order of the
integral. This is because if the model is not strongly tempered, the explicit operator is
defined via the normalized integral, not the original integral. We will find a way to deal
with this issue in Chapter 6, but we have to treat the p-adic case and the archimedean
case separately. For details, see Section 6.3 and 6.4.

In Chapter 7, we prove our main Theorems for the archimedean case by reducing
it to the reduced models cases. Then we need to apply the results of the trilinear GLo
model by Prasad and Loke in [P90] and [LOT].

In Chapter 8, we will prove the spectral side of the trace formula. In the trace
formula, we will introduce a truncated function which is for the proof of the geometric
side. In Section 8.1, we first show that the integral defining our distribution I(f) is
actually absolutely convergent. This allows us to get rid of the truncated function for
the spectral side. We will postpone the proof of a technical proposition (i.e. Proposition
to Appendix B. Then in Section 8.2, we prove the spectral side by applying the
results in the previous chapters.

Start from Chapter 9, we are going to prove the geometric side of the trace formula.
In Chapter 9, we deal with the localization of the trace formula. The goal of this
section is to reduce our problem to the Lie algebra level. In Chapter 10, we study the

slice representation of the normal space. As a result, we transfer our integral to the



12
form [ Ar(F\G(F) where T is some maximal torus of G. The reason we do this is that we
want to apply the local trace formula developed by Arthur in [Ar91] as Waldspurger did
in [W10]. In Chapter 11, we prove that we are actually able to change our truncated
function to the one given by Arthur in his local formula. After this is done, we can
apply Arthur’s local trace formula to calculate the distribution in our trace formula.
More precisely, at beginning, the distribution is a limit of the truncated integral. After
applying Arthur’s local trace formula, we can calculate that limit explicitly. Finally in
Chapter 12, we will finish the proof of the trace formula.

It is worth to mention that the proof of the geometric expansion is quiet different
from the case of the local Gan-Gross-Prasad conjecture in [W10]. Namely, in their case,
the additive character is essentially attached to the simple roots, which is not the case
in our situation. This difference leads to the technical complication on the proof of some
unipotent invariance. As a result, we have to carefully define our truncated function.
This will be discussed in detail in Chapter 5 and 11. Another difference is that in this
case we do need to worried about the center of the group, this will be discussed in
Chapter 5.

In Chapter 13, by applying the trace formula we proved in previous chapters, we
are able to prove a multiplicity formula for tempered representations. By applying that
multiplicity formula, we can prove our main Theorem After it, we will also prove
the epsilon dichotomy conjecture for some representations, i.e. Theorem [1.2.2

In Chapter 14, by applying the open orbit method, together with our results for the
tempered representations, we can prove some partial results for the generic representa-
tions over archimedean field, i.e. Theorem [1.2.3| and Theorem [1.2.4

There are three appendices of this paper. In Appendix A, we prove the weak Cartan
decomposition for the p-adic case by the explicit construction. In Appendix B, we prove
Proposition The proof will be the same as the Gan-Gross-Prasad model case in
[B15], we only include the proof here for completion. In Appendix C, we will give a
summary about the results for the reduced models. The proof of these results is the
same as the Ginzburg-Rallis model case we consider in this paper, so we will skip the

details.



Chapter 2

Priliminarites

2.1 Notations and Conventions

Let F' be a local field of characteristic zero. If F' is a p-adic filed, we fix the algebraic
closure F. Let valp and |-| = |- | be the valuation and absolute value on F, op be the
ring of integers of I, and IF,; be the residue field. We fix an uniformizer wp.

For every connected reductive algebraic group G defined over F, let Ag be the
maximal split central torus of G and let Zg be the center of G. We denote by X(G)
the group of F-rational characters of G. Define ag =Hom(X(G),R), and let ap, =
X(G) ®z R be the dual of ag. We define a homomorphism Hg : G(F) — ag by
He(9)(x) = log(|x(9)|r) for every g € G(F) and x € X(G). Let ag r (resp. ag,r) be
the image of G(F') (resp. Ag(F')) under Hg. In the archimedean case, ag = agrp =
ag,r; in the p-adic case, ag r and ag r are lattices in ag. Let aéF = Hom(ag,r, 277)
and a}, . = Hom(ag, r, 27Z). Note that both af, . and af, - are zero in the archimedean
case; and they are lattices in ag, in the p-adic case. Set a*G7F = a*G/c%’F, and we
can identify iag, p with the group of unitary unramified characters of G (F) by letting
Ag) = esMHal9)> )\ iag gy g € G(F). For a Levi subgroup M of G, let a}, , be the
subset of elements in aj‘VL  wWhose restriction to ag, r is zero. Then we can identify ia}kW’O
with the group of unitary unramified characters of M (F') which is trivial on Zg(F').

Denote by g the Lie algebra of G. It is clear that G acts on g by the adjoint action.
Since the Ginzburg-Rallis model has non-trivial center, all of our integrations need to

modulo the center. To simplify the notation, for any Lie algebra g contained in gl,, (in

13
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our case it will always be contained in glg(F) or gls(D)), denote by go the elements in
g whose trace (as an element in gl,,) is zero.

For a Levi subgroup M of G, let P(M) be the set of parabolic subgroups of G whose
Levi part is M, L(M) be the set of Levi subgroups of G containing M, and F(M) be
the set of parabolic subgroups of G containing M. We have a natural decomposition
ay = aJ\G/I @ ag, denote by projj\c;} and projg the projections of aps to each factors.
The subspace ajc\’;[ has a set of coroots Xy7, and for each P € P(M), we can associate a
positive chamber a; C ayr, a subset of simple coroots Ap C X3/, and a subset of positive
coroots Xp C 3. For each P = MU, we can also define a function Hp : G(F) — apy
by Hp(g) = Hy(mg) where g = mgugky is the Iwasawa decomposition of g. According
to Harish-Chandra, we can define the height function || - || on G(F'), taking values in
R>1, and a log-norm ¢ on G(F) by o(g) = sup(1,log(]|g||)). Similarly, we can define the
log-norm function on g(F') as follows: fix a basis {X;} of g(F') over F, for X € g(F),
let o(X) = sup(1, sup{—valr(a;)}), where a; is the Xj;-coordinate of X.

Let M, be a minimal Levi subgroup of G, and let A, = A, For each
Prin € P(Mpin), let W(Apin, Prin) be the set of positive roots associated to Py, and
let A(Amin, Pmin) C Y (Amin, Pmin) be the subset of simple roots.

For z € G (resp. X € g), let Zg(x) (resp. Zg(X)) be the centralizer of x (resp.
X) in G, and let G, (resp. Gx) be the neutral component of Zg(x) (resp. Zg(X)).
Accordingly, let g, (resp. gx) be the Lie algebra of G, (resp. Gx). For a function f
on G(F) (resp. g(F)), and g € G(F), let 9f be the g-conjugation of f, i.e. 9f(z) =
flg~ g) for x € G(F) (resp. 9f(X) = f(g~' Xg) for X € g(F)).

Denote by Ggs(F) the set of semisimple elements in G(F'), and by Greq(F') the
set of regular elements in G(F'). The Lie algebra versions are denoted by gss(F') and
Oreg(F'), respectively. For @ € Gy4(F), the operator ad(x) — 1 is defined and invertible
on g(F)/g.(F). We define

D(x) =| det((ad(z) — 1) jg(r)/g.(r)) |F -
Similarly for X € gss(F'), define
DE(X) =| det((ad(X))|g(r) /g (1)) |F -

For any subset I' C G(F), define T := {g71yg | g € G(F),y € I'}. We say an invariant

subset Q of G(F) is compact modulo conjugation if there exist a compact subset I" such
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that Q C T%. A G-domain on G(F) (resp. g(F)) is an open subset of G(F) (resp. g(F))
invariant under the G(F')-conjugation.

For two complex valued functions f and g on a set X with ¢ taking values in the

positive real numbers, we write that

flz) < g(x)

and say that f is essentially bounded by g, if there exists a constant ¢ > 0 such that for

all x € X, we have
[f(z)] < cg(a).

We say f and g are equivalent, which is denoted by

f(x) ~ g(z)

if f is essentially bounded by g and g is essentially bounded by f.

2.2 Measures

Through this paper, we fix a non-trivial additive character ¢ : F — C*. If G is
a connected reductive group, we may fix a non-degenerate symmetric bilinear form
< -+ > on g(F) that is invariant under G(F')-conjugation. For any smooth compactly
supported complex valued function f € C°(g(F)), we can define its Fourier transform
f— f to be

F(x) = / SO XY )y (2.1)

where dY is the selfdual Haar measure on g(F') such that ]g (X) = f(—=X). Then we
get a Haar measure on G(F) such that the Jacobian of the exponential map is equal
to 1. If H is a subgroup of G such that the restriction of the bilinear form to h(F') is
also non-degenerate, then we can define the measures on h(F') and H(F') by the same
method.

Let Nil(g) be the set of nilpotent orbits of g. For O € Nil(g) and X € O, the
bilinear form (Y, Z) —< X,[Y, Z] > on g(F') can be descented to a symplectic form on
9(F)/gx(F). The nilpotent orbit O has naturally a structure of F-analytic symplectic
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variety, which yields a selfdual measure on (0. This measure is invariant under the
G(F)-conjugation.

If T is a subtorus of G such that the bilinear form is non-degenerate on t(F'), we can
provide a measure on T' by the method above, denoted by dt. On the other hand, we
can define another measure d.t on T(F) as follows: If T is split, we require the volume
of the maximal compact subgroup of T'(F) is 1 under d.t. In general, d.t is compatible
with the measure d.t’ defined on Ay (F) and with the measure on T'(F')/Ap(F) of total
volume 1. Then we have a constant number v(7T') such that d.t = v(T')dt. In this paper,
we will only use the measure dt, but in many cases we have to include the factor v (7).
Finally, if M is a Levi subgroup of G, we can define the Haar measure on a]\G/I such that

the quotient
afy/projir(Hur (A (F)))

is of volume 1.

2.3 The (G,M)-Family

From now on until the end of Chapter 3, G will be a connected reductive group, and
g(F) be its Lie algebra, with a bilinear pairing invariant under conjugation. For a
Levi subgroup M of G, we recall the notion of (G, M)-family introduced by Arthur. A
(G, M)-family is a family (cp)pep(ns) of smooth functions on ia}, taking values in a
locally convex topological vector space V' such that for all adjacent parabolic subgroups
P, P' € P(M), the functions ¢, and c¢ps coincide on the hyperplane supporting the wall
that separates the positive chambers for P and P’. For such a (G, M)-family, one can
associate an element cy; € V ([Ar81, Page 37]). If L € £L(M), for a given (G, M)-
family, we can deduce a (G, L)-family. Denote by ¢y, the element in V associated to
such (G, L)-family. If Q = LoUg € F(L), we can deduce a (Lg, L)-family from the

given (G, M)-family, the element in V' associated to this (L¢, L)-family is denoted by

9.

If (Yp)pep(u) is a family of elements in ays, we say it is a (G, M)-orthogonal set
(resp. and positive) if the following condition holds: if P, P’ are two adjacent elements of
P(M), there exists a unique coroot ¢ such that & € Ap and —& € Ap/, we require that

Yp —Yp € Ra (resp. Yp — Ypr € Rxo). For P € P(M), define a function cp on iaj},
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by cp(A) = e *¥P). Suppose that the family (Yp)pep(m) is a (G, M)-orthogonal set.
Then the family (cp)pep(nr) is a (G, M)-family. If the family (Yp)pep(ar) is positive,
then the number cj; associated to this (G, M)-family is just the volume of the convex
hull in af, generated by the set {Yp | P € P(M)}. If L € £L(M), the (G, L)-family
deduced from this (G, M)-family is the (G, L)-family associated to the (G, L)-orthogonal
set (YQ)gep(r) where Yo = projr(Yp) for some P € P(M) such that P C Q. Tt is easy
to see that this is independent of the choice of P. Similarly, if @ € P(L), then the
(L, M)-family deduced from this (G, M)-family is the (L, M)-family associated to the
(L, M)-

orthogonal set (Ypr) prepr(pry where Yo = Yp with P being the unique element
of P(M) such that P C Q and PNL = P’.

2.4 Weighted Orbital Integrals

Let M be a Levi subgroup of G and let K be a maximal open compact subgroup in
good position with respect to M. For g € G(F), the family (Hp(g)) pep(ar) is (G, M)-
orthogonal and positive. Let (vp(g)) pep(ar) be the (G, M)-family associated to it and
let vpr(g) be the number associated to this (G, M)-family. Then vps(g) is just the
volume of the convex hull in af, generated by the set {Hp(g), P € P(M)}. The
function g — vps(g) is obviously left M (F')-invariant and right K-invariant.

If feCX(G(F)) and x € M(F) N Greg(F'), define the weighted orbital integral to
be

Jara, f) = DG ()2 /G e, [ s (2.2)

Note the definition does depend on the choice of the open compact subgroup K. But
we will see later that if f is strongly cuspidal, then this definition is independent of the
choice of K.

Lemma 2.4.1. With the notations as above, the followings hold.

1. If f € CX(G(F)), the function x — Jyr(x, f) defined on M(F)NGreq(F') is locally
constant, invariant under M (F)-conjugation and has a compact support modulo

conjugation.

2. There exists an integer k > 0, such that for every f € CX(G(F)), there exists
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¢ > 0 such that
[T (@, )| < e(1+ [log DY ()])"
for every x € M(F) N Greg(F).
Proof. See Lemma 2.3 of [W10]. O

The next result is due to Harish-Chandra (Lemma 4.2 of [Ar91]), which will be
heavily used in Section 10 and Section 11. See [B15, Section 1.2] for a more general

argument.

Proposition 2.4.2. Let T be a torus of G(F), and T' C G(F), Q C T(F) be compact
subsets. Then there exists ¢ > 0 such that for every x € QNG(F)yeq and g € G(F') with
g txzg €T, we have

or(9) < e(1+ | log(D%(2)) |) (2.3)

where or(g) = inf{o(tg) | t € T(F)}.

2.5 Shalika Germs

For every O € Nil(g) and f € C°(g(F')), define the nilpotent orbital integral to be

Jo(f) = /O F(X)dX.

Its Fourier transform is defined to be
Jo(f) = Jo(f).
For A € F*, define f* to be f*(X) = f(AX). Then it is easy to see that for
A € (F*)?% we have
Jo(f*) = X[#™O2 o (f). (2.4)

Define §(G) = dim(G) — dim(7T’), where T is any maximal torus of G (i.e. §(G) is twice
of the dimension of the maximal unipotent subgroup if G split). There exists a unique
function I'p on greq(F), called the Shalika germ associated to O, satisfies the following

conditions:
To(AX) =| A RO py(x) (2.5)
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for all X € greg(F), A € (F*)?, and for every f € C°(g(F)), there exists an neighbor-
hood w of 0 in g(F') such that

Ja(X, f) = BoenigTo(X)Jo(f) (2.6)

for every X € w N greg(F), where Jo (X, f) is the orbital integral.

Harish-Chandra proved that there exists a unique function j on Greg(F') X greg(F),
which is locally constant on greq(F') X greg(F'), and locally integrable on g(F') x g(F),
such that for every f € C°(g(F')) and X € greq(F'), we have

Ja(X. ) = / IRLeTE Rl (2.7)
g

Also, for all O € Nil(g), there exists a unique function ¥ — i(O,Y) on greg(F),
which is locally constant on greq(F'), and locally integrable on g(F'), such that for every

feCx(g(F)), we have

Jo(f) = / J¥)5(0,Y)dY. (2.8)
9(F)
It follows that
JOXY) = | AN 5(x,AY), (2.9)
JONY) = [ XA 50,Y)

for all X,Y € g,eq(F),O € Nil(g) and X € (F*)2. Moreover, by the above discussion,
if w is an G-domain of g(F") that is compact modulo conjugation and contains 0, there
exists an G-domain w’ of g(F') that is compact modulo conjugation and contains 0 such

that for every X € w' N greg(F) and Y € w N greg(F'), we have

J(X,Y) = Zoeni@lo(X)j(0,Y). (2.10)

2.6 Induced Representations and the Intertwining Oper-
ators
Given a parabolic subgroup P = MU of G and an admissible representation (7, V;) of

M(F), let (I§(7),15(V;)) be the normalized parabolic induced representation: I (V;)

consisting of smooth functions e : G(F') — V; such that

e(mug) = 5p(m)1/27(m)e(g), m e M(F), uec U(F), g€ G(F).
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And the G(F) action is just the right translation.

For A € a},®rC, let 7y be the unramified twist of 7 (i.e. 7x(m) = exp(A(Har(m)))7(m)),
and let Ig(T/\) be the induced representation. By the Iwasawa decomposition, every
function e € I§(7y) is determined by its restriction on K, and that space is invariant
under the unramified twist. i.e. for any A, we can realize the representation Ig(n) on

the space I Ifgm p(Tr) which consists of functions ex : K — V; such that
e(mug) = dp(m)?r(m)e(g), me M(F)NK, ue UF)NK, ge K.

Here 7 is the restriction of the representation 7 to the group K N M (F).

If 7 is unitary, so is I§(7), the inner product on I§(V;) can be realized as

(e,¢) = /P RGOS

Now we define the intertwining operator. For a Levi subgroup M of G, P, P’ €
P(M), and X € a}; @g C, define the intertwining operator Jp/ p(1a) : IS (V) = IS,(V;)
to be

Tpip(m)(€)(g) = / e (ug)du.

(UE)NU(F)\U'(F)
In general, the integral above is not absolutely convergent. But it is absolutely con-
vergent for Re(\) sufficiently large, and it is G(F')-equivariant. By restricting to K,
we can view Jp/ p(7y) as a homomorphism from I p(Vry) to I p (V). In general,
Jpp(72) can be meromorphically continued to a function on a}; ®g C/ iaX/L - More-
over, if we assume that 7 is tempered, we have the following proposition which is due
to Harish-Chandra.

Proposition 2.6.1. With the notations above, assume that T is tempered, then the in-
tertwining operator Jp/ p is absolutely convergent for all A € a}; ®rC with < Re(\), & >
> 0 for every & € Xp N X(P"). Here X(P) is the subsets of the roots of Ay that are

positive with respect to P.

We will use this proposition in Section 14 to show some generalized Jacquet integrals
are absolutely convergent, and this integrals will occur in the open orbit method.
If 7 is irreducible, by Schur’s lemma, the operator Jp p(72)Jpp(7)) is a scalar for

generic A, let j(7)) be the scalar, this is independent of the choice of P. We can
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normalize the intertwining operator by a complex valued function rp/p(7y) such that

the normalized intertwining operator

Rp/p(T2) = 7‘P'|P(T/\)_1JP/\P(T)\)
satisfies the conditions of Theorem 2.1 of [Ar89]. The key conditions are
1. For P, P',P" € P(M), Rpip:/(Tx)Rp|p(T2) = Rpr|p(Tr).
2. Suppose that 7 is tempered. For A € ia}; , Rp/p(7x) is holomorphic and unitary.

3. The normalized intertwining operators are compatible with the unramified twist

and the parabolic induction.

2.7 Weighted Characters

Let M be a Levi subgroup, and let 7 be a tempered representation of M(F). For
P,P" € P(M), we have defined the normalized intertwining operator Rp/p(7y) for
X € ia}y,. Fix P, for every P’ € P(M), define the function Rp/(7) on ia}, by

Rp/(1,A) = Rpy p(T) " Rp p(Th).

This function takes value in the space of endomorphisms of I5 - (Tx) (not necessarily
commutes with the G-action). Recall that this space is invariant under the unramified
twist. By [Ar81], this is a (G, M)-family. Then for L € L(M) and Q € F(L), we can
associate an operator Rg (7) to this (G, M) family. We define the weighted character of
7 to be the distribution f — J[C?(T, f) given by J[C?(T, = tr(R%(T)Ig(T)(f)) for every
f € CP(G(F)). This is independent of the choice of P but depends on K and the way
we normalized the intertwining operators. In particular, if L = Q = G, the distribution
JE (7, f) is just 0, for m = IS (1) where 0(f) = tr(m(f)).

2.8 The Harish-Chandra-Schwartz Space

Let Pp,;n, be a minimal parabolic subgroup of GG, and let K be a maximal open compact

subgroup in good position with respect to M. Then we have the Iwasawa decomposition



22
G(F) = Ppin(F)K. Consider the normalized induced representation

Iy

m

W(1) = {e € CX(G(F)) | e(pg) = 8p,...(p)'/*e(g) for all p € Pryin(F), g € G(F)},
and we equip the representation with the inner product
(e,e) = / e(k)e!(k)dk.
K
Let ex € Igmm(l) be the unique function such that ex (k) =1 for all k£ € K.

Definition 2.8.1. The Harish-Chandra function Z¢ is defined to be

E%g) = (U5, (1)(9)ex ex)-

Remark 2.8.2. The function Z¢ depends on the various choices we made, but this

doesn’t matter since different choices give us equivalent functions and the function Z¢

will only be used in estimations.

The next proposition summarize some basic properties of the function Z¢, the proof

of the proposition can be found in [W03].

Proposition 2.8.3. 1. Let

M+

min

={m € Mpin(F) || a(m) |< 1 for all « € (A, , Pmin)}-

Then there exists d > 0 such that

op d

m

(M2 < 26 (m) < dp,,,, (m)?o0(m)

for allm € M

min*
2. There exists d > 0 such that

1/2

=%(9) < Op,,;, (mp,,;, (9))200(g)*

for all g € G(F). Here mp,

m

position G(F) = Upin(F) Mpyin(F) K.

. (g) is the Myin-part of g under the Iwasawa decom-
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3. Let P = MU be a parabolic subgroup containing Py, then we have

=6(g) = /K 5p(mp (kg))/2EM (mp (kg) )k

for all g € G(F), here mp(g) is the M -part of g under the Iwasawa decomposition
G(F) = U(F)M(F)K.

4. Let P = MU be a parabolic subgroup of G. Then for all d > 0, there exist d > 0
such that

5p(m)1/2/ 2 (mu)oo(mu) ™% du < EM (m)og(m) ¢
U(F)
for allm € M(F).
5. There exists d > 0 such that the integral
/ E%(9)%0(9)~"dg
G(F)
1s absolutely convergent.

6. We have the equality
/K E%(g1kg2)dk = E%(91)= (g2)
for all g1,g92 € G(F).
For f € C*(G(F)) and d € R, let

pa(f) = sup {|f(9)|E°(9) " olg)?}.

geG(F)

If F is p-adic, we define the Harish-Chandra-Schwartz space to be
C(G(F)) ={f € C*(G(F))|pa(f) < oo, ¥d > 0}.
If F' is archimedean, for u,v € U(g) and d € R, let

pu,v,d(f) = pd(R(U)L(U)f)
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where "R” stands for the right translation, ”L” stands for the left translation and U(g)
is the universal enveloping algebra. We define the Harish-Chandra-Schwartz space to
be
C(G(E)) = {f € C™(C(F))|pusalf) < 00.d > 0, uv € U(g)}.

We also need the weak Harish-Chandra-Schwartz space C*(G(F')). For d > 0, let
Ci (G(F)) = {f € CF(G(F))|p-a(f) < oo}
if Fis p-adic. And let
Ci(G(F)) ={f € CF(G(F))lpuw,-a(f) < o0, Vu,v € U(g)}
if F'is archimedean. Then the weak Harish-Chandra-Schwartz space is defined to be
CYG(F)) = UasoCi (G(F)).

Also we can define the Harish-Chandra-Schwartz space (resp. weak Harish-Chandra-
Schwartz space) with given unitary central character x: let C(G(F), x) (resp. C*(G(F), x))
be the Mellin transform of the space C(G(F)) (resp. C¥(G(F'))) with respect to x.

2.9 The Harish-Chandra-Plancherel Formula

Since the Ginzburg-Rallis model has nontrivial center, we only introduce the Plancherel
formula with given central character. We fix an unitary character x of Zg(F'). For every
M € L(Myn), fix an element P € P(M). Let IIy(M, x) be the set of discrete series of
M (F) whose central character agree with x on Zg(F). Then iaj, , acts on Ix(M, x)
by the unramified twist. Let {IIs(M, x)} be the set of orbits under this action. For
every orbit O, and for a fixed 7 € O, let ia} be the set of X € iaj‘\/w such that the
representation T and 7 are equivalent, which is a finite set. For A € ia}, , define the

Plancherel measure to be
pu(ry) = j(ma) " Hd(7)
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where d(7) is the formal degree of 7, which is invariant under the unramified twist,
and j(7y) is defined in Section 2.6. Then for f € C(G(F),x '), the Harish-Chandra-
Plancherel formula (([HC76], [W03])) is

£9) = Sumecmn) WYIWE ™ o,y liad] ™
/ rte(TE (m) (g~ ) IE () ().
W0

To simplify our notation, let I, (G, x) be the union of Ig(T) for P=MN, M €
L(Mmin), 7 € O and O € {II2(M, x)}. We define a Borel measure dm on Ilemp(G, x)
such that

[ elmdn = Sareen WIWE Socmunliasl ™ [ eSm))ix
Miemp(GX) 030

for every compactly supported function ¢ on Iliem, (G, x). Here by saying a function ¢
is compactly supported on Il;emp(G, x) we mean that it is supported on finitely many
orbit O and for every such orbit O, it is compactly supported. Note that the second
condition is automatic if F' is p-adic. Then the Harish-Chandra-Plancherel formula

above becomes

flg) = / tr(w(g~ Hm(f)) p()dr.
Mtemp(Gx)

We also need the matrical Paley-Wiener Theorem. Let C®°(Ilienmp(G, X)) be the
space of functions 7 € Ilyemp(G, x) = T € End(m)> such that it is smooth on every
orbits O as functions from O to End(7)*> ~ End(7x)>. Now we define C(Iiemp(G, X))
to be a subspace of C*°(Iliemp(G, x)) consisting of those T : m — T such that

1. If F' is p-adic, T is nonzero on finitely many orbits O.

2. If F = R, for all parabolic subgroup P = MU and for all differential operator
with constant coefficients D on ia},, the function DT : o € Ia(M, x) = D(A —
TIg(a)\)) satisfies pp k(1) = SUDyerr, () ||DT(0)||usN(o)k < 0o for all u,v €
U(t) and k € N. Here ||DT(0)||y,v is the norm of the operator o(u)DT(c)o(v)
and N (o) is the norm on the set of all tempered representations (See Section 2.2
of [BI15]).
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Then the matrical Paley-Wiener Theorem states that we have an isomorphism between
C(G, X_l) and C(Iyemp(G, x)) given by

fecGx )= (re Miermp(G, x) — w(f) € End(7))

and



Chapter 3

Strongly Cuspidal Functions and

Quasi-Characters

In this chapter, we will study the strongly cuspidal functions and quasi-characters.
These are the main ingredients of our trace formula. In Section 3.1, we consider the
neighborhood of semisimple elements. In Section 3.2, we will define quasi-characters
both on the group level and on the Lie algebra level. In Section 3.3, we study the
behavior of quasi-characters under the parabolic induction. This will be used in the
proof of the spectral side of the trace formula when we are trying to reduce our problems
to the discrete series. In Section 3.4, we will define the strongly cuspidal functions and
talk about some geometric properties of them. These will be our test functions in the
trace formula. Moreover, for each strongly cuspidal function f, we will define a quasi-
character 6¢. This distribution will appear on both sides of the trace formula. In Section
3.5, we will establish some spectral properties of the strongly cuspidal functions.

After that, we will talk about the localization of various objects. This will be used
in the proof of the geometric side of the trace formula when we are trying to reduce the
problems to the Lie algebra case. In Section 3.6, we study the localization of general
quasi-characters. Then in Section 3.7, we will talk about the localization of 6. Finally,
in Section 3.8, we will talk about the pseudo coefficients of the discrete series, which
will be used in Section 13 when we are trying to deduce the multiplicity formula from

the trace formula. Through this chapter, we assume that F' is a p-adic field.

27
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Neighborhoods of Semisimple Elements

Definition 3.1.1. For every x € Gs5(F), we say a subset w C g,(F) is a good neigh-

borhood of 0 if it satisfies the following seven conditions, together with condition (7), for

finitely many finite dimensional algebraic representations (p,V') of G that will be fized
in advance ([W10, Section 3.1]):

(1)

(2)

(3)
(4)

(5)

(6)

(7)

w is an Gy-domain, compact modulo conjugation, invariant under Zg(x)(F') con-

jugation and contains 0.

The exponential map is defined on w, i.e. it is a homeomorphism between w and

exp(w), and is Gy-equivariant, where the action is just conjugation.
For every A € F* with | X |< 1, we have \w C w.

We have
{9 € G(F)| g 'wexp(w)g Nwexp(w) # 0} = Za(x)(F). (3.1)

For every compact subset ' C G(F'), there exists a compact subset I" C G(F) such
that

{ge G(F) | g tzexp(w)gNT =0} C G,(F)I'.

Fiz a real number cp > 0 such that ¢, <| (k+1)! |r for every integer k > 1. Then
for every mazimal subtorus T C G, every algebraic character x of T and every

element X € t(F) Nw, we have | x(X) |r< cp.

Consider an eigenspace W C g(F') for the operator ad(x), and let \ be the eigen-
value. If X € w, then ad(X) preserve W. Let Wx be an eigenspace of it with
eigenvalue . Then it is easy to see that Wx is also an eigenspace for the operator

ad(z exp(X)), with eigenvalue Aexp(u). Suppose that X # 1. Then we have
| Aexp(u) =1 |p=|A=1]F.

If we fix a finite dimensional algebraic representation (p,V') of G, by replacing the
adjoint representation by (p,V') in (7), we can define condition (7), in a similar

way.
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The properties for good neighborhoods are summarized below, the details of which
will be referred to [W10, Section 3].

Proposition 3.1.2. The followings hold.

1. If wg is a neighborhood of 0 in g, (F'), there ezists a good neighborhood w of 0 such
that w C wy'™.

2. Q = (vexp(w))? is an G-domain in G(F), and has compactly support modulo

conjugation.
3. For every X € w, Zg(vexp(X))(F) C Zg(x)(F) and G, expx) = (Gz)x C Gy

4. The exponential map between w and exp(w) preserve measures, i.e. the Jacobian

of the map equals 1.
5. For every X € w, D%(zexp(X)) = D%(2)D% (X).

Proof. See Section 3.1 of [WI0]. O

3.2 Quasi-Characters of G(F) and g(F)

If 0 is a smooth function defined on G¢q(F), invariant under G(F)—conjugation. We
say it is a quasi-character on G(F) if, for every x € G45(F), there is a good neighborhood
wg of 0 in g, (F), and for every O € Nil(g,), there exists coefficient ¢y o(z) € C such
that

0(z exp(X)) = Soeni(g.)c0.0(2)i (O, X) (3.2)

for every X € wy req. It is easy to see that cyo(x) are uniquely determined by 6. If 0
is a quasi-character on G(F') and  C G(F') is an open G-domain, then 0lq is still a
quasi-character.

For the Lie algebra case, let § be a function on g, (F’), invariant under G(F")—conjugation.
We say it is a quasi-character on g(F') if for every X € gss(F'), there exists an open Gx-
domain wx in gx (F'), containing 0, and for every O € Nil(gx), there exists ¢y o(X) € C
such that

0(X +Y) = Socnigy)c0.0(X)i(0,Y) (3.3)
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for every Y € wx req. If 0 is a quasi-character on g(F), define cp 0 = cg,0(0). If A € F*,
then 6(X) = #(\X) is still a quasi-character on g(F). By Section 4.2 of [W10], for
every O € Nil(gx), we have

coro(A1X) =] A MO ¢ o(X). (3.4)

3.3 Quasi-Characters Under Parabolic Induction

Let M be a Levi subgroup of G. Given an invariant distribution D™ on M (F), we
define the induced distribution D = I{;(DM) on G(F) as follows.

Fix a parabolic subgroup P = MU € P(M) and a maximal compact subgroup
K. Assume that the Haar measure on G(F), M(F), U(F) and K are compatible, i.e.

fG(F) = fM(F) fU(F) J5- For f € C°(G(F)), define fp € C°(M(F)) to be
_ 1/2 -1
fp(m) =édp(m) /K/U(F) f(E™ muk)dudk.

Then we define D(f) = DM (fp).

If DM is represented by a function M on M;eq(F), locally integrable on M (F')
and invariant under conjugation, i.e. DM (f) = fM(F) f(m)oM (m)dm for all f €
CX(M(F)). Then D is also represented by a function 6 on Greq(F) defined by

0(z) = zm,eXM(m)DG(x)*l/QDM(a;')l/?eM(a;’), T € Greg(F).

Here XM () is the set of the M (F)-conjugation classes in the G((F)-conjugation class of
x. In particular, if 7 is an irreducible admissible representation of M (F) and = = I§(7),
then 0, = I1$;(0,).

Now we talk about the parabolic induction of quasi-characters. If OM ¢ Nil(m)
and O € Nil(g), we say O is contained in the induced orbit of OM if the intersection
O N (OM + u(F)) is a nonempty open subset in OM 4 u(F). The following result is
Lemma 2.3 of [W12].

Lemma 3.3.1. If0M is a quasi-character of M(F) and 0 = I{;(0™), then the followings
hold.

1. 0 is a quasi-character of G(F).
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2. If x € Gs5(F) and O € Nil(gy) is a regular orbit, then we have
0,0(x) = SpexrSeer., /. S0 DC (x) 2D ()2
[(Znr(2))(F) : M$I(F)]_109]\/I7O/(£U/).

Here O runs over elements in Nil(my) such that gO is contained in the induced
orbit of O'. And for x' € XM (z), T is the set of g € G(F) such that grg™" = '

3.4 Strongly Cuspidal Functions

If f € C(Zg(F)\G(F)), we say f is strongly cuspidal if for every proper parabolic
subgroup P = MU of G, and for every x € M(F'), we have

/ flzu)du = 0. (3.5)
U(F)

The most basic example of strongly cuspidal functions is given by the matrix coefficients
of a supercuspidal representation.

The following proposition is easy to prove, following mostly from the definition. See
Section 5.1 of [W10].

Proposition 3.4.1. The followings hold.

1. f is strongly cuspidal if and only if for every proper parabolic subgroup P = MU
of G, and for every x € M(F'), we have

/ f(utzu)du = 0. (3.6)

U(F)

2. If Q is a G-domain in G(F') and if f is strongly cuspidal, then flq is strongly
cuspidal.

3. If f is strongly cuspidal, so is 9f for every g € G(F).

Now we study the weighted orbital integral associated to strongly cuspidal functions.

The following lemma is proved in Section 5.2 of [W10)].

Lemma 3.4.2. Let M be a Levi subgroup of G and K be a open compact subgroup
in good position with respect to M. If f € C(Zq(F)\G(F)) is strongly cuspidal and
x € M(F) N Greg(F), then the followings hold.
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1. The weighted orbital integral Jy(x, f) does not depend on the choice of K.

2. For every y € G(F), we have Jy(x,Yf) = Jy(z, f).
3. IfAGz 7é AM, then JM(.f,f) =0.

For z € Gyeg(F), let M(x) be the centralizer of Ag, in G, which is clearly a Levi
subgroup of G. For any strongly cuspidal function f € C(Zq(F)\G(F)), define the
function 0 on Zg(F)\Greg(F') by

O7(x) = (1)@~ Cu(Gy) T D (@) 2 Iy (2, f)- (3.7)

Here a¢ is the dimension of Ag, and the same for aps,). By the lemma above, the
weighted orbital integral is independent of the choice of the open compact subgroup K,

and so is the function 0.
Proposition 3.4.3. The followings hold.

1. The function O is invariant under G(F)-conjugation, and it is locally integrable

on Zg(F)\G(F) and locally constant on Zg(F)\Greq(F).

2. 05 is a quasi-character.

Proof. The first part is Lemma 5.3 of [W10], the second part is Corollary 5.9 of the loc.
cit. [

The function ¢y will show up on both sides of the trace formula. Here we only write
down the results for the trivial central character case, but the argument can be easily
extended to the non-trivial central character case (i.e. f € C(Zg(F)\G(F), X)), or the
case without central character (i.e. f € C(G(F))).

Similarly, we can define strongly cuspidal functions on the Lie algebra.

Definition 3.4.4. We say a function f € C>(go(F)) is strongly cuspidal if for every
proper parabolic subgroup P = MU, and for every X € m(F), we have

/ F(X+Y)dY =0.
u(F)

This is equivalent to say that for every proper parabolic subgroup P = MU, and for
every X € m(F), we have

fu™ Xu)du = 0.
U(F)
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If f e C(go(F)) is strongly cuspidal, we define a function 67 on gg ,eq(F) by

05(X) = (~1)"m0 = Cy(Gx) T DYX) T2 a0 (X, ) (3.8)

Here M(X) is the centralizer of Ag, in G, a¢ is the dimension of A, and the same

for apr(x). We have a similar result as Proposition W

Proposition 3.4.5. If f € C(go(F')) is strongly cuspidal, 0y is independent of the
choice of K. (Recall we need to fix the open compact subgroup K in the definition of

orbital integral.) And in this case, 05 is a quasi-character.

3.5 Some Spectral Properties of the Strongly Cuspidal
Functions
We first study the weighted characters associated to the strongly cuspidal functions.

Lemma 3.5.1. If f € C(Zg(F)\G(F),x™!) is strongly cuspidal, M is a Levi subgroup
of G and T is a tempered representation of M(F') whose central character equals x on

Za(F), then the followings hold.
1. For any L € L(M) and Q € F(L), JS(T,f) =04 L#EMorQ#G.
2. If T is induced from a proper parabolic subgroup of M, then J]\G/[(T, f)=0.
3. For x € G(F), we have J&, _,(zrz™', f) = J§ (7, f).

4. The weight character JAC}}(T, f) does not depend on the choice of K, and also does

not depend on the way we normalize the intertwining operators.
Proof. See Section 2.2 of [W12], or Section 5.4 of [B15]. O

Now we talk about the spectral characterization of the strongly cuspidal functions.
The following result is a direct consequence of the matrical Paley-Wiener Theorem in
Section 2.9.

Proposition 3.5.2. For f € C(Zg(F)\G(F),x™ 1), the followings are equivalent.

1. f is strongly cuspidal.
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2. For any proper parabolic subgroup P = MU, and for any tempered representation
T of M(F) whose central character equals x on Z(F'), we have tr(w(f)) = 0 for

m=18(7).

For the rest of this subsection, we assume that G is GL,(D) for some
division algebra D/F and n > 1. In particular, all irreducible tempered
representation m of G(F) is of the form © = I{/(7) for some 7 € IIy(M). For
such 7, let x be the central character of 7. For f € C(Zg(F)\G(F),x™!) strongly
cuspidal, define

07(r) = (~1)%~ 2 JG (7, f). (3.9)

Proposition 3.5.3. For every f € C(Zg(F)\G(F),x™ 1) strongly cuspidal, we have

Or = / Of(m)0rdr.
Meemp(Gx)

Proof. This is just Proposition 5.6.1 of [B15]. The only thing worth to mention is that
the function D(7) in the loc. cit. is identically 1 in our case since we assume that
G = GLy(D). O

To end this section, we need a local trace formula for strongly cuspidal functions.
It will be used in Chapter 8 for the proof of the spectral side of our trace formula. For
f € C(G(F%Xil)a f/ € C(G<F)7X) and g91,92 € G(F)a set
Kfplang0) = [ (v g92)f'(a)dg
Za(FN\G(F)

By Proposition the integral above is absolutely convergent.

Theorem 3.5.4. 1. For all d > 0, there exist d' > 0, a continuous semi-norm vq g
on C(G(F),x™ ) and a continuous semi-norm vy ;, on C(G(F),x) such that

K7 (91, 92)| < vaa (F)Vha(FES (91)00(g1) "2 (92)00(g2)"

and
K291, 92)| < vaa (H)vga(F)E(91)00(91) E(g2)o0(g2) .

2. Assume that f is strongly cuspidal for the rest part of the Theorem. Then for all
d >0, there exist a continuous semi-norm vq on C(G(F),x™ ') and a continuous
semi-norm v}, on C(G(F'), x) such that |Kﬁf,(g,g)| < va(H)V(HZ%(g)%00(g9) %
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3. There exists ¢ > 0 such that for all d > 0, and there exists d" > 0 such that
|K 7 4(9,hg)| < E9(g)%00(g)er* Moy (h)?

4. Set JA(f, f) = fZG(F)\G(F) Kﬁf,(g,g)dg. This is absolutely convergent by part
(2). Then we have

FGE = [ eymen .
Temp(G,x)
Proof. This is just Theorem 5.5.1 of [B15]. O

3.6 The Localization of Quasi-Characters

We fix x € G45(F) and a good neighborhood w of 0 in g,(F). If 6 is a quasi-character
of G(F'), we define a function 6, ,, on w by

bo0(X) = O(zexp(X)), if X € w; (3.10)

0, otherwise.
Then 6, is a quasi-character of g,(F'), and we have ¢y o(vexp(X)) = ¢y, 0(X) for
every X € w gz ss(F) and O € Nil(g: x) (Note we have G exp(x) = (Gz)x since w
is a good neighborhood). In particular, by taking X = 0 we have cg.o(z) = cy, 0 for
every O € Nil(g,).
Now if 0 is a quasi-character of G(F') that is Zg(F')-invariant, then

cp,0(z1) = cg,0(T)

for all z € Zg. For w as above, we can define a quasi-character on g, (F) that is invariant

by 34(F'), which is still denoted by 6,,, to be

Ozexp(X'), if X = X'+ 2, X' € w,Z € 34(F);
0 w(X) = (rep(XD) 2o(F) (3.11)

0, otherwise.

3.7 The Localization of 0

In this section, we discuss the localization of the quasi-character 6y, which will be

used in the localization of the trace formula in Chapter 9. Some results of this section
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will also be used in Chapter 11 when we change the truncated functions in the trace
formula. For x € G4 (F), recall that g, is the subspace of elements in g, whose trace
is zero. Suppose g0 = ¢, ® g” where g/, and g” are the Lie algebras of some connected
reductive groups (See Section 9.3). For any element X € g, o(F), it can be decomposed
as X = X'+ X" for X' € g/, and X" € g”. We denote by f — f* the partial Fourier
transform for f € C9°(g,0(F')) with respect to X”. i.e.

FX) = /”(F) JX"+ Y (< Y", X" >)dY". (3.12)
g

Let w be a good neighborhood of 0 in g,. We can also view w as an neighborhood
of 0 in g, by considering its image in g, o under the projection g, — g,0. If f €
CX(Za(F)\G(F)), for g € G(F), define 9f, ., € C°(gx,0(F)) by

flg~lwexp(X)g), if X € w;

gfa:,w(X) = (313)
0, otherwise.

Also define
gfa%,w = (gfr,w)ﬁ' (3-14)

Note that for X € g, 0(F), X € w means that there exist X' € w and Z € 34(F) such
that X = X’ + Z. Tt follows that the value f(g 'z exp(X)g) is just f(g~txexp(X')g),
which is independent of the choice of X’ and Z.

If M is a Levi subgroup of G containing the given x, fix an open compact subgroup
K in good position with respect to M. If P = MU € P(M), for f € C°(Zg(F)\G(F)),
define the functions ¢[P, f], ©*[P, f] and JR/L%W(-, f) on my o(F) N ggreq(F) by

oIP, f1(X) = DG (X) /2 M= (x)~1/2 / f o (X)du, (3.15)
U(F)
G*[P, fl(X) = D% (X)/2DMe(X) 12 / L (X)du, (3.16)
U(F)
and
iy (X, ) = DO (X)1V2 / 955 (X )onr(g)dg. (3.17)

The following two lemmas are proved in Sections 5.4 and 5.5 of [W10], which will be
used in the localization of the trace formula. The second lemma will also be used in

Section 11 when we change the truncated functions in the trace formula.
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Lemma 3.7.1. The followings hold.

1. The three integrals above are absolutely convergent.

2. The function p[P, f] and ©*[P, f] can be extended to elements in C°(my o(F)) and
we have ([P, f])F = ¢*[P, f].

3. The function X — J]ﬁ\/[w (X, f) is invariant under My (F')-conjugation, and has a
compactly support modulo conjugation. Further, it is locally constant on my o(F)N

Oz,reg(F'), with the property that there exist ¢ > 0 and an integer k > 0 such that

| T 00X F) < e(1+ | log(D% (X)) )"

for every X € my o N gareg(F).
Lemma 3.7.2. Suppose that f is strongly cuspidal, the followings hold.
1. If P # G, the function [P, f] and ©*[P, f] are zero.

2. The function J}j\/[xw(-, f) does not depend on the choice of K. It is zero if Ay, #
Apr. For every y € G(F) and X € my0 N gareg(F), we have

J?W,a:,w(X7 f) = wa,xw(X’yf)'

For f € CX(Zg(F)\G(F)) strongly cuspidal, we define a function 0y, ., on (gz,0)reg
by

Or(xexp(X)), if X € w;
Ofa2w(X) = (wexp(X)) (3.18)

0, otherwise.

If X € (82,0)reg; let M(X) be the centralizer of Ag,  in G. We define

ot

Jmw

(X) = (— 1)~ p(Gy x) T DX (X) V2T ) (X ). (3.19)

By the lemma above this is independent of the choice of K. From the discussion of 0,

we have a similar lemma:

Lemma 3.7.3. The functions 0y, ., and efﬂz,w are invariant under G4 (F')-conjugation,
compactly supported modulo conjugation, locally integrable on g, o(F'), and locally con-

stant on g;p,O,Teg(F)'
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The next result about 67, . and fo +. 18 proved in Section 5.8 of [W10]. It tells us
that 6"

7 2. 18 the partial Fourier transform of 6., with respect to X .

Proposition 3.7.4. If f € C*(Za(F)\G(F)) is strongly cuspidal, then chxw is the

partial Fourier transform of 0., in the sense that, for every ¢ € C(gz0(F)), we

have
/ eﬁcx L(X)p(X)dX = 01 20(X)H(X)dX. (3.20)
QI,O(F) "

3.8 Pseudo Coefficients

In this subsection we assume that G = GL, (D) for some division algebra D/F.
Let 7 be a discrete series of G(F) with central character x. For f € C°(Zg(F)\G(F),x 1),

we say f is a pseudo coeflicient of 7 if the following conditions hold.

o tr(m(f)) =1
e For all 0 € Iliemp(G, x) with o # 7, we have tr(o(f)) = 0.

Lemma 3.8.1. For all discrete series m of G(F') with central character x, the pseudo

coefficients of m exist. Moreover, all pseudo coefficients are strongly cuspidal.

Proof. The existence of the pseudo coefficient is proved in [BDK]. Let f be a pseudo
coefficient, we want to show that f is strongly cuspidal. By the definition of f, we
know that for all proper parabolic subgroups P = MU of G, and for all tempered
representations 7 of L(F), we have tr(n'(f)) = 0 where ' = I§(7). Then by Proposition
we know that f is strongly cuspidal. This proves the lemma. O



Chapter 4

The Ginzburg-Rallis Model and
its Reduced Models

In this chapter, we study the analytic and geometric properties of the Ginzburg-Rallis
model. Geometrically, we show that it is a wavefront spherical variety. This gives us
the weak Cartan decomposition. Analytically, we show it has polynomial growth as a
homogeneous space. Then by applying all such properties, we prove some estimates for
several integrals which will be used in later chapters. We will also discuss the reduced
models associated to the Ginzburg-Rallis model coming from parabolic induction. This
is a technical chapter, readers may assume the results in this chapter at the beginning

and come back for the proofs later.

4.1 The Ginzburg-Rallis Models

Let (G, R) be the pair (G, R) or (Gp,Rp) as in Chapter 1, and let Gy = M. Then
(Go, H) is just the trilinear model of GLy(F') or GL1(D). We define a homomorphism
A:U(F) — F to be

AMu(X,Y,Z)) = tr(X) + tr(Y).

Therefore the character { we defined in Chapter 1 can be written as {(u) = ¥(A(u))
for uw € U(F'). Similarly, we can define A on the Lie algebra of U. We also extend A to
R(F) by making it trivial on H(F).

39
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Lemma 4.1.1. 1. The map G — R\G has the norm descent property. For the

definition of the norm descent property, see Section 18 of [K0J], or Section 1.2 of
[B15].

2. The orbit of X\ under the M -conjugation is a Zariski open subset in (u/[u,u])*.

Proof. (1) Since the map is obviously G-equivariant, by Proposition 18.2 of [K05], we
only need to show that it admits a section over a nonempty Zariski-open subset. Let
P = MU be the opposite parabolic subgroup of P = MU with respect to M, and let
P’ be the subgroup of P that consists of elements in P whose M-part is of the form
(1, h1, ho) where hi,he € GLo(F) or GL1(D). By the Bruhat decompostion, the map
¢ : P' — R\G is injective and its image is a Zariski open subset of R\G. Then the
composition of ¢~ and the inclusion P’ < G is a section on I'm(¢). This proves (1).
(2) Assume that G(F) = GLg(F). We can easily identify (u/[u,u])* with My x Mo
where M are the variety of two by two matrices. Then it is easy to see that the orbit of
A under the M-conjugation is GLo X G Lo, which is a Zariski open subset. This proves

(2) for the split case. The proof for the quaternion case is similar. O

4.2 The Spherical Pair (G, R)

We say a parabolic subgroup @ of G is good if RQ is a Zariski open subset of G. This

is equivalent to say that R(F)Q(F) is open in G(F') under the analytic topology.

Proposition 4.2.1. 1. There exist minimal parabolic subgroups of G that are good
and they are all conjugated to each other by some elements in H(F). If Ppin =
MinUnnin is a good minimal parabolic subgroup, we have RN Upnin = {1} and the

complement of R(F)Ppin(F) in G(F) has zero measure.

2. A parabolic subgroup Q of G is good if and only if it contains a good minimal

parabolic subgroup.

3. Let Prin = MpminUmin be a good minimal parabolic subgroup and let Apin = Anm, i
be the split center of Myn. Set

A+ = {a € AWLZTL(F) H a(a) |Z 1 fO’F any « € \I/(Amznapmzn)

min

Then we have
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(a) oo(h) + oo(a) < oo(ha) for alla € AL . . h € R(F).

min’

(b) o(h) < o(a~tha) and oo(h) < oo(a"tha) for alla € Af. ~h e R(F).

4. (1),(2) and (3) also hold for the pair (Go, H).

Proof. (1) We first show the existence of a good minimal parabolic subgroup. In the
quaternion case, we can just choose the lower triangle matrices, which form a good
minimal parabolic subgroup by the Bruhat decomposition. (Note that in this case the
minimal parabolic subgroup is not a Borel subgroup since G is not split). In the split
case, we first show that it is enough to find a good minimal parabolic subgroup for the
pair (G, H). Let By be a good minimal parabolic subgroup for the pair (G, H), since
we are in the split case, By is a Borel subgroup of Gy. Let B = UBy. It is a Borel
subgroup of G. By the Bruhat decomposition, UP is open in G. Together with the fact
that By is a good Borel subgroup of (Go, H), we know BR is open in GG, which makes
B a good minimal parabolic subgroup.

For the pair (Go, H), let By = (B™, B~, B") where B is upper triangular Borel sub-
group of GLs, B~ is lower triangular Borel subgroup of GLs and B’ = ( (1) _11 ) B~ ( (1) i ) .

. a 0 a 0
It is easy to see that Bt N B~ N B = { . }, hence BN H = { 0 X
a a

0 a a
minimal parabolic subgroup.

a 0 a 0
( > X ( 0 )} Then by comparing the dimensions, we know By is a good

Now we need to show that two good minimal parabolic subgroups are conjugated
to each other by some elements in R(F'). Let P,.in be the good minimal parabolic

subgroup defined above, and let P/ . be another good minimal parabolic subgroup.

n

We can always find g € G(F) such that gPphing~ ! = P/ . .
Z=G—-U. If ge Z, then

Let U = RP,,;, and

RP,

in = RgPrming™* € Zg71,

which is impossible since RP! . is Zariski open and Z is Zariski closed. Hence g €

in

UNG(F)=U(F). If g € R(F)Pyin(F), then we are done. So it is enough to show that
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We have the following two exact sequence:
0 — H°(F, Ppin) — H(F, RPpip) — H°(F,R/RN Ppip),

0 — H%(F, RN\P,in) — H°(F,R) — H°(F,R/RNP,,;,) — H'(F, RNPyin) — H'(F,R).

Therefore it is enough to show that the map
HY(F,RN Ppi,) — H'(F,R) (4.1)

is injective.

If G is split, by our construction, RN Py, = GL;. Since HY(F, GL,,) = {1} for any
n € N, the map is injective. If G is not split, by our construction, RN Py = H
and R/R N Py, = U. Then the map lies inside the exact sequence

0— H(F,H) - H°(F,R) — H(F,U) — H'(F,H) — H'(F, R).

It is easy to see that the map HY(F,R) — H°(F,U) is surjective, therefore (4.1]) is
injective. This finishes the proof.

For the rest part of (1), since we have already proved that two good minimal parabol-
ic subgroups can be conjugated to each other by some elements in R(F), it is enough
to prove the rest part for the specific gopod minimal parabolic P,,;, we defined above,
which is obvious from the construction of Py,;,. This proves (1). The proof for the pair
(Go, H) is similar.

(2) Let @ be a good parabolic subgroup, and let Py,;, C @ be a minimal parabolic
subgroup. Set

G=1{g9€G|g  Puing is good}.

This is a Zariski open subset of G since it is the inverse image of the Zariski open subset
{V € Grn(g) | V+t = g} of the Grassmannian variety Gr,(g) under the morphism
9 € G — g Yming € Gra(g), here n = dim(Ppin). By (1), there exists a good minimal
parabolic subgroup, hence G is non-empty. Since Q is good, QR is a Zariski open subset,
hence QRN G # (. So we can find gy € Q such that (jalem(jo is a good parabolic
subgroup. Let

Q={G€ Q| 'Pning is good}.
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Then we know Q is a non-empty Zariski open subset. Since Q(F) is dense in Q, Q(F)
is non-empty. Let ¢ be an element of Q(F). Then the minimal parabolic subgroup
q ' Pping is good and is defined over F. This proves (2). The proof for the pair (G, H)
is similar.

(3) By the first part of the proposition, two good minimal parabolic subgroups are
conjugated to each other by some elements in R(F'). This implies that (a) and (b) do not
depend on the choice of minimal parabolic subgroups. Hence we may use the minimal
parabolic subgroup Py, defined in (1). Next we show that (a) and (b) do not depend on

the choice of M. Let Myin, M/ . be two choices of Levi subgroup. Then there exists

@ € Upin(F) such that M/ . = iM,,;,u~! and A’;m = ﬂA;mﬂfl. Since for a € Ar‘zm,
a~la is a contraction, the sets {a luau! | a € A}, } and {a~ a1 au | a € AT, } are

bounded. This implies

oo(htiai™t) ~ og(ha),
o(tat thiau™) ~ o(a tha),

oo(@au thaaa™) ~ oolatha)

for all a € A, and h € R(F). Therefore (a) and (b) do not depend on the choice of

min

Mpin. We may choose

0 0 -
M i, = {diag( “ , = ) 4 a5 a6 )|a; € F*}
0 as 0 aq 0 ag

in the split case, and choose
Mmin = {diag(bl, bg, bg) | bj S DX}

in the non-split case.

For part (a), let h = uhg for u € U(F) and hg € H(F'). Then we know o¢(h) <
o0(ho) + oo(u) and og(ha) = og(uhoa) > oo(u) + oo(hoa). As a result, we may assume
that h = hg € H(F). If we are in the non-split case, Zg\H(F) is compact, and the
argument is trivial. In the split case, since the norm is K-invariant, by the Iwasawa
decomposition, we may assume that hg is upper triangle. Then by using the same

argument as above, we can get rid of the unipotent part. Hence we may assume that



44
ho = diag(h1, he) with hy, he € F*. By our choice of M,in,

0 0 —
a = diag([ ' A" A PTI)) = diag(An, A, 43) (42)
0 a 0 a4 0 ag

with | a2 |<| a1 |<| a3 |<| as |<| a5 |<| ag |. Since we only consider op, we may
assume that Ila; = 1 and hjhy = 1. (In general, after modulo the center, we can not
make determinant equal to 1, there should be some square class left. But we are talking
about majorization, the square class will not effect our estimation.) In order to make
the argument hold for the pair (G, H), here we only assume that | as |<| a1 |,| a3 |<|

aq |,| a5 |<| ag |. It is enough to show that
o(ho) 4+ o(a) < o(hoa). (4.3)

In this case, o(ho) ~ log(maz{| h1 [,| h2 |}) and o(a) ~ log(maz{| ag |,| as || a1 [}) ~

log(maz{| a3 |,| a3 |,| a5 [}).

o If hy > 1, we have o(hg) ~ log(| ha |), || hoAs ||>] ache |, and || hoAsz ||>] ashs |.
So if maz{| a¢ |, as |, a1 |} =| as | or | as], holds. By the same argument,
if max{| ay' || a3’ || az' |} = a3’ | or | a5’ ]|, also holds. Now the only
case left is when maz{| ag |,| as |,| a1 |} =| a1 | and maz{| az' || a3’ || a5' |} =

a;l |.

— If | ag |> 1, then || hoAs ||>| agha | and || hoA; ||>| a5'hy' |. Hence
| hoAy ||| hoAs ||2>] a3 a2hy |>| a5 the |. In particular, (@3] holds.

— If | ag |< 1, then | a5 |< 1. In this case, || hoAs [|>] a5 'he | and || hoA; [|>]
arhy ! |. Hence || hoAy ||| hoAs ||2>] a5 2a1ha |>] a1hs |. In particular, (&.3)
holds.

e If hy > 1, the argument is similar as above, we will skip it here.

This finishes the proof of (a) for both the pair (G, R) and the pair (Go, H).

For part (b), the argument for og is an easy consequence of the argument for o, so
+ 1

we only prove the first one. Still let h = uhg. By the definition of A . . a™ ua is an

extension of u (i.e. o(a™ ua) > o(u)), so we can still reduce to the case h = hg € H(F).
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For the non-split case, the argument is trivial since a 'hga = hg. For the split case,

still let a = diag(A1, Aa, A3) as above. It is enough to show that for any h € GLs(F),

| b ||< maz{|| A7 hA; ||,i =1,2,3}. (4.4)

To1 X22
I & ||= |z11], |x21] or |22], it is easy to see that || h || <|| AflhAl |. If || A ||= |x12], then

| 2 ||<|| A;'hAs ||. Therefore (&.4)) holds, and this finishes the proof of (b).
(4) is already covered in the proof of (1), (2) and (3). O

Let h = ( B ) We may assume that det(h) > 1. Then || h ||= maz{|z;;|}. If

The above proposition tells us that X = R\G is a spherical variety of G and Xy =
H\Gy is a spherical variety of Gp. In [SV], the authors have introduced the notion of
wavefront spherical variety. In the next proposition, we are going to show that X is
a wavefront spherical variety of Gog. We need to use this result for the weak Cartan
decomposition of (G, R) and (Go, H).

Proposition 4.2.2. Xg is a wavefront spherical variety of Gy.

Proof. It’s is enough to show that the little Weyl group Wx, of Xy is equal to the
Weyl group of Gg, which is (Z/2Z)3. Here we use the method introduced by Knop
in [Knop95| to calculate the little Weyl group. To be specific, use the same notation
as in loc. cit., let B = By X By x B3 be a Borel subgroup of Gy. Without loss of
generality, we may assume that B; is the upper triangular Borel subgroup of GLs. Let
B(Xo) be the set of all non-empty, closed, irreducible, B-stable subsets of Xy. It is
easy to see that there is a bijection between B(X() and the set of all non-empty, closed,
irreducible, Ho-stable subsets of Go/B ~ (P!)3. And we can easily write down such
orbits: (PY)3, Xjo, Xi3, Xa3 and Y where X;; = {(a1,a2,a3) € (P!)3|a; = a;} and

Y = {(a1,a2,a3) € (P')3|a; = az = az}. Therefore B(Xy) contains five elements
%(XO) = {XO,Yl,YQ,}/:?,,Z} (45)

where Z is the orbit of the identity element under the action of B, which is an irre-
ducible subset of codimension 2. And all Y;’s are closed, irreducible, B-stable subsets
of codimension 17 with Yl = {H\(gvglbag/) | be BQagvg/ € GL2}> Y2 = {H\(gba glag) |
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be Bi1,g,9 € GLo}, and Yz = {H\(g,9b,¢') | b € Ba,g,¢9' € GLa}. Now we study the
action of the Weyl group W = W, of G on the set B(Xj).

Let A(Gp) = {au, ag, as} be the set of simple roots of Gy with respect to the Borel
subgroup B, here «; is the simple root of the i-th GLo with respect to B;. For¢ = 1,2, 3,
let w; € W be the simple reflection associated to «;, and P; be the corresponding
parabolic subgroup of G containing B (i.e. P; has Bj in the j-th component for i # j,
and has GLg in the i-th component). Then we know W is generated by w;’s, hence it
is enough to study the action of w; on B(Xp).

We first consider the action of wi. It is easy to see that there are two non-empty,

closed, irreducible, P;-stable subsets of X(: one is Y7, the other one is Xy. Let
%(Yl,P) = {A € SB(X) ’ PA= YI}

and
‘B(Xo,P) = {A S %(X) ‘ PA= Xo}.

We have B(Y7, P) = {Y1, Z} and B(Xo, P) = {Y2,Y3, Xo}. By Theorem 4.2 of [Knop95|,

the action of wy on B(Xy) is given by

wy - Xo = Xo,w1 - Y1 =Y, w1 - Yo=Y3,w - Y3 =Yo, w1 - Z = Z.
Similarly we can get the action of wy and ws:

wy - Xo = Xo, w2 - Y1 =Y3,w0 - Yo =Yo,we - Y3 =Y, wy - Z = Z;

wg - Xo = Xo, w3 - Y1 =Yo,w3-Yo =Y, w3 Y3 =Y3,w3-2Z = Z.

Hence the isotropy group of Xy is W. By Theorem 6.2 of [Knop95|, the little Weyl

group Wy, is just W, therefore X is a wavefront spherical variety of Gy. O

We need the weak Cartan decomposition for X and X. Let Py = MyUy be a good
minimal parabolic subgroup of Gy, and let Ag = Ay, be the maximal split central torus
of My. Let

Al = {a € Ag(F)| |a(a)| > 1, Ya € ¥(Ag, )}

Choose a good minimal parabolic subgroup Ppin = PoU = MpminUmin of G, and let
P be its opposite with respect to M,,;,. Then we know P,,;;, C P. Let A be the
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= Ay in Pyn, and let Ap = AN \I’(Amm,P) be

the subset of simple roots appeared in u. For oo € Ap, let n, be the corresponding root

set of simple roots of A;nin = Aup

min

space.

Proposition 4.2.3. 1. There exists a compact subset Ky C Go(F') such that

Go(F) = H(F)A{ K. (4.6)

2. There exists a compact subset KK C G(F') such that

G(F) = R(F)AZK. (4.7)

3. The character & is nontrivial on ny for all « € Ap.

Proof. We first prove that (1) implies (2). By the Iwasawa decomposition, there is a
compact subgroup K of G(F) such that G(F) = P(F)K = U(F)M(F)K. Now by part
(1), there exists a compact subset Ko of Go(F) = M (F) such that Go(F) = H(F)Ag Ko.
Let K = KoK, then R(F)AJK = U(F)H(F)AjKoK = U(F)M(F)K = G(F). This
proves (2).

Now we prove (1): in the non-split case, Al = Zg, and Zg,\Go(F) is compact,
hence (1) is trivial. In the split case, if F' = R, since (Go, H) is a wavefront spherical
variety, (2) follows from Theorem 5.13 of [KKSS|. If F' is p-adic, we refer the readers to
Appendix A for the explicit construction.

For part (3), it is easy to see that the statement is independent of the choice of the
good minimal parabolic subgroup, so we can still use the one defined in Proposition
Then (3) just follows from direct computation. O

To end this section, we will show that the homogeneous space X = R\G has poly-
nomial growth. We first recall the definition for polynomial growth in [Ber8§].

Definition 4.2.4. We say a homogeneous space X = R\G of G has polynomial growth
if it satisfies the following condition:

For a fixed compact neighborhood K of the identity element in G, there exist con-
stants d,C > 0 such that for every t > 0, the ball B(t) = {z € X | r(x) < t} can be
covered by less than C(1 + t)¢ many K — balls of the form Kz,x € X. Here r is a
function on X defined by r(x) = inf{o(g) | x = gxo} where o € X is a fixed point.
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Remark 4.2.5. In our case, if we set vg = 1, then r(z) = infycpp)o(hz). By Lemma

4.1.1, 7(z) = op\q(7).

Lemma 4.2.6. 1. Let K C G(F) be a compact subset. We have op\¢(zk) ~ op\q(7)
forallx € R(F)\G(F),k € K.

2. For alla € Aar, we have

op\a(a) ~ oza(a) = ao(a). (4.8)
Here the last equation is just the definition of og.

Proof. (1) is trivial. For (2), since G — R\G has the norm descent property(Lemma

4.1.1]), we may assume that

or\g(T) = hei}%l(fF) oc(hx). (4.9)

Then we obviously have the inequality op\¢(g) < oo(g) for all g € G(F). So we only
need to show that og(a) < op\g(a) for all a € Al By applying (4.9), it is enough to
show that for all a € Af and h € R(F), we have

Uo(a) < Uo(ha). (4.10)

We can write h = uhy for v € U(F),hg € H(F). Since og(ugo) > o0o(go) for all
u € U(F), g0 € Go(F), we have og(ha) > o¢(hoa). So it is enough to show that for all
a € Af and hg € H(F), we have og(a) < o¢(hoa). This just follows from Proposition
[4.2.1)(3). This finishes the proof of (2). O

Proposition 4.2.7. R(F)\G(F') has polynomial growth as a G(F')-homogeneous space.

Proof. By Proposition there exists a compact subset L C G(F') such that G(F') =
R(F)AJK. Since R(F) N A = Zg(F), together with the lemma above, there exists a

constant cg > 0 such that
B(t) C R(F){a|a€ Af/Za(F),00(a) < cot}K

for all ¢ > 1. Hence we only need to show that there exists a positive integer N > 0
such that for all ¢ > 1, the subset {a € A /Za(F) | oo(a) < t} can be covered by less
than (1 + ¢)"V subsets of the form Cya with a € AJ and Cy C A be a compact subset

with nonempty interior. This is trivial. O
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4.3 Some Estimates

In the next two sections, we are going to prove several estimates for various integrals
which will be used in later sections. The proof of some estimates are similar to the GGP

case in [B15)], we only include them here for completion.

Lemma 4.3.1. 1. There exists € > 0 such that the integral

/ =60 (hg)e<e0 (o) dhy (4.11)
Zy(F)\H(F)

1s absolutely convergent.

2. There exists d > 0 such that the integral
/ =2%(h)oo(h)~%dh (4.12)
ZrR(F)\R(F)

s absolutely convergent.

3. For all § > 0, there exists € > 0 such that the integral
/ =6 ()0 ™ (14 | Ah) )~*dh (4.13)
Zg(F)\R(F)

is absolutely convergent.

Proof. (1) If we are in the non-split case, Zy(F)\H(F') is compact and the argument
is trivial. If we are in the split case, Gg = GLg x GLy x GLso. By the definition of
=G for hg € H(F), 2% (ho) = (E(hg))?. But since = is the matrix coefficient of
a tempered representation, it belongs to the space L2T!(Zy(F)\H(F)) for any t > 0.
Then we choose € > 0 small enough so that e<“°("0) <« = (hy)~1/2. For such an e, the
integral will be absolutely convergent.

(2) Let d > 0, by Proposition [2.8.3|(iv), if d is sufficiently large,

/ E%(h)oo(h)~%dh = / / =% (how)oo(hou) ~*dudhg
Zr(F)\R(F) Zr(F)\H(F) JU(F)

< 5p(ho)2E5 (ho)dhy

/ZH(F)\H(F)

/ =60 (hg)dhy.
Zu(F)\H(F)
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And the last integral is absolutely convergent by (1).
(3) Since og(hou) < o¢(hg)oo(u) for all hg € H(F') and u € U(F), by applying (1),

it suffices to prove the following claim.

Claim 4.3.2. For all § > 0 and €y > 0, there exists € > 0 such that the integral
125(ho) :/ =% (uho)e™ (14 | M) |)~°du
U(F)
is absolutely convergent for all hy € H(F), and we have
Igé(ho) < EGO (ho)eeoao(ho).

Given 9, €, €y,b > 0, we have Igé(ho) = Ig,é,gb(h()) + 125’>b(h0) where

125 < (ho) :/( )laogb(u)EG(uhg)emO(”)(1+ | Mw) [)0du
U(F

and
125 5p(ho) = /U(F) Loy »5(w) =€ (uho) e ™ (14 | A(w) |)~°du.

For all d > 0, we have

19, <y(ho) < b /U . =6 (uho ) (1), (4.14)

By Proposition [2.8.3(iv), we can choose d > 0 such that the last integral of is
essentially bounded by dp(hg)~Y/22M (hg) = EC0(hyg) for all hg € H(F). We fix such a
d > 0, and then we have

125 <y (ho) < b= (hg) (4.15)

€

for all hg € H(F') and b > 0.
On the other hand, there exists a > 0 such that 2% (gg’) < e*0W)=C(g) for all
9,9 € G(F). Therefore

125 - y(ho) < eolho)=veb /U . 29 (u)e VIO (14 | A(w) |) P du (4.16)

for all hg € H(F') and b > 0. Assume that we can find € > 0 such that the last integral

of (4.16) is convergent. Then by (4.15]) and (4.16|), we have

Igg(ho) < eebdeGo(hO) _|_eaao(h0)—\/gb (4‘17)
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for all hg € H(F) and b > 0. Choose 8 > 0 such that e #70(h) <« =Co(hy) for all

ho € H(F). If we let b= O‘—\J/rgﬁao(ho) in (4.17)), we have

—

Iga(ho) < exﬁ(a+ﬂ)ao(ho)(a\_;fgo(ho))d:Go(ho)_|_ea00(h0)(a+5)00(h0)(eﬁao(ho)EGo(hO))

< eﬁ(o&-&-ﬁ-&-l)o‘o(ho)EGo(ho)+EG0(hO)
< e\/E(a+B+1)Uo(h0)EG0(hO)

for all hg € H(F'). Note that a and 3 do not depend on the choice of e. Hence we can
always choose € > 0 small so that v/e(aw + 8+ 1) < €. This proves Claim

So it remains to prove that we can find € > 0 such that the integral in is
absolutely convergent. If we are in the non-split case, P is a minimal parabolic subgroup
of G, then this follows from Corollary B.3.1 of [B15]. If we are in the split case, it is
easy to see that the convergence of the integral is independent of the choice of A (under

the M-conjugation), so we may temporarily let

Mu(X,Y, 7)) = w12 + 221 + Y12 + Y21

T x
X — 11 12 Y = Y11 Y12 ‘
T21 T22 Y21 Y22

Then we have a decomposition A = A\, — A_ where

where

A (u(X,Y, 7)) = 201 + Y21

and
A (uw(X, Y, Z)) = —x12 — y12.

The additive character A4 is the restriction to U of a generic additive character of a
maximal unipotent subgroup contained in P. In fact we can take the maximal unipotent
subgroup to be the maximal upper triangular unipotent subgroup, and consider the
additive character of the form (x;;)1<ij<6 — T12 + Z23 + 234 + 245 + x56. By applying

Corollary B.3.1 of [B15] again, we know the integral
/ EYw)e ™ (1+ | A (u) |)~°du (4.18)
U(F)

is convergent for € small.
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Fix an embedding a : G,, < M given by t — diag(1,t,1,t,1,t). It is easy to see

that Ay (a(t)ua(t)™t) = tA;(u) and A_(a(t)ua(t)™) = t'A_(u) for all t € G,, and
u e U(F). Let U C F* be a compact neighborhood of 1. For all € > 0, we have

/ 2% (w)e 0™ (14 | M) |)"°du
U(F)
=G eop(u) -1 -6
< / E%(u)e (14 | Ma(t)ua(t)™) )" °du
U(F)
= / 2 (w)e 0™ (14 | A, (u) — A (u) |)Odu
U(F)
for all t € U. Integrating the above inequality over U, we have
/ =6 ()20 (14 | Au) [)~3du
U(F)
< / 29 (u)eco0 (™) / (14 | tAp(u) — t7IA_(u) |)*dtdu.
U(F) u

By Lemma B.1.1 of [B15], there exists ' > 0 only depends on 6 > 0 such that the last

expression above is essentially bounded by

/ =6 ()o@ (14 | A, (u) ) du.
U(F)

Then by (4.18), we can find € > 0 such that the integral on (4.16) is absolutely conver-
gent. This finishes the proof of (3).
O

Lemma 4.3.3. Let Ppin = MpminUmin be a good minimal parabolic subgroup of G.

1. For any 0 > 0, there exist € > 0 and d > 0 such that the integral
I s(mmin) = / = (hmnin)e ™ (14 | A(h) )~ dh
Zr(F)\R(F)
is absolutely convergent for all Muyin € Mpyin(F), and we have
Iel,(S(mmin) < 5Pmm (mmin)il/200<mmin)d

for all mynin, € Mypin(F).
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2. Assume that Zg,(F') is contained in Ay, (F). Then for any § > 0, there exist

min

€ >0 and d > 0 such that the integral

Zr(F)\R(F) J Zr(F)\R(F)
EC (hmimin ) ZC (W himapin ) <70 M 0B (14 | X(R') |)~2dW dh

is absolutely convergent for all Mupin € Mpin(F'), and we have

Ig,é(mmin) < 5]5 in (mmm)flao(mmm)d

m

for all Mypin, € Mpin(F).
Proof. (1) Since Z%(g7 1) ~ E%(g),00(g7 ) ~ 00(g) and A(h™1) = —A(h) for all g €
G(F) and h € R(F), it is equivalent to prove the following Claim.

Claim 4.3.4. For any § > 0, there exist € > 0 and d > 0, such that the integral
T (Mo = / =6 (mamsnh) <M (14 | A(R) |)~dh
ZR(F)\R(F)
is absolutely convergent for all Myin, € Mpin(F'), and we have

Jel,d (mmm) < 615 nin (mmm) 1/20'0 (mmin)d

for all Mypin, € Mppin(F).

By Proposition ii), there exists d > 0 such that

J61,5 (mmzn) < 5Pmin (mmzn) 1/200 (mm'm)d

X/ 0P (M7, ()20 (R) 7O (14 | A(R) )~ d
Zr(F)\R(F)

for all mpin € Mpyin(F'). Here mp .+ G(F) — Pin(F) is the map induced by the
Iwasawa decomposition. Since og(h)%e (") <« 70" for all € > € > 0, it is enough to

prove that for e small, the integral

/ 55 (mp. ()20 (11 | A(h) )"°dh (4.19)
Zn(F)\R(P)
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is absolutely convergent. Since Py, is a good parabolic subgroup, we can find open
compact neighborhoods of the identity Uy C K,Ur C R(F) and Up C Ppin(F) such
that Ux C UpUUr. We have the estimates

eo0krh) e« (14 | X(kgh) )70 < (14 | A(R) )7°
for all h € R(F) and kr € Ug. Therefore

mp ()27 M) (14 | X(h) |)"°dh

]Bmin ( Pmin

/ZR(F)\R(F)
< bp,,00)"2 [ 5. (. (k) 2e@0®) (14 | A(h) [)~*dh
ZR(F)\R(F)

/ O P (17,5, (Rpheh)) 2™ (14 | A(R) ) dh
Zr(F)\R(F)

for all kg € Ur and kp € Up. This implies

5 (mp  (R))2eo0M (14 | X(h) |)"dh

szn( Pmin

/ZR(F)\R(F)

< | | 0 (1) ke 1 | AR )
Zr(F)\R(F) JUk

< | [ 58 (6 2k O 1 | A(E) )P,
Zr(F)\R(F) JK

By Proposition M(iii), the inner integral above is equal to Z¢(h). Then the conver-
gence of (4.19) for e small just follows from (3) of Lemma this finishes the proof

of (1).

(2) By changing the variable // — h’h~! in the integral, it is enough to show that
for € > 0 small, the integral

ZR(F)\R(F) J ZR(F)\R(F)
E (hitnin) 2 (W' mnin)e M e (14 | (W) = A(h) |) " dh'dh
is absolutely convergent for all My, € Mpin(F'), and there exists d > 0 such that
Ig,a(mmm) < 6Pmm (mmm)_lao(mmin)d (4.20)

for all mumin € Mpmin(F). Let a : Gp(F) — Zg,(F) be a homomorphism given by
a(t) = diag(t,t,1,1,t=1,¢t71) in the split case, and a(t) = diag(t,1,¢~') in the non-split
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case. It is easy to see that A(a(t)ha(t)™1) = tA(h) for all h € R(F) and t € G,,(F). Let
U C F* be an open compact neighborhood of 1. Since Zg, is in the center of M, by

making the transform b’ — a(t)~'h’a(t), we have

EG (hmmzn)EG (h/mmin) e? (R) eeao(h’)

I s(mmin) < / /
ZR(F)\R(F) J ZRr(F)\R(F)

x/(1+ | Ma(t)R a(t)™Y) = X(h) |)~°dtdh'dh
u

- / / = (htmin) Y (W min )70 P e o0 ™)
Zr(F)\R(F) J ZR(F)\R(F)

x/(1+ | tA(R) — X(h) |)~dtdh dh
u

for all myin, € Mpin(F). By Lemma B.1.1 of [B15], there exists ¢’ > 0, only depending
on ¢, such that the last integral above is essentially bounded by
/ / ZC (M) 2 (W' Mnin)
Zr(F)\R(F) J Zr(F)\R(F)

e oM oo™ (1 | N(K) )7 (14 | A(R) )% d'dh
= Iel,é’(mmin)2
for all mynin € Mpmin(F'). Therefore the inequality (4.20]) follows from part (1), and this
finishes the proof of (2). O

4.4 The Harish-Chandra-Schwartz Spece of R\G

Let C C G(F) be a compact subset with nonempty interior. Define the function
Eg\G(:c) = volR\G(xC')_l/2 for x € R(F)\G(F). If C' is another compact subset with
nonempty interior, then Eg\G(ac) ~ Eg,\G(:U) for all x € R(F)\G(F). We will only use
the function Eg\G for majorization. From now on, we will fix a particular C, and set
=R\G — Eg\G. The next proposition gives the properties for the function ZF\¢, which

is quiet similar to Proposition for the group case.

Proposition 4.4.1. 1. Let K C G(F) be a compact subset. We have ZF\C (k) ~
=R\G(z) for all z € R(F)\G(F) and k € K.
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. Let Py = MyUy be a good minimal parabolic subgroup of Go, and let Ay = A, be
the split center of My. Set

Al = {ap € Ao(F) || ala) |> 1 for all a € ¥(Ag, Py)}.
Then there exists d > 0 such that
29 (a)dp(a)' 204 \co (@) < BNV (a) < 29 (a)dp(a)'/? (4.21)
for all a € A(‘)".

. There exists d > 0 such that the integral

/ =G ()20 () Uda
R(F)\G(F)

is absolutely convergent.

. For all d > 0, there exists d > 0 such that

/ 1UR\GSC(9C)ER\G(x)QUR\G(x)ddx <
R(F\G(F)

for all ¢ > 1.
. There exist d > 0 and d’ > 0 such that

/ =% (2" ha)oo (27 ha) ~dh < EF\G (2) 0 o (2)?
Zr(F)\R(F)

for all z € R(F)\G(F).
. For all d > 0, there exists d' > 0 such that
/ =% (ha)oo(ha)~* dh < ER\Y (2)op o (2)
Zr(F)\R(F)
for all x € R(F)\G(F).
. Given 6 > 0 and d > 0, the integral

Laen) = | / 1 ooze(H)ZC (h)ZC (Wha)
ZR(F)\R(F) J Zr(F)\R(F) a

oo(ha)loo(h'ha)d(1+ | X(B') |)~0dh dh
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is absolutely convergent for all x € R(F)\G(F') and ¢ > 1. Moreover, there exist
€ >0 and d > 0 such that

Isa(c,z) < ER\G(x)QJR\G(x)d/e_SC
for all x € R(F)\G(F) and ¢ > 1.

Proof. The first one is trivial. For (2), let P = MU be the parabolic subgroup opposite
to P with respect to M. We fix some compact subsets with nonempty interior for the

following groups
Cy CU(F),Co C Go(F) = M(F),Cy C U(F).

By the Bruhat decomposition, C' = CyCyCl is a compact subset of G(F') with nonempty

f 28\G | we have

interior. By the definition o
=M (g) ~ volp o (R(F)9C) /2, Vg € G(F).
By the definition of Z¢0, there exists d > 0 such that
29 (90)0 26, \io (90) ¢ < volg, (CogoCo) ™2 < 2% (o), Vgo € Go(F).
So in order to prove , it is enough to show that
dp(a) vl (CoaCo) ™2 ~ vol g g (R(F)aC)
for all @ € AJ. By the definition of C, we know
R(F)aC = R(F)aCp
where C'p = CyCp;. Thus we only need to prove that
5p(a) tvol, (CoaCo) ™2 ~ volp\ g (R(F)aCp) (4.22)

for all a € Aar.
Let Cy C H(F) be a compact subset with nonempty interior, and let Cr = CyCh.

It is a compact subset of R(F') with nonempty interior. We claim that

volp\c(R(F)aCp) ~ volg(CraCp) (4.23)
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for all a € AE{. In fact, we have

volg(CraCp) = /

/ lcgacy (hx)dhdz.
R(F\G(F) JR(F)

The inner integral above is nonzero if and only if x € R(F)aCp. If this holds, the inner

integral is equal to
volgr(R(F) N CraCpz~') = volg(Cr(R(F) NaCpz™')).
Therefore in order to prove , it is enough to show that
volp(CR(R(F) NaCpz 1)) ~ 1

for all a € Al and z € aCp. For such an z, Cr C Cr(R(F)NaCpz~1), so we only need
to show that
volr(Cr(R(F)NaCpz1)) < 1.

In order to prove this, it is enough to show that the set R(F )ﬂaC’%a‘l remains uniformly
bounded for all a € Af, here Cl; = CpC']gl. Since PN R = H, R(F) NaClha™! =
H(F) N aCya~! where Cj = C5 N Go(F). For hg € H(F) naCha™", a thoa € C
is bounded. By Proposition M(?)), o(ho) < o(a"thpa). Hence H(F) N aCha™" is
uniformly bounded for a € A(J{ , and this finishes the proof of .

Now by applying , is equivalent to

5p(a)_1v0lgo (CoaCp) ~ volg(CraCp), Ya € A(J{. (4.24)

By the definition of Cr and Cp, CraCp = Cy(CraCy)Cy. Since we have a decompo-
sition of the Haar measure on G(F): dg = dp(go)~'dudgodu where du,dgy and di are
Haar measures on respectively U(F), Go(F) and U(F), we have

volg(Cy(CraCy)Cg) ~ 6p(a)  volg, (CraCy).
Hence the last thing to show is that for all ag € Ag , we have
volg, (CoaCyh) ~ volg, (CraCy). (4.25)

The inequality volg,(CoaCp) > volg,(CraCy) is trivial. For the other direction,
since H(F)Py(F) is open in Go(F), we may assume that Cy = CyCp, where Cp, is
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a compact subset in Py(F) with nonempty interior. By the definition of A7, a_leOa
is uniformly bounded since the action on the unipotent part is a contraction and the
action preserves the Levi part. Hence there exists a compact subset C' C Go(F') such
that
a”'CpaCy C C'

for all a € A(J)r . This implies that
volg, (CoaC) < volg, (CraC’) < volg, (CraCyp)

for all a € AJ. This finishes the proof of (#:25)) and hence the proof of (2).

(3) Set B(R) = {z € R(F)\G(F) | op\¢(r) < R}. By Proposition there ex-
ists N > 0 such that for all R > 1, the subset B(R) can be covered by less than
(1 + R)Y many subsets of the the form xC for € R(F)\G(F) and C C G(F) be a

compact subset with non-empty interior. Let

I(R,d) = / ER\G (2)20 () el
B(R+1)\B(R)

We have
/ ER\G (2)20 () Pl = S5, T(R, d). (4.26)
RON\G(F)

Since for all R > 1, B(R + 1)\B(R) can be covered by some subsets z;C, -+ ,z;,C
with kg < (R + 2)V, we have

1R.0) <2, [ 2P o o) e (4.27)

for all d > 0 and R > 1. Since C' is compact, together with the definition of 2\ we

have

| =MCaPongle) s
yC

2

< ol c(yCO)ENC (y)2opa(y) ™

< ol G (YC)wolg(YC) 'opa(y) ™ = opaly) ™
for all y € R(F)\G(F'). Combining with (4.27)), we have

I(R,d) < 27 op (i)~ (4.28)
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for all d > 0 and R > 1. Since x;C N (B(R+ 1)\B(R)) # 0, or\g(z;) > R. Combining
with (4.28), we have

I(R,d) < R™%pr < (R+2)VR™

foralld > 0 and R > 1. So once we let d > N + 1, (4.26) is absolutely convergent. This
finishes the proof of (3).

The proof of (4) is very similar to (3), we will skip it here. For (5), by the Cartan
decomposition in Proposition we may assume that =z € Ag . Then by applying
part (2) and Lemma we only need to show that there exists d > 0 such that for

all a € Aar , we have

/ =6 (a ha)oo(a"ha)~*dh < 29 (a)25p(a). (4.29)
Zr(F)\R(F)

But we know

/ 2% ha)oo(a™ ha)~?dh
Zr(F)\R(F)

= / / 2% (a houa)oo(a houa) " Adudhg
Zu (F)\H(F) JU(F)
= dp(a) / / 2% (a" hoau)oo(a™ hoau) ~Adudhy.
Zp(F)\H(F) JU(F)
By Proposition [2.8.3|(4), for d > 0 large, we have
/ =% (a"thoau)og(a  hoau) " 4du < 2 (a " hoa)
U(F)

for all a € Ag(F) and hg € H(F'). Thus for d > 0 large, the left hand side of (4.29) is
essentially bounded by

5p(a) / =60 (4~ hoa)dho.
S (PNH(E)

So in order to prove (4.29), it is enough to show that
/ =60 (0 hoa)dhy < 29 (a)? (4.30)
Zy(F)\H(F)

for all a € AJ. If we are in the non-split case, Ay = Zg,, so 2 (a) = Z(1). Then

(4.30) holds since Zy (F')\H(F) is compact. In the split case, let Up ) C H(F') and
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Up, C Py(F) be some compact neighborhoods of the identity. By the definition of A,

the subsets a~'Up a remain uniformly bounded as a € Af. So we have

=G0 (a_lhoa)dho < / =G0 (a_lpl h1 h0h2p2a)dh0

/ZH(F)\H(F) Zu (F)\H(F)

for all @ € AT, hi,he € Uy and p1,ps € Up,. Let Ky be a maximal compact subgroup
of Go(F). Since Py is a good parabolic subgroup, there exists a compact neighborhood
of the identity Ug, C Ko such that Ux, C Up Uy NUUE,. So we have

/ : ( _lh(]a)dho
Zg(F)\H(F

< / / a klhok‘Qa)dkldedho
Zp(F)\H(F)

< / / a"Yk1hokoa)dky dkydhg
K

for all a € Af. By Proposition [2.8.3((6), the last integral above is bounded by

260 ()2 / =69 (hg)dho
2 (P\H(F)

for all @ € AJ. Then (4.30) follows from Lemma [4.3.1(1) and this finishes the proof of
().

For (6), by applying the same reduction as in (5), we only need to show that there
exists d’ > 0 such that for all a € Ag , we have

/ =6 (ha)oo(ha) " dh < 6p(a) /225 (a)op(a) .
Zr(F)\R(F)
Again we decompose dh = dudhy and by applying Proposition [2.8.3(4), we only need

to show that for all a € A(J{ , we have

/ =90 (hga)dhy < Z°°(a)op(a) ™.
Zp(F)\H(F)

Then by using the same argument as (5), together with Proposition [2.8.3(6) and Propo-
sition [4.2.1] it is enough to show that the integral

/ 29 (hg)dhg
Z(F)\H(F)
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is absolutely convergent, which is just Lemma [4.3.1(1). This finishes the proof of (6).

For (7), by applying the same reduction as in (5), together with the fact that for all
d > 0 and € > 0, we have 1,5,>.(h)og(h)? < e@0Me=<¢/2 we reduce to show that for all
6 > 0, there exist d > 0 and € > 0 such that for all a € Aa', we have

/ / =6 (ha)=Z0 (W ha)e oM oo ®) (14 | MK [)Pdidh  (4.31)
ZR(ENR(E) JZ(F\R(F)

< 0p(a)29(a)?0¢(a)?.

Let Pin = PoU and let My, = My. Then P, is a good parabolic subgroup of G,
and My, is a Levi subgroup of it which contains Ay. By Lemma m@), there exist
€ > 0 and d > 0 such that

/ / =%(ha)=% (W ha)e*Me0 ™) (14 | X(7) |)"°dh dh
ZR(P)\R(F) ) Zr(F)\R(F)

< dp,,,(a)"oo(a)?

for all @ € AZ. But we know 6p . (a)™' = 6p(a)dp,(a). By Proposition [2.8.3(1),
5py(a) < 29 (a)? for all a € Af. Therefore the inequality (-31)) holds for such d and
€. This finishes the proof of (7). O

Lemma 4.4.2. Let Q = MQUQ be a good parabolic subgroup of G, R =RnN Q, and
let Gg = Q/UQ be the reductive quotient of Q. Then we have

1. RonUg = {1}, hence we can view R as a subgroup of Gg. We also have
5Q(hQ) = 6RQ(hQ) for all h@ S RQ(F)

2. There exists d > 0 such that the integral

(1]

/ “a(hg)oo(hg) "Ry (hg) ' *dhg
Zr(F)\Rg(F)

is absolutely convergent. Moreover, if we are in the (Go, H)-case (this means that
we replace the pair (G, R) in the statement by the pair (Go, H)), for all d > 0, the
integral

29 (hg)oo(hs) R (he) ' 2dhs
/ZR<F>\RQ<F> eETes e ¢

is absolutely convergent.
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3. Let Ppin = MpminUnin C Q be a good minimal parabolic subgroup of G, and let

Apmin = A, A:;Lm = {a € Apin(F)| |a(a)] > 1,Ya € Y(Anin, Pmin)}. Then
there exists d > 0 such that

/ 2% (0™ hga)oo(a™ hga) "0r, (hg)'*dhg < E94(a)®
ZR(N\RG(F)

for alla € At

min
Proof. (1) RgNUg = {1} just follows from Proposition m For the second part, we
only need to show that
det(Ad(hg) ’q/tQ) =1
for all hg € Rg(F). Since Q is a good parabolic subgroup, g+t = g and tg=1tNg,so

we have an isomorphism q/t5 =~ g/t. This implies

det(Ad(hg) lsjes) = det(Ad(hg) |y/e) = det(Ad(hg) |g) det(Ad(hg) o).

‘q/tQ
Since G and R are unimodular, det(Ad(hg) |g) = det(Ad(hg) [;) = 1 for all hg €
Rg(F). This finishes the proof of (1).

(2) By Proposition we can find a good minimal parabolic subgroup P, =
MppinUmin C Q. Let L be the Levi subgroup of Q containing M,,;,, we have L ~ GQ.
Let K be a maximal compact subgroup of G(F) in good position with respect to L,
and let K7 = K N L(F). Define 7 = If (1) and m = IG(r) = I§ (1). Let (, )
(resp. (, )r) be the inner product on 7 (resp. 7). We fix ex € 7 (resp. ex, € 7°)
to be the unique K-invariant(resp. Kp-invariant) vector. Then by the definition of the

Harish-Chandra function, we may assume that
E(g) = (v(9)ex, ex), Z(1) = (t(Dexy, ex;)r g € G(F),1 € L(F). (4.32)

So by choosing a suitable Haar measure, we have

=6(g) = / (ex(9'9), ex(9))-dg

QUING(F)
Since @ is a good parabolic, by part(1) and Proposition M(l), we have

/ v(g)dg = / @(h)dh
QF\G(F) Ro(F)\R(F)
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for all o € LY(Q(F)\G(F),d5). So for all g € G(F), we have

/ (ex(hg),ex(h))-dh.
R (F)\R(F)

By Lemma 2), there exists d > 0 such that the integral
/ 2% (h)oo(h)~dh
Zr(F)\R(F)

(exc(W'h),ex (W) ro0(h)~4dh dh

/ZR(F)\R(F) /RQ(F)\R(F)
converges. Since (ex (h'h), ex (h')), equals some value of =%, it is positive, so the double
integral above is absolutely convergent. By switching the order of the integral, changing
the variable h +— h/~'h and decomposing the integral over Zz(F)\R(F) as a double
integral over R5\R(F) and Zg(F)\Rg(F), we know the integral

7(hg)ex (h), e (W) ro0(h' " hah) %k (hs)Y 2dhsdhdh!
(T(hg Q o\"Q Q
(Rg(F)\R(F))2 J Zr(F)\Rg (F)

is absolutely convergent. Here we also use the fact that d5(hg) = dr,(hg). Then by
the Fubini Theorem, there exist h,h’ € R(F’) such that the integral

7(hg)er (h), e () o0 (W~ hah) 4 g - (he) ' 2dhe
/ZR(F)\RQ(F)HQ) K (), exc (W))zo0(H = hgh) 6, (hg)2dhg

is absolutely convergent. Let h = luk, ' = l'u/k’ be the Iwasawa decomposition with
I,I' € L(F),u,u" € Ug(F) and k, k" € K. Then by (4.32), for all hy € Ry(F'), we have

(r(hg)ex (h),ex(R))r = 5o 22X (I hgl).

For the given h, h',1,1 as above, EX(hg) < EX(I'" ' hgl) and oo(h' " hgh) < oo(hg) for
all hg € Ro(F). So the integral

=L _ \—d _ 1/2 _
=L (he)oo(hs)~%r, (ho) Y 2dh
/ZR(F)\RQ@ < © Qe N

is absolutely convergent. This finishes the first part of (2) since Z¢ = =¢Q. The second

part of (2) just follows from the same argument except we use Lemma 1) instead
of Lemma [4.3.1)(2).
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roposition (4.2. , Ior a >0 and a € we have
(3) By Proposition [4.2.1(3), for all d > 0 and a € A h

main’

29 (a " hpa)oo(a  hya) " g (he) ' 2dhg
/ZR(FAR@(F) ¢ ¢ e N

< /
Zr(F)\Rg(F)

So we only need to prove that there exists d > 0 such that for all a € A

(1]

“a(a~'hga)oo(hg) *or,(hg)' dhg.

+

ins We have

=290 (a  hga)oo(hg) %R (hg) ' 2dhs < 292 (a)?
= QWIIONQ Ra\""Q Q = :
/ZR<F>\RQ<F> ¢

Let Pmm,Q be the image of P,,;, under the projection @ — G g, it is a minimal parabolic
subgroup of G5 and PmeRQ is open in G5. By applying the same argument as in
the proof of Proposition 5), we can show that

=% (a *hga)oo(hg) ~*or,, (ho)/*dhg

/zR<F>\RQ(F> ©

=Go (N2 =Go(h - \—d N\1/2 90

< =% [ =6 (hg)oo(hg)~0n, (hg)2dhg
Zr(F)\Rq(F) ¢

for all a € AT . Then we just need to choose d > 0 large so that part (2) holds. This

finishes the proof of (3). O

4.5 The Reduced Models

In this section, we will discuss the reduced models associated to the Ginzburg-Rallis
model. With the notation as in the previous section, the reduced models are just the
models (Gg, RQ) where Q = MgUg runs over the good parabolic subgroups of G. This
models will be used in later chapters. To be specific, we will assume by induction
that the local trace formulas and the multiplicity formulas hold for all these reduced
models. Then based on this assumption, we can prove the local trace formulas and the
multiplicity formulas for the Ginzburg-Rallis model. The proof of both formulas for the
reduced models are the same as the Ginzburg-Rallis model. In other words, we only
need to apply the same arguments in this paper to the reduced models. We will skip
the details.
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We first define the multiplicities for the reduced models. Let 7 be an irreducible
generic representation of G5 (F') whose central character equals x2 on Zg(F), we define

the multiplicity m(7) to be the dimension of the Hom space

Hompy () (7, (9 @ €)| g () @ 072).

Note that as in Lemma, when we consider the reduced models, we need to add the
extra modular character 6]13/5.

For our application, we need to divide the reduced models into two categories. We
say the model (Gg, Rg) is of Type I if it appears both in the split case (i.e. G(F) =
GLg(F)) and the quaternion case (i.e. G(F) = GL3(D)). This is equivalent to say that
the parabolic subgroup @Q is of type (4,2), (2,4) or (2,2,2) in the split case; and of type
(2,1), (1,2) or (1,1,1) in the quaternion case. All the rest reduced models are called
Type II models. In particular, Type II models only appear in the split case.

For the rest of this section, we will write down all the Type I models, as well as all
the Type II models associated to the maximal parabolic subgroups. For simplicity, we
will use (G, R = H x U) to denote these models instead of (G, Rg)-

We first consider the Type I models. Note that the extra modular character 5]1%/;

will be trivial for these models.

e If Q is of type (2,2,2) (or of type (1,1,1) in the quaternion case), we get
the trilinear GLo models. To be specific, we take Q = P. It is easy to see that
@ is a good parabolic subgroup. Then the reduced model can be described as
follows: G(F) = (GLy(F))? and R(F) = H(F) = GLy(F) diagonally embedded
into G(F'). Let m be an irreducible generic representation of G(F') whose central
character equals x? on Zg(F), the multiplicity m(7) is just the dimension of the
Hom space

Homypy(m,w)

where w(h) = x(det(h)) for all h € H(F'). Similarly, we can define the quaternion
version with Gp(F) = (GLy(D))? and Hp(F) = GLy(D).

e If  is of type (4,2) (or of type (2,1) in the quaternion case), we get
a model between the trilinear GLo model and the Ginzburg-Rallis model, we

will call it the middle model in this paper. Up to a finite isogeny, this model
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is just the Gan-Gross-Prasad model for SO(6) x SO(3). To be specific, let Q
be the parabolic subgroup of type (4,2) and contains the lower Borel subgroup.
Then we get the middle model defined as follows: G = GL4(F) x GLo(F) and
P = MU be the parabolic subgroup of G(F') with the Levi part M isomorphic to
GLo(F) x GLo(F) x GLo(F) (i.e. P is the product of the second GLy(F') and the
parabolic subgroup P 5 of the first GL4(F)). The unipotent radical U consists of

elements of the form

1
u=u(X):= 1|0
0

oS

0
0], X € My(F). (4.33)
1

The character £ on U is defined to be {(u(X)) = ¢(tr(X)). Let H = GLa(F)
diagonally embeded into M. As before, y induces a character w on H(F') and
this gives us a one-dimensional representation w ® £ of R := H x U. For a given
irreducible generic representation 7 of G(F), assume that w, = x? on Zy(F).

Define the multiplicity m(7) to be
m(7) = dim Homppy (7, w ® §).

This model can be thought as the "middle model” between the Ginzburg-Rallis
model and the trilinear model of GLs. We also define the middle model for the

quaternion case in a similar way.

If Q is of type (2,4) (or of type (1,2) in the quaternion case), we will still

get the middle model as in the previous case.

Then we consider the Type II models. We will only write down those models as-

sociated to the maximal parabolic subgroups, the rest models are similar to the max-

imal ones. The most important feature of the Type II models is that every

semisimple element in R(F) is split. As a result, in the multiplicity formulas

and the geometric sides of the trace formulas for these models, we only have

the germ at the identity element. For details, see Chapter 5.

e If Q is of type (3,3), choose Q to be the parabolic subgroup of type (3,3) and
contains the lower Borel subgroup. We get the following model: G = GL3(F) x
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GL3(F') and R = H x U C G with

a 0 0 b 0 0
H(F)={h(a,b,z)=|2 b 0| x|0 a 0]|la,be F*, zeF}
0 0 a 0 = b
and
1 0 T 1 Uy Y2
UF) ={u(z1,22,y1,92) = [0 1 x| x |0 1 0 |]|z1,22,y1,92 € F}.
00 1 0 ¢ 1

The character w ® £ on R(F') (including the extra modular character) is given by

|b‘1/2
|a’1/2 X(ab)w(xl + y?)

For a given irreducible generic representation 7 of G(F') whose central character

w ®£ : h(a, b7w)u(xlax27ylay2) =

equals x? on Z(F), define the multiplicity m(7) to be

m () = dim Homppy(m, w ® ).

If Q is of type (5,1), choose Q to be the parabolic subgroup of type (5,1) and
contains the lower Borel subgroup. We get the following model: G = GL5(F) X
GLi(F) and R= H x U C G with

H(F) = {h(a,b,x) — diag((a O) , ("’ O) , (a)) x (b) la,be FX, z € F}

x b r b
and
L X Y
UF)={u(X,Y1,Y2)= [0 L Yo|X (1> | X € Mayo(F), Y1,Ys € Mixo(F)}.
0O 0 1

Let Y; = (‘%1) for i = 1,2. The character w ® £ on R(F') (including the extra
Yi2
modular character) is given by

|b|1/2
XD X) + 1)

w®E&:h(a,b,z)u(X,Y,Ys) —
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For a given irreducible generic representation 7 of G(F') whose central character

equals x? on Z(F), define the multiplicity m(7) to be

m(m) = dim Hompgp)(m,w @ §).

e If Q is of type (1,5), we will get the same reduced model as in the (5, 1) case.



Chapter 5

The Statement of the Trace

Formula

In this chapter, we write down both sides of the trace formula. We also write down
the Lie algebra version of the geometric side of the trace formula. In Section 5.1, we
define all the ingredients of the geometric expansion. In Section 5.2, we will define a
truncated function ky and state the trace formula. It is worth to mention that the
truncated function will only be used in the geometric side. Then we will show that in
order to prove the geometric side of the trace formula, it is enough to consider functions
with trivial central character. In Section 5.3, we will state the Lie algebra version of
the trace formula. Finally, in Section 5.4, we will talk about the trace formulas for the
reduced models. By induction, we will assume all these trace formulas hold. In this

chapter, we will assume that F' is a p-adic field.

5.1 The Ingredients of the Geometric Side

From this section and on, unless otherwise specified, we consider the Ginzburg-Rallis

model. This is to consider a pair (G, H ), which is either (GLg(F), GL2(F)) or (GL3(D),GL1(D)).

A X Z
Let P = MU be the parabolic subgroup of the form | 0 B Y | where A, B, C belong
0 0 C

to GLo(F') (the split case) or GL1(D) (the non-split case), and X, Y, Z belong to My (F)

70
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(the split case) or D (the non-split case). We can diagonally embed H into M, and
define the character £ on U(F) by

1 X Z
(10 1 Y |)=1¢(atr(X)+btr(Y)) (5.1)
0 0 1

for some a,b € F*.

Definition 5.1.1. We define a function A on Hgs(F') by

A(z) =| det((1 — ad(z) ) () v.m) | F -

Similarly, we can define A on hss(F) by

A(X) =| det((ad(X))u(F)jus(F)) |F -
Let T be a subset of subtori of H defined as follows:

o If H = GLy(F'), then T contains the trivial torus {1} and the non-split torus T, for

ve F*/(F*)% v #1 where Tv={<z bv) € H(F)|a,beF, (a,b) #(0,0)}.

o If H = GL{(D), then T contains the subtorus T}, for v € F*/(F*)? with v # 1,
where T, C D is isomorphic to the quadratic extension F'(y/v) of F.

Let 6 be a quasi-character on Zg(F)\G(F), and let T € T. If T = {1}, we are in
the split case. In this case, we have a unique regular nilpotent orbit O,., in g(F) and
we take ¢p(1) = ¢g,0,.,(1). If T = T, for some v € F*/(F*)? with v # 1, we take
t € T, to be a regular element (in H(F)). It is easy to see in both cases that G¢(F) is
F-isomorphic to GL3(F,) where F, = F(1/v) is the quadratic extension of F. Let O,
be the unique regular nilpotent orbit in gl3(F},), and we take cg(t) = ¢p,0,(t).

Proposition 5.1.2. The function cg is locally constant on Treq(F') (here regular means
as an element in H(F)). And the function t — co(t)D™ (t)A(t) is locally integrable on
T(F).
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The first part of the proposition follows from the definition. The rest part of this
subsection is to prove the second part. The idea of the proof comes from [W10]. If
T = {1}, there is nothing to prove since the integral is just evaluation. If T' = T,, for
some v € F*/(F*)? with v # 1, since cp(t) DH (t)A(t) is locally constant on Teq(F), and
is invariant under Zg(F'), we only need to show that the function is locally integrable
around ¢t = 1.
We need some preparations. For a finite dimensional vector space V over F, and

any integer i € Z, let C;(V') be the space of functions ¢ : V' — C such that

p(A) = [A["p(v)

for every v € V and A € (F*)2. Then we let C>;(V) be the space of functions that are
linear combinations of functions in C;(V') for j > i. For T =T, and i € Z, define the
space C>;(T) to be the functions f on T,¢4(F') such that there is a neighborhood w of
0 in £(F) and a function ¢ € Cs;(to(F)) such that

fexp(X)) = o (X)

for all 0 # X € w, here X is the projection of X in to(F). Then by [WI10, Lemma 7.4],
if f € C>o(T), f is locally integrable around ¢t = 1. Hence we only need to show that
the function ¢ — co(t)DH (t)A(t) lies inside the space Cso(T).

Once we choose w small enough, we have D (exp(X)) = D (X) and A(exp(X)) =
A(X) for all 0 # X € w. Hence the function ¢t — D (t)A(t) lies inside the space
C>s(T) where 8 = 6(H) + dim(Ux ). Therefore in order to prove Proposition it is

enough to prove the following lemma.

Lemma 5.1.3. With the notations above, the function t — cy(t) belongs to the space
o s(T).

Proof. By Section 3.6, if we choose w small enough, we have
co(exp(X)) = cg, 05 (X)

for all 0 # X € w. Here 0y, is the localization of 6 at 1 defined in Section 3.6, and Ox

is the unique regular nilpotent orbit in gx. Since in a small neighborhood of 0 € go(F),
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01, is a linear combination of 7(0, ) where O runs over the nilpotent orbit in go. Hence
we may assume that 6y, = 7(0, ") for some O.

If O is regular, then we are in the split case (i.e. G = GLg(F)) and O is the
unique regular nilpotent orbit in go. As a result, the distribution j(0,) is induced
from the Borel subgroup and hence only supported in the Borel subalgebra. But by our
construction of T' = T, for any t € T.4(F'), we can always find a small neighborhood
of t in G(F') such that any element in such a neighborhood does not belong to the
Borel subalgebra. Therefore the function cy(t) is identically zero, and the function
t — co(t)DH (t)A(t) is obviously locally integrable.

If O is not regular, by and , the function ¢y, , 0, (X) belongs to the space
Caim(ox)—dim(0) (t). The dimension of Ox is equal to §(Gx) = 12. On the other hand,
since O is not regular, dim(0) < §(G)—2 = 28. Hence the function cg, , 0, (X) belongs
to the space C>_g(tp). This finishes the proof of the lemma, and hence the proof of
Proposition [

5.2 The Trace Formula

Let f € C®(Zg(F)\G(F),x 2) be a strongly cuspidal function. For g € G(F), we
define the function 9f¢ on H(F)/Zy(F) by

i) = [ g mug(du
U(F)
This is a function belonging to C°(Zy (F)\H (F), x~?). Define
17.9)= [ 0 (o), (52)
Zy (F)\H(F)
and for each N € N, define
= | I(f.9)x(a)dg (53)
U(F)H(F)\G(F)

Here kv is a characteristic function on G(F') defined below, which is left U(F)H (F)-
invariant, right K-invariant, and compactly supported modulo U(F)H (F'): If G is split
(ie. G = GLg(F)), for g € G(F), let g = umk be its Iwasawa-decomposition with
u € U(F), m € M(F) and k € K. Then m is of the form diag(m, mo, ms) with
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. 1 Qij  Cij .
m; € GLo(F). For any 1 < i,j < 3, let m; "'m; = 0 b k;; be its Iwasawa
j
decomposition. We define ky to be
1, if o(aij),o(bij) < N,o(cij) < (1+€)N;
kN (g) = (5.4)
0, otherwise.
Here € > 0 is a fixed positive real number. Note that we do allow some more freedom
on the unipotent part, which will be used when we are trying to change our truncated
function to the one given by Arthur in his local trace formula. For details, see Chapter
11. If G is not split (i.e. G = GL3(D)), we still have the Iwasawa decomposition
g = umk with m = diag(my, ma, m3), and m; € GL1(D). We define ky to be
1, if o(m;tm;) < N;
kN (g) = (5.5)
0, otherwise.
It follows that the integral in (5.3)) is absolutely convergent because the integrand is
compactly supported. The distribution in our trace formula is just
lim [ .
Ngnoo N(f)

Remark 5.2.1. In fact, later in Appendixz B, we will show that the integral

I(f) = I(f,9)dg

/U(F)H(F)\G(F)

1s absolutely convergent. In other word, we have

lim In(f) = I(f).

N—oo
However, if we include the integral defining I(f,g) (i.e. (5.2)), the double integral will
not be absolutely convergent, and this is the reason for us to introduce the truncated func-
tion kn. We will use the expression impy_,oo IN(f) to prove the geometric expansion,

and use the expression I(f) to prove the spectral expansion.

For each T' € T, let ¢ be the function cy , defined in the last section. Define the

geometric side of the trace formula to be

Leom(f) = Y IW(H, T)I_IV(T)/ e () D (t) A(t)w(h)dt. (5.6)

ot Z(F)\T(F)
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Since for any 7' € T, Zq(F)\T(F') is compact, the absolute convergence of the integral
above follows from Proposition [5.1.2

For the spectral side, define
e £) = [ 0 (r)m(F)dn
Htemp(G9X2)

where 0¢(7) is defined in Section 3.5 and m(7) is the multiplicity for the Ginzburg-Rallis

model. The trace formula is stated in the following theorem.

Theorem 5.2.2. For every function f € C(Zg(F)\G(F), x™2) that is strongly cusp-
idal, the following holds:

Ispec(f) = Im IN(f) = Igeom(f)- (5.7)

The spectral expansion will be proved from Chapter 6 to Chapter 8, while the
geometric expansion will be proved from Chapter 9 to Chapter 12.
For the rest part of this subsection, we are going to reduce the proof of the geometric

expansion to the case when the test function f has trivial central character.

Proposition 5.2.3. If the geometric expansion

lim In(f) = Igeom(f)

N—o0

holds for every stronly cuspidal functions f with trivial central character, then it holds

in general.

Proof. Let f be an arbitrary test functions in the trace formula (i.e. the central character

does not need to be trivial). Note that both Igeom(f) and In(f) are linear on f. Since
Za(F)\G(F)/{g € G(F) | det(g) = 1}
is finite, we can localize f such that f is supported on
Za(F)golg € G(F) [ det(g) = 1}

for some gg € G(F). Let G1(F) = {g € G(F) | det(g) = 1}, which is SLg(F) or SL3(D).
Fix a fundamental domain X C G1(F) of G1(F)/(Za(F) N Gi(F)) = G1(F)/Zg,(F).
We may choose X so that it is open in G1(F'). It is easy to see that Zg, (F) is finite.
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By further localizing f we may assume that f is supported on Zg(F')goX. Define a
function f' € C°(Za(F)\G(F)) to be

filg) = {f<g>, ifg =gz o €g0X, 2 € Za(F) 55

0, otherwise.

It is easy to see that f’ is well defined and is strongly cuspidal. It can be viewed as the

extension by trivial central character of the function f |4 x. Now we have

/ cr(t)DHE () A(t)w(t)dt
Za(F\T(F)

_ / ¢; (DT () A(t)w(t)dt
T(F)N(g0X)

_ / ¢ () DT (£) A (t)w(det (go))dt
T(F)n(90X)

— w(det(o) [ e (D" () A(H)dt
T(F)N(goX)

— w(det(o) [ e (1D ()A(H)dt
Za(FN\T(F)

and
I(f,9) = / 9 £ (o) det(z) )
Za(F)\H(F)
_ / 9 € (@ )w(det(x))da
H(F)N(goX)
- / 9(f')E (@)wldet(go))da
H(F)N(goX)

— w(det(go)) / 9(f")E () da

H(F)N(90X)

— w(det(g0) / 9" (@)de
Zy(F)\H(F)
= w(det(go))I(f,9).
This implies that
Tyeon () = (det(g0)) Lyean( £, In() = w(det(g)) In (F'). (59)

Since the geometric expansion holds for the function f’, we have

Jim I(f) = 1(f").
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Combining it with (5.9), we have proved the geometric expansion for the function f,
and this finishes the proof of the proposition. O

5.3 The Lie Algebra Version of the Geometric Expansion

In this sectoin, we will talk about the Lie algebra analogy of the geometric side of the
trace formula. This will be used later in our proof of the geometric expansion. Let

f € C>®(go(F)) be a strongly cuspidal function. Define the function f¢ on ho(F) by
)= [ Mg,
u(F)

For g € G(F), define
1) = [ 2.
bo(F)
and for each N € N, define

= [ 1(,9)x(9)dg. (5.10)
U(F)H(F)\G(F)
As in Section 5.1, for each T' € T, we can define the function ¢y = Cp, On t0,req(F), and
we define
Tieon(£) = 32 | WUELT) [ 0(D) [ () DI (¥)AY)aY, (5.11)
TCT to(F)

By a similar argument as in Proposition we know that the integral in (5.11)) is
absolutely convergent. The following theorem can be viewed as the Lie algebra version

of the geometric expansion.

Theorem 5.3.1. For every strongly cuspidal function f € CX(go(F')), we have

lim In(f) = Lyeom(f)- (5.12)

N—oo

This theorem will also be proved in Chapter 12.

5.4 The Trace Formulas for the Reduced Models

In this section, we will talk about the trace formulas for the reduced models. The
proofs of these trace formulas are the same as the Ginzburg-Rallis model case, so we

will assume by induction that these trace formulas hold.
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The distribution I(f) in the trace formula is the same as the Ginzburg-Rallis model
case we discussed in the previous sections. To be specific, we will still use (GQ, RQ) to

. 1/2
denote the reduced models, and the character on Ry (F) is just (w ® §)| Ro(F) ®0 R/Q .
Let f be a strongly cuspidal function on GQ(F ) whose central character wy equals X2

on Zg(F), as in the Ginzburg-Rallis model case, for g € G5 (F), we define
1) = | () (0 ® )l gy © Oy (@)
Za(F)\Rg(F)

Then we define

I(f) = I(f,q)dg.

/RQ(F)ZGQ (FN\Gg(F)
By a similar argument as in Appendix B, one can show that the integral above is
absolutely convergent. I(f) is the distribution in the trace formula. Same as the
Ginzburg-Rallis case, when we prove the geometric side of the trace formula, we need
to introduce some truncated function. We will skip the details here.

The spectral side of the trace formula is the same as the Ginzburg-Rallis model case.

In other word, let
e ) = | Oy()m(F)dr
Htemp(GQ#Uf )

where m(7) is the multiplicity for the reduced model (Gg, Rg).

For the geometric side, it is more complicated. We first discuss the trilinear GLo
model case. Let 7 be the subset of subtori of Hpy = HNQ = H defined in Section 5.1.
For T' = {1}, we are in the split case, we still define c¢f(1) to be the germ of 6 at the
identity element associated to the unique regular nilpotent orbit, i.e. cf(1) = ¢y, 0,., (1)
For T =T, with 1 # v € F*/(F*)?, and for t € T,(F)y¢g, it is easy to see that Go(F):
is just (T,,(F))3, which is an abelian group. As a result, the germ expansion at ¢ is just
the quasi-character itself, so we define cf(t) = 0¢(t). Finally, we define the geometric

expansion to be
Leom(f) = S [W(H, T)[1(T) / ¢4 (t)DH (t)w(h)dt.
= Za(F\T(F)

Then we talk about the middle model case. Still we let 7 be as in Section
5.1. For T = {1}, we still let cf(1) = cp;,0,.,(1). For T = T,(F) and t € Ty,(F)reg,
Go(F)t is F-isomorphic to GLa(F,) x GL1(Fy). Let O, be the unique regular nilpotent
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orbit in gla(F,) x gl (Fy) and we define cf(t) = ¢y, 0,(t). For x € Hss(F) = Hg (F),
we define
Ag(z) = [det((1 - ad(x)il)‘UQ(F)/UQ(F)I)‘F'
Finally, we define the geometric expansion to be

Leom(f) = Y IW(H, T)!_IV(T)/ cr(t) DY (1) Ag(t)w(h)dt.

o Za(F\T(F)

For Type II model, the geometric side is much easier. To be specific, we define

Igeom(f) = Cf(l)

where ¢f(1) = cp; 0,.,(1) is the germ of 0y at the identity element associated to the
unique regular nilpotent orbit. As we mentioned in Section 4.5, the most impor-
tant feature for Type II models is that every semisimple element in Ry (F)
is split. As a result, the only term in the geometric expansion is just the
germ at the identity element. Another way to explain this is that the only element
in 7N Rg is just the trivial torus.

Now we are ready to state our trace formula.

Theorem 5.4.1. With the notations above, we have

Igeom(f) = I(f) = Ispec(f)'

As mentioned before, by induction, we will assume that Theorem holds for all
reduced models. Moreover, by the same argument as in Chapter 13, we can deduce a
multiplicity formula for the reduced models from the trace formula. To be specific, for
every irreducible tempered representation 7 of GQ(F ) whose central character equals

x? on Zg(F), we define mgeom () as follows (similar to the definition of Iyeom (f)):

e If we are in the trilinear GLo model case, define

Mgeom(m) = Y W (H,T)|"'v(T) / e (H)DH ()™ (h)dt.

o Z6(P\T(F)

Here c,(t) is defined in the same way as cf(t) except that we replace 6 by 0.
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e If we are in the middle model case, define

Mgeom (T) = W(H, T)| " 'v(T ex () DE ) Ag(H)w ™ (h)dt.
() TZE;F\ (H,T)| ()/Zc(F)\T(F) () D7 () Aqt)w™ " (h)

Here cx(t) is defined in the same way as cf(t) except that we replace 6y by 6.

e If we are in the Type II reduced model case, let
Mgeom (T) = ¢x(1)
where c(1) = cg,,.0,.,(1)-
Then we can prove the following theorem for the reduced models.

Theorem 5.4.2. With the notations above, we have
m(m) = Mgeom (7).

Remark 5.4.3. By the work of Rodier in [Rod81], co, o0,.,(1) is equal to 1 if 7 is
generic; and is equal to 0 if w is not generic. Since all the tempered representations of
GL,(F) is generic, together with the theorem above, we know that for Type II reduced

models, the multiplicity is equal to 1 for all tempered representations.



Chapter 6
Explicit Interwining Operator

In this chapter, we study an explicit element £, in the Hom space given by the (nor-
malized) integral of the matrix coefficients. The main result of this section is to show
that the Hom space is nonzero if and only if £, # 0 (i.e. Theorem [6.2.1). In Sections
6.1 and 6.2, we define £, and prove some basic properties of it. In Sections 6.3 and 6.4,
we study the behavior of £, under parabolic induction. Since we can not always reduce
to the strongly tempered case, we have to treat the p-adic case and the archimedean
case separately. In Section 6.5, we prove Theorem Then in Section 5.6, we dis-

cuss some applications of Theorem which are Corollary and Corollary
These two results will play essential roles in our proof of the main results of this paper.

6.1 A Normalized Integral

Let x be an unitary characters of F*, and let n = x2. In Chapter 1, we define the
character w ® £ on R(F). By Lemma for all f € C(Zg(F)\G(F),n7!), the

integral
/ F(h)w @ €(h)dh
Zr(F\R(F)

is absolutely convergent and defines a continuous linear form on the space C(Zg(F)\G(F),n™1).

By the next proposition, we can extend this linear form to the space C*(Zg(F)\G(F),n™1).

Proposition 6.1.1. The linear form

f€C(Za(FV\G(F), ") = f(hw @ (h)dh
Z(F)\R(F)

81
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can be extended continuously to C¥(Za(F)\G(F),n~ ).

Proof. Leta : G, (F) — Zg,(F) be a homomorphism defined by a(t) = diag(t,t,1,1,t1,¢71)
in the split case, and a(t) = diag(t,1,t!) in the non-split case. Then we know that
Ma(t)ha(t)™') = tA(h) for all h € R(F) and t € G,,(F).

If F is p-adic, fix an open compact subgroup K C G(F') (not necessarily maximal),
it is enough to prove that the linear form

f € Cx(Za(F\G(F),n~") — f(h)w @ (h)dh
Z(F)\R(F)

can be extended continuously to C¥(Zg(F)\G(F),n~ ') for all K. Here we define
C%(Za(F)\G(F),n™ 1) to be the space of bi- K-invariant elements in C¥(Z¢(F)\G(F),n ).
Let K, = a1(K N Zg,(F)). It is an open compact subset of F*. Then for f €
Crx(Za(F)\G(F),n™1), we have

Loy T @R

Zr(F)\R(F

= mes( / / a(t) " ha(t))é(h)w(a(t) tha(t))dhd*t
a ZR \R

= mes(K,)~ / f(h)w(h) ¢(a(t)ha(t)Hd*tdh
ZR(F)\R(F) Ka

= mes -1 w -1 .
= mes(K,) /Z gy T /K AR || dih

The function z € F + | K, Ytz) |t |71 dt is the Fourier transform of the function
| - |7' 1g, € C°(F), so it also belongs to C°(F). Hence the last integral above is
essentially bounded by

/ FR)I(1+ | AGh) [)~dh
Zr(F)\R(F)

for all 6 > 0. Then by applying Lemma we know that the integral above is
also absolutely convergent for f € C¥(Zq(F)\G(F),n~1). Thus the linear form can be
extended continuously to C¥(Zg(F)\G(F),n™1).

If F=R, recall that for g € G(F) and f € C*°(G(F)), we have defined 9f(z) =
f(g7txg). Let Ad, be a smooth representation of F'* on C¥(Zg(F)\G(F),n~!) given
by Ad,(t)(f) = “®f. This induces an action of U (gl (F)) on C¥(Zg(F)\G(F),n™1),
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which is still denoted by Ad,. Let A =1 — (t4)% € U(gl(F)). By elliptic regularity
(see Lemma 3.7 of [BK14]), for all integer m > 1, there exist ¢; € C?™ 2(F*) and
w2 € C°(F™) such that ¢ x A™ 4 @9 = §;. This implies

Ady(p1) Ada(A™) + Adg(p2) = Id.

Therefore for all f € C(Zg(F)\G(F),n™1), we have

/ F(h)w ® €(h)dh
Za(P\R(F)

- / (Adu(p1) Ada (A™) ) ()  £()dh
Zr(F)\R(F)
4 / (Ada(2) f) () ® E(h)dh
Zr(F)\R(F)

= / (Ada(Am)f)(h)W(h)/ p1(t)¢(a()ha(t)"1)dp(a(t))d* tdh
Zr(F)\R(F)

FX

4 / F(h)w(h) / a(DE(a(tha(t) ™ )Sp(a(t)d tdh
Zr(F)\R(F) Fx

- / (Ada(A™) ) (h)w(h) / oL (OBEA)Sp(a(t)) | £ didh
Zr(F)\R(F)

FX

n / F(h)w(h) / 2N Sp(a(t)) | £ | dbdh.
Zr(F)\R(F) Fx

Here the second equation is to take the transform h ~ a(t)"'ha(t) in both inte-
grals and the extra dp(a(t)) is its Jacobian. For i = 1,2, the functions f; : = €
F — [nei()dp(at))|t| 'y (tz)dt are the Fourier transforms of the functions ¢ —
ei(t)op(a®))|t|™r € C?™=2(F). Hence f; and fo are essentially bounded by (1 +
|z|)~2m+2. By applying Lemma again, we know that for all m > 2, the last two
integrals above are absolutely convergent for all f € C¥(Zg(F)\G(F),n~1). Therefore
the linear form can be extended continuously to C¥(Zg(F)\G(F),n™1).

If F = C, still let Ad, be a smooth representation of F* on C¥(Zg(F)\G(F),n ')
given by Ad, (t)(f) = *® f. This induces an action of U (gl; (C)) on C¥(Zg(F)\G(F),n 1),
which is still denoted by Ad,. Fix a basis X1, X5 of gl;(C) as an R-vector space, and
let Ac :=1— X2 — X2 € U(gli(C)). By applying elliptic regularity in Lemma 3.7 of
[BK14] again, for all integer m > 2, there exist ¢ € Cgm_?”R((CX) and @9 € CSO’R(CX)
such that

Ada(p1)Ada(AL') + Ada(ip2) = Id.
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Here for any function f € C.(C*), we can view f as a function inside the space C.(R?).
We then define the subspace C2™~*%(C*) (resp. CSF(C*)) to be C.(CX) NC2m=3(R?)
(resp. C.(C*) N CX(R?)). Without loss of generality, we assume that the character v
is defined to be 1 (z) = ¥o(Im(x)) for some additive character ¢y on R. Then for all
f €C(Za(F)\G(F),n™ 1), we have

/ F(h)w @ E(h)dh
ZR(ENR(F)

/ (Ada(ip1) Ady(AT) f) () @ E(R)dh
Zr(F)\R(F)

+ (Ada(p2) ) (h)w @ E(h)dh
Zr(F)\R(F)

Cx

- / (Ady(AZ F)(h)w(h) / o1 (DE(a(t)ha(t)~)op (a(t))d" tdh
Zr(F)\R(F)

+ Fit) [ ealt)s(atthaty)ap(a(t)a e

Zr(F)\R(F)

(Ada(AZ) f)(R)e(h) / e1(t)bo(Re(t)Im(A(R)) + Im(t)Re(A(h)))dp(a(t)) | ¢ | dtdh

/ZR(F)\R(F) Cx

+f FRa(h) [ pale)in(Re(t)mAB) + Tmn(t) Re\(W))6pa(t)) | | dech.
Zr(F)\R(F) Cx

For i = 1,2, the functions f; : # € C = R? — [ ¢;i(£)op(a(t))[t| " o(Re(t)Im(x) +
Im(t)Re(x))dt are the Fourier transforms of the functions t — ;(t)p(a(t))[t| 1 (t -
r) € C?m=3(R?). Hence they are essentially bounded by (1 + |z|)~2™*3. By applying
Lemma [£.3.1] again, we know that for all m > 2, the last two integrals above are
absolutely convergent for all f € C¥(Zg(F)\G(F),n~!). Therefore the linear form can
be extended continuously to C*(Zg(F)\G(F),n~1). O

Denote by Pr ¢ the continuous linear form on C¥(Z¢(F)\G(F),n~ 1) defined above.

i.e.
*

feC(Za(F\G(F),n™") — f(h)w @ &(h)dh.
Zr(F)\R(F)

Lemma 6.1.2. 1. For all f € C*(Zg(F)\G(F),n7'), and ho,h1 € R(F), we have

Pre(L(ho)R(h1) f) = w @ &(ho)w @ E(h1) " Pre(f)

where R (resp. L) is the right (resp. left) translation.
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2. Let o € CX(F™), and set ¢'(t) =|t |7! dp(a(t))p(t). We can view both ¢ and ¢’
as elements in C°(F). Let gz;’ be the Fourier transform of ¢' with respect to 1.

Then we have

Pre(Ada(e) f) = F(R)w(h)@' (A(h))dh

/ZR(F)\R(F)

for all f € C¥(Zg(F)\G(F),n~1). Note that the last integral is absolutely conver-
gent by Lemma[4.5.1]

Proof. Since both sides of the equality are continuous in C¥(Zg(F)\G(F)), it is e-
nough to check (1) and (2) for f € C(Zg(F)\G(F),n™'). In this case, Pre(f) =
fZR(F)\R(F) f(h)w @ (h)dh. Then (1) follows from change variables in the integral. For

(2), we have

Pre(Ada(0)f) = / Ada(0)(f)w ® E(h)dh

Zr(F)\R(F)

- / F(hw(h) / H(0)E(a(t)ha(t)™)dp(a(t))d tdh
Zr(F)\R(F) Fx

- / F(hw(h) / S(EYB(AR))Sp (a(t)) [t dedh
Zr(F)\R(F) F

- / F(R)w(h)@ (A(R))dh.
Zr(F)\R(F)

This finishes the proof of the Lemma. O

6.2 The Definition and Properties of L,

Let m be a tempered representation of G(F') with central character n. For all T €
End(7)*°, define

*

Lr(T) = Pre(tr(r(g~"T)) = / tr(m(h™")T)w @ &(h)dh.
Zr(F)\R(F)
By Proposition together with the fact that the map 7' € End(m)* — (¢ —
tr(n(g~HT) € C¥(Zg(F)\G(F),n~1) is continuous, we know that £, : End(m)>® — C
is a continuous linear form. By Lemma for any h,h’ € R(F), we have

Lo(m(h)Tr(h)) =w® E(hh)Lr(T). (6.1)
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For e,e’ € m, define T, »» € End(7)> to be ey € m + (eg, € )e. Set Lr(e,€') = La(Teer).

)

Then we have

L(e €)= /* (e,m(h)e)w @ &(h)dh.

ZR(F)\R(F)
If we fix €/, by (6.1)), the map e € 7 — L;(e,€’) belongs to Hompg(m,w ® £). Since
Span{T, . | e,e’ € 7} is dense in End(m)*> (in p-adic case, they are equal), we have

that L # 0 = m(m) # 0. The purpose of this section is to prove the other direction.

Theorem 6.2.1. For all m € Il;emp(G,n), we have
Lr#0 < m(m)#0.

Our proof for this result is based on the method developed by Waldspurger ([W12,
Proposition 5.7]) and by Beuzart-Plessis ([B15, Theorem 8.2.1]) for the GGP models.
See also [SV], Theorem 6.2.1]. The key ingredient in the proof is the Plancherel formula,
together with the fact that the nonvanishing property of L. is invariant under the
parabolic induction and the unramified twist. For the rest part of this subsection, we
discuss some basic properties of L.

The operator L, defines a continuous linear map

Ly :7® =7 e— Li(e,-)

where 77 is the topological dual of 7 endowed with the strong topology. The image
of L, belongs to (77%°)Rw&¢ = Hompp) (7, w ®§). So if m is irreducible, the image
is of dimension less or equal to 1. Let T' € End(7)*°. It can be uniquely extended to a
continuous operator T : 77°° — 7°°. Then we have the following two operators, which

are both of finite rank:
TL,:7®° =7, L,T:7" % — 7.
In particular, they are of trace class. It is easy to see that
tr(T'Ly) = tr(L,T) = L (T). (6.2)

Lemma 6.2.2. With the notations above, the followings hold.
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. The map © € Wiemp(G,n) — L € End(m)™>° is smooth in the following sense:
For all parabolic subgroup Q = LUq of G, o € IIa(L), and for all mazimal compact
subgroup K of G(F), the map A € ia} oy — Ly, € End(my)™>° ~ End(rg) ™ is
smooth, here m\ = IS(O')\) and T = Ing(O'K).

. For m € Iemp(G, ), and for all S,T € End(m)*°, we have SL,T € End(m)>,
and L(S)Lr(T) = Lz(SLT).

. For S,T € C(Iltemp(G, 1)), the section m € Iiemp(G,n) — SxLyTr € End(m)>
belongs to C*°(Miemp(G,1n)).

. For f € C(Za(F)\G(F),n™1), assume that its Fourier transform m € Wiemp(G, 1) —

w(f) is compactly supported (this is always true in p-adic case). Then we have

/ f(h)w ® E(h)dh = Lo(m(f))p(m)dr
ZR(F)\R(F)

Htemp(Gvn)

with both integrals being absolutely convergent.

. For f € C(Zg(F)\G(F),n™Y) and f' € C(Zg(F)\G(F),n), assume that the Fouri-

er transform of f is compactly supported. Then we have

/ Lol (F) En () a(m)dr
Htemp(Gﬂ?)

_ / / / Fhgh!) £ (g)dgw ® E(H)dl'w @ E(h)dh
Zr(F)\R(F) J Zr(F)\R(F) J Zg(F)\G(F)

where the left hand side is absolutely convergent and the right hand side is con-

vergent in that order but is not necessarily absolutely convergent.

Proof. (1), (2) and (3) follow from the same argument as Lemma 8.2.1 of [B15], we will

skip it here. The proof of (4) and (5) is also similar to the loc. cit. (except that we need

to take care of the center of the group), we only include the proof here for completion.

For (4), by Lemma the left hand side is absolutely convergent. Since the Fouri-

er transform of f is compactly supported, the right hand side is also absolutely conver-
gent. Let o(f,7)(g) = tr(r(g~1)w(f)), which is a function in C*(Zg(F)\G(F),n™1).

By the Plancherel formula in Section 2.8, we have

f= p(f, m)pu(m)dm.
Meemp (G)
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By applying the operator Pr¢ on both sides, we have

Pre(f) = / Prele(f,m))pu(m)dn.

Mtemp(Gyn)

This proves (4).
For (5), let f"V(g) = f'(¢g~"). Then the right hand side is equal to

/ / (V5 L) F) (W )w @ €(W)dWw @ E(R)dh. (6.3)
Zr(FNR(E) J Zr(F)\R(F)

Since the Fourier transform of f is compactly supported, so is f’V * L(h~1)f. By
applying part (4) to f’V* L(h™!)f, we know that the inner integral in (6.3] is absolutely

convergent and we have
/ (™ DY) ) (Hw @ G b
Zr(F)\R(F)
- [ Lalm(f)m(h ) £) )
Htemp(Gyn)
-/ (e (b )r(f) Lo fV) ().
temp(Gyn)

The last equality holds because of . By part (3), the section 7 € Iiemp(G, 1) —
7(f)Lzm(f"") is smooth, and is also compactly supported. Hence it belongs to C(Iiemp(G,n)).
By the matrical Paley-Wiener Theorem in Section 2.8, it is the Fourier transform of a
Harish-Chandra-Schwartz function. Applying part (4) to such a function, we know the
exterior integral of is absolutely convergent and the whole expression is equal to

/ Lo (n(f) L (™) ().
Mtemp(G,n)

By part (2) and the fact that L. (7(f")) = L.(7(f")), (6.3) is then equal to
[ e EGEumin.
Mtemp(Gom)
This finishes the proof of the lemma. O

The next lemma is about the asymptotic properties for elements in Hompg(m,w®¢).

Lemma 6.2.3. Assume that F # C, the followings hold.
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1. Let  be a tempered representation of G(F') with central character n and let | €
Homp(m,w ® &) be a continuous (R,w @ &)-equivariant linear form. Then there

exist d > 0 and a continuous semi-norm vy on w such that
U(m(2)e)| < va(e)EF\Y (2)opa(x)*
for alle € m and v € R(F)\G(F).

2. Foralld > 0, there existd > 0 and a continuous semi-norm vy onC¥(Za(F)\G(F),n™1)
such that

Pre(R(2)L(Y)P)| < vauw(9)ZH(@)ERC () ona(@)omaly)”
for all ¢ € C¥(Za(F)\G(F),n™ ') and z,y € R(F)\G(F).

Proof. The proof is similar to the GGP case as in Lemma 8.3.1 of [B15], we only include

it here for completion. We use the same notation as in Chapter 4. In other words,

e Py = MyUy is a good minimal parabolic subgroup of Gy, Ag = A Mo -

o Ad ={ap € Ao(F) || alap) |> 1 for all a € W(A, Pp)}.

o Pin = PoU = M,inUpin is a good minimal parabolic subgroup of G, Anin =
A, = Ao.

e A is the set of simple roots of A, in Prin, and Ap = AN Y(Apin, P).

We first prove part 1. By the weak Cartan decomposition in Proposition 4.2.3
together with Proposition [4.4.1(1) and (2), it is enough to show that there exists a

continuous semi-norm v on 7 such that
I(x(a)e)] < Z%(a)u(e) (6.4)

for all e € m and a € A(')F.
If F is p-adic, the topology on 7 is the finest locally convex topology. We only

need to show that for all e € w, we have
lU(m(a)e)| <« E%(a) (6.5)

for all a € Aar. For e € m, choose an open compact subgroup K C G(F’) such that e is

an K-fixed vector. We first prove the following claim.
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Claim 6.2.4. There exists ¢ = cx > 1 such that for all a € Apin(F), if there ezists
a € Ap such that |a(a)| > ¢, then

[(m(a)e) = 0.

In fact, let & € Ap and let a € Ayin(F). By Proposition [4.2.3|(3), there exists
X € ny(F) such that £(eX) # 1. Then if |a(a)]| is large enough, we have a 'eXa € K.
This implies

Therefore I(7(a)e) = 0, and this proves the claim.
Choose ¢ > 1 as in the claim above, set

A-i-

min

(c) ={a € Apin(F)| |a(a)| < ¢, Ya € A}.

By the claim above, we only need to prove (6.5) for a € AT

min

(c). Tt is easy to see that
there exists an open compact subgroup K ;3  of Ppin(F) such that

K% - C aKa ' N Pin

min

for all a € AT

T in(€). Let Kp be an open compact subgroup of R(F') such that w ® &
is trivial on it. Finally, choose an open compact subgroup K’ C G(F') such that K’ C
KLK %mm. This is possible since P,,;, is a good parabolic subgroup. For k/ = k}%k:%mm €

K' with ki, € Kj and ks € K%, we have

Un(k)m(a)e) = U(n(kg)m(a)m(a™kp, | a)e) = w @ E(kR)I(m(a)e) = I(n(a)e)

for all a € AT

min

(c). Therefore

l(m(a)e) = l(m(exr)m(a)e)

foralla € At . (c). Here e is the characteristic function on K’ multiply by meas(K’)~!.

min
Since 7 is tempered,

[(m(g)e, ¢)] < =%(g)

for all g € G(F), e, e’ € m. Together with the fact that [ o w(ex/) € T°, we have

U(n(a)e)| = [i(m(err)m(a)e)] < E(a)
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for all a € AE{. This proves (6.5]).
If F=R. For I C A, set

AT (1) = {a € Apin(F)||afa)| < 1Yo € A\, |a(a)| > 1 Va € I}.

min

Then we have Af = Ujcap, Al . (I). Therefore it is enough to prove (6.4)) for a €
Ar. (I). Let Xi,--+,X, be a basis of Pmin(F), and let k be an integer larger than

min

dim(Prin) + 1. Set
The following claim is an easy consequence of Proposition M(?))

Claim 6.2.5. There exists uw = uyj € U(u) such that the two maps

a€ Al (1) a ' (AF, wa eU(g)

min

ac At (I) — a tua € U(g)

min

have bounded images and d(w ® &)(u) = 1.

Fix u € U(u) as in the claim, by elliptic regularity (see Lemma 3.7 of [BK14]),
we can find two functions ¢; € CF(Ppin(F)) and gy € CX(Ppin(F)) with ky =
2k — dim/(Ppin) — 1, such that

(1) (D) + 7(p2) = Id.

Choose pr € CX(R(F)) such that fR(F) vr(h)w @ (h)dh = 1. Then for all e € © and
a€ Al (I), we have

min

l(m(a)e) = d(wa&)(uw)l(r(a)e) = l(m(u)m(a)e)
= Un(p1)m(Apmu)m(a)e) + U(m(p2)m(u)m(a)e)
= U(n(p1)m(a)m(a” (AR mu)a)e) + U (p2)m(a)m(a” ua)e)
= Un(pn *pr)m(a)n(a™ (Aypu)a)e) + Um(pn * p2)m(a)m(a ua)e).
Note that the functions ¢z * 1 and g * @2 both belong to C*'(G(F)). Then once

we let k large, there exists a continuous semi-norm v on 7 such that the last line of the

equation above is bounded by

(v(m(a™ (AR mu)a)e) + v(n (o ua)e))EC (a). (6.6)
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Then by the claim above, is bounded by

This proves (6.4)).

We then prove the second part. By the same reduction as in (1), we only need

to show that there exists a continuous semi-norm vy on C¥(Zg(F)\G(F),n~') such that

Pr.¢(R(a1)L(az)p)| < va(e)=€(a1)=% (az)o0(ar) oo (az)? (6.7)

for all ¢ € CY(Za(F)\G(F),n™') and a1,az € Af.
If F is p-adic, we fix an open compact subgroup K C G(F'). We only need to show

that there exists a continuous semi-norm v g on C¥ ,(Za(F)\G(F),n~') such that

Pr.e(R(a1)L(az)e)| < vi,a(9)= (a1)Z (az)o0(a1) %00 (az)” (6.8)

for all ¢ € C}L(’,d(Zg(F)\G(F),n_l) and aj,as € AJ. Then as in the proof of (1), we

can find a constant ¢ = ¢ > 1 such that

Pre(R(a1)L(az2)p) =0

for all ¢ € C 4(Za(F)\G(F),n™") with a; € Af — A}

+in(c) for some i € {1,2}. Then
by the same argument as in (1), we can find an open compact subgroup K’ C G(F)
such that

Pre(R(a1)L(a2)p) = Pre(R(exr)L{exr)R(a1)L(az)p)

for all ¢ € C}‘é,d(Zg(F)\G(F),n_l) and ar,az € At (c). Finally follows from
Lemma 1.5.1(1) of [B15].
If FF =R, as in the proof of (1), we only need need to prove that for fixed I,J C Ap,

there exists a continuous semi-norm vy ;4 on C¥(Z¢(F)\G(F),n~1) such that

|Pre(R(a1)L(az)@)| < vi1a(0)=% (a1)E (az)oo(a1)?oo(az)? (6.9)

for all p € C¥(Za(F)\G(F),n™), a1 € A}, (I) and ag € AL, (J).
Choose k,ur,uy as in the proof of (1). Then by the same argument, we can show

that there exist functions o1, 2, @3, 04 € CF(G(F)) with k1 = 2k — dim(Ppin) — 1,
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such that

Pre(R(a1)L(az)p) = Pre(R(p1)L(ps)R(a1)L{az)R(ay (Ab,ur)ar)Liay (AL, ur)a2)e)
+Pre(R(p1) L(pa) R(ar) L(az) R(ay (A}, ur)ar) Lag 'ugas)p)
+Pre(R(p2) L(p3) R(a1) L(az) R(ay 'urar) Liay ' (AL, ur)a2)p)
+Pre(R(p2) L(pa) R(ar) Laz) R(a; turar) L(ay 'ugaz)p)

for all p € C¥(Za(F)\G(F),n™1), a1 € A}, (J) Then follows

from Lemma 1.5.1(1) of [BI5|] together with the fact that ajurai, aj (A, ur)as,

(I) and ag € A

min

ay 'ugag, ay (A uy)as have bounded images. O

6.3 Parabolic Induction for the p-adic Case

Assume that F' is p-adic in this section. Let 7 be a tempered representation of
G(F) with central character 1. There exists a parabolic subgroup Q = LUg of G,
together with a discre:ce series 7 € Ilp(L) such that 7 = Ig(T). By Proposition
we may assume that @) is a good parabolic subgroup. We can further assume that the

inner product on 7 is given by
(e,e) = / (e(g),€'(g))-dg, Ve, e € m= IS(T). (6.10)
QUIN\G(F)

Let Ry = RN Q. For T € End(7)™, define

e = [ tr(r (AT, (h) V2w © E(hg)dhg.
Zr(F)\Rg(F) Q ere e

The integral above is absolutely convergent by Proposition M(Q) together with the
assumption that 7 is a discrete series. The purpose of the section is to prove the following

proposition.
Proposition 6.3.1. With the notation above, we have
Lr#0 < L, #0.

Proof. For e, e’ € 7, by (6.10]), we have

Lo(ere) = / / (e(g), ¢ (gh))dgew ® £(h)dh
Zr(F)\R(F) JQ(F)\G(F)
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Same as in previous sections, let a : Gy, (F) = Zg,(F') be a homomorphism defined by
a(t) = diag(t,t,1,1,t=1,¢t71) in the split case, and a(t) = diag(t,1,¢~') in the non-split
case. Since e, e’ € 7, there exists an open compact subgroup Ky of G(F) such that
the functions e, e’ : G(F) — 7 is bi-Kg-invariant. Let K, = a (Ko N Zg,(F)) C F*,
which is an open compact subset. By Proposition we have

QIFNG(F)

— meas(K, / / (e(g), € (gh))edg  (6.11)
(FO\G(F)
/ Y(tA(h)) |t\ 1dtw( )dh.

Loled) = / - / (e(9). ¢ (gh))-dge ® E(h)dh

By the same proposition, the last two integrals f Zr(F)\R(F) f QF)\G(F) above is absolutely
convergent. Since @ is a good parabolic subgroup, by Proposition [4.2.1] u, we can choose
the Haar measures compatibly so that for all ¢ € L1(Q(F)\G(F), ), we have

/ w(g)dgz/ @(h)dh.
QUI\G(F) Rg(F)\R(F)
Then becomes
Lr(e,e) = meas(Ka)_l/ / (e(h'), e (h'h)) dn
Zr(F)\R(F) J R (F)\R(F)
x/ P(tA(h)) | t |7t dtw(h)dh.
Kq

The integral fZR(F)\ R(F) J Ro(F)\R(F) above is absolutely convergent because (6.11)) is

absolutely convergent. By switching the two integrals, making the transform h — h'h

and decomposing fZR(F)\R( as [p_ S (FN\R(F fZR(F Ao (F) Ve have

Lr(e,€) =meas(K,)™* / f(h,h")dhdh'
(Rg(F)\R(F))?
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where
h,h') = e(h), e (hgh'))rw(hs)w(h™th
F(h, 1) /()\RQ()u) (hoh'))sw(hg)w(h~1H)
< | BN BN BH—AM) | ¢ | drdng (6.12)

,1/26 T*€IITw Nolh=1h
/ZR(F)\RQ(F)(SRQ(hQ) (e(h), (hQ) (h)) (hQ) (h™"h")

x [ WA (—tAR)) | ¢ dtdhg.

Kq
Here we use the equation dr, (hg) = dg(hg) in the second equality. We first show that
the integral (6.12)) is absolutely convergent for any h,h' € Rg(F)\R(F). In fact, since
K, is compact, it is enough to show that for any h, b’ € Rg(F)\R(F), the integral

Sr- (hg) 2 (e(h), T(ho)e (W) rdhg
/ZR<F>\RQ(F> are © N

is absolutely convergent. This just follows from Proposition [4.4.2(2) together with the
assumption that 7 is discrete series. Then by switching the two integrals in (6.12)), we

have
010 / /Z oy (1) ), () () o)
N zaenmgr
Y tA(hcz))dh@w(h WY (AR)Je(—tA()) | ¢] 7" dt.

By changing the variable hg — a(t)hga(t)™" in the inner integral (note that the Jaco-

bian of such transform is 1 since a(t) € Kp), we have

5)? € 7(hs)e (M) w(has - _
/ZR(F)\RQ(F)5RQ(hQ) (e(h), T(hg)e'(h))rw(ha)¥ (tA(hg))dhg

- SRy (hg)"*(e(h “ha "(W))rw(hs)(A(hs))dhs
/ZR(F)\RQ( : Rrg(hg) 2 (e(h), 7(a(t) " hga(t))e (1) rw(hg)b(Mhg))dhg
= 5o (ha)/2 h), 7(hs)e' (h)rw(ha A(haNdh-
/ZR(F)\RQ( : o (hg) 2 (e(h), T(hg)e (W) rw(hg)¥(A(hg))dhg
= Lr(e(h), €' (1))
Here we use the fact that e’ is bi- Ky-invariant. Then we have

FhB) = | Lr(e(h), e(h)w(h™ B ) (AR))p(~tA(R)) | ¢ |7 dt.

Ka
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If Lr(e,e’) # 0, there exist h,h' € Ro(F)\R(F) such that f(h,h’) # 0, and hence
L-(e(h),e(h’)) # 0. This proves that L, # 0= L, # 0.

For the other direction, if £, # 0, we can find vg, v}, € 7°° such that £ (vg,v() # 0.
We choose a small open subset U C Ry (F)\R(F) and let s : U — R(F') be an analytic
section of the map R(F) — Ry (F)\H(F). For f, ' € C(U), define p, o' € C°(U, 7*°)
t0 be p(h) = F(W)vo,/(h) = J'(R)eh. Set

eu(g) = { 05 Wrp(h) it g = lus(h) with I € L(F),u € Ug(F),h € U;
- 0 else.

This is an element of 7°°. Similarly we can define e,r. By the above discussion, we have

Lr(ep,ep) = meas(Ky) ™ / f(h,h")dhdn'
(Rg(F)\R(F))?

where
fni = | ol (), (Rl RNt (h) [ 27 i
Combining with the definition of e, and €y, WE have
Lolepey) = meas(Kq) ™ Ly (vo, vh)
/ ST WA A () |

Now if we take U small enough, we can choose a suitable section s : Y — R(F’) such
that for all t € K, and h € s(U), we have ¥(tA(h)) = w(h) = 1. Also by taking Kj

small, we may assume that | ¢t |=1 for all ¢ € K,. Then the integral above becomes

Lr(epyey) = meas(K,) ™" ’U(],’UO/ f(h)f(n")dtdhdh'
u? JK,

= Lol | FONFYdnN.

Thus we can easily choose f and f’ so that Lr(ey, ey ) # 0. Therefore we have proved
that £, # 0 = L, # 0. This finishes the proof of the proposition. O

6.4 Parabolic Induction for the archimedean Case

Assume that F' is archimedean in this section. It is very hard to directly study any

arbitrary parabolic induction because of the way that we normalize the integral. Instead,
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we first study the parabolic induction for P, then study all other parabolic subgroups
contained in P. This is allowable since in the archimedean case, the discrete series only
appear on GL;(R), GL2(R), GL1(D) and GL;(C). Let m be a tempered representation
of G with central character n. Since we are in archimedean case, there exists a tempered
representation my of G such that © = Ig(wo). We assume that the inner product on =

is given by
(e,e') = / (e(9), €' (9))modg, e,€ € m=1I8(mo). (6.13)
P(F)\G(F)
For T' € End(m)®°, define
L (T) = / tr(mo(hy 1) T)w(ho)dho.
Zy (F)\H(F)

The integral above is absolutely convergent by Lemma m(l) together with the fact

that mp is tempered.

Proposition 6.4.1. With the notation above, we have
Lr#0 < L, #0.

Proof. We first consider the case when F' = R. For ¢,e’ € 7, we have

La(ese) = / / (e(g), ¢ (gh))dgw ® £(h)dh.
Zr(F)\R(F) J P(F)\G(F)

Same as in Proposition we can find ¢ € C?™"2(F*) and ¢y € C°(F*) such
that @1 * A™ + 9 = 41, and we have

Lolend) = /Z o AT /P IRCORICOTY

< [ or®opa(t) | ¢17 iAWyt (6.14)
" /ZR<F)\R<F> /P<F>\G(F>(e(g)’ “loh)
X /F‘P2(t)5P(a(t)) |t |71 (tA(h))w(R)dtdgdh.

Here Ad,(A™) acts on the function fp(F)\G(F)(e(g), €’(gh))dg for the variable h. It is

clear that this action commutes with the integral [ PF\G(F)" Also since P is a good
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parabolic subgroup, by Proposition [£.2.1, we can choose Haar measure compatibly so
that for all p € Li(P(F)\G(F),8p), we have

/ so(g)dgz/ p(h)dh.
P(F)\G(F) U(F)
Therefore (6.14)) becomes

Lale,e) = /Z - /U o Ada (A7 (el )
< [ er®bpta(e) | ¢17 A (it

i /ZR<F>\R<F> /U<F> (ew, e e)
< [ ea(03p(a) |17 wUAm)b)ddud.

Here Ad,(A™) acts on the function (e(u),e’(uh)) for the variable h. By changing
the order of integration |, I (F)\R(F) fU( and decomposing the integral f Zn(F)\R(F)
by fU( F) S Za (F)\H(F) (this is allowable since the outer two integrals are absolutely con-
vergent by Proposition [6.1.1)), together with the fact that Ad, is the identity map on

H, we have

/ / Adg(A™) (L (e(u), ¢ (ur'))) g, (At
u(F) JUF)

" / U(F) /U(F) Lo (e(u), €' (uu'))pa(A(u'))du'du

where ¢/(s) = [ i(t)dp(a(t)) | t |7 1(ts)dt is the Fourier transforms of the function
wi(t)dp(alt )) |t |7t for i =1,2. Here Ad,(A™) acts on the function L., (e(u), e (uu'))
for the variable «’. In particular, this implies L, # 0 = L, # 0.
For the other direction, if £, # 0, we can choose vy, vy € 73° such that L, (v, v2) #
0. Choose f1, fo € C°(U(F)). For i = 1,2, similarly as in the p-adic case, define

ot (0 { Sp(Dmo(D) filuw)v; if g = luu with I € Go(F),u € U(F), @ € U(F);
fi =
0 else.

These are elements in 7°°, and we have

Lr( €f176f2 / /U(F o (V1,v2) f1(u)Ady (A m)(f2(uul)))§0/1()\(u/))du/du
i /U(F) /U(F) Lo (v1,v2) fi(w) fo(u)pa (A(w') )du’ du. (6.15)
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Here Ad,(A™) acts on the function fy(uu') for the variable . Then we can easily find
f1, f2 such that (6.15]) is non-zero. This proves that £, # 0 = L, # 0, and finishes the
proof of the proposition for the case when F' = R.

If FF = C, the argument is similar to the real case and we will skip it here. O

Now for a tempered representation 7y of Go(F') whose central character equals 7
when restricting on Zg, we can find a good parabolic subgroup Qo = LoUy of Go(F)
and a discrete series 7 of Lo such that my = Igg (7). We still assume that the inner
product on 7y is given by

)= (e(9). € (9))rdg, €. € 7o = 15(7). (6.16)
Qo(F)\Ho(F)
Let Hy = H N Qo. For T € End(7)>, define

L(T,) = tr(r(h ) T)om, (hg)' w(hg)dhg.

/ZH<F>\HQ(F) ©

The integral above is absolutely convergent by Proposition [4.4.2(2) together with the

assumption that 7 is discrete series.

Proposition 6.4.2. With the notation above, we have
Lr,#0 <= L, #0.

Proof. Since we are in (G, H) case, the integral defining L, is absolutely convergent.
Together with (6.16)), we have

Lo(ere) = / / (e(g), ¢/ (gh))rw(h)dgdh.
Za(F)\H(F) JQo(F)\Go(F)

The integral above is absolutely convergent by Lemma Same as in the previous
Propositions, the integral Qo(F)\Go(F) can be replaced by Hg(F)\H(F). Hence we

have
Los(e,¢) = / / (e(h), ¢ (Wh))sw(R)dH'dh.
Z(PNH(E) DGR\ (F)

By switching the two integrals, changing the variable h — h’h and decomposing the

integral [z, mpmr) P Jugenmr) Jzumnig ) We bave
Q Q

Lr(e €)= L, (e(h), e (R))w(h) w(h)dhdh' .

/HQ(F)\H(F) /HQ(F)\H(F)
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This proves L, # 0= L, # 0.
For the other direction, if £, # 0, there exist v1,ve € 7°° such that £, (vi,v2) # 0.
Let s : U — H(F') be an analytic section over an open subset U of Hg(F)\H(F') of the
map H(F) — Hg(F)\H(F). Choose fi, fo € C°(U). For i = 1,2, define

e (g) = ST fi(R)vi if g =lus(h) withl € Lo(F),u € Up(F),h € U;
A9 0 else.

These are elements in 73°, and we have

Laylepises,) = /u /u F1 (B Fa R Yo (h)) (W) £ (v, 02) A

Then we can easily choose fi, fo such that Lr(ef,,er,) # 0. This proves the other

direction, and finishes the proof of the Proposition. O

Now let 7 be a tempered representation of G(F'). Then we can find a good parabolic
subgroup LoUy = Q C P(F) and a discrete series 7 of L, such that m = Ig(r) (note that
we are in archimedean case, only GL;(F'),GLy(F) and GL1(D) have discrete series).

Combining Proposition [6.4.1] and Proposition [6.4.2] we have the following Proposition.

Proposition 6.4.3. With the notation above, we have

Lr#0 << L, #0.

6.5 Proof of Theorem [6.2.1]

Let m be a tempered representation of G(F') with central character . We already know
Ly # 0= m(m) # 0. We are going to prove the other direction. If F' = C, 7 is
always a principal series. In other words, we can find an unitary character 7 of the
torus such that 7 is the parabolic induction of 7. It is easy to see from the definition
that £,(T) = tr(T) for T € End(7)*>. Therefore £, # 0, which implies £, # 0 by
Proposition [6.4.3] This tells us that m(w) and £, are always nonzero if F' = C. This
proves Theorem [6.2.1
If F#C and m(m) #0, let 0# 1 € Hompg(7*>,&). We first prove
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(1) For all e € 7 and f € C(Za(F)\G(F),n '), the integral

/ (r(9)e) F(9)dg (6.17)
Za(F)\G(F)

is absolutely convergent.

In fact, this is equivalent to the convergence of

/ I(r(@)e) | | F(ha) | dhda.
RONG(F) Zr(FN\R(F)

By Proposition for all d > 0 and = € R(F)\G(F), we have
/ | f(hz) | dh < ER\G(x)UR\G(x)fd. (6.18)
(F)\R(F)

On the other hand, by Lemma there exists d’ > 0 such that for all z € R(F)\G(F),

we have

U

| U(n(2)e) |< EMC (@)oma(a)” (6.19)

Then (1) follows from (6.18) and (6.19), together with Proposition [4.4.1]
Now we can compute ([6.17)) in two different ways. First, since C(Zg(F)\G(F),n~!) =

CX(Zg(F)\G(F),n™Y) * C(Zg(F)\G(F),n™ '), we can write f = ¢ * f’ for some ¢ €
Cx(Zg(F)\G(F),n7Y) and f' € C(Zg(F)\G(F),n™'). Then

/ Ur(9)0)f)dg

Za(F\G(F

— / / m(g)e)e(g) f' (g g)dg dg
Za(F)\G(F) J Zg(F)\G(F

_ / / m(g'9)e)e(g')dg f'(9)dg
Za(F\G(F) J Zg (F)\G(F

-/ z<w<><>><>dg.
Za(F)\G(F)

Since the vector [ o m(p) € 7~ belongs to 7>°, by the definition of the action of
C(Zg(F)\G(F),n™1) on 7>, we have

~

| oo )
Za(F)\G(F)

_ / F(9)(n(g)e. - m(v))dg
Za(F)\G(F)

= (n(f)e,1-7(p)) = Um(p)m(f)e) = U(m(f)e).
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This tells us

/ I(r(g)e) f(g)dg = U(x(f)e). (6.20)
Za(F)\G(F)

On the other hand,

/ U(m(g)e)f(g)dg = / I(m(z)e) / f(hz)w @ &(h)dhdz.
Za(F)\G(F) R(F)\G(F) Zr(F)\R(F)

By Lemma [6.2.2(4), if the map II € Iljemp(G,n) — II(f) is compactly supported, we

have
/ Um(g)e)f(g)dg (6.21)
Za(F)\G(F)
- ln(x)e) | La(I1()Ta™") () dlLda.
R(F)\G(F) Htemp(Gyn)

For T' € C°(iemp(G,n)), by applying (6.20) and (6.21) to the function f = fr, we
have

[(Tre) :/ l(ﬁ(x)e)/ L (Tl (2™ 1)) (1) dda: (6.22)
R(F)\G(F) Miemp(Gom)

for all e € 7*°. Now assume that m = Ig(a) for some good parabolic subgroup @ = LUg
of G and some o € IIo(L). Let

O = {Ind3(ox) | A € ia} o} C Miemp(G,n)

be the connected component containing 7. Choose ey € 7 such that I(eg) # 0, and let
Ty € End(7)%° with Ty(eg) = eg. We can easily find an element T9 € C°(Iliemp(G, 7))
such that

T2 = Ty, Supp(T°) C O.
By applying (6.22) to the case that e = eg, T' = T°, we know there exists \ € iaj o such

that L, # 0 where 7\ = Indg(a,\). By Proposition and Proposition this
implies L5, # 0. We need a Lemma:

Lemma 6.5.1. For all \ € z’az’o, we have

Lo #0 <= L, #0.
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Proof. We first assume that F' is p-adic. If 7 itself is a discrete series, 0 = 7 and
G = @. Then the lemma just follows from the definition of L. If Q # G, we are in
the reduced models case. If the reduced model is of Type I, there are two models: the
middle model and the trilinear GLs model. For those models, it is easy to show (just by
the definition) that the nonvanishing property of £, is invariant under the unramified
twist.

For type II models, it is not clear from the definition that the unramified twist
will preserve the nonvanishing property. However, we can prove it by proving a much
stronger argument. We claim that for all Type II reduced models, £, is always nonzero
for all discrete series o. In fact, by applying the same argument above to the reduced
model, we can have a similar formula as for £,. Since o is a discrete series, the
connected component containing it does not contains other element (i.e. O = {o}).
Then by applying the same argument above, we know that m(o) # 0 = L, # 0 (The
upshot is that since ¢ is a discrete series, we don’t need to worry about the
unramified twist issue). Therefore we only need to show that for all type II models,
the multiplicity m(o) is always nonzero. This has already been proved in Theorem
This finishes the proof of the lemma.

If ' =R, we will prove the lemma in Section 7.3. O

Now by applying Lemma we know L, # 0. Applying Proposition [6.3.1] and
Proposition [6.4.3] again, we have £, # 0. This proves the other direction, and finishes
the proof of Theorem

6.6 Some Consequences

If I = C, the following Corollary has already been proved in the previous section.

Corollary 6.6.1. For all tempered representations m of G(F') with central character n,

we have
L #0, m(m) #0.

In particular, since m(mw) <1, we have

m(m) = 1.
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If F' =R, let w be a tempered representation of G(F') with central character n. Since
we are in the archimedean case, there exists a tempered representation my of Go(F') such

that m = Ig(ﬂ'o). We have the following result.
Corollary 6.6.2. m(m) = m(m).

Proof. Similar to Theorem [6.2.1] we have
m(my) #0 <= Ly, #0.
Then by applying Proposition [6.4.1] we have
m(r) #0 <= L; #0 <= L, #0 < m(m) # 0.

Since m(7) and m(m) are either 1 or 0, the above equivalence implies that m(w) =
m(ﬂ'o). ]

If F is p-adic, let 7 be a tempered representation of GLg(F) with central character
n. We can find a good parabolic subgroup Q = LUgq and a discrete series o of L(F) such
that m = Ig(a). By the construction of the local Jacquet-Langlands correspondence,
we know that mp # 0 iff Q) is of Type I or Q = G. In fact, the local Jacquet-Langlands
correspondence established in [DKV84] gives a bijection between the discrete series
series. Then the map can be extended naively to all the tempered representations
via the parabolic induction (note that all tempered representations of GL,, are the full
induction of some discrete series of Levi subgroups). Therefore, in order to make mp # 0,
the Levi subgroup L should have an analogy in GL3(D), which is equivalent to say that
Q is of Type I or Q = G.

Corollary 6.6.3. If Q is of type II, Theorem holds.

Proof. By the discussion above, we know mp = 0, so we only need to show that m(w) =
1. By the strong multiplicity one theorem, we only need to show that m(w) # 0.
By the proof of Lemma we know L, # 0. Together with Proposition we
have L; # 0. Combining with Theorem we have m(w) # 0. This proves the
Corollary. O
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Now let m be a tempered representation of G(F') with central character n (note

that G(F') can be both GLg(F') and GL3(D)), we can find a good parabolic subgroup

Q = LUg and a discrete series o of L(F) such that 7 = Ig(a). We assume that Q is
of Type I or Q =G.

Corollary 6.6.4. 1. m(m) = m(o).

2. Let K C Iiemp(G,n) be a compact subset. Then there exists an element T €
C(Miemp(G,m)) such that Lr(Tr) = m(w) for all m € K.

Proof. (1) follows from the same proof as in Corollary[6.6.2] For (2), it is enough to show
that for all 7" € ey (G, n), there exists T € C(Ilemp(G, 1)) such that L (Tr) = m(n)
for all w in some neighborhood of 7’ in temyp(G, n). Since m(o) is invariant under the
unramified twist for Type I models, combining with part (1) and Corollary we
know that the map m — m(m) is locally constant (In fact, we even know that the map
is constant on each connected components of Iienmp(G,7)). If m(n’) = 0, we can just
take T'= 0, and there is nothing to prove.

If m(x") # 0, then we know m(7) = 1 for all 7 in the connected component containing
7'. By Theorem we can find 77 € End(n")* such that £,/(T") # 0. Then let
T° € C(yemp(G,n)) be an element with 7% = 7’. By Lemma (1), the function
7 — Lr(T?) is a smooth function. The value at 7’ is just L (T") # 0. As a result,
we can find a smooth and compactly supported function ¢ on Iljem,(G,n) such that
o(m) L (TO) = 1 for all 7 belonging to a small neighborhood of 7/. Then we just need
to take T = T and this proves the Corollary. O



Chapter 7

The Archimedean Case

In this chapter, we will prove our main theorems (i.e. Theorem and Theorem
when the field F' is archimedean. In Section 7.1, we will prove the complex case. In
Section 7.2, we will give a brief review of the trilinear GLo models. Then in Section 7.3,
we will prove the real case. The main ingredient of the proof is Corollary which
allows us to reduce the problem to the trilinear GLs model case. Then by applying the
results of Prasad ([P90]) and Loke ([L01]), we can prove the two main theorems.

7.1 The Complex Case

In this section, we assume that F' = C. In this case, mp is always 0. As a result, in
order to prove Theorem [1.2.1] and Theorem we only need to prove the following

proposition.

Proposition 7.1.1. Let 7 be an irreducible tempered representation of G(F') with cen-

tral character x?. The followings hold.
1. m(m) = 1.
2. e(1/2,m, N3 @x 1) =1.

Proof. (1) has already been proved in Corollary For (2), since we are in the
complex case, every tempered representation is a principal series. Hence we can find a

tempered representation o = o1 ® o9 of GL5(F) x GL1(F) such that 7 is the parabolic

106
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induction of . Let ¢ be the Langlands parameter of w, and let ¢; be the Langlands

parameter of g; for ¢ = 1,2. Then we have ¢ = ¢1 @ ¢o, and this implies

N (p) = A¥(d1@ ¢2) = A1) @ (NP (1) © 2).

Since the central character of 7 is x2, det(¢) = det(¢1) ® det(d2) = x2. Therefore
(N(@1)@x )Y = A2 (1) @det(d1) ! @x = A2 (1) @det(d2) @ X' = A2 (1) Db @x .

Hence
e(1/2,m,A° @ x 1) = det(A*(¢1) @ x 1) (—1) = (det(¢1))°(=1) x x1(=1) = L.

This finishes the proof of the proposition. O

7.2 The Trilinear GL, Models

In this subsection, we recall Prasad’s result on the trilinear GLo model. For the rest
two subsections of this chapter, we assume that F' = R. Let Go(F) = GLo(F) X
GLy(F) x GLy(F), H(F) = GLo(F) diagonally embed into Gy. For a given irreducible
representation my = m w73 of Go(F'), assume that the central character of 7y equals
x% on Zy(F) for some unitary character y of F*. x will induce an one-dimensional

representation wy of H(F'). Let
m(mo) = dim(Hom g r)(mo,wo))- (7.1)

Similarly, we have the quaternion algebra version: let Go p(F) = GL1(D) x GL1(D) x
GL1(D), and let Hp(F') = GL1(D). We can still define the multiplicity m(mg p). The
following theorem has been proved by Prasad in his thesis [P90] under the assumption
that at least one m; is a discrete series (i=1,2,3), and by Loke in [LOI] for the case when

g is a principal series.

Theorem 7.2.1. With the notation above, if my is an irreducible generic representa-
tion of Go, let mo,p be the Jacquet-Langlands correspondence of mo to Go p if it exists;

otherwise let mo p = 0. Then we have

1. m(m) +m(mo,p) = 1.
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m(m) =1 < €(1/2,mp x x 1) =1

and

m(mop) =1 <= €(1/2,m0x x ) = —1.

Remark 7.2.2. Both Prasad’s result and Loke’s result are based on the assumption that
the product of the central characters of ; (i = 1,2,3) is trivial. In our case, we assume
that the product of the central characters is x>. But we can always reduce our case to
their cases by replacing ™1 with m1 ® (x ! odet). Note that twist by characters will not

change the multiplicity and the epsilon factor.

7.3 The Real Case

Let m be an irreducible tempered representation of GLg(F'), with ' = R. There ex-
ists a tempered representation my of Go(F') such that 7 = Indg(wo). Let mp be the
Jacquet-Langlands correspondence of m to GL3(D). Similarly we can find a tempered
representation my p of Go p(F') such that = = Indl(—il’? (mo,p). It is easy to see that mp p
is the Jacquet-Langlands correspondence of my to Go p(F'). Note that mp and 7y p may

be zero. In fact, they are nonzero if and only if 7y is a discrete series. By Corollary
m(m) = m(mp) and m(mp) = m(mo,p). Then by applying Theorem we have

m(m) +m(mp) = m(m) + m(mo,p) = 1.

This proves Theorem [1.2.1
For Theorem by Theorem [7.2.1} it is enough to show that

e(1/2,m, A3 @ x 1) = e(1/2,m0 x x V).

For i =1,2,3, let ¢; be the Langlands parameter of ;. Then the Langlands parameter
of mis ¢ = 1 D P2 D 3. This implies

N (fry) = NP (P11 @ ¢2 @ ¢3)
= (¢1 @ ¢2 ® ¢3) © (det(g2) ® ¢1) B (det(d3) @ ¢1)
©(det(d1) @ ¢2) © (det(d3) @ o) © (det(d1) @ ¢3) © (det(p2) ® ¢3).
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By our assumption on the central character, we have det(¢r,) = det(¢1) ® det(p2) @
det(¢3) = x*. Therefore (det(¢2) ® 1 @ x1)¥ = det(¢1) ™" @ det(¢2) ' @ o1 ® x =
det(¢3) ® ¢1 ® x 1. This implies

€(1/2, det(¢2)@p1@x 1)e(1/2, det(¢3)Rp1@x L) = det(o1)@det(p2)?@x 2(—1) = det(¢p1)(—1).

Similarly, we have
€(1/2, det(¢1)@d2@x " )e(1/2, det(¢3)@de@x ") = det(¢1) @det(d2)@x (—1) = det(¢2)(—1),

€(1/2, det(¢1)@p3@x ™~ )e(1/2, det(p2) @3y ") = det(p1)*®det(dg)@x *(—1) = det(¢3)(—1).

Combining the three equations above, we have

e(1/2,m, AP @x ") = det(¢1) ® det(¢a) ® det(¢3)(—1)e(1/2,01 @ 2 ® 3 @ X ")
= X(—1)e(1/2,61 @ ¢ @ p3 @ x ) = €(1/2,m X x ).

This proves Theorem [1.2.2
Now the only thing left is to prove Lemma for the case when FF = R. As in
the p-adic case, for Type I models, the lemma just follows from the definition of L,.
For Type IT models, as in the p-adic case, we only need to prove that the multiplicity is
always nonzero. Since F' = R, only GLy(F') and GL; (F') have discrete series. As a result,
there are only three Type II models: Type (2,2,1,1), (2,1,1,1,1) and (1,1,1,1,1,1).
Type (1,1,1,1,1,1) case is trivial since L and Hg are both abelian groups in this case.
For Type (2,1,1,1, 1), by canceling the GL; part (which is abelian), we are considering
a
0
the Bessel model for (GLg, GL;), and we know the multiplicity is always nonzero by the
archimedean Rankin-Selberg theory of Jacquet and Shalika ([JS90]).

0
the model (GLy(F'),T) where T' = {( b) la,b € F*} is the maximal torus. This is

For Type (2,2,1,1), by canceling the GL; part, we are considering the following
model: M (F') = GLy(F) x GLy(F'), and

Mo(F) = {m(a,b) = (Z 2) x (Z 2) la,b e FX, ce F).

The character on My(F) is given by w(m(a,b)) = x(ab). Let B(F') be the lower Borel

subgroup of GLo(F'). It is isomorphic to My(F'), hence we can also view w as a character
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on B(F). Let m3 = I§(w), it is a principal series of GLg(F). For any irreducible

tempered representation w3 ® me of M (F'), by the Frobenius reciprocity, we have
Homy,(r)(m @ T2, w) = Homay,(r)(T1 ® m2, 73).

Here GLa(F') maps diagonally into M (F'). Therefore the Hom space is isomorphic to the
Hom space of the trilinear GL9s model for the representation my = m ® m9 @ w3. Since 73
is a principal series, mg p = 0. By Theorem m(my) =1 # 0, hence the Hom space
is nonzero and this proves Lemma Now the proofs of our main theorems
(Theorem and Theorem are complete for the archimedean case.



Chapter 8

The Proof of the Spectral Side of

the Trace Formula

For the rest of this paper, we assume that F' is p-adic except for Chapter
14 and 15. In this chapter, we will prove the spectral side of the trace formula. In
Section 8.1, we will prove the integral defining I(f) is absolutely convergent. We will
postpone the proof of a technical proposition (i.e Proposition to Appendix B.

Then in Section 8.2, we prove the spectral expansion.

8.1 Absolutely Convergence of I(f)

Let x be an unitary characters of F'* and let n = x2. For f € C(Zg(F)\G(F),n™1), as
in Chapter 5, define the function I(f,-) on R(F)\G(F) to be

I(f,x) = / fz7 ha)w @ E(h)dh.
ZR(F)\R(F)

By Lemma M(Q), the above integral is absolutely convergent. The following Propo-
sition together with Proposition [4.4.1)(3) tell us that the integral

1= [ Hfas
R(F)\G(F)
is also absolutely convergent for all f € Cseusp(Za(F)\G(F),n~!), and it defines a

continuous linear form
Cscusp(ZG(F)\G(F)an_l) —-C: f — I(f)

111
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In particular, this implies that

lim In(f) = I(f). (8.1)

N—oo

Proposition 8.1.1. 1. There existd > 0 and a continuous semi-norm v on C(Zg(F)\G(F),n™1)
such that

1(f.2)] < v(HED (2) o p ()
for all f € C(Zg(F)\G(F),n ') and z € R(F)\G(F).

2. For all d > 0, there exists a continuous semi-norm vq on C(Zg(F)\G(F),n™1)
such that

1(f,2)| < va())ERC (@) op ()
for all f € Cseusp(Za(F)\G(F),n™1) and x € R(F)\G(F).

Proof. The proof goes exactly the same as the Gan-Gross-Prasad model case in Propo-

sition 7.1.1 of [B15]. We will postpone the proof to Appendix B. O

8.2 The Proof of the Spectral Expansion

In this section, we are going to prove the spectral side of the trace formula.

Theorem 8.2.1. For all f € Cseusp(Za(F)\G(F),n™1), we have
I(f) = Ispec(f)' (82)
Here Igpec(f) is defined in Section 5.2.

We follow the method developed by Beuzart-Plessis in [B15] for the GGP case. We
fix f € Cscusp(ZG(F)\G(F)vn_l)' For all f/ € C(ZG(F)\G(F)an)a define

Kip(g1,92) = / flo1"992)f' (9)dg, 91,92 € G(F),
Za(F)\G(F)

Kbploo) = | K (g ha)e(hwo(h)dh, g,a € G(F),
ZR(F)\R(F)

Kipww) = [ K} (1, y)e(hw(h)dh, o,y € G(F),
ZR(F)\R(F)

Jauac(fyf/) = / K?,f’(xwx)dw'
R(F)\G(F)
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Proposition 8.2.2. 1. The integral defining Kff,(gl,gg) is absolutely convergent.
For all g1 € G(F), the map

gz S G(F) — Kﬁf’(gl’QQ)

belongs to C(Zg(F)\G(F),n~1). For all d > 0, there exists d > 0 such that for
all continuous semi-norm v on C4(Za(F)\G(F),n "), there exists a continuous

semi-norm p on C(Zq(F)\G(F),n) such that
v(Kfp(g.) < nlf)E(9)ou(g) ™
for all f" € C(Zg(F)\G(F),n) and g € G(F).

2. The integral defining K} f (g, x) is absolutely convergent. For all d > 0, there exist
d >0 and a continuous semi-norm vq g on C(Zg(F)\G(F),n) such that

1K (9, 2)] < vaa (f)E%(9)o0(g) ER\C (2)o g\ (2)*
for all f" € C(Za(F)\G(F),n) and g,z € G(F).

3. The integral defining K]%,f, (x,y) is absolutely convergent. We have
K= [ L@y e umdn (83)
Mtemp(Gyn)
for all f" € C(Zg(F)\G(F),n) and x,y € G(F).
4. The integral defining Jouz(f, f') is absolutely convergent. And for all d > 0, there
exists a continuous semi-norm vg on C(Zq(F)\G(F),n) such that |K]20’f, (z,z)] <
Vd(f')ER\G(x)ZJR\G(x)*d for all f" € C(Zg(F)\G(F),n) and x € R(F)\G(F).

Moreover, the linear map
freCZa(P)\G(F),n) = Jaua(f. ') (8.4)
18 conlinuous.

Proof. (1) follows from Theorem[3.5.4(1). (2) follows from part (1) together with Lemma
4.3.1(2) and Lemma [6.2.3(2). For (3), the absolutely convergence follows from part (2)
and Lemma [4.3.1]2). The equation (8.3) follows from Lemma 5).
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For (4), by Lemma [6.2.2(1), the section

T(f") : € Wiemp(G,n) = La(n(f))m(f) € End(r)™

is smooth. It is also compactly supported since we are in the p-adic case. Then by the
matrical Paley-Wiener Theorem, there exists a unique element ¢ € C(Za(F)\G(F),n™1)

such that m(p ) = La(m(f))m(f) for all m € Myem,(G, ). Since f is strongly cuspidal,
by Proposition @y is also strongly cuspidal. Then by ({8.3)), we have

K2 p(v,2) = /H o @R (e
- / Ca(n(@)n(pp)m(a ) u(m)dn
Mtemp(Gyn)

/ o (7 ha)é(h)w(h)dh = I(pp, x).

Zy (F)\H(F)

Here the third equation follows from Lemma m(4) Then by Proposition
for all d > 0, there exists a continuous semi-norm vg on C(Zg(F)\G(F'),n) such
that |KJ20,f/(a:,:U)| < Vd((pf/)EG\G(.T)2Ug\G(.T)_d for all f' € C(Zg(F)\G(F),n) and
x € R(F)\G(F). Combining with Proposition [4.4.1{4), we know the integral defin-
ing Jauz(f, f') is absolutely convergent. Finally, in order to prove the rest part of (4), it
is enough to show that the map C(Zg(F)\G(F),n) — C(Za(F)\G(F),n7 1) : f' = ¢y
is continuous. By the matrical Paley-Wiener Theorem, it is enough to show that the

map

f1 € C(Za(F\G(F),n) = (7 € Ttemp(Gn) —= (1) = La(n(f))7(f)) € C(Mtemp(G,n))
is continuous. This just follows from Lemma 1). This proves (4). O

Proposition 8.2.3. For all f' € C(Za(F)\G(F),n), we have

Jaux(fa f/) = / ef(ﬂ')[,ﬂ—(ﬂ'(f/))dﬂ'

Htemp(va)

Proof. The idea of proof comes from [B15]. Let a : Gy, (F) — Zg,(F') be a homomor-
phism defined by a(t) = diag(t,t,1,1,¢71,¢+71) in the split case, and a(t) = diag(t,1,t7!)
in the non-split case. Then we have A(a(t)ha(t)™!) = tA(h) for all h € R(F) and
t € Gp(F). Fix [/ € C(Zg(F)\G(F),n). Since we are in the p-adic case, we can find
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an open compact neighborhood K, of 1 in F* such that Ad,(t)f' = f’ for all t € K,.
Let ¢ € C°(F*) be the characteristic function on K, divided by the measure of K,.
Then we have [/ = Ady(o)(f') and Joue(f, f') = [px () Jaua(f, Ada(t) f')dt. By the

definition of J,,, we have

Jaul‘(f; f’) — / / Sp(t)K?,Adu(t)f/(x7 x)da:'dt
F>x JR(F)\G(F)

By part (4) of the previous proposition, the double integral above is absolutely conver-

-1

gent. Then by changing variable z — a(t)™ "z and switching the two integrals (note that

the Jacobian of the transform h € R(F) ~ a(t)ha(t)™! € R(F) is equal to dp(a(t))),

we have
Juual 0.5 = [ | 050 (a) K3 g o)z alt)0)tdn. (35
R(F\G(F) J Fx
By the definition of KJ% 12 the inner integral is equal to
| ewsetaen | K} g (ha(t)z, a(t)2)E(h) " (h)~ dht.
rx ZrR(F)\R(F)

By part (2) of the previous proposition, the double integral above is still absolutely
convergent. By changing variable h — a(t)~'ha(t) and switching the two integrals, we

have
/F . p(t)op(a(t) K 4q, @ (a(t)z, a(t)z)dt (8.6)
- / (F)\R(F) /F PO} ag, 0y (a(t)ha, a(t)z)p(—tA(h))w (k)™ dtdh
- /Z (F)\R(F) /Fx (p<t)KJ1c’Ra(t)f'(hx’a(t)x)w(_t)\<h))w(h)_ldtdh.

Here R,(t) stands for the right translation by a(¢). By the definition of K}ﬁ s> the inner

integral above is equal to
/ (1) / K (b, W)€ (R Yo YR (—tA(R) o).
Fx Zr(P\R(F) 7 °
By changing variable b’ — a(t)"'ha(t)h =, this equals
/ (1) / K (b, () Bz () Y (A (R oo (bl
P Zr(F\R(F) *

/ (1) / K (hae, W) 5 a(t) Y (A () o (W IR .
xS 2 e
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By part (1) of the previous proposition, the integral above is absolutely convergent. By

switching two integrals, we have

[ o0} o (i atz )~ )) e (8.7)

/ K3 (hae, 1 ha) o (£)8p (a(t) )b (EA(H) o (R )dB' dt .
Zr(F)\R(F) JF~

We know dt = |t|~'d,t where d,t is an additive Haar measure on F. Let ¢/(t) =
o(t)dp(a(t))|t| ! and let ¢'(z) = [, ¢'(t)¢(tz)dt for x € F. Combining (8.F)), and
(8.7), we have

Juual 1.5 = [

/ / K {5/ (ha, h'ha) @ (A(K))w(h')dh dhdz.
R(F\G(F) J Zr(F)\R(F) J Zr(F)\R(F)

(8.8)

For N,M > 0, let ay : R(F)\G(F) — {0,1} (resp. By : Zg(F)\G(F) — {0,1})

be the characteristic function of the set {x € R(F)\G(F)|lopa(r) < N} (resp. {g €
Za(F)\G(F)loo(g) < M}). For N > 1 and C > 0, define

Jau:p,N(fv f,) = / OéN(l')/ /
R(F)\G(F) Zr(P)O\R(F) J Zr(F)\R(F)

K75 (ha, W' ha)@ (A(W))w(h')dh dhdz,

Jaua;,N,C(fv f,) = / OéN(-f)/ /
R(F\G(F) Zr(F)\R(F) J Zr(F)\R(F)

Bc 1og(N)(h,)K}4,f/ (hz, h/hx)gb/()\(h/))w(h/)dh/dhdw.
By equation (8.8), we have
Jauz ([, f,) = lim Jaux,N(f,)' (8.9)
N—oo

We need to prove

(1) The triple integrals defining Jouq v (f, f') and Jauzn.c(f, f') are absolutely con-

vergent. Moreover, there exists C' > 0 such that

|Jaum,N(f> f/) - Jaum,N,C(fa f,)| < N_l

for all N > 1.
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In fact, since ¢ is compactly supported on F, we have |¢'(A)] < (1 + |A|)~! for all
A € F. Combining with Theorem we know that there exists d > 0 such that
|Jaux,N(fa f/)| < / an .7})/ /
R(F)\G(F) Zr(F)\R(F) J Zr(F)\R(F)
=29 (ha)EC (W ha)oo(hx)loo(h' ha)d(1 + |A(K)]) " dW dhdz,

|Jaum,N,C(fa f/)| < / aN(m)/ /
R(F)\G(F) Zr(F)\R(F) J Zr(F)\R(F)

Borog(n) (K)EC (ha)EC (W ha)oo(hx) oo (B ha)* (1 + |A(R')|) ' dh'dhdz,

and

|Jau:v,N(f7 f,) _Jauz,N,C(f) f/)’ < / OZN(-%')/
R(F\G(F) Zr(F)O\R(F)

x / Loy > log(v) ()Y (ha) 2% (1 ha) oo (ha) oo (W ha) (1 + [MR)|) ' dh' dhdz
Zr(F\R(F)

for all N > 1 and C > 1. Applying (7) of Proposition to the case ¢ = 1, we know
that there exists d’ > 0 such that the first two integrals above are essentially bounded
by

/ an(@)ERY ()20 p o (2)? da.

R(F)\G(F)
This is absolutely convergent since the integrand is compactly supported. Then by
applying (7) of Proposition again, we know the third integral is essentially bounded
by
e_ECIOg(N)/ OLN(l')ER\G({E)QO'R\G(.’IJ)d,dl', N>1,C>0.
R(F)\G(F)

for some €,d’ > 0. By (4) of Proposition there exists d” > 0 such that the last
integral is essentially bounded by N?" for all N > 1. Then once we choose C' larger
than (d” 4 1)/e, we have the estimation in (1). This proves (1).

From now on, we fix some C' > 0 satisfies (1). Then we have

Jau:z:(fa f/) = ]\}gnoo Jaux,N,C(f» f/) (8'10)

Since the integral defining Jy.q, n,c is absolutely convergent, we can combine the first
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two parts and then switch two integrals. This implies that

Jaux,N,C(fa f/) = / OZN(Q)/
Zg(FO\G(F) Zr(F)\R(F)

K7 (9,1 9)Berogn) ()@ (AW )w(B')dh'dg - (8.11)

/ B tog(v) (W) (AR ()
Zr(F)\R(F)

X / an(9) K7 (g, hg)dgdh.
Za(FN\G(F)

We are going to prove that for all N > 1, we have

| Jowe N.o(fs ) = Jawzc(f, )] < N7 (8.12)
where
Tuwc(f 1) = / Berrogn (W)@ (AR w(h) / K7 (9. hg)dgdh.
Zr(F)\R(F) Zaq(F)\G(F)

In fact, since f is strongly cuspidal, by Theorem M(S), there exists c; > 0 such that
for all d > 0, there exists d’ > 0 such that

K7 (g, hg)| < ZC(g)200(g) e M g (h)*

for all g € G(F) and h € R(F). Fix such ¢; > 0, and choose dy > 0 so that the function
g — E%(g)%00(g9)~% is integrable on G(F)/Zg(F). Then for all d > dy, there exists
d" > 0 such that the left hand side of is essentially bounded by
NerC-driog () Bogon)(B)dh
Zr(F)\R(F)
for all N > 1. It is easy to see that the integral above is essentially bounded by N¢ for

some co > 0. Therefore once we choose d > ¢1C + dy + ¢ + 1, we have the estimation

in (8.12). This proves (8.12). Therefore we have

Jaux(fv fl) = ]\}im ﬁC log(N)(h)Sb,()‘(h))w(h)
TS ZRr(F)\R(F)
X / K7 4(g, hg)dgdh. (8.13)
Za(F)\G(F)
Since f is strongly cuspidal, by Theorem [3.5.4{4), we have
/ K{5(g, hg)dg = / 07 (m)0=(R(h™1)f )dr. (8.14)
Za(F)\G(F) Meemp(Gn)
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Since 7 is tempered, |0z (R(h™1)f")| < Z9(h) for all h € R(F). Combining with the
fact that 0¢(m) is smooth and compactly supported on Hiemy(G,n), we have

[ 1w (RO ldr < Zh)
Htemp( 777)
Combining with Lemma we know that the integral

[ S0t [ ame(RO)
Zr(F)\R(F) Mtemp(Gn)

is absolutely convergent. Combining with (8.13]) and (8.14)), the integral above is equal
to Jouz(f, f'). By switching the two integrals and applying Lemma we have

Jealf 1) = / 0, () Lr(w(Ada () )
Htemp(Gym)

= [ L)
Mtemp(Gn)
This finishes the proof of the Proposition. O

Now we are ready to prove Theorem Recall that I(f) = [p R(F \G w1 ,x)dw
where I(f,z) = fZR(F)\R(F) f(x7 hz)w @ &£(h)dh. By applying Lemma we have

107.0) = [ La(a(@)m(F)n(e) u(r)dr. (8.15)
iemp(Gom)
By Corollary there exists a function f' € C(Zg(F)\G(F),n) such that
L(n(f)) = m(m)

for all 7 € Ilemp(G,n) with n(f) # 0. By Theorem and Corollary for all
T € Wiemp(G,n), Ly # 0 if and only if m(7) = 1. Then (8.15) becomes

1(f,2) = / Ca(r(@)m(F)m(a) V) Ln(m (P pa(m)dr
Htemp(Gim)

Combining with Proposition (3), we have I(f,x) = KJ% (@, x). Therefore I(f) =
Jauz(f, f'). By the previous Proposition, together with the fact that L ( () =

m(m) = m(7), we have
I(f) = Jau:}c(fa f/) = /H ) ef(ﬂ-)m(ﬁ-)dﬂ- = Ispec(f)~

This finishes the proof of Theorem [8.2.1



Chapter 9

Localization

Starting from this chapter, we are going to prove the geometric side of the trace formula.
As we proved in Proposition [5.2.3] it is enough to consider functions with trivial central
character. We fix a strongly cuspidal function f € C°(Zg(F)\G(F')). In this chapter,
our goal is to localize both sides of the trace formula in (5.7)) (i.e In(f) and Igeom(f))-
This will allows us to reduce the proof of the trace formula to the Lie algebra level.

In Section 9.1, we will talk about the localization at a semisimple element which
is not conjugate to an element in H(F'). We can easily show that in this case, both
In(f) and Igeom(f) are equal to zero. In Section 9.2, we consider the localization at
the split elements of H(F'). By applying the spectral side of the trace formula and the
inductional hypothesis, we can again show that both In(f) and Igeom(f) are equal to
zero. In Section 9.3, we will talk about the localization of Iy (f) at all other semisimple

elements of H(F'). Finally in Section 9.4, we will talk about the localization of Iyeom (f).

9.1 A Trivial Case

If z € G4s(F) that is not conjugate to an element in H(F'), then we can easily find a
good neighborhood w of 0 in g, (F') small enough such that zexp(X) is not conjugate
to an element in H(F) for any X € w. Let Q = Zg(F) - (zexp(w))®. Tt follows that
QNH(F) = . Suppose that f is supported on €. For every t € Hg,(F), the complement
of Q in G(F) is an open neighborhood of ¢ invariant under conjugation, and is away

from the support of f. It follows that 6 also vanishes on an open neighborhood of ¢,

120
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and hence that Igeom(f) = 0. On the other hand, the semisimple part of elements in
U(F)H(F) belongs to H(F). Thus 9f¢ = 0 for every g € G(F), and so Ix(f) = 0.

Therefore the trace formula holds for f.

9.2 Localization at the split elements

0
If z € Hss(F) such that x = (g b) with @ # b. Note that this only happens in the

split case, i.e. G = GLg(F') and H = GLa(F'). We can easily find a good neighborhood
w of 0 in g, (F') small enough such that x exp(X) is not an elliptic element of G for any
X €w. Let Q = Zg(F) - (xexp(w))®. Then © does not contain any elliptic element of
G. Suppose that f is supported on 2. We are going to prove the trace formula for f,

lim In(f) = Ipeom(f). (9.1)

N—o0
The main ingredients in our proof are the spectral expansion and the inductional hy-
pothesis.

First, by the spectral expansion we proved in the previous chapter, we have
lim Iy(f) = / 0, (x)m(r)dr. 9.2)
N—oo Htemp(GJ)

For any 7 € Iljemp(G, 1), similar to the definition of Igeom (f), we define the geometric

multiplicity mgeom(7) to be

Mgeom () = W (Hy, T)| " v(T cx (t)DH () A(¢)dt.
() %;(0 ) ()Ldmwm (5D (HA()

Here ¢ (t) = cy_(t) is the germ associated to the distribution character 6;. Then by
Proposition together with the definition of Igeom (f), we have

Ljeom(f) = / 01 (m)Mgeom (T)dm. (9.3)
Mtemp(G,1)

Combining (9.2)) and (9.3)), we have

hmIMﬂ%mAﬁzz; oy SR E) = g (R (9.4

N—oo
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Let TI3(G, 1) C Hiemp(G, 1) be the subset of discrete series, and let IT;,,,,(G,1) =

iemp(G,1) —I2(G,1). For all m € II5(G, 1), since the support of f does not contain

any elliptic element and since f is strongly cuspidal, we have 6f(m) = tr(w(f)) = 0.
Therefore becomes

A IO~ Lyon$) = [ 6y = (D, (93)

Formw e ngmp(G , 1), we can find a proper parabolic subgroup = LN and a discrete
series T of L(F) such that 7 = 18(7'). By Corollary we have m(w) = m(7) where
m(7) is the multiplicity of the reduced model. Moreover, by inductional hypothesis as
in Section 5.4, we have m(7) = Mgeom (7). Later in Lemma we will also prove

that Mgeom () = Mgeom (7). Combining all the equations above, we have
m(T) = Mgeom ()

for all = € IT},,,,,(G,1). Put this equation into (9.5)), we have

temp

lim Iy (f) ~ Tgeom(f) = 0.

N—oo

This proves the trace formula.

9.3 Localization of Iy(f)

For z € Hss(F), let U, = U N G,. Fix a good neighborhood w of 0 in g,(F'), and let
Q = (zexp(w))¥ - Zg(F). By the discussion in the previous section, we can assume
that z is elliptic in H(F). We can decompose g0 and b, into g, o = g, @ ¢’ and
bz = b ® ", where g/, = b/, is the common center of g and b, g’ and h” are the
semisimple parts. To be specific, the decomposition is given as follows: (Recall that for
any Lie algebra p, we define pg to be the subalgebra consisting of elements in p with

zero trace.)

e If z is contained in the center, then G, = G, H, = H. Define

g, =b,=0,0"=g20,0" = bap,
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e If z is not split, then it is conjugate to a regular element in the torus T for
some v € F*/(F*)?, v # 1. Recall T, is the non-split torus of H(F) that is
F-isomorphic to F,, = F(y/v). In this case, G, = GL3(F,), H, = GL(F),). Define

g, = b, ={diag(a,a,a)|ac Fy,trp,/p(a) = 0},
g” = 5[3(F'U)7
h” — 0

Then for every torus T € T(G;) (here T'(G,) stands for the set of maximal tori in G),
we can write tg =t @ t” with t' = g/, = /.. The idea of the decomposition above is that
gl = bl is the extra center in g,, and (g”,h” @ u,) stands for the reduced model after
localization. In fact, if x is in the center, it is just the Ginzburg-Rallis model; when z

is not in the center, it is the Whittaker model.

Remark 9.3.1. There are two kinds of reduced models in our proof of the trace formula.
In Section 4.5 and 5.4, we have already talked about the reduced models coming from
the parabolic induction. Those reduced models have been used in the proof of the spectral
side of the trace formula. Here we have another type of reduced models coming from
localization. These models will be used in the proof of the geometric side of the trace

formula.
From now on, we choose the function f such that Supp(f) C Q.

Definition 9.3.2. Define a function 9 f, ., on g.0(F) by

“lrexp(X)g), if X €w;
9 (X) = fg p(X)g) 9.6)
0, otherwise.

Here we still view w as a subset of g, 0 via the projection g, — g.0. We define

945 (X) = / e+ NENaN, (9.7)

Low(f,g) = /h o 000X (9.8)

Ix,w,N(f) = / Ix,w(fa g)HN(g)dg (99)
«(F)H. (F)\G(F)
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Remark 9.3.3. The function g — I (f, g) is left Uy(F)Hy(F)-invariant. By Condi-
tion (5) of good neighborhood (as in Definition[3.1.1)), there ezists a subset T C G(F),
compact modulo center, such that 9 fy ,(X) =0 for g ¢ Go(F)T'. Together with the fact
that the function g — kn(g7) on G4(F') has compact support modulo Uy(F)Hy(F') for
all v € G(F), we know that the integrand in s compactly supported. Therefore the

integral is absolutely convergent.
Proposition 9.3.4. In(f) = C(z)I,u N (f) where C(z) = DH (z)A(z).

Proof. By the Weyl Integration Formula, we have

I(f,g) = Srerun | WHT) |~ / Ta(t, 9 fDH (0 2dr (9.10)
Zyg(F)\T(F)
where
Ju(t, F) = DY (1) / Flg~tg)dg
H(F)\H(F)

is the orbital integral. For given T' € T'(H) and t € T(F) N Hyeg(F'), we need the

following lemma, the proof the lemma will be given after the proof this proposition.

Lemma 9.3.5. Fort € T(F), the followings hold.

1. If t does not belong to the following set

U er(i,) Ywew 1) w(@exp(ti(F) Nw))w™ - Za(F),

then Jy(t,9f¢) = 0. Here W (T, T) is the set of isomorphisms between T and Ty
induced by conjugation by elements in H(F), i.e. W(Ty,T) = T\{h € H(F)|hT1h~1
T}/Ty.

2. If x is not contained in the center, each components in (1) are disjoint. If x is
contained in the center, two components in (1) are either disjoint or coincide.
They coincide if and only if T = Ty in T(H). Therefore, for each component
(Th,w), the number of components which coincide with it (include itself) is equal
to W(Hy,Th).

By the lemma above, we can rewrite the expression (9.10) of I(f,g) as

I(f,9) = X1 er(Ho) e (H) Swew (my,7) W (H, )|~ W (H,, Th)| ™!
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. / T (wi (w exp(X)wi L, 9 £€) DH (wy (w exp(X) ywy 1)V 2dX.
tlyo(F)ﬂw

Note that both integrands above are invariant under H(F)-conjugate, W (Ty,T) # () if
and only if T'="T; in T(H), and in that case W(T,T1) = W(H,T). This implies that

I(f,9) = X1 erm,) | W(Hz, Th) ! / Ju(zexp(X),? f6) D (x exp(X))/2dX.

potne (9.11)
On the other hand, by Parts (3) and (5) of Proposition for all Th € T'(H,) and
for all X € wNtyreq(F), we have

Ju(zexp(X),9f8) = DH(zexp(X))Y/? (9.12)
X / / Y9 & (x exp(h "L X h))dhdy,
Ho(F)\H(F) JT1(F)\H.(F)
and
D (zexp(X)) = D (z) - DH=(X). (9.13)

So if we combine (9.11)), (9.12]), (9.13)), together with the definition of I7(f) (asin (5.3))),

we have

IN(f) - ET1ET(HE) ’ W(HZD7T1) ’_1

/U(F)H(F)\G(F)
X/ Jr (@ exp(X),9 O D (zexp(X))2dXrkn(g)dg  (9.14)
tl,()(F)ﬁw

= D"(x) / D(g)kn(g)dg
U(F)H.(F)\G(F)

where

(D(g) = ETleT(Hz) | W(HJHTI) |71

X / / 9 ¢ (zexp(h~ 1 Xh))dhDM= (X)dX.
t1’0(F)ﬂw Ty (F)\Hz (F)
Applying the Weyl Integration Formula to ®(g), we have
Bo)= [ e X)ax (9.15)
hx,O(F)

where

pe(X) = (9.16)

If¢(zrexp(X')), f X =X+ 7, X €w,Z € 3,(F);
0, otherwise.
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On the other hand, for X € wN by req(F) and g € G(F),

Sreax) = [ orwepuei
= / / 9 f(z exp(X)uv)é(uv)dudv. (9.17)
U (F)\U(F) JUs(F)

For u € U,(F), the map v — (zexp(X)u) v~} (zexp(X)u)v is a bijection of
Uz (F)\U(F). By the Condition (7), of good neighborhood (as in Definition [3.1.1]),

the Jacobian of this map is
| det((1 — ad(2)™") lu(r)w.(m) [F= Alz).
Also it is easy to see that
E((zexp(X)u) Lo (zexp(X)u)v) = 1.
By making the transform v — (2 exp(X)u) ‘v~ (z exp(X)u)v in (9.17), we have
IfS(zexp(X)) = A(z) / / 9f (v e exp(X)uv)é (u)dudv
Us (F)\U(F) JU(F)
NG / / 99 f(z exp(X)u)e(w)dudo.  (9.18)
Uz (F)\U(F) JU(F)

By Condition (6) of good neighborhood (as in Definition [3.1.1]), for all X € w, the map
uz (F) — Uz (F) given by
N — exp(—X)exp(X + N)

is a bijection and preserves the measure. Also we have
§(exp(=X) exp(X + N)) = {(N).

So we can rewrite as
" exp(X) = M) |

/ Y f(zexp(X + N))E(N)dNdv.
Uz (F)\U(F) Jug (F)

For X € wyeq, X + N can be conjugated to X by an element in G(F), so X + N € w,
and Y f(zexp(X + N)) = "9 fy(X + N) by the definition of 9f, ., (as in (9.6)). This

implies that

95 (2 exp(X)) = Az) / v (X)dv. (9.19)
Uz (F)\U(F)
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Now, combining (9.19) and (9.16)), we have

2(X) = Ax) / v pE (X",
Uz(F)\U(F)

Then combining the above equation with (9.15)) and changing the order of integration,

we have

B(g) = Alz) / Lo (f, vg)do. (9.20)
Uz (F)\U(F)

Finally combining the above equation with (9.14) and using the fact that C(x) =
A(x)DH(x), we have

() = CGa) [ Lol £ 0w (9)dg = C() Lo ().
Uz (F)Hy (F)\G(F)
This finishes the proof of the Proposition. O

Now we prove Lemma

Proof. If Jg(t,9f¢) # 0, there exists u € U(F) such that tu is conjugate to an element
in Supp(f). If we only consider the semisimple part, since we assume that Supp(f) C
Q = Zg(F) - (vexp(w))¥, there exist y € G(F),X € w and z € Zg(F), such that

' = zexp(X)z. By changing t to tz, we may assume that z = 1. Then by

yty~
conjugating X by an element ¢y € G, (F) and changing y to y'y, we may assume that
X € 441(F) for some Th € T(Gy).

If x is in the center, we have that G, = G. Since t € H, by changing y we may
assume that X € hNg, = h,. By further conjugating by an element in H,(F), we
can just assume that X € t(F) for some T7 € T(H,). If x is not contained in the
center, then G, = GL3(F,). Assume that the eigenvalues of = are A\, A\, \, u, i, p for
some A, i € F, with A # u. Note that for t € H, its eigenvalues are of the same form,
but may lie in some other quadratic extension of F. Now if w is small enough with
respect to u— A, the eigenvalues of the given X € w must have the same form. It follows
that X € h(F), and X € h(F) N gz(F) = by(F). After a further conjugation by an
element in H;(F'), we can still assume that X € t;(F) for some T} € T'(H;).

By the above discussion, we can always assume that X € t;(F') for some T} € T'(Hy).
Since the Weyl group of G with respect to T equals the Weyl group of H with respect
to T, any G(F)—conjugation between T and T} can be realized by an element in H(F).
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Here we define the Weyl group of T" in G to be the quotient of the normalizer of T' in G
with the centralizer of T' in G. Moreover, if such a conjugation exists, T'= T} in T'(H)
and the conjugation is given by the Weyl element w € W (7T, T1). This finishes the proof
of Part (1).

Part (2) is very easy to verify. If = is not in the center, let A and p be the eigenvalues
of z. Then X\ # u, where A and p lie inside a quadratic extension of F'. Once we choose
w small enough with respect to A — p, it is easy to see that each components in (1) are
disjoint. If z is in the center, by the proof of part (1), the components corresponding to
T does not intersect with other components. Since the Weyl group W (11,T) ~ W(H,T)
is of order 2, there are two components corresponding to 7', and these two components

coincide because w is G = G-invariant in this case. This finishes the proof of (2). O

9.4 Localization of I, (f)

We slightly modify the notation of Section 5.1: If x € Zy(F), then H, = H. In this
case, we let T, = T. (Recall that T is a subset of subtori of H defined in Section 5.1.)
If z ¢ Zy(F), H, is GL1(F,) for some v € F*/(F*)? v # 1. Let T, be the subset of
T consisting of those nontrivial subtori 7' € T such that T € H,, i.e. T, = {T,}. Now
for T € T,, we define the function ¢ ., on t(F) as follows: It is zero for elements not
contained in t(F) N (w +34(F)). For X = X' +Y € ¢(F) with X' € w,Y € 34(F), define

craw(X) = cr(zexp(X)). (9.21)
In fact, the function 6y, ,, defined in (3.18) is a quasi-character in g,, and the function

cfzw we defined above is the germ associated to this quasi-character. Now we define
the function A” on h,(F) to be

A"(X) = | det(ad(X) |u, (7)) (e (7)) x )| F- (9.22)
By Condition (7), of Definition we know that for every X € w,
A(zexp(X)) = A(z)A"(X). (9.23)
Let

Lw(f) = ETen!W(HmaT)!_ll/(T)/t(F) Cfaw(X) DT (X)A"(X)dX. (9.24)
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By Proposition [5.1.2] the integral above is absolutely convergent.

Proposition 9.4.1. With the notations above, we have

Lyeom(f) = C(x) 10 (f)- (9.25)

Proof. By applying the same argument as in Lemma we have the following prop-

erties for the function cy(t):

1. fT €7, and t € T(F), then cs(t) =0 if
t & Unyet, Unew (1,1) w(z exp(t (F)U w))uf1 - Za(F).

2. If x is not contained in the center, each components in (1) are disjoint. If = is
contained in the center, two components in (1) either are disjoint or coincide.
They coincide if and only if T = T} in T(H). Therefore, for each component
(T, w), the number of components which coincide with it (include itself) is equal
to W(Hy, Ty).

So we can rewrite the expression (5.6|) of Ijeom(f) as
Igeom(f) = ETlGT;cZTGTEuuGW(Tl,T) | W(H7 T) |_1| W(H:LHT) |_1 V(T) (926)

x/t i cf(wi(zexp(X))wy ) DH (w1 (z exp(X))w; M)Az exp(X))dX.

Since every integrand in (9.26)) is invariant under H (F')-conjugation, together with
Proposition [3.1.2(5) and (9.23)), we have

DH (zexp(X))A(zexp(X)) = DH (2) D= (X)A(z) A" (X).
Then becomes

Igeom(f) = DH(x)A(x)ETmEV(Tl) | W(H,,T) |_1
X / Cfaw(X)DH(X)A"(X)dX
t1,0(F

= C@)rw(f)

This finishes the proof of the Proposition. O



Chapter 10

Integral Transfer

10.1 The Problem

In this section, let (G, H',U’) be one of the followings:

1. G' = GLg¢(F), H = GLy(F), U’ is the unipotent radical of the parabolic subgroup
whose Levi is GLa(F') x GLo(F) x GLo(F).

2. G' = GL3(D), H = GL{(D), U’ is the unipotent radical of the parabolic subgroup
whose Levi is GL1(D) x GL1(D) x GL1(D).

3. G' = GL3(F,),H" = GLy(F,), for some v € F*/(F*)? with v # 1, U’ is the

unipotent radical of the upper triangular Borel subgroup.

This basically means that (G', H',U’) is of the form (G4, Hy, U,) for some elliptic ele-
ment x € Hgs(F'). Our goal is to simplify the integral I, ., n(f) defined in last chapter.
To be specific, in the definition of I, ., ny(f), we first integrate over the Lie algebra of
H,U,, then integrate over U, H,\G. In this section, we are going to transfer this inte-
gral into the form [, F) Jap (F\G(r) Where T runs over maximal torus in G and tO(F)
is a subset of t(F") which will be defined later. The reason for doing this is that we want
to apply Arthur’s local trace formula which is of the form [ Ar(F)\G(F)" Our method
is to study the orbits of the slice representation. We will only write down the proof
for the first two situations. The proof for the last situation follows from the same, but

easier arguments, and hence we will skip it here. So we will still use (G, H,U) instead

130
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of (G', H',U’) in this chapter. We fix a truncated function k € C°(U(F)H(F)\G(F)),
and a function f € C°(go(F)). Recall that in Section 5.3, we have defined

JHY) = fY + N)§(N)AN
u(F)
and
If9)= [ 7wy
ho (F)
Let
= | 1(f.9)(g)dg. (10.1)
U(F)H(F)\G(F)

We are going to study I,(f).
10.2 Premier Transform

0 0 O
For 2= |aly 0 0], we have that £(N) = (< E,N >) for N € u(F). Here we

0 bl O

use I to denote the identity element in h(F'), i.e. in the split case, I3 is the two by two
identity matrix; and in the nonsplit case, I is the identity element in the quaternion

algebra. Define
A 0 0
AM={l0 B o||A+B+C=0}
0 0 C

and

Y=Ag+u
Lemma 10.2.1. For all f € C°(go(F')) and Y € ho(F'), we have
(fOHY) = / fE+Y + X)dX.
by

Proof. Since g = 4@ ho © Ag ® u, we may assume that f = fi ® fo, ® fa, ® fu. Then

we have

f = fa® foo ® fao @ fus
= fa(0) ® foo (V) @ fan(0) ® ful
= fa(0) ® foo (V) ® fao(0) @ ful

[1]

)7
).

[1]
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On the other hand,

/ FELY X)X = ful@)fp(Y) / fro ® fa(X)dX
> . ) .
= fa(0) ® fo,(Y) ® fa,(0) ® fu(2).

This finishes the proof of the Lemma. O

10.3 Description of the Affine Space = + X

0 0 =
Let A={]0 0 x|} beasubset of u(F).

0 0O

Lemma 10.3.1. Z+ X is stable under the U(F)-conjugation. The map
UF)x (E4+A) 5Z2+2: (u,z) = u ' Xu (10.2)
is an isomorphism of algebraic varieties.

Proof. We have the following two equations

L X Z 0 0 0 L, -X XY-Z
0 I, Y ala, 0 O 0 I =Y
0 0 I 0 bl O 0 0 I

aX bZ—X?2 aX?Y —aXZ-bYZ
=|aly bY —aX aXY —aZ — bY? ,

0 bl —-bY
and
L X Z 0 0 B L -X XY-Z 0 0 B+XC
0 I Y 00 C 0 I -Y =0 O C
0 0 I 0 0 0 0 I 0 0 0

Then the map (|10.2) is clearly injective. On the other hand, for any element in = + 3,
applying the first equation above, we can choose X and Y to match the elements in the

diagonal. Then by applying the second equation, we can choose Z to match the element
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in the first row second column. Finally by applying the second equation again, we can
choose B and C' to match the elements in the first row third column and in the second
row third column. Therefore the map is surjective.

Now we have proved that the map is a bijection of points. In order to show

it is an isomorphism of algebraic varieties, we only need to find the inverse map. Let
A Ty Ty
al, B’ Ty | be an element in = + 3. Set
0 bl C'
1 1 T + X2
X=-A,Y=-0, z=212"
a b b
C=T3—aXY +aZ+bY? B=Ty—aX?Y +aXZ+bYZ - XC.

(10.3)

Then by the two equations above, we have

L X Z 0 0 B L -X XY—-Z A Ty Ty
0 I, Y aly, 0 C 0 I -Y =\|al, B Tj
0 0 I 0 b O 0 O Iy 0 bl '

Therefore the map ([10.3)) is the inverse map of ([10.2]), also it is clearly algebraic. This
finishes the proof of the Lemma. O

Definition 10.3.2. We say an element W € =+ 3 is in "generic position” if it satisfies

the following two conditions:

1. W is semisimple regular.

0 0 X
2. W is conjugated to an element |aly 0 Y | € ¥+ A such that X,Y are
0 bl O

semisimple reqular and XY —Y X s not nilpotent. In particular, this implies that
Hx NHy = Zy.

Let = + X0 be the subset of Z+ X consisting of elements in "generic position”. It is a

Zariski open subset of 2+ . Let 24+ A = (E+ %) N (E+ A).
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10.4 Orbits in = + AY

Lemma 10.4.1. The group Zg(F)\H(F)U(F) acts by conjugation on =+ %, and this
action is free. Two elements in =+ X0 are conjugated to each other in G(F) if and only

if they are conjugated to each other by an element in H(F)U(F).

Proof. For the first part, by Lemma we only need to show that the action of
Za(F)\H(F) on 24+ A" is free. This just follows from the ”generic position” assumption.

For the second part, given x,y € =+ X°, which are conjugated to each other by an
element in G(F'). By conjugating both elements by some elements in U(F'), we may

assume that =,y € =+ A%, Let

0 0 X1 0 0 Yl
xr = CLIQ 0 X2 s Y= aIQ 0 Y2
0 bl O 0 bl O

We only need to find h € H(F) such that h™1X;h = Y; for i = 1,2. The characteristic

polynomial of z is

—Als 0 X
det(z — Alg) =det(| aly Mo Xy |),
0 bl, —M\I

which can be calculated as follows:

0 —)\2/a12 Xl—i-)\/aXQ

det(z — Mg) = det(|al, —\I; X, )
0 bl -5
_ a2~det( —/\2/(1[2 X1+)\/aX2 )
bl -5
0 X;4+MNaXy— 2T
— a2.det( 1 /a 27 ab’? )
bl -l

Hence we have \3
det(x — Alg) = a’b* det(X1 + A/aXy — —bIQ).
a
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Therefore, up to some sign constants £1, the coefficients of the characteristic polynomial

of x are determined by some data of X1, X9 given as follows:

coefficient of A* = btr(X3), (10.4)

coefficient of \* = abtr(X), (10.5)

coefficient of A? = b2 det(X>), (10.6)

coefficient of A = ab®(\ — coefficient of det(X] + AX3)), (10.7)
coefficient of \° = a?b® det(X;). (10.8)

Here the equation holds up to £1 which will not affect our later calculation. Note
that in the nonsplit case, the determinant means the composition of the
determinant of the matrix and the norm of the quaternion algebra; and the
trace means the composition of the trace of the matrix and the trace of the
quaternion algebra.

We can have the same results for y. Now if x and y are conjugated to each other by

element in G(F'), their characteristic polynomials are equal. Hence we have

tr(Xs) = tr(Ya), (10.9)

tr(X1) = tr(Y7), (10.10)

det(X2) = det(Y2), (10.11)

A — coefficient of det(X; + AX3) = A — coefficient of det(Y; + AY3), (10.12)

det(Xl) = det(Yl). (10.13)



136

By the ”generic positive” assumption, X; and Y; are semisimple regular. Then the above

equations tell us that X; and Y; are conjugated to each other by some elements in H (F')
fori=1,2.

We first deal with the split case, i.e. G = GLg(F) and H = GLy(F). By

further conjugating by some elements in H(F'), we may assume that X; = Y] be one of

s 0 s tu
X1=Y1 = ; X1 =Y =
0 t t s

where v € FX/(F*)2 v # 1. By the ”generic positive” assumption, if we are in the first

the following forms:

case, s # t; and if we are in the second case, t # 0. Let
T T
X, = 11 12 Yy = Y11 Y12 .
T21 T22 Y21 Y22
s 0
Casel: If X1 =Y = (0 ) with s # t. By (10.12)), we have sxos +tx11 = Sy20 +
t

ty11. Combining this with (10.9), we have x17 = y11 and x99 = y22. By applying (10.11]),

we have x19x91 = y12y21. By the ”generic position” assumption, z1ox21y12y21 # 0, and

x* 0
hence % = % So we can conjugate Xo to Y2 by an element of the form )
*

Therefore we can conjugate X1, X5 to Y1, Yo simultaneously via an element in H(F).

s tu
Case2: If X1 =Y, = with ¢ # 0. By (10.12), we have str(Xs) — t(vxes +
t s

x12) = str(Y2) — t(vya1 + y12). Combining with (10.9)), we have vxa; + 12 = vy21 + y12.
Let

11 + To2 = Y11 + Y22 = A,
T11T22 — T12T21 = Y11Y22 — Y12y21 = B,
and

V21 + T12 = vy21 + Y12 = C.

By the first and third equations, we can replace x12, x22 by z21,x11 in the second equa-

tion. We can do the same thing for the y’s. It follows that

Axq1 — a:fl — Cxo1 + vx%l = Ay — y%l — Cya1 + vygl = B. (10.14)
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Now for all k € F', we have

-1
k v k v
T
1 k 1 k
1 <k2x11 + kvzoy — kxia — vroy  k2xi9 + kvxes — kvxy — 1)25621)

T2
k2 —w kxll + k‘2$21 — T12 — kxgg kxlg + k23322 — VT11 — k"U.’L‘Ql

If we write the above action in terms of x11, x21, we have

r11 (:UHICQ + (2UIE21 - C)k‘ +vr11 — ’UA)/(]CQ — ’U) = k.x11,
To1 > (x21k2 + (2211 — A)k + vroy — C)/(k:2 —v) = k.xo.

If we want yo1 = k.x21, we need
(((L‘Ql — ygl)kZ + (21‘11 — A)k +vx9; — C + ’Uygl) =0. (10.15)
The discriminant of (|10.15)) is equal to

Aof (10.15) = 4a?, —4Axy + A2 — 4v(a2; — y2)) + 4C(z91 — yo1)
= A? — 4B+ 4vy3, — 4Cyo

A of (10.14),

where the second equality comes from (|10.14]). So the discriminant of ((10.15) is a square

in F'. Hence we can find some k € F' such that y2; = k.z9;. By conjugating by element

k
of the form L x) we may assume that xo1 = yo1. This also implies 12 = y12. Then

by (|10.11|) and (]10.9[), we have T11 = Y11,222 = Y22 Or T11 = Y22,T22 = Y11-
If £17 = x990, we are done. If x11 # x99, the discriminant of (10.14)) is nonzero, so
(10.15)) also has nonzero discriminant. Therefore, it have two solutions ki, ko. Both kq

and ko will make x19 = y12,721 = yo1. By the "generic positive” assumption, ki, ko

conjugate x to different elements. So one of them will conjugate x to y. Therefore we
have proved that we can conjugate Xi, Xo to Y7, Ys simultaneously via an element in

We now deal with the non-split case. We can just use the same argument as
in Case 2. The calculation is very similar, and the details will be omitted here. This

finishes the proof of the Lemma. O
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Remark 10.4.2. As pointed out by a referee, there is another way to prove Case 2 by
extension of scalars. Let EJF be a finite Galois extension such that Xy is split over

a b\
. d) in H(E)

conjugating X1, Xo to Y1,Ys. Without loss of generality, we may assume that a # 0.

E. Then by the argument in Case 1, we can find an element h = (

Also up to an element in Zy(E), we may assume that a = 1. For any 7 € Gal(E/F),
7(h) will also conjugate X1, Xo to Y1,Ya. By the generic position assumption, 7(h) = hz
for some z € Zy(E). But since 1 = a = 7(a), z must be the identity element which
implies that h = 7(h). Therefore h € H(F), and this proves Case 2. The same argument

can be also applied to the non-split case.

Remark 10.4.3. To summarize, we have an injective analytic morphism
(E+0)/HF)(F) — [ tF)/W(G,T). (10.16)
TeT( G)

For each T € T(G), let t°(F)/W (G, T) be the image of the map above. Then it is easy

to prove the following statements.

1. %(F) C t(F). Recall that to(F) is the subset of t(F) consisting of the elements

with zero trace.

2. t%(F) is invariant under scalar in the sense that for allt € t°(F) and A € F*, we
have Xt € t9(F).

3. t2(F) is an open subset of to(F') under the topology on to(F) as an F-vector space.

4. If T is split which is only possible when G = GLg(F), then t°(F) = tg¢q(F).
(This will be proved in the proof of Lemma|11.5.1)).

As a result, we have a bijection
(2+X0)/H(F)U(F) — HtO/WGﬂ (10.17)
TeT(G
Now we study the change of measures under the map ((10.17) (i.e. the Jacobian).
We fix selfdual measures on = + ¥y and H(F)U(F), this induces a measure on the
quotient which gives a measure dit on t°(F)/W (G, T) via the bijection for any
T € T(G). On the other hand, we also have a selfdual measure dt on t*(F)/W (G, T).

The following lemma tells us the relations between d;t and dt.
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Lemma 10.4.4. For any T € T(G), dit = D (t)Y/2dt for all t € °(F).

Proof. Let dat be the measure on t°(F) /W (G, T) coming from the quotient =+A°/H(F).
By Lemma [10.3.1

dot = a*b8d;t. (10.18)
0 0 Xj

For Ty € T(H), define 24Ty = {A(Xl, XQ) = | aly 0 Xso| € E-FAO’Xl € fH(F)}
0 bl O

Then the bijection
E+A/H(F) - ] €@F)/W(G,T)
TeT(G)

factors through

E+A/H(F) - [ E+Tu/Tu(F) - ]_[ O(F)/W (G, T).

TyeT(H) TET(G

By the Weyl Integration Formula, the Jacobian of the first map is D (X1)~! at A(X1, X3).
Combining with (|10.18]), we only need to show that the Jacobian of the map

I =+7u/TuFE) - ]_[ O(F) /W (G, T)
Ty eT(H) TET(G

is a*b*DH (X)DY(A(X1, X2))~1/? at A(X1, Xo). We consider the composite map
E+Ty/Tu(F)— [ €F)/W(G,T)— F° (10.19)
TeT(G)

where the second map is taking the coefficients of the characteristic polynomial. (since
the trace is always 0, we only take the coefficients from degree 0 to 4.) As the Jacobian
of the second map is D(t)'/2 at t € t°(F), we only need to show that the Jacobian of
the composite map is a*b® D (X1) at A(X7, X>).

We only write down the proof for the case when Ty is split, the proof for the rest
* 0

cases is similar. If Ty is split, we may assume that Ty = {<0 )} By the generic
*

position assumption, we know

= 4+ T /T (F) = {A(X1, Xo)| X1 = (Tg O) . Xo = (ml 1) ,m#£n, x %0},

X ni
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The measure on E + Ty /Ty (F) is just dmdndmidnidz. Note that we always use the
selfdual measure on F'. In the proof of Lemma we have written down the map

(110.19) explicitly (i.e (10.4) to (10.8])):

(m,n, my,ny,x) = (b(my +n1),ab(m + n),b*(miny — x), ab®(mny + min), a*b*mn).
(10.20)
By a simple computation, the Jacobian of ((10.20)) is
a*t®|(m — n)?|p = a3 DU (X1).

This finishes the proof of the lemma. O
10.5 Local Sections
For T € T(G), we can fix a locally analytic map

OF) - Z24+20:Y = Vs (10.21)

such that the following diagram commutes:

24 X0 — t(F)/W(G,T)

tO(F)
Then we can also find a map Y — vy such that Yy, = 7}71nyy.

Lemma 10.5.1. If wp is a compact subset of to(F'), we can choose the map Y — Yy

such that the image of t°(F) Nwr is contained in a compact subset of = + A.

Proof. We only write down the proof for the split case, the proof for the non-split case is

0 0 X
similar. Given t € t°(F), we want to find an element of the form | al, 0 Y | that
0 bl O

is a conjugation of t. As in the proof of Lemma[10.4.1] the characteristic polynomial of ¢

gives us the determinant and trace of both X and Y, and also an extra equation (i.e. the
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A-coefficient). Once ¢ lies in a compact subset, all these five values are bounded. Hence
we can definitely choose X and Y such that their coordinates are bounded. Therefore,

both elements belong to a compact subset. O

Combining the above Lemma and Proposition we can choose the map Y — 7y
with the property that there exists ¢ > 0 such that

o(yy) < ce(14 | log DY(Y) |) (10.22)

for all Y € t°(F) Nwr.

10.6 Calculation of I,(f)

By Lemma [10.2.]
I(f,9) = (“%)(0) = /ng(EJrX)dX.

This implies that

I.(f) = 9F(Z + X)dXk(g)dg.
n-/ . [ 32+ X)ixnla)dg

By Lemma [10.4.T] Remark [10.4.3] and Lemma [10.4.4] the interior integral equals

Srer | WG T) [ /

/ 9f(y " Yyyy) DO(Y)V2dY dy
Zu(FV\H(F)U(F) Jo(F)

=Yrer) | WG, T) [ /

/ w9 f(y)DE(Y)/2dY dy.
Zu(F)\H(F)U(F) JO(F)

So we can rewrite I.(f) as

L) = Srer W@ 7 [ flg™1Y )y g)dg DO (V) 20,

) /ZG(F)\G(F)

For T € T(G),Y € t°(F), define ky on A7(F)\G(F) to be

ky(g) = I/(AT)/ n(’y;lag)da,. (10.23)
Za(F)\Ar(F)
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Then we have

Lu(f) =Zrer@v(Ar) ™ | W(G,T) |

10.24
/ / g'Y g)ry (9)dgD ()" /2dY. o2
to AT \G(F



Chapter 11

Calculation of the Limit

limN%ooIa:,w,N(f)

In the previous chapter, we made the transfer of the integral I, ,, n(f) to the form that
is similar to the Arthur local trace formula. The only difference is that our truncated
function is different from the one given by Arthur. In this chapter, we first show that
we are able to change the truncated function. Then by applying Arthur’s computation
of the truncated function, we are going to compute the limit imy_ o0 Iy n(f). This
is the most technical chapter of this paper. In Section 11.1 and 11.2, we study our
truncated function ky and introduce Arthur’s truncated function. From Section 11.3
to Section 11.5, we prove that we are able to change the truncated function. In Section
11.6, we compute the limit imy_,o0 Iy ~(f) by applying Arthur’s computation of the

truncated function.

11.1 Convergence of a Premier Expression

For x € Hss(F) elliptic, using the same notation as in Section 9.2, we have

wa(ﬁ g) = / / gf;g,w(X/ + X//)dX//dX/.
L(F) JB(F)

143
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Then we can write I, N(f) as

Lon(f) = / / / 98 (X' + X")dX "k n(g)dgd X
L (F) J Ho (F)U (F)\G(F) Jb(F)

Rewrite the two interior integrals above as

/ / / 9"9 £ (X' + X")dX"kn(g"g)dg" dg.
Gz(F)\G(F) JHy(F)Uz (F)\Gz(F) Jy'(F)

After applying the formula ((10.24)), together with the fact that we have defined t' = b/,

in Section 9.2, we have

Iywn(f) :ETGT(GI)V(AT N ZGz\AT)il | W(G4,T) |71

> DG”” X 1/2
/t’(F)x(t”)O(F) (%) (11.1)

X / 9t (X' + X"k xo (g)dgd X" dX’
Za AT (F)\G(F)

where

knx(9) =v(Ar N ZGx\AT)/ ,%N('y)_(,l,ag)da. (11.2)
Za, NAT(F)\AT(F)

Note that the formula is only for the case when x is in the center. However, as
we explained at the beginning of Section 10, when x is not contained in the center, the
computation is easier, and we can get a similar formula as with replacing ¥ by
(t")° and replacing G by G..

Lemma 11.1.1. For T € T(G,), let wp» be a compact subset of ¥'(F). There exist a
rational function Qr(X") on t'(F), k € N and ¢ > 0 such that

rnx(g) £ ON*a(g)* (1 + [log(|Qr(X")|p))* (1 + |log D (X")[)*
for every X" € (\°(F) Nwyn,g € G(F),N > 1.

Proof. We first prove the following statement:

(1) There exist ¢, ¢ > 0 such that Ky x(g'g) < HICI,N+CU(9) (¢") for all g € G(F) and
g € G.(F). Here K,/]’V is the truncated function for G, defined in the similar way as k.
In fact, let ¢’ = m/v'k', K'g = muk with m,m' € M(F), u,v' € U(F) and k, k" € K.

Then kn(¢'g) = kn(m'm). If this is nonzero, let

my 0 0 mi 0 0
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By the definition of xx (as in (5.4) and (5.5])), we have

-)71(mj)71mim§) <K N.

a((m]

On the other hand, we know o(m) < o(g). Hence o(m;) < o(g), which implies that

o(mi(mf) ™) < o((m})~ (my) ™ memi) + o(mq) + o (m;) < N +o(g).

This proves (1).

Now we have
wlg) = w(ar) | i (rxhag)da
ZGx ﬂAT(F)\AT(F)

< V(AT) / KZ/N+CU(g)((’YX")_la)da
ZG,NAT(F)\Ar(F)
< RZ’NJrca(g),X”(l)'

So it reduces to show the following:

(2) There exist an integer k£ € N, and ¢ > 0 such that
KN xn (1) < eNF(L+ [Tog(IQr(X™) )] (1 + |log D (X)) .

Again here we only prove for the case where x is in the center. Otherwise, we are
in the lower rank case, whose proof is similar and easier. If x is in the center, G, = G
and X” = X. For simplicity, we will replace X” by X, % by ky and D% (X") by
D¢ (X ) for the rest of the proof. We first deal with the case when T is split. By
Lemma [10.5.1] we know for X € wp, X5 belongs to a compact subset of =+ A, and
a(yx) < 14 |log DY (X)].

If a € Ap(F) such that ky(yyx'a) = 1. By the definition of ky (as in and
(5.5)), we have vy'a = hvy where v € U(F), h € H(F), and y € G(F) with o(y) < N.

' = v~ 1h=1 Xghv. Since Xy, belongs to a compact subset, o(yXy 1) <

Therefore y Xy~
N, and hence

o(v *h ' Xshv) < N.

By Lemma [10.3.1} the isomorphism (|10.2) is algebraic. This implies o(v) < N and
o(h~'Xsh) < N.
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Now let
0 A
Xs=|aly 0 Y
0 bl 0

By Proposition we can find s € GLy(E) such that s~!'Zs is a diagonal matrix
and o(s) < 1+ |log(DEL2(F)(s=1Zs))|. Here E/F is a finite extension generated by
the elements in F* /(F*)2. Note that DS2(E)(s71Zs) = tr(Z)? — 4det(Z), while the
right hand side can be expressed as a polynomial of the coefficients of the characteristic
polynomial of X, so it can be expressed as a polynomial on to(F'). We remark that if
x is not in center, this will be polynomial on t’(F').

After conjugating by s, we may assume that Z is a diagonal matrix with distinct
eigenvalues A\; and A2 (we only need to change h to sh). Here the eigenvalues are
distinct because of the ”generic position” assumption. After multiplying by elements in

the center and in the open compact subgroup, together with the Iwasawa decomposition,

1 z A 0
h =
0 1 0 1
1 —=xz v 1 =z _ (Y1 Y2 '
0 1 0 1 Y21 Y22

Since o(h~'Xxh) < N, we have o(h='Zh),0(h~'Yh) < N. This implies

we may assume that

and

o(x(A1 — N\2)),0(Ay12), O'(Aflygl) < N.

Here for t € F', o(t) = log(max{1,|t|}). Therefore, we obtain that o(z) < max{1, N —
log(|A\1 — A\2|)}. Here Z and Y belong to a fixed compact subset before conjugation.

. . 1 x 1 x
Furthermore, after conjugating by s and <0 1), oY) < o(s)+o( (O 1) ). So we
have
0(A) < max{l,N —o(yi2)}

< max{1,N+a(<(1] T)) +o(s) — o(yiaya1)} (11.3)
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and
(A7) < max{l,N —o(yx)}

< max{l,N—Fa(((l) ";>)+a(s)—a(y12ym)}. (11.4)

Note that here by the ”generic position” assumption, we have y12921 # 0.
Recall that as in the proof of Lemma|10.4.1] we have the following relations between
the coefficients of the characteristic polynomial of Xy and the data given by Z and Y:

coefficient of \* = btr(Y) := bay,

coefficient of A3 = abtr(Z) := abas,
coefficient of A2 = b% det(Y) := b%ao,
coefficient of A = ab®(\ coefficient of det(Z + \Y)) := ab’ay,
coefficient of \” = a2b% det(Z) := a*bay.

Then we have
Y11 + Y22 = a4
AMY11 + Aay22 = a1

and
A+ A2 =a3
)\1)\2 = Qg

This implies

_ a1—XMaq
{ Y= oa=n
_ Aau—ay
Y22 = A2—1
So we have

B _)\1)\2@3 — a1a4()\1 + )\2) + a% B agai —aijazaq + a%
Y11Y22 1 — Ao)2 a% ~ dag .

In particular, yioy21 = det(Y) — y11y22 = a2 — y11y22 is a rational function of the a;’s,

and hence it is a rational function on to(F'). Also

o <; T)) = o(z) < max{1l, N —log(|]\1 — A\2|)} (11.5)
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where the right hand side can be expressed as a logarithmic function of some rational

function on to(F).

Finally, combining (11.3), (11.4), (11.5), and the majorization of s, we can find
a rational function Q7 (X) on t(F') such that o(h) < N + (1 + log|Q7(X)|). Then

combining the majorization of v, y and 7y, we know that up to an element in the center,

if k(75 a) = 1, we have
o(a) < N+ (1 +1og Qr(X)) + (1 +log DY(X)). (11.6)

Since mes{a € (Zg, N Ar(F)\Ar(F) | 0z, \qc,(a) < 1} < rk for some k € N, the
Lemma follows from the definition of ky x» (as in (11.2))).

Now if T is not split, since we are talking about majorization, we may pass to a finite
extension. Then by the same argument as above, we can show that if xy (’y;(la) =1 for
some a € Ap(F'), up to an element in the center, the estimation will still holds.

Then we can still prove the lemma as in the split case. O

Now let Qr be a finite set of polynomials on t/(F) that contains D% (X"), the
denominator and numerator of @7 (X"”) and some other polynomials that will be defined
later in Section 11.5. For [ > 0, let to(F)[< {] be the set of X = X'+ X" € t;(F) such
that there exists @ € Qr with |Q(X")|r <[, and let to(F)[> I] be its complement in
to(F). We define Iy <; to be the integral of the expression of I, ., n(f) restricted on
(t(F) x (")YF)) Nto(F)[< ] (as in (11.1)). Similarly we can define Iy ;. We then

have

LowN(f) =In<i+ N> (11.7)
Lemma 11.1.2. The following statements hold.
1. There exist k € N and ¢ > 0 such that | I, n(f) |< eN* for all N > 1.
2. There exist b > 1 and ¢ > 0 such that | Iy <y-v |[< ¢N! for all N > 1.

Proof. By condition (5) of a good neighborhood (as in Definition [3.1.1)), there exists a
compact subset I' C G(F') such that (gfﬁ,w)A =01if g ¢ GL(F)T.

By replacing Zg, Ar(F)\G(F) by Zg, Ar(F)\Gy -~ for some v € I', we can majorize
Vf;g,w by a linear combination of functions f’ ® f” where f' € C>(g,(F)), and f” €
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C>*(g"(F)). So the integral in ([11.1)) is majored by

/ DG (X//)l/Q / f,(X/)f”(g_lX”g)HN7X// ('yg)dng"dX'.
Y(F)x(¥)0(F) Zay AT (F)\Ga(F)
(11.8)

Now we fix a compact subset wp» C t/(F') such that for every g € G,(F'), the function
X" — f"(g71X"g) on t"(F) is supported on wy~. By Proposition up to an element
in Zg,(F)Ar(F), we may choose g such that o(g) < 1+ |log(D% (X"))|. Using the
lemma above, we have

ke (79) < N*¢(X")
where

$(X") = (1 + [log(|Qr(X")|r))F(1 + [log(D“ (X")))*",
So the expression (11.8)) is majored by

Nk/ DGI(X//)1/2/ f’(X')f”(g_lX”g)¢(X”)dng"dX.
Y(F)x (¥)0(F) Za, Ar(F)\Gs(F)
This is majored by
N* / Jo, (X' + X" f @ fo(X")dX"dX' (11.9)
to(F)

where Jg, is the orbital integral. Due to the work of Harish-Chandra, the orbital
integral is always bounded, and hence ((11.9)) is majored by

N* / H(X"dX"dX' (11.10)

where w is a compact subset of to(F'). By Lemma 2.4 of [W10], ¢(X) is locally integrable,
and hence the integral in ((11.10)) is convergent. This finishes the proof of the first part.

For the second part, by the same argument, we have majorization

| T |y<n-v< N* P(X)dX.
N Wty (F)[<N Y]

Then, by the Schwartz inequality, the right hand side is majored by
([ wx) ([ H(X VX))V
wNto(F)[<N—?) wNto (F)[KN -]
< NP Ygco,mes{X €w | Q(X) |[r< N7} < NH(NTY

for some r > 0 that only depends on the dimension of ty. Now we just need to let b
large such that N*(N~—°)" <« N~!. This finishes the proof of the Lemma. O
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Definition 11.1.3. With the notations above, let I} , n(f) = Insny-b-

By the Lemma above, we have

lim (Lo v (F) ~ T (£)) =0 (11.11)

N—oo

11.2 Combinatorial Definition

Fix T' € T(G;), let My be the centralizer of Ar in G. This is a Levi subgroup of G, it
is easy to check that Ay = Apy,. Since z is elliptic, we know Zg, N Ar = Zg for any
T € T(Gy), and hence we have v(Ar N Zg \Ar) = v(Zg\Ar) = v(Ar). Note that we
always choose the Haar measure on G so that v(Zg) = 1.

Let Y = (Yp,)p,ep(m,) be a family of elements in apy, that are (G, My)-orthogonal
and positive. Then for Q = LUg € F(My), let { — a%(g,y) be the characteristic
function on ay, that supports on the sum of a; and the convex envelop generated
by the family (an) P,eP(M,),P;CQ- Let 7 be the characteristic function on ap, that

supports on aﬁ/lﬁ + aa The following proposition follows from 3.9 of [Ar91].

Proposition 11.2.1. The function

¢ = 05, (¢ V)70 — Yo)

is the characteristic function on anr,, whose support is on the sum of ag and the conver
envelope generated by (Ypﬁ)Pﬁe'p(Mﬂ)’PﬁCQ. Moreover, for every ¢ € ap, the following
tdentity holds.

Sgery i, (G V)¢ — Yo) = 1. (11.12)

11.3 Change the Truncated Function

We use the same notation as in Section 11.2. Fix a minimal Levi subgroup M;,;, of G
contained in M}y, a maximal open compact subgroup K, of G that is in good position
with respect to M, and fix Ppin = MyninUmnin € P(Mpin). Let Ay, be the set of

simple roots of Ay

min

in Uy,. Given Y € alﬁmm, for any P’ € P(Mnin), there exists

a unique element w € W (G, M) such that wPy,w™! = P'. Set Yp = wYp

min ®
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The family (Ypr) prep(a,,,,) 18 (G, Miin)-orthogonal and positive. For g € G(F), define
Y(g) = (Y(9)Q)qep(ry) to be

Y(9)g = Yo — Hg(9).

Then it is easy to show the following statements.

(1) There exists ¢; > 0 such that for any g € G(F') with o(g) < ¢;inf{a(Yp,,, );a €
Apin}, the family Y(g) is (G, My)-orthogonal and positive. And Y (g)g € ag for all
Q € F(My).

We fix such a ¢;. Note that for m € My(F'), Y(mg) is a translation of Y(g) by

Hpy,(m). Hence Y(g) is (G, My)-orthogonal and positive for
9 € My(F){g' € G(F) | o(¢) < cxinf{a(Vp,,,); @ € Apin}t}-
For such g, let

ilg) = viar) [ 05, (s, (0), Y (9))da. (11.13)
Za(F)\Ar(F)
(2) There exist ca > 0 and a compact subset wr of to(F) satisfying the following

condition: If g € G(F), and
X € to(F)[> NI n (¢(F) x (t")°(F))

with (9f; )} (X) # 0, then X € wr and o7(g) < c2log(N).

In fact, since (9f,,)H(X) = (few) (97 Xg), g~ Xg is contained in a compact subset
of gz 0(F). This implies that X belongs to a compact subset of to(F'). By Proposition
we have

or(g9) < 14 | log D (X) |= 1+ | log D% (X") |< log(N)

where the last inequality holds because X € to(F)[> N~?] and belongs to a compact
subset.
Now we fix wyp and ¢ as in (2). We may assume that wp = wyr X wpr where wyr is

a compact subset of t'(F) and wp~ is a compact subset of t/(F). Suppose that
calog(N) < epinf{a(Yiin) | @ € Apin}-

Here ¢; comes from (1). Then 0(g) is defined for all ¢ € G(F') satisfying condition (2).
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Proposition 11.3.1. There exist ¢ > 0 and Ny > 1 such that if N > Ny and clog(N) <
inf{a(Yin) | @ € Apin}, we have

" (Omyxr(gdy = | fE(X0b(g)dg (11.14)

ch (F) A (F)\G(F) 2 (F)Ar (F)\G(F)

for every X € to(F)[> N~ n (¢(F) x (¢")°(F)).

Proof. For any Zp, , € a}tmm, replacing Yp, . by Zp,,.., we can construct the family
Z(g) in the same way as )(g). Assume that
calog(N) < cpinf{a(Zmin) | @ € Apin}- (11.15)

For g € G(F) with o(g) < calog(N), Z(g) is still (G, My)-orthogonal and positive.
So for a € Ar(F'), by Proposition [11.2.1] we have

Sqeron o, (i (a), 2(9))mq(Ha, (a) — Z(9)g) = 1.

Then we know
0(9) = V(A1) Xqer,) (@, 9) (11.16)
and

kn,x(9) = V(A1) Eqern) kN x (Q, 9) (11.17)

Q.9 = [ o, (o, (a), Y(9))0, (Ho, (). Z(9)) 70 (Ho, (a) — Z(g)g)da
Zc\Ar(F)
(11.18)
and

K x(Q,9) = /

kN (xhag)osy, (Ha, (a), 2(9))7o(Hu, (a) — Z(9)q)da.
Ze\Ar(F)

(11.19)

(3) The functions g = 0(Q, g) and g = kn x»(Q, g) are left Ap(F)-invariant.
Since for t € Ap(F), Hpi(tg) = Hp,(t) + Hpi(g) for all P' € P(M;). We can just
change variable a — at in the definition of ©(Q, g) and ry x~(Q,g). This gives us the

left Ap(F)-invariance of both functions, and proves (3).
Now for X € '(F) x (t")°(F), we have

9f2 LX)k x(9)dg = v(AT)Sgern)1(Q, X) (11.20)

9

/ZGIAT(F)\G(F)
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and

/ 9f1 (X)B(9)dg = v(Ar)Eqer ) T (Q, X) (11.21)
Za, Ar(F)\G(F)
where
1Q.x) - [ (X (Qu ) (11.22)
Za, AT(F)\G(F)

and

J(Q, X) = / 9fE J(X)D(Q, g)dyg. (11.23)
Zey AT(F)\G(F)

Then it is enough to show that for all @ € F(My), I(Q, X) = J(Q, X).
Firstly we consider the case when () = G. Suppose
inf{a(Yp . a € Apint,
sup{a(Zp,,;,) | @ € Apin} < t(Vem) | J (11.24)
log(IN)2.
Then we are going to prove
(4) There exists Ny > 1 such that for all N > Ny, g € G(F) with o7(g) < calog(N),
and for all X" € wpr N (¢)°(F)[> N7, we have

kN xn (G, g) = 0(G, g). (11.25)

Here t'[> N~°] means that we only consider the polynomials D% (X") together with
the numerator and the denominator of @Q7(X"”) which are elements in Q7.

In order to prove (4), it is enough to show that for all a € Ap(F') with a]% (Hu,(a), 2(g)) =
1, we have U]C\*}ﬁ(lET]\/[’j (a),Y(g)) = kn(7x ag). Since both sides of (T1.25) are left Ap(F)-
invariant, we may assume that o(g) < ¢z log(V).

By the first inequality of (11.24)), J]C\T'@(I-I]\/[ﬁ (a), Z(g)) = 1 will implies
o, (Hagy(a), Y(g)) = 1.

Then by the second inequality of (11.24), together with the fact that o(g) < log(N), we
know | Z(g)p |< log(N)? for every P’ € P(Mj), here |- | is the norm on ar,/ag- Then
combining with the fact that U]\G/[u(H my(a), Z(g)) = 1, we know that up to an element
in the center, o(a) < log(N)2. Since the integrals defining I(Q,X) and J(Q, X) are
integrating modulo the center, we may just assume that o(a) < log(N)?.

By and the fact that X" € wpnv N (t)°(F)[> N7, we know o(yx) <
1+ | log D% (X) |< log(N), and hence o(vy ag) < log(N)2. By the definition of ky,
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together with the relations between the norm of an element and the norm of its Iwasawa
decomposition, we can find ¢3 > 0 such that for any ¢’ € G(F) with o(¢’) < ¢sN, we
have ky(g') = 1. Now for N large enough, we definitely have o(yy'ag) < c3N. For
such N, we have k(75 ag) =1 = O’f/[ﬁ (Hu,(a), Y(g)). This proves (4).

Combining (2) and (4), together with and (11.23), we have

1(G, X) = J(G, X) (11.26)

for every N > Ny and X € to(F)[> N~ n ({(F) x (¢")°(F)).

Now for ) = LUg € F(M;) with Q # G We can decompose the integrals in
(11.22) and (11.23) by

1Q,X) = / / / ulk g2 (X)kn xn(Q,alk)dadg(l)dldk  (11.27)
Kmin J Z, Ar(F)\L(F) J U (F) ’

and
J(Q, X) :/ / / kit (X)0(Q, ulk)dudg(l)dldk.  (11.28)

The following two properties will be proved in Section 11.4 and 11.5.
(5) If g € G(F) and u € U (F) with

0(9),0(ug) < cpinf{a(Zp,_, )| @ € Apin},

then 7(Q, ug) = 9(Q, 9)-
(6) Given ¢4 > 0, we can find ¢; > 0 such that if

cslog(N) < inf{a(Zp,,, ) | @ € Apin},

in

we have rn x(Q,ug) = kn x»(Q, g) forallg € G(F) and u € U (F) with o(g), o (1), o(iig) <
cqlog(N), and for all X" € wpr 0 (¢)°(F))[> N7Y).
Based on (5) and (6), we are going to prove the following statement.

(7) There exists ¢5 > 0 such that if
cslog(N) < inf{a(Zp,. )| @ € Apin}, (11.29)

we have I(Q, X) = J(Q,X) =0 for all X € to(F)[> N7V n ({(F) x ¢"O(F)).
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In fact, by (2), we may assume that X € wp. We first consider 1(Q, X). By (2),
we can restrict the integral |, Zer, Ar(F)\L(F) in to those [ for which there exist
u € Ug(F) and K € Kppn such that or(ulk) < calog(N). Then up to an element
in Ap(F), | can be represented by an element in L(F) such that o(l) < ¢glog(N) for
some constant cg. We can find ¢7 > 0 such that for all [,u and k with o(l) < cglog(V)
and o(ulk) < calog(N), we have o(u) < c7log(IN). Now let ¢4 = ¢2 + ¢7, and choose
¢5 as in (6). Then by applying (6), we know that for fixed k € K, pin,l € L(F) with
o(l) < cglog(N), we have

kit (X) kN xn(Q, alk) ="k ff (X )kn xn(Q, 1K) (11.30)

for all u € Ug(F). On the other hand, if o(ulk) > c2log(IN), both side of (11.30]) are
equal to 0 by (2). Therefore (11.30) holds for all @, [ and k.

From ([11.30)), we know that in the expression of I(Q, X) (as in (11.27))), the inner

integral is just
[ o,
Ug(F) ’

This is zero for Q # G by Lemma Hence I(Q,X) = 0. By applying the same
argument except replacing (6) by (5), we can also show that J(Q, X) = 0. This proves
(7), and finishes the proof of the Proposition.

The last thing we need to do is to verify that we can find Zp,_, satisfies condition
(11.15), (11.24) and (11.29)). This just follows from the conditions we imposed on N
and Yp O

min *

11.4 Proof of 11.3(5)

By , we have

Q.6 = [ 05, (Hag, (@), Y(9))0%, (Har (0), Z(9))mq(Ha, (@) — Z(g)q)da.
Za(F)\A(F)

The function { — JJ?/Iﬁ(C,Z(g)) and ¢ — 79(¢ — Z(g)q) only depend on Hp/(g) for
P’ € F(My) with P' C Q. For such P', Hp/(ug) = Hp/(g) for 4 € Ug(F). Therefore
for all u € Ug(F'), we have

0, (s, (a), 2(9)) (i, (0) — Z(9)q) = 0, (H,(a), Z(ag))rq(H, (a) — Z(ag)q).



156
Now for all a € Ap(F') with the property that

o, (H,(a), 2(9))7q(Hu,(a) — Z(g)q) #0,

we need to show that

For any P’ € P(Mj) with P’ C @, it determines a chamber aé,’f in aﬁ/[u. Let ¢ = Hyy,(a),

and fix a P’ such that projf%(( ) € C’L(aILD’,Jr) where C'L means closure.
Lemma 11.4.1. ( € CL(a},).

Proof. By the definition of the functions 01?4,1 and 7, together with the fact that
a]% (Hu,(a), Y(9))mQ(Huy(a) — Z(g9)q) # 0, we know that ( is the summation of an
element ' € ag and an element ¢” belonging to the convex envelop generated by Z(g)p»
for P" € P(My) with P” C Q. For any root a of Ay, in g, positive with respect to P',
if o is in Ug, then it is positive for all P” C @ above. By 11.3(1), Z(g)pr € af,, and
a(¢”) > 0. Also we know a(¢") > 0 because « is in Ug and ¢’ € aa Combining these
two inequalities, we have a(¢) > 0.

If ais in Upr N L, then a(¢) = 04(107“0]']%4ﬁ (€)) > 0 by the choice of P’. So the lemma
follows. O

By Lemma 3.1 of [Ar91], for ¢ € CL(a},), aﬂ%(g,y(g)) =1 is equivalent to certain
inequality on ¢ — Y(g)ps. This only depends on Hp (g). Since P/ C Q and Hp /(g9) =
Hpi(ag), (11.31) follows. This proves 11.3(5).

11.5 Proof of 11.3(6)

Same as in Section 10.6, we fix a map X" — ~yx» such that

1. There exists a compact subset Q of =+ ¥ such that X% = v X" yx» € Q for all
X" ewpr N (f”)o(F).

2. There exists ¢; > 0 such that o(yxr) < ¢1log(N) for all X" € wypn N (") (F)[>
N
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For Q = LUg € F(My), let 225 be the roots of Ay, in uq.

Lemma 11.5.1. For ¢ > 0, there exists ¢ > 0 satisfying the following condition: For
gwen a € Ap(F), g € G(F), u € Ug(F) and X" € wpn N (¢")°(F)[> N7Y, assume
that o(g),o(u),o(ug) < clog(N), and a(Hyy(a)) > c'log(N) for all o € 22'2. Then

kn(Yxratg) = £y (Yxnag).

Proof. We first prove:

(3) It’s enough to treat the case when T' € T'(G,) is split.

In fact, if F//F is a finite extension, we can still define k% on G(F') in the same
way as ky. It is easy to see that ﬁﬁ/ = KNual p (wp) OLL G(F), and hence we can pass to
a finite extension of F'. Therefore we may assume that 7" and G, are split. This proves
(3).

(4) Let X" — yxn, X5" = (yx») "' X~x~ be another local sections satisfying Condi-
tions (1) and (2). Then the lemma holds for yx», X%, if and only if it holds for vx», X5".

For X" € t'(F), by Lemma [10.4.1] there exist u(X") € U,(F) and t(X") € Hy(F)
such that

X5 = uw(X") (X" XL (X u(XT).

By the choice of X{, we have t(X")"1X{t(X") € E+ A. It follows that u(X”) and
t(X")71XY¢t(X") can be expressed in terms of polynomials of Xx”. Hence they are

bounded. By Lemma [11.1.1] we know
o(t(X") < 1+ | log | Qr(X") |F| .

So for X" € (¢")°(F)[> N~*] Nwzw, we have o(t(X")) < log(N).

Note that the conjugations of X" by yx» and by yx»t(X")u(X") are the same.
Since X" is regular, there exists y(X") € T'(F) such that yx» = y(X")yx»t(X")u(X").
The majorization of yx», yx»,t(X"), and uw(X"”) implies that o(y(X")) < log(N) for
X € to(F)[> N’)Nnwr. Let ¢ > 0,a,g,%, X" be as in the statement of lemma. Since
kn is left H(F)U(F)-invariant, we have

kn((1xr) atig) = kn(vyhat'g'), s ((1x7) " ag) = kn(vynag)

where ¢’ = y(X")"tg and @ = y(X") tuy(X").
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Now suppose that the Lemma holds for yx~, X{. By the above discussion, there
exists ¢’ > 0 such that o(¢’),0(@),0(@'g") < ’"log(N) for g and @ as in the lemma.
Let ¢ be the ¢ associated to ¢ = ¢ for yx» and X3,. This ¢ is what we need for yx»
and Xx". The proof for the reverse direction is similar. This proves (4).

We go back to the proof of the lemma. We only deal with the case when x is in
the center, the other cases follow from the same method and the calculation is much
easier. In this case, X = X”. We replace X” by X for the rest of the proof. Since
T is split, My = T. We may choose Py = MyN; € P(My) and only consider those
a € Ap(F) with Hyy,(a) € C’L(alﬁu). Then we must have P4 C (). By conjugating by a
Weyl element w, we may assume that P, C P is the lower Borel subgroup. Note that
when we conjugate by w, we just need to make the following transfers: X — wXw™!,
Yx — wyx, a — waw™ ', @ — wiw' and g — wg. This is allowable by (4). Also
note that although in (3) we reduce to the case where T split, it still matters whether
we are starting from the split case or the nonsplit case since the definition of ky really
depends on it. If we are in the nonsplit case, we can make P C @ since P is the minimal
parabolic subgroup in this case; but this is not possible in the split case since P will no
longer be the minimal parabolic subgroup.

For X = diag(x1,x2, 23, 24,25, 26) € toreg(F), if | 22 — 21 |p> max{| x5 — 24 |F, |

x5 — x6 |r}, define

X1 0 0
X/E: aly Xo 0
0 bh X;
0 1 24 C
where we define X; = o , Xy = T3t m Cand X3 = rs+n —n"+0n
0 a2 —m?+Bm x4—m 1 L6 — M
with
A+B+C A+B-C A+B+C A+C-B
m= ’ , N= : )
2 24 2 24

where A = 9 — 21, B = x4 — x3, and C = 2 — 5. Then the map X — X{, satisfies
condition (1). (Note that we assume | A |> max{| B |,| C' |}.) We can find an element

px € P of the form px = uxmx such that pXX’Ep;(1 = X where
ma 0 0
mx = 0 mog O e M,ux € U.
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It follows that mxdiag(X1, Xo, Xg)m)_(1 = X. So we can choose

_1 1 1 -1 1 1
my = Ia,my " = sMmg = .
-m B-—m -n C—n

Similarly, we can define mx and X{ for the case when | z3 — x4 |p> max{] z1 — z2 |
| x5 — 6 |F} or | x5 — 26 |F> max{| x1 — 22 |F,| T3 — 24 |F}.

Now by adding polynomials x1 — z2, 3 — 4 and x5 — xg into the set Qr, for
any X € wr Nt°(F)[> N7, we have o(m) < log(N). Applying Proposition
again, we know that px, X{. satisfy Conditions (1) and (2). In fact, here we know
that o7(px) < log(N) and o(my) < log(N) for X € wy NtO(F)[> N7, these force
o(ux) < log(N). Now by (4), it is enough to prove this Lemma for py, X5..

We will only deal with the case when | xo — x1 |p> max{| x5 — x4 |p,| x5 — 26 |F},

the rest cases follow from a similar calculation. Applying the Bruhat decomposition,

. 11 1 0
m2 = :bX’QwX72.
0 B—m —mo 1

Similarly we can decompose m3 and my in this way. Let

we have

bx = diag(bx,1,bx2,bx,3), wx = diag(wx, 1, wx 2, wx3).

By adding some more polynomials on Qr, we may still assume that o(wx) < log(N).

(Note that ™5 and "5 are rational functions of the z;’s.) It follows that o(bx) <

m n—

log(N). Now we can write

Py =bxwx(iy) "t =byvx

for some vy = wx(ux)"! € Uy(F), and we still have o(bx),o(vx) < log(N). Since
Py C Q, we can write vx = nxux where nx € Uy(F) N L(F) and ux € Ug(F). Then

we have

vxaug = nxuxaug = nxaug - (g_lﬁ_la_luxaﬁg)

1

= a((a 'nxa)ta(a " nxa)) - (a_ln;(lag) (g7t

1

o tuxaiyg)

= at/g'k.



160
For all a € Ap(F) with inf{a(Hy(a)) | o € 25} > ¢4 log(N) for some ¢4 > 0 large,

a 'uxa — 1 is very close to zero. Hence we can make

k=g o ta tuxatg € K

for all o(g),0(u) < clog(N). Since ky is right K-invariant, we have

1 _ —1 1
kn(py atg) = kn(bxvxaug) = kny(bxau' g'),
(py atug) ( ) ( ) (11.32)

rn(py'ag) = kv (bxvxag) = kn(bxag').
Also since Hyy,(a) € C’L(ajgﬁ), a~'nyxa is a contraction of nx, and hence we still have
o(u),o(g") < log(N).

If we are in the non-split case, then we have already make P C @, and hence
Ug C U. So the @' of the first equation in can be moved to the very left
via the a-conjugation and the bx-conjugation. Then we can eliminate it by using left
U-invariance property of xx. This proves the Lemma.

If we are in the split case, we may assume that @' € Uy (F)NM (F) since the rest
part can be switched to the front via the a-conjugation and the bx-conjugation, and then
be eliminated by the left U-invariance property of k. Let ¢ = u/m’k’ be the Iwasawa
decomposition with v’ € U(F),m’ € M(F) and k' € K. Then o(m’) < ¢olog(N) for
co = lc where [ is a fixed constant only depends on G. (Here we use the fact that
the Iwasawa decomposition preserves the norm up to a bounded constant which only
depends on the group and the parabolic subgroup.) We can eliminate «’ and k' by the
left U-invariance and right K-invariance properties of k. Now applying the Iwasawa
decomposition again, we can write m’ = V'K’ with o’ upper triangle. By the same reason,
we have o(V') < ¢1log(N) for some ¢; = I'cy = ll'c. Again by the right K-invariance
property of xy, we can eliminate k’. b’ can be absorbed by a and @’. After this process,
we will still have the majorization for @’ (i.e. (@) < log(N)), and we will still have
a(Hyy,(a)) > ¢"log(N) for all a € X}, here " = ¢/ —¢;. So we may assume that m/ = 1.

In this case, we have
kn(bxag') = kn(bxa), ky(at'yg’) = Ky (bxat).

Now let bxa = diag(l,l2,1l3) and let bxaw = diag(l},15,15) where [; and [} are all

upper triangle 2-by-2 matrices. Since @’ is an unipotent element and o(u') < log(V),



161

Il = ljn; for some unipotent element n; with o(n;) < log(N). Then we know for any

.. -1, _ (a7 Nnetly _ —1[a T ' . . e
1<4,7<3,1;l; = 0 cand ()7 = n; 0 nj. Since in the definition
c c

of ky for the split case (as in )7 we do allow the unipotent part to be bounded by
(1 + €)N while the diagonal part is bounded by N, those n;’s will only add something
majorized by N + C'log(N) on the unipotent part and not change the semisimple part.
So if we take N large so that eN > C'log(N), we have

kn(bxat'g") = kn(bxag').
This finishes the proof of the split case, and finishes the proof of the Lemma. O

We prove 11.3(6).

For ¢4 > 0, by 11.3(1), we impose the mirror condition
cylog(N) < ecvinf{a(Zp,_, ) | @ € Apin}

to Zp_. to make sure all terms are well defined.

By the same argument as in Section 11.4, we know that the function ¢ — 016\2@ (¢, 2(g9))mo(¢C—

Z(9)q) is invariant under g — ug. Therefore
kN x(Q,ug) — kN x(Q,9) (11.33)

= / o7, (Har, (), 2(9))7(Hary(a) — 2(9)Q) (kN (vynatig) — kn (vxnag))du.
Zc\Ar(F)

Let ¢ = ¢4 be as in Lemma [11.5.1] Then we get some ¢ > 0. For a € Ap(F) with
Uz?/lﬁ (Hu,(a), 2(9))17@(Hu,(a) — Z(g)q) # 0, by the definition of U]?/[u and 7¢, together

with the majorization of g, we have
inf{a(Hp(a) | a € 25} —inf{a(Zp,,, ) | @ € Apin} > —log(N). (11.34)
Now choose c5 > 0 such that c5 > %. We also require that
inf{a(Zp,, )| a € Anin} > c5log(N).

Combining with (11.34)), we have

inf{a(H,(a)) | o € Eg} > ' log(N).
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We claim that this is the ¢5 we need for 11.3(6). In fact, by the discussion above together
with Lemma|11.5.1, we know that for g and @ as in 11.3(6), kn (yyratig) = kn(vxnag)
whenever O']%u(HMu (a), Z2(9))mq(Hn,(a) — Z(g)q) # 0. This means that the right hand

side of (11.33)) equals zero. Hence ky x(Q,ug) — kn,x»(Q,9) = 0. This finishes the
proof of 11.3(6).

11.6 Principal Proposition

Proposition 11.6.1. There exists Ny > 0 such that for N > Ni, X € to(F)[> N7,
and x € Hys(F) elliptic, we have

/ (gfz,w)(X)ﬁN,X” (g)dg = V(AT)V(ZGZ)Q?‘@M(X)'
A7 (F)Zg, (F)\G(F)

Proof. By Proposition|11.3.1} we can replace the function xx x» by the function v(g, Yp,,,,)
in the integral above. Then by the computation of ©(g,Yp . ) in [Ar91], together with

min

the same argument as in Proposition 10.9 of [W10], as Yp,

min

goes to infinity, the integral

equals
(=)™ C e r,)co ! (Q) (11.35)

where c’Q are some constant numbers with ¢;; = 1, and

I(Q) = / gJ%’i,w(X)vf&ﬁ (9)dg. (11.36)
Zay (F)Ar(F)\G(F)
If Q = LUg # G, we can decompose the integral in (11.36)) as fZGz (F)Ag(F)\L(F)’ mem
and fUQ (p)- Since Uf?/fn (9) is Ug(F)-invariant, the inner integral becomes
/ “lkff:’w(X)du.
Uq(F)

By Lemma this is zero because f is strongly cuspidal. Therefore
I(Q) =0. (11.37)

For @ = G, we can replace the integral on Zg, (F)Ar(F)\G(F) by T(F)\G(F) and
multiply it by meas(T(F)/Zq, Ar(F)). Then we get

I(G) = meas(T(F) /ZGZAT(F))DGHC(X)l/QJJ”V[WM(X, f) (11.38)



163
where Jf, (X, f) is defined in (3.17).
Now combining ([11.35)), (11.37) and (11.38), together with the definition of chmw
(as in (3.19)) and the fact that

v(TYmeas(T(F)/Zq, Ar(F)) = v(Ar)v(Za,),

we have

/ (9 fus (X)ro xor(9)dg = v(Ar)0(Za, ), (X).
Ar(F)Zg \G(F)

This finishes the proof of the Proposition. O

Finally, for z € Hgs(F') elliptic, let

Jzw(f) :ETET(GI) | W(G, T) ‘_1 v(Za,)

11.39
X / DO (X" (X)dX. (11.39)
E(F)x ()0 (F) "

Proposition 11.6.2. The integral in (11.39)) is absolutely convergent, and we have

]\}i—wo Izyw,N(f) = Jr,w<97 f)

Proof. The proof for the first part is the same as Lemma 10.10(1) of [W10]. For the
second part, by Lemma [11.1.2} it is enough to consider limy—o0 I, (0, f). Then the
proposition just follows from Proposition [11.6.1| together with (11.1)). O



Chapter 12

The Proof of the Trace Formula

In this chapter, we are going to prove the geometric side of the trace formula. In Section
12.1, by applying the computation in the previous chapter, we are going to compute the
limit limn_—ooIn(f) in terms of the distribution éf for the Lie algebra case. Then in
Section 12.2, we are going to prove the Lie algebra version of the trace formula based
on a hypothesis. In Section 12.3, we will finish the proof of the trace formula based on
the trace formula of the reduced model (i.e. the Whittaker model). Finally, in Section

12.4, we prove the trace formula for the reduced model.

12.1 Calculation of limy_ . In(f): the Lie Algebra Case
If f e C>X(go(F)) is a strongly cuspidal function, we define
J(f) = Zrere) | WG, T) | o) DY(X)205(X)dX. (12.1)

Lemma 12.1.1. The integral in (12.1)) is absolutely convergent, and we have

lim In(f) = J(f)-

N—oo
Proof. The first part is similar to the first part of Proposition [11.6.2] For the second
part, let w C go(F') be a good neighborhood of 0. Suppose that Supp(f) C w. Then
we can relate f to a function ® on Zg(F)\G(F') which is supported on Zg(F) exp(w).

By Proposition we know In(f) = In(®). Then by applying Proposition [11.6.2
to the function ® and = = 1, we have limy_,oc IN(f) = J1,(®). By Proposition m
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9é7l’w is the partial Fourier transform of 6 1., = 0. But for z = 1, partial Fourier

transform is just the full Fourier transform. Thus 0?1) lw = éf. Also we know that
v(Za,) = v(Zg) = 1. Therefore

Jim In(f) = J1w(®) = J(f).

This proves the Lemma for those f whose support is contained in w.
In general, replacing (a,b) in the definition of ¢ (as in (5.1))) by (Aa, A\b) for some
A\ € FX, we get a new character &', and let f' = f*. Then for Y € h(F), we have

(@) = A Q).

This implies
Lo n(f') =| A | 8O- EZm0 gy (f). (12.2)

On the other hand, we know

A —dim(G A —
6p(X) = | A7) 6,071x),
DG()\X)l/Q _ |)\ |(}(G)/2 DG(X)l/Q,

By changing of variable in (12.1]), (note that this is allowable since t°(F) is invariant
under scalar in the sense that for t € t(F), A € F*, we have At € t°(F), see Remark

10.4.3)) we have

Since

— dim(G/Z¢) + dim(T/Zg) + 6(G)/2 = — dim(U) — dim(H/Zy) = —15,

together with (12.2) and (12.3), we know that limy_,o I¢ n(f) = Je(f) if and only if
limy oo Ier N(f') = Jer(f'). Then for any f, we can choose X such that Supp(f’) C w.

Applying the first part of the proof to f/, we get imn_00 Ier N(f') = Je(f'), which
implies imy_o0 I¢, N (f) = Je(f). This finishes the proof of the Lemma. O
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12.2 A Premier Result

Consider the following hypothesis.

Hypothesis: For every strongly cuspidal f € C°(go(F')) whose support dose not

contain any nilpotent element, we have

lim IN(f) - Igeom(f)'

N—oc0

In this subsection, we will prove the following proposition.

Proposition 12.2.1. If the above hypothesis holds, we have

]\}gnoo IN(f) = Igeom(f)
for every strongly cuspidal function f € C°(go(F)).

In order to prove the above proposition, consider the following morphism:

f= E(f) = lim IN(f) = Tgeom(f) = J(f) = Igeom(f) (12.4)

N—oo

defined on the space of strongly cuspidal functions f € C°(go(F')). This is obviously a

linear map.

Lemma 12.2.2. The map E is a scalar multiple of the morphism f — cp, 0 where O
is the regular nilpotent orbit of g(F'). In particular, E =0 if G = GL3(D).

Proof. We first prove:
(1) E(f) =0if cg; 0 = 0 for every O € Nil(g(F)).

Suppose that cp, 0 = 0 for every O € Nil(g(F)). We can find a G-domain w
in go(F'), which has compact support modulo conjugation and contains 0, such that
0;(X) =0 for every X € w. Let f' = f1,, and let f” = f— f’. Then these two functions
are also strongly cuspidal. The support of f” does not contain nilpotent elements. By
the hypothesis, we know that E(f") = 0.

On the other hand, since §;(X) = 0 for every X € w, we have 6 = 0 and éf/ =0.
By the definition of Igeom(f) and J(f), we know that J(f') = 0 = Igeom(f’). Hence
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E(f)=E(f") + E(f") =0. This proves (1).

Now for A € (F*)2, let f' = f*. We have 6 = (6;)*. For O € Nil(g(F)), by (3-4),
we have
cg,,0 =| A 72 Co;,0- (12.5)

We then show:
() E(f) =| A [Z O E(f) = A 75 E(f)

By , we have
TN = AP I, (12.6)

Now for Igeom(f), let T € T as in Section 5.2. The expression for Ijeom(f) related to T
is
/ ¢ (Y)DH(Y)A(Y)aY. (12.7)
to (F)
If 7= {1}, = ¢f(0) is the germ associated to the unique regular nilpotent
orbit of g(F). By (3.4), we have

—i0(G)/2 _
epr(0) =| A [ ep(0) = A5 ¢4 (0).

If T =T, for some v € F*/(F*)? v # 1 as in Section 5.2, the nilpotent orbit asso-

ciated to ¢y is the unique regular nilpotent orbit O, of GL3(F,), which is of dimension
12. By (3.4)) again, we have

e (X) = A E° ep(AX).

Moreover, we have D (A71X) =| A |2 since dim(h) — dim(bh,) = 2, and A(A"'1X) =|
A 2% A(X) since dim(u) — dim(u,) = 6. Therefore by changing variable X — A\71X,

we have

/ cf/(Y)DH(Y)A(Y)dY_])\\Z};/ cr(Y)DT(Y)A(Y)dY (12.8)
to(F) to(F)

where b = —6 — 2 — 6 — dim(tp) = —15. Combining ((12.7) and (12.8]), we have

Lycom(f") = A 5" Tgeom (f)- (12.9)
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Then (2) just follows from ((12.6)) and (12.9).

Now (1) tells us that E is a linear combination of ¢y, o for O € Nil(g(F)). We know
that dim(O) < 30 and the equality holds if and only if G = GL¢(F) and O is regular.
Hence the Lemma follows from (2) and (12.5)). O

In particular, by the lemma above, we have proved Proposition [12.2.1| for G =
GLs3(D). Now we are going to prove the case when G = GLg(F).

By the discussion above, in this case, E(f) = creqco ,0yeq for some complex number

reg
Creg- It is enough to show that ¢,y = 0. Our method is to find some special f such
that E(f) =0 and ¢y, 0,,, = 1. This will implies that ¢, = 0. The way to find this f
is due to Waldspurger, see [W10].

By 6.3(3) and 11.5 of [W10], for T" € T(G) (here T(G) is the set of equivalent
classes of maximal subtorus of G(F')) and X € to(F') N greg(F'), we can construct a
neighborhood wx of X in to(F) and a strongly cuspidal function f[X] € C°(go(F))

satisfy the following conditions:
1. For T' € T(G) with T" # T, the restriction of éf[X] to ¢ (F") is zero.

2. For every locally integrable function ¢ on to(F) which is invariant under the

conjugation of Weyl group, we have

L, PO 1 (X)X = W(G,T) [ meason)™ | plXax
to

wx

3. For every O € Nil(g), we have

y1x,0 = Lo(X)
where I'o(X) is the Shalika germ defined in Section 2.5.

Now let T,; be the unique split torus of T'(G). This is possible since we are in the
split case now. Fix Xy € tq0(F) N greg(F). Then we can find wx, and f[X4] as above.
Let f = f[Xy4]. By condition (3) above and Lemma 11.4(i) of [W10], we know that
€9;,0,., = 1. This implies

E(f) = creg- (12.10)
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Now by condition (1) above, we know that each components of the summation in

Igeom(f) is 0 for T € T with T' # {1}. Then by applying condition (3) above and
Lemma 11.4(i) of [W10] again, we have

Igeom(f) = Co;,0,e, = 1. (12.11)

On the other hand, by condition (1) and (2),

J(f) = Srere | WG T) | o, DE(X)"20(X)dX
=|W(G,T4) |‘1/ DY (X)Y204(X)dX (12.12)
ta,0(F)

= meas(wy,) ‘meas(wx,) = 1.

Here we use the fact that (t7)°(F) = t4,0,¢9(F), which has been proved in the proof of
Lemma IT.5.11
Now combining (12.10f), (12.11) and (12.12), we have

reg = B(J) = Lyeom(F) = J(f) =1 =1 = 0.

This finishes the proof of Proposition [12.2.1

12.3 Proof of the Trace Formula

Consider the following four assertions:

(th)q: For every strongly cuspidal function f € C°(Zg(F)\G(F)), we have limy_,oc IN(f) =
Igeom (f) °

(th')g: For every strongly cuspidal function f € C°(Zg(F)\G(F)) whose support

does not contain any unipotent element, we have limy_o IN(f) = Lgeom (f)-

(th)y: For every strongly cuspidal function f € C2°(go(F')), we have imy_o0 IN(f) =
Igeom(f)‘

(th')g: For every strongly cuspidal function f € C2°(go(F')) whose support does not

contain any nilpotent element, we have limy_,o0 IN(f) = Igeom(f)-
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Lemma 12.3.1. The assertion (th)g implies (th)y. The assertion (th')q implies (th')g.

Proof. Suppose that (th)g holds. For any strongly cuspidal function f € C2°(go(F)),
we need to show FE(f) = 0. In the proof of Lemma we have proved that
E(f) =| A |} E(f). So by changing f to f*, we may assume that the support of f is
contained in a good neighborhood w of 0 in go(F). Same as in Lemma we can
construct a strongly cuspidal function F' € C°(Zg(F)\G(F)) such that J(f) = J1 o (F)
and Igeom (f) = I1,w(F). By Propositions [9.3.4] 9.4.1) and [11.6.2) we have J; ,(F) =
mpy o0 IN(F) and Iy o (F) = Igeom(F). By (th)g, we have Igeom (F') = Jiw(F'), which
implies E(f) = 0.

The proof of the second part is similar to the proof of the first part: we only need

to add the fact that if the support of f does not contain any nilpotent element, then

the support of F' does not contain any unipotent element. ]
We first prove (th')q.

Proof. Let f € C(Za(F)\G(F)) be a strongly cuspidal function whose support does
not contain any unipotent element. For 2 € G4(F), let w, be a good neighborhood of
0 in g,(F), and let Q, = (vexp(w;)) - Zg. We require that w, satisfies the following

conditions:

1. If 2 belongs to the center, since f is Zg(F)-invariant, we may assume that z = 1.
We require that Q, N Supp(f) = Q1 N Supp(f) = 0. This is possible since the

support of f does not contain any unipotent element.

2. If x is not conjugated to any element in H(F'), we choose w, satisfies the condition

in Section 9.1.

3. If z is conjugated to a non-elliptic element 2’ € Hy(F), we choose w, satisfies the

condition in Section 9.2.

4. If = is conjugated to an elliptic element =’ € Hgs(F') not in the center, we choose
a good neighborhood w,s of 0 in g,/(F) as in Section 9.3, and let w, be the image
of w, by conjugation. Moreover, we choose w,s small enough such that €, does

not contain split element.



171
Then we can choose a finite set X' C Gss(F) such that f = Y cxfr where f, is the
product of f and the characteristic function on §2,. Since imy_o0 In(f) and Igeom(f)

are linear functionals on f, we may just assume that f = f,.

If x = 1, by the choice of 2; we know that f = 0, and the assertion is trivial.

If  is not conjugated to an element of H(F), then the assertion follows from the
choice of 2, and the same argument as in Section 9.1.

If x is conjugated to a non-elliptic element of H(F'), then the assertion follows from
the choice of 2, and the same argument as in Section 9.2.

If x is conjugated to an elliptic element of H. By Propositions and it is
enough to prove that

]\}gnoo Ix,w,N(f) = Ix,w(f) (1213)

Now we can decompose 0y, ., as
01 20(X) = Toept (X0 ,(X") (12.14)

where B is a finite index set, and for every b € B, ¢ ,(X") (resp. 07,(X")) is a quasi-
character on g, (F) (resp. ¢g”(F)). By Proposition 6.4 of [W10], for every b € B, we
can find f; € CZ°(g"(F)) strongly cuspidal such that 6% ,(X") = 0. Then by the
definition of I, (f) (as in (9.24])), we have

Ix,w(f) = EbGBI/(b)Igeom(fl;/)

where

1) =176.) [ 0O Ty () = g, 01
s ’

with O be the unique regular nilpotent orbit in g”(F'). Here we use the fact that the
only torus in 7, is Zg,, which implies that v(T) = v(Zg,) and D= (X) = A"(X) =1
for all X € to(F) .

On the other hand, by Proposition we have

Jim Lo (f) = Jrw(F) = Soesl (0)(f7)

where

J(f}) = Srerc,) | W(Ga, T) |7 DS (X)l/zéfl;'(X)dX-
(ery0(F)
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In order to prove (12.13), we only need to show that Igeom (f;) = J(f}). This is just

the Lie algebra version of the trace formula for the model
(G:B7 Uw)»

which is just the Whittaker model of GL3(F3). The proof is very similar to the Ginzburg-

Rallis model case, we will prove it in the next section. ]

Finally we can finish the proof of the trace formula. By Lemma[12.3.1] we only need
to prove the group case. We use the same argument as in the proof of (th')g above,
except that in the z = 1 case, we don’t have Q1 NSupp(f) = (. In this case, still by using
localization, we can reduce to the Lie algebra case. Now since we have proved (th')¢,
together with Lemma we know that (th')q holds. Then by applying Proposition
we know that (th)y holds. This proves (th)g and finishes the proof of the trace

formula.

12.4 The proof of o (fy) = J(f])

In this section, we are going to prove

Igeom(fy) = J(fy); (12.15)

which is the geometric side of the Lie algebra version of the local trace formula for
the Whittaker model of GL3(F,). There are two ways to prove it, one is to apply the
method we used in previous sections to the Whittaker model case; the other one is to
use the spectral side of the trace formula together with the multiplicity formula of the
Whittaker model proved by Rodier in [Rod81].

Method I: By the same argument as in Section 12.2, we only need to prove (12.15))
for f; whose support does not contain any nilpotent element. Then by changing f; to
(fy )}, we may assume that the function f¢ is supported on a small neighborhood of 0.
Then we can relate f{' to a function ®, on G,(F')/Zg,(F'). By the same argument as in
the Ginzburg-Rallis model case, we know that in order to prove , it is enough to
prove the geometric side of the local trace formula for ®,, i.e. limy_o0 IN(P,) = ca,(1).

Here In(®,) is defined in the same way as Iy (f) in Section 5.2. In other word, we first
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integrate over U,, and then integrate over G, /U;Zq,. co,(1) is the germ of 0, at 1
associated to the unique regular nilpotent orbit of gls(F,).

Since f{' does not support on nilpotent element, ®, does not support on unipotent
element. This implies that ¢g,(1) = 0. On the other hand, since the only semisimple
element in U, is 1, by the same argument as in Section 10.1, the localization of Iy (®;)
at y € G,(F)ss is zero if y is not in the center. If we are localizing at 1, since the
support of ®, does not contain unipotent element, we will still get zero once we choose
the neighborhood small enough. Therefore limy_ o0 IN(®;) = 0 = cg,(1), and this
proves ([12.15)).

Method II: Same as in Method I, we only need to prove the group version of the
trace formula, i.e. limy_ oo IN(®;) = cg,(1). By applying the same method as in

Chapter 4-8, we can prove a spectral expansion of limy o In(P;):
lim In(®,) :/ O (D )m/ (7)dm (12.16)
N=reo Mtemp (Ga(F),1)

where ey (G (F), 1) is the set of all tempered representations of G (F') with trivial
central character, dr is a measure on Il (G4(F), 1) defined in Section 2.9, 6,(®,) is
defined in Section 3.5 via the weighted character, and m/(7) is the multiplicity for the
Whittaker model (here we are in the GL,, case, all tempered representations are generic,
so m/(7) is always 1).

By the work of Rodier, m/(7) = ¢z (1) where ¢z (1) is the germ of 6z at 1 associated
to the unique regular nilpotent orbit of glz(F3,). Therefore becomes

lim In(®,) :/ O (Py)ex(1)dm. (12.17)
Nmveo Miemp(Ga(F).1)
Finally, as in Proposition we have

O, — / 0.(®,)0xdr.
Htemp(Gw(F)vl)

Combining with (12.17)), we have limy_,00 In(Py) = ¢, (1) and this proves ((12.15)).



Chapter 13

The Proof of the Main Theorems

In this chapter, we are going to prove our main theorems (i.e Theorem and Theo-
rem for the p-adic case. The key ingredient in the proof is the trace formula we
proved in previous chapters. In Section 13.1, by applying the trace formula, we prove
a multiplicity formula for the Ginzburg-Rallis model. In Section 13.2; by applying the
relations between the distribution characters under the Jacquet-Langlands correspon-
dence in [DKV84], together with the multiplicity formulas, we will prove Theorem
In Section 13.3, we are going to prove Theorem [1.2.2]

13.1 The Multiplicity Formulas

Let 7 be an irreducible tempered representation of G(F) with central character n = x?.

Similar to Section 5.2, we define the geometric multiplicity to be
Myeon(m) = 3 (WH D) w(T) | e (1) DH (D) A(t)o(t) ™ dt.
TeT Za(P\T(F)
Here ¢, (t) = cp_(t) is the germ associated to the distribution character 6. The multi-
plicity formula is just
m(m) = Mgeom (). (13.1)
Let m = Ig(T) for some good parabolic subgroup Q = LUgq and some discrete series
7 of L(F). In Section 5.4, we have defined the geometric multiplicity mgeom (7) for the
reduced model (L, Rg). The following lemma tells us the relations between mgeom ()

and Mgeom (7).

174
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Lemma 13.1.1. With the notation above, we have
Mgeom (T) = Mgeom (7).

Proof. This is a direct consequence of Lemma m@) In fact, if Q is of Type I, by

applying the lemma, we know that the germs associated to 7 and 7 are the same:
DE ()Y 2¢,(t) = DE () %¢, (1), Yt € Trey(F), T € T.

This implies
A(t)ex(t) = Ag(t)er(b):

Hence mgeom(m) = Mgeom (7). Note that in Section 5.4, we have only defined Ag for
the middle model; for the trilinear GLy model, Ag is just 1.

If Q is of Type II, by applying the lemma, we know that the germ c,(t) is zero for
all t € Tyeq(F), T € T with t # 1. Therefore we have mgeom (7) = cx(1) =1 = ¢, (1) =

Mgeom (7). This proves the lemma. O

The rest part of this subsection is to prove the multiplicity formula (13.1). If 7 is
not a discrete series, with the notation above together with the inductional hypothesis,
we have m(7) = Mgeom (7). Combining with Corollary and the lemma above, we

have

m(m) = m(7) = Mgeom(T) = Mgeom ().

This proves ([13.1)).

From now on we assume that 7 is a discrete series. Combining the trace formula

Igeom(f) = Ispec(f) and Proposition we have

/ 6, (TT)m(TT)dIT + / 6, (T)m(TT)dIT (13.2)
0} e (G 1) 2(Gn=1)

- / 0, (I1) oo (TT)dII + / 0, (1) oo (T1)dIL.
11, (Gar) m2(G1)

Here as before, 12(G,7™!) C Hiemp(G, 1~ 1) is the subset consisting of discrete series,
and I}, (G, 0™ = iemp(G,n~t) — I2(G,n~t). By the above discussion, we know

temp

the multiplicity formula holds for all TI € IT,,,,,,(G, n~1). Therefore (13.2]) becomes

/ 0 ¢(I)m(I1)dIl = / 0 ¢ (I1)mgeom (I1)dI1. (13.3)
2(G,n=1) 2(G,n=1)
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Now take f € C°(Zg(F)\G(F'),n) to be the pseudo coefficient of 7. This means that
tr(7(f)) = 1 and tr(o(f)) = 0 for all o € Miemy(G,n71) with o # 7. The existence
of such an f was proved in Lemma [3.8.1] The lemma also shows that f is strongly
cuspidal. For such an f and for any II € II*(G,n~'), we have ¢(I1) = tr(II(f)). Hence
it is nonzero if and only if II = 7. Therefore becomes

0 (m)m(m) = 05 (T)mgeom().

Hence mgeom (m) = m(m), and this proves (13.1)).

13.2 The Proof of Theorem [1.2.1]

In this subsection, we prove Theorem by applying the multiplicity formula (13.1))
in the previous section. Let G = GLg(F') and let Gp = GL3(D). Similarly we can

define Hy, Hy p,U and Up. Let m,mp, x,w,wp,{ and p be the same as in Conjecture

We assume that 7 is tempered. By (13.1)), we have
m(ﬂ-) = 0977707‘Eg(1) + E’UGFX/(FX)Q,’U#l | W(H7 TU) |_1 V(TU)

X / w () er () DHE () A(t)dt
Zp\Tu(F)
and

m(rp) = Spepx/rx)zeet | W(HD, Ty) |7 v(Ty)

></ wpt(terp (1) DEP () Ap(t)dt.
Zip\To(F)

Here we use t to denote elements in GLg(F) and ¢’ to denote elements in GL3(D). We
can match ¢ and ' via the characteristic polynomial: we write ¢ <+ ¢’ if they have the
same characteristic polynomial. Since 7 is tempered, it is generic. So by [Rod81], we

have ¢, o,.,(1) = 1. Also for v € F*/(F*)% v # 1, we have

reg
| W(Hp,T,) |=| W(H,Ty) |, Zuy = Zu,.

So in order to prove Theorem we only need to show that for any v € F*/(F*)?, v #
1, the sum of

/ W (B)ex () D (1) A () dut
Zu(PNT.(F)
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and

/ Wi () ens (1) DD (Y A p (1) dt
ZH(F)\TU (F)

equals 0. For t,t' € T,,(F) regular with ¢ <> ¢, we have
D (t) = D2 (1), A(t) = Ap(t'),w(t) = wp(t).

Therefore it is enough to show that for any v € F*/(F*)%, v # 1, and for any t,t’ €
T,(F) regular with ¢ <> ¢/, we have

cr(t) + cap (') = 0. (13.4)
By Section 13.6 of [W10] or Proposition 4.5.1 of [B15], we have

cr(t) = DE) VAW (G, Tys ™t lim DY (2)/%0,(x)

Z’Equyt (F)—)t

and

cap(t) = DO (@) AW (G0l Tyse !l DOV (&) 26, )

where Tis; (resp. Tys4) is a maximal torus contained in the Borel subgroup B; (resp.
By) of Gy (resp. (Gp)y). Note that if ¢,¢' € T, is regular, both G; and (Gp)y are
isomorphic to GL3(F,) which is quasi-split over F', hence we are able to choose the
Borel subgroup B; (resp. By). In particular, |W (G, Tyst)|™ = [W((Gp)t, Tyst)| L
Also for those matched t <+ ', we have DY(t) = DYP(t). And for x € Tys4(F) (resp.
x' € Tysp(F)) sufficiently close to t (resp. t') with x <> a’, they are also regular
semisimple and we have D%(z) = DYP(z’). Therefore in order to prove (I3.4)), it is
enough to show that for any regular semisimple x € G(F) and 2’ € Gp(F) with z < 2/,

we have

O (z) + 0, (z') = 0. (13.5)

This just follows from the relations of the distribution characters under the Jacquet-
Langlands correspondence (see [DKV84]). This proves Theorem [1.2.1]

13.3 The Proof of Theorem [1.2.2

Let m be an irreducible tempered representation of GLg(F) with central character x?.

Let m = Ig (1) for some good parabolic subgroup @ = LU and some discrete series 7
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of L(F'). By our assumptions in Theorem Q can not be of type (6) or type (4, 2).
Then there are two possibilities: Q is of type (2,2,2) or Q is of Type I
If Q is of type (2,2,2). By a similar argument as in Section 7.3, we have €(1/2, 7, A3®
X 1) = €(1/2,7 x x!). Combining with Prasad’s results for the trilinear GLy model
([P90]) and the fact that m(m) = m(7), we prove Theorem [1.2.2]
If Q is of Type II, by Corollary m(m) = 1. Hence it is enough to prove the

following proposition.
Proposition 13.3.1. If Q is of Type II, we have €(1/2, 7, A3 ® x~!) = 1.

Proof. Since Q is of Type II, it is contained in some Type II maximal parabolic sub-
groups. There are only two Type II maximal parabolic subgroups: type (5,1) and type
(3,3).

If Q is contained in the parabolic subgroup Qs of type (5,1), then there exists a
tempered representation o = 01 ® o2 of GL5(F') x GL1(F') such that m = 185&(0). Let
¢; be the Langlands parameter of g; for ¢ = 1,2. Then ¢ = ¢1 ® ¢9 is the Langlands

parameter for w. Hence we have

N(@) = N(o1® d2) = N (d1) B (A (1) ® ¢2).

Since the central character of 7 is x?, det(¢) = det(¢;) ® det(¢2) = x?. Therefore

(N3 (pr)@x )Y = A% (g1)@det(d1) T @x = A?(¢1) @det(da) @ x 1 = A2 (¢1) @@ x 1.
This implies that

e(1/2,m, A% @ x7") = det(A%(¢1) ® x71)(=1) = (det(d1))°(—1) x x1°(~1) = 1.

If @ is contained in the parabolic subgroup Q3,3 of type (3, 3), there exists a tempered
representation o = o1 @ o of GL3(F') x GL3(F) such that 7 = Ig3 ,(0). Let ¢; be the
Langlands parameter of o; for ¢ = 1,2. Then ¢ = ¢1 @ ¢9 is the Langlands parameter

for m. Hence we have

N(9) = N(¢1 @ ¢2)
= (A*(1) ® d2) ® (¢1 ® N*(¢2)) @ det(¢1) ® det(ea).

Since the central character of 7 is x?, det(¢) = det(¢;) ® det(¢a) = x>. Therefore
(N (p1) @@ x )Y = (¢1@det(d1) ) @ (A (d2) @ det(d2) ) @ x = dr1@A*(g2) @ x
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and (det(¢1) ® x 1)V = det(¢) ® x~!. This implies that

e(1/2,m A @x ) = det(A*(¢1) © d2 @ x)(—1) x det(¢1)(—1) x x ' (~1)
= det(A%(¢1))*(=1) x det(¢2)*(—1) x x'O(=1) x det(¢1)(~1)
= (det(¢1)*(—1))° x (det(¢2)(~1))" x det(¢1)(~1)
= det(¢1)(—1) x det(¢2)(~1) = x*(~1) = L.

This finishes the proof of the proposition and hence the proof of Theorem [1.2.2 O



Chapter 14

The Generic Case

In this Chapter, by applying the open orbit method, we prove some partial results for
the general generic representations when F' is archimedean. In Section 14.1, we consider
the complex case and we will prove Theorem [1.2.3] In Section 14.2, we consider the real
case and we will prove Theorem Finally in Section 14.3, we will talk about how
to remove the extra assumptions on Theorem [1.2.3(2) and Theorem [1.2.4[1) based on
the results on the holomorphic continuation of the generalized Jacquet integral due to

Raul Gomez in [G].

14.1 The Case When F =C

In this subsection we assume that /' = C. By the same computation as in Section 7.1,
we know that the epsilon factor is always 1. Hence we only need to prove that m(w) = 1.
By the strong multiplicity one theorem, we only need to show that m(mw) # 0.

We first consider the first part of Theorem In other words, with the same
notation as in Chapter 1, we assume that P C Q. Then there are four possibilities
for Q: type (6), type (4,2), type (2,4) or type (2,2,2). The idea is to first reduce our
problem to the reduced model (L, RN Q) by the open orbit method, then reduce it to
the tempered case which has been considered in Chapter 7.

If Q@ = G is of type (6), by twisting m by some characters, we can assume that 7
is tempered. Note that twisting by characters will not change the multiplicities. Then

by applying the result in Chapter 7, we know that m(7w) = 1 and this proves Theorem

180
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23l
If Q is of type (4,2), then L = GL4(F) x GL2(F') and Rg = RN Q is of the form

Rg = HUyq
where

Uoq(F) = {u=u(X) =

X
1 | X € My(F)}.
0

- o O

1
0
0
(F) is just &(u(X)) = ¥(tr(X)) and the
character w on H(F') is defined as usual. This is just the middle model defined in
Section 4.5.

The restriction of the character £ on Upg

By the definition of @, 7 is of the form 18(7'1| 't @ 79| [*2) where 71, T2 are tempered
and t; < to. Hence any element f € 7 is a smooth function f : G(F) — 7 = 11| |" ®

72| |*2 such that
f(lug) = dq(1) (1) (9) (14.1)

for alll € L(F),u € Ug(F) and g € G(F). Here we use the letters 7, o, 7 to denote both
the representations and the underlying vector spaces. Let Q = LUy be the opposite
parabolic subgroup of (). It is easy to see that U C U and U = UzUp,q. For any
f € m, define

)= [ e (14.2)

By Proposition together with the assumption that t; < to, the integral above is

absolutely convergent.
Proposition 14.1.1. 1. For all f € m,u € Ug(F) and l € Ro(F), we have
Jo(m(u) f) = &(u)J(f) (14.3)

and

Jo(r(D)f) =7D)JI(f). (14.4)

2. The function
Jo:m—=1, f—= Jo(f)

18 surjective.
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Proof. Part (1) follows from (14.1)) and changing variables in the integral (14.2)). For
part (2), fix a function p € C°(Ug(F')) such that fUQ(F) o(u)é1(u)du = 1. For any
v € 7, since Q(F)Ug(F) is open in G(F), the function

Fg) = { So)V2r(p(u)yv  if g =luwithl € L(F),u € Ug(F),u' € Ug(F);

0 else

belongs to w. Then we have
Jo)= [ fetwde= [ gl wedu = o,
Us(F) Us
This proves (2). O
We consider the Hom space Homp,(r)(T, (w®§)|r,(r)) and let m(7) be the dimen-

sion of this space. In other word, m(7) is the multiplicity of the middle model. The

following proposition tells us the relations between m(w) and m(7).

Proposition 14.1.2. With the notations above, we have
m(7) # 0= m(mr) # 0.

Proof. If m(r) # 0, choose 0 # lg € Homp, () (7, (w @ §)|ry(r))- Define an operator

on 7 to be
I(f) = lbo(Jo(f)).

Since lgp # 0 and Jg is surjective, we have [ # 0. Hence we only need to show that
l € Homppy(m,w®§).

For h € R(F), we can write h = hyu; with hy € Rg(F) and uy € Ug(F). By
and , we have

I(m(h)f) = lo(Jo(m(hiu)f)) = lo(T(h1)Jo(m(u1)f))
= w®&(h)l(Jo(m(u1)f)) =w @ E(h1)lo(§(u1)Jo(f))
= we(M)(Jo(f)) =wxh)I(f).

This implies | € Homp F)(7r, w ® ¢) and finishes the proof of the Proposition. O
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By the proposition above, we only need to show that m(7) # 0. It is easy to see that
the multiplicity m(7) is invariant under the unramified twist, hence we may assume that
7 is tempered (note that originally 7 is of the form 71| |"* ® 7| |'2 with 71 and 7 being
tempered). Then by applying the argument in Chapter 7 to the middle model case, we
can show that the multiplicity m(7) is always nonzero for all tempered representations
7. This proves Theorem [1.2.3

If @ is of type (2,4), the argument is the same as the (4,2) case, we will skip it
here.

If Q is of type (2,2,2), the argument is still similar to the (4,2) case: we first
reduce to the trilinear GL2 model case by the open orbit method. Then after twisting
by some characters we only need to consider the tempered case. Finally, by applying
the argument in Chapter 7 to the trilinear GLy model case, we can show that the
multiplicity is nonzero and this proves Theorem We will skip the details here.

Now the proof of Theorem [1.2.3|(1) is complete.

Then we consider the second part of Theorem As in Chapter 1, we
assume that 7 = I§(®%_,x;) where B is the lower Borel subgroup, x; = ;| |, o; are
unitary characters, and s; are real numbers with 51 < s9 < .- < s6. By the assumption
QQ C P, we have sy < s3 and s4 < s5. Also as in Section 1, we write 7 = Ig(ﬂ'o) with
mg = w1 @ Mo ® w3 and m; be the parabolic induction of x2;—1 ® x2;. Then 7 consists of

smooth functions f — mg such that

f(mug) = 3p(m)">mo(m) f () (14.5)

for all m € M(F),u € U(F) and g € G(F). We still want to apply the open orbit
method. For f € 7, define

J(f) = / F(ug)e ™ (w)du. (14.6)
U(F)

By Proposition together with the assumption on the exponents s;, the integral
above is absolutely convergent. By the same argument as in the previous case, we can
show that

m(mo) # 0 = m(m) # 0. (14.7)

Here m(mg) is the multiplicity for the trilinear GLg model. In fact, for 0 # [y €
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Homp,(r)(mo,w). By a similar argument as in Proposition [14.1.2} we know that

is a nonzero element in Homp(p)(m,w®§). This proves (14.7). Now by our assumption
on 7y together with the work by Loke for the trilinear GLy model in [LO1], we know
that m(mo) # 0. This implies that m(m) # 0 and finishes the proof of Theorem [1.2.3]

Remark 14.1.3. The assumption Q C P is only used to make the generalized Jacquet
integral J(f) to be absolutely convergent. Hence in general, if one can prove the holomor-
phic continuation of the generalized Jacquet integral J(f), then the assumption Q C P
in Theorem (2) can be removed. This will be discussed in Section 14.3.

14.2 The Case When F =R

In this section by applying the open orbit method to the case when F' = R, we prove
Theorem Let 7 be an irreducible generic representation of G(F') with central
character xy2. With the same notation as in Chapter 1, there is a parabolic subgroup
@ = LUg containing the lower Borel subgroup and an essential tempered representation
T = ®f:1n\ |* of L(F) with 7; tempered, s; € R and s7 < s3 < -+ < s, such that
w=1 8 (7).
We first consider the case when mp = 0. Then by our assumptions in Theorem
Q is nice. If Q C P, let mp = Ié‘{mM(T). It is a generic representation of M (F)
and we have m = Ig(m)). By the same argument as in previous section, we can show
that
m(mo) #0 = m(m) #0 (14.8)

where m(m) is the multiplicity of the trilinear GLy model. Since mp = 0, the Jacquet-
Langlands correspondence of mg from M (F) = (GLy(F))3 to (GL1(D))? is zero. By
applying the result for the trilinear GLg model in [P90] and [LO1], we have m(my) = 1.
Combining with (14.8), we know m(w) # 0. Hence m(m) = 1 since we already know
m(m) < 1. Therefore

m(m) +m(rp) = m(n) = 1.
This proves Conjecture [1.1.3] For Conjecture [1.1.4] we only need to show that when

7p = 0, the epsilon factor €(1/2,7, A% ® x~!) is always equal to 1. Since 7p = 0, by
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the local Jacquet-Langlands correspondence in [DKV84], 7y is not an essential discrete
series (i.e. discrete series twisted by characters), hence at least one of the 7; (i = 1,2, 3)
is a principal series. Therefore we can find a generic representation ¢ = o1 ® oy of
GL5(F) x GL1(F') such that 7 is the parabolic induction of o. Then by the same

argument as in Chapter 7, we can show that
e(1/2,m, A3 @x 1) =1.

This finishes the proof of Conjecture [1.1.4]

If Q C P, there are only four possibilities for Q: type (6), (4,2),(2,4) and (2,2,2).
If @ is type (6), by twisting 7 by some characters we can assume that 7 is tempered,
then both Conjecture [1.1.3] and Conjecture [1.1.4] are proved in Chapter 7. If @) is type
(4,2) or (2,4), by the same argument as in the previous subsection, we can reduce to
the middle model case by the open orbit method. Then by twisting some characters,
we only need to consider the tempered case which has already been proved in Chapter
7. If Q is type (2,2,2), the argument is similar except replacing the middle model by
the trilinear GL9 model.

Now the proof of Theorem [1.2.4{1) is complete.

Then we consider the case when np # 0. As a result, 7 = Ig(wo) is the
parabolic induction of some essential discrete series mg = 1| |°! ® ma| %2 ® 73] |%® of
M(F) where m; are discrete series of GLo(F') and s; are real numbers. As usual, we
assume that s1 < s9 < s3. On the mean time, wp is of the form Ig; (mo,p) where
mo,p = m1,p| |** @ Mo, p| |*2 ® w3 p| |** is the Jacquet-Langlands correspondence of mg
from M(F) to Mp(F'). Let m(mg) (resp. m(my p)) be the multiplicity of the trilinear
GL2(F) (resp. GL;(D)) model.

Proposition 14.2.1. With the notations above, in order to prove Theorem|1.2.4)(2), it

s enough to show that

m(mo) # 0 = m(m) # 0; m(mo,p) # 0= m(mp) # 0. (14.9)
Proof. By Prasad’s result for the trilinear GLy model, we have

m(mo) +m(mo,p) = 1, (14.10)



186

and

m(mg) =1 <= €(1/2,moxx 1) =1; m(n) =0 <= €(1/2,m0 x x ') = —1. (14.11)

Combining ((14.9) and (14.10)), we have m(7) +m(7p) > 1, this proves the first part
of Theorem M(Q) For the second part, by the argument in Section 7.3, we have

e(1/2,m, NP @ x 1) = e(1/2,m0 x x 7). (14.12)

Now if €(1/2,m,A* @ x~1) = 1, by (14.12)), we have €(1/2,m) = 1. Combining with
(14.11)), we have m(mp) = 1. Together with (14.9), we have m(r) = 1. On the other
hand, if m(7) = 0, by (14.9), we have m(m) = 0. Combining with (14.11)), we have
€(1/2,m x x) = —1, therefore €(1/2, 7, A3 @ x~!) = —1 by (14.12)). This finishes the
proof of Theorem [1.2.4(2). O

By the proposition above, it is enough to prove . If s1 = so = s3, by twisting
7 by some characters, we may assume that 7 is tempered (note that the multiplicities
for both the Ginzburg-Rallis model the the trilinear GLy model are invariant under
twisting by characters). Then the relation has already been proved in Corollary
In fact, by Corollary we even have m(m) = m(my) and m(mwp) = m(m p).

If s1 < sp = s3, let my 3 be the parabolic induction of m ® 73, it is a tempered
representation of GL4(F). We also know that 7 will be the parabolic induction of
' =m| [* @ ma 3] |*2. Let m(n’) be the multiplicity for the middle model. By applying

the open orbit method as in the previous subsection, we have
m(r') # 0 = m(n) # 0.

Hence in order to prove m(my) # 0 = m(w) # 0, it is enough to show that m(my) #
0 = m(xn’) # 0. Again by twisting 7’ by some characters, we may assume that 7’
is tempered. Then by applying Corollary again, we have m(my) = m(n’) which
implies m(mp) # 0 = m(7) # 0. The proof of the quaternion version is similar. This
proves ([14.9).

If s1 = s2 < s3, the argument is the same as the case above, we will skip it here.

If s1 < 89 < s3, follows directly from the open orbit method as in the previous
subsection.

Now the proof of Theorem [1.2.4]2) is complete.
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14.3 Holomorphic Continuation of the (Generalized Jacquet

Integrals

In the previous subsections, we have already seen that the extra conditions of @) in The-
orem 2) and Theorem M(l) can be removed if the generalized Jacquet integral
J(f) defined in has holomorphic continuation. In this subsection, we are going
to remove the condition on @ based on the following hypothesis.

Hypothesis: The generalized Jacquet integrals have holomorphic continuation for
all parabolic subgroups whose unipotent radical is abelian.

The Hypothesis has been proved by Gomez and Wallach in [GW12] for the case
when the stabilizer of the unipotent character is compact, and proved by Gomez in [G]
for the general case. The second paper is still in preparation, this is why we write it as
a hypothesis.

Let F =R or C, 7w be a generic representation of GLg(F) of the form 7w = Ig(ﬂ'o)
for some generic representation mo of M(F) = (GLg(F))?. By the discussion in Section
14.1 and 14.2, we know that in order to prove Theorem [1.2.3|2) and Theorem [1.2.4|1)

for 7, it is enough to show that
m(mo) #0 = m(m) #0 (14.13)

where m(m) is the multiplicity for the trilinear GLy model.
Let Q4.2 = L42Uy 2 be the parabolic subgroup of GLg(F) containing P of type (4, 2),

and let m = 11227;472 (o). Then in order to prove (14.13)), it is enough to show that

m(mo) #0 = m(m) #0, m(m) #0=m(n) #0 (14.14)

where m(7y) is the multiplicity for the middle model. Note that the unipotent radicals
of Q4,2 and P M L4 are all abelian. Therefore by the hypothesis, the generalized Jacquet
integrals associated to Q42 and PN Ly have holomorphic continuation. This allows us
to apply the open orbit method as in the previous sections, which gives the relations in
(14.14). This proves , and finishes the proof of Theorem M(2) and Theorem
1.2.4|(1) without the assumptions on Q.
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Appendix A
The Cartan Decomposition

A.0.1 The problem

In this Appendix, we are going to prove the weak Cartan decomposition for the trilinear

GL3 model (as in Proposition . Let F' be a p-adic field, O be the ring of integers,

wp be the uniformizer, | | = | |, and let F, be the residue field with ¢ = p". Let

G(F) = GLa(F) x GLa(F) x GLa(F'), H(F) = GL2(F) diagonally embedded into G,
1 0

K = GLQ(OF) U GLQ(OF) 0 ), Ky = GLQ(OF) X GLQ(OF) X GLQ(OF) be the
wr

maximal compact subgroup of G(F), K = Ko(K' x K' x K')Ky be a compact subset
of G(F) with K = KoK K, and let

1 -1 11
AT —{(( >a1 ( ),ag,ag)]al,ag EAS, as EA(—)F}

0 1 01

0 0
where A3 = {(Z b) la,b € FX, |a| > [b]} and A7 = {(Z b) la,b € F¥, |a| < |b|}.
Our goal is to show that
G(F)=H(F)ATK. (A.1)

We first do some reductions. For (g1,92,93) € G(F), by timing some elements
on K1 on the right and by timing some elements in the center (which is contained
in A"), we may assume that det(g;) = det(g2) = det(g3) = 1. Then by timing
(975,97 g7") € H(F) on the left, we only need to consider elements of the form
(1,9,¢"). Applying the Cartan decomposition GLo(F) = GL2(O)A$GL2(O) to g and
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¢, then by absorbing the right GLo(OF) part by elements in Ky, we only need to con-
sider elements of the form (1, ka, k'a’) with k, k" € GL2(Or) and a,a’ € AJ. Then by
timing (¢~ 'k~ a k=1, a"'k~!) € H(F) on the left, and absorbing k~! by elements in
Ky, we only need to consider elements of the form (a, 1, g) with a € A, and g € GLo(F).
Applying the Iwasawa decomposition to g, we may assume that g is upper triangular.

Therefore we only need to consider elements of the form

(a,a’,b)
where a € Ay with det(a) = 1, @’ = I, and b is upper triangular with det(b) = 1. Then
by timing (u,u,u) € H on the left with u = <(1) _11), and absorbing the « in the
second coordinate by elements in K, we only need to consider elements of the form

(ua,a’,b) (A.2)

where a € Ay with det(a) = 1, ' = I, and b is upper triangular with det(b) = 1.
By the discussion above, in order to prove (|A.1)), it is enough to prove the following

proposition.

Proposition A.0.1. For all elements g = (ua,a’,b) of the form (A.2)), there exist
he H(F), t € A" and k € Ky such that

g = htk.

A.0.2 The case when b is diagonal

In this section, we prove Proposition for the case when b is a diagonal matrix. We

—1 —1
0 0 0
let a = v with |z| > 1. By our assumption, b = Y or Y with
0 = 0 y ! 0 vy

ly| > 1.

y 0
Case 1: If b = , let
0 y!

h= (I, Iy, 1) € H(F), t = (uau™', I,b) € A%, k= (u, I3, ) € K.

Then we have
g = htk.
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y=' 0
Case 2: If b = , let
0 y

Then we have

g = htk.

This proves Proposition when b is a diagonal matrix.

A.0.3 The general situation

In this section, we prove Proposition for the general case (i.e. b is a upper

z=b 0

triangular matrix). We still let a = < 0 > with |z| > 1. The proof breaks into four

T
cases.

a b . a 0 1 2 . 1 ¢
Case 1: If b = with |a|] > |b|, then b = @] with RS
0 c 0 ¢ 0 1 0 1

GL2(Op). By timing some elements in Ky, we reduce to the case when b is a diagonal

matrix, which has been considered in the previous section.

1 ¢ y 0 . 9
Case 2: If b= L | with [y| > 1. If [t] < [y|*, we are back to Case 1.
-

0 1 0
))6A+,

So we may assume that |t| > |y|? > 1. Let

1—t1 0 1—t1 0 1—t71 0
h= , , € HF), t = (vau™', I,
(< = 1) ( =1 1) < 1 1)) ), 1= ( 2(

and let

O <+
e O

Then we have
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1t y b0 )
Case 3: If b= . 0 with |y| > 1 and [t| > 1. Let
Y

t t _t_
o0\ (4 0 0 t 0
([ NG s ) € H(F), t = (uau™", I, Y )€ AT,
1 1 1 1 1 0 &
1 t+1 t+1 vt

[an)

h:

and let

Then we have

g = htk.

0 1
Case 1. So we may assume that 1 < [t| < |y|?. There are two subcases.

Case 4(a): If || > o, Wetmegby ([© * ). (5 7 ). (" 7))
ase 4(a): z|*. We time , ,
o & 0 1 0 1 0 1

—t! 1 %!
ua = . € GL2(Op). Hence by

1 ¢! y™ 0 . 9
Case 4: If b = 0 with |y, |¢t] > 1. If |[t| > |y|*, we are back to
Yy

1
on the left. Note that a 1u~!
0 1 0

-1

modulo an element in Ky, we may assume that b = (yO
Y

0
) is a diagonal matrix,

which has been considered in the previous section.
Case 4(b): If 1 < |¢| < |z|?. We have three subcases.
Case 4(b)(i): If [t + 1| > 1. Let

1 1+ 1 1 1+ 1 1 1+ 1
i N () N ) ISR e

t+1

Then we have

Y

0)) € A7,
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Case 4(b)(ii): If t = —1. We time g by (v~} u~u™!) on the left and ab-

sorb the second u~! by some elements in Kjy. As a result, we may assume that

-1 90 -1
g=([" I, |7 ) with [a], |y] > 1. T [y] > |2, let
0 =z 0

(0 z! 0 7! 0 z7! B zb 0 r 7y 0 "
h_(<x 0>7<x O>’<x 0>)€H(F)’t_(127<0 x>’<0 :cy_1>)€A7

and let
0 1 0 1 0 1
k= ( , , ) € K.
10 10 10
If ly| < |z, let
—-1 1 -1 -1 -1 -1
n=((" T en),
-y 0 -y 0 -y 0
1 0 1o
t=(u v ufl, Y 1) € A+,
0 zy ! 0
and let

-1 -1
1 0 -2 1 1 1

k= (u , 4 , ) € K.
7 2y% 1 -1 0 -1 0

Then for both cases, we have
g = htk.

Case 4(b)(iii): If [t + 1| < 1 with t # —1, then [¢t| = 1. If |(t + 1)y?| < 1, we have
)
0 1 0 y
1 =1\ {1 t7'41\ [yt O
60
L =1\ [y=F 0\ (1 (t'+1)?
L6 )

. 1 (P 4+1)y2 .
with € GL2(Op). Then up to modulo an element in Ky, we can
0 1

It +1)y?
eliminate (0 ( —il_ Jv ), and we have reduced to Case 4(b)(ii).
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1 —t7 141 1 —t1+1 1 —t1+1
If | (t+1)2z2| < 1, we time g b , , S
|(t+1)z?| g Y(<O ) ) (0 . 0 ) )

1ot +1
H(F) on the left, then modulo an element in K to eliminate a~!u~! ( ) ua =

0 1
1 (71 +1)2?
0 1
the second coordinate, we have still reduced to Case 4(b)(ii).

Now the only case left is when |(t + 1)y?|,|(t + 1)z?| > 1. Let

1 1 1
h:( t+1 0 t+1 0 t+1 0 )E H(F)
B N I A U | ’
t+1 t+1 t+1
-1 0 t+1 0\ [eh
t=(u v u_l, + , t )GA—’_7
0 x(t+1) 0 1 0 -
—1
1 0 1 0 0 1
k= (u . , , Y ) € K.

g = htk.

1 ot7h+1
) € GL2(Op) in the first coordinate and (0 1+ ) € GL2(Op) in

and let

Then we have

The proof of Proposition is finally complete.



Appendix B

The Absolutely convergence of

I(f)

In this appendix, we prove Proposition The proof goes exactly the same as
Proposition 7.1.1 of [B15]. In the loc. cit., the author is dealing with the Gan-Gross-
Prosad model case, but the proof of that Proposition worked for general cases except
the following five results which are specified to the GGP model case: Lemma 6.5.1,
Lemma 6.6.1, Proposition 6.4.1, Proposition 6.7.1 and Proposition 6.8.1 in the loc. cit.
But we already proved the above five results for the Ginzburg-Rallis model in Chapter
4, see Lemma Proposition [4.2.1] Proposition Lemma Lemma [4.3.3
Proposition and Lemma Therefore the argument in the loc. cit. can be

applied to our case smoothly. We only include the proof here for completion.

We first prove (1): for all d > 0, we have

[I(f;2)] < Qd’(f)/ 2% (2~ ha)oo (™ ha) =" dh
Zr(F)\R(F)

forall f € C(Zg(F)\G(F),n!)and z € R(F)\G(F). Herefor all f € C(Zg(F)\G(F),n™1),
9a(f) = supgear)| f(9)1E9(9) " 70(9)”.
Then by Proposition 5), if d’ is large enough, there exists d > 0 such that

/ =6 (& ha)oo(z ha) 4 dh < SR ()20 g g ()
Zr(FN\R(F)
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for all z € R(F)\G(F). This proves (1).

For (2), we use the same notations as in Chapter 4. In other word,

e Py = MylUy is a good minimal parabolic subgroup of Gy, Ag = A Mo -

Aa_ = {ao c Ao(F) ’ | a(ao) |Z 1, Vac \I/(Ao,po)}.

o Pin = PoU = MinUmin is a good minimal parabolic subgroup of G, Anin =
Ay = Ap.

min

o AT

min

={a € Apin(F) || ala) |> 1, Va € ¥ (Amin, Pnin)}
e A is the set of simple roots of Apip in Phin, and Ap = AN Y(Apin, P).

Again by the weak Cartan decomposition in Section 4.2, it is enough to prove the
estimation of the proposition for x = a € Ag . Moreover, we can fix an open compact
subgroup (not necessarily maximal) K C G(F'), and we only need to prove the following

statement:

(i) For all d > 0, there exists a continuous seminorm vy g on Cx(Zg(F)\G(F),n™1)
such that

1(f,0)] < vax (f)EM (@) opala) ™

for all a € A and f € Cseusp. i (Za(F)\G(F),n~1).

We set
Axt ={a € A |ala)| < op\cla), Ya € Ap}.

min
We first prove the following statement:

(ii) For all d > 0, there exists a continuous seminorm vy x on Cx(Zg(F)\G(F),n™1)
such that

1(f,0)| < var()EF(a)omala)™

for all a € AJ\AY: and f € Cx(Za(F)\G(F),n™1).

In fact, we can fix @ € Ap and prove (i) for all a € A7 with |a(a)| > op\g(a). As in

the proof of Claim since £ is nontrivial on ny(F'), we can find a constant C' > 0
such that

I(f,a)=0
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for all a € Ay (F) with |a(a)| > C and for all f € Cx(Zg(F)\G(F),n~!). Combining
with the estimation in part (1), we prove (ii).

By (ii), in order to prove (i), it is enough to prove the following statement:

(iii) For all d > 0, there exists a continuous seminorm vy g on Cx (Zg(F)\G(F),n™ 1)
such that

I(f,a)| < vax(f)ZR\Y(a)opala)

for all a € Aa+ and f S Cscusp,K(ZG<F)\G(F)77771)'

min
Claim B.0.2. In order to prove (iii), it is enough to prove the following statement:

(iv) For all d > 0, there exists a continuous seminorm vq ¢ on Cx(Za(F)\G(F),n™!)
such that

1(f,0)| < var()EF(a)omgla)™

foralla € A and f € Cocusp, s (Za(F)\G(F),n™").

min

a+

min

In fact, by the definition of A%% _ every element a € A
with

can be written as a = aya—

ay € Al o(a) < log(1+ orgl(a)).

Then by (iv), for all a € A% | we have
1(f,0)] < vax(*~ HED(as)omelar) (B.1)

Then (iii) will follows from the following three inequalities (whose proofs are trivial):

I1 If v is a continuous seminorm on Cx (Zg(F)\G(F),n '), there exist a continuous
seminorm v/ on Cx (Zg(F)\G(F),n™1) and ¢; > 0 such that

v(*f) S V(e
for all g € G(F) and f € Cx(Zg(F)\G(F),n™1).

12 There exists ¢z > 0 such that ZF\C(zg) <« EF\C(2)e2009) for all g € G(F) and
x € H(F)\G(F).

I3 JR\G(xg)*l < JR\G(w)*lao(g) for all g € G(F) and z € H(F)\G(F).
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This proves Claim Now we only need to prove (iv).
For any maximal parabolic subgroup Q = MqUg containing P,in and for any 6 > 0,
set
AZE(6) = {a € Al [a(a)] > €7, Yo € W( A, Ug).

Once we choose § small, the complement of
UgARin(6)

in A;an is relatively compact modulo the center. Here ) runs over all maximal parabolic
subgroups containing P,;,. Therefore in order to prove (iv), it is enough to prove the

following statement:

(v) For all proper maximal parabolic subgroups Q containing P,,;, and for all d > 0,

there exists a continuous seminorm vg 4 x on Cx (Za(F)\G(F), n~1) such that

1(f,0)| < vg,4x(HET(a)oRa(a)™

for all a € A2 (8) and f € Cocusp.ic (Za(FING(F), nL).

min
Now fix a Q as in (v), let

Ur = R(F) N pmm(F)Umm(F)
By the Bruhat decomposition, Ug is an open subset of R(F') containing the identity
element. Let
u:Ur = Upin(F)

be the F-analytic map sending h € Ug to the unique element u(h) € Upyin(F') such that
hu(h)™' € Ppin(F). Since Py, is a good parabolic subgroup, we have P, +t = g.
Together with the fact that the differential of w at 1 is given by diju(X) = py, .. (X)
where py,,.,. is the linear projection of g onto u,,;, with respect to the decomposition
g = Pmin D Umin, we know that the map u is submersive at the identity element.
Therefore we can find a relatively compact open neighborhood U,ipn of 1 in Upyin(F)
and an F-analytic section
h: Upmin — Ur

u — h(u)
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of the map u such that h(1) = 1. Without loss of generality, we assume that the Levi
component Mg of @ contains My,n, and let Q@ = MoUg be the opposite parabolic
subgroup of ) with respect to Mg. Set

Ug = Unmin NUQ(F), Rg = RNQ, Urq = Ro(F)h(Ug).
It is easy to see that the map
RQ(F) X UQ — R(F) : (hQ,UQ) — th(UQ)

is an injective F-analytic local isomorphism. Hence its image UR ¢ is an open subset of
H(F) containing the identity element. Let j be the Jacobian of this map, it is a smooth
function on Ry (F) x Ug and it is obviously invariant under the Rq(F)-translation. For
simplicity, we write j(ug) = j(hg,uq). Therefore for all € LY(Ug.q), we have

/u plnan = /R - /u plhghtue))j(uadudig. (B.2)

Fix € > 0 small. We need the following statement:

(vi) Let 0 < ¢’ < 0 and let ¢g > 0. If € is small enough, we have
aUg[< eop(a)la™™ C exp(B(0, coe ™ @) N ug (F))

for all a € AQ’+(6).

min

In fact, if og(a) < €71, the left hand side is empty, hence (vi) holds. If og(a) > ¢!, we
can find o > 0 such that
| log(u)| < ™7™

for all u € Ug(F'). We can also find § > 0 such that
laXa™t| < Be %70 x|
for all X € ug(F) and a € Ag;;:(é). As a result, for € > 0, we have

|log(aua™")| = [alog(u)a™"| < fe 27| log(u)|
< Be(ae—é)ag(a) _ 6€(a5+5’—5)00(a)e—é’oo(a)
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for all a € AQ’+(5) and u € Ug[< eop(a)]. Then we only need to choose e small enough

such that Bel*t0'=9)70(@) < ¢ for all a € Ay (F) with og(a) > e~ '. This proves (vi).

By (vi), for € small, we have
alg[< eop(a)la™ C Ug

for all a € AQ’+(5). Fix such €, we define

min

Z/{;’?@ = Rgloo < eap(a)]h(alqg[< eop(a)]a™).

Then (v) will be a consequence of the following two statements:

(vii) For all d > 0, there exists a continuous seminorm vy on Cx(Za(F)\G(F),n™ 1)
such that

/ Fla~ ha)ldh < va g (FEPC ()20 g (a) ™
ZR(F)\(R(F)\M;:ZQ)

for all a € A% (8) and f € Cx(Za(F)\G(F),n~1).

min

(viii) For all d > 0, there exists a continuous seminorm vy g on Cx (Zg(F)\G(F),n™ 1)
such that

| / Fla ha)w(WE(R)dh] < vas (=P (@) 2omla)
Zr(FINU

for all a € A% (8) and f € Coeusp.ic (Za(FNG(F), n7L).

min
We first prove (vii), we need a claim.

Claim B.0.3. For alla € Ag’;(é) and h € R(F)\Z/{;’fb, we have

oo(a) < oo(a™ ha).

In fact, by Lemma 1.3.1 of [B15] and Proposition |4.2.1)(3), it is enough to show that
we can find ¢ > 0 such that

R(F) N (Qloo < ap(a)lalgl< €opla)la™) C U;:]“Q (B.3)
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for all a € A%;(é). Fix ¢ > 0 small, let a € Ag’;(é). If og(a) < (¢)7%, the left hand
side of (B.3) is empty and there is nothing to prove. If og(a) > (¢') 7!, we assume that
¢ <e. Let h€ R(F)N (Qloo < €op(a)lalg[< €ap(a)la™t). We have

alUg[< €op(a)la™ C alUg|< eopla)la™™ C Ug.

Let h = qu with ¢ € Qoo < €'ap(a)] and u € aUg[< €'o¢(a)la™ C Ug. By the definition
of the map h, uh(u)~! = (h(u)u™1)"' € Ppin(F) C Q(F). Hence h = q(uh(u)~!)h(u)
with g(uh(u)~') € R(F)NQ(F) = Rg(F). Therefore we can find u € alg[< €'op(a)]a™
such that hh(u)~' € Ry(F). By the definition of Z/{;’le, in order to prove (B.3)), we only
need to show that if € is small enough, we have

oo(hh(u)™h) < eop(a). (B.4)

1

By (vi), if € is small enough, the sets aUg[< €/op(a)la™" remain in a fixed compact

subset as a varies in Af%;(é). Hence h(w) is uniformly bounded which is independent

of a and h. This implies o(h(u)) < 1 < €'og(a) since og(a) > (¢')~1. Therefore
oo(hh(u)™) < ag(h) + o(h(u)) < €og(a).

This proves (B.4)), and finishes the proof of Claim [B.0.3]
By the claim above, given d > 0, for all d’ > 0, we have

|f(a™" ha)|dh < qa(f)oo(a) /2 / =% (a " ha)oo(a" ha) ¥ /2dn

/ZR(F)\(R(F)\U;f‘Q) Zr(F)\R(F)

foralla € AQ’+(5) and f € Cx(Za(F)\G(F),n~1). By Proposition M(S) and Lemma

min

4.2.6(2), for d’' large, the right hand side above is essentially bounded by
qar(f)oo(a) EH\% (a)?

for all a € AQ’+(6). This proves (vii).

min

Now the only thing left is to prove (viii). By (B.2), we have

/ N f(a " ha)w(h)E(R)dh = / (B.5)
Zr(F)\U

R’,Q ZR(F)\RQ[O'0<600((J,)]

/ Fla™ hgh(ug)a)w(hoh(ug))E (hoh(ug))j(uq)dugdhg
aUg[<eoo(a)]a=?
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Za(F)\G(F),n7!) and a € AQ’+(5). Without loss of generality, we

min

for all f € C

(
assume that j(1) = 1. Every hy € Rg(F) can be written as hg = ug(hg)mg(hg) with

ug(hg) € Ug(F) and mq(hg) € Mq(F'). We need a lemma.
Lemma B.0.4. Let 0 < &' < § and let d' > 0. There exists a continuous semi-norm

par ic on Cx(Za(F)\G(F),n™1) such that if € is small enough, we have

w @ &(h(uq))i(ug) — 1] =0 (B.6)
and
|£(a ha) — f(a ' mg(hg)uga)| = 0 (B.7)
for all a € A% (5), ug € aUgl< eop(a)la! and hy € Rploo < eoo(a)]. Here h =
hoh(ug).

Proof. We first prove . Since the functions (w ®£) o hoexp and j oexp are smooth
functions on log(Ug) C ug(F'), we can choose a compact neighborhood wg C log(Ug)
of 0 such that the two functions above are constant on wg. By (vi), if € is small enough,
for all a € Ag’;fl(é), we have

alUg[< eog(a)la™ C exp(wg). (B.8)

Therefore the left hand side of is always 0, and this proves .

Now we prove (B.7). Let wg C g(F) be a compact neighborhood of 0 on which the
exponential map is well defined and we have exp(wg) C K. For hg C Ro(F), ug € Ug
and a € Apin(F), we have

a_lmQ(hQ)uQa =k ta thaky!
where h = hph(ug), k1 = a_luQ(hQ)a and ko = a_luélh(uQ)a. Since f is bi-K-
invariant, in order to prove , it is enough to prove the following claim.

Claim B.0.5. Let 0 < ¢’ < . Then if € small enough, we have
a_luQ(hQ)a € exp(B(0, e~ 7)) N we) (B.9)

and

a_luélh(uQ)a € exp(B(0, e 7)) N we) (B.10)

for all a € AQ’+(5), ug € alg[< eop(a)la™t and hg € Rploo < eoo(a)].

min
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The proof of is the same as the proof of (vi), we will skip it here. For (B.10]),

let Pin(u) = h(uw)u~" for all u € Upn. It defines an F-analytic map from U, to
Prin(F), and we have

a_luélh(uQ)a = a_luélﬁmm(uQ)uQa (B.11)

forall a € Ag’;(é) and ug € aUg[< eog(a)la™. Since prmin(1) = 1, there exists an open
neighborhood Uy, C Ug of 1 and an F-analytic map uq € Ug — X (uq) € Pmin(F) such
that

Prmin(ug) = eX (@)

for all ug € L{é). Applying (vi) again, we know that for e small enough, we have
aUg[< eop(a)la™ C Ug for all a € A9t (§). Therefore (B.11) becomes

min
-1, — Ad(a= uy') X
a 1uQ1h(uQ)a:e (a7 ug )X (ug)

Hence in order to prove (B.10), we only need to show that if € is small enough, we have

Ad(a™ ug") X (ug) € B(0,e @) Nwg (B.12)
for all a € Ag’;(é) and ug € alUg|< eop(a)]a™t.

There exists a > 0 such that
[Ad(g™")X| < "W X]|
for all g € G(F) and X € g(F'). Hence we have
|Ad(a™ ug") X (ug)| = |Ad(a™ " ug' a) Ad(a™") X (ug)| < e |Ad(a™") X (ug)]

for all a € Ag’;(é) and ug € aUg[< eog(a)]a. Moreover, by the definition of A .

there exists 8 > 0 such that
|Ad(a™1)X| < B|X]|

for all a € AT

i and X € pin(F). Therefore we have
[ Ad(a™ ug") X (ug)| < e ]Ad(a™") X (ug)| < B | X (ug)|
for all a € Ag’;(d) and ug € aUg[< eog(a)la™. So in order to prove (B.12)), we only

need to show that if € is small enough, we have

X (aUg[< eop(a)a™") C e D (B(0,e7" W) Nwg)
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for all a € Ag’;(é). This just follows from (vi) and the fact that the map X(-) is an
analytic map. This finishes the proof of the lemma. O

Combining the lemma above and (B.5]), we conclude that in order to prove (viii), it

is enough to prove the following statement:

(ix) For all d > 0, there exists a continuous seminorm vy on C(Zg(F)\G(F),n~!) such
that
| / f(a ma(gIugas(hq)s(hg)dugdh
Zr(F)\Rgloo<eoo(a)] JaUg[<eop(a)]a™!

< v /)% a)opala) ™

for all a € AT

min

and f € Cseusp(Za(F)\G(F),n71).

We use Ié(f, a) to denote the integral above. By changing the variable ug — auga™,

we have

Iy(f.0) = 8o(a) [

/ F(a~ " mo (hg)aug)dugw(hg) (hg)dhe.
Zr(F)\Rgloo<eoo(a)] JUg[<eao(a)]

Since f is strongly cuspidal, we have

/ fla™ mo(hg)auq)dug = —/ f(a™ mq(hg)auq)duq.
UQ [<eop(a)] UQ[Zea'o(a)]

For d; > 0, the integral above is bounded by
qdl(f)/ EG(a_lmQ(hQ)auQ)Uo(a_lmQ(hQ)auQ)_dlduQ. (B.13)
Uqlzeoo(a)]

Since o¢(mqug) > oo(ug) for all mg € Mg(F') and ug € Ug(F), for all dy > 0, (B.13))
is essentially bounded by

qd, (f)ao(a)_d2 / EG(a_lmQ(h@)auQ)Jo(a_lmQ(hQ)auQ)_d1+d2duQ.
Ug[>eoo(a)]

For d3 > 0, by Proposition if dy is large enough, the integral above is essentially

bounded by

d(mq(hg))=Me (a™ mg(hg)a)oo(a™ mo(hg)a)~®.
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Therefore for such dj, ]Ié( f,a)| is essentially bounded by

Sola)ia,(F)ao(a) Sa(ma(hg))=Ve (a ' mg(hg)a)o(a ma(hg)a) “dhg
ZRr(F)\Rg(F)

(B.14)
forall a € A and f € Cseusp(Za(F)\G(F),n71). Let Gg = Q/Ug, it can be identified
with Mg. Since RNUg = {1} by Proposition Rg can be identified with a subgroup
of G as in Chapter 4. Then (B.14) becomes

dg(a)qq (f)ao(a)dQ/ 6o(hs)Z2%Q(a  hza)og(a thpa) % dhgs.
' Zn(P\Rg(F) ¢ ¢ ¢
By Lemma M(l) and (3), if ds is large enough, the last term above is essentially
bounded by

3q(a)ga, (f)oo(a)”PER (a)?

for all @ € Af. . By Proposition m(l), Lemma [4.2.6(2) and Proposition M(Q),
there exists d4 > 0 such that

50 (a)299 (a)? < ER\C(a)200(a)h

foralla € AT

min- Once we take do = d + dy, we know that for d; large enough, we have

15(f,a)| < a4, (£)ERC (a)200(a)

foralla € Al . and f € Coeusp(Za(F)\G(F),n~'). Then (ix) will follows from Lemma
4.2.6(2).
Now the proof of Proposition is finally complete.



Appendix C

The Reduced Models

In this appendix, we will summarize our results for the reduced models of the Ginzburg-
Rallis model. The proof of these results are similar to the Ginzburg-Rallis model case we
considered in this paper, hence we will skip them here. For simplicity, we will use (G, R)
instead of (G, R) to represent the reduced models. For any irreducible admissible
generic representation 7 of G(F'), we use m(m) to denote the multiplicity for the reduced

model.

C.1 Type II Models

As mentioned in Section 5.4, if (G, R) is a Type II reduced model, the geometric side
of the trace only contains the germ at the identity element. Therefore the multiplicity

formula for the model (G, R) is just
m(ﬂ-) = mgeom(ﬂ-) = Ceﬂ'yoreg(]‘)'

In particular, by the work of Rodier, we know that the multiplicity m(w) is always 1.

C.2 Trilinear GL; Model

In this section, let (G, H) and (Gp,Hp) be the trilinear GLy models introduced in
Section 4.5. We use m(w) and m(mwp) to denote the multiplicities. Then by applying

our methods in this paper, we can prove the following theorem.

209
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Theorem C.2.1. If 7 is an irreducible tempered representation of G(F) whose central
character equals x? on Zy(F), let mp be the Jacquet-Langlands correspondence of m to

Gp(F) if it exist; otherwise let 1p = 0. Then we have
m(m) +m(mp) = 1.

Remark C.2.2. If F' is p-adic or R, the above Theorem has been proved by Prasad
[P90] and Loke [LO1] for general generic representations by using different methods.
In the loc. cit., they also proved the epsilon dichotomy conjecture for this model. In
ILO1)], the author also proved the complex case for generic representations satisfy certain

assumption.

Moreover, if F' is p-adic, we can also prove the local trace formulas for this model
and the multiplicity formulas for m(7) and m(mwp). In particular, we can show that the
multiplicity formula

m(m) =m ) = -1 1 c H e -1
(%) = Mgeom () %rwww (1) /Z e, DD Ox (et )

holds for all tempered representations 7 of G(F'). Here c,(t) is the germ associated
to O, defined in Section 5.4. Similarly, we can also prove the multiplicity formula for

m(ﬂ'D).

Remark C.2.3. In fact, we can show that the multiplicity formulas above hold for
all generic representations. We first consider the split case. If m = m ® mo ® T3 s
an essentially discrete series of GLa(F) x GLa(F) x GLo(F), by twisting m by some
characters, we may assume that 7 is a discrete series. Note that this is allowable since
both m(m) and Mgeom () are invariant under the unramified twist. This proves the
multiplicity formula when w is an essentially discrete series. If m is not an essentially
discrete series, then one of the m; is a principal series. By the work of Prasad in [P90)],
we know that the multiplicity equals 1 in this case. On the other hand, by Lemmal3.5.1
the germ cy(t) equals zero for allt € Ty(F)reg and v € F*/(F*)? with v # 1. Therefore
Mgeom () = cx(1) = 1. This proves the multiplicity formula.

If we are in the quaternion case, every irreducible representation mp of Gp(F) is
an essential discrete series. So we only need to twist mp by some characters and then

apply our results for the discrete series.
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C.3 The Generalized Trilinear GLy Models

In this section, we consider the generalized trilinear GLo models. Although these models
are not the reduced models for the Ginzburg-Rallis model, they are very similar to the
trilinear GLy model case we considered in the previous section, hence our methods in
this paper can also be applied to these models. These models were first considered by
Prasad in [P92] for general generic representations using different methods. By using
our method in this paper, we can prove the tempered case. In this section, F' is a p-adic
field.

Case I: Let K/F be a cubic field extension, G(F) = GL2(K), and let H(F) =
GL2(F). On the mean time, let Gp(F) = GL1(Dg) and let Hp(F) = GL1(D) where
D = D ®p K is the unique quaternion algebra over K. For a given irreducible
representation 7 of G(F'), assume that the restriction of the central character w, :
K> — C* to F’* equals x? for some character y of F'*. x will induces a one-dimensional

representation o of H(F'). Let
m(7) = dim Homg (7, 0). (C.1)

Similarly we can define m(mp) for an irreducible representation mp of Gp(F). The
following theorem has been proved by Prasad in [P92] for general generic representations
using different method. By using our method in this paper, we can prove the tempered

case.

Theorem C.3.1. If 7 is a tempered representation of G(F'), let wp be the Jacquet-

Langlands correspondence of w to Gp(F) if it exist; otherwise let mp = 0. Then
m(m) +m(mp) = 1.

We can also prove the local trace formulas for this model and the multiplicity for-

mulas for m(mr) and m(wp). In particular, we can show that the multiplicity formula

=m mT) 1= _lu c H e -1
i) = M) i= 3 | WULT) | (T) /Z e, DD Ox (e )

holds for all tempered representations 7 of G(F). Here c.(¢) is the germ associated to 0,

defined in the same way as the trilinear GLy model case. Similarly, we can also prove the
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multiplicity formula for m(7wp). Moreover, by the same argument as in Remark
together with Prasad’s results in [P92], we can show that the multiplicity formulas above
hold for all generic representations.

Case II: Let E = F, be a quadratic extension of F' where v is a non-trivial
square class in F*. Let G(F) = GLo(E) ® GLo(F), H(F) = GLo(F), Gp(F) =
GL2(E)xGL1 (D), and let Hp(F') = GL1(D). Asin the previous cases, we can define the
multiplicity m(7) (resp. m(mwp)) for the model (G(F'), H(F')) (resp. (Gp(F), Hp(F))).
By using our method in this paper, we can still prove that the summation of the mul-
tiplicities over any tempered L-packet is 1. We can also prove the local trace formulas
and the multiplicity formulas. Moreover, by the same argument as in Remark
together with Prasad’s results in [P92], we can also show that the multiplicity formulas
hold for all generic representations. However, there is one difference between this case

and all the previous cases, this will be discussed in the following remark.

Remark C.3.2. In all the previous cases, for the geometric side of the trace formulas
(or the multiplicity formulas), we are integrating the germs of the distribution over all
the nonsplit tori of H(F'). But in this case, we only need to integrate over those nonsplit
tori which is not isomorphic to T,,. The reason is that in this case, both G(F') and Gp(F')
contain GLa(E). As a result, for an element in To,(F)NH (F)reg (01 Ty(F)NHpP(F)req),
although it is elliptic in H(F') and Hp(F'), it will no longer be elliptic in G(F') or Gp(F).
Therefore the localization at this element will be zero. This is why the torus T, will not

show up in the multiplicity formulas and the geometric side of the local trace formulas.

C.4 The Middle Models

In this section, let (G, R) and (Gp, Rp) be the middle models introduced in Section 4.5.
We use m(w) and m(wp) to denote the multiplicities. Then by applying our methods

in this paper, we can prove the following theorem.

Theorem C.4.1. If 7 is an irreducible tempered representation of G(F) whose central
character equals x? on Zy(F), let Tp be the Jacquet-Langlands correspondence of m to

Gp(F) if it exist; otherwise let 1p = 0. Then we have

m(m) +m(mp) = 1.
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Conjecture C.4.2. In general, we expect that the above theorem holds for all generic

representations.

We can also prove the epsilon dichotomy conjecture for this case. We need some
preparation: let m = m ® w2 be an irreducible generic representation of G(F) =
GL4(F) x GL2(F). Let wg, (resp. wy,) be the central character of m (resp. m2).
As in the Ginzburg-Rallis model case, we assume that wy, wr, = x2. Let ¢ (resp. ¢2)

be the Langlands parameter of m (resp. m2). Then we have

N (1@ ¢2) = (N*(61) @ ¢2) @ (A (61)) @ (d1 @ (det(¢2))).
Since det(¢;) det(¢p2) = x2, we have
(A (1) @ x71)¥ = det(¢1) " ® ¢1 ® X = 61 ® (det(¢2)) @ X
This implies that
e(1/2, N3 (p1)@x " )e(1/2, dr@(det(p2))@x ™) = det(A*(d1)@x™")(=1) = X (~Dwn, (—1) = wr, (1)
Hence the multiplicity is related to the epsilon factor
wry (~1)e(1/2,A(01) @ g2 @ X 7).

The following conjecture is the epsilon dichotomy conjecture for the middle model.
Conjecture C.4.3. With the notations and the assumptions above, the followings hold.
m(m) =1 <= wr (~1)e(1/2,\*(¢1) @ g2 @ x ') = 1,

m(m) =0 <= wr (=1)e(1/2,/A* (1) @ g2 @ x ') = ~1.
Our results for the conjecture above can be summarized in the following theorem.
Theorem C.4.4. Assume that w is tempered. The followings hold.
1. If F is archimedean, then Conjecture [C.4.3 holds.

2. If F is p-adic and if 7 is not a discrete series, then Conjecture [C-4.3 holds.
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Proof. The proof is similar to the Ginzburg-Rallis model case in Chapter 7 and 13. In
other word, if F' = C, by the same argument as in Section 7.1, we can show that the
epsilon factor is always equal to 1. Then by applying Theorem above, we know
that the multiplicity is also equal to 1, this proves the conjecture.

If F =R, then by the same argument as in Section 7.3, we can reduce the problem to
the trilinear GLo model case. Then the conjecture will follows from the work of Prasad
[P90] and Loke [LO1].

Finally if F' is p-adic, by our assumption, there are two possibilities: either m is
induced from the trilinear GLs model or 7 is induced from some Type II model. If 7 is
induced from the trilinear GL2 model, we can again reduce the problem to the trilinear
GL2 model case and then applying Prasad’s result in [P90]. If 7 is induced from some
Type II model, then m1p = 0. By Theorem above, we know that m(m) = 1. By
the same argument as in Section 13.3, we can show that the epsilon factor is also equal

to 1 in this case, and this proves the conjecture. O

Remark C.4.5. Assume that F' is p-adic. If the central characters of m and mo are
both trivial, we can find a representation II of SO(6) x SO(3) associated to w. Then
it is easy to see that the multiplicity m(w) is equal to the multiplicity m(I1) for the
Gan-Gross-Prasad model. Also one can show that the epsilon factor associated to w
is equal to €(1/2,11). Then by applying the work of Moeglin and Waldspurger for the
Gan-Gross-Prasad model in [MW12], we know that Conjecture and Conjecture
hold for all generic representations ™ with wy, = wyr, = 1.

Moreover, if F' is p-adic, we can also prove the local trace formula for this model
and the multiplicity formulas for m(7) and m(7wp). In particular, we can show that the

multiplicity formula

m(m) =m T) 1= 1y & H e -1
() = Mgeom () 7%:FIW(I%LT)! (T)/ZG(F)\T(F) =(t) D (1) Aq(t)x(det(t)) ™ dt

holds for all tempered representations 7 of G(F'). Here c.(t) is the germ associated to
0 defined in Section 5.4, and Ag(t) is some normalized function also defined in Section
5.4. Similarly, we can also prove the multiplicity formula for m(7p).

Finally, as in Chapter 14, if F' is archimedean, we will have some partial results

for the general generic representations. We first consider the case when F' = R. Let
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m = T @72 be a generic representation of G(F') = GL4(F) x GL2(F'), and let mp be its
Jacquet-Langlands correspondence to Gp(F'). By the Langlands classification, there is
a parabolic subgroup @ = LUq of GL4(F') containing the lower Borel subgroup and an
essential tempered representation 7 = ®¥_;7;| |* of L(F) with 7; tempered, s; € R and
51 < 89 < --- < 8 such that 71 = ISL4(F)(T). We say Q is nice if Q C Pag or Pya C Q.
Here P» 5 is the parabolic subgroup of GL4(F") of type (2,2) and containing the lower

Borel subgroup. Then our results can be summarized in the following theorem.
Theorem C.4.6. With the notations above, the followings hold.

1. If m1p = 0, assume that Q is nice, then Conjecture and Conjecture [C.4.3
hold.

2. If tp # 0, we have
m(m) +m(rp) > 1

Moreover, we also have
wry (—1)e(1/2, A} (¢1) @ pg @ x1) = 1 = m(m) =1,
m(m) = 0= wr, (—1)e(1/2,A*(¢1) ® po @ x ) = —1.

As in the Ginzburg-Rallis model case, the assumption on @ can be removed if we
can prove the holomorphic continuation of certain generalized Jacquet integrals (i.e. the
hypothesis in Section 14.3).

Then we consider the case when F' = C. We still let 71 = m ® m be a generic
representation of G(F) = GL4(F) x GLg(F'). As in the Ginzburg-Rallis model case, we
know that Conjecture will follows from Conjecture For Conjecture
let B = MyUy C GL4(F) be the Borel subgroup consists of all the lower triangular
matrix, here My = (GL1)* is just the group of diagonal matrices. Then 7 is of the
form Ig(x) where y = ®%_,x; is a character on My(F). For 1 < i < 4, we can find
an unitary character o; and some real number s; € R such that x; = oy| |**. Without
loss of generality, we assume that s; < s; for any ¢ > j. Then if we combine those
representations with the same exponents s;, we can find a parabolic subgroup @@ = LUg
containing B with L = x¥ GL,,, a representation 7 = ®F_ 7| [t of L(F) where 7;

are all tempered and the exponents ¢; are strictly increasing (i.e. ¢ < tg < -+ < tg)
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such that 7 = ISL4(F) (7). On the other hand, we can also write 71 as Ig2L:(F) (7o) with

mo = 711 ® w12 and mwy; be the parabolic induction of x2;_1 ® xo;.

Theorem C.4.7. With the same assumptions as in Conjecture [C4.3 and with the

notation above, the followings hold.

1. If Pas C Q and if m is an essentially tempered representation, Conjecture
holds.

2. If Q C P and if 7’ = m1 @2 @y satisfies the condition (40) in [LO1)], Conjecture
= /

[CZ.3 holds.

As in the Ginzburg-Rallis model case, the assumption on @) in Theorem |C.4.7|(2) can
be removed if we can prove the holomorphic continuation of certain generalized Jacquet

integrals (i.e. the hypothesis in Section 14.3).
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