
A Local Trace Formula and the Multiplicity One Theorem
for the Ginzburg-Rallis Model

A THESIS

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Chen Wan

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Dihua Jiang

May, 2017



c© Chen Wan 2017

ALL RIGHTS RESERVED



Acknowledgements

Firstly, I want to thank my advisor Dihua Jiang for his consistent support and en-

couragement in the past four years. He introduced me to the topics of automorphic

forms and representation theory, suggested me thinking about this problem, provided

practical and thought-provoking viewpoints that lead to solutions of the problem, and

carefully reviewed the first draft of this paper. Beside all these, he also spent a lot time

on training me to work as a professional mathematician, and helping me to go through

the period of cultural adjustment. Without his help, it will be very difficult for me to

understand this subject and finish my thesis in such a short period of time. I certainly

cannot feel more grateful to him.

Beside my advisor, there are many other mathematicians who have helped me in

various ways, including (in alphabetical order) Ben Brubaker, James Cogdell, Adri-

an Diaconu, Paul Garrett, Jayce Getz, Raul Gomez, Xuejun Guo, Heekyoung Hahn,

Qingzhong Ji, Kai-Wen Lan, Tyler Lawson, Baiying Liu, William Messing, Chufeng

Nien, Andrew Odlyzko, Omer Offen, Dipendra Prasad, Hourong Qin, Yiannis Sakel-

laridis, Freydoon Shahidi, Jean-Loup Waldspurger, Nolan Wallach, Lei Zhang, Shouwu

Zhang and Wei Zhang. Some of them kindly answered my questions; some of them

patiently listened to me explain my work and provided useful feedbacks; some of them

suggested me to consider other possible aspects of this problem; and all of them have

given me enormous encouragements. I want to thank all of them.

In this past four years, some current and former students including me at University

of Minnesota have run several seminars for various topics. I benefited a lot from these

seminars, and I would like to thank all the participants over this years, including (in

alphabetical order) Zhilin Luo, Qinghua Pi, Andrew Senger, Marshall Smith, Fangyang

Tian, Chengyan Wu, and Yao Rui Yeo. I also want to thank Dihua Jiang and Kai-Wen

i



Lan for organizing some of these seminars.

During the different stages in the preparation of this work, I have been giving lectures

in various seminars and conferences at University of Minnesota, American Institution

of Mathematics, Wake Forest University, Centre International de Rencontres Mathma-

tiques, University of St. Thomas, Columbia Univeristy, Rutgers University-Newark,

Duke University, Ohio State University and Massachusetts Institute of Technology. I

would like to thank all the organizers and participants of these events.

Finally, I would like to thank my parents, all family members and friends for their

consistent support in various stages of my life.

ii



                                                                                                  iii 
 

I would like to dedicate this paper to my parents. 

 

谨以此文献给我的父母。 



Abstract

Following the method developed by Waldspurger and Beuzart-Plessis in their proof

of the local Gan-Gross-Prasad conjecture, we are able to prove a local trace formula for

the Ginzburg-Rallis model. By applying this trace formula, we proved a multiplicity

formula for the Ginzburg-Rallis model for tempered representations. Then by applying

this multiplicity formula, we proved the multiplicity one theorem for all tempered L-

packets. In some cases, we also proved the epsilon dichotomy conjecture which gives a

relation between the multiplicity and the exterior cube epsilon factor. Finally, in the

archimedean case, we proved some partial results for the general generic representations

by applying the open orbit method.
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Chapter 1

Introduction and the Main

Results

1.1 The Ginzburg-Rallis Models

D. Ginzburg and S. Rallis found in their paper ([GR00]) a global integral representation

for the partial exterior cube L-function LS(s, π,∧3 ⊗ χ−1) attached to any irreducible

cuspidal automorphic representation π of GL6(A). By using the regularized Siegel-

Weil formula of Kudla and Rallis([KR94]), they discovered that the nonvanishing of

the central value of the partial exterior cube L-function LS(1
2 , π,∧

3 ⊗ χ−1) is closely

related to the Ginzburg-Rallis period, which will be defined as follows. The relation

they discovered is similar to the global Gan-Gross-Prasad conjecture ([GP92], [GP94],

[GGP12]), but for a different setting.

Let k be a number field, and let A be the ring of adeles of k. Take P = P2,2,2 = MU

be the standard parabolic subgroup of G = GL6 whose Levi part M is isomorphic to

GL2 ×GL2 ×GL2, and whose unipotent radical U consists of elements of the form

u = u(X,Y, Z) :=


I2 X Z

0 I2 Y

0 0 I2

 . (1.1)

We define a character ξ on U(k)\U(A) by

ξ(u(X,Y, Z)) := ψ(atr(X) + btr(Y )) (1.2)

1
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where ψ is a non-trivial additive character on k\A, and a, b ∈ k×.

It’s clear that the stabilizer of ξ is the diagonal embedding of GL2 into M , which is

denoted by H. For a given idele character χ of A×/k×, one induces a one dimensional

representation ω of H(A) given by ω(h) := χ(det(h)), which is clearly trivial when

restricted to H(k). Now the character ξ can be extended to the semi-direct product

R(A) := H(A) n U(A) (1.3)

by making it trivial on H(A). Similarly we can extend the character ω to R(A). It

follows that the one dimensional representation ω ⊗ ξ of R(A) is well defined and it is

trivial when restricted to the k-rational points R(k). Then the Ginzburg-Rallis period

for any cuspidal automorphic form φ on GL6(A) with central character χ2 is defined to

be

PR,ω⊗ξ(φ) =

∫
H(k)ZG(A)\H(A)

∫
U(k)\U(A)

φ(hu)ξ−1(u)ω−1(h)dudh. (1.4)

As in the Jacquet conjecture for the trilinear period of GL2 ([HK04]) and in the global

Gan-Gross-Prasad conjecture ([GGP12]) more generally, Ginzburg and Rallis found that

the central value of the partial exterior cube L-function LS(1
2 , π,∧

3⊗χ−1) may also be

related to the quaternion algebra version of the Ginzburg-Rallis period PR,σ⊗ξ. More

precisely, let D be a quaternion algebra over k, and consider GD := GL3(D), a k-inner

form of GL6. In the group GD, define

HD = {hD =


g 0 0

0 g 0

0 0 g

 | g ∈ D×} (1.5)

and

UD = {uD(x, y, z) =


1 x z

0 1 y

0 0 1

 | x, y, z ∈ D}. (1.6)

In this case, the corresponding character ξD of UD is defined in same way except

that the trace in the definition of ξ is replaced by the reduced trace of the quaternion

algebra D. Similarly, the character ωD on HD is defined by using the reduced norm

of the quaternion algebra D. Now the subgroup RD is defined to be the semi-direct

product HD n UD and the corresponding one dimensional representation ωD ⊗ ξD of
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RD(A) is well defined. The D-version of the Ginzburg-Rallis period for any cuspidal

automorphic form φD on GL3(D)(A) with central character χ2 is defined to be

PRD,ωD⊗ξD(φD) :=

∫
HD(k)ZGD (A)\HD(A)

∫
UD(k)\UD(A)

φD(hu)ξ−1
D (u)σ−1

D (h)dudh. (1.7)

In [GR00], they form a conjecture on the relations between the periods above and

the central value LS(1
2 , π,∧

3 ⊗ χ−1).

Conjecture 1.1.1 (Ginzburg-Rallis, [GR00]). Let π be an irreducible cuspidal automor-

phic representation of GL6(A) with central character ωπ. Assume that there exists an

idele character χ of A×/k× such that ωπ = χ2. Then the central value LS(1
2 , π,∧

3⊗χ−1)

does not vanish if and only if there exists a unique quaternion algebra D over k and

there exists the Jacquet-Langlands correspondence πD of π from GL6(A) to GL3(D)(A),

such that the period PRD,σD⊗ξD(φD) does not vanish for some φD ∈ πD, and the pe-

riod PRD′ ,σD′⊗ξD′ (φD′) vanishes identically for all quaternion algebra D′ which is not

isomorphic to D over k, and for all φD′ ∈ πD′.

Remark 1.1.2. Here L(s, π,∧3⊗χ−1) stands for the L-function of (∧3φπ)⊗χ−1 (NOT

∧3(φπ ⊗ χ−1)) where φπ is the Langlands parameter of π.

It is clear that this conjecture is an analogy of the global Gan-Gross-Prasad conjec-

ture for classical groups ([GGP12]) and the Jacquet conjecture for the triple product

L-functions for GL2, which is proved by M. Harris and S. Kudla in [HK04]. It is also

clear that Conjecture 1.1.1 is now a special case of the general global conjecture of Y.

Sakellaridis and A. Venkatesh for periods associated to general spherical varieties ([SV]).

Similarly to the Gan-Gross-Prasad model, there is also a local conjecture for the

Ginzburg-Rallis model, which is the main result of this paper. The conjecture at local

places has been expected since the work of [GR00], and was first discussed in details

by Dihua Jiang in his paper [J08]. Now let F be a local field of characteristic zero, and

let D be the unique quaternion algebra over F if F 6= C. Then we may also define

the groups H,U,R,HD, UD, and RD as above. The local conjecture can be stated as

follows, using the local Jacquet-Langlands correspondence established in [DKV84].

Conjecture 1.1.3 (Jiang, [J08]). For any irreducible admissible representation π of

GL6(F ), let πD be the local Jacquet-Langlands correspondence of π to GL3(D) if it exists,
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and zero otherwise. In particular, πD is always zero if F = C. Assume that there exists

a character χ of F× such that ωπ = χ2. For a given non-trivial additive character ψ of

F , similar to the global case, we can define the one dimensional representation ω⊗ ξ of

R(F ) and ωD ⊗ ξD of RD(F ), respectively. Then the following identity

dim(HomR(F )(π, ω ⊗ ξ)) + dim(HomRD(F )(πD, ωD ⊗ ξD)) = 1 (1.8)

holds for all irreducible generic representation π of GL6(F ).

As in the local Gan-Gross-Prasad conjecture ([GGP12]), Conjecture 1.1.3 can be

reformulated in terms of the local Vogan L-packets and the assertion in the conjecture

is expressed as the local multiplicity one over the local Vogan L-packets. Here although

GL6(F ) does not have non-trivial pure inner form, as we already make the central

character assumption, we are actually working with the pair (PGL6,PGL2 n U) which

have non-trivial pure inner form. For any quaternion algebra D over F which may be

F -split, define

m(πD) := m(πD, ωD ⊗ ξD) := dim(HomRD(F )(πD, ωD ⊗ ξD)). (1.9)

The local multiplicity one theorem for each individual irreducible admissible represen-

tation πD of GL3(D) asserts that

m(πD) = m(πD, ωD ⊗ ξD) ≤ 1 (1.10)

for any given ωD ⊗ ξD. This local multiplicity one theorem was proved in [N06] over a

p-adic local field and in [JSZ11] over an archimedean local field. Then (1.8) becomes

m(π) +m(πD) = 1.

Another aspect of the local conjecture is the so-called ε-dichotomy conjecture, which

relates the multiplicity with the value of the exterior cube epsilon factor. The conjecture

can be stated as follows.

Conjecture 1.1.4. With the same assumptions as in Conjecture 1.1.3, the followings

hold.

m(π) = 1 ⇐⇒ ε(1/2, π,∧3 ⊗ χ−1) = 1,

m(π) = 0 ⇐⇒ ε(1/2, π,∧3 ⊗ χ−1) = −1.
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In this paper, we always fix a Haar measure dx on F and an additive character ψ

such that the Haar measure is selfdual for Fourier transform with respect to ψ. We use

such dx and ψ in the definition of the ε factor. For simplicity, we will write the epsilon

factor as ε(s, π, ρ) instead of ε(s, π, ρ, dx, ψ).

Remark 1.1.5. In the definition of the character ξ, we introduce two coefficients a, b ∈
F×. It is easy to see that the multiplicity is actually independent of the choice of a and

b. The reason we introduce these two coefficients is for the proof of the geometric side

of the trace formula (i.e. Chapter 9 to Chapter 12). For all the rest chapters, we will

just take a = b = 1.

1.2 Main Results

The main goal of this paper to prove the local conjectures stated in the previous section

for tempered representations. We first talk about our results for Conjecture 1.1.3.

Theorem 1.2.1. For every tempered representation π of GL6(F ) with central character

χ2, Conjecture 1.1.3 holds. In particular, we have

m(π) +m(πD) = 1.

Our proof of Theorem 1.2.1 uses Waldspurger’s method in his proof of the local

Gan-Gross-Prosad conjecture (orthogonal case) in [W10] and [W12]; and also some

techniques introduced by Beuzart-Plessis in his proof of the local Gan-Gross-Prosad

conjecture (unitary case) in [B12] and [B15]. In the p-adic case, the key ingredient of

the proof is a local trace formula for the Ginzburg-Rallis model, which will be called

the trace formula in this paper for simplicity, unless otherwise specified.

To be specific, let f ∈ C∞c (ZG(F )\G(F ), χ−2) be a strongly cuspidal function (see

Section 3.4 for the definition of strongly cuspidal functions). We define the function

I(f, ·) on R(F )\G(F ) to be

I(f, x) =

∫
R(F )/ZG(F )

f(x−1hx)ω ⊗ ξ(h)dh.

We then define

I(f) =

∫
R(F )\G(F )

I(f, g)dg. (1.11)
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We will prove in Section 8.1 that the integral defining I(f) is absolutely convergent.

The distribution in the trace formula is just I(f).

Now we define the spectral and geometric sides of the trace formula. To each strongly

cuspidal function f ∈ C∞c (ZG(F )\G(F ), χ−2), one can associate a distribution θf on

G(F ) via the weighted orbital integral (see Section 3.4). It was proved in [W10] that

the distribution θf is a quasi-character in the sense that for every semisimple element

x ∈ Gss(F ), θf is a linear combination of the Fourier transform of the nilpotent orbital

integrals of gx near x. For each nilpotent orbit O of gx, let cθf ,O(x) be the coefficient. It

is called the germ of the distribution θf . Let T be a subset of subtorus of H as defined

in Section 5.1. For any t ∈ Treg(F ) and T ∈ T , define cf (t) to be cθf ,Ot(t) where Ot is

the unique regular nilpotent orbit in gt. For detailed description of Ot, see Section 5.1.

Then we define the geometric side of our trace formula to be

Igeom(f) =
∑
T∈T
|W (H,T )|−1ν(T )

∫
ZG(F )\T (F )

cf (t)DH(t)∆(t)χ(det(t))dt

where DH(t) is the Weyl determinant and ∆(t) is some normalized function as defined

in Section 5.1. For the spectral side, define

Ispec(f) =

∫
Πtemp(G,χ2)

θf (π)m(π̄)dπ

where Πtemp(G,χ
2) is the set of irreducible tempered representations of G(F ) = GL6(F )

with central character χ2, dπ is some measure on Πtemp(G,χ
2) defined in Section 2.9,

and θf (π) is the weighted character as defined in Section 3.5. Then the trace formula

we proved in this paper is just

Ispec(f) = I(f) = Igeom(f). (1.12)

The proof of the spectral side of the trace formula will be given in Chapter 8, while the

geometric side will be proved in Chapter 12. Similarly, we can also have the quaternion

version of the trace formula.

After proving the trace formula, we are going to prove a multiplicity formula for the

Ginzburg-Rallis model:

m(π) = mgeom(π), m(πD) = mgeom(πD). (1.13)
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Here mgeom(π) (resp. mgeom(πD)) is defined in the same way as Igeom(f) except replac-

ing the distribution θf by the distribution character θπ (resp. θπD) associated to the

representation π (resp. πD). For the complete definition of the multiplicity formula, see

Section 13.1. Once this formula has been proved, we can use the relations between the

distribution characters θπ and θπD under the local Jacquet-Langlands correspondence

to cancel out all terms in the expression of mgeom(π) + mgeom(πD) except the term

cθπ ,Oreg , which is the germ at the identity element. Then the work of Rodier ([Rod81])

shows that cθπ ,Oreg = 0 if π is non-generic, and cθπ ,Oreg = 1 if π is generic. Because all

tempered representations of GLn(F ) are generic, we get the following identity

mgeom(π) +mgeom(πD) = 1. (1.14)

And this proves Theorem 1.2.1. The proof of the multiplicity formula uses the trace

formula we mentioned above, together with the Plancherel formula and Arthur’s local

trace formula. For details, see Chapter 13.

In the archimedean case, although we can use the same method as in the p-adic case

(like Beuzart-Plessis did in [B15] for the GGP case), it is actually much easier. All we

need to do is to show that the multiplicity is invariant under the parabolic induction,

and this will be done in Chapter 6 for both p-adic and archimedean case. Then if

F = R, since only GL1(R), GL1(D) and GL2(R) have discrete series, we can reduce the

problem to the trilinear GL2 model case which has been considered by Prasad and Loke

in [P90] and [L01]. If F = C, every generic representation is a principal series. So we

can reduce the problem to the reduced model associated to the torus whose multiplicity

is always 1. For details, see Chapter 7.

For the epsilon dichotomy conjecture, our results can be stated as follows.

Theorem 1.2.2. Let π be an irreducible tempered representation of GL6(F ) with central

character χ2. The followings hold.

1. If F is archimedean, Conjecture 1.1.4 holds.

2. If F is p-adic, and if π is not a discrete series or the parabolic induction of a

discrete series of GL4(F )×GL2(F ), Conjecture 1.1.4 holds.

The proof of the archimedean case will be given in Chapter 7, and the p-adic case

will be proved in Chapter 13. Our methods is to show that both the multiplicities and
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the epsilon factor are invariant under the parabolic induction. Then if F = R, we can

reduce to the trilinear GL2 model case, which has already been proved by Prasad and

Loke. If F = C, we can show that both the multiplicity and the epsilon factor are always

equal to 1. This proves the theorem. If F is p-adic, under our assumptions, there are

only two possibilities. One is that the representation is induced from a discrete series of

GL2(F )×GL2(F )×GL2(F ), then we can still reduce to the trilinear GL2 model case.

The other possibility is that the representation is induced from some Type II parabolic

subgroup (see Section 4.5 for the definition of Type II models). In this case, one can

show that the multiplicity and the epsilon factor are both equal to 1. This proves the

theorem.

Moreover, our methods can also be applied to all reduced models of the Ginzburg-

Rallis model coming from the parabolic induction. For some models such results are

well known (like the trilinear GL2 model); but for many other models, as far as we

know, such results never appear in literature. The reduced models will be discussed in

Section 4.5. The trace formulas and the multiplicity formulas for those models will be

discussed in Section 5.4.

After we proved the tempered case, it is naturally to ask how about the general

generic representations. In this case, we only have partial result for the archimedean

case. Before we state it, we need some preparation.

If F = C, by the Langlands classification, any generic representation π is a principal

series. In other word, let B = M0U0 be the lower triangular Borel subgroup of GL6, here

M0 = (GL1)6 is just the group of diagonal matrices. Then π is of the form IGB (χ) where

χ = ⊗6
i=1χi is a character on M0(F ) and IGB is the normalized parabolic induction. For

1 ≤ i ≤ 6, we can find an unitary character σi and some real number si ∈ R such that

χi = σi| |si . Without loss of generality, we assume that si ≤ sj for any i ≥ j. Then if

we combine those representations with the same exponents si, we can find a parabolic

subgroup Q = LUQ containing B with L = ×ki=1GLni , a representation τ = ⊗ki=1τi| |ti

of L(F ) where τi are tempered representations of GLni(F ) and the exponents ti are

strictly increasing (i.e. t1 < t2 < · · · < tk), such that π = IGQ (τ). On the other hand,

we can also write π as IG
P̄

(π0) with π0 = π1⊗ π2⊗ π3 and πi be the parabolic induction

of χ2i−1 ⊗ χ2i.

Theorem 1.2.3. Assume that F = C, with the same assumptions as in Conjecture
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1.1.3 and with the notation above, the followings hold.

1. If P̄ ⊂ Q, Conjecture 1.1.3 and Conjecture 1.1.4 hold. In particular, both conjec-

tures hold for the tempered representations.

2. If Q ( P̄ and if π0 satisfies the condition (40) in [L01], Conjecture 1.1.3 and

Conjecture 1.1.4 hold.

The main ingredient of our methods for Theorem 1.2.3 is the open orbit method,

which allows us to reduce our problems to the tempered case or the trilinear GL2 model

case. To be specific, if P̄ ⊂ Q, by applying the open orbit method, we can reduce to

the model related to the Levi subgroup L. Then after twisting τ by some characters,

we only need to deal with the tempered case which has already been proved in the

first place. If Q ⊂ P̄ , by applying the open orbit method, we reduced ourselves to the

trilinear GL2 model case. Then by applying the work of Loke in [L01], we can prove

our result. The extra condition in part (2) of Theorem 1.2.1 also comes from [L01].

It is worth to mention that in Theorem 1.2.3(2), the requirement we made for the

parabolic subgroup Q forces some types of generalized Jacquet integrals to be absolutely

convergent, this allows us to apply the open orbit method. If one can prove such integrals

have holomorphic continuation, we can actually remove this requirement. This will be

discussed in Chapter 14.

If F = R, again by applying the open orbit method, we will have some partial results

about Conjecture 1.1.3 and Conjecture 1.1.4 for general generic representations. To be

specific, let π be a irreducible generic representation of G(F ) with central character χ2.

By the Langlands classification, there is a parabolic subgroup Q = LUQ containing the

lower Borel subgroup and an essential tempered representation τ = ⊗ki=1τi| |si of L(F )

with τi tempered, si ∈ R and s1 < s2 < · · · < sk, such that π = IGQ (τ). We say Q is

nice if Q ⊂ P̄ or P̄ ⊂ Q.

Theorem 1.2.4. With the notations above, the followings hold.

1. If πD = 0, assume that Q is nice, then Conjecture 1.1.3 and Conjecture 1.1.4

hold.

2. If πD 6= 0, we have

m(π) +m(πD) ≥ 1,
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and

ε(1/2, π,∧3 ⊗ χ−1) = 1⇒ m(π) = 1; m(π) = 0⇒ ε(1/2, π,∧3 ⊗ χ−1) = −1.

As in the complex case, the assumption on Q can be removed if we can prove the

holomorphic continuation of certain generalized Jacquet integrals. This will also be

discussed in Chapter 14.

1.3 Organization of the Paper and Remarks on the Proof

In Chapter 2, we will introduce the basic notations and conventions of this paper. We

will also talk about the definitions and some basic facts of weighted orbital integral,

weighted character, intertwining operator and the Harish-Chandra-Schwartz space. In

Chapter 3, we will study quasi-characters and strongly cuspidal functions. For Chapter

2 and 3, we follow [W10] and [B15] closely, and only include the proofs if necessary.

In Chapter 4, we study the analytic and geometric properties of the Ginzburg-Rallis

model. In particular, we show that it is a wavefront spherical variety and has polynomial

growth as a homogeneous space. This gives us the weak Cartan decomposition for

the archimedean case. The p-adic case will be proved in Appendix A by the explicit

construction. Then by applying those results, we proved some estimations for various

integrals which will be used in later chapters. Some proofs are similar to the GGP case

in [B15], we only include them here for completion. At the end of Chapter 4, we will also

talk about the reduce models of the Ginzburg-Rallis model coming from the parabolic

induction.

In Chapter 5, we will state our trace formula. For the geometric side, we will also

consider the Lie algebra version of the trace formula, which will be used in the proof.

We will also show that in order to prove the geometric side, it is enough to consider

the functions with trivial central character. Finally, we will also introduce the trace

formulas for the reduced models. By induction, we will assume that the trace formulas

for those reduced models hold.

In Chapter 6, we study an explicit element Lπ in the Hom space coming from the

(normalized) integration of the matrix coefficient. The goal is to prove that the Hom

space is nonzero if and only if Lπ is nonzero. It is standard to prove such a statement
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by using the Plancherel formula together with the fact that the nonvanishing property

of Lπ is invariant under parabolic induction and unramified twist. However, there are

two main difficulties in the proof of such a result for the Ginzburg-Rallis models. First,

unlike the Gan-Gross-Prasad case, we do have nontrivial center for the Ginzburg-Rallis

model. As a result, for many parabolic subgroups of GL6(F ) (the one which don’t have

an analogy in the quaternion case, i.e. the one not of type (6), (4, 2) or (2, 2, 2), we will

call theses models ”Type II models”), it is not clear why the nonvanishing property of

Lπ is invariant under the unramified twist. Instead, we show that for such parabolic

subgroups, Lπ will always be nonzero.

Another difficulty is that unlike the Gan-Gross-Prasad case, when we do parabolic

induction, we don’t always have the strongly tempered model (in the GGP case, one

can always go up to the codimension one case which is strongly tempered, then run the

parabolic induction process). As a result, in order to prove the nonvanishing property of

Lπ is invariant under parabolic induction, it is not enough to just change the order of the

integral. This is because if the model is not strongly tempered, the explicit operator is

defined via the normalized integral, not the original integral. We will find a way to deal

with this issue in Chapter 6, but we have to treat the p-adic case and the archimedean

case separately. For details, see Section 6.3 and 6.4.

In Chapter 7, we prove our main Theorems for the archimedean case by reducing

it to the reduced models cases. Then we need to apply the results of the trilinear GL2

model by Prasad and Loke in [P90] and [L01].

In Chapter 8, we will prove the spectral side of the trace formula. In the trace

formula, we will introduce a truncated function which is for the proof of the geometric

side. In Section 8.1, we first show that the integral defining our distribution I(f) is

actually absolutely convergent. This allows us to get rid of the truncated function for

the spectral side. We will postpone the proof of a technical proposition (i.e. Proposition

8.1.1) to Appendix B. Then in Section 8.2, we prove the spectral side by applying the

results in the previous chapters.

Start from Chapter 9, we are going to prove the geometric side of the trace formula.

In Chapter 9, we deal with the localization of the trace formula. The goal of this

section is to reduce our problem to the Lie algebra level. In Chapter 10, we study the

slice representation of the normal space. As a result, we transfer our integral to the
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form
∫
AT (F )\G(F ) where T is some maximal torus of G. The reason we do this is that we

want to apply the local trace formula developed by Arthur in [Ar91] as Waldspurger did

in [W10]. In Chapter 11, we prove that we are actually able to change our truncated

function to the one given by Arthur in his local formula. After this is done, we can

apply Arthur’s local trace formula to calculate the distribution in our trace formula.

More precisely, at beginning, the distribution is a limit of the truncated integral. After

applying Arthur’s local trace formula, we can calculate that limit explicitly. Finally in

Chapter 12, we will finish the proof of the trace formula.

It is worth to mention that the proof of the geometric expansion is quiet different

from the case of the local Gan-Gross-Prasad conjecture in [W10]. Namely, in their case,

the additive character is essentially attached to the simple roots, which is not the case

in our situation. This difference leads to the technical complication on the proof of some

unipotent invariance. As a result, we have to carefully define our truncated function.

This will be discussed in detail in Chapter 5 and 11. Another difference is that in this

case we do need to worried about the center of the group, this will be discussed in

Chapter 5.

In Chapter 13, by applying the trace formula we proved in previous chapters, we

are able to prove a multiplicity formula for tempered representations. By applying that

multiplicity formula, we can prove our main Theorem 1.2.1. After it, we will also prove

the epsilon dichotomy conjecture for some representations, i.e. Theorem 1.2.2.

In Chapter 14, by applying the open orbit method, together with our results for the

tempered representations, we can prove some partial results for the generic representa-

tions over archimedean field, i.e. Theorem 1.2.3 and Theorem 1.2.4.

There are three appendices of this paper. In Appendix A, we prove the weak Cartan

decomposition for the p-adic case by the explicit construction. In Appendix B, we prove

Proposition 8.1.1. The proof will be the same as the Gan-Gross-Prasad model case in

[B15], we only include the proof here for completion. In Appendix C, we will give a

summary about the results for the reduced models. The proof of these results is the

same as the Ginzburg-Rallis model case we consider in this paper, so we will skip the

details.



Chapter 2

Priliminarites

2.1 Notations and Conventions

Let F be a local field of characteristic zero. If F is a p-adic filed, we fix the algebraic

closure F . Let valF and | · | = | · |F be the valuation and absolute value on F , oF be the

ring of integers of F , and Fq be the residue field. We fix an uniformizer $F .

For every connected reductive algebraic group G defined over F , let AG be the

maximal split central torus of G and let ZG be the center of G. We denote by X(G)

the group of F -rational characters of G. Define aG =Hom(X(G),R), and let a∗G =

X(G) ⊗Z R be the dual of aG. We define a homomorphism HG : G(F ) → aG by

HG(g)(χ) = log(|χ(g)|F ) for every g ∈ G(F ) and χ ∈ X(G). Let aG,F (resp. ãG,F ) be

the image of G(F ) (resp. AG(F )) under HG. In the archimedean case, aG = aG,F =

ãG,F ; in the p-adic case, aG,F and ãG,F are lattices in aG. Let a∨G,F = Hom(aG,F , 2πZ)

and ã∨G,F = Hom(ãG,F , 2πZ). Note that both a∨G,F and ã∨G,F are zero in the archimedean

case; and they are lattices in a∗G in the p-adic case. Set a∗G,F = a∗G/a
∨
G,F , and we

can identify ia∗G,F with the group of unitary unramified characters of G(F ) by letting

λ(g) = e<λ,HG(g)>, λ ∈ ia∗G,F , g ∈ G(F ). For a Levi subgroup M of G, let a∗M,0 be the

subset of elements in a∗M,F whose restriction to ãG,F is zero. Then we can identify ia∗M,0

with the group of unitary unramified characters of M(F ) which is trivial on ZG(F ).

Denote by g the Lie algebra of G. It is clear that G acts on g by the adjoint action.

Since the Ginzburg-Rallis model has non-trivial center, all of our integrations need to

modulo the center. To simplify the notation, for any Lie algebra g contained in gln (in

13
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our case it will always be contained in gl6(F ) or gl3(D)), denote by g0 the elements in

g whose trace (as an element in gln) is zero.

For a Levi subgroup M of G, let P(M) be the set of parabolic subgroups of G whose

Levi part is M , L(M) be the set of Levi subgroups of G containing M , and F(M) be

the set of parabolic subgroups of G containing M . We have a natural decomposition

aM = aGM ⊕ aG, denote by projGM and projG the projections of aM to each factors.

The subspace aGM has a set of coroots Σ̌M , and for each P ∈ P(M), we can associate a

positive chamber a+
P ⊂ aM , a subset of simple coroots ∆̌P ⊂ Σ̌M , and a subset of positive

coroots Σ̌P ⊂ Σ̌M . For each P = MU , we can also define a function HP : G(F )→ aM

by HP (g) = HM (mg) where g = mgugkg is the Iwasawa decomposition of g. According

to Harish-Chandra, we can define the height function ‖ · ‖ on G(F ), taking values in

R≥1, and a log-norm σ on G(F ) by σ(g) = sup(1, log(‖g‖)). Similarly, we can define the

log-norm function on g(F ) as follows: fix a basis {Xi} of g(F ) over F , for X ∈ g(F ),

let σ(X) = sup(1, sup{−valF (ai)}), where ai is the Xi-coordinate of X.

Let Mmin be a minimal Levi subgroup of G, and let Amin = AMmin . For each

Pmin ∈ P(Mmin), let Ψ(Amin, Pmin) be the set of positive roots associated to Pmin, and

let ∆(Amin, Pmin) ⊂ Ψ(Amin, Pmin) be the subset of simple roots.

For x ∈ G (resp. X ∈ g), let ZG(x) (resp. ZG(X)) be the centralizer of x (resp.

X) in G, and let Gx (resp. GX) be the neutral component of ZG(x) (resp. ZG(X)).

Accordingly, let gx (resp. gX) be the Lie algebra of Gx (resp. GX). For a function f

on G(F ) (resp. g(F )), and g ∈ G(F ), let gf be the g-conjugation of f , i.e. gf(x) =

f(g−1xg) for x ∈ G(F ) (resp. gf(X) = f(g−1Xg) for X ∈ g(F )).

Denote by Gss(F ) the set of semisimple elements in G(F ), and by Greg(F ) the

set of regular elements in G(F ). The Lie algebra versions are denoted by gss(F ) and

greg(F ), respectively. For x ∈ Gss(F ), the operator ad(x) − 1 is defined and invertible

on g(F )/gx(F ). We define

DG(x) =| det((ad(x)− 1)|g(F )/gx(F )) |F .

Similarly for X ∈ gss(F ), define

DG(X) =| det((ad(X))|g(F )/gX(F )) |F .

For any subset Γ ⊂ G(F ), define ΓG := {g−1γg | g ∈ G(F ), γ ∈ Γ}. We say an invariant

subset Ω of G(F ) is compact modulo conjugation if there exist a compact subset Γ such
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that Ω ⊂ ΓG. A G-domain on G(F ) (resp. g(F )) is an open subset of G(F ) (resp. g(F ))

invariant under the G(F )-conjugation.

For two complex valued functions f and g on a set X with g taking values in the

positive real numbers, we write that

f(x)� g(x)

and say that f is essentially bounded by g, if there exists a constant c > 0 such that for

all x ∈ X, we have

|f(x)| ≤ cg(x).

We say f and g are equivalent, which is denoted by

f(x) ∼ g(x)

if f is essentially bounded by g and g is essentially bounded by f .

2.2 Measures

Through this paper, we fix a non-trivial additive character ψ : F → C×. If G is

a connected reductive group, we may fix a non-degenerate symmetric bilinear form

< ·, · > on g(F ) that is invariant under G(F )-conjugation. For any smooth compactly

supported complex valued function f ∈ C∞c (g(F )), we can define its Fourier transform

f → f̂ to be

f̂(X) =

∫
g(F )

f(Y )ψ(< X,Y >)dY (2.1)

where dY is the selfdual Haar measure on g(F ) such that
ˆ̂
f(X) = f(−X). Then we

get a Haar measure on G(F ) such that the Jacobian of the exponential map is equal

to 1. If H is a subgroup of G such that the restriction of the bilinear form to h(F ) is

also non-degenerate, then we can define the measures on h(F ) and H(F ) by the same

method.

Let Nil(g) be the set of nilpotent orbits of g. For O ∈ Nil(g) and X ∈ O, the

bilinear form (Y,Z)→< X, [Y, Z] > on g(F ) can be descented to a symplectic form on

g(F )/gX(F ). The nilpotent orbit O has naturally a structure of F -analytic symplectic
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variety, which yields a selfdual measure on O. This measure is invariant under the

G(F )-conjugation.

If T is a subtorus of G such that the bilinear form is non-degenerate on t(F ), we can

provide a measure on T by the method above, denoted by dt. On the other hand, we

can define another measure dct on T (F ) as follows: If T is split, we require the volume

of the maximal compact subgroup of T (F ) is 1 under dct. In general, dct is compatible

with the measure dct
′ defined on AT (F ) and with the measure on T (F )/AT (F ) of total

volume 1. Then we have a constant number ν(T ) such that dct = ν(T )dt. In this paper,

we will only use the measure dt, but in many cases we have to include the factor ν(T ).

Finally, if M is a Levi subgroup of G, we can define the Haar measure on aGM such that

the quotient

aGM/proj
G
M (HM (AM (F )))

is of volume 1.

2.3 The (G,M)-Family

From now on until the end of Chapter 3, G will be a connected reductive group, and

g(F ) be its Lie algebra, with a bilinear pairing invariant under conjugation. For a

Levi subgroup M of G, we recall the notion of (G,M)-family introduced by Arthur. A

(G,M)-family is a family (cP )P∈P(M) of smooth functions on ia∗M taking values in a

locally convex topological vector space V such that for all adjacent parabolic subgroups

P, P ′ ∈ P(M), the functions cp and cP ′ coincide on the hyperplane supporting the wall

that separates the positive chambers for P and P ′. For such a (G,M)-family, one can

associate an element cM ∈ V ([Ar81, Page 37]). If L ∈ L(M), for a given (G,M)-

family, we can deduce a (G,L)-family. Denote by cL the element in V associated to

such (G,L)-family. If Q = LQUQ ∈ F(L), we can deduce a (LQ, L)-family from the

given (G,M)-family, the element in V associated to this (LQ, L)-family is denoted by

cQL .

If (YP )P∈P(M) is a family of elements in aM , we say it is a (G,M)-orthogonal set

(resp. and positive) if the following condition holds: if P, P ′ are two adjacent elements of

P(M), there exists a unique coroot α̌ such that α̌ ∈ ∆̌P and −α̌ ∈ ∆̌P ′ , we require that

YP − YP ′ ∈ Rα̌ (resp. YP − YP ′ ∈ R≥0α̌). For P ∈ P(M), define a function cP on ia∗M
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by cP (λ) = e−λ(YP ). Suppose that the family (YP )P∈P(M) is a (G,M)-orthogonal set.

Then the family (cP )P∈P(M) is a (G,M)-family. If the family (YP )P∈P(M) is positive,

then the number cM associated to this (G,M)-family is just the volume of the convex

hull in aGM generated by the set {YP | P ∈ P(M)}. If L ∈ L(M), the (G,L)-family

deduced from this (G,M)-family is the (G,L)-family associated to the (G,L)-orthogonal

set (YQ)Q∈P(L) where YQ = projL(YP ) for some P ∈ P(M) such that P ⊂ Q. It is easy

to see that this is independent of the choice of P . Similarly, if Q ∈ P(L), then the

(L,M)-family deduced from this (G,M)-family is the (L,M)-family associated to the

(L,M)-orthogonal set (YP ′)P ′∈PL(M) where YP ′ = YP with P being the unique element

of P(M) such that P ⊂ Q and P ∩ L = P ′.

2.4 Weighted Orbital Integrals

Let M be a Levi subgroup of G and let K be a maximal open compact subgroup in

good position with respect to M . For g ∈ G(F ), the family (HP (g))P∈P(M) is (G,M)-

orthogonal and positive. Let (vP (g))P∈P(M) be the (G,M)-family associated to it and

let vM (g) be the number associated to this (G,M)-family. Then vM (g) is just the

volume of the convex hull in aGM generated by the set {HP (g), P ∈ P(M)}. The

function g → vM (g) is obviously left M(F )-invariant and right K-invariant.

If f ∈ C∞c (G(F )) and x ∈ M(F ) ∩ Greg(F ), define the weighted orbital integral to

be

JM (x, f) = DG(x)1/2

∫
Gx(F )\G(F )

f(g−1xg)vM (g)dg. (2.2)

Note the definition does depend on the choice of the open compact subgroup K. But

we will see later that if f is strongly cuspidal, then this definition is independent of the

choice of K.

Lemma 2.4.1. With the notations as above, the followings hold.

1. If f ∈ C∞c (G(F )), the function x→ JM (x, f) defined on M(F )∩Greg(F ) is locally

constant, invariant under M(F )-conjugation and has a compact support modulo

conjugation.

2. There exists an integer k ≥ 0, such that for every f ∈ C∞c (G(F )), there exists
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c > 0 such that

|JM (x, f)| ≤ c(1 + | logDG(x)|)k

for every x ∈M(F ) ∩Greg(F ).

Proof. See Lemma 2.3 of [W10].

The next result is due to Harish-Chandra (Lemma 4.2 of [Ar91]), which will be

heavily used in Section 10 and Section 11. See [B15, Section 1.2] for a more general

argument.

Proposition 2.4.2. Let T be a torus of G(F ), and Γ ⊂ G(F ), Ω ⊂ T (F ) be compact

subsets. Then there exists c > 0 such that for every x ∈ Ω∩G(F )reg and g ∈ G(F ) with

g−1xg ∈ Γ, we have

σT (g) ≤ c(1+ | log(DG(x)) |) (2.3)

where σT (g) = inf{σ(tg) | t ∈ T (F )}.

2.5 Shalika Germs

For every O ∈ Nil(g) and f ∈ C∞c (g(F )), define the nilpotent orbital integral to be

JO(f) =

∫
O
f(X)dX.

Its Fourier transform is defined to be

ĴO(f) = JO(f̂).

For λ ∈ F×, define fλ to be fλ(X) = f(λX). Then it is easy to see that for

λ ∈ (F×)2, we have

JO(fλ) =| λ |−dim(O)/2 JO(f). (2.4)

Define δ(G) = dim(G)− dim(T ), where T is any maximal torus of G (i.e. δ(G) is twice

of the dimension of the maximal unipotent subgroup if G split). There exists a unique

function ΓO on greg(F ), called the Shalika germ associated to O, satisfies the following

conditions:

ΓO(λX) =| λ |(δ(G)−dim(O))/2
F ΓO(X) (2.5)
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for all X ∈ greg(F ), λ ∈ (F×)2, and for every f ∈ C∞c (g(F )), there exists an neighbor-

hood ω of 0 in g(F ) such that

JG(X, f) = ΣO∈Nil(g)ΓO(X)JO(f) (2.6)

for every X ∈ ω ∩ greg(F ), where JG(X, f) is the orbital integral.

Harish-Chandra proved that there exists a unique function ĵ on greg(F )× greg(F ),

which is locally constant on greg(F ) × greg(F ), and locally integrable on g(F ) × g(F ),

such that for every f ∈ C∞c (g(F )) and X ∈ greg(F ), we have

JG(X, f̂) =

∫
g(F )

f(Y )ĵ(X,Y )dY. (2.7)

Also, for all O ∈ Nil(g), there exists a unique function Y → ĵ(O, Y ) on greg(F ),

which is locally constant on greg(F ), and locally integrable on g(F ), such that for every

f ∈ C∞c (g(F )), we have

ĴO(f) =

∫
g(F )

f(Y )ĵ(O, Y )dY. (2.8)

It follows that

ĵ(λX, Y ) = | λ |δ(G)/2
F ĵ(X,λY ), (2.9)

ĵ(O, λY ) = | λ |dim(O)/2
F ĵ(O, Y )

for all X,Y ∈ greg(F ),O ∈ Nil(g) and λ ∈ (F×)2. Moreover, by the above discussion,

if ω is an G-domain of g(F ) that is compact modulo conjugation and contains 0, there

exists an G-domain ω′ of g(F ) that is compact modulo conjugation and contains 0 such

that for every X ∈ ω′ ∩ greg(F ) and Y ∈ ω ∩ greg(F ), we have

ĵ(X,Y ) = ΣO∈Nil(g)ΓO(X)ĵ(O, Y ). (2.10)

2.6 Induced Representations and the Intertwining Oper-

ators

Given a parabolic subgroup P = MU of G and an admissible representation (τ, Vτ ) of

M(F ), let (IGP (τ), IGP (Vτ )) be the normalized parabolic induced representation: IGP (Vτ )

consisting of smooth functions e : G(F )→ Vτ such that

e(mug) = δP (m)1/2τ(m)e(g), m ∈M(F ), u ∈ U(F ), g ∈ G(F ).
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And the G(F ) action is just the right translation.

For λ ∈ a∗M⊗RC, let τλ be the unramified twist of τ (i.e. τλ(m) = exp(λ(HM (m)))τ(m)),

and let IGP (τλ) be the induced representation. By the Iwasawa decomposition, every

function e ∈ IGP (τλ) is determined by its restriction on K, and that space is invariant

under the unramified twist. i.e. for any λ, we can realize the representation IGP (τλ) on

the space IKK∩P (τK) which consists of functions eK : K → Vτ such that

e(mug) = δP (m)1/2τ(m)e(g), m ∈M(F ) ∩K, u ∈ U(F ) ∩K, g ∈ K.

Here τK is the restriction of the representation τ to the group K ∩M(F ).

If τ is unitary, so is IGP (τ), the inner product on IGP (Vτ ) can be realized as

(e, e′) =

∫
P (F )\G(F )

(e′(k), e(k))dk.

Now we define the intertwining operator. For a Levi subgroup M of G, P, P ′ ∈
P(M), and λ ∈ a∗M ⊗RC, define the intertwining operator JP ′|P (τλ) : IGP (Vτ )→ IGP ′(Vτ )

to be

JP ′|P (τλ)(e)(g) =

∫
(U(F )∩U ′(F ))\U ′(F )

e(ug)du.

In general, the integral above is not absolutely convergent. But it is absolutely con-

vergent for Re(λ) sufficiently large, and it is G(F )-equivariant. By restricting to K,

we can view JP ′|P (τλ) as a homomorphism from IKK∩P (VτK ) to IKK∩P ′(VτK ). In general,

JP ′|P (τλ) can be meromorphically continued to a function on a∗M ⊗R C/ia∨M,F . More-

over, if we assume that τ is tempered, we have the following proposition which is due

to Harish-Chandra.

Proposition 2.6.1. With the notations above, assume that τ is tempered, then the in-

tertwining operator JP ′|P is absolutely convergent for all λ ∈ a∗M⊗RC with < Re(λ), α̌ >

> 0 for every α̌ ∈ Σ̌P ∩ Σ̌(P̄ ′). Here Σ(P ) is the subsets of the roots of AM that are

positive with respect to P .

We will use this proposition in Section 14 to show some generalized Jacquet integrals

are absolutely convergent, and this integrals will occur in the open orbit method.

If τ is irreducible, by Schur’s lemma, the operator JP |P̄ (τλ)JP̄ |P (τλ) is a scalar for

generic λ, let j(τλ) be the scalar, this is independent of the choice of P . We can
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normalize the intertwining operator by a complex valued function rP ′|P (τλ) such that

the normalized intertwining operator

RP ′|P (τλ) = rP ′|P (τλ)−1JP ′|P (τλ)

satisfies the conditions of Theorem 2.1 of [Ar89]. The key conditions are

1. For P, P ′, P ′′ ∈ P(M), RP ′′|P ′(τλ)RP ′|P (τλ) = RP ′′|P (τλ).

2. Suppose that τ is tempered. For λ ∈ ia∗M,F , RP ′|P (τλ) is holomorphic and unitary.

3. The normalized intertwining operators are compatible with the unramified twist

and the parabolic induction.

2.7 Weighted Characters

Let M be a Levi subgroup, and let τ be a tempered representation of M(F ). For

P, P ′ ∈ P(M), we have defined the normalized intertwining operator RP ′|P (τλ) for

λ ∈ ia∗M . Fix P , for every P ′ ∈ P(M), define the function RP ′(τ) on ia∗M by

RP ′(τ, λ) = RP ′|P (τ)−1RP ′|P (τλ).

This function takes value in the space of endomorphisms of IKP∩K(τK) (not necessarily

commutes with the G-action). Recall that this space is invariant under the unramified

twist. By [Ar81], this is a (G,M)-family. Then for L ∈ L(M) and Q ∈ F(L), we can

associate an operator RQL (τ) to this (G,M) family. We define the weighted character of

τ to be the distribution f → JQL (τ, f) given by JQL (τ, f) = tr(RQL (τ)IGP (τ)(f)) for every

f ∈ C∞c (G(F )). This is independent of the choice of P but depends on K and the way

we normalized the intertwining operators. In particular, if L = Q = G, the distribution

JGG (τ, f) is just θπ for π = IGP (τ) where θπ(f) = tr(π(f)).

2.8 The Harish-Chandra-Schwartz Space

Let Pmin be a minimal parabolic subgroup of G, and let K be a maximal open compact

subgroup in good position with respect to M. Then we have the Iwasawa decomposition
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G(F ) = Pmin(F )K. Consider the normalized induced representation

IGPmin(1) := {e ∈ C∞(G(F )) | e(pg) = δPmin(p)1/2e(g) for all p ∈ Pmin(F ), g ∈ G(F )},

and we equip the representation with the inner product

(e, e′) =

∫
K
e(k)ē′(k)dk.

Let eK ∈ IGPmin(1) be the unique function such that eK(k) = 1 for all k ∈ K.

Definition 2.8.1. The Harish-Chandra function ΞG is defined to be

ΞG(g) = (IGPmin(1)(g)eK , eK).

Remark 2.8.2. The function ΞG depends on the various choices we made, but this

doesn’t matter since different choices give us equivalent functions and the function ΞG

will only be used in estimations.

The next proposition summarize some basic properties of the function ΞG, the proof

of the proposition can be found in [W03].

Proposition 2.8.3. 1. Let

M+
min = {m ∈Mmin(F ) || α(m) |≤ 1 for all α ∈ Ψ(AMmin , Pmin)}.

Then there exists d > 0 such that

δPmin(m)1/2 � ΞG(m)� δPmin(m)1/2σ0(m)d

for all m ∈M+
min.

2. There exists d > 0 such that

ΞG(g)� δPmin(mPmin(g))1/2σ0(g)d

for all g ∈ G(F ). Here mPmin(g) is the Mmin-part of g under the Iwasawa decom-

position G(F ) = Umin(F )Mmin(F )K.
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3. Let P = MU be a parabolic subgroup containing Pmin, then we have

ΞG(g) =

∫
K
δP (mP (kg))1/2ΞM (mP (kg))dk

for all g ∈ G(F ), here mP (g) is the M -part of g under the Iwasawa decomposition

G(F ) = U(F )M(F )K.

4. Let P = MU be a parabolic subgroup of G. Then for all d > 0, there exist d′ > 0

such that

δP (m)1/2

∫
U(F )

ΞG(mu)σ0(mu)−d
′
du� ΞM (m)σ0(m)−d

for all m ∈M(F ).

5. There exists d > 0 such that the integral∫
G(F )

ΞG(g)2σ(g)−ddg

is absolutely convergent.

6. We have the equality ∫
K

ΞG(g1kg2)dk = ΞG(g1)ΞG(g2)

for all g1, g2 ∈ G(F ).

For f ∈ C∞(G(F )) and d ∈ R, let

pd(f) = sup
g∈G(F )

{|f(g)|ΞG(g)−1σ(g)d}.

If F is p-adic, we define the Harish-Chandra-Schwartz space to be

C(G(F )) = {f ∈ C∞(G(F ))|pd(f) <∞,∀d > 0}.

If F is archimedean, for u, v ∈ U(g) and d ∈ R, let

pu,v,d(f) = pd(R(u)L(v)f)
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where ”R” stands for the right translation, ”L” stands for the left translation and U(g)

is the universal enveloping algebra. We define the Harish-Chandra-Schwartz space to

be

C(G(F )) = {f ∈ C∞(G(F ))|pu,v,d(f) <∞, ∀d > 0, u, v ∈ U(g)}.

We also need the weak Harish-Chandra-Schwartz space Cw(G(F )). For d > 0, let

Cwd (G(F )) = {f ∈ C∞(G(F ))|p−d(f) <∞}

if F is p-adic. And let

Cwd (G(F )) = {f ∈ C∞(G(F ))|pu,v,−d(f) <∞,∀u, v ∈ U(g)}

if F is archimedean. Then the weak Harish-Chandra-Schwartz space is defined to be

Cw(G(F )) = ∪d>0Cwd (G(F )).

Also we can define the Harish-Chandra-Schwartz space (resp. weak Harish-Chandra-

Schwartz space) with given unitary central character χ: let C(G(F ), χ) (resp. Cw(G(F ), χ))

be the Mellin transform of the space C(G(F )) (resp. Cw(G(F ))) with respect to χ.

2.9 The Harish-Chandra-Plancherel Formula

Since the Ginzburg-Rallis model has nontrivial center, we only introduce the Plancherel

formula with given central character. We fix an unitary character χ of ZG(F ). For every

M ∈ L(Mmin), fix an element P ∈ P(M). Let Π2(M,χ) be the set of discrete series of

M(F ) whose central character agree with χ on ZG(F ). Then ia∗M,0 acts on Π2(M,χ)

by the unramified twist. Let {Π2(M,χ)} be the set of orbits under this action. For

every orbit O, and for a fixed τ ∈ O, let ia∨O be the set of λ ∈ ia∗M,0 such that the

representation τ and τλ are equivalent, which is a finite set. For λ ∈ ia∗M,0, define the

Plancherel measure to be

µ(τλ) = j(τλ)−1d(τ)
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where d(τ) is the formal degree of τ , which is invariant under the unramified twist,

and j(τλ) is defined in Section 2.6. Then for f ∈ C(G(F ), χ−1), the Harish-Chandra-

Plancherel formula (([HC76], [W03])) is

f(g) = ΣM∈L(Mmin)|WM ||WG|−1ΣO∈{Π2(M,χ)}|ia∨O|−1∫
ia∗M,0

µ(τλ)tr(IGP (τλ)(g−1)IGP (τλ)(f))dλ.

To simplify our notation, let Πtemp(G,χ) be the union of IGP (τ) for P = MN , M ∈
L(Mmin), τ ∈ O and O ∈ {Π2(M,χ)}. We define a Borel measure dπ on Πtemp(G,χ)

such that∫
Πtemp(G,χ)

ϕ(π)dπ = ΣM∈L(Mmin)|WM ||WG|−1ΣO∈{Π2(M,χ)}|ia∨O|−1

∫
ia∗M,0

ϕ(IGP (τλ))dλ

for every compactly supported function ϕ on Πtemp(G,χ). Here by saying a function ϕ

is compactly supported on Πtemp(G,χ) we mean that it is supported on finitely many

orbit O and for every such orbit O, it is compactly supported. Note that the second

condition is automatic if F is p-adic. Then the Harish-Chandra-Plancherel formula

above becomes

f(g) =

∫
Πtemp(G,χ)

tr(π(g−1)π(f))µ(π)dπ.

We also need the matrical Paley-Wiener Theorem. Let C∞(Πtemp(G,χ)) be the

space of functions π ∈ Πtemp(G,χ) → Tπ ∈ End(π)∞ such that it is smooth on every

orbits O as functions from O to End(π)∞ ' End(πK)∞. Now we define C(Πtemp(G,χ))

to be a subspace of C∞(Πtemp(G,χ)) consisting of those T : π → Tπ such that

1. If F is p-adic, T is nonzero on finitely many orbits O.

2. If F = R, for all parabolic subgroup P = MU and for all differential operator

with constant coefficients D on ia∗M , the function DT : σ ∈ Π2(M,χ) → D(λ →
TIGP (σλ)) satisfies pD,u,v,k(T ) = supσ∈Π2(M,χ) ||DT (σ)||u,vN(σ)k < ∞ for all u, v ∈
U(k) and k ∈ N. Here ||DT (σ)||u,v is the norm of the operator σ(u)DT (σ)σ(v)

and N(σ) is the norm on the set of all tempered representations (See Section 2.2

of [B15]).
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Then the matrical Paley-Wiener Theorem states that we have an isomorphism between

C(G,χ−1) and C(Πtemp(G,χ)) given by

f ∈ C(G,χ−1)→ (π ∈ Πtemp(G,χ)→ π(f) ∈ End(π)∞)

and

T ∈ C(Πtemp(G,χ))→ fT (g) =

∫
Πtemp(G,χ)

tr(π(g−1)Tπ)µ(π)dπ.



Chapter 3

Strongly Cuspidal Functions and

Quasi-Characters

In this chapter, we will study the strongly cuspidal functions and quasi-characters.

These are the main ingredients of our trace formula. In Section 3.1, we consider the

neighborhood of semisimple elements. In Section 3.2, we will define quasi-characters

both on the group level and on the Lie algebra level. In Section 3.3, we study the

behavior of quasi-characters under the parabolic induction. This will be used in the

proof of the spectral side of the trace formula when we are trying to reduce our problems

to the discrete series. In Section 3.4, we will define the strongly cuspidal functions and

talk about some geometric properties of them. These will be our test functions in the

trace formula. Moreover, for each strongly cuspidal function f , we will define a quasi-

character θf . This distribution will appear on both sides of the trace formula. In Section

3.5, we will establish some spectral properties of the strongly cuspidal functions.

After that, we will talk about the localization of various objects. This will be used

in the proof of the geometric side of the trace formula when we are trying to reduce the

problems to the Lie algebra case. In Section 3.6, we study the localization of general

quasi-characters. Then in Section 3.7, we will talk about the localization of θf . Finally,

in Section 3.8, we will talk about the pseudo coefficients of the discrete series, which

will be used in Section 13 when we are trying to deduce the multiplicity formula from

the trace formula. Through this chapter, we assume that F is a p-adic field.

27
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3.1 Neighborhoods of Semisimple Elements

Definition 3.1.1. For every x ∈ Gss(F ), we say a subset ω ⊂ gx(F ) is a good neigh-

borhood of 0 if it satisfies the following seven conditions, together with condition (7)ρ for

finitely many finite dimensional algebraic representations (ρ, V ) of G that will be fixed

in advance ([W10, Section 3.1]):

(1) ω is an Gx-domain, compact modulo conjugation, invariant under ZG(x)(F ) con-

jugation and contains 0.

(2) The exponential map is defined on ω, i.e. it is a homeomorphism between ω and

exp(ω), and is Gx-equivariant, where the action is just conjugation.

(3) For every λ ∈ F× with | λ |≤ 1, we have λω ⊂ ω.

(4) We have

{g ∈ G(F ) | g−1x exp(ω)g ∩ x exp(ω) 6= ∅} = ZG(x)(F ). (3.1)

(5) For every compact subset Γ ⊂ G(F ), there exists a compact subset Γ′ ⊂ G(F ) such

that

{g ∈ G(F ) | g−1x exp(ω)g ∩ Γ = ∅} ⊂ Gx(F )Γ′.

(6) Fix a real number cF > 0 such that ckF <| (k+1)! |F for every integer k ≥ 1. Then

for every maximal subtorus T ⊂ Gx, every algebraic character χ of T and every

element X ∈ t(F ) ∩ ω, we have | χ(X) |F< cF .

(7) Consider an eigenspace W ⊂ g(F ) for the operator ad(x), and let λ be the eigen-

value. If X ∈ ω, then ad(X) preserve W . Let WX be an eigenspace of it with

eigenvalue µ. Then it is easy to see that WX is also an eigenspace for the operator

ad(x exp(X)), with eigenvalue λ exp(µ). Suppose that λ 6= 1. Then we have

| λ exp(µ)− 1 |F=| λ− 1 |F .

(7)ρ If we fix a finite dimensional algebraic representation (ρ, V ) of G, by replacing the

adjoint representation by (ρ, V ) in (7), we can define condition (7)ρ in a similar

way.
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The properties for good neighborhoods are summarized below, the details of which

will be referred to [W10, Section 3].

Proposition 3.1.2. The followings hold.

1. If ω0 is a neighborhood of 0 in gx(F ), there exists a good neighborhood ω of 0 such

that ω ⊂ ωGx0 .

2. Ω = (x exp(ω))G is an G-domain in G(F ), and has compactly support modulo

conjugation.

3. For every X ∈ ω, ZG(x exp(X))(F ) ⊂ ZG(x)(F ) and Gx exp(X) = (Gx)X ⊂ Gx.

4. The exponential map between ω and exp(ω) preserve measures, i.e. the Jacobian

of the map equals 1.

5. For every X ∈ ω, DG(x exp(X)) = DG(x)DGx(X).

Proof. See Section 3.1 of [W10].

3.2 Quasi-Characters of G(F ) and g(F )

If θ is a smooth function defined on Greg(F ), invariant under G(F )−conjugation. We

say it is a quasi-character on G(F ) if, for every x ∈ Gss(F ), there is a good neighborhood

ωx of 0 in gx(F ), and for every O ∈ Nil(gx), there exists coefficient cθ,O(x) ∈ C such

that

θ(x exp(X)) = ΣO∈Nil(gx)cθ,O(x)ĵ(O, X) (3.2)

for every X ∈ ωx,reg. It is easy to see that cθ,O(x) are uniquely determined by θ. If θ

is a quasi-character on G(F ) and Ω ⊂ G(F ) is an open G-domain, then θ1Ω is still a

quasi-character.

For the Lie algebra case, let θ be a function on greg(F ), invariant underG(F )−conjugation.

We say it is a quasi-character on g(F ) if for every X ∈ gss(F ), there exists an open GX -

domain ωX in gX(F ), containing 0, and for every O ∈ Nil(gX), there exists cθ,O(X) ∈ C
such that

θ(X + Y ) = ΣO∈Nil(gX)cθ,O(X)ĵ(O, Y ) (3.3)
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for every Y ∈ ωX,reg. If θ is a quasi-character on g(F ), define cθ,O = cθ,O(0). If λ ∈ F×,

then θλ(X) = θ(λX) is still a quasi-character on g(F ). By Section 4.2 of [W10], for

every O ∈ Nil(gX), we have

cθλ,O(λ−1X) =| λ |−dim(O)/2
F cθ,O(X). (3.4)

3.3 Quasi-Characters Under Parabolic Induction

Let M be a Levi subgroup of G. Given an invariant distribution DM on M(F ), we

define the induced distribution D = IGM (DM ) on G(F ) as follows.

Fix a parabolic subgroup P = MU ∈ P(M) and a maximal compact subgroup

K. Assume that the Haar measure on G(F ), M(F ), U(F ) and K are compatible, i.e.∫
G(F ) =

∫
M(F )

∫
U(F )

∫
K . For f ∈ C∞c (G(F )), define fP ∈ C∞c (M(F )) to be

fP (m) = δP (m)1/2

∫
K

∫
U(F )

f(k−1muk)dudk.

Then we define D(f) = DM (fP ).

If DM is represented by a function θM on Mreg(F ), locally integrable on M(F )

and invariant under conjugation, i.e. DM (f) =
∫
M(F ) f(m)θM (m)dm for all f ∈

C∞c (M(F )). Then D is also represented by a function θ on Greg(F ) defined by

θ(x) = Σx′∈XM (x)D
G(x)−1/2DM (x′)1/2θM (x′), x ∈ Greg(F ).

Here XM (x) is the set of the M(F )-conjugation classes in the G(F )-conjugation class of

x. In particular, if τ is an irreducible admissible representation of M(F ) and π = IGP (τ),

then θπ = IGM (θτ ).

Now we talk about the parabolic induction of quasi-characters. If OM ∈ Nil(m)

and O ∈ Nil(g), we say O is contained in the induced orbit of OM if the intersection

O ∩ (OM + u(F )) is a nonempty open subset in OM + u(F ). The following result is

Lemma 2.3 of [W12].

Lemma 3.3.1. If θM is a quasi-character of M(F ) and θ = IGM (θM ), then the followings

hold.

1. θ is a quasi-character of G(F ).



31

2. If x ∈ Gss(F ) and O ∈ Nil(gx) is a regular orbit, then we have

cθ,O(x) = Σx′∈XM (x)Σg∈Γx′/Gx(F )ΣO′D
G(x)−1/2DM (x′)1/2

[ZM (x′)(F ) : Mx′(F )]−1cθM ,O′(x
′).

Here O′ runs over elements in Nil(mx′) such that gO is contained in the induced

orbit of O′. And for x′ ∈ XM (x), Γx′ is the set of g ∈ G(F ) such that gxg−1 = x′.

3.4 Strongly Cuspidal Functions

If f ∈ C(ZG(F )\G(F )), we say f is strongly cuspidal if for every proper parabolic

subgroup P = MU of G, and for every x ∈M(F ), we have∫
U(F )

f(xu)du = 0. (3.5)

The most basic example of strongly cuspidal functions is given by the matrix coefficients

of a supercuspidal representation.

The following proposition is easy to prove, following mostly from the definition. See

Section 5.1 of [W10].

Proposition 3.4.1. The followings hold.

1. f is strongly cuspidal if and only if for every proper parabolic subgroup P = MU

of G, and for every x ∈M(F ), we have∫
U(F )

f(u−1xu)du = 0. (3.6)

2. If Ω is a G-domain in G(F ) and if f is strongly cuspidal, then f1Ω is strongly

cuspidal.

3. If f is strongly cuspidal, so is gf for every g ∈ G(F ).

Now we study the weighted orbital integral associated to strongly cuspidal functions.

The following lemma is proved in Section 5.2 of [W10].

Lemma 3.4.2. Let M be a Levi subgroup of G and K be a open compact subgroup

in good position with respect to M . If f ∈ C(ZG(F )\G(F )) is strongly cuspidal and

x ∈M(F ) ∩Greg(F ), then the followings hold.
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1. The weighted orbital integral JM (x, f) does not depend on the choice of K.

2. For every y ∈ G(F ), we have JM (x, yf) = JM (x, f).

3. If AGx 6= AM , then JM (x, f) = 0.

For x ∈ Greg(F ), let M(x) be the centralizer of AGx in G, which is clearly a Levi

subgroup of G. For any strongly cuspidal function f ∈ C(ZG(F )\G(F )), define the

function θf on ZG(F )\Greg(F ) by

θf (x) = (−1)aM(x)−aGν(Gx)−1DG(x)−1/2JM(x)(x, f). (3.7)

Here aG is the dimension of AG, and the same for aM(x). By the lemma above, the

weighted orbital integral is independent of the choice of the open compact subgroup K,

and so is the function θf .

Proposition 3.4.3. The followings hold.

1. The function θf is invariant under G(F )-conjugation, and it is locally integrable

on ZG(F )\G(F ) and locally constant on ZG(F )\Greg(F ).

2. θf is a quasi-character.

Proof. The first part is Lemma 5.3 of [W10], the second part is Corollary 5.9 of the loc.

cit.

The function θf will show up on both sides of the trace formula. Here we only write

down the results for the trivial central character case, but the argument can be easily

extended to the non-trivial central character case (i.e. f ∈ C(ZG(F )\G(F ), χ)), or the

case without central character (i.e. f ∈ C(G(F ))).

Similarly, we can define strongly cuspidal functions on the Lie algebra.

Definition 3.4.4. We say a function f ∈ C∞c (g0(F )) is strongly cuspidal if for every

proper parabolic subgroup P = MU , and for every X ∈ m(F ), we have∫
u(F )

f(X + Y )dY = 0.

This is equivalent to say that for every proper parabolic subgroup P = MU , and for

every X ∈ m(F ), we have ∫
U(F )

f(u−1Xu)du = 0.
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If f ∈ C∞c (g0(F )) is strongly cuspidal, we define a function θf on g0,reg(F ) by

θf (X) = (−1)aM(X)−aGν(GX)−1DG(X)−1/2JM(X)(X, f). (3.8)

Here M(X) is the centralizer of AGX in G, aG is the dimension of AG, and the same

for aM(X). We have a similar result as Proposition 3.4.3.

Proposition 3.4.5. If f ∈ C∞c (g0(F )) is strongly cuspidal, θf is independent of the

choice of K. (Recall we need to fix the open compact subgroup K in the definition of

orbital integral.) And in this case, θf is a quasi-character.

3.5 Some Spectral Properties of the Strongly Cuspidal

Functions

We first study the weighted characters associated to the strongly cuspidal functions.

Lemma 3.5.1. If f ∈ C(ZG(F )\G(F ), χ−1) is strongly cuspidal, M is a Levi subgroup

of G and τ is a tempered representation of M(F ) whose central character equals χ on

ZG(F ), then the followings hold.

1. For any L ∈ L(M) and Q ∈ F(L), JQL (τ, f) = 0 if L 6= M or Q 6= G.

2. If τ is induced from a proper parabolic subgroup of M , then JGM (τ, f) = 0.

3. For x ∈ G(F ), we have JGxMx−1(xτx−1, f) = JGM (τ, f).

4. The weight character JGM (τ, f) does not depend on the choice of K, and also does

not depend on the way we normalize the intertwining operators.

Proof. See Section 2.2 of [W12], or Section 5.4 of [B15].

Now we talk about the spectral characterization of the strongly cuspidal functions.

The following result is a direct consequence of the matrical Paley-Wiener Theorem in

Section 2.9.

Proposition 3.5.2. For f ∈ C(ZG(F )\G(F ), χ−1), the followings are equivalent.

1. f is strongly cuspidal.
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2. For any proper parabolic subgroup P = MU , and for any tempered representation

τ of M(F ) whose central character equals χ on Z(F ), we have tr(π(f)) = 0 for

π = IGP (τ).

For the rest of this subsection, we assume that G is GLn(D) for some

division algebra D/F and n ≥ 1. In particular, all irreducible tempered

representation π of G(F ) is of the form π = IGM (τ) for some τ ∈ Π2(M). For

such π, let χ be the central character of π. For f ∈ C(ZG(F )\G(F ), χ−1) strongly

cuspidal, define

θf (π) = (−1)aG−aMJGM (τ, f). (3.9)

Proposition 3.5.3. For every f ∈ C(ZG(F )\G(F ), χ−1) strongly cuspidal, we have

θf =

∫
Πtemp(G,χ)

θf (π)θ̄πdπ.

Proof. This is just Proposition 5.6.1 of [B15]. The only thing worth to mention is that

the function D(π) in the loc. cit. is identically 1 in our case since we assume that

G = GLn(D).

To end this section, we need a local trace formula for strongly cuspidal functions.

It will be used in Chapter 8 for the proof of the spectral side of our trace formula. For

f ∈ C(G(F ), χ−1), f ′ ∈ C(G(F ), χ) and g1, g2 ∈ G(F ), set

KA
f,f ′(g1, g2) =

∫
ZG(F )\G(F )

f(g−1
1 gg2)f ′(g)dg.

By Proposition 2.8.3, the integral above is absolutely convergent.

Theorem 3.5.4. 1. For all d ≥ 0, there exist d′ ≥ 0, a continuous semi-norm νd,d′

on C(G(F ), χ−1) and a continuous semi-norm ν ′d,d′ on C(G(F ), χ) such that

|KA
f,f ′(g1, g2)| ≤ νd,d′(f)ν ′d,d′(f

′)ΞG(g1)σ0(g1)−dΞG(g2)σ0(g2)d
′

and

|KA
f,f ′(g1, g2)| ≤ νd,d′(f)ν ′d,d′(f

′)ΞG(g1)σ0(g1)d
′
ΞG(g2)σ0(g2)−d.

2. Assume that f is strongly cuspidal for the rest part of the Theorem. Then for all

d ≥ 0, there exist a continuous semi-norm νd on C(G(F ), χ−1) and a continuous

semi-norm ν ′d on C(G(F ), χ) such that |KA
f,f ′(g, g)| ≤ νd(f)ν ′d(f

′)ΞG(g)2σ0(g)−d.



35

3. There exists c > 0 such that for all d ≥ 0, and there exists d′ ≥ 0 such that

|KA
f,f ′(g, hg)| � ΞG(g)2σ0(g)−decσ0(h)σ0(h)d

′
.

4. Set JA(f, f ′) =
∫
ZG(F )\G(F )K

A
f,f ′(g, g)dg. This is absolutely convergent by part

(2). Then we have

JA(f, f ′) =

∫
Temp(G,χ)

θf (π)θπ̄(f ′)dπ.

Proof. This is just Theorem 5.5.1 of [B15].

3.6 The Localization of Quasi-Characters

We fix x ∈ Gss(F ) and a good neighborhood ω of 0 in gx(F ). If θ is a quasi-character

of G(F ), we define a function θx,ω on ω by

θx,ω(X) =

θ(x exp(X)), if X ∈ ω;

0, otherwise.
(3.10)

Then θx,ω is a quasi-character of gx(F ), and we have cθ,O(x exp(X)) = cθx,ω ,O(X) for

every X ∈ ω ∩ gx,ss(F ) and O ∈ Nil(gx,X) (Note we have Gx exp(X) = (Gx)X since ω

is a good neighborhood). In particular, by taking X = 0 we have cθ,O(x) = cθx,ω ,O for

every O ∈ Nil(gx).

Now if θ is a quasi-character of G(F ) that is ZG(F )-invariant, then

cθ,O(zx) = cθ,O(x)

for all z ∈ ZG. For ω as above, we can define a quasi-character on gx(F ) that is invariant

by zg(F ), which is still denoted by θx,ω, to be

θx,ω(X) =

θ(x exp(X ′)), if X = X ′ + Z,X ′ ∈ ω,Z ∈ zg(F );

0, otherwise.
(3.11)

3.7 The Localization of θf

In this section, we discuss the localization of the quasi-character θf , which will be

used in the localization of the trace formula in Chapter 9. Some results of this section
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will also be used in Chapter 11 when we change the truncated functions in the trace

formula. For x ∈ Gss(F ), recall that gx,0 is the subspace of elements in gx whose trace

is zero. Suppose gx,0 = g′x⊕ g′′ where g′x and g′′ are the Lie algebras of some connected

reductive groups (See Section 9.3). For any element X ∈ gx,0(F ), it can be decomposed

as X = X ′ + X ′′ for X ′ ∈ g′x and X ′′ ∈ g′′. We denote by f → f ] the partial Fourier

transform for f ∈ C∞x (gx,0(F )) with respect to X ′′. i.e.

f ](X) =

∫
g′′(F )

f(X ′ + Y ′′)ψ(< Y ′′, X ′′ >)dY ′′. (3.12)

Let ω be a good neighborhood of 0 in gx. We can also view ω as an neighborhood

of 0 in gx,0 by considering its image in gx,0 under the projection gx → gx,0. If f ∈
C∞c (ZG(F )\G(F )), for g ∈ G(F ), define gfx,ω ∈ C∞c (gx,0(F )) by

gfx,ω(X) =

f(g−1x exp(X)g), if X ∈ ω;

0, otherwise.
(3.13)

Also define
gf ]x,ω = (gfx,ω)]. (3.14)

Note that for X ∈ gx,0(F ), X ∈ ω means that there exist X ′ ∈ ω and Z ∈ zg(F ) such

that X = X ′ + Z. It follows that the value f(g−1x exp(X)g) is just f(g−1x exp(X ′)g),

which is independent of the choice of X ′ and Z.

If M is a Levi subgroup of G containing the given x, fix an open compact subgroup

K in good position with respect to M . If P = MU ∈ P(M), for f ∈ C∞c (ZG(F )\G(F )),

define the functions ϕ[P, f ], ϕ][P, f ] and J ]M,x,ω(·, f) on mx,0(F ) ∩ gx,reg(F ) by

ϕ[P, f ](X) = DGx(X)1/2DMx(X)−1/2

∫
U(F )

ufx,ω(X)du, (3.15)

ϕ][P, f ](X) = DGx(X)1/2DMx(X)−1/2

∫
U(F )

uf ]x,ω(X)du, (3.16)

and

J ]M,x,ω(X, f) = DGx(X)1/2

∫
Gx,X(F )\G(F )

gf ]x,ω(X)vM (g)dg. (3.17)

The following two lemmas are proved in Sections 5.4 and 5.5 of [W10], which will be

used in the localization of the trace formula. The second lemma will also be used in

Section 11 when we change the truncated functions in the trace formula.
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Lemma 3.7.1. The followings hold.

1. The three integrals above are absolutely convergent.

2. The function ϕ[P, f ] and ϕ][P, f ] can be extended to elements in C∞c (mx,0(F )) and

we have (ϕ[P, f ])] = ϕ][P, f ].

3. The function X → J ]M,x,ω(X, f) is invariant under Mx(F )-conjugation, and has a

compactly support modulo conjugation. Further, it is locally constant on mx,0(F )∩
gx,reg(F ), with the property that there exist c > 0 and an integer k ≥ 0 such that

| J ]M,x,ω(X, f) |≤ c(1+ | log(DGx(X)) |)k

for every X ∈ mx,0 ∩ gx,reg(F ).

Lemma 3.7.2. Suppose that f is strongly cuspidal, the followings hold.

1. If P 6= G, the function ϕ[P, f ] and ϕ][P, f ] are zero.

2. The function J ]M,x,ω(·, f) does not depend on the choice of K. It is zero if AMx 6=
AM . For every y ∈ G(F ) and X ∈ mx,0 ∩ gx,reg(F ), we have

J ]M,x,ω(X, f) = J ]M,x,ω(X, yf).

For f ∈ C∞c (ZG(F )\G(F )) strongly cuspidal, we define a function θf,x,ω on (gx,0)reg

by

θf,x,ω(X) =

θf (x exp(X)), if X ∈ ω;

0, otherwise.
(3.18)

If X ∈ (gx,0)reg, let M(X) be the centralizer of AGx,X in G. We define

θ]f,x,ω(X) = (−1)aM(X)−aGν(Gx,X)−1DGx(X)−1/2J ]M(X),x,ω(X, f). (3.19)

By the lemma above this is independent of the choice of K. From the discussion of θf ,

we have a similar lemma:

Lemma 3.7.3. The functions θf,x,ω and θ]f,x,ω are invariant under Gx(F )-conjugation,

compactly supported modulo conjugation, locally integrable on gx,0(F ), and locally con-

stant on gx,0,reg(F ).
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The next result about θf,x,ω and θ]f,x,ω is proved in Section 5.8 of [W10]. It tells us

that θ]f,x,ω is the partial Fourier transform of θf,x,ω with respect to X ′′.

Proposition 3.7.4. If f ∈ C∞c (ZG(F )\G(F )) is strongly cuspidal, then θ]f,x,ω is the

partial Fourier transform of θf,x,ω in the sense that, for every ϕ ∈ C∞c (gx,0(F )), we

have ∫
gx,0(F )

θ]f,x,ω(X)ϕ(X)dX =

∫
gx,0(F )

θf,x,ω(X)ϕ](X)dX. (3.20)

3.8 Pseudo Coefficients

In this subsection we assume that G = GLn(D) for some division algebra D/F .

Let π be a discrete series ofG(F ) with central character χ. For f ∈ C∞c (ZG(F )\G(F ), χ−1),

we say f is a pseudo coefficient of π if the following conditions hold.

• tr(π(f)) = 1.

• For all σ ∈ Πtemp(G,χ) with σ 6= π, we have tr(σ(f)) = 0.

Lemma 3.8.1. For all discrete series π of G(F ) with central character χ, the pseudo

coefficients of π exist. Moreover, all pseudo coefficients are strongly cuspidal.

Proof. The existence of the pseudo coefficient is proved in [BDK]. Let f be a pseudo

coefficient, we want to show that f is strongly cuspidal. By the definition of f , we

know that for all proper parabolic subgroups P = MU of G, and for all tempered

representations τ of L(F ), we have tr(π′(f)) = 0 where π′ = IGP (τ). Then by Proposition

3.5.2, we know that f is strongly cuspidal. This proves the lemma.



Chapter 4

The Ginzburg-Rallis Model and

its Reduced Models

In this chapter, we study the analytic and geometric properties of the Ginzburg-Rallis

model. Geometrically, we show that it is a wavefront spherical variety. This gives us

the weak Cartan decomposition. Analytically, we show it has polynomial growth as a

homogeneous space. Then by applying all such properties, we prove some estimates for

several integrals which will be used in later chapters. We will also discuss the reduced

models associated to the Ginzburg-Rallis model coming from parabolic induction. This

is a technical chapter, readers may assume the results in this chapter at the beginning

and come back for the proofs later.

4.1 The Ginzburg-Rallis Models

Let (G,R) be the pair (G,R) or (GD, RD) as in Chapter 1, and let G0 = M . Then

(G0, H) is just the trilinear model of GL2(F ) or GL1(D). We define a homomorphism

λ : U(F )→ F to be

λ(u(X,Y, Z)) = tr(X) + tr(Y ).

Therefore the character ξ we defined in Chapter 1 can be written as ξ(u) = ψ(λ(u))

for u ∈ U(F ). Similarly, we can define λ on the Lie algebra of U . We also extend λ to

R(F ) by making it trivial on H(F ).

39
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Lemma 4.1.1. 1. The map G → R\G has the norm descent property. For the

definition of the norm descent property, see Section 18 of [K05], or Section 1.2 of

[B15].

2. The orbit of λ under the M -conjugation is a Zariski open subset in (u/[u, u])∗.

Proof. (1) Since the map is obviously G-equivariant, by Proposition 18.2 of [K05], we

only need to show that it admits a section over a nonempty Zariski-open subset. Let

P̄ = MŪ be the opposite parabolic subgroup of P = MU with respect to M , and let

P ′ be the subgroup of P̄ that consists of elements in P̄ whose M -part is of the form

(1, h1, h2) where h1, h2 ∈ GL2(F ) or GL1(D). By the Bruhat decompostion, the map

φ : P ′ → R\G is injective and its image is a Zariski open subset of R\G. Then the

composition of φ−1 and the inclusion P ′ ↪→ G is a section on Im(φ). This proves (1).

(2) Assume that G(F ) = GL6(F ). We can easily identify (u/[u, u])∗ with M2 ×M2

where M2 are the variety of two by two matrices. Then it is easy to see that the orbit of

λ under the M -conjugation is GL2 ×GL2, which is a Zariski open subset. This proves

(2) for the split case. The proof for the quaternion case is similar.

4.2 The Spherical Pair (G,R)

We say a parabolic subgroup Q̄ of G is good if RQ̄ is a Zariski open subset of G. This

is equivalent to say that R(F )Q̄(F ) is open in G(F ) under the analytic topology.

Proposition 4.2.1. 1. There exist minimal parabolic subgroups of G that are good

and they are all conjugated to each other by some elements in H(F ). If P̄min =

MminŪmin is a good minimal parabolic subgroup, we have R∩ Ūmin = {1} and the

complement of R(F )P̄min(F ) in G(F ) has zero measure.

2. A parabolic subgroup Q̄ of G is good if and only if it contains a good minimal

parabolic subgroup.

3. Let P̄min = MminŪmin be a good minimal parabolic subgroup and let Amin = AMmin

be the split center of Mmin. Set

A+
min = {a ∈ Amin(F ) || α(a) |≥ 1 for any α ∈ Ψ(Amin, P̄min).

Then we have
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(a) σ0(h) + σ0(a)� σ0(ha) for all a ∈ A+
min, h ∈ R(F ).

(b) σ(h)� σ(a−1ha) and σ0(h)� σ0(a−1ha) for all a ∈ A+
min, h ∈ R(F ).

4. (1), (2) and (3) also hold for the pair (G0, H).

Proof. (1) We first show the existence of a good minimal parabolic subgroup. In the

quaternion case, we can just choose the lower triangle matrices, which form a good

minimal parabolic subgroup by the Bruhat decomposition. (Note that in this case the

minimal parabolic subgroup is not a Borel subgroup since G is not split). In the split

case, we first show that it is enough to find a good minimal parabolic subgroup for the

pair (G0, H). Let B0 be a good minimal parabolic subgroup for the pair (G0, H), since

we are in the split case, B0 is a Borel subgroup of G0. Let B = ŪB0. It is a Borel

subgroup of G. By the Bruhat decomposition, ŪP is open in G. Together with the fact

that B0 is a good Borel subgroup of (G0, H), we know BR is open in G, which makes

B a good minimal parabolic subgroup.

For the pair (G0, H), let B0 = (B+, B−, B′) where B+ is upper triangular Borel sub-

group ofGL2, B− is lower triangular Borel subgroup ofGL2 andB′ =

(
1 −1

0 1

)
B−

(
1 1

0 1

)
.

It is easy to see that B+ ∩ B− ∩ B′ = {

(
a 0

0 a

)
}, hence B0 ∩ H = {

(
a 0

0 a

)
×(

a 0

0 a

)
×

(
a 0

0 a

)
}. Then by comparing the dimensions, we know B0 is a good

minimal parabolic subgroup.

Now we need to show that two good minimal parabolic subgroups are conjugated

to each other by some elements in R(F ). Let P̄min be the good minimal parabolic

subgroup defined above, and let P̄ ′min be another good minimal parabolic subgroup.

We can always find g ∈ G(F ) such that gP̄ming
−1 = P̄ ′min. Let U = RP̄min and

Z = G− U . If g ∈ Z, then

RP̄ ′min = RgP̄ming
−1 ⊂ Zg−1,

which is impossible since RP̄ ′min is Zariski open and Z is Zariski closed. Hence g ∈
U ∩G(F ) = U(F ). If g ∈ R(F )P̄min(F ), then we are done. So it is enough to show that

U(F ) = R(F )P̄min(F ).
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We have the following two exact sequence:

0→ H0(F, P̄min)→ H0(F,RP̄min)→ H0(F,R/R ∩ P̄min),

0→ H0(F,R∩P̄min)→ H0(F,R)→ H0(F,R/R∩P̄min)→ H1(F,R∩P̄min)→ H1(F,R).

Therefore it is enough to show that the map

H1(F,R ∩ P̄min)→ H1(F,R) (4.1)

is injective.

If G is split, by our construction, R∩ P̄min = GL1. Since H1(F,GLn) = {1} for any

n ∈ N, the map (4.1) is injective. If G is not split, by our construction, R ∩ P̄min = H

and R/R ∩ P̄min = U . Then the map (4.1) lies inside the exact sequence

0→ H0(F,H)→ H0(F,R)→ H0(F,U)→ H1(F,H)→ H1(F,R).

It is easy to see that the map H0(F,R) → H0(F,U) is surjective, therefore (4.1) is

injective. This finishes the proof.

For the rest part of (1), since we have already proved that two good minimal parabol-

ic subgroups can be conjugated to each other by some elements in R(F ), it is enough

to prove the rest part for the specific good minimal parabolic P̄min we defined above,

which is obvious from the construction of P̄min. This proves (1). The proof for the pair

(G0, H) is similar.

(2) Let Q̄ be a good parabolic subgroup, and let Pmin ⊂ Q̄ be a minimal parabolic

subgroup. Set

G = {g ∈ G | g−1Pming is good}.

This is a Zariski open subset of G since it is the inverse image of the Zariski open subset

{V ∈ Grn(g) | V + r = g} of the Grassmannian variety Grn(g) under the morphism

g ∈ G→ g−1pming ∈ Grn(g), here n = dim(Pmin). By (1), there exists a good minimal

parabolic subgroup, hence G is non-empty. Since Q̄ is good, Q̄R is a Zariski open subset,

hence Q̄R ∩ G 6= ∅. So we can find q̄0 ∈ Q̄ such that q̄−1
0 Pminq̄0 is a good parabolic

subgroup. Let

Q = {q̄ ∈ Q̄ | q̄−1Pminq̄ is good}.
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Then we know Q is a non-empty Zariski open subset. Since Q̄(F ) is dense in Q̄, Q(F )

is non-empty. Let q̄ be an element of Q(F ). Then the minimal parabolic subgroup

q̄−1Pminq̄ is good and is defined over F . This proves (2). The proof for the pair (G0, H)

is similar.

(3) By the first part of the proposition, two good minimal parabolic subgroups are

conjugated to each other by some elements in R(F ). This implies that (a) and (b) do not

depend on the choice of minimal parabolic subgroups. Hence we may use the minimal

parabolic subgroup P̄min defined in (1). Next we show that (a) and (b) do not depend on

the choice of Mmin. Let Mmin,M
′
min be two choices of Levi subgroup. Then there exists

ū ∈ Ūmin(F ) such that M ′min = ūMminū
−1 and A′+min = ūA+

minū
−1. Since for a ∈ A+

min,

a−1ūa is a contraction, the sets {a−1ūaū−1 | a ∈ A+
min} and {a−1ū−1aū | a ∈ A+

min} are

bounded. This implies

σ0(hūaū−1) ∼ σ0(ha),

σ(ūaū−1hūaū−1) ∼ σ(a−1ha),

σ0(ūaū−1hūaū−1) ∼ σ0(a−1ha)

for all a ∈ A+
min and h ∈ R(F ). Therefore (a) and (b) do not depend on the choice of

Mmin. We may choose

Mmin = {diag(

(
a1 0

0 a2

)
,

(
a3 0

0 a4

)
,

(
a5 a5 − a6

0 a6

)
) | ai ∈ F×}

in the split case, and choose

Mmin = {diag(b1, b2, b3) | bj ∈ D×}

in the non-split case.

For part (a), let h = uh0 for u ∈ U(F ) and h0 ∈ H(F ). Then we know σ0(h) �
σ0(h0) + σ0(u) and σ0(ha) = σ0(uh0a)� σ0(u) + σ0(h0a). As a result, we may assume

that h = h0 ∈ H(F ). If we are in the non-split case, ZH\H(F ) is compact, and the

argument is trivial. In the split case, since the norm is K-invariant, by the Iwasawa

decomposition, we may assume that h0 is upper triangle. Then by using the same

argument as above, we can get rid of the unipotent part. Hence we may assume that
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h0 = diag(h1, h2) with h1, h2 ∈ F×. By our choice of Mmin,

a = diag(

(
a1 0

0 a2

)
,

(
a3 0

0 a4

)
,

(
a5 a5 − a6

0 a6

)
) = diag(A1, A2, A3) (4.2)

with | a2 |≤| a1 |≤| a3 |≤| a4 |≤| a5 |≤| a6 |. Since we only consider σ0, we may

assume that Πai = 1 and h1h2 = 1. (In general, after modulo the center, we can not

make determinant equal to 1, there should be some square class left. But we are talking

about majorization, the square class will not effect our estimation.) In order to make

the argument hold for the pair (G0, H), here we only assume that | a2 |≤| a1 |, | a3 |≤|
a4 |, | a5 |≤| a6 |. It is enough to show that

σ(h0) + σ(a)� σ(h0a). (4.3)

In this case, σ(h0) ∼ log(max{| h1 |, | h2 |}) and σ(a) ∼ log(max{| a6 |, | a4 |, | a1 |}) ∼
log(max{| a−1

2 |, | a−1
3 |, | a−1

5 |}).

• If h2 ≥ 1, we have σ(h0) ∼ log(| h2 |), ‖ h0A3 ‖≥| a6h2 |, and ‖ h0A2 ‖≥| a4h2 |.
So if max{| a6 |, | a4 |, | a1 |} =| a6 | or | a4 |, (4.3) holds. By the same argument,

if max{| a−1
2 || a−1

3 || a−1
5 |} =| a−1

3 | or | a−1
5 |, (4.3) also holds. Now the only

case left is when max{| a6 |, | a4 |, | a1 |} =| a1 | and max{| a−1
2 || a−1

3 || a−1
5 |} =|

a−1
2 |.

– If | a6 |≥ 1, then ‖ h0A3 ‖≥| a6h2 | and ‖ h0A1 ‖≥| a−1
2 h−1

2 |. Hence

‖ h0A1 ‖‖ h0A3 ‖2≥| a−1
2 a2

6h2 |≥| a−1
2 h2 |. In particular, (4.3) holds.

– If | a6 |< 1, then | a5 |< 1. In this case, ‖ h0A3 ‖≥| a−1
5 h2 | and ‖ h0A1 ‖≥|

a1h
−1
2 |. Hence ‖ h0A1 ‖‖ h0A3 ‖2≥| a−2

5 a1h2 |≥| a1h2 |. In particular, (4.3)

holds.

• If h1 ≥ 1, the argument is similar as above, we will skip it here.

This finishes the proof of (a) for both the pair (G,R) and the pair (G0, H).

For part (b), the argument for σ0 is an easy consequence of the argument for σ, so

we only prove the first one. Still let h = uh0. By the definition of A+
min, a−1ua is an

extension of u (i.e. σ(a−1ua) ≥ σ(u)), so we can still reduce to the case h = h0 ∈ H(F ).
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For the non-split case, the argument is trivial since a−1h0a = h0. For the split case,

still let a = diag(A1, A2, A3) as above. It is enough to show that for any h ∈ GL2(F ),

‖ h ‖≤ max{‖ A−1
i hAi ‖, i = 1, 2, 3}. (4.4)

Let h =

(
x11 x12

x21 x22

)
. We may assume that det(h) ≥ 1. Then ‖ h ‖= max{|xij |}. If

‖ h ‖= |x11|, |x21| or |x22|, it is easy to see that ‖ h ‖≤‖ A−1
1 hA1 ‖. If ‖ h ‖= |x12|, then

‖ h ‖≤‖ A−1
2 hA2 ‖. Therefore (4.4) holds, and this finishes the proof of (b).

(4) is already covered in the proof of (1), (2) and (3).

The above proposition tells us that X = R\G is a spherical variety of G and X0 =

H\G0 is a spherical variety of G0. In [SV], the authors have introduced the notion of

wavefront spherical variety. In the next proposition, we are going to show that X0 is

a wavefront spherical variety of G0. We need to use this result for the weak Cartan

decomposition of (G,R) and (G0, H).

Proposition 4.2.2. X0 is a wavefront spherical variety of G0.

Proof. It’s is enough to show that the little Weyl group WX0 of X0 is equal to the

Weyl group of G0, which is (Z/2Z)3. Here we use the method introduced by Knop

in [Knop95] to calculate the little Weyl group. To be specific, use the same notation

as in loc. cit., let B = B1 × B2 × B3 be a Borel subgroup of G0. Without loss of

generality, we may assume that Bi is the upper triangular Borel subgroup of GL2. Let

B(X0) be the set of all non-empty, closed, irreducible, B-stable subsets of X0. It is

easy to see that there is a bijection between B(X0) and the set of all non-empty, closed,

irreducible, H0-stable subsets of G0/B ' (P1)3. And we can easily write down such

orbits: (P1)3, X12, X13, X23 and Y where Xij = {(a1, a2, a3) ∈ (P1)3|ai = aj} and

Y = {(a1, a2, a3) ∈ (P1)3|a1 = a2 = a3}. Therefore B(X0) contains five elements

B(X0) = {X0, Y1, Y2, Y3, Z} (4.5)

where Z is the orbit of the identity element under the action of B, which is an irre-

ducible subset of codimension 2. And all Yi’s are closed, irreducible, B-stable subsets

of codimension 1, with Y1 = {H\(g, g′b, g′) | b ∈ B2, g, g
′ ∈ GL2}, Y2 = {H\(gb, g′, g) |
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b ∈ B1, g, g
′ ∈ GL2}, and Y3 = {H\(g, gb, g′) | b ∈ B2, g, g

′ ∈ GL2}. Now we study the

action of the Weyl group W = WG0 of G0 on the set B(X0).

Let ∆(G0) = {α1, α2, α2} be the set of simple roots of G0 with respect to the Borel

subgroup B, here αi is the simple root of the i-th GL2 with respect to Bi. For i = 1, 2, 3,

let wi ∈ W be the simple reflection associated to αi, and Pi be the corresponding

parabolic subgroup of G0 containing B (i.e. Pi has Bj in the j-th component for i 6= j,

and has GL2 in the i-th component). Then we know W is generated by wi’s, hence it

is enough to study the action of wi on B(X0).

We first consider the action of w1. It is easy to see that there are two non-empty,

closed, irreducible, P1-stable subsets of X0: one is Y1, the other one is X0. Let

B(Y1, P ) = {A ∈ B(X) | P1A = Y1}

and

B(X0, P ) = {A ∈ B(X) | P1A = X0}.

We have B(Y1, P ) = {Y1, Z} and B(X0, P ) = {Y2, Y3, X0}. By Theorem 4.2 of [Knop95],

the action of w1 on B(X0) is given by

w1 ·X0 = X0, w1 · Y1 = Y1, w1 · Y2 = Y3, w1 · Y3 = Y2, w1 · Z = Z.

Similarly we can get the action of w2 and w3:

w2 ·X0 = X0, w2 · Y1 = Y3, w2 · Y2 = Y2, w2 · Y3 = Y1, w2 · Z = Z;

w3 ·X0 = X0, w3 · Y1 = Y2, w3 · Y2 = Y1, w3 · Y3 = Y3, w3 · Z = Z.

Hence the isotropy group of X0 is W . By Theorem 6.2 of [Knop95], the little Weyl

group WX0 is just W , therefore X0 is a wavefront spherical variety of G0.

We need the weak Cartan decomposition for X0 and X. Let P̄0 = M0Ū0 be a good

minimal parabolic subgroup of G0, and let A0 = AM0 be the maximal split central torus

of M0. Let

A+
0 = {a ∈ A0(F )| |α(a)| ≥ 1, ∀α ∈ Ψ(A0, P̄0)}.

Choose a good minimal parabolic subgroup P̄min = P̄0Ū = MminŪmin of G, and let

Pmin be its opposite with respect to Mmin. Then we know Pmin ⊂ P . Let ∆ be the



47

set of simple roots of Amin = AMmin = A0 in Pmin, and let ∆P = ∆ ∩ Ψ(Amin, P ) be

the subset of simple roots appeared in u. For α ∈ ∆P , let nα be the corresponding root

space.

Proposition 4.2.3. 1. There exists a compact subset K0 ⊂ G0(F ) such that

G0(F ) = H(F )A+
0 K0. (4.6)

2. There exists a compact subset K ⊂ G(F ) such that

G(F ) = R(F )A+
0 K. (4.7)

3. The character ξ is nontrivial on nα for all α ∈ ∆P .

Proof. We first prove that (1) implies (2). By the Iwasawa decomposition, there is a

compact subgroup K of G(F ) such that G(F ) = P (F )K = U(F )M(F )K. Now by part

(1), there exists a compact subset K0 of G0(F ) = M(F ) such that G0(F ) = H(F )A+
0 K0.

Let K = K0K, then R(F )A+
0 K = U(F )H(F )A+

0 K0K = U(F )M(F )K = G(F ). This

proves (2).

Now we prove (1): in the non-split case, A+
0 = ZG0 and ZG0\G0(F ) is compact,

hence (1) is trivial. In the split case, if F = R, since (G0, H) is a wavefront spherical

variety, (2) follows from Theorem 5.13 of [KKSS]. If F is p-adic, we refer the readers to

Appendix A for the explicit construction.

For part (3), it is easy to see that the statement is independent of the choice of the

good minimal parabolic subgroup, so we can still use the one defined in Proposition

4.2.1. Then (3) just follows from direct computation.

To end this section, we will show that the homogeneous space X = R\G has poly-

nomial growth. We first recall the definition for polynomial growth in [Ber88].

Definition 4.2.4. We say a homogeneous space X = R\G of G has polynomial growth

if it satisfies the following condition:

For a fixed compact neighborhood K of the identity element in G, there exist con-

stants d,C > 0 such that for every t > 0, the ball B(t) = {x ∈ X | r(x) ≤ t} can be

covered by less than C(1 + t)d many K − balls of the form Kx, x ∈ X. Here r is a

function on X defined by r(x) = inf{σ(g) | x = gx0} where x0 ∈ X is a fixed point.
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Remark 4.2.5. In our case, if we set x0 = 1, then r(x) = infh∈R(F )σ(hx). By Lemma

4.1.1, r(x) = σR\G(x).

Lemma 4.2.6. 1. Let K ⊂ G(F ) be a compact subset. We have σR\G(xk) ∼ σR\G(x)

for all x ∈ R(F )\G(F ), k ∈ K.

2. For all a ∈ A+
0 , we have

σR\G(a) ∼ σZG\G(a) = σ0(a). (4.8)

Here the last equation is just the definition of σ0.

Proof. (1) is trivial. For (2), since G → R\G has the norm descent property(Lemma

4.1.1), we may assume that

σR\G(x) = inf
h∈R(F )

σG(hx). (4.9)

Then we obviously have the inequality σR\G(g) � σ0(g) for all g ∈ G(F ). So we only

need to show that σ0(a) � σR\G(a) for all a ∈ A+
0 . By applying (4.9), it is enough to

show that for all a ∈ A+
0 and h ∈ R(F ), we have

σ0(a)� σ0(ha). (4.10)

We can write h = uh0 for u ∈ U(F ), h0 ∈ H(F ). Since σ0(ug0) � σ0(g0) for all

u ∈ U(F ), g0 ∈ G0(F ), we have σ0(ha)� σ0(h0a). So it is enough to show that for all

a ∈ A+
0 and h0 ∈ H(F ), we have σ0(a) � σ0(h0a). This just follows from Proposition

4.2.1(3). This finishes the proof of (2).

Proposition 4.2.7. R(F )\G(F ) has polynomial growth as a G(F )-homogeneous space.

Proof. By Proposition 4.2.3, there exists a compact subset K ⊂ G(F ) such that G(F ) =

R(F )A+
0 K. Since R(F ) ∩ A+

0 = ZG(F ), together with the lemma above, there exists a

constant c0 > 0 such that

B(t) ⊂ R(F ){a | a ∈ A+
0 /ZG(F ), σ0(a) ≤ c0t}K

for all t ≥ 1. Hence we only need to show that there exists a positive integer N > 0

such that for all t ≥ 1, the subset {a ∈ A+
0 /ZG(F ) | σ0(a) < t} can be covered by less

than (1 + t)N subsets of the form C0a with a ∈ A+
0 and C0 ⊂ A+

0 be a compact subset

with nonempty interior. This is trivial.
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4.3 Some Estimates

In the next two sections, we are going to prove several estimates for various integrals

which will be used in later sections. The proof of some estimates are similar to the GGP

case in [B15], we only include them here for completion.

Lemma 4.3.1. 1. There exists ε > 0 such that the integral∫
ZH(F )\H(F )

ΞG0(h0)eεσ0(h0)dh0 (4.11)

is absolutely convergent.

2. There exists d > 0 such that the integral∫
ZR(F )\R(F )

ΞG(h)σ0(h)−ddh (4.12)

is absolutely convergent.

3. For all δ > 0, there exists ε > 0 such that the integral∫
ZG(F )\R(F )

ΞG(h)eεσ0(h)(1+ | λ(h) |)−δdh (4.13)

is absolutely convergent.

Proof. (1) If we are in the non-split case, ZH(F )\H(F ) is compact and the argument

is trivial. If we are in the split case, G0 = GL2 × GL2 × GL2. By the definition of

ΞG0 , for h0 ∈ H(F ), ΞG0(h0) = (ΞH(h0))3. But since ΞH is the matrix coefficient of

a tempered representation, it belongs to the space L2+t(ZH(F )\H(F )) for any t > 0.

Then we choose ε > 0 small enough so that eεσ0(h0) � ΞH(h0)−1/2. For such an ε, the

integral (4.11) will be absolutely convergent.

(2) Let d > 0, by Proposition 2.8.3(iv), if d is sufficiently large,∫
ZR(F )\R(F )

ΞG(h)σ0(h)−ddh =

∫
ZR(F )\H(F )

∫
U(F )

ΞG(h0u)σ0(h0u)−ddudh0

�
∫
ZH(F )\H(F )

δP (h0)1/2ΞG0(h0)dh0

=

∫
ZH(F )\H(F )

ΞG0(h0)dh0.



50

And the last integral is absolutely convergent by (1).

(3) Since σ0(h0u)� σ0(h0)σ0(u) for all h0 ∈ H(F ) and u ∈ U(F ), by applying (1),

it suffices to prove the following claim.

Claim 4.3.2. For all δ > 0 and ε0 > 0, there exists ε > 0 such that the integral

I0
ε,δ(h0) =

∫
U(F )

ΞG(uh0)eεσ0(u)(1+ | λ(u) |)−δdu

is absolutely convergent for all h0 ∈ H(F ), and we have

I0
ε,δ(h0)� ΞG0(h0)eε0σ0(h0).

Given δ, ε, ε0, b > 0, we have I0
ε,δ(h0) = I0

ε,δ,≤b(h0) + I0
ε,δ,>b(h0) where

I0
ε,δ,≤b(h0) =

∫
U(F )

1σ0≤b(u)ΞG(uh0)eεσ0(u)(1+ | λ(u) |)−δdu

and

I0
ε,δ,>b(h0) =

∫
U(F )

1σ0>b(u)ΞG(uh0)eεσ0(u)(1+ | λ(u) |)−δdu.

For all d > 0, we have

I0
ε,δ,≤b(h0) ≤ eεbbd

∫
U(F )

ΞG(uh0)σ0(u)−ddu. (4.14)

By Proposition 2.8.3(iv), we can choose d > 0 such that the last integral of (4.14) is

essentially bounded by δP (h0)−1/2ΞM (h0) = ΞG0(h0) for all h0 ∈ H(F ). We fix such a

d > 0, and then we have

I0
ε,δ,≤b(h0)� eεbbdΞG0(h0) (4.15)

for all h0 ∈ H(F ) and b > 0.

On the other hand, there exists α > 0 such that ΞG(gg′) � eασ0(g′)ΞG(g) for all

g, g′ ∈ G(F ). Therefore

I0
ε,δ,>b(h0)� eασ0(h0)−

√
εb

∫
U(F )

ΞG(u)e(ε+
√
ε)σ0(u)(1+ | λ(u) |)−δdu (4.16)

for all h0 ∈ H(F ) and b > 0. Assume that we can find ε > 0 such that the last integral

of (4.16) is convergent. Then by (4.15) and (4.16), we have

I0
ε,δ(h0)� eεbbdΞG0(h0) + eασ0(h0)−

√
εb (4.17)
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for all h0 ∈ H(F ) and b > 0. Choose β > 0 such that e−βσ0(h0) � ΞG0(h0) for all

h0 ∈ H(F ). If we let b = α+β√
ε
σ0(h0) in (4.17), we have

I0
ε,δ(h0) � e

√
ε(α+β)σ0(h0)(

α+ β√
ε
σ0(h0))dΞG0(h0) + eασ0(h0)−(α+β)σ0(h0)(eβσ0(h0)ΞG0(h0))

� e
√
ε(α+β+1)σ0(h0)ΞG0(h0) + ΞG0(h0)

� e
√
ε(α+β+1)σ0(h0)ΞG0(h0)

for all h0 ∈ H(F ). Note that α and β do not depend on the choice of ε. Hence we can

always choose ε > 0 small so that
√
ε(α+ β + 1) < ε0. This proves Claim 4.3.2.

So it remains to prove that we can find ε > 0 such that the integral in (4.16) is

absolutely convergent. If we are in the non-split case, P is a minimal parabolic subgroup

of G, then this follows from Corollary B.3.1 of [B15]. If we are in the split case, it is

easy to see that the convergence of the integral is independent of the choice of λ (under

the M-conjugation), so we may temporarily let

λ(u(X,Y, Z)) = x12 + x21 + y12 + y21

where

X =

(
x11 x12

x21 x22

)
, Y =

(
y11 y12

y21 y22

)
.

Then we have a decomposition λ = λ+ − λ− where

λ+(u(X,Y, Z)) = x21 + y21

and

λ−(u(X,Y, Z)) = −x12 − y12.

The additive character λ+ is the restriction to U of a generic additive character of a

maximal unipotent subgroup contained in P . In fact we can take the maximal unipotent

subgroup to be the maximal upper triangular unipotent subgroup, and consider the

additive character of the form (xij)1≤i,j≤6 → x12 + x23 + x34 + x45 + x56. By applying

Corollary B.3.1 of [B15] again, we know the integral∫
U(F )

ΞG(u)eεσ0(u)(1+ | λ+(u) |)−δdu (4.18)

is convergent for ε small.
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Fix an embedding a : Gm ↪→ M given by t → diag(1, t, 1, t, 1, t). It is easy to see

that λ+(a(t)ua(t)−1) = tλ+(u) and λ−(a(t)ua(t)−1) = t−1λ−(u) for all t ∈ Gm and

u ∈ U(F ). Let U ⊂ F× be a compact neighborhood of 1. For all ε > 0, we have∫
U(F )

ΞG(u)eεσ0(u)(1+ | λ(u) |)−δdu

�
∫
U(F )

ΞG(u)eεσ0(u)(1+ | λ(a(t)ua(t)−1) |)−δdu

=

∫
U(F )

ΞG(u)eεσ0(u)(1+ | tλ+(u)− t−1λ−(u) |)−δdu

for all t ∈ U . Integrating the above inequality over U , we have∫
U(F )

ΞG(u)eεσ0(u)(1+ | λ(u) |)−δdu

�
∫
U(F )

ΞG(u)eεσ0(u)

∫
U

(1+ | tλ+(u)− t−1λ−(u) |)−δdtdu.

By Lemma B.1.1 of [B15], there exists δ′ > 0 only depends on δ > 0 such that the last

expression above is essentially bounded by∫
U(F )

ΞG(u)eεσ0(u)(1+ | tλ+(u) |)−δ′du.

Then by (4.18), we can find ε > 0 such that the integral on (4.16) is absolutely conver-

gent. This finishes the proof of (3).

Lemma 4.3.3. Let P̄min = MminŪmin be a good minimal parabolic subgroup of G.

1. For any δ > 0, there exist ε > 0 and d > 0 such that the integral

I1
ε,δ(mmin) =

∫
ZR(F )\R(F )

ΞG(hmmin)eεσ0(h)(1+ | λ(h) |)−δdh

is absolutely convergent for all mmin ∈Mmin(F ), and we have

I1
ε,δ(mmin)� δP̄min(mmin)−1/2σ0(mmin)d

for all mmin ∈Mmin(F ).
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2. Assume that ZG0(F ) is contained in AMmin(F ). Then for any δ > 0, there exist

ε > 0 and d > 0 such that the integral

I2
ε,δ(mmin) =

∫
ZR(F )\R(F )

∫
ZR(F )\R(F )

ΞG(hmmin)ΞG(h′hmmin)eεσ0(h)eεσ0(h′)(1+ | λ(h′) |)−δdh′dh

is absolutely convergent for all mmin ∈Mmin(F ), and we have

I2
ε,δ(mmin)� δP̄min(mmin)−1σ0(mmin)d

for all mmin ∈Mmin(F ).

Proof. (1) Since ΞG(g−1) ∼ ΞG(g), σ0(g−1) ∼ σ0(g) and λ(h−1) = −λ(h) for all g ∈
G(F ) and h ∈ R(F ), it is equivalent to prove the following Claim.

Claim 4.3.4. For any δ > 0, there exist ε > 0 and d > 0, such that the integral

J1
ε,δ(mmin) =

∫
ZR(F )\R(F )

ΞG(mminh)eεσ0(h)(1+ | λ(h) |)−δdh

is absolutely convergent for all mmin ∈Mmin(F ), and we have

J1
ε,δ(mmin)� δP̄min(mmin)1/2σ0(mmin)d

for all mmin ∈Mmin(F ).

By Proposition 2.8.3(ii), there exists d > 0 such that

J1
ε,δ(mmin) � δP̄min(mmin)1/2σ0(mmin)d

×
∫
ZR(F )\R(F )

δP̄min(mP̄min
(h))1/2σ0(h)deεσ0(h)(1+ | λ(h) |)−δdh

for all mmin ∈ Mmin(F ). Here mP̄min
: G(F ) → P̄min(F ) is the map induced by the

Iwasawa decomposition. Since σ0(h)deεσ0(h) � eε
′σ0(h) for all ε′ > ε > 0, it is enough to

prove that for ε small, the integral∫
ZR(F )\R(F )

δP̄min(mP̄min
(h))1/2eεσ0(h)(1+ | λ(h) |)−δdh (4.19)
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is absolutely convergent. Since P̄min is a good parabolic subgroup, we can find open

compact neighborhoods of the identity UK ⊂ K,UR ⊂ R(F ) and UP̄ ⊂ P̄min(F ) such

that UK ⊂ UP̄UR. We have the estimates

eεσ0(kRh) � eεσ0(h), (1+ | λ(kRh) |)−δ � (1+ | λ(h) |)−δ

for all h ∈ R(F ) and kR ∈ UR. Therefore∫
ZR(F )\R(F )

δP̄min(mP̄min
(h))1/2eεσ0(h)(1+ | λ(h) |)−δdh

� δP̄min(kP̄ )1/2

∫
ZR(F )\R(F )

δP̄min(mP̄min
(kRh))1/2eεσ0(h)(1+ | λ(h) |)−δdh

=

∫
ZR(F )\R(F )

δP̄min(mP̄min
(kP̄kRh))1/2eεσ0(h)(1+ | λ(h) |)−δdh

for all kR ∈ UR and kP̄ ∈ UP̄ . This implies∫
ZR(F )\R(F )

δP̄min(mP̄min
(h))1/2eεσ0(h)(1+ | λ(h) |)−δdh

�
∫
ZR(F )\R(F )

∫
UK

δP̄min(mP̄min
(kh))1/2dkeεσ0(h)(1+ | λ(h) |)−δdh

�
∫
ZR(F )\R(F )

∫
K
δP̄min(mP̄min

(kh))1/2dkeεσ0(h)(1+ | λ(h) |)−δdh.

By Proposition 2.8.3(iii), the inner integral above is equal to ΞG(h). Then the conver-

gence of (4.19) for ε small just follows from (3) of Lemma 4.3.1, this finishes the proof

of (1).

(2) By changing the variable h′ → h′h−1 in the integral, it is enough to show that

for ε > 0 small, the integral

I3
ε,δ(mmin) =

∫
ZR(F )\R(F )

∫
ZR(F )\R(F )

ΞG(hmmin)ΞG(h′mmin)eεσ0(h)eεσ0(h′)(1+ | λ(h′)− λ(h) |)−δdh′dh

is absolutely convergent for all mmin ∈Mmin(F ), and there exists d > 0 such that

I3
ε,δ(mmin)� δP̄min(mmin)−1σ0(mmin)d (4.20)

for all mmin ∈ Mmin(F ). Let a : Gm(F ) → ZG0(F ) be a homomorphism given by

a(t) = diag(t, t, 1, 1, t−1, t−1) in the split case, and a(t) = diag(t, 1, t−1) in the non-split
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case. It is easy to see that λ(a(t)ha(t)−1) = tλ(h) for all h ∈ R(F ) and t ∈ Gm(F ). Let

U ⊂ F× be an open compact neighborhood of 1. Since ZG0 is in the center of Mmin, by

making the transform h′ → a(t)−1h′a(t), we have

I3
ε,δ(mmin) �

∫
ZR(F )\R(F )

∫
ZR(F )\R(F )

ΞG(hmmin)ΞG(h′mmin)eεσ0(h)eεσ0(h′)

×
∫
U

(1+ | λ(a(t)h′a(t)−1)− λ(h) |)−δdtdh′dh

=

∫
ZR(F )\R(F )

∫
ZR(F )\R(F )

ΞG(hmmin)ΞG(h′mmin)eεσ0(h)eεσ0(h′)

×
∫
U

(1+ | tλ(h′)− λ(h) |)−δdtdh′dh

for all mmin ∈Mmin(F ). By Lemma B.1.1 of [B15], there exists δ′ > 0, only depending

on δ, such that the last integral above is essentially bounded by∫
ZR(F )\R(F )

∫
ZR(F )\R(F )

ΞG(hmmin)ΞG(h′mmin)

eεσ0(h)eεσ0(h′)(1+ | λ(h′) |)−δ′(1+ | λ(h) |)−δ′dh′dh

= I1
ε,δ′(mmin)2

for all mmin ∈Mmin(F ). Therefore the inequality (4.20) follows from part (1), and this

finishes the proof of (2).

4.4 The Harish-Chandra-Schwartz Spece of R\G

Let C ⊂ G(F ) be a compact subset with nonempty interior. Define the function

Ξ
R\G
C (x) = volR\G(xC)−1/2 for x ∈ R(F )\G(F ). If C ′ is another compact subset with

nonempty interior, then Ξ
R\G
C (x) ∼ Ξ

R\G
C′ (x) for all x ∈ R(F )\G(F ). We will only use

the function Ξ
R\G
C for majorization. From now on, we will fix a particular C, and set

ΞR\G = Ξ
R\G
C . The next proposition gives the properties for the function ΞR\G, which

is quiet similar to Proposition 2.8.3 for the group case.

Proposition 4.4.1. 1. Let K ⊂ G(F ) be a compact subset. We have ΞR\G(xk) ∼
ΞR\G(x) for all x ∈ R(F )\G(F ) and k ∈ K.
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2. Let P̄0 = M0Ū0 be a good minimal parabolic subgroup of G0, and let A0 = AM0 be

the split center of M0. Set

A+
0 = {a0 ∈ A0(F ) || α(a) |≥ 1 for all α ∈ Ψ(A0, P̄0)}.

Then there exists d > 0 such that

ΞG0(a)δP (a)1/2σZG0
\G0

(a)−d � ΞR\G(a)� ΞG0(a)δP (a)1/2 (4.21)

for all a ∈ A+
0 .

3. There exists d > 0 such that the integral∫
R(F )\G(F )

ΞR\G(x)2σR\G(x)−ddx

is absolutely convergent.

4. For all d > 0, there exists d′ > 0 such that∫
R(F )\G(F )

1σR\G≤c(x)ΞR\G(x)2σR\G(x)ddx� cd
′

for all c ≥ 1.

5. There exist d > 0 and d′ > 0 such that∫
ZR(F )\R(F )

ΞG(x−1hx)σ0(x−1hx)−ddh� ΞR\G(x)2σR\G(x)d
′

for all x ∈ R(F )\G(F ).

6. For all d > 0, there exists d′ > 0 such that∫
ZR(F )\R(F )

ΞG(hx)σ0(hx)−d
′
dh� ΞR\G(x)σR\G(x)−d

for all x ∈ R(F )\G(F ).

7. Given δ > 0 and d > 0, the integral

Iδ,d(c, x) =

∫
ZR(F )\R(F )

∫
ZR(F )\R(F )

1σ0≥c(h
′)ΞG(hx)ΞG(h′hx)

σ0(hx)dσ0(h′hx)d(1+ | λ(h′) |)−δdh′dh
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is absolutely convergent for all x ∈ R(F )\G(F ) and c ≥ 1. Moreover, there exist

ε > 0 and d′ > 0 such that

Iδ,d(c, x)� ΞR\G(x)2σR\G(x)d
′
e−εc

for all x ∈ R(F )\G(F ) and c ≥ 1.

Proof. The first one is trivial. For (2), let P̄ = MŪ be the parabolic subgroup opposite

to P with respect to M . We fix some compact subsets with nonempty interior for the

following groups

CŪ ⊂ Ū(F ), C0 ⊂ G0(F ) = M(F ), CU ⊂ U(F ).

By the Bruhat decomposition, C = CUC0CŪ is a compact subset ofG(F ) with nonempty

interior. By the definition of ΞR\G, we have

ΞR\G(g) ∼ volR\G(R(F )gC)−1/2, ∀g ∈ G(F ).

By the definition of ΞG0 , there exists d > 0 such that

ΞG0(g0)σZG0
\G0

(g0)−d � volG0(C0g0C0)−1/2 � ΞG0(g0), ∀g0 ∈ G0(F ).

So in order to prove (4.21), it is enough to show that

δP (a)−1volG0(C0aC0)−1/2 ∼ volR\G(R(F )aC)

for all a ∈ A+
0 . By the definition of C, we know

R(F )aC = R(F )aCP̄

where CP̄ = C0CŪ . Thus we only need to prove that

δP (a)−1volG0(C0aC0)−1/2 ∼ volR\G(R(F )aCP̄ ) (4.22)

for all a ∈ A+
0 .

Let CH ⊂ H(F ) be a compact subset with nonempty interior, and let CR = CUCH .

It is a compact subset of R(F ) with nonempty interior. We claim that

volR\G(R(F )aCP̄ ) ∼ volG(CRaCP̄ ) (4.23)
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for all a ∈ A+
0 . In fact, we have

volG(CRaCP̄ ) =

∫
R(F )\G(F )

∫
R(F )

1CRaCP̄ (hx)dhdx.

The inner integral above is nonzero if and only if x ∈ R(F )aCP̄ . If this holds, the inner

integral is equal to

volR(R(F ) ∩ CRaCP̄x−1) = volR(CR(R(F ) ∩ aCP̄x−1)).

Therefore in order to prove (4.23), it is enough to show that

volR(CR(R(F ) ∩ aCP̄x−1)) ∼ 1

for all a ∈ A+
0 and x ∈ aCP̄ . For such an x, CR ⊂ CR(R(F )∩aCP̄x−1), so we only need

to show that

volR(CR(R(F ) ∩ aCP̄x−1))� 1.

In order to prove this, it is enough to show that the set R(F )∩aC ′
P̄
a−1 remains uniformly

bounded for all a ∈ A+
0 , here C ′

P̄
= CP̄C

−1
P̄

. Since P̄ ∩ R = H, R(F ) ∩ aC ′
P̄
a−1 =

H(F ) ∩ aC ′0a−1 where C ′0 = C ′
P̄
∩ G0(F ). For h0 ∈ H(F ) ∩ aC ′0a−1, a−1h0a ∈ C ′0

is bounded. By Proposition 4.2.1(3), σ(h0) � σ(a−1h0a). Hence H(F ) ∩ aC ′0a−1 is

uniformly bounded for a ∈ A+
0 , and this finishes the proof of (4.23).

Now by applying (4.23), (4.22) is equivalent to

δP (a)−1volG0(C0aC0) ∼ volG(CRaCP̄ ), ∀a ∈ A+
0 . (4.24)

By the definition of CR and CP̄ , CRaCP̄ = CU (CHaC0)CŪ . Since we have a decompo-

sition of the Haar measure on G(F ): dg = δP (g0)−1dudg0dū where du, dg0 and dū are

Haar measures on respectively U(F ), G0(F ) and Ū(F ), we have

volG(CU (CHaC0)CŪ ) ∼ δP (a)−1volG0(CHaC0).

Hence the last thing to show is that for all a0 ∈ A+
0 , we have

volG0(C0aC0) ∼ volG0(CHaC0). (4.25)

The inequality volG0(C0aC0) � volG0(CHaC0) is trivial. For the other direction,

since H(F )P̄0(F ) is open in G0(F ), we may assume that C0 = CHCP̄0
where CP̄0

is



59

a compact subset in P̄0(F ) with nonempty interior. By the definition of A+
0 , a−1CP̄0

a

is uniformly bounded since the action on the unipotent part is a contraction and the

action preserves the Levi part. Hence there exists a compact subset C ′ ⊂ G0(F ) such

that

a−1CP̄0
aC0 ⊂ C ′

for all a ∈ A+
0 . This implies that

volG0(C0aC0)� volG0(CHaC
′)� volG0(CHaC0)

for all a ∈ A+
0 . This finishes the proof of (4.25) and hence the proof of (2).

(3) Set B(R) = {x ∈ R(F )\G(F ) | σR\G(x) < R}. By Proposition 4.2.7, there ex-

ists N > 0 such that for all R ≥ 1, the subset B(R) can be covered by less than

(1 + R)N many subsets of the the form xC for x ∈ R(F )\G(F ) and C ⊂ G(F ) be a

compact subset with non-empty interior. Let

I(R, d) =

∫
B(R+1)\B(R)

ΞR\G(x)2σR\G(x)−ddx.

We have ∫
R(F )\G(F )

ΞR\G(x)2σR\G(x)−ddx = Σ∞R=1I(R, d). (4.26)

Since for all R ≥ 1, B(R + 1)\B(R) can be covered by some subsets x1C, · · · , xkRC
with kR ≤ (R+ 2)N , we have

I(R, d) ≤ ΣkR
i=1

∫
xiC

ΞR\G(x)2σR\G(x)−ddx (4.27)

for all d > 0 and R ≥ 1. Since C is compact, together with the definition of ΞR\G, we

have ∫
yC

ΞR\G(x)2σR\G(x)−ddx

� volH\G(yC)ΞR\G(y)2σR\G(y)−d

� volH\G(yC)volH\G(yC)−1σR\G(y)−d = σR\G(y)−d

for all y ∈ R(F )\G(F ). Combining with (4.27), we have

I(R, d)� ΣkR
i=1σR\G(xi)

−d (4.28)
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for all d > 0 and R ≥ 1. Since xiC ∩ (B(R+ 1)\B(R)) 6= ∅, σR\G(xi)� R. Combining

with (4.28), we have

I(R, d)� R−dkR ≤ (R+ 2)NR−d

for all d > 0 and R ≥ 1. So once we let d > N + 1, (4.26) is absolutely convergent. This

finishes the proof of (3).

The proof of (4) is very similar to (3), we will skip it here. For (5), by the Cartan

decomposition in Proposition 4.2.3, we may assume that x ∈ A+
0 . Then by applying

part (2) and Lemma 4.2.6, we only need to show that there exists d > 0 such that for

all a ∈ A+
0 , we have∫

ZR(F )\R(F )
ΞG(a−1ha)σ0(a−1ha)−ddh� ΞG0(a)2δP (a). (4.29)

But we know ∫
ZR(F )\R(F )

ΞG(a−1ha)σ0(a−1ha)−ddh

=

∫
ZH(F )\H(F )

∫
U(F )

ΞG(a−1h0ua)σ0(a−1h0ua)−ddudh0

= δP (a)

∫
ZH(F )\H(F )

∫
U(F )

ΞG(a−1h0au)σ0(a−1h0au)−ddudh0.

By Proposition 2.8.3(4), for d > 0 large, we have∫
U(F )

ΞG(a−1h0au)σ0(a−1h0au)−ddu� ΞG0(a−1h0a)

for all a ∈ A0(F ) and h0 ∈ H(F ). Thus for d > 0 large, the left hand side of (4.29) is

essentially bounded by

δP (a)

∫
ZH(F )\H(F )

ΞG0(a−1h0a)dh0.

So in order to prove (4.29), it is enough to show that∫
ZH(F )\H(F )

ΞG0(a−1h0a)dh0 � ΞG0(a)2 (4.30)

for all a ∈ A+
0 . If we are in the non-split case, A0 = ZG0 , so ΞG0(a) = ΞG0(1). Then

(4.30) holds since ZH(F )\H(F ) is compact. In the split case, let UH(F ) ⊂ H(F ) and
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UP̄0
⊂ P̄0(F ) be some compact neighborhoods of the identity. By the definition of A+

0 ,

the subsets a−1UP̄0
a remain uniformly bounded as a ∈ A+

0 . So we have∫
ZH(F )\H(F )

ΞG0(a−1h0a)dh0 �
∫
ZH(F )\H(F )

ΞG0(a−1p1h1h0h2p2a)dh0

for all a ∈ A+
0 , h1, h2 ∈ UH and p1, p2 ∈ UP̄0

. Let K0 be a maximal compact subgroup

of G0(F ). Since P̄0 is a good parabolic subgroup, there exists a compact neighborhood

of the identity UK0 ⊂ K0 such that UK0 ⊂ UP̄0
UH ∩ UHUP̄0

. So we have∫
ZH(F )\H(F )

ΞG0(a−1h0a)dh0

�
∫
ZH(F )\H(F )

∫
U2
K0

ΞG0(a−1k1h0k2a)dk1dk2dh0

�
∫
ZH(F )\H(F )

∫
K2

0

ΞG0(a−1k1h0k2a)dk1dk2dh0

for all a ∈ A+
0 . By Proposition 2.8.3(6), the last integral above is bounded by

ΞG0(a)2

∫
ZH(F )\H(F )

ΞG0(h0)dh0

for all a ∈ A+
0 . Then (4.30) follows from Lemma 4.3.1(1) and this finishes the proof of

(5).

For (6), by applying the same reduction as in (5), we only need to show that there

exists d′ > 0 such that for all a ∈ A+
0 , we have∫

ZR(F )\R(F )
ΞG(ha)σ0(ha)−d

′
dh� δP (a)1/2ΞG0(a)σ0(a)−d.

Again we decompose dh = dudh0 and by applying Proposition 2.8.3(4), we only need

to show that for all a ∈ A+
0 , we have∫

ZH(F )\H(F )
ΞG0(h0a)dh0 � ΞG0(a)σ0(a)−d.

Then by using the same argument as (5), together with Proposition 2.8.3(6) and Propo-

sition 4.2.1, it is enough to show that the integral∫
ZH(F )\H(F )

ΞG0(h0)dh0
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is absolutely convergent, which is just Lemma 4.3.1(1). This finishes the proof of (6).

For (7), by applying the same reduction as in (5), together with the fact that for all

d > 0 and ε > 0, we have 1σ0≥c(h)σ0(h)d � eεσ0(h)e−εc/2, we reduce to show that for all

δ > 0, there exist d > 0 and ε > 0 such that for all a ∈ A+
0 , we have∫

ZR(F )\R(F )

∫
ZR(F )\R(F )

ΞG(ha)ΞG(h′ha)eεσ0(h)eεσ0(h′)(1+ | λ(h′) |)−δdh′dh (4.31)

� δP (a)ΞG0(a)2σ0(a)d.

Let P̄min = P̄0Ū and let Mmin = M0. Then P̄min is a good parabolic subgroup of G,

and Mmin is a Levi subgroup of it which contains A0. By Lemma 4.3.3(2), there exist

ε > 0 and d > 0 such that∫
ZR(F )\R(F )

∫
ZR(F )\R(F )

ΞG(ha)ΞG(h′ha)eεσ0(h)eεσ0(h′)(1+ | λ(h′) |)−δdh′dh

� δP̄min(a)−1σ0(a)d

for all a ∈ A+
0 . But we know δP̄min(a)−1 = δP (a)δP0(a). By Proposition 2.8.3(1),

δP0(a) � ΞG0(a)2 for all a ∈ A+
0 . Therefore the inequality (4.31) holds for such d and

ε. This finishes the proof of (7).

Lemma 4.4.2. Let Q̄ = MQŪQ be a good parabolic subgroup of G, RQ̄ = R ∩ Q̄, and

let GQ̄ = Q̄/UQ̄ be the reductive quotient of Q̄. Then we have

1. RQ̄ ∩ UQ̄ = {1}, hence we can view RQ̄ as a subgroup of GQ̄. We also have

δQ̄(hQ̄) = δRQ̄(hQ̄) for all hQ̄ ∈ RQ̄(F ).

2. There exists d > 0 such that the integral∫
ZR(F )\RQ̄(F )

ΞGQ̄(hQ̄)σ0(hQ̄)−dδRQ̄(hQ̄)1/2dhQ̄

is absolutely convergent. Moreover, if we are in the (G0, H)-case (this means that

we replace the pair (G,R) in the statement by the pair (G0, H)), for all d > 0, the

integral ∫
ZR(F )\RQ̄(F )

ΞGQ̄(hQ̄)σ0(hQ̄)dδRQ̄(hQ̄)1/2dhQ̄

is absolutely convergent.
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3. Let P̄min = MminŪmin ⊂ Q̄ be a good minimal parabolic subgroup of G, and let

Amin = AMmin, A+
min = {a ∈ Amin(F )| |α(a)| ≥ 1,∀α ∈ Ψ(Amin, P̄min)}. Then

there exists d > 0 such that∫
ZR(F )\RQ̄(F )

ΞGQ̄(a−1hQ̄a)σ0(a−1hQ̄a)−dδRQ̄(hQ̄)1/2dhQ̄ � ΞGQ̄(a)2

for all a ∈ A+
min

Proof. (1) RQ̄ ∩ UQ̄ = {1} just follows from Proposition 4.2.1. For the second part, we

only need to show that

det(Ad(hQ̄) |q̄/rQ̄) = 1

for all hQ̄ ∈ RQ̄(F ). Since Q̄ is a good parabolic subgroup, q̄ + r = g and rQ̄ = r ∩ q̄, so

we have an isomorphism q̄/rQ̄ ' g/r. This implies

det(Ad(hQ̄) |q̄/rQ̄) = det(Ad(hQ̄) |g/r) = det(Ad(hQ̄) |g) det(Ad(hQ̄) |r)−1.

Since G and R are unimodular, det(Ad(hQ̄) |g) = det(Ad(hQ̄) |r) = 1 for all hQ̄ ∈
RQ̄(F ). This finishes the proof of (1).

(2) By Proposition 4.2.1, we can find a good minimal parabolic subgroup P̄min =

MminŪmin ⊂ Q̄. Let L be the Levi subgroup of Q containing Mmin, we have L ' GQ̄.

Let K be a maximal compact subgroup of G(F ) in good position with respect to L,

and let KL = K ∩ L(F ). Define τ = IL
P̄min∩L

(1) and π = IG
Q̄

(τ) = IG
P̄min

(1). Let ( , )

(resp. ( , )τ ) be the inner product on π (resp. τ). We fix eK ∈ π∞ (resp. eKL ∈ τ∞)

to be the unique K-invariant(resp. KL-invariant) vector. Then by the definition of the

Harish-Chandra function, we may assume that

ΞG(g) = (π(g)eK , eK),ΞL(l) = (τ(l)eKL , eKL)τ , g ∈ G(F ), l ∈ L(F ). (4.32)

So by choosing a suitable Haar measure, we have

ΞG(g) =

∫
Q̄(F )\G(F )

(eK(g′g), eK(g′))τdg
′.

Since Q̄ is a good parabolic, by part(1) and Proposition 4.2.1(1), we have∫
Q̄(F )\G(F )

ϕ(g)dg =

∫
RQ̄(F )\R(F )

ϕ(h)dh



64

for all ϕ ∈ L1(Q̄(F )\G(F ), δQ̄). So for all g ∈ G(F ), we have

ΞG(g) =

∫
RQ̄(F )\R(F )

(eK(hg), eK(h))τdh.

By Lemma 4.3.1(2), there exists d > 0 such that the integral∫
ZR(F )\R(F )

ΞG(h)σ0(h)−ddh

=

∫
ZR(F )\R(F )

∫
RQ̄(F )\R(F )

(eK(h′h), eK(h′))τσ0(h)−ddh′dh

converges. Since (eK(h′h), eK(h′))τ equals some value of ΞL, it is positive, so the double

integral above is absolutely convergent. By switching the order of the integral, changing

the variable h 7→ h′−1h and decomposing the integral over ZR(F )\R(F ) as a double

integral over RQ̄\R(F ) and ZR(F )\RQ̄(F ), we know the integral∫
(RQ̄(F )\R(F ))2

∫
ZR(F )\RQ̄(F )

(τ(hQ̄)eK(h), eK(h′))τσ0(h′−1hQ̄h)−dδRQ̄(hQ̄)1/2dhQ̄dhdh
′

is absolutely convergent. Here we also use the fact that δQ̄(hQ̄) = δRQ̄(hQ̄). Then by

the Fubini Theorem, there exist h, h′ ∈ R(F ) such that the integral∫
ZR(F )\RQ̄(F )

(τ(hQ̄)eK(h), eK(h′))τσ0(h′−1hQ̄h)−dδRQ̄(hQ̄)1/2dhQ̄

is absolutely convergent. Let h = luk, h′ = l′u′k′ be the Iwasawa decomposition with

l, l′ ∈ L(F ), u, u′ ∈ UQ̄(F ) and k, k′ ∈ K. Then by (4.32), for all hQ̄ ∈ RQ̄(F ), we have

(τ(hQ̄)eK(h), eK(h′))τ = δQ̄(l′l)1/2ΞL(l′−1hQ̄l).

For the given h, h′, l, l′ as above, ΞL(hQ̄)� ΞL(l′−1hQ̄l) and σ0(h′−1hQ̄h)� σ0(hQ̄) for

all hQ̄ ∈ RQ̄(F ). So the integral∫
ZR(F )\RQ̄(F )

ΞL(hQ̄)σ0(hQ̄)−dδRQ̄(hQ̄)1/2dhQ̄

is absolutely convergent. This finishes the first part of (2) since ΞL = ΞGQ̄ . The second

part of (2) just follows from the same argument except we use Lemma 4.3.1(1) instead

of Lemma 4.3.1(2).
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(3) By Proposition 4.2.1(3), for all d > 0 and a ∈ A+
min, we have∫

ZR(F )\RQ̄(F )
ΞGQ̄(a−1hQ̄a)σ0(a−1hQ̄a)−dδRQ̄(hQ̄)1/2dhQ̄

�
∫
ZR(F )\RQ̄(F )

ΞGQ̄(a−1hQ̄a)σ0(hQ̄)−dδRQ̄(hQ̄)1/2dhQ̄.

So we only need to prove that there exists d > 0 such that for all a ∈ A+
min, we have∫

ZR(F )\RQ̄(F )
ΞGQ̄(a−1hQ̄a)σ0(hQ̄)−dδRQ̄(hQ̄)1/2dhQ̄ � ΞGQ̄(a)2.

Let P̄min,Q̄ be the image of P̄min under the projection Q→ GQ̄, it is a minimal parabolic

subgroup of GQ̄ and P̄min,Q̄RQ̄ is open in GQ̄. By applying the same argument as in

the proof of Proposition 4.4.1(5), we can show that∫
ZR(F )\RQ̄(F )

ΞGQ̄(a−1hQ̄a)σ0(hQ̄)−dδRQ̄(hQ̄)1/2dhQ̄

� ΞGQ̄(a)2

∫
ZR(F )\RQ̄(F )

ΞGQ̄(hQ̄)σ0(hQ̄)−dδRQ̄(hQ̄)1/2dhQ̄

for all a ∈ A+
min. Then we just need to choose d > 0 large so that part (2) holds. This

finishes the proof of (3).

4.5 The Reduced Models

In this section, we will discuss the reduced models associated to the Ginzburg-Rallis

model. With the notation as in the previous section, the reduced models are just the

models (GQ̄, RQ̄) where Q̄ = MQŪQ runs over the good parabolic subgroups of G. This

models will be used in later chapters. To be specific, we will assume by induction

that the local trace formulas and the multiplicity formulas hold for all these reduced

models. Then based on this assumption, we can prove the local trace formulas and the

multiplicity formulas for the Ginzburg-Rallis model. The proof of both formulas for the

reduced models are the same as the Ginzburg-Rallis model. In other words, we only

need to apply the same arguments in this paper to the reduced models. We will skip

the details.
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We first define the multiplicities for the reduced models. Let τ be an irreducible

generic representation of GQ̄(F ) whose central character equals χ2 on ZG(F ), we define

the multiplicity m(τ) to be the dimension of the Hom space

HomRQ̄(F )(τ, (ω ⊗ ξ)|RQ̄(F ) ⊗ δ
1/2
RQ̄

).

Note that as in Lemma 4.4.2, when we consider the reduced models, we need to add the

extra modular character δ
1/2
RQ̄

.

For our application, we need to divide the reduced models into two categories. We

say the model (GQ̄, RQ̄) is of Type I if it appears both in the split case (i.e. G(F ) =

GL6(F )) and the quaternion case (i.e. G(F ) = GL3(D)). This is equivalent to say that

the parabolic subgroup Q̄ is of type (4, 2), (2, 4) or (2, 2, 2) in the split case; and of type

(2, 1), (1, 2) or (1, 1, 1) in the quaternion case. All the rest reduced models are called

Type II models. In particular, Type II models only appear in the split case.

For the rest of this section, we will write down all the Type I models, as well as all

the Type II models associated to the maximal parabolic subgroups. For simplicity, we

will use (G,R = H n U) to denote these models instead of (GQ̄, RQ̄).

We first consider the Type I models. Note that the extra modular character δ
1/2
RQ̄

will be trivial for these models.

• If Q̄ is of type (2, 2, 2) (or of type (1, 1, 1) in the quaternion case), we get

the trilinear GL2 models. To be specific, we take Q̄ = P̄ . It is easy to see that

Q̄ is a good parabolic subgroup. Then the reduced model can be described as

follows: G(F ) = (GL2(F ))3 and R(F ) = H(F ) = GL2(F ) diagonally embedded

into G(F ). Let π be an irreducible generic representation of G(F ) whose central

character equals χ2 on ZG(F ), the multiplicity m(π) is just the dimension of the

Hom space

HomH(F )(π, ω)

where ω(h) = χ(det(h)) for all h ∈ H(F ). Similarly, we can define the quaternion

version with GD(F ) = (GL1(D))3 and HD(F ) = GL1(D).

• If Q̄ is of type (4, 2) (or of type (2, 1) in the quaternion case), we get

a model between the trilinear GL2 model and the Ginzburg-Rallis model, we

will call it the middle model in this paper. Up to a finite isogeny, this model
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is just the Gan-Gross-Prasad model for SO(6) × SO(3). To be specific, let Q̄

be the parabolic subgroup of type (4, 2) and contains the lower Borel subgroup.

Then we get the middle model defined as follows: G = GL4(F ) × GL2(F ) and

P = MU be the parabolic subgroup of G(F ) with the Levi part M isomorphic to

GL2(F )×GL2(F )×GL2(F ) (i.e. P is the product of the second GL2(F ) and the

parabolic subgroup P2,2 of the first GL4(F )). The unipotent radical U consists of

elements of the form

u = u(X) :=


1 X 0

0 1 0

0 0 1

 , X ∈M2(F ). (4.33)

The character ξ on U is defined to be ξ(u(X)) = ψ(tr(X)). Let H = GL2(F )

diagonally embeded into M . As before, χ induces a character ω on H(F ) and

this gives us a one-dimensional representation ω ⊗ ξ of R := H n U . For a given

irreducible generic representation π of G(F ), assume that ωπ = χ2 on ZH(F ).

Define the multiplicity m(π) to be

m(π) = dim HomR(F )(π, ω ⊗ ξ).

This model can be thought as the ”middle model” between the Ginzburg-Rallis

model and the trilinear model of GL2. We also define the middle model for the

quaternion case in a similar way.

• If Q̄ is of type (2, 4) (or of type (1, 2) in the quaternion case), we will still

get the middle model as in the previous case.

Then we consider the Type II models. We will only write down those models as-

sociated to the maximal parabolic subgroups, the rest models are similar to the max-

imal ones. The most important feature of the Type II models is that every

semisimple element in R(F ) is split. As a result, in the multiplicity formulas

and the geometric sides of the trace formulas for these models, we only have

the germ at the identity element. For details, see Chapter 5.

• If Q̄ is of type (3, 3), choose Q̄ to be the parabolic subgroup of type (3, 3) and

contains the lower Borel subgroup. We get the following model: G = GL3(F ) ×
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GL3(F ) and R = H n U ⊂ G with

H(F ) = {h(a, b, x) =


a 0 0

x b 0

0 0 a

×

b 0 0

0 a 0

0 x b

 |a, b ∈ F×, x ∈ F}
and

U(F ) = {u(x1, x2, y1, y2) =


1 0 x1

0 1 x2

0 0 1

×


1 y1 y2

0 1 0

0 c 1

 |x1, x2, y1, y2 ∈ F}.

The character ω ⊗ ξ on R(F ) (including the extra modular character) is given by

ω ⊗ ξ : h(a, b, x)u(x1, x2, y1, y2) 7→ |b|
1/2

|a|1/2
χ(ab)ψ(x1 + y2).

For a given irreducible generic representation π of G(F ) whose central character

equals χ2 on ZH(F ), define the multiplicity m(π) to be

m(π) = dim HomR(F )(π, ω ⊗ ξ).

• If Q̄ is of type (5, 1), choose Q̄ to be the parabolic subgroup of type (5, 1) and

contains the lower Borel subgroup. We get the following model: G = GL5(F ) ×
GL1(F ) and R = H n U ⊂ G with

H(F ) = {h(a, b, x) = diag(

(
a 0

x b

)
,

(
a 0

x b

)
,
(
a
)

)×
(
b
)
|a, b ∈ F×, x ∈ F}

and

U(F ) = {u(X,Y1, Y2) =


I2 X Y1

0 I2 Y2

0 0 1

×(1
)
|X ∈M2×2(F ), Y1, Y2 ∈M1×2(F )}.

Let Yi =

(
yi1

yi2

)
for i = 1, 2. The character ω ⊗ ξ on R(F ) (including the extra

modular character) is given by

ω ⊗ ξ : h(a, b, x)u(X,Y1, Y2)→ |b|
1/2

|a|1/2
χ(ab)ψ(tr(X) + y21).
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For a given irreducible generic representation π of G(F ) whose central character

equals χ2 on ZH(F ), define the multiplicity m(π) to be

m(π) = dim HomR(F )(π, ω ⊗ ξ).

• If Q̄ is of type (1, 5), we will get the same reduced model as in the (5, 1) case.



Chapter 5

The Statement of the Trace

Formula

In this chapter, we write down both sides of the trace formula. We also write down

the Lie algebra version of the geometric side of the trace formula. In Section 5.1, we

define all the ingredients of the geometric expansion. In Section 5.2, we will define a

truncated function κN and state the trace formula. It is worth to mention that the

truncated function will only be used in the geometric side. Then we will show that in

order to prove the geometric side of the trace formula, it is enough to consider functions

with trivial central character. In Section 5.3, we will state the Lie algebra version of

the trace formula. Finally, in Section 5.4, we will talk about the trace formulas for the

reduced models. By induction, we will assume all these trace formulas hold. In this

chapter, we will assume that F is a p-adic field.

5.1 The Ingredients of the Geometric Side

From this section and on, unless otherwise specified, we consider the Ginzburg-Rallis

model. This is to consider a pair (G,H), which is either (GL6(F ), GL2(F )) or (GL3(D), GL1(D)).

Let P = MU be the parabolic subgroup of the form


A X Z

0 B Y

0 0 C

 where A,B,C belong

to GL2(F ) (the split case) or GL1(D) (the non-split case), and X,Y, Z belong to M2(F )

70
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(the split case) or D (the non-split case). We can diagonally embed H into M , and

define the character ξ on U(F ) by

ξ(


1 X Z

0 1 Y

0 0 1

) = ψ(atr(X) + btr(Y )) (5.1)

for some a, b ∈ F×.

Definition 5.1.1. We define a function ∆ on Hss(F ) by

∆(x) =| det((1− ad(x)−1)|U(F )/Ux(F )) |F .

Similarly, we can define ∆ on hss(F ) by

∆(X) =| det((ad(X))|u(F )/ux(F )) |F .

Let T be a subset of subtori of H defined as follows:

• If H = GL2(F ), then T contains the trivial torus {1} and the non-split torus Tv for

v ∈ F×/(F×)2, v 6= 1 where Tv = {

(
a bv

b a

)
∈ H(F ) | a, b ∈ F, (a, b) 6= (0, 0)}.

• If H = GL1(D), then T contains the subtorus Tv for v ∈ F×/(F×)2 with v 6= 1,

where Tv ⊂ D is isomorphic to the quadratic extension F (
√
v) of F .

Let θ be a quasi-character on ZG(F )\G(F ), and let T ∈ T . If T = {1}, we are in

the split case. In this case, we have a unique regular nilpotent orbit Oreg in g(F ) and

we take cθ(1) = cθ,Oreg(1). If T = Tv for some v ∈ F×/(F×)2 with v 6= 1, we take

t ∈ Tv to be a regular element (in H(F )). It is easy to see in both cases that Gt(F ) is

F -isomorphic to GL3(Fv) where Fv = F (
√
v) is the quadratic extension of F . Let Ov

be the unique regular nilpotent orbit in gl3(Fv), and we take cθ(t) = cθ,Ov(t).

Proposition 5.1.2. The function cθ is locally constant on Treg(F ) (here regular means

as an element in H(F )). And the function t → cθ(t)D
H(t)∆(t) is locally integrable on

T (F ).
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The first part of the proposition follows from the definition. The rest part of this

subsection is to prove the second part. The idea of the proof comes from [W10]. If

T = {1}, there is nothing to prove since the integral is just evaluation. If T = Tv for

some v ∈ F×/(F×)2 with v 6= 1, since cθ(t)D
H(t)∆(t) is locally constant on Treg(F ), and

is invariant under ZH(F ), we only need to show that the function is locally integrable

around t = 1.

We need some preparations. For a finite dimensional vector space V over F , and

any integer i ∈ Z, let Ci(V ) be the space of functions ϕ : V → C such that

ϕ(λv) = |λ|iϕ(v)

for every v ∈ V and λ ∈ (F×)2. Then we let C≥i(V ) be the space of functions that are

linear combinations of functions in Cj(V ) for j ≥ i. For T = Tv and i ∈ Z, define the

space C≥i(T ) to be the functions f on Treg(F ) such that there is a neighborhood ω of

0 in t(F ) and a function ϕ ∈ C≥i(t0(F )) such that

f(exp(X)) = ϕ(X̄)

for all 0 6= X ∈ ω, here X̄ is the projection of X in t0(F ). Then by [W10, Lemma 7.4],

if f ∈ C≥0(T ), f is locally integrable around t = 1. Hence we only need to show that

the function t→ cθ(t)D
H(t)∆(t) lies inside the space C≥0(T ).

Once we choose ω small enough, we have DH(exp(X)) = DH(X) and ∆(exp(X)) =

∆(X) for all 0 6= X ∈ ω. Hence the function t → DH(t)∆(t) lies inside the space

C≥8(T ) where 8 = δ(H) + dim(UX). Therefore in order to prove Proposition 5.1.2, it is

enough to prove the following lemma.

Lemma 5.1.3. With the notations above, the function t → cθ(t) belongs to the space

C≥−8(T ).

Proof. By Section 3.6, if we choose ω small enough, we have

cθ(exp(X)) = cθ1,ω ,OX (X)

for all 0 6= X ∈ ω. Here θ1,ω is the localization of θ at 1 defined in Section 3.6, and OX
is the unique regular nilpotent orbit in gX . Since in a small neighborhood of 0 ∈ g0(F ),
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θ1,ω is a linear combination of ĵ(O, ·) where O runs over the nilpotent orbit in g0. Hence

we may assume that θ1,ω = ĵ(O, ·) for some O.

If O is regular, then we are in the split case (i.e. G = GL6(F )) and O is the

unique regular nilpotent orbit in g0. As a result, the distribution ĵ(O, ·) is induced

from the Borel subgroup and hence only supported in the Borel subalgebra. But by our

construction of T = Tv, for any t ∈ Treg(F ), we can always find a small neighborhood

of t in G(F ) such that any element in such a neighborhood does not belong to the

Borel subalgebra. Therefore the function cθ(t) is identically zero, and the function

t→ cθ(t)D
H(t)∆(t) is obviously locally integrable.

If O is not regular, by (2.4) and (3.4), the function cθ1,ω ,OX (X) belongs to the space

C dim(OX )−dim(O)

2

(t0). The dimension of OX is equal to δ(GX) = 12. On the other hand,

since O is not regular, dim(O) ≤ δ(G)−2 = 28. Hence the function cθ1,ω ,OX (X) belongs

to the space C≥−8(t0). This finishes the proof of the lemma, and hence the proof of

Proposition 5.1.2.

5.2 The Trace Formula

Let f ∈ C∞c (ZG(F )\G(F ), χ−2) be a strongly cuspidal function. For g ∈ G(F ), we

define the function gf ξ on H(F )/ZH(F ) by

gf ξ(x) =

∫
U(F )

f(g−1xug)ξ(u)du.

This is a function belonging to C∞c (ZH(F )\H(F ), χ−2). Define

I(f, g) =

∫
ZH(F )\H(F )

gf ξ(x)ω(x)dx, (5.2)

and for each N ∈ N, define

IN (f) =

∫
U(F )H(F )\G(F )

I(f, g)κN (g)dg. (5.3)

Here κN is a characteristic function on G(F ) defined below, which is left U(F )H(F )-

invariant, right K-invariant, and compactly supported modulo U(F )H(F ): If G is split

(i.e. G = GL6(F )), for g ∈ G(F ), let g = umk be its Iwasawa-decomposition with

u ∈ U(F ), m ∈ M(F ) and k ∈ K. Then m is of the form diag(m1,m2,m3) with
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mi ∈ GL2(F ). For any 1 ≤ i, j ≤ 3, let m−1
i mj =

(
aij cij

0 bij

)
kij be its Iwasawa

decomposition. We define κN to be

κN (g) =

1, if σ(aij), σ(bij) ≤ N, σ(cij) ≤ (1 + ε)N ;

0, otherwise.
(5.4)

Here ε > 0 is a fixed positive real number. Note that we do allow some more freedom

on the unipotent part, which will be used when we are trying to change our truncated

function to the one given by Arthur in his local trace formula. For details, see Chapter

11. If G is not split (i.e. G = GL3(D)), we still have the Iwasawa decomposition

g = umk with m = diag(m1,m2,m3), and mi ∈ GL1(D). We define κN to be

κN (g) =

1, if σ(m−1
i mj) ≤ N ;

0, otherwise.
(5.5)

It follows that the integral in (5.3) is absolutely convergent because the integrand is

compactly supported. The distribution in our trace formula is just

lim
N→∞

IN (f).

Remark 5.2.1. In fact, later in Appendix B, we will show that the integral

I(f) =

∫
U(F )H(F )\G(F )

I(f, g)dg

is absolutely convergent. In other word, we have

lim
N→∞

IN (f) = I(f).

However, if we include the integral defining I(f, g) (i.e. (5.2)), the double integral will

not be absolutely convergent, and this is the reason for us to introduce the truncated func-

tion κN . We will use the expression limN→∞ IN (f) to prove the geometric expansion,

and use the expression I(f) to prove the spectral expansion.

For each T ∈ T , let cf be the function cθf defined in the last section. Define the

geometric side of the trace formula to be

Igeom(f) =
∑
T∈T
|W (H,T )|−1ν(T )

∫
ZG(F )\T (F )

cf (t)DH(t)∆(t)ω(h)dt. (5.6)
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Since for any T ∈ T , ZG(F )\T (F ) is compact, the absolute convergence of the integral

above follows from Proposition 5.1.2.

For the spectral side, define

Ispec(f) =

∫
Πtemp(G,χ2)

θf (π)m(π̄)dπ

where θf (π) is defined in Section 3.5 and m(π̄) is the multiplicity for the Ginzburg-Rallis

model. The trace formula is stated in the following theorem.

Theorem 5.2.2. For every function f ∈ C∞c (ZG(F )\G(F ), χ−2) that is strongly cusp-

idal, the following holds:

Ispec(f) = lim
N→∞

IN (f) = Igeom(f). (5.7)

The spectral expansion will be proved from Chapter 6 to Chapter 8, while the

geometric expansion will be proved from Chapter 9 to Chapter 12.

For the rest part of this subsection, we are going to reduce the proof of the geometric

expansion to the case when the test function f has trivial central character.

Proposition 5.2.3. If the geometric expansion

lim
N→∞

IN (f) = Igeom(f)

holds for every stronly cuspidal functions f with trivial central character, then it holds

in general.

Proof. Let f be an arbitrary test functions in the trace formula (i.e. the central character

does not need to be trivial). Note that both Igeom(f) and IN (f) are linear on f . Since

ZG(F )\G(F )/{g ∈ G(F ) | det(g) = 1}

is finite, we can localize f such that f is supported on

ZG(F )g0{g ∈ G(F ) | det(g) = 1}

for some g0 ∈ G(F ). Let G1(F ) = {g ∈ G(F ) | det(g) = 1}, which is SL6(F ) or SL3(D).

Fix a fundamental domain X ⊂ G1(F ) of G1(F )/(ZG(F ) ∩ G1(F )) = G1(F )/ZG1(F ).

We may choose X so that it is open in G1(F ). It is easy to see that ZG1(F ) is finite.
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By further localizing f we may assume that f is supported on ZG(F )g0X. Define a

function f ′ ∈ C∞c (ZG(F )\G(F )) to be

f ′(g) =

f(g′), if g = g′z, g′ ∈ g0X, z ∈ ZG(F );

0, otherwise.
(5.8)

It is easy to see that f ′ is well defined and is strongly cuspidal. It can be viewed as the

extension by trivial central character of the function f |g0X . Now we have∫
ZG(F )\T (F )

cf (t)DH(t)∆(t)ω(t)dt

=

∫
T (F )∩(g0X)

cf (t)DH(t)∆(t)ω(t)dt

=

∫
T (F )∩(g0X)

cf ′(t)D
H(t)∆(t)ω(det(g0))dt

= ω(det(g0))

∫
T (F )∩(g0X)

cf ′(t)D
H(t)∆(t)dt

= ω(det(g0))

∫
ZG(F )\T (F )

cf ′(t)D
H(t)∆(t)dt

and

I(f, g) =

∫
ZH(F )\H(F )

gf ξ(x)ω(det(x))dx

=

∫
H(F )∩(g0X)

gf ξ(x)ω(det(x))dx

=

∫
H(F )∩(g0X)

g(f ′)ξ(x)ω(det(g0))dx

= ω(det(g0))

∫
H(F )∩(g0X)

g(f ′)ξ(x)dx

= ω(det(g0))

∫
ZH(F )\H(F )

g(f ′)ξ(x)dx

= ω(det(g0))I(f ′, g).

This implies that

Igeom(f) = ω(det(g0))Igeom(f ′), IN (f) = ω(det(g0))IN (f ′). (5.9)

Since the geometric expansion holds for the function f ′, we have

lim
N→∞

IN (f ′) = I(f ′).
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Combining it with (5.9), we have proved the geometric expansion for the function f ,

and this finishes the proof of the proposition.

5.3 The Lie Algebra Version of the Geometric Expansion

In this sectoin, we will talk about the Lie algebra analogy of the geometric side of the

trace formula. This will be used later in our proof of the geometric expansion. Let

f ∈ C∞c (g0(F )) be a strongly cuspidal function. Define the function f ξ on h0(F ) by

f ξ(Y ) =

∫
u(F )

f(Y +N)ξ(N)dN.

For g ∈ G(F ), define

I(f, g) =

∫
h0(F )

gf ξ(Y )dY,

and for each N ∈ N, define

IN (f) =

∫
U(F )H(F )\G(F )

I(f, g)κN (g)dg. (5.10)

As in Section 5.1, for each T ∈ T , we can define the function cf = cθf on t0,reg(F ), and

we define

Igeom(f) =
∑
T∈T
|W (H,T ) |−1 ν(T )

∫
t0(F )

cf (Y )DH(Y )∆(Y )dY. (5.11)

By a similar argument as in Proposition 5.1.2, we know that the integral in (5.11) is

absolutely convergent. The following theorem can be viewed as the Lie algebra version

of the geometric expansion.

Theorem 5.3.1. For every strongly cuspidal function f ∈ C∞c (g0(F )), we have

lim
N→∞

IN (f) = Igeom(f). (5.12)

This theorem will also be proved in Chapter 12.

5.4 The Trace Formulas for the Reduced Models

In this section, we will talk about the trace formulas for the reduced models. The

proofs of these trace formulas are the same as the Ginzburg-Rallis model case, so we

will assume by induction that these trace formulas hold.



78

The distribution I(f) in the trace formula is the same as the Ginzburg-Rallis model

case we discussed in the previous sections. To be specific, we will still use (GQ̄, RQ̄) to

denote the reduced models, and the character on RQ̄(F ) is just (ω ⊗ ξ)|RQ̄(F ) ⊗ δ
1/2
RQ̄

.

Let f be a strongly cuspidal function on GQ̄(F ) whose central character ωf equals χ−2

on ZG(F ), as in the Ginzburg-Rallis model case, for g ∈ GQ̄(F ), we define

I(f, g) =

∫
ZG(F )\RQ̄(F )

gf(x)(ω ⊗ ξ)|RQ̄(F ) ⊗ δ
1/2
RQ̄

(x)dx.

Then we define

I(f) =

∫
RQ̄(F )ZGQ̄

(F )\GQ̄(F )
I(f, g)dg.

By a similar argument as in Appendix B, one can show that the integral above is

absolutely convergent. I(f) is the distribution in the trace formula. Same as the

Ginzburg-Rallis case, when we prove the geometric side of the trace formula, we need

to introduce some truncated function. We will skip the details here.

The spectral side of the trace formula is the same as the Ginzburg-Rallis model case.

In other word, let

Ispec(f) =

∫
Πtemp(GQ̄,ω

−1
f )

θf (τ)m(τ̄)dτ

where m(τ) is the multiplicity for the reduced model (GQ̄, RQ̄).

For the geometric side, it is more complicated. We first discuss the trilinear GL2

model case. Let T be the subset of subtori of HQ̄ = H∩Q̄ = H defined in Section 5.1.

For T = {1}, we are in the split case, we still define cf (1) to be the germ of θf at the

identity element associated to the unique regular nilpotent orbit, i.e. cf (1) = cθf ,Oreg(1).

For T = Tv with 1 6= v ∈ F×/(F×)2, and for t ∈ Tv(F )reg, it is easy to see that GQ̄(F )t

is just (Tv(F ))3, which is an abelian group. As a result, the germ expansion at t is just

the quasi-character itself, so we define cf (t) = θf (t). Finally, we define the geometric

expansion to be

Igeom(f) =
∑
T∈T
|W (H,T )|−1ν(T )

∫
ZG(F )\T (F )

cf (t)DH(t)ω(h)dt.

Then we talk about the middle model case. Still we let T be as in Section

5.1. For T = {1}, we still let cf (1) = cθf ,Oreg(1). For T = Tv(F ) and t ∈ Tv(F )reg,

GQ̄(F )t is F -isomorphic to GL2(Fv)×GL1(Fv). Let Ov be the unique regular nilpotent
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orbit in gl2(Fv)× gl1(Fv) and we define cf (t) = cθf ,Ov(t). For x ∈ Hss(F ) = HQ̄,ss(F ),

we define

∆Q(x) = |det((1− ad(x)−1)|UQ̄(F )/UQ̄(F )x)|F .

Finally, we define the geometric expansion to be

Igeom(f) =
∑
T∈T
|W (H,T )|−1ν(T )

∫
ZG(F )\T (F )

cf (t)DH(t)∆Q(t)ω(h)dt.

For Type II model, the geometric side is much easier. To be specific, we define

Igeom(f) = cf (1)

where cf (1) = cθf ,Oreg(1) is the germ of θf at the identity element associated to the

unique regular nilpotent orbit. As we mentioned in Section 4.5, the most impor-

tant feature for Type II models is that every semisimple element in RQ̄(F )

is split. As a result, the only term in the geometric expansion is just the

germ at the identity element. Another way to explain this is that the only element

in T ∩RQ̄ is just the trivial torus.

Now we are ready to state our trace formula.

Theorem 5.4.1. With the notations above, we have

Igeom(f) = I(f) = Ispec(f).

As mentioned before, by induction, we will assume that Theorem 5.4.1 holds for all

reduced models. Moreover, by the same argument as in Chapter 13, we can deduce a

multiplicity formula for the reduced models from the trace formula. To be specific, for

every irreducible tempered representation π of GQ̄(F ) whose central character equals

χ2 on ZG(F ), we define mgeom(π) as follows (similar to the definition of Igeom(f)):

• If we are in the trilinear GL2 model case, define

mgeom(π) =
∑
T∈T
|W (H,T )|−1ν(T )

∫
ZG(F )\T (F )

cπ(t)DH(t)ω−1(h)dt.

Here cπ(t) is defined in the same way as cf (t) except that we replace θf by θπ.
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• If we are in the middle model case, define

mgeom(π) =
∑
T∈T
|W (H,T )|−1ν(T )

∫
ZG(F )\T (F )

cπ(t)DH(t)∆Q(t)ω−1(h)dt.

Here cπ(t) is defined in the same way as cf (t) except that we replace θf by θπ.

• If we are in the Type II reduced model case, let

mgeom(π) = cπ(1)

where cπ(1) = cθπ ,Oreg(1).

Then we can prove the following theorem for the reduced models.

Theorem 5.4.2. With the notations above, we have

m(π) = mgeom(π).

Remark 5.4.3. By the work of Rodier in [Rod81], cθπ ,Oreg(1) is equal to 1 if π is

generic; and is equal to 0 if π is not generic. Since all the tempered representations of

GLn(F ) is generic, together with the theorem above, we know that for Type II reduced

models, the multiplicity is equal to 1 for all tempered representations.



Chapter 6

Explicit Interwining Operator

In this chapter, we study an explicit element Lπ in the Hom space given by the (nor-

malized) integral of the matrix coefficients. The main result of this section is to show

that the Hom space is nonzero if and only if Lπ 6= 0 (i.e. Theorem 6.2.1). In Sections

6.1 and 6.2, we define Lπ and prove some basic properties of it. In Sections 6.3 and 6.4,

we study the behavior of Lπ under parabolic induction. Since we can not always reduce

to the strongly tempered case, we have to treat the p-adic case and the archimedean

case separately. In Section 6.5, we prove Theorem 6.2.1. Then in Section 5.6, we dis-

cuss some applications of Theorem 6.2.1, which are Corollary 6.6.2 and Corollary 6.6.4.

These two results will play essential roles in our proof of the main results of this paper.

6.1 A Normalized Integral

Let χ be an unitary characters of F×, and let η = χ2. In Chapter 1, we define the

character ω ⊗ ξ on R(F ). By Lemma 4.3.1, for all f ∈ C(ZG(F )\G(F ), η−1), the

integral ∫
ZR(F )\R(F )

f(h)ω ⊗ ξ(h)dh

is absolutely convergent and defines a continuous linear form on the space C(ZG(F )\G(F ), η−1).

By the next proposition, we can extend this linear form to the space Cw(ZG(F )\G(F ), η−1).

Proposition 6.1.1. The linear form

f ∈ C(ZG(F )\G(F ), η−1)→
∫
ZR(F )\R(F )

f(h)ω ⊗ (h)dh

81
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can be extended continuously to Cw(ZG(F )\G(F ), η−1).

Proof. Let a : Gm(F )→ ZG0(F ) be a homomorphism defined by a(t) = diag(t, t, 1, 1, t−1, t−1)

in the split case, and a(t) = diag(t, 1, t−1) in the non-split case. Then we know that

λ(a(t)ha(t)−1) = tλ(h) for all h ∈ R(F ) and t ∈ Gm(F ).

If F is p-adic, fix an open compact subgroup K ⊂ G(F ) (not necessarily maximal),

it is enough to prove that the linear form

f ∈ CK(ZG(F )\G(F ), η−1)→
∫
ZR(F )\R(F )

f(h)ω ⊗ (h)dh

can be extended continuously to CwK(ZG(F )\G(F ), η−1) for all K. Here we define

CwK(ZG(F )\G(F ), η−1) to be the space of bi-K-invariant elements in Cw(ZG(F )\G(F ), η−1).

Let Ka = a−1(K ∩ ZG0(F )). It is an open compact subset of F×. Then for f ∈
CK(ZG(F )\G(F ), η−1), we have∫

ZR(F )\R(F )
f(h)ω ⊗ ξ(h)dh

= mes(Ka)
−1

∫
Ka

∫
ZR(F )\R(F )

f(a(t)−1ha(t))ξ(h)ω(a(t)−1ha(t))dhd×t

= mes(Ka)
−1

∫
ZR(F )\R(F )

f(h)ω(h)

∫
Ka

ξ(a(t)ha(t)−1)d×tdh

= mes(Ka)
−1

∫
ZR(F )\R(F )

f(h)ω(h)

∫
Ka

ψ(tλ(h)) | t |−1 dtdh.

The function x ∈ F 7→
∫
Ka
ψ(tx) | t |−1 dt is the Fourier transform of the function

| · |−1 1Ka ∈ C∞c (F ), so it also belongs to C∞c (F ). Hence the last integral above is

essentially bounded by ∫
ZR(F )\R(F )

|f(h)|(1+ | λ(h) |)−δdh

for all δ > 0. Then by applying Lemma 4.3.1, we know that the integral above is

also absolutely convergent for f ∈ CwK(ZG(F )\G(F ), η−1). Thus the linear form can be

extended continuously to CwK(ZG(F )\G(F ), η−1).

If F=R, recall that for g ∈ G(F ) and f ∈ C∞(G(F )), we have defined gf(x) =

f(g−1xg). Let Ada be a smooth representation of F× on Cw(ZG(F )\G(F ), η−1) given

by Ada(t)(f) = a(t)f. This induces an action of U(gl1(F )) on Cw(ZG(F )\G(F ), η−1),
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which is still denoted by Ada. Let ∆ = 1 − (t ddt)
2 ∈ U(gl1(F )). By elliptic regularity

(see Lemma 3.7 of [BK14]), for all integer m ≥ 1, there exist ϕ1 ∈ C2m−2
c (F×) and

ϕ2 ∈ C∞c (F×) such that ϕ1 ∗∆m + ϕ2 = δ1. This implies

Ada(ϕ1)Ada(∆
m) +Ada(ϕ2) = Id.

Therefore for all f ∈ C(ZG(F )\G(F ), η−1), we have∫
ZR(F )\R(F )

f(h)ω ⊗ ξ(h)dh

=

∫
ZR(F )\R(F )

(Ada(ϕ1)Ada(∆
m)f)(h)ω ⊗ ξ(h)dh

+

∫
ZR(F )\R(F )

(Ada(ϕ2)f)(h)ω ⊗ ξ(h)dh

=

∫
ZR(F )\R(F )

(Ada(∆
m)f)(h)ω(h)

∫
F×

ϕ1(t)ξ(a(t)ha(t)−1)δP (a(t))d×tdh

+

∫
ZR(F )\R(F )

f(h)ω(h)

∫
F×

ϕ2(t)ξ(a(t)ha(t)−1)δP (a(t))d×tdh

=

∫
ZR(F )\R(F )

(Ada(∆
m)f)(h)ω(h)

∫
F×

ϕ1(t)ψ(tλ(h))δP (a(t)) | t |−1 dtdh

+

∫
ZR(F )\R(F )

f(h)ω(h)

∫
F×

ϕ2(t)ψ(tλ(h))δP (a(t)) | t |−1 dtdh.

Here the second equation is to take the transform h 7→ a(t)−1ha(t) in both inte-

grals and the extra δP (a(t)) is its Jacobian. For i = 1, 2, the functions fi : x ∈
F →

∫
F ϕi(t)δP (a(t))|t|−1ψ(tx)dt are the Fourier transforms of the functions t →

ϕi(t)δP (a(t))|t|−1 ∈ C2m−2
c (F ). Hence f1 and f2 are essentially bounded by (1 +

|x|)−2m+2. By applying Lemma 4.3.1 again, we know that for all m ≥ 2, the last two

integrals above are absolutely convergent for all f ∈ Cw(ZG(F )\G(F ), η−1). Therefore

the linear form can be extended continuously to Cw(ZG(F )\G(F ), η−1).

If F = C, still let Ada be a smooth representation of F× on Cw(ZG(F )\G(F ), η−1)

given byAda(t)(f) = a(t)f. This induces an action of U(gl1(C)) on Cw(ZG(F )\G(F ), η−1),

which is still denoted by Ada. Fix a basis X1, X2 of gl1(C) as an R-vector space, and

let ∆C := 1 − X2
1 − X2

2 ∈ U(gl1(C)). By applying elliptic regularity in Lemma 3.7 of

[BK14] again, for all integer m ≥ 2, there exist ϕ1 ∈ C2m−3,R
c (C×) and ϕ2 ∈ C∞,Rc (C×)

such that

Ada(ϕ1)Ada(∆
m
C ) +Ada(ϕ2) = Id.
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Here for any function f ∈ Cc(C×), we can view f as a function inside the space Cc(R2).

We then define the subspace C2m−3,R
c (C×) (resp. C∞,Rc (C×)) to be Cc(C×)∩C2m−3

c (R2)

(resp. Cc(C×) ∩ C∞c (R2)). Without loss of generality, we assume that the character ψ

is defined to be ψ(x) = ψ0(Im(x)) for some additive character ψ0 on R. Then for all

f ∈ C(ZG(F )\G(F ), η−1), we have∫
ZR(F )\R(F )

f(h)ω ⊗ ξ(h)dh

=

∫
ZR(F )\R(F )

(Ada(ϕ1)Ada(∆
m
C )f)(h)ω ⊗ ξ(h)dh

+

∫
ZR(F )\R(F )

(Ada(ϕ2)f)(h)ω ⊗ ξ(h)dh

=

∫
ZR(F )\R(F )

(Ada(∆
m
C f)(h)ω(h)

∫
C×

ϕ1(t)ξ(a(t)ha(t)−1)δP (a(t))d×tdh

+

∫
ZR(F )\R(F )

f(h)ω(h)

∫
C×

ϕ2(t)ξ(a(t)ha(t)−1)δP (a(t))d×tdh

=

∫
ZR(F )\R(F )

(Ada(∆
m
C )f)(h)ω(h)

∫
C×

ϕ1(t)ψ0(Re(t)Im(λ(h)) + Im(t)Re(λ(h)))δP (a(t)) | t |−1 dtdh

+

∫
ZR(F )\R(F )

f(h)ω(h)

∫
C×

ϕ2(t)ψ0(Re(t)Im(λ(h)) + Im(t)Re(λ(h)))δP (a(t)) | t |−1 dtdh.

For i = 1, 2, the functions fi : x ∈ C = R2 →
∫
C ϕi(t)δP (a(t))|t|−1ψ0(Re(t)Im(x) +

Im(t)Re(x))dt are the Fourier transforms of the functions t → ϕi(t)δP (a(t))|t|−1ψ(t ·
x) ∈ C2m−3

c (R2). Hence they are essentially bounded by (1 + |x|)−2m+3. By applying

Lemma 4.3.1 again, we know that for all m ≥ 2, the last two integrals above are

absolutely convergent for all f ∈ Cw(ZG(F )\G(F ), η−1). Therefore the linear form can

be extended continuously to Cw(ZG(F )\G(F ), η−1).

Denote by PR,ξ the continuous linear form on Cw(ZG(F )\G(F ), η−1) defined above.

i.e.

f ∈ Cw(ZG(F )\G(F ), η−1)→
∫ ∗
ZR(F )\R(F )

f(h)ω ⊗ ξ(h)dh.

Lemma 6.1.2. 1. For all f ∈ Cw(ZG(F )\G(F ), η−1), and h0, h1 ∈ R(F ), we have

PR,ξ(L(h0)R(h1)f) = ω ⊗ ξ(h0)ω ⊗ ξ(h1)−1PR,ξ(f)

where R (resp. L) is the right (resp. left) translation.
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2. Let ϕ ∈ C∞c (F×), and set ϕ′(t) =| t |−1 δP (a(t))ϕ(t). We can view both ϕ and ϕ′

as elements in C∞c (F ). Let ϕ̂′ be the Fourier transform of ϕ′ with respect to ψ.

Then we have

PR,ξ(Ada(ϕ)f) =

∫
ZR(F )\R(F )

f(h)ω(h)ϕ̂′(λ(h))dh

for all f ∈ Cw(ZG(F )\G(F ), η−1). Note that the last integral is absolutely conver-

gent by Lemma 4.3.1

Proof. Since both sides of the equality are continuous in Cw(ZG(F )\G(F )), it is e-

nough to check (1) and (2) for f ∈ C(ZG(F )\G(F ), η−1). In this case, PR,ξ(f) =∫
ZR(F )\R(F ) f(h)ω ⊗ (h)dh. Then (1) follows from change variables in the integral. For

(2), we have

PR,ξ(Ada(ϕ)f) =

∫
ZR(F )\R(F )

Ada(ϕ)(f)ω ⊗ ξ(h)dh

=

∫
ZR(F )\R(F )

f(h)ω(h)

∫
F×

ϕ(t)ξ(a(t)ha(t)−1)δP (a(t))d×tdh

=

∫
ZR(F )\R(F )

f(h)ω(h)

∫
F
ϕ(t)ψ(tλ(h))δP (a(t))|t|−1dtdh

=

∫
ZR(F )\R(F )

f(h)ω(h)ϕ̂′(λ(h))dh.

This finishes the proof of the Lemma.

6.2 The Definition and Properties of Lπ

Let π be a tempered representation of G(F ) with central character η. For all T ∈
End(π)∞, define

Lπ(T ) = PR,ξ(tr(π(g−1)T )) =

∫ ∗
ZR(F )\R(F )

tr(π(h−1)T )ω ⊗ ξ(h)dh.

By Proposition 6.1.1, together with the fact that the map T ∈ End(π)∞ → (g →
tr(π(g−1)T ) ∈ Cw(ZG(F )\G(F ), η−1) is continuous, we know that Lπ : End(π)∞ → C
is a continuous linear form. By Lemma 6.1.2, for any h, h′ ∈ R(F ), we have

Lπ(π(h)Tπ(h′)) = ω ⊗ ξ(hh′)Lπ(T ). (6.1)



86

For e, e′ ∈ π, define Te,e′ ∈ End(π)∞ to be e0 ∈ π 7→ (e0, e
′)e. Set Lπ(e, e′) = Lπ(Te,e′).

Then we have

Lπ(e, e′) =

∫ ∗
ZR(F )\R(F )

(e, π(h)e′)ω ⊗ ξ(h)dh.

If we fix e′, by (6.1), the map e ∈ π → Lπ(e, e′) belongs to HomH(π, ω ⊗ ξ). Since

Span{Te,e′ | e, e′ ∈ π} is dense in End(π)∞ (in p-adic case, they are equal), we have

that Lπ 6= 0⇒ m(π) 6= 0. The purpose of this section is to prove the other direction.

Theorem 6.2.1. For all π ∈ Πtemp(G, η), we have

Lπ 6= 0 ⇐⇒ m(π) 6= 0.

Our proof for this result is based on the method developed by Waldspurger ([W12,

Proposition 5.7]) and by Beuzart-Plessis ([B15, Theorem 8.2.1]) for the GGP models.

See also [SV, Theorem 6.2.1]. The key ingredient in the proof is the Plancherel formula,

together with the fact that the nonvanishing property of Lπ is invariant under the

parabolic induction and the unramified twist. For the rest part of this subsection, we

discuss some basic properties of Lπ.

The operator Lπ defines a continuous linear map

Lπ : π∞ → π̄−∞, e→ Lπ(e, ·)

where π̄−∞ is the topological dual of π∞ endowed with the strong topology. The image

of Lπ belongs to (π̄−∞)R,ω⊗ξ = HomR(F )(π
∞, ω ⊗ ξ). So if π is irreducible, the image

is of dimension less or equal to 1. Let T ∈ End(π)∞. It can be uniquely extended to a

continuous operator T : π̄−∞ → π∞. Then we have the following two operators, which

are both of finite rank:

TLπ : π∞ → π∞, LπT : π̄−∞ → π̄−∞.

In particular, they are of trace class. It is easy to see that

tr(TLπ) = tr(LπT ) = Lπ(T ). (6.2)

Lemma 6.2.2. With the notations above, the followings hold.
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1. The map π ∈ Πtemp(G, η) → Lπ ∈ End(π)−∞ is smooth in the following sense:

For all parabolic subgroup Q = LUQ of G, σ ∈ Π2(L), and for all maximal compact

subgroup K of G(F ), the map λ ∈ ia∗L,0 → Lπλ ∈ End(πλ)−∞ ' End(πK)−∞ is

smooth, here πλ = IGQ (σλ) and πK = IKQ∩K(σK).

2. For π ∈ Πtemp(G, η), and for all S, T ∈ End(π)∞, we have SLπT ∈ End(π)∞,

and Lπ(S)Lπ(T ) = Lπ(SLπT ).

3. For S, T ∈ C(Πtemp(G, η)), the section π ∈ Πtemp(G, η) 7→ SπLπTπ ∈ End(π)∞

belongs to C∞(Πtemp(G, η)).

4. For f ∈ C(ZG(F )\G(F ), η−1), assume that its Fourier transform π ∈ Πtemp(G, η)→
π(f) is compactly supported (this is always true in p-adic case). Then we have∫

ZR(F )\R(F )
f(h)ω ⊗ ξ(h)dh =

∫
Πtemp(G,η)

Lπ(π(f))µ(π)dπ

with both integrals being absolutely convergent.

5. For f ∈ C(ZG(F )\G(F ), η−1) and f ′ ∈ C(ZG(F )\G(F ), η), assume that the Fouri-

er transform of f is compactly supported. Then we have∫
Πtemp(G,η)

Lπ(π(f))Lπ(π(f̄ ′))µ(π)dπ

=

∫
ZR(F )\R(F )

∫
ZR(F )\R(F )

∫
ZG(F )\G(F )

f(hgh′)f ′(g)dgω ⊗ ξ(h′)dh′ω ⊗ ξ(h)dh

where the left hand side is absolutely convergent and the right hand side is con-

vergent in that order but is not necessarily absolutely convergent.

Proof. (1), (2) and (3) follow from the same argument as Lemma 8.2.1 of [B15], we will

skip it here. The proof of (4) and (5) is also similar to the loc. cit. (except that we need

to take care of the center of the group), we only include the proof here for completion.

For (4), by Lemma 4.3.1, the left hand side is absolutely convergent. Since the Fouri-

er transform of f is compactly supported, the right hand side is also absolutely conver-

gent. Let ϕ(f, π)(g) = tr(π(g−1)π(f)), which is a function in Cw(ZG(F )\G(F ), η−1).

By the Plancherel formula in Section 2.8, we have

f =

∫
Πtemp(G,η)

ϕ(f, π)µ(π)dπ.
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By applying the operator PR,ξ on both sides, we have

PR,ξ(f) =

∫
Πtemp(G,η)

PR,ξ(ϕ(f, π))µ(π)dπ.

This proves (4).

For (5), let f ′∨(g) = f ′(g−1). Then the right hand side is equal to∫
ZR(F )\R(F )

∫
ZR(F )\R(F )

(f ′∨ ∗ L(h−1)f)(h′)ω ⊗ ξ(h′)dh′ω ⊗ ξ(h)dh. (6.3)

Since the Fourier transform of f is compactly supported, so is f ′∨ ∗ L(h−1)f . By

applying part (4) to f ′∨ ∗L(h−1)f , we know that the inner integral in (6.3) is absolutely

convergent and we have ∫
ZR(F )\R(F )

(f ′∨ ∗ L(h−1)f)(h′)ω ⊗ ξ(h′)dh′

=

∫
Πtemp(G,η)

Lπ(π(f ′∨)π(h−1)π(f))µ(π)dπ

=

∫
Πtemp(G,η)

tr(π(h−1)π(f)Lππ(f ′∨))µ(π)dπ.

The last equality holds because of (6.2). By part (3), the section π ∈ Πtemp(G, η) 7→
π(f)Lππ(f ′∨) is smooth, and is also compactly supported. Hence it belongs to C(Πtemp(G, η)).

By the matrical Paley-Wiener Theorem in Section 2.8, it is the Fourier transform of a

Harish-Chandra-Schwartz function. Applying part (4) to such a function, we know the

exterior integral of (6.3) is absolutely convergent and the whole expression is equal to∫
Πtemp(G,η)

Lπ(π(f)Lππ(f ′∨))µ(π)dπ.

By part (2) and the fact that Lπ(π(f ′∨)) = Lπ(π(f̄ ′)), (6.3) is then equal to∫
Πtemp(G,η)

Lπ(π(f))Lπ(π(f̄ ′))µ(π)dπ.

This finishes the proof of the lemma.

The next lemma is about the asymptotic properties for elements in HomR(π, ω⊗ξ).

Lemma 6.2.3. Assume that F 6= C, the followings hold.
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1. Let π be a tempered representation of G(F ) with central character η and let l ∈
HomR(π, ω ⊗ ξ) be a continuous (R,ω ⊗ ξ)-equivariant linear form. Then there

exist d > 0 and a continuous semi-norm νd on π such that

|l(π(x)e)| ≤ νd(e)ΞR\G(x)σR\G(x)d

for all e ∈ π and x ∈ R(F )\G(F ).

2. For all d > 0, there exist d′ > 0 and a continuous semi-norm νd,d′ on Cwd (ZG(F )\G(F ), η−1)

such that

|PR,ξ(R(x)L(y)ϕ)| ≤ νd,d′(ϕ)ΞR\G(x)ΞR\G(y)σR\G(x)dσR\G(y)d
′

for all ϕ ∈ Cwd (ZG(F )\G(F ), η−1) and x, y ∈ R(F )\G(F ).

Proof. The proof is similar to the GGP case as in Lemma 8.3.1 of [B15], we only include

it here for completion. We use the same notation as in Chapter 4. In other words,

• P̄0 = M0Ū0 is a good minimal parabolic subgroup of G0, A0 = AM0 .

• A+
0 = {a0 ∈ A0(F ) | | α(a0) |≥ 1 for all α ∈ Ψ(A0, P̄0)}.

• P̄min = P̄0Ū = MminŪmin is a good minimal parabolic subgroup of G, Amin =

AMmin = A0.

• ∆ is the set of simple roots of Amin in Pmin, and ∆P = ∆ ∩Ψ(Amin, P ).

We first prove part 1. By the weak Cartan decomposition in Proposition 4.2.3,

together with Proposition 4.4.1(1) and (2), it is enough to show that there exists a

continuous semi-norm ν on π such that

|l(π(a)e)| ≤ ΞG(a)ν(e) (6.4)

for all e ∈ π and a ∈ A+
0 .

If F is p-adic, the topology on π is the finest locally convex topology. We only

need to show that for all e ∈ π, we have

|l(π(a)e)| � ΞG(a) (6.5)

for all a ∈ A+
0 . For e ∈ π, choose an open compact subgroup K ⊂ G(F ) such that e is

an K-fixed vector. We first prove the following claim.
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Claim 6.2.4. There exists c = cK ≥ 1 such that for all a ∈ Amin(F ), if there exists

α ∈ ∆P such that |α(a)| ≥ c, then

l(π(a)e) = 0.

In fact, let α ∈ ∆P and let a ∈ Amin(F ). By Proposition 4.2.3(3), there exists

X ∈ nα(F ) such that ξ(eX) 6= 1. Then if |α(a)| is large enough, we have a−1eXa ∈ K.

This implies

ξ(eX)l(π(a)e) = l(π(eX)π(a)e) = l(π(a)e).

Therefore l(π(a)e) = 0, and this proves the claim.

Choose c ≥ 1 as in the claim above, set

A+
min(c) = {a ∈ Amin(F )| |α(a)| ≤ c, ∀α ∈ ∆}.

By the claim above, we only need to prove (6.5) for a ∈ A+
min(c). It is easy to see that

there exists an open compact subgroup K ′
P̄min

of P̄min(F ) such that

K ′P̄min ⊂ aKa
−1 ∩ P̄min

for all a ∈ A+
min(c). Let K ′R be an open compact subgroup of R(F ) such that ω ⊗ ξ

is trivial on it. Finally, choose an open compact subgroup K ′ ⊂ G(F ) such that K ′ ⊂
K ′RK

′
P̄min

. This is possible since P̄min is a good parabolic subgroup. For k′ = k′Rk
′
P̄min

∈
K ′ with k′R ∈ K ′R and k′

P̄min
∈ K ′

P̄min
, we have

l(π(k′)π(a)e) = l(π(k′R)π(a)π(a−1k′P̄mina)e) = ω ⊗ ξ(k′R)l(π(a)e) = l(π(a)e)

for all a ∈ A+
min(c). Therefore

l(π(a)e) = l(π(eK′)π(a)e)

for all a ∈ A+
min(c). Here eK′ is the characteristic function onK ′ multiply bymeas(K ′)−1.

Since π is tempered,

|(π(g)e, e′)| � ΞG(g)

for all g ∈ G(F ), e, e′ ∈ π. Together with the fact that l ◦ π(eK′) ∈ π∞, we have

|l(π(a)e)| = |l(π(eK′)π(a)e)| � ΞG(a)
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for all a ∈ A+
0 . This proves (6.5).

If F = R. For I ⊂ ∆, set

A+
min(I) = {a ∈ Amin(F )||α(a)| ≤ 1 ∀α ∈ ∆\I, |α(a)| > 1 ∀α ∈ I}.

Then we have A+
0 = ∪I⊂∆P

A+
min(I). Therefore it is enough to prove (6.4) for a ∈

A+
min(I). Let X1, · · · , Xp be a basis of p̄min(F ), and let k be an integer larger than

dim(P̄min) + 1. Set

∆min = 1− (X2
1 + · · ·+X2

p ) ∈ U(p̄min).

The following claim is an easy consequence of Proposition 4.2.3(3).

Claim 6.2.5. There exists u = uI,k ∈ U(u) such that the two maps

a ∈ A+
min(I) 7→ a−1(∆k

minu)a ∈ U(g)

a ∈ A+
min(I) 7→ a−1ua ∈ U(g)

have bounded images and d(ω ⊗ ξ)(u) = 1.

Fix u ∈ U(u) as in the claim, by elliptic regularity (see Lemma 3.7 of [BK14]),

we can find two functions ϕ1 ∈ Ck1
c (P̄min(F )) and ϕ2 ∈ C∞c (P̄min(F )) with k1 =

2k − dim(P̄min)− 1, such that

π(ϕ1)π(∆k
min) + π(ϕ2) = Id.

Choose ϕR ∈ C∞c (R(F )) such that
∫
R(F ) ϕR(h)ω ⊗ ξ(h)dh = 1. Then for all e ∈ π and

a ∈ A+
min(I), we have

l(π(a)e) = d(ω ⊗ ξ)(u)l(π(a)e) = l(π(u)π(a)e)

= l(π(ϕ1)π(∆k
minu)π(a)e) + l(π(ϕ2)π(u)π(a)e)

= l(π(ϕ1)π(a)π(a−1(∆k
minu)a)e) + l(π(ϕ2)π(a)π(a−1ua)e)

= l(π(ϕH ∗ ϕ1)π(a)π(a−1(∆k
minu)a)e) + l(π(ϕH ∗ ϕ2)π(a)π(a−1ua)e).

Note that the functions ϕH ∗ ϕ1 and ϕH ∗ ϕ2 both belong to Ck1
c (G(F )). Then once

we let k large, there exists a continuous semi-norm ν on π such that the last line of the

equation above is bounded by

(ν(π(a−1(∆k
minu)a)e) + ν(π(a−1ua)e))ΞG(a). (6.6)
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Then by the claim above, (6.6) is bounded by

ν(e)ΞG(a).

This proves (6.4).

We then prove the second part. By the same reduction as in (1), we only need

to show that there exists a continuous semi-norm νd on Cwd (ZG(F )\G(F ), η−1) such that

|PR,ξ(R(a1)L(a2)ϕ)| ≤ νd(ϕ)ΞG(a1)ΞG(a2)σ0(a1)dσ0(a2)d (6.7)

for all ϕ ∈ Cwd (ZG(F )\G(F ), η−1) and a1, a2 ∈ A+
0 .

If F is p-adic, we fix an open compact subgroup K ⊂ G(F ). We only need to show

that there exists a continuous semi-norm νK,d on CwK,d(ZG(F )\G(F ), η−1) such that

|PR,ξ(R(a1)L(a2)ϕ)| ≤ νK,d(ϕ)ΞG(a1)ΞG(a2)σ0(a1)dσ0(a2)d (6.8)

for all ϕ ∈ CwK,d(ZG(F )\G(F ), η−1) and a1, a2 ∈ A+
0 . Then as in the proof of (1), we

can find a constant c = cK ≥ 1 such that

PR,ξ(R(a1)L(a2)ϕ) = 0

for all ϕ ∈ CwK,d(ZG(F )\G(F ), η−1) with ai ∈ A+
0 − A

+
min(c) for some i ∈ {1, 2}. Then

by the same argument as in (1), we can find an open compact subgroup K ′ ⊂ G(F )

such that

PR,ξ(R(a1)L(a2)ϕ) = PR,ξ(R(eK′)L(eK′)R(a1)L(a2)ϕ)

for all ϕ ∈ CwK,d(ZG(F )\G(F ), η−1) and a1, a2 ∈ A+
min(c). Finally (6.8) follows from

Lemma 1.5.1(1) of [B15].

If F = R, as in the proof of (1), we only need need to prove that for fixed I, J ⊂ ∆P ,

there exists a continuous semi-norm νI,J,d on Cwd (ZG(F )\G(F ), η−1) such that

|PR,ξ(R(a1)L(a2)ϕ)| ≤ νI,J,d(ϕ)ΞG(a1)ΞG(a2)σ0(a1)dσ0(a2)d (6.9)

for all ϕ ∈ Cwd (ZG(F )\G(F ), η−1), a1 ∈ A+
min(I) and a2 ∈ A+

min(J).

Choose k, uI , uJ as in the proof of (1). Then by the same argument, we can show

that there exist functions ϕ1, ϕ2, ϕ3, ϕ4 ∈ Ck1
c (G(F )) with k1 = 2k − dim(P̄min) − 1,
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such that

PR,ξ(R(a1)L(a2)ϕ) = PR,ξ(R(ϕ1)L(ϕ3)R(a1)L(a2)R(a−1
1 (∆k

minuI)a1)L(a−1
2 (∆k

minuJ)a2)ϕ)

+PR,ξ(R(ϕ1)L(ϕ4)R(a1)L(a2)R(a−1
1 (∆k

minuI)a1)L(a−1
2 uJa2)ϕ)

+PR,ξ(R(ϕ2)L(ϕ3)R(a1)L(a2)R(a−1
1 uIa1)L(a−1

2 (∆k
minuJ)a2)ϕ)

+PR,ξ(R(ϕ2)L(ϕ4)R(a1)L(a2)R(a−1
1 uIa1)L(a−1

2 uJa2)ϕ)

for all ϕ ∈ Cwd (ZG(F )\G(F ), η−1), a1 ∈ A+
min(I) and a2 ∈ A+

min(J). Then (6.9) follows

from Lemma 1.5.1(1) of [B15] together with the fact that a−1
1 uIa1, a−1

1 (∆k
minuI)a1,

a−1
2 uJa2, a−1

2 (∆k
minuJ)a2 have bounded images.

6.3 Parabolic Induction for the p-adic Case

Assume that F is p-adic in this section. Let π be a tempered representation of

G(F ) with central character η. There exists a parabolic subgroup Q̄ = LUQ̄ of G,

together with a discrete series τ ∈ Π2(L) such that π = IG
Q̄

(τ). By Proposition 4.2.1,

we may assume that Q̄ is a good parabolic subgroup. We can further assume that the

inner product on π is given by

(e, e′) =

∫
Q(F )\G(F )

(e(g), e′(g))τdg, ∀e, e′ ∈ π = IGQ (τ). (6.10)

Let RQ̄ = R ∩ Q̄. For T ∈ End(τ)∞, define

Lτ (Tτ ) =

∫
ZR(F )\RQ̄(F )

tr(τ(h−1
Q̄

)T )δRQ̄(hQ̄)1/2ω ⊗ ξ(hQ̄)dhQ̄.

The integral above is absolutely convergent by Proposition 4.4.2(2) together with the

assumption that τ is a discrete series. The purpose of the section is to prove the following

proposition.

Proposition 6.3.1. With the notation above, we have

Lπ 6= 0 ⇐⇒ Lτ 6= 0.

Proof. For e, e′ ∈ π∞, by (6.10), we have

Lπ(e, e′) =

∫ ∗
ZR(F )\R(F )

∫
Q̄(F )\G(F )

(e(g), e′(gh))τdgω ⊗ ξ(h)dh.
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Same as in previous sections, let a : Gm(F )→ ZG0(F ) be a homomorphism defined by

a(t) = diag(t, t, 1, 1, t−1, t−1) in the split case, and a(t) = diag(t, 1, t−1) in the non-split

case. Since e, e′ ∈ π∞, there exists an open compact subgroup K0 of G(F ) such that

the functions e, e′ : G(F ) → τ is bi-K0-invariant. Let Ka = a−1(K0 ∩ ZG0(F )) ⊂ F×,

which is an open compact subset. By Proposition 6.1.1, we have

Lπ(e, e′) =

∫ ∗
ZR(F )\R(F )

∫
Q̄(F )\G(F )

(e(g), e′(gh))τdgω ⊗ ξ(h)dh

= meas(Ka)
−1

∫
ZR(F )\R(F )

∫
Q̄(F )\G(F )

(e(g), e′(gh))τdg (6.11)

×
∫
Ka

ψ(tλ(h)) | t |−1 dtω(h)dh.

By the same proposition, the last two integrals
∫
ZR(F )\R(F )

∫
Q̄(F )\G(F ) above is absolutely

convergent. Since Q̄ is a good parabolic subgroup, by Proposition 4.2.1, we can choose

the Haar measures compatibly so that for all ϕ ∈ L1(Q̄(F )\G(F ), δQ̄), we have∫
Q̄(F )\G(F )

ϕ(g)dg =

∫
RQ̄(F )\R(F )

ϕ(h)dh.

Then (6.11) becomes

Lπ(e, e′) = meas(Ka)
−1

∫
ZR(F )\R(F )

∫
RQ̄(F )\R(F )

(e(h′), e′(h′h))τdh
′

×
∫
Ka

ψ(tλ(h)) | t |−1 dtω(h)dh.

The integral
∫
ZR(F )\R(F )

∫
RQ̄(F )\R(F ) above is absolutely convergent because (6.11) is

absolutely convergent. By switching the two integrals, making the transform h → h′h

and decomposing
∫
ZR(F )\R(F ) as

∫
RQ̄(F )\R(F )

∫
ZR(F )\RQ̄(F ), we have

Lπ(e, e′) = meas(Ka)
−1

∫
(RQ̄(F )\R(F ))2

f(h, h′)dhdh′
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where

f(h, h′) =

∫
ZR(F )\RQ̄(F )

(e(h), e′(hQ̄h
′))τω(hQ̄)ω(h−1h′)

×
∫
Ka

ψ(tλ(h′))ψ(tλ(hQ̄))ψ(−tλ(h)) | t |−1 dtdhQ̄ (6.12)

=

∫
ZR(F )\RQ̄(F )

δRQ̄(hQ̄)1/2(e(h), τ(hQ̄)e′(h′))τω(hQ̄)ω(h−1h′)

×
∫
Ka

ψ(tλ(h′))ψ(tλ(hQ̄))ψ(−tλ(h)) | t |−1 dtdhQ̄.

Here we use the equation δRQ̄(hQ̄) = δQ̄(hQ̄) in the second equality. We first show that

the integral (6.12) is absolutely convergent for any h, h′ ∈ RQ̄(F )\R(F ). In fact, since

Ka is compact, it is enough to show that for any h, h′ ∈ RQ̄(F )\R(F ), the integral∫
ZR(F )\RQ̄(F )

δRQ̄(hQ̄)1/2(e(h), τ(hQ̄)e′(h′))τdhQ̄

is absolutely convergent. This just follows from Proposition 4.4.2(2) together with the

assumption that τ is discrete series. Then by switching the two integrals in (6.12), we

have

f(h, h′) =

∫
Ka

∫
ZR(F )\RQ̄(F )

δRQ̄(hQ̄)1/2(e(h), τ(hQ̄)e′(h′))τω(hQ̄)

× ψ(tλ(hQ̄))dhQ̄ω(h−1h′)ψ(tλ(h′))ψ(−tλ(h)) | t |−1 dt.

By changing the variable hQ̄ → a(t)hQ̄a(t)−1 in the inner integral (note that the Jaco-

bian of such transform is 1 since a(t) ∈ K0), we have∫
ZR(F )\RQ̄(F )

δRQ̄(hQ̄)1/2(e(h), τ(hQ̄)e′(h′))τω(hQ̄)ψ(tλ(hQ̄))dhQ̄

=

∫
ZR(F )\RQ̄(F )

δRQ̄(hQ̄)1/2(e(h), τ(a(t)−1hQ̄a(t))e′(h′))τω(hQ̄)ψ(λ(hQ̄))dhQ̄

=

∫
ZR(F )\RQ̄(F )

δRQ̄(hQ̄)1/2(e(h), τ(hQ̄)e′(h′))τω(hQ̄)ψ(λ(hQ̄))dhQ̄

= Lτ (e(h), e′(h′)).

Here we use the fact that e′ is bi-K0-invariant. Then we have

f(h, h′) =

∫
Ka

Lτ (e(h), e(h′))ω(h−1h′)ψ(tλ(h′))ψ(−tλ(h)) | t |−1 dt.
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If Lπ(e, e′) 6= 0, there exist h, h′ ∈ RQ̄(F )\R(F ) such that f(h, h′) 6= 0, and hence

Lτ (e(h), e(h′)) 6= 0. This proves that Lπ 6= 0⇒ Lτ 6= 0.

For the other direction, if Lτ 6= 0, we can find v0, v
′
0 ∈ τ∞ such that Lτ (v0, v

′
0) 6= 0.

We choose a small open subset U ⊂ RQ̄(F )\R(F ) and let s : U → R(F ) be an analytic

section of the map R(F )→ RQ̄(F )\H(F ). For f, f ′ ∈ C∞c (U), define ϕ,ϕ′ ∈ C∞c (U , τ∞)

to be ϕ(h) = f(h)v0, ϕ
′(h) = f ′(h)v′0. Set

eϕ(g) =

{
δ

1/2

Q̄
(l)τ(l)ϕ(h) if g = lus(h) with l ∈ L(F ), u ∈ UQ̄(F ), h ∈ U ;

0 else.

This is an element of π∞. Similarly we can define eϕ′ . By the above discussion, we have

Lπ(eϕ, eϕ′) = meas(Ka)
−1

∫
(RQ̄(F )\R(F ))2

f(h, h′)dhdh′

where

f(h, h′) =

∫
Ka

Lτ (eϕ(h), eϕ′(h
′))ω(h−1h′)ψ(tλ(h′))ψ(−tλ(h)) | t |−1 dt.

Combining with the definition of eϕ and eϕ′ , we have

Lπ(eϕ, eϕ′) = meas(Ka)
−1Lτ (v0, v

′
0)

×
∫
U2

∫
Ka

f(h)f ′(h′)ω(s(h)−1s(h′))ψ(tλ(s(h)))ψ(−tλ(s(h))) | t |−1 dtdhdh′.

Now if we take U small enough, we can choose a suitable section s : U → R(F ) such

that for all t ∈ Ka and h ∈ s(U), we have ψ(tλ(h)) = ω(h) = 1. Also by taking K0

small, we may assume that | t |= 1 for all t ∈ Ka. Then the integral above becomes

Lπ(eϕ, eϕ′) = meas(Ka)
−1Lτ (v0, v

′
0)

∫
U2

∫
Ka

f(h)f ′(h′)dtdhdh′

= Lτ (v0, v
′
0)

∫
U2

f(h)f ′(h′)dhdh′.

Thus we can easily choose f and f ′ so that Lπ(eϕ, eϕ′) 6= 0. Therefore we have proved

that Lτ 6= 0⇒ Lπ 6= 0. This finishes the proof of the proposition.

6.4 Parabolic Induction for the archimedean Case

Assume that F is archimedean in this section. It is very hard to directly study any

arbitrary parabolic induction because of the way that we normalize the integral. Instead,
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we first study the parabolic induction for P̄ , then study all other parabolic subgroups

contained in P̄ . This is allowable since in the archimedean case, the discrete series only

appear on GL1(R), GL2(R), GL1(D) and GL1(C). Let π be a tempered representation

of G with central character η. Since we are in archimedean case, there exists a tempered

representation π0 of G0 such that π = IG
P̄

(π0). We assume that the inner product on π

is given by

(e, e′) =

∫
P̄ (F )\G(F )

(e(g), e′(g))π0dg, e, e
′ ∈ π = IGP̄ (π0). (6.13)

For T ∈ End(π0)∞, define

Lπ0(T ) =

∫
ZH(F )\H(F )

tr(π0(h−1
0 )T )ω(h0)dh0.

The integral above is absolutely convergent by Lemma 4.3.1(1) together with the fact

that π0 is tempered.

Proposition 6.4.1. With the notation above, we have

Lπ 6= 0 ⇐⇒ Lπ0 6= 0.

Proof. We first consider the case when F = R. For e, e′ ∈ π∞, we have

Lπ(e, e′) =

∫ ∗
ZR(F )\R(F )

∫
P̄ (F )\G(F )

(e(g), e′(gh))dgω ⊗ ξ(h)dh.

Same as in Proposition 6.1.1, we can find ϕ1 ∈ C2m−2
c (F×) and ϕ2 ∈ C∞c (F×) such

that ϕ1 ∗∆m + ϕ2 = δ1, and we have

Lπ(e, e′) =

∫
ZR(F )\R(F )

Ada(∆
m)(

∫
P̄ (F )\G(F )

(e(g), e′(gh))dg)

×
∫
F
ϕ1(t)δP (a(t)) | t |−1 ψ(tλ(h))ω(h)dtdh (6.14)

+

∫
ZR(F )\R(F )

∫
P̄ (F )\G(F )

(e(g), e′(gh))

×
∫
F
ϕ2(t)δP (a(t)) | t |−1 ψ(tλ(h))ω(h)dtdgdh.

Here Ada(∆
m) acts on the function

∫
P̄ (F )\G(F )(e(g), e′(gh))dg for the variable h. It is

clear that this action commutes with the integral
∫
P̄ (F )\G(F ). Also since P̄ is a good
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parabolic subgroup, by Proposition 4.2.1, we can choose Haar measure compatibly so

that for all ϕ ∈ L1(P̄ (F )\G(F ), δP̄ ), we have∫
P̄ (F )\G(F )

ϕ(g)dg =

∫
U(F )

ϕ(h)dh.

Therefore (6.14) becomes

Lπ(e, e′) =

∫
ZR(F )\R(F )

∫
U(F )

Ada(∆
m)((e(u), e′(uh)))du

×
∫
F
ϕ1(t)δP (a(t)) | t |−1 ψ(tλ(h))ω(h)dtdh

+

∫
ZR(F )\R(F )

∫
U(F )

(e(u), e′(uh))

×
∫
F
ϕ2(t)δP (a(t)) | t |−1 ψ(tλ(h))ω(h)dtdudh.

Here Ada(∆
m) acts on the function (e(u), e′(uh)) for the variable h. By changing

the order of integration
∫
ZR(F )\R(F )

∫
U(F ) and decomposing the integral

∫
ZR(F )\R(F )

by
∫
U(F )

∫
ZH(F )\H(F ) (this is allowable since the outer two integrals are absolutely con-

vergent by Proposition 6.1.1), together with the fact that Ada is the identity map on

H, we have

Lπ(e, e′) =

∫
U(F )

∫
U(F )

Ada(∆
m)(Lπ0(e(u), e′(uu′)))ϕ′1(λ(u′))du′du

+

∫
U(F )

∫
U(F )

Lπ0(e(u), e′(uu′))ϕ′2(λ(u′))du′du

where ϕ′i(s) =
∫
F ϕi(t)δP (a(t)) | t |−1 ψ(ts)dt is the Fourier transforms of the function

ϕi(t)δP (a(t)) | t |−1 for i = 1, 2. Here Ada(∆
m) acts on the function Lπ0(e(u), e′(uu′))

for the variable u′. In particular, this implies Lπ 6= 0⇒ Lπ0 6= 0.

For the other direction, if Lπ0 6= 0, we can choose v1, v2 ∈ π∞0 such that Lπ0(v1, v2) 6=
0. Choose f1, f2 ∈ C∞c (U(F )). For i = 1, 2, similarly as in the p-adic case, define

efi(g) =

{
δP̄ (l)π0(l)fi(u)vi if g = lūu with l ∈ G0(F ), u ∈ U(F ), ū ∈ Ū(F );

0 else.

These are elements in π∞, and we have

Lπ(ef1 , ef2) =

∫
U(F )

∫
U(F )

Lπ0(v1, v2)f1(u)Ada(∆
m)(f2(uu′)))ϕ′1(λ(u′))du′du

+

∫
U(F )

∫
U(F )

Lπ0(v1, v2)f1(u)f2(uu′)ϕ′2(λ(u′))du′du. (6.15)
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Here Ada(∆
m) acts on the function f2(uu′) for the variable u′. Then we can easily find

f1, f2 such that (6.15) is non-zero. This proves that Lπ0 6= 0⇒ Lπ 6= 0, and finishes the

proof of the proposition for the case when F = R.

If F = C, the argument is similar to the real case and we will skip it here.

Now for a tempered representation π0 of G0(F ) whose central character equals η

when restricting on ZG, we can find a good parabolic subgroup Q̄0 = L0U0 of G0(F )

and a discrete series τ of L0 such that π0 = IG0

Q̄0
(τ). We still assume that the inner

product on π0 is given by

(e, e′) =

∫
Q̄0(F )\H0(F )

(e(g), e′(g))τdg, e, e
′ ∈ π0 = IG0

Q̄0
(τ). (6.16)

Let HQ̄ = H ∩ Q̄0. For T ∈ End(τ)∞, define

Lτ (Tτ ) =

∫
ZH(F )\HQ̄(F )

tr(τ(h−1
Q̄

)T )δHQ̄(hQ̄)1/2ω(hQ̄)dhQ̄.

The integral above is absolutely convergent by Proposition 4.4.2(2) together with the

assumption that τ is discrete series.

Proposition 6.4.2. With the notation above, we have

Lπ0 6= 0 ⇐⇒ Lτ 6= 0.

Proof. Since we are in (G0, H) case, the integral defining Lπ0 is absolutely convergent.

Together with (6.16), we have

Lπ0(e, e′) =

∫
ZH(F )\H(F )

∫
Q̄0(F )\G0(F )

(e(g), e′(gh))τω(h)dgdh.

The integral above is absolutely convergent by Lemma 4.3.1. Same as in the previous

Propositions, the integral Q̄0(F )\G0(F ) can be replaced by HQ̄(F )\H(F ). Hence we

have

Lπ0(e, e′) =

∫
ZH(F )\H(F )

∫
HQ̄(F )\H(F )

(e(h′), e′(h′h))τω(h)dh′dh.

By switching the two integrals, changing the variable h → h′h and decomposing the

integral
∫
ZH(F )\H(F ) by

∫
HQ̄(F )\H(F )

∫
ZH(F )\HQ̄(F ), we have

Lπ(e, e′) =

∫
HQ̄(F )\H(F )

∫
HQ̄(F )\H(F )

Lτ (e(h), e′(h′))ω(h)−1ω(h′)dhdh′.
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This proves Lπ0 6= 0⇒ Lτ 6= 0.

For the other direction, if Lτ 6= 0, there exist v1, v2 ∈ τ∞ such that Lτ (v1, v2) 6= 0.

Let s : U → H(F ) be an analytic section over an open subset U of HQ̄(F )\H(F ) of the

map H(F )→ HQ̄(F )\H(F ). Choose f1, f2 ∈ C∞c (U). For i = 1, 2, define

efi(g) =

{
δQ̄(l)τ(l)fi(h)vi if g = lus(h) with l ∈ L0(F ), u ∈ U0(F ), h ∈ U ;

0 else.

These are elements in π∞0 , and we have

Lπ0(ef1 , ef2) =

∫
U

∫
U
f1(h)f2(h′)ω(s(h))−1ω(s(h′))Lτ (v1, v2)dhdh′.

Then we can easily choose f1, f2 such that Lπ0(ef1 , ef2) 6= 0. This proves the other

direction, and finishes the proof of the Proposition.

Now let π be a tempered representation of G(F ). Then we can find a good parabolic

subgroup L0U0 = Q̄ ⊂ P̄ (F ) and a discrete series τ of L0, such that π = IG
Q̄

(τ) (note that

we are in archimedean case, only GL1(F ), GL2(F ) and GL1(D) have discrete series).

Combining Proposition 6.4.1 and Proposition 6.4.2, we have the following Proposition.

Proposition 6.4.3. With the notation above, we have

Lπ 6= 0 ⇐⇒ Lτ 6= 0.

6.5 Proof of Theorem 6.2.1

Let π be a tempered representation of G(F ) with central character η. We already know

Lπ 6= 0 ⇒ m(π) 6= 0. We are going to prove the other direction. If F = C, π is

always a principal series. In other words, we can find an unitary character τ of the

torus such that π is the parabolic induction of τ . It is easy to see from the definition

that Lτ (T ) = tr(T ) for T ∈ End(τ)∞. Therefore Lτ 6= 0, which implies Lπ 6= 0 by

Proposition 6.4.3. This tells us that m(π) and Lπ are always nonzero if F = C. This

proves Theorem 6.2.1.

If F 6= C and m(π) 6= 0, let 0 6= l ∈ HomH(π∞, ξ). We first prove
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(1) For all e ∈ π∞ and f ∈ C(ZG(F )\G(F ), η−1), the integral∫
ZG(F )\G(F )

l(π(g)e)f(g)dg (6.17)

is absolutely convergent.

In fact, this is equivalent to the convergence of∫
R(F )\G(F )

| l(π(x)e) |
∫
ZR(F )\R(F )

| f(hx) | dhdx.

By Proposition 4.4.1, for all d > 0 and x ∈ R(F )\G(F ), we have∫
ZR(F )\R(F )

| f(hx) | dh� ΞR\G(x)σR\G(x)−d. (6.18)

On the other hand, by Lemma 6.2.3, there exists d′ > 0 such that for all x ∈ R(F )\G(F ),

we have

| l(π(x)e) |� ΞR\G(x)σR\G(x)d
′
. (6.19)

Then (1) follows from (6.18) and (6.19), together with Proposition 4.4.1.

Now we can compute (6.17) in two different ways. First, since C(ZG(F )\G(F ), η−1) =

C∞c (ZG(F )\G(F ), η−1) ∗ C(ZG(F )\G(F ), η−1), we can write f = ϕ ∗ f ′ for some ϕ ∈
C∞c (ZG(F )\G(F ), η−1) and f ′ ∈ C(ZG(F )\G(F ), η−1). Then∫

ZG(F )\G(F )
l(π(g)e)f(g)dg

=

∫
ZG(F )\G(F )

∫
ZG(F )\G(F )

l(π(g)e)ϕ(g′)f ′(g′−1g)dg′dg

=

∫
ZG(F )\G(F )

∫
ZG(F )\G(F )

l(π(g′g)e)ϕ(g′)dg′f ′(g)dg

=

∫
ZG(F )\G(F )

l(π(ϕ)π(g)e)f ′(g)dg.

Since the vector l ◦ π(ϕ) ∈ π−∞ belongs to π̄∞, by the definition of the action of

C(ZG(F )\G(F ), η−1) on π∞, we have∫
ZG(F )\G(F )

l(π(ϕ)π(g)e)f ′(g)dg

=

∫
ZG(F )\G(F )

f ′(g)(π(g)e, l · π(ϕ))dg

= (π(f ′)e, l · π(ϕ)) = l(π(ϕ)π(f ′)e) = l(π(f)e).
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This tells us ∫
ZG(F )\G(F )

l(π(g)e)f(g)dg = l(π(f)e). (6.20)

On the other hand,∫
ZG(F )\G(F )

l(π(g)e)f(g)dg =

∫
R(F )\G(F )

l(π(x)e)

∫
ZR(F )\R(F )

f(hx)ω ⊗ ξ(h)dhdx.

By Lemma 6.2.2(4), if the map Π ∈ Πtemp(G, η) → Π(f) is compactly supported, we

have ∫
ZG(F )\G(F )

l(π(g)e)f(g)dg (6.21)

=

∫
R(F )\G(F )

l(π(x)e)

∫
Πtemp(G,η)

LΠ(Π(f)Π(x−1))µ(Π)dΠdx.

For T ∈ C∞c (Πtemp(G, η)), by applying (6.20) and (6.21) to the function f = fT , we

have

l(Tπe) =

∫
R(F )\G(F )

l(π(x)e)

∫
Πtemp(G,η)

LΠ(TΠΠ(x−1))µ(Π)dΠdx (6.22)

for all e ∈ π∞. Now assume that π = IGQ (σ) for some good parabolic subgroup Q = LUQ

of G and some σ ∈ Π2(L). Let

O = {IndGQ(σλ) | λ ∈ ia∗L,0} ⊂ Πtemp(G, η)

be the connected component containing π. Choose e0 ∈ π∞ such that l(e0) 6= 0, and let

T0 ∈ End(π)∞ with T0(e0) = e0. We can easily find an element T 0 ∈ C∞c (Πtemp(G, η))

such that

T 0
π = T0, Supp(T

0) ⊂ O.

By applying (6.22) to the case that e = e0, T = T 0, we know there exists λ ∈ ia∗L,0 such

that Lπλ 6= 0 where πλ = IndGQ(σλ). By Proposition 6.3.1 and Proposition 6.4.3, this

implies Lσλ 6= 0. We need a Lemma:

Lemma 6.5.1. For all λ ∈ ia∗L,0, we have

Lσ 6= 0 ⇐⇒ Lσλ 6= 0.
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Proof. We first assume that F is p-adic. If π itself is a discrete series, σ = π and

G = Q. Then the lemma just follows from the definition of Lπ. If Q 6= G, we are in

the reduced models case. If the reduced model is of Type I, there are two models: the

middle model and the trilinear GL2 model. For those models, it is easy to show (just by

the definition) that the nonvanishing property of Lσ is invariant under the unramified

twist.

For type II models, it is not clear from the definition that the unramified twist

will preserve the nonvanishing property. However, we can prove it by proving a much

stronger argument. We claim that for all Type II reduced models, Lσ is always nonzero

for all discrete series σ. In fact, by applying the same argument above to the reduced

model, we can have a similar formula as (6.22) for Lσ. Since σ is a discrete series, the

connected component containing it does not contains other element (i.e. O = {σ}).
Then by applying the same argument above, we know that m(σ) 6= 0 ⇒ Lσ 6= 0 (The

upshot is that since σ is a discrete series, we don’t need to worry about the

unramified twist issue). Therefore we only need to show that for all type II models,

the multiplicity m(σ) is always nonzero. This has already been proved in Theorem 5.4.2.

This finishes the proof of the lemma.

If F = R, we will prove the lemma in Section 7.3.

Now by applying Lemma 6.5.1, we know Lσ 6= 0. Applying Proposition 6.3.1 and

Proposition 6.4.3 again, we have Lπ 6= 0. This proves the other direction, and finishes

the proof of Theorem 6.2.1.

6.6 Some Consequences

If F = C, the following Corollary has already been proved in the previous section.

Corollary 6.6.1. For all tempered representations π of G(F ) with central character η,

we have

Lπ 6= 0, m(π) 6= 0.

In particular, since m(π) ≤ 1, we have

m(π) = 1.
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If F = R, let π be a tempered representation of G(F ) with central character η. Since

we are in the archimedean case, there exists a tempered representation π0 of G0(F ) such

that π = IG
P̄

(π0). We have the following result.

Corollary 6.6.2. m(π) = m(π0).

Proof. Similar to Theorem 6.2.1, we have

m(π0) 6= 0 ⇐⇒ Lπ0 6= 0.

Then by applying Proposition 6.4.1, we have

m(π) 6= 0 ⇐⇒ Lπ 6= 0 ⇐⇒ Lπ0 6= 0 ⇐⇒ m(π0) 6= 0.

Since m(π) and m(π0) are either 1 or 0, the above equivalence implies that m(π) =

m(π0).

If F is p-adic, let π be a tempered representation of GL6(F ) with central character

η. We can find a good parabolic subgroup Q̄ = LUQ and a discrete series σ of L(F ) such

that π = IG
Q̄

(σ). By the construction of the local Jacquet-Langlands correspondence,

we know that πD 6= 0 iff Q̄ is of Type I or Q̄ = G. In fact, the local Jacquet-Langlands

correspondence established in [DKV84] gives a bijection between the discrete series

series. Then the map can be extended naively to all the tempered representations

via the parabolic induction (note that all tempered representations of GLn are the full

induction of some discrete series of Levi subgroups). Therefore, in order to make πD 6= 0,

the Levi subgroup L should have an analogy in GL3(D), which is equivalent to say that

Q̄ is of Type I or Q̄ = G.

Corollary 6.6.3. If Q̄ is of type II, Theorem 1.2.1 holds.

Proof. By the discussion above, we know πD = 0, so we only need to show that m(π) =

1. By the strong multiplicity one theorem, we only need to show that m(π) 6= 0.

By the proof of Lemma 6.5.1, we know Lσ 6= 0. Together with Proposition 6.3.1, we

have Lπ 6= 0. Combining with Theorem 6.2.1, we have m(π) 6= 0. This proves the

Corollary.
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Now let π be a tempered representation of G(F ) with central character η (note

that G(F ) can be both GL6(F ) and GL3(D)), we can find a good parabolic subgroup

Q̄ = LUQ and a discrete series σ of L(F ) such that π = IG
Q̄

(σ). We assume that Q̄ is

of Type I or Q̄ = G.

Corollary 6.6.4. 1. m(π) = m(σ).

2. Let K ⊂ Πtemp(G, η) be a compact subset. Then there exists an element T ∈
C(Πtemp(G, η)) such that Lπ(Tπ) = m(π) for all π ∈ K.

Proof. (1) follows from the same proof as in Corollary 6.6.2. For (2), it is enough to show

that for all π′ ∈ Πtemp(G, η), there exists T ∈ C(Πtemp(G, η)) such that Lπ(Tπ) = m(π)

for all π in some neighborhood of π′ in Πtemp(G, η). Since m(σ) is invariant under the

unramified twist for Type I models, combining with part (1) and Corollary 6.6.3, we

know that the map π → m(π) is locally constant (In fact, we even know that the map

is constant on each connected components of Πtemp(G, η)). If m(π′) = 0, we can just

take T = 0, and there is nothing to prove.

Ifm(π′) 6= 0, then we knowm(π) = 1 for all π in the connected component containing

π′. By Theorem 6.2.1, we can find T ′ ∈ End(π′)∞ such that Lπ′(T ′) 6= 0. Then let

T 0 ∈ C(Πtemp(G, η)) be an element with T 0
π′ = T ′. By Lemma 6.2.2(1), the function

π → Lπ(T 0
π ) is a smooth function. The value at π′ is just Lπ′(T ′) 6= 0. As a result,

we can find a smooth and compactly supported function ϕ on Πtemp(G, η) such that

ϕ(π)Lπ(T 0
π ) = 1 for all π belonging to a small neighborhood of π′. Then we just need

to take T = ϕT 0 and this proves the Corollary.



Chapter 7

The Archimedean Case

In this chapter, we will prove our main theorems (i.e. Theorem 1.2.1 and Theorem 1.2.2)

when the field F is archimedean. In Section 7.1, we will prove the complex case. In

Section 7.2, we will give a brief review of the trilinear GL2 models. Then in Section 7.3,

we will prove the real case. The main ingredient of the proof is Corollary 6.6.2, which

allows us to reduce the problem to the trilinear GL2 model case. Then by applying the

results of Prasad ([P90]) and Loke ([L01]), we can prove the two main theorems.

7.1 The Complex Case

In this section, we assume that F = C. In this case, πD is always 0. As a result, in

order to prove Theorem 1.2.1 and Theorem 1.2.2, we only need to prove the following

proposition.

Proposition 7.1.1. Let π be an irreducible tempered representation of G(F ) with cen-

tral character χ2. The followings hold.

1. m(π) = 1.

2. ε(1/2, π,∧3 ⊗ χ−1) = 1.

Proof. (1) has already been proved in Corollary 6.6.1. For (2), since we are in the

complex case, every tempered representation is a principal series. Hence we can find a

tempered representation σ = σ1 ⊗ σ2 of GL5(F )×GL1(F ) such that π is the parabolic
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induction of σ. Let φ be the Langlands parameter of π, and let φi be the Langlands

parameter of σi for i = 1, 2. Then we have φ = φ1 ⊕ φ2, and this implies

∧3(φ) = ∧3(φ1 ⊕ φ2) = ∧3(φ1)⊕ (∧2(φ1)⊗ φ2).

Since the central character of π is χ2, det(φ) = det(φ1) ⊗ det(φ2) = χ2. Therefore

(∧3(φ1)⊗χ−1)∨ = ∧2(φ1)⊗det(φ1)−1⊗χ = ∧2(φ1)⊗det(φ2)⊗χ−1 = ∧2(φ1)⊗φ2⊗χ−1.

Hence

ε(1/2, π,∧3 ⊗ χ−1) = det(∧3(φ1)⊗ χ−1)(−1) = (det(φ1))6(−1)× χ−10(−1) = 1.

This finishes the proof of the proposition.

7.2 The Trilinear GL2 Models

In this subsection, we recall Prasad’s result on the trilinear GL2 model. For the rest

two subsections of this chapter, we assume that F = R. Let G0(F ) = GL2(F ) ×
GL2(F )×GL2(F ), H(F ) = GL2(F ) diagonally embed into G0. For a given irreducible

representation π0 = π1⊗π2⊗π3 of G0(F ), assume that the central character of π0 equals

χ2 on ZH(F ) for some unitary character χ of F×. χ will induce an one-dimensional

representation ω0 of H(F ). Let

m(π0) = dim(HomH(F )(π0, ω0)). (7.1)

Similarly, we have the quaternion algebra version: let G0,D(F ) = GL1(D)×GL1(D)×
GL1(D), and let HD(F ) = GL1(D). We can still define the multiplicity m(π0,D). The

following theorem has been proved by Prasad in his thesis [P90] under the assumption

that at least one πi is a discrete series (i=1,2,3), and by Loke in [L01] for the case when

π0 is a principal series.

Theorem 7.2.1. With the notation above, if π0 is an irreducible generic representa-

tion of G0, let π0,D be the Jacquet-Langlands correspondence of π0 to G0,D if it exists;

otherwise let π0,D = 0. Then we have

1. m(π0) +m(π0,D) = 1.
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2.

m(π0) = 1 ⇐⇒ ε(1/2, π0 × χ−1) = 1

and

m(π0,D) = 1 ⇐⇒ ε(1/2, π0 × χ−1) = −1.

Remark 7.2.2. Both Prasad’s result and Loke’s result are based on the assumption that

the product of the central characters of πi (i = 1, 2, 3) is trivial. In our case, we assume

that the product of the central characters is χ2. But we can always reduce our case to

their cases by replacing π1 with π1 ⊗ (χ−1 ◦ det). Note that twist by characters will not

change the multiplicity and the epsilon factor.

7.3 The Real Case

Let π be an irreducible tempered representation of GL6(F ), with F = R. There ex-

ists a tempered representation π0 of G0(F ) such that π = IndG
P̄

(π0). Let πD be the

Jacquet-Langlands correspondence of π to GL3(D). Similarly we can find a tempered

representation π0,D of G0,D(F ) such that π = IndGD
P̄D

(π0,D). It is easy to see that π0,D

is the Jacquet-Langlands correspondence of π0 to G0,D(F ). Note that πD and π0,D may

be zero. In fact, they are nonzero if and only if π0 is a discrete series. By Corollary

6.6.2, m(π) = m(π0) and m(πD) = m(π0,D). Then by applying Theorem 7.2.1, we have

m(π) +m(πD) = m(π0) +m(π0,D) = 1.

This proves Theorem 1.2.1.

For Theorem 1.2.2, by Theorem 7.2.1, it is enough to show that

ε(1/2, π,∧3 ⊗ χ−1) = ε(1/2, π0 × χ−1).

For i = 1, 2, 3, let φi be the Langlands parameter of πi. Then the Langlands parameter

of π is φπ = φ1 ⊕ φ2 ⊕ φ3. This implies

∧3(φπ0) = ∧3(φ1 ⊕ φ2 ⊕ φ3)

= (φ1 ⊗ φ2 ⊗ φ3)⊕ (det(φ2)⊗ φ1)⊕ (det(φ3)⊗ φ1)

⊕(det(φ1)⊗ φ2)⊕ (det(φ3)⊗ φ2)⊕ (det(φ1)⊗ φ3)⊕ (det(φ2)⊗ φ3).
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By our assumption on the central character, we have det(φπ0) = det(φ1) ⊗ det(φ2) ⊗
det(φ3) = χ2. Therefore (det(φ2) ⊗ φ1 ⊗ χ−1)∨ = det(φ1)−1 ⊗ det(φ2)−1 ⊗ φ1 ⊗ χ =

det(φ3)⊗ φ1 ⊗ χ−1. This implies

ε(1/2, det(φ2)⊗φ1⊗χ−1)ε(1/2,det(φ3)⊗φ1⊗χ−1) = det(φ1)⊗det(φ2)2⊗χ−2(−1) = det(φ1)(−1).

Similarly, we have

ε(1/2, det(φ1)⊗φ2⊗χ−1)ε(1/2, det(φ3)⊗φ2⊗χ−1) = det(φ1)2⊗det(φ2)⊗χ−2(−1) = det(φ2)(−1),

ε(1/2, det(φ1)⊗φ3⊗χ−1)ε(1/2, det(φ2)⊗φ3⊗χ−1) = det(φ1)2⊗det(φ3)⊗χ−2(−1) = det(φ3)(−1).

Combining the three equations above, we have

ε(1/2, π,∧3 ⊗ χ−1) = det(φ1)⊗ det(φ2)⊗ det(φ3)(−1)ε(1/2, φ1 ⊗ φ2 ⊗ φ3 ⊗ χ−1)

= χ2(−1)ε(1/2, φ1 ⊗ φ2 ⊗ φ3 ⊗ χ−1) = ε(1/2, π0 × χ−1).

This proves Theorem 1.2.2.

Now the only thing left is to prove Lemma 6.5.1 for the case when F = R. As in

the p-adic case, for Type I models, the lemma just follows from the definition of Lσ.

For Type II models, as in the p-adic case, we only need to prove that the multiplicity is

always nonzero. Since F = R, only GL2(F ) and GL1(F ) have discrete series. As a result,

there are only three Type II models: Type (2, 2, 1, 1), (2, 1, 1, 1, 1) and (1, 1, 1, 1, 1, 1).

Type (1, 1, 1, 1, 1, 1) case is trivial since L and HQ̄ are both abelian groups in this case.

For Type (2, 1, 1, 1, 1), by canceling the GL1 part (which is abelian), we are considering

the model (GL2(F ), T ) where T = {

(
a 0

0 b

)
|a, b ∈ F×} is the maximal torus. This is

the Bessel model for (GL2,GL1), and we know the multiplicity is always nonzero by the

archimedean Rankin-Selberg theory of Jacquet and Shalika ([JS90]).

For Type (2, 2, 1, 1), by canceling the GL1 part, we are considering the following

model: M(F ) = GL2(F )×GL2(F ), and

M0(F ) = {m(a, b) =

(
a 0

c b

)
×

(
a 0

c b

)
|a, b ∈ F×, c ∈ F}.

The character on M0(F ) is given by ω(m(a, b)) = χ(ab). Let B(F ) be the lower Borel

subgroup of GL2(F ). It is isomorphic to M0(F ), hence we can also view ω as a character
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on B(F ). Let π3 = IGB (ω), it is a principal series of GL2(F ). For any irreducible

tempered representation π1 ⊗ π2 of M(F ), by the Frobenius reciprocity, we have

HomM0(F )(π1 ⊗ π2, ω) = HomGL2(F )(π1 ⊗ π2, π3).

Here GL2(F ) maps diagonally into M(F ). Therefore the Hom space is isomorphic to the

Hom space of the trilinear GL2 model for the representation π0 = π1⊗π2⊗π3. Since π3

is a principal series, π0,D = 0. By Theorem 7.2.1, m(π0) = 1 6= 0, hence the Hom space

is nonzero and this proves Lemma 6.5.1. Now the proofs of our main theorems

(Theorem 1.2.1 and Theorem 1.2.2) are complete for the archimedean case.



Chapter 8

The Proof of the Spectral Side of

the Trace Formula

For the rest of this paper, we assume that F is p-adic except for Chapter

14 and 15. In this chapter, we will prove the spectral side of the trace formula. In

Section 8.1, we will prove the integral defining I(f) is absolutely convergent. We will

postpone the proof of a technical proposition (i.e Proposition 8.1.1) to Appendix B.

Then in Section 8.2, we prove the spectral expansion.

8.1 Absolutely Convergence of I(f)

Let χ be an unitary characters of F× and let η = χ2. For f ∈ C(ZG(F )\G(F ), η−1), as

in Chapter 5, define the function I(f, ·) on R(F )\G(F ) to be

I(f, x) =

∫
ZR(F )\R(F )

f(x−1hx)ω ⊗ ξ(h)dh.

By Lemma 4.3.1(2), the above integral is absolutely convergent. The following Propo-

sition together with Proposition 4.4.1(3) tell us that the integral

I(f) :=

∫
R(F )\G(F )

I(f, x)dx

is also absolutely convergent for all f ∈ Cscusp(ZG(F )\G(F ), η−1), and it defines a

continuous linear form

Cscusp(ZG(F )\G(F ), η−1)→ C : f → I(f).
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In particular, this implies that

lim
N→∞

IN (f) = I(f). (8.1)

Proposition 8.1.1. 1. There exist d > 0 and a continuous semi-norm ν on C(ZG(F )\G(F ), η−1)

such that

|I(f, x)| ≤ ν(f)ΞR\G(x)2σR\G(x)d

for all f ∈ C(ZG(F )\G(F ), η−1) and x ∈ R(F )\G(F ).

2. For all d > 0, there exists a continuous semi-norm νd on C(ZG(F )\G(F ), η−1)

such that

|I(f, x)| ≤ νd(f)ΞR\G(x)2σR\G(x)−d

for all f ∈ Cscusp(ZG(F )\G(F ), η−1) and x ∈ R(F )\G(F ).

Proof. The proof goes exactly the same as the Gan-Gross-Prasad model case in Propo-

sition 7.1.1 of [B15]. We will postpone the proof to Appendix B.

8.2 The Proof of the Spectral Expansion

In this section, we are going to prove the spectral side of the trace formula.

Theorem 8.2.1. For all f ∈ Cscusp(ZG(F )\G(F ), η−1), we have

I(f) = Ispec(f). (8.2)

Here Ispec(f) is defined in Section 5.2.

We follow the method developed by Beuzart-Plessis in [B15] for the GGP case. We

fix f ∈ Cscusp(ZG(F )\G(F ), η−1). For all f ′ ∈ C(ZG(F )\G(F ), η), define

KA
f,f ′(g1, g2) =

∫
ZG(F )\G(F )

f(g−1
1 gg2)f ′(g)dg, g1, g2 ∈ G(F ),

K1
f,f ′(g, x) =

∫
ZR(F )\R(F )

KA
f,f ′(g, hx)ξ(h)ω(h)dh, g, x ∈ G(F ),

K2
f,f ′(x, y) =

∫
ZR(F )\R(F )

K1
f,f ′(h

−1x, y)ξ(h)ω(h)dh, x, y ∈ G(F ),

Jaux(f, f ′) =

∫
R(F )\G(F )

K2
f,f ′(x, x)dx.
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Proposition 8.2.2. 1. The integral defining KA
f,f ′(g1, g2) is absolutely convergent.

For all g1 ∈ G(F ), the map

g2 ∈ G(F )→ KA
f,f ′(g1, g2)

belongs to C(ZG(F )\G(F ), η−1). For all d > 0, there exists d′ > 0 such that for

all continuous semi-norm ν on Cwd′(ZG(F )\G(F ), η−1), there exists a continuous

semi-norm µ on C(ZG(F )\G(F ), η) such that

ν(KA
f,f ′(g, ·)) ≤ µ(f ′)ΞG(g)σ0(g)−d

for all f ′ ∈ C(ZG(F )\G(F ), η) and g ∈ G(F ).

2. The integral defining K1
f,f ′(g, x) is absolutely convergent. For all d > 0, there exist

d′ > 0 and a continuous semi-norm νd,d′ on C(ZG(F )\G(F ), η) such that

|K1
f,f ′(g, x)| ≤ νd,d′(f ′)ΞG(g)σ0(g)−dΞR\G(x)σR\G(x)d

′

for all f ′ ∈ C(ZG(F )\G(F ), η) and g, x ∈ G(F ).

3. The integral defining K2
f,f ′(x, y) is absolutely convergent. We have

K2
f,f ′(x, y) =

∫
Πtemp(G,η)

Lπ(π(x)π(f)π(y−1))Lπ(π(f ′))µ(π)dπ (8.3)

for all f ′ ∈ C(ZG(F )\G(F ), η) and x, y ∈ G(F ).

4. The integral defining Jaux(f, f ′) is absolutely convergent. And for all d > 0, there

exists a continuous semi-norm νd on C(ZG(F )\G(F ), η) such that |K2
f,f ′(x, x)| ≤

νd(f
′)ΞR\G(x)2σR\G(x)−d for all f ′ ∈ C(ZG(F )\G(F ), η) and x ∈ R(F )\G(F ).

Moreover, the linear map

f ′ ∈ C(ZG(F )\G(F ), η)→ Jaux(f, f ′) (8.4)

is continuous.

Proof. (1) follows from Theorem 3.5.4(1). (2) follows from part (1) together with Lemma

4.3.1(2) and Lemma 6.2.3(2). For (3), the absolutely convergence follows from part (2)

and Lemma 4.3.1(2). The equation (8.3) follows from Lemma 6.2.2(5).
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For (4), by Lemma 6.2.2(1), the section

T (f ′) : π ∈ Πtemp(G, η) 7→ Lπ(π(f ′))π(f) ∈ End(π)∞

is smooth. It is also compactly supported since we are in the p-adic case. Then by the

matrical Paley-Wiener Theorem, there exists a unique element ϕf ′ ∈ C(ZG(F )\G(F ), η−1)

such that π(ϕf ′) = Lπ(π(f ′))π(f) for all π ∈ Πtemp(G, η). Since f is strongly cuspidal,

by Proposition 3.5.2, ϕf ′ is also strongly cuspidal. Then by (8.3), we have

K2
f,f ′(x, x) =

∫
Πtemp(G,η)

Lπ(π(x)π(f)π(x−1))Lπ(π(f ′))µ(π)dπ

=

∫
Πtemp(G,η)

Lπ(π(x)π(ϕf ′)π(x−1))µ(π)dπ

=

∫
ZH(F )\H(F )

ϕf ′(x
−1hx)ξ(h)ω(h)dh = I(ϕf ′ , x).

Here the third equation follows from Lemma 6.2.2(4). Then by Proposition 8.1.1,

for all d > 0, there exists a continuous semi-norm νd on C(ZG(F )\G(F ), η) such

that |K2
f,f ′(x, x)| ≤ νd(ϕf ′)Ξ

G\G(x)2σG\G(x)−d for all f ′ ∈ C(ZG(F )\G(F ), η) and

x ∈ R(F )\G(F ). Combining with Proposition 4.4.1(4), we know the integral defin-

ing Jaux(f, f ′) is absolutely convergent. Finally, in order to prove the rest part of (4), it

is enough to show that the map C(ZG(F )\G(F ), η) → C(ZG(F )\G(F ), η−1) : f ′ 7→ ϕf ′

is continuous. By the matrical Paley-Wiener Theorem, it is enough to show that the

map

f ′ ∈ C(ZG(F )\G(F ), η) 7→ (π ∈ Πtemp(G, η)→ π(ϕf ′) = Lπ(π(f ′))π(f)) ∈ C(Πtemp(G, η))

is continuous. This just follows from Lemma 6.2.2(1). This proves (4).

Proposition 8.2.3. For all f ′ ∈ C(ZG(F )\G(F ), η), we have

Jaux(f, f ′) =

∫
Πtemp(G,χ)

θf (π)Lπ(π(f ′))dπ.

Proof. The idea of proof comes from [B15]. Let a : Gm(F ) → ZG0(F ) be a homomor-

phism defined by a(t) = diag(t, t, 1, 1, t−1, t−1) in the split case, and a(t) = diag(t, 1, t−1)

in the non-split case. Then we have λ(a(t)ha(t)−1) = tλ(h) for all h ∈ R(F ) and

t ∈ Gm(F ). Fix f ′ ∈ C(ZG(F )\G(F ), η). Since we are in the p-adic case, we can find
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an open compact neighborhood Ka of 1 in F× such that Ada(t)f
′ = f ′ for all t ∈ Ka.

Let ϕ ∈ C∞c (F×) be the characteristic function on Ka divided by the measure of Ka.

Then we have f ′ = Ada(ϕ)(f ′) and Jaux(f, f ′) =
∫
F× ϕ(t)Jaux(f,Ada(t)f

′)dt. By the

definition of Jaux, we have

Jaux(f, f ′) =

∫
F×

∫
R(F )\G(F )

ϕ(t)K2
f,Ada(t)f ′(x, x)dxdt.

By part (4) of the previous proposition, the double integral above is absolutely conver-

gent. Then by changing variable x 7→ a(t)−1x and switching the two integrals (note that

the Jacobian of the transform h ∈ R(F ) 7→ a(t)ha(t)−1 ∈ R(F ) is equal to δP (a(t))),

we have

Jaux(f, f ′) =

∫
R(F )\G(F )

∫
F×

ϕ(t)δP (a(t))−1K2
f,Ada(t)f ′(a(t)x, a(t)x)dtdx. (8.5)

By the definition of K2
f,f ′ , the inner integral is equal to∫

F×
ϕ(t)δP (a(t))−1

∫
ZR(F )\R(F )

K1
f,Ada(t)f ′(ha(t)x, a(t)x)ξ(h)−1ω(h)−1dhdt.

By part (2) of the previous proposition, the double integral above is still absolutely

convergent. By changing variable h→ a(t)−1ha(t) and switching the two integrals, we

have ∫
F×

ϕ(t)δP (a(t))−1K2
f,Ada(t)f ′(a(t)x, a(t)x)dt (8.6)

=

∫
ZR(F )\R(F )

∫
F×

ϕ(t)K1
f,Ada(t)f ′(a(t)hx, a(t)x)ψ(−tλ(h))ω(h)−1dtdh

=

∫
ZR(F )\R(F )

∫
F×

ϕ(t)K1
f,Ra(t)f ′(hx, a(t)x)ψ(−tλ(h))ω(h)−1dtdh.

Here Ra(t) stands for the right translation by a(t). By the definition of K1
f,f ′ , the inner

integral above is equal to∫
F×

ϕ(t)

∫
ZR(F )\R(F )

KA
f,Ra(t)f ′(hx, h

′a(t)x)ξ(h′)ω(h′)dh′ψ(−tλ(h))ω(h)−1dt.

By changing variable h′ → a(t)−1h′a(t)h−1, this equals∫
F×

ϕ(t)

∫
ZR(F )\R(F )

KA
f,Ra(t)f ′(hx, a(t)h′hx)δP (a(t))ψ(tλ(h′))ω(h′)dh′dt

=

∫
F×

ϕ(t)

∫
ZR(F )\R(F )

KA
f,f ′(hx, h

′hx)δP (a(t))ψ(tλ(h′))ω(h′)dh′dt.
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By part (1) of the previous proposition, the integral above is absolutely convergent. By

switching two integrals, we have∫
F×

ϕ(t)K1
f,Ra(t)f ′(hx, a(t)x)ψ(−tλ(h))ω(h)−1dt (8.7)

=

∫
ZR(F )\R(F )

∫
F×

KA
f,f ′(hx, h

′hx)ϕ(t)δP (a(t))ψ(tλ(h′))ω(h′)dh′dt.

We know dt = |t|−1dat where dat is an additive Haar measure on F . Let ϕ′(t) =

ϕ(t)δP (a(t))|t|−1 and let ϕ̂′(x) =
∫
F ϕ
′(t)ψ(tx)dt for x ∈ F . Combining (8.5), (8.6) and

(8.7), we have

Jaux(f, f ′) =

∫
R(F )\G(F )

∫
ZR(F )\R(F )

∫
ZR(F )\R(F )

KA
f,f ′(hx, h

′hx)ϕ̂′(λ(h′))ω(h′)dh′dhdx.

(8.8)

For N,M > 0, let αN : R(F )\G(F ) → {0, 1} (resp. βM : ZG(F )\G(F ) → {0, 1})
be the characteristic function of the set {x ∈ R(F )\G(F )|σR\G(x) ≤ N} (resp. {g ∈
ZG(F )\G(F )|σ0(g) ≤M}). For N ≥ 1 and C > 0, define

Jaux,N (f, f ′) =

∫
R(F )\G(F )

αN (x)

∫
ZR(F )\R(F )

∫
ZR(F )\R(F )

KA
f,f ′(hx, h

′hx)ϕ̂′(λ(h′))ω(h′)dh′dhdx,

Jaux,N,C(f, f ′) =

∫
R(F )\G(F )

αN (x)

∫
ZR(F )\R(F )

∫
ZR(F )\R(F )

βC log(N)(h
′)KA

f,f ′(hx, h
′hx)ϕ̂′(λ(h′))ω(h′)dh′dhdx.

By equation (8.8), we have

Jaux(f, f ′) = lim
N→∞

Jaux,N (f ′). (8.9)

We need to prove

(1) The triple integrals defining Jaux,N (f, f ′) and Jaux,N,C(f, f ′) are absolutely con-

vergent. Moreover, there exists C > 0 such that

|Jaux,N (f, f ′)− Jaux,N,C(f, f ′)| � N−1

for all N ≥ 1.
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In fact, since ϕ̂′ is compactly supported on F , we have |ϕ̂′(λ)| � (1 + |λ|)−1 for all

λ ∈ F . Combining with Theorem 3.5.4, we know that there exists d > 0 such that

|Jaux,N (f, f ′)| �
∫
R(F )\G(F )

αN (x)

∫
ZR(F )\R(F )

∫
ZR(F )\R(F )

ΞG(hx)ΞG(h′hx)σ0(hx)dσ0(h′hx)d(1 + |λ(h′)|)−1dh′dhdx,

|Jaux,N,C(f, f ′)| �
∫
R(F )\G(F )

αN (x)

∫
ZR(F )\R(F )

∫
ZR(F )\R(F )

βC log(N)(h
′)ΞG(hx)ΞG(h′hx)σ0(hx)dσ0(h′hx)d(1 + |λ(h′)|)−1dh′dhdx,

and

|Jaux,N (f, f ′)− Jaux,N,C(f, f ′)| �
∫
R(F )\G(F )

αN (x)

∫
ZR(F )\R(F )

×
∫
ZR(F )\R(F )

1σ0≥C log(N)(h
′)ΞG(hx)ΞG(h′hx)σ0(hx)dσ0(h′hx)d(1 + |λ(h′)|)−1dh′dhdx

for all N ≥ 1 and C ≥ 1. Applying (7) of Proposition 4.4.1 to the case c = 1, we know

that there exists d′ > 0 such that the first two integrals above are essentially bounded

by ∫
R(F )\G(F )

αN (x)ΞR\G(x)2σR\G(x)d
′
dx.

This is absolutely convergent since the integrand is compactly supported. Then by

applying (7) of Proposition 4.4.1 again, we know the third integral is essentially bounded

by

e−εC log(N)

∫
R(F )\G(F )

αN (x)ΞR\G(x)2σR\G(x)d
′
dx, N ≥ 1, C > 0.

for some ε, d′ > 0. By (4) of Proposition 4.4.1, there exists d′′ > 0 such that the last

integral is essentially bounded by Nd′′ for all N ≥ 1. Then once we choose C larger

than (d′′ + 1)/ε, we have the estimation in (1). This proves (1).

From now on, we fix some C > 0 satisfies (1). Then we have

Jaux(f, f ′) = lim
N→∞

Jaux,N,C(f, f ′). (8.10)

Since the integral defining Jaux,N,C is absolutely convergent, we can combine the first
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two parts and then switch two integrals. This implies that

Jaux,N,C(f, f ′) =

∫
ZG(F )\G(F )

αN (g)

∫
ZR(F )\R(F )

KA
f,f ′(g, h

′g)βC log(N)(h
′)ϕ̂′(λ(h′))ω(h′)dh′dg (8.11)

=

∫
ZR(F )\R(F )

βC log(N)(h)ϕ̂′(λ(h))ω(h)

×
∫
ZG(F )\G(F )

αN (g)KA
f,f ′(g, hg)dgdh.

We are going to prove that for all N ≥ 1, we have

|Jaux,N,C(f, f ′)− Jaux,C(f, f ′)| � N−1 (8.12)

where

Jaux,C(f, f ′) =

∫
ZR(F )\R(F )

βC log(N)(h)ϕ̂′(λ(h))ω(h)

∫
ZG(F )\G(F )

KA
f,f ′(g, hg)dgdh.

In fact, since f is strongly cuspidal, by Theorem 3.5.4(3), there exists c1 > 0 such that

for all d > 0, there exists d′ > 0 such that

|KA
f,f ′(g, hg)| � ΞG(g)2σ0(g)−dec1σ0(h)σ0(h)d

′

for all g ∈ G(F ) and h ∈ R(F ). Fix such c1 > 0, and choose d0 > 0 so that the function

g → ΞG(g)2σ0(g)−d0 is integrable on G(F )/ZG(F ). Then for all d > d0, there exists

d′ > 0 such that the left hand side of (8.12) is essentially bounded by

N c1C−d+d0 log(N)d
′
∫
ZR(F )\R(F )

βC log(N)(h)dh

for all N ≥ 1. It is easy to see that the integral above is essentially bounded by N c2 for

some c2 > 0. Therefore once we choose d > c1C + d0 + c2 + 1, we have the estimation

in (8.12). This proves (8.12). Therefore we have

Jaux(f, f ′) = lim
N→∞

∫
ZR(F )\R(F )

βC log(N)(h)ϕ̂′(λ(h))ω(h)

×
∫
ZG(F )\G(F )

KA
f,f ′(g, hg)dgdh. (8.13)

Since f is strongly cuspidal, by Theorem 3.5.4(4), we have∫
ZG(F )\G(F )

KA
f,f ′(g, hg)dg =

∫
Πtemp(G,η)

θf (π)θπ̄(R(h−1)f ′)dπ. (8.14)
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Since π is tempered, |θπ̄(R(h−1)f ′)| � ΞG(h) for all h ∈ R(F ). Combining with the

fact that θf (π) is smooth and compactly supported on Πtemp(G, η), we have∫
Πtemp(G,η)

|θf (π)θπ̄(R(h−1)f ′)|dπ � ΞG(h).

Combining with Lemma 4.3.1, we know that the integral∫
ZR(F )\R(F )

ϕ̂′(λ(h))ω(h)

∫
Πtemp(G,η)

θf (π)θπ̄(R(h−1)f ′)dπdh

is absolutely convergent. Combining with (8.13) and (8.14), the integral above is equal

to Jaux(f, f ′). By switching the two integrals and applying Lemma 6.1.2, we have

Jaux(f, f ′) =

∫
Πtemp(G,η)

θf (π)Lπ(π(Ada(ϕ)f ′))dπ

=

∫
Πtemp(G,η)

θf (π)Lπ(π(f ′))dπ.

This finishes the proof of the Proposition.

Now we are ready to prove Theorem 8.2.1. Recall that I(f) =
∫
R(F )\G(F ) I(f, x)dx

where I(f, x) =
∫
ZR(F )\R(F ) f(x−1hx)ω ⊗ ξ(h)dh. By applying Lemma 6.2.2, we have

I(f, x) =

∫
Πtemp(G,η)

Lπ(π(x)π(f)π(x)−1)µ(π)dπ. (8.15)

By Corollary 6.6.4, there exists a function f ′ ∈ C(ZG(F )\G(F ), η) such that

Lπ(π(f ′)) = m(π)

for all π ∈ Πtemp(G, η) with π(f) 6= 0. By Theorem 6.2.1 and Corollary 6.6.4, for all

π ∈ Πtemp(G, η), Lπ 6= 0 if and only if m(π) = 1. Then (8.15) becomes

I(f, x) =

∫
Πtemp(G,η)

Lπ(π(x)π(f)π(x)−1)Lπ(π(f ′))µ(π)dπ.

Combining with Proposition 8.2.2(3), we have I(f, x) = K2
f,f ′(x, x). Therefore I(f) =

Jaux(f, f ′). By the previous Proposition, together with the fact that Lπ(π(f ′)) =

m(π) = m(π̄), we have

I(f) = Jaux(f, f ′) =

∫
Πtemp(G,η)

θf (π)m(π̄)dπ = Ispec(f).

This finishes the proof of Theorem 8.2.1.



Chapter 9

Localization

Starting from this chapter, we are going to prove the geometric side of the trace formula.

As we proved in Proposition 5.2.3, it is enough to consider functions with trivial central

character. We fix a strongly cuspidal function f ∈ C∞c (ZG(F )\G(F )). In this chapter,

our goal is to localize both sides of the trace formula in (5.7) (i.e IN (f) and Igeom(f)).

This will allows us to reduce the proof of the trace formula to the Lie algebra level.

In Section 9.1, we will talk about the localization at a semisimple element which

is not conjugate to an element in H(F ). We can easily show that in this case, both

IN (f) and Igeom(f) are equal to zero. In Section 9.2, we consider the localization at

the split elements of H(F ). By applying the spectral side of the trace formula and the

inductional hypothesis, we can again show that both IN (f) and Igeom(f) are equal to

zero. In Section 9.3, we will talk about the localization of IN (f) at all other semisimple

elements of H(F ). Finally in Section 9.4, we will talk about the localization of Igeom(f).

9.1 A Trivial Case

If x ∈ Gss(F ) that is not conjugate to an element in H(F ), then we can easily find a

good neighborhood ω of 0 in gx(F ) small enough such that x exp(X) is not conjugate

to an element in H(F ) for any X ∈ ω. Let Ω = ZG(F ) · (x exp(ω))G. It follows that

Ω∩H(F ) = ∅. Suppose that f is supported on Ω. For every t ∈ Hss(F ), the complement

of Ω in G(F ) is an open neighborhood of t invariant under conjugation, and is away

from the support of f . It follows that θf also vanishes on an open neighborhood of t,
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and hence that Igeom(f) = 0. On the other hand, the semisimple part of elements in

U(F )H(F ) belongs to H(F ). Thus gf ξ = 0 for every g ∈ G(F ), and so IN (f) = 0.

Therefore the trace formula holds for f .

9.2 Localization at the split elements

If x ∈ Hss(F ) such that x =

(
a 0

0 b

)
with a 6= b. Note that this only happens in the

split case, i.e. G = GL6(F ) and H = GL2(F ). We can easily find a good neighborhood

ω of 0 in gx(F ) small enough such that x exp(X) is not an elliptic element of G for any

X ∈ ω. Let Ω = ZG(F ) · (x exp(ω))G. Then Ω does not contain any elliptic element of

G. Suppose that f is supported on Ω. We are going to prove the trace formula for f ,

i.e.

lim
N→∞

IN (f) = Igeom(f). (9.1)

The main ingredients in our proof are the spectral expansion and the inductional hy-

pothesis.

First, by the spectral expansion we proved in the previous chapter, we have

lim
N→∞

IN (f) =

∫
Πtemp(G,1)

θf (π)m(π̄)dπ. (9.2)

For any π ∈ Πtemp(G, 1), similar to the definition of Igeom(f), we define the geometric

multiplicity mgeom(π) to be

mgeom(π) =
∑
T∈T
|W (H0, T )|−1ν(T )

∫
ZG(F )\T (F )

cπ(t)DH(t)∆(t)dt.

Here cπ(t) = cθπ(t) is the germ associated to the distribution character θπ. Then by

Proposition 3.5.3 together with the definition of Igeom(f), we have

Igeom(f) =

∫
Πtemp(G,1)

θf (π)mgeom(π̄)dπ. (9.3)

Combining (9.2) and (9.3), we have

lim
N→∞

IN (f)− Igeom(f) =

∫
Πtemp(G,1)

θf (π)(m(π̄)−mgeom(π̄))dπ. (9.4)
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Let Π2(G, 1) ⊂ Πtemp(G, 1) be the subset of discrete series, and let Π′temp(G, 1) =

Πtemp(G, 1) − Π2(G, 1). For all π ∈ Π2(G, 1), since the support of f does not contain

any elliptic element and since f is strongly cuspidal, we have θf (π) = tr(π(f)) = 0.

Therefore (9.4) becomes

lim
N→∞

IN (f)− Igeom(f) =

∫
Π′temp(G,1)

θf (π)(m(π̄)−mgeom(π̄))dπ. (9.5)

For π ∈ Π′temp(G, 1), we can find a proper parabolic subgroup Q = LN and a discrete

series τ of L(F ) such that π = IGQ (τ). By Corollary 6.6.4, we have m(π) = m(τ) where

m(τ) is the multiplicity of the reduced model. Moreover, by inductional hypothesis as

in Section 5.4, we have m(τ) = mgeom(τ). Later in Lemma 13.1.1, we will also prove

that mgeom(π) = mgeom(τ). Combining all the equations above, we have

m(π) = mgeom(π)

for all π ∈ Π′temp(G, 1). Put this equation into (9.5), we have

lim
N→∞

IN (f)− Igeom(f) = 0.

This proves the trace formula.

9.3 Localization of IN(f)

For x ∈ Hss(F ), let Ux = U ∩ Gx. Fix a good neighborhood ω of 0 in gx(F ), and let

Ω = (x exp(ω))G · ZG(F ). By the discussion in the previous section, we can assume

that x is elliptic in H(F ). We can decompose gx,0 and hx,0 into gx,0 = g′x ⊕ g′′ and

hx,0 = h′x ⊕ h′′, where g′x = h′x is the common center of gx,0 and hx,0, g′′ and h′′ are the

semisimple parts. To be specific, the decomposition is given as follows: (Recall that for

any Lie algebra p, we define p0 to be the subalgebra consisting of elements in p with

zero trace.)

• If x is contained in the center, then Gx = G,Hx = H. Define

g′x = h′x = 0, g′′ = gx,0, h
′′ = hx,0,
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• If x is not split, then it is conjugate to a regular element in the torus Tv for

some v ∈ F×/(F×)2, v 6= 1. Recall Tv is the non-split torus of H(F ) that is

F-isomorphic to Fv = F (
√
v). In this case, Gx = GL3(Fv), Hx = GL1(Fv). Define

g′x = h′x = {diag(a, a, a) | a ∈ Fv, trFv/F (a) = 0},

g′′ = sl3(Fv),

h′′ = 0.

Then for every torus T ∈ T (Gx) (here T (Gx) stands for the set of maximal tori in Gx),

we can write t0 = t′⊕ t′′ with t′ = g′x = h′x. The idea of the decomposition above is that

g′x = h′x is the extra center in gx, and (g′′, h′′ ⊕ ux) stands for the reduced model after

localization. In fact, if x is in the center, it is just the Ginzburg-Rallis model; when x

is not in the center, it is the Whittaker model.

Remark 9.3.1. There are two kinds of reduced models in our proof of the trace formula.

In Section 4.5 and 5.4, we have already talked about the reduced models coming from

the parabolic induction. Those reduced models have been used in the proof of the spectral

side of the trace formula. Here we have another type of reduced models coming from

localization. These models will be used in the proof of the geometric side of the trace

formula.

From now on, we choose the function f such that Supp(f) ⊂ Ω.

Definition 9.3.2. Define a function gfx,ω on gx,0(F ) by

gfx,ω(X) =

f(g−1x exp(X)g), if X ∈ ω;

0, otherwise.
(9.6)

Here we still view ω as a subset of gx,0 via the projection gx → gx,0. We define

gf ξx,ω(X) =

∫
ux(F )

gfx,ω(X +N)ξ(N)dN, (9.7)

Ix,ω(f, g) =

∫
hx,0(F )

gf ξx,ω(X)dX, (9.8)

Ix,ω,N (f) =

∫
Ux(F )Hx(F )\G(F )

Ix,ω(f, g)κN (g)dg. (9.9)
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Remark 9.3.3. The function g → Ix,ω(f, g) is left Ux(F )Hx(F )-invariant. By Condi-

tion (5) of good neighborhood (as in Definition 3.1.1), there exists a subset Γ ⊂ G(F ),

compact modulo center, such that gfx,ω(X) ≡ 0 for g /∈ Gx(F )Γ. Together with the fact

that the function g → κN (gγ) on Gx(F ) has compact support modulo Ux(F )Hx(F ) for

all γ ∈ G(F ), we know that the integrand in (9.9) is compactly supported. Therefore the

integral is absolutely convergent.

Proposition 9.3.4. IN (f) = C(x)Ix,ω,N (f) where C(x) = DH(x)∆(x).

Proof. By the Weyl Integration Formula, we have

I(f, g) = ΣT∈T (H) |W (H,T ) |−1

∫
ZH(F )\T (F )

JH(t, gf ξ)DH(t)1/2dt (9.10)

where

JH(t, F ) = DH(t)1/2

∫
Ht(F )\H(F )

F (g−1tg)dg

is the orbital integral. For given T ∈ T (H) and t ∈ T (F ) ∩ Hreg(F ), we need the

following lemma, the proof the lemma will be given after the proof this proposition.

Lemma 9.3.5. For t ∈ T (F ), the followings hold.

1. If t does not belong to the following set

∪T1∈T (Hx) ∪w∈W (T1,T ) w(x exp(t1(F ) ∩ ω))w−1 · ZG(F ),

then JH(t, gf ξ) = 0. Here W (T1, T ) is the set of isomorphisms between T and T1

induced by conjugation by elements in H(F ), i.e. W (T1, T ) = T\{h ∈ H(F )|hT1h
−1 =

T}/T1.

2. If x is not contained in the center, each components in (1) are disjoint. If x is

contained in the center, two components in (1) are either disjoint or coincide.

They coincide if and only if T = T1 in T (H). Therefore, for each component

(T1, w), the number of components which coincide with it (include itself) is equal

to W (Hx, T1).

By the lemma above, we can rewrite the expression (9.10) of I(f, g) as

I(f, g) = ΣT1∈T (Hx)ΣT∈T (H)Σw1∈W (T1,T )|W (H,T )|−1|W (Hx, T1)|−1
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×
∫
t1,0(F )∩ω

JH(w1(w exp(X))w−1
1 , gf ξ)DH(w1(w exp(X))w−1

1 )1/2dX.

Note that both integrands above are invariant under H(F )-conjugate, W (T1, T ) 6= ∅ if

and only if T = T1 in T (H), and in that case W (T, T1) = W (H,T ). This implies that

I(f, g) = ΣT1∈T (Hx) |W (Hx, T1) |−1

∫
t1,0(F )∩ω

JH(x exp(X), gf ξ)DH(x exp(X))1/2dX.

(9.11)

On the other hand, by Parts (3) and (5) of Proposition 3.1.2, for all T1 ∈ T (Hx) and

for all X ∈ ω ∩ t1,0,reg(F ), we have

JH(x exp(X), gf ξ) = DH(x exp(X))1/2 (9.12)

×
∫
Hx(F )\H(F )

∫
T1(F )\Hx(F )

ygf ξ(x exp(h−1Xh))dhdy,

and

DH(x exp(X)) = DH(x) ·DHx(X). (9.13)

So if we combine (9.11), (9.12), (9.13), together with the definition of IN (f) (as in (5.3)),

we have

IN (f) =

∫
U(F )H(F )\G(F )

ΣT1∈T (Hx) |W (Hx, T1) |−1

×
∫
t1,0(F )∩ω

JH(x exp(X), gf ξ)DH(x exp(X))1/2dXκN (g)dg (9.14)

= DH(x)

∫
U(F )Hx(F )\G(F )

Φ(g)κN (g)dg

where

Φ(g) = ΣT1∈T (Hx) |W (Hx, T1) |−1

×
∫
t1,0(F )∩ω

∫
T1(F )\Hx(F )

gf ξ(x exp(h−1Xh))dhDHx(X)dX.

Applying the Weyl Integration Formula to Φ(g), we have

Φ(g) =

∫
hx,0(F )

ϕg(X)dX (9.15)

where

ϕg(X) =

gf ξ(x exp(X ′)), if X = X ′ + Z,X ′ ∈ ω,Z ∈ zh(F );

0, otherwise.
(9.16)
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On the other hand, for X ∈ ω ∩ hx,reg(F ) and g ∈ G(F ),

gf ξ(x exp(X)) =

∫
U(F )

gf(x exp(X)u)ξ(u)du

=

∫
Ux(F )\U(F )

∫
Ux(F )

gf(x exp(X)uv)ξ(uv)dudv. (9.17)

For u ∈ Ux(F ), the map v → (x exp(X)u)−1v−1(x exp(X)u)v is a bijection of

Ux(F )\U(F ). By the Condition (7)ρ of good neighborhood (as in Definition 3.1.1),

the Jacobian of this map is

| det((1− ad(x)−1) |U(F )/Ux(F )) |F= ∆(x).

Also it is easy to see that

ξ((x exp(X)u)−1v−1(x exp(X)u)v) = 1.

By making the transform v → (x exp(X)u)−1v−1(x exp(X)u)v in (9.17), we have

gf ξ(x exp(X)) = ∆(x)

∫
Ux(F )\U(F )

∫
Ux(F )

gf(v−1x exp(X)uv)ξ(u)dudv

= ∆(x)

∫
Ux(F )\U(F )

∫
Ux(F )

vgf(x exp(X)u)ξ(u)dudv. (9.18)

By Condition (6) of good neighborhood (as in Definition 3.1.1), for all X ∈ ω, the map

ux(F )→ Ux(F ) given by

N 7→ exp(−X) exp(X +N)

is a bijection and preserves the measure. Also we have

ξ(exp(−X) exp(X +N)) = ξ(N).

So we can rewrite (9.18) as

gf ξ(x exp(X)) = ∆(x)

∫
Ux(F )\U(F )

∫
ux(F )

vgf(x exp(X +N))ξ(N)dNdv.

For X ∈ ωreg, X +N can be conjugated to X by an element in Gx(F ), so X +N ∈ ω,

and vgf(x exp(X + N)) = vgfx,ω(X + N) by the definition of gfx,ω (as in (9.6)). This

implies that
gf ξ(x exp(X)) = ∆(x)

∫
Ux(F )\U(F )

vgf ξx,ω(X)dv. (9.19)
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Now, combining (9.19) and (9.16), we have

ϕg(X) = ∆(x)

∫
Ux(F )\U(F )

vgf ξx,ω(X ′)dv.

Then combining the above equation with (9.15) and changing the order of integration,

we have

Φ(g) = ∆(x)

∫
Ux(F )\U(F )

Ix,ω(f, vg)dv. (9.20)

Finally combining the above equation with (9.14) and using the fact that C(x) =

∆(x)DH(x), we have

IN (f) = C(x)

∫
Ux(F )Hx(F )\G(F )

Ix,ω(f, g)κN (g)dg = C(x)Ix,ω,N (f).

This finishes the proof of the Proposition.

Now we prove Lemma 9.3.5.

Proof. If JH(t, gf ξ) 6= 0, there exists u ∈ U(F ) such that tu is conjugate to an element

in Supp(f). If we only consider the semisimple part, since we assume that Supp(f) ⊂
Ω = ZG(F ) · (x exp(ω))G, there exist y ∈ G(F ), X ∈ ω and z ∈ ZG(F ), such that

yty−1 = x exp(X)z. By changing t to tz, we may assume that z = 1. Then by

conjugating X by an element y′ ∈ Gx(F ) and changing y to y′y, we may assume that

X ∈ t1(F ) for some T1 ∈ T (Gx).

If x is in the center, we have that Gx = G. Since t ∈ H, by changing y we may

assume that X ∈ h ∩ gx = hx. By further conjugating by an element in Hx(F ), we

can just assume that X ∈ t1(F ) for some T1 ∈ T (Hx). If x is not contained in the

center, then Gx = GL3(Fv). Assume that the eigenvalues of x are λ, λ, λ, µ, µ, µ for

some λ, µ ∈ Fv with λ 6= µ. Note that for t ∈ H, its eigenvalues are of the same form,

but may lie in some other quadratic extension of F . Now if ω is small enough with

respect to µ−λ, the eigenvalues of the given X ∈ ω must have the same form. It follows

that X ∈ h(F ), and X ∈ h(F ) ∩ gx(F ) = hx(F ). After a further conjugation by an

element in Hx(F ), we can still assume that X ∈ t1(F ) for some T1 ∈ T (Hx).

By the above discussion, we can always assume that X ∈ t1(F ) for some T1 ∈ T (Hx).

Since the Weyl group of G with respect to T equals the Weyl group of H with respect

to T , any G(F )−conjugation between T and T1 can be realized by an element in H(F ).
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Here we define the Weyl group of T in G to be the quotient of the normalizer of T in G

with the centralizer of T in G. Moreover, if such a conjugation exists, T = T1 in T (H)

and the conjugation is given by the Weyl element w ∈W (T, T1). This finishes the proof

of Part (1).

Part (2) is very easy to verify. If x is not in the center, let λ and µ be the eigenvalues

of x. Then λ 6= µ, where λ and µ lie inside a quadratic extension of F . Once we choose

ω small enough with respect to λ− µ, it is easy to see that each components in (1) are

disjoint. If x is in the center, by the proof of part (1), the components corresponding to

T does not intersect with other components. Since the Weyl group W (T1, T ) 'W (H,T )

is of order 2, there are two components corresponding to T , and these two components

coincide because ω is G = Gx-invariant in this case. This finishes the proof of (2).

9.4 Localization of Igeom(f)

We slightly modify the notation of Section 5.1: If x ∈ ZH(F ), then Hx = H. In this

case, we let Tx = T . (Recall that T is a subset of subtori of H defined in Section 5.1.)

If x /∈ ZH(F ), Hx is GL1(Fv) for some v ∈ F×/(F×)2, v 6= 1. Let Tx be the subset of

T consisting of those nontrivial subtori T ∈ T such that T ∈ Hx, i.e. Tx = {Tv}. Now

for T ∈ Tx, we define the function cf,x,ω on t(F ) as follows: It is zero for elements not

contained in t(F )∩ (ω+ zg(F )). For X = X ′+Y ∈ t(F ) with X ′ ∈ ω, Y ∈ zg(F ), define

cf,x,ω(X) = cf (x exp(X ′)). (9.21)

In fact, the function θf,x,ω defined in (3.18) is a quasi-character in gx, and the function

cf,x,ω we defined above is the germ associated to this quasi-character. Now we define

the function ∆′′ on hx(F ) to be

∆′′(X) = |det(ad(X) |ux(F )/(ux(F ))X )|F . (9.22)

By Condition (7)ρ of Definition 3.1.1, we know that for every X ∈ ω,

∆(x exp(X)) = ∆(x)∆′′(X). (9.23)

Let

Ix,ω(f) = ΣT∈Tx |W (Hx, T )|−1ν(T )

∫
t0(F )

cf,x,ω(X)DHx(X)∆′′(X)dX. (9.24)
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By Proposition 5.1.2, the integral above is absolutely convergent.

Proposition 9.4.1. With the notations above, we have

Igeom(f) = C(x)Ix,ω(f). (9.25)

Proof. By applying the same argument as in Lemma 9.3.5, we have the following prop-

erties for the function cf (t):

1. If T ∈ T , and t ∈ T (F ), then cf (t) = 0 if

t /∈ ∪T1∈Tx ∪w∈W (T1,T ) w(x exp(t1(F ) ∪ ω))w−1 · ZG(F ).

2. If x is not contained in the center, each components in (1) are disjoint. If x is

contained in the center, two components in (1) either are disjoint or coincide.

They coincide if and only if T = T1 in T (H). Therefore, for each component

(T1, w), the number of components which coincide with it (include itself) is equal

to W (Hx, T1).

So we can rewrite the expression (5.6) of Igeom(f) as

Igeom(f) = ΣT1∈TxΣT∈T Σw1∈W (T1,T ) |W (H,T ) |−1|W (Hx, T ) |−1 ν(T ) (9.26)

×
∫
t1,0∩ω

cf (w1(x exp(X))w−1
1 )DH(w1(x exp(X))w−1

1 )∆(x exp(X))dX.

Since every integrand in (9.26) is invariant under H(F )-conjugation, together with

Proposition 3.1.2(5) and (9.23), we have

DH(x exp(X))∆(x exp(X)) = DH(x)DHx(X)∆(x)∆′′(X).

Then (9.26) becomes

Igeom(f) = DH(x)∆(x)ΣT1∈Txν(T1) |W (Hx, T ) |−1

×
∫
t1,0(F )

cf,x,ω(X)DHx(X)∆′′(X)dX

= C(x)Ix,ω(f).

This finishes the proof of the Proposition.
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Integral Transfer

10.1 The Problem

In this section, let (G′, H ′, U ′) be one of the followings:

1. G′ = GL6(F ), H ′ = GL2(F ), U ′ is the unipotent radical of the parabolic subgroup

whose Levi is GL2(F )×GL2(F )×GL2(F ).

2. G′ = GL3(D), H ′ = GL1(D), U ′ is the unipotent radical of the parabolic subgroup

whose Levi is GL1(D)×GL1(D)×GL1(D).

3. G′ = GL3(Fv), H
′ = GL1(Fv), for some v ∈ F×/(F×)2 with v 6= 1, U ′ is the

unipotent radical of the upper triangular Borel subgroup.

This basically means that (G′, H ′, U ′) is of the form (Gx, Hx, Ux) for some elliptic ele-

ment x ∈ Hss(F ). Our goal is to simplify the integral Ix,ω,N (f) defined in last chapter.

To be specific, in the definition of Ix,ω,N (f), we first integrate over the Lie algebra of

HxUx, then integrate over UxHx\Gx. In this section, we are going to transfer this inte-

gral into the form
∫
t0(F )

∫
AT (F )\G(F ) where T runs over maximal torus in Gx and t0(F )

is a subset of t(F ) which will be defined later. The reason for doing this is that we want

to apply Arthur’s local trace formula which is of the form
∫
AT (F )\G(F ). Our method

is to study the orbits of the slice representation. We will only write down the proof

for the first two situations. The proof for the last situation follows from the same, but

easier arguments, and hence we will skip it here. So we will still use (G,H,U) instead

130
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of (G′, H ′, U ′) in this chapter. We fix a truncated function κ ∈ C∞c (U(F )H(F )\G(F )),

and a function f ∈ C∞c (g0(F )). Recall that in Section 5.3, we have defined

f ξ(Y ) =

∫
u(F )

f(Y +N)ξ(N)dN

and

I(f, g) =

∫
h0(F )

gf ξ(Y )dY.

Let

Iκ(f) =

∫
U(F )H(F )\G(F )

I(f, g)κ(g)dg. (10.1)

We are going to study Iκ(f).

10.2 Premier Transform

For Ξ =


0 0 0

aI2 0 0

0 bI2 0

, we have that ξ(N) = ψ(< Ξ, N >) for N ∈ u(F ). Here we

use I2 to denote the identity element in h(F ), i.e. in the split case, I2 is the two by two

identity matrix; and in the nonsplit case, I2 is the identity element in the quaternion

algebra. Define

Λ0 = {


A 0 0

0 B 0

0 0 C

 | A+B + C = 0}

and

Σ = Λ0 + u.

Lemma 10.2.1. For all f ∈ C∞c (g0(F )) and Y ∈ h0(F ), we have

(f ξ)ˆ(Y ) =

∫
Σ
f̂(Ξ + Y +X)dX.

Proof. Since g = ū ⊕ h0 ⊕ Λ0 ⊕ u, we may assume that f = fū ⊗ fh0 ⊗ fΛ0 ⊗ fu. Then

we have

f̂ = f̂ū ⊗ f̂h0 ⊗ ˆfΛ0 ⊗ f̂u,

f ξ(Y ) = fū(0)⊗ fh0(Y )⊗ fΛ0(0)⊗ f̂u(Ξ),

(f ξ)ˆ(Y ) = fū(0)⊗ f̂h0(Y )⊗ fΛ0(0)⊗ f̂u(Ξ).
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On the other hand,∫
Σ
f̂(Ξ + Y +X)dX = f̂u(Ξ)f̂h0(Y )

∫
Σ

ˆfΛ0 ⊗ f̂ū(X)dX

= fū(0)⊗ f̂h0(Y )⊗ fΛ0(0)⊗ f̂u(Ξ).

This finishes the proof of the Lemma.

10.3 Description of the Affine Space Ξ + Σ

Let Λ = {


0 0 ∗
0 0 ∗
0 0 0

} be a subset of u(F ).

Lemma 10.3.1. Ξ + Σ is stable under the U(F )-conjugation. The map

U(F )× (Ξ + Λ)→ Ξ + Σ : (u, x) 7→ u−1Xu (10.2)

is an isomorphism of algebraic varieties.

Proof. We have the following two equations
I2 X Z

0 I2 Y

0 0 I2




0 0 0

aI2 0 0

0 bI2 0



I2 −X XY − Z
0 I2 −Y
0 0 I2



=


aX bZ −X2 aX2Y − aXZ − bY Z
aI2 bY − aX aXY − aZ − bY 2

0 bI2 −bY

 ,

and 
I2 X Z

0 I2 Y

0 0 I2




0 0 B

0 0 C

0 0 0



I2 −X XY − Z
0 I2 −Y
0 0 I2

 =


0 0 B +XC

0 0 C

0 0 0

 .

Then the map (10.2) is clearly injective. On the other hand, for any element in Ξ + Σ,

applying the first equation above, we can choose X and Y to match the elements in the

diagonal. Then by applying the second equation, we can choose Z to match the element
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in the first row second column. Finally by applying the second equation again, we can

choose B and C to match the elements in the first row third column and in the second

row third column. Therefore the map (10.2) is surjective.

Now we have proved that the map (10.2) is a bijection of points. In order to show

it is an isomorphism of algebraic varieties, we only need to find the inverse map. Let
A′ T1 T2

aI2 B′ T3

0 bI2 C ′

 be an element in Ξ + Σ. Set

X =
1

a
A′, Y = −1

b
C ′, Z =

T1 +X2

b
, (10.3)

C = T3 − aXY + aZ + bY 2, B = T2 − aX2Y + aXZ + bY Z −XC.

Then by the two equations above, we have
I2 X Z

0 I2 Y

0 0 I2




0 0 B

aI2 0 C

0 bI2 0



I2 −X XY − Z
0 I2 −Y
0 0 I2

 =


A′ T1 T2

aI2 B′ T3

0 bI2 C ′

 .

Therefore the map (10.3) is the inverse map of (10.2), also it is clearly algebraic. This

finishes the proof of the Lemma.

Definition 10.3.2. We say an element W ∈ Ξ+Σ is in ”generic position” if it satisfies

the following two conditions:

1. W is semisimple regular.

2. W is conjugated to an element


0 0 X

aI2 0 Y

0 bI2 0

 ∈ Σ + Λ such that X,Y are

semisimple regular and XY −Y X is not nilpotent. In particular, this implies that

HX ∩HY = ZH .

Let Ξ + Σ0 be the subset of Ξ + Σ consisting of elements in ”generic position”. It is a

Zariski open subset of Ξ + Σ. Let Ξ + Λ0 = (Ξ + Σ0) ∩ (Ξ + Λ).
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10.4 Orbits in Ξ + Λ0

Lemma 10.4.1. The group ZG(F )\H(F )U(F ) acts by conjugation on Ξ+ Σ0, and this

action is free. Two elements in Ξ+Σ0 are conjugated to each other in G(F ) if and only

if they are conjugated to each other by an element in H(F )U(F ).

Proof. For the first part, by Lemma 10.3.1, we only need to show that the action of

ZG(F )\H(F ) on Ξ+Λ0 is free. This just follows from the ”generic position” assumption.

For the second part, given x, y ∈ Ξ + Σ0, which are conjugated to each other by an

element in G(F ). By conjugating both elements by some elements in U(F ), we may

assume that x, y ∈ Ξ + Λ0. Let

x =


0 0 X1

aI2 0 X2

0 bI2 0

 , y =


0 0 Y1

aI2 0 Y2

0 bI2 0

 .

We only need to find h ∈ H(F ) such that h−1Xih = Yi for i = 1, 2. The characteristic

polynomial of x is

det(x− λI6) = det(


−λI2 0 X1

aI2 −λI2 X2

0 bI2 −λI2

),

which can be calculated as follows:

det(x− λI6) = det(


0 −λ2/aI2 X1 + λ/aX2

aI2 −λI2 X2

0 bI2 −λI2

)

= a2 · det(

(
−λ2/aI2 X1 + λ/aX2

bI2 −λI2

)
)

= a2 · det(

(
0 X1 + λ/aX2 − λ3

ab I2

bI2 −λI2

)
).

Hence we have

det(x− λI6) = a2b2 det(X1 + λ/aX2 −
λ3

ab
I2).
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Therefore, up to some sign constants ±1, the coefficients of the characteristic polynomial

of x are determined by some data of X1, X2 given as follows:

coefficient of λ4 = btr(X2), (10.4)

coefficient of λ3 = abtr(X1), (10.5)

coefficient of λ2 = b2 det(X2), (10.6)

coefficient of λ = ab2(λ− coefficient of det(X1 + λX2)), (10.7)

coefficient of λ0 = a2b2 det(X1). (10.8)

Here the equation holds up to ±1 which will not affect our later calculation. Note

that in the nonsplit case, the determinant means the composition of the

determinant of the matrix and the norm of the quaternion algebra; and the

trace means the composition of the trace of the matrix and the trace of the

quaternion algebra.

We can have the same results for y. Now if x and y are conjugated to each other by

element in G(F ), their characteristic polynomials are equal. Hence we have

tr(X2) = tr(Y2), (10.9)

tr(X1) = tr(Y1), (10.10)

det(X2) = det(Y2), (10.11)

λ− coefficient of det(X1 + λX2) = λ− coefficient of det(Y1 + λY2), (10.12)

det(X1) = det(Y1). (10.13)
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By the ”generic positive” assumption, Xi and Yi are semisimple regular. Then the above

equations tell us that Xi and Yi are conjugated to each other by some elements in H(F )

for i = 1, 2.

We first deal with the split case, i.e. G = GL6(F ) and H = GL2(F ). By

further conjugating by some elements in H(F ), we may assume that X1 = Y1 be one of

the following forms:

X1 = Y1 =

(
s 0

0 t

)
; X1 = Y1 =

(
s tv

t s

)

where v ∈ F×/(F×)2, v 6= 1. By the ”generic positive” assumption, if we are in the first

case, s 6= t; and if we are in the second case, t 6= 0. Let

X2 =

(
x11 x12

x21 x22

)
, Y2 =

(
y11 y12

y21 y22

)
.

Case 1: If X1 = Y1 =

(
s 0

0 t

)
with s 6= t. By (10.12), we have sx22 + tx11 = sy22 +

ty11. Combining this with (10.9), we have x11 = y11 and x22 = y22. By applying (10.11),

we have x12x21 = y12y21. By the ”generic position” assumption, x12x21y12y21 6= 0, and

hence x12
y12

= y21

x21
. So we can conjugate X2 to Y2 by an element of the form

(
∗ 0

0 ∗

)
.

Therefore we can conjugate X1, X2 to Y1, Y2 simultaneously via an element in H(F ).

Case 2: If X1 = Y1 =

(
s tv

t s

)
with t 6= 0. By (10.12), we have str(X2)− t(vx21 +

x12) = str(Y2)− t(vy21 + y12). Combining with (10.9), we have vx21 + x12 = vy21 + y12.

Let

x11 + x22 = y11 + y22 = A,

x11x22 − x12x21 = y11y22 − y12y21 = B,

and

vx21 + x12 = vy21 + y12 = C.

By the first and third equations, we can replace x12, x22 by x21, x11 in the second equa-

tion. We can do the same thing for the y’s. It follows that

Ax11 − x2
11 − Cx21 + vx2

21 = Ay11 − y2
11 − Cy21 + vy2

21 = B. (10.14)
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Now for all k ∈ F , we have (
k v

1 k

)
x

(
k v

1 k

)−1

=
1

k2 − v

(
k2x11 + kvx21 − kx12 − vx22 k2x12 + kvx22 − kvx11 − v2x21

kx11 + k2x21 − x12 − kx22 kx12 + k2x22 − vx11 − kvx21

)
.

If we write the above action in terms of x11, x21, we have

x11 7→ (x11k
2 + (2vx21 − C)k + vx11 − vA)/(k2 − v) := k.x11,

x21 7→ (x21k
2 + (2x11 −A)k + vx21 − C)/(k2 − v) := k.x21.

If we want y21 = k.x21, we need

((x21 − y21)k2 + (2x11 −A)k + vx21 − C + vy21) = 0. (10.15)

The discriminant of (10.15) is equal to

∆ of (10.15) = 4x2
11 − 4Ax11 +A2 − 4v(x2

21 − y2
21) + 4C(x21 − y21)

= A2 − 4B + 4vy2
21 − 4Cy21

= ∆ of (10.14),

where the second equality comes from (10.14). So the discriminant of (10.15) is a square

in F . Hence we can find some k ∈ F such that y21 = k.x21. By conjugating by element

of the form

(
k v

1 k

)
, we may assume that x21 = y21. This also implies x12 = y12. Then

by (10.11) and (10.9), we have x11 = y11, x22 = y22 or x11 = y22, x22 = y11.

If x11 = x22, we are done. If x11 6= x22, the discriminant of (10.14) is nonzero, so

(10.15) also has nonzero discriminant. Therefore, it have two solutions k1, k2. Both k1

and k2 will make x12 = y12, x21 = y21. By the ”generic positive” assumption, k1, k2

conjugate x to different elements. So one of them will conjugate x to y. Therefore we

have proved that we can conjugate X1, X2 to Y1, Y2 simultaneously via an element in

H(F ).

We now deal with the non-split case. We can just use the same argument as

in Case 2. The calculation is very similar, and the details will be omitted here. This

finishes the proof of the Lemma.
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Remark 10.4.2. As pointed out by a referee, there is another way to prove Case 2 by

extension of scalars. Let E/F be a finite Galois extension such that X1 is split over

E. Then by the argument in Case 1, we can find an element h =

(
a b

c d

)
in H(E)

conjugating X1, X2 to Y1, Y2. Without loss of generality, we may assume that a 6= 0.

Also up to an element in ZH(E), we may assume that a = 1. For any τ ∈ Gal(E/F ),

τ(h) will also conjugate X1, X2 to Y1, Y2. By the generic position assumption, τ(h) = hz

for some z ∈ ZH(E). But since 1 = a = τ(a), z must be the identity element which

implies that h = τ(h). Therefore h ∈ H(F ), and this proves Case 2. The same argument

can be also applied to the non-split case.

Remark 10.4.3. To summarize, we have an injective analytic morphism

(Ξ + Σ0)/H(F )U(F ) −→
∐

T∈T (G)

t(F )/W (G,T ). (10.16)

For each T ∈ T (G), let t0(F )/W (G,T ) be the image of the map above. Then it is easy

to prove the following statements.

1. t0(F ) ⊂ t0(F ). Recall that t0(F ) is the subset of t(F ) consisting of the elements

with zero trace.

2. t0(F ) is invariant under scalar in the sense that for all t ∈ t0(F ) and λ ∈ F×, we

have λt ∈ t0(F ).

3. t0(F ) is an open subset of t0(F ) under the topology on t0(F ) as an F -vector space.

4. If T is split which is only possible when G = GL6(F ), then t0(F ) = t0,reg(F ).

(This will be proved in the proof of Lemma 11.5.1).

As a result, we have a bijection

(Ξ + Σ0)/H(F )U(F ) −→
∐

T∈T (G)

t0(F )/W (G,T ). (10.17)

Now we study the change of measures under the map (10.17) (i.e. the Jacobian).

We fix selfdual measures on Ξ + Σ0 and H(F )U(F ), this induces a measure on the

quotient which gives a measure d1t on t0(F )/W (G,T ) via the bijection (10.17) for any

T ∈ T (G). On the other hand, we also have a selfdual measure dt on t0(F )/W (G,T ).

The following lemma tells us the relations between d1t and dt.
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Lemma 10.4.4. For any T ∈ T (G), d1t = DG(t)1/2dt for all t ∈ t0(F ).

Proof. Let d2t be the measure on t0(F )/W (G,T ) coming from the quotient Ξ+Λ0/H(F ).

By Lemma 10.3.1,

d2t = a4b8d1t. (10.18)

For TH ∈ T (H), define Ξ+TH = {Λ(X1, X2) =


0 0 X1

aI2 0 X2

0 bI2 0

 ∈ Ξ+Λ0|X1 ∈ tH(F )}.

Then the bijection

Ξ + Λ0/H(F )→
∐

T∈T (G)

t0(F )/W (G,T )

factors through

Ξ + Λ0/H(F )→
∐

TH∈T (H)

Ξ + TH/TH(F )→
∐

T∈T (G)

t0(F )/W (G,T ).

By the Weyl Integration Formula, the Jacobian of the first map isDH(X1)−1 at Λ(X1, X2).

Combining with (10.18), we only need to show that the Jacobian of the map∐
TH∈T (H)

Ξ + TH/TH(F )→
∐

T∈T (G)

t0(F )/W (G,T )

is a4b8DH(X1)DG(Λ(X1, X2))−1/2 at Λ(X1, X2). We consider the composite map

Ξ + TH/TH(F )→
∐

T∈T (G)

t0(F )/W (G,T )→ F 5 (10.19)

where the second map is taking the coefficients of the characteristic polynomial. (since

the trace is always 0, we only take the coefficients from degree 0 to 4.) As the Jacobian

of the second map is DG(t)1/2 at t ∈ t0(F ), we only need to show that the Jacobian of

the composite map (10.19) is a4b8DH(X1) at Λ(X1, X2).

We only write down the proof for the case when TH is split, the proof for the rest

cases is similar. If TH is split, we may assume that TH = {

(
∗ 0

0 ∗

)
}. By the generic

position assumption, we know

Ξ + TH/TH(F ) = {Λ(X1, X2)|X1 =

(
m 0

0 n

)
, X2 =

(
m1 1

x n1

)
, m 6= n, x 6= 0}.
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The measure on Ξ + TH/TH(F ) is just dmdndm1dn1dx. Note that we always use the

selfdual measure on F . In the proof of Lemma 10.4.1, we have written down the map

(10.19) explicitly (i.e (10.4) to (10.8)):

(m,n,m1, n1, x) 7→ (b(m1 + n1), ab(m+ n), b2(m1n1 − x), ab2(mn1 +m1n), a2b2mn).

(10.20)

By a simple computation, the Jacobian of (10.20) is

a4b8|(m− n)2|F = a4b8DH(X1).

This finishes the proof of the lemma.

10.5 Local Sections

For T ∈ T (G), we can fix a locally analytic map

t0(F )→ Ξ + Σ0 : Y → YΣ (10.21)

such that the following diagram commutes:

Ξ + Σ0 −→ t0(F )/W (G,T )

↖ ↗

t0(F )

Then we can also find a map Y → γY such that YΣ = γ−1
Y Y γY .

Lemma 10.5.1. If ωT is a compact subset of t0(F ), we can choose the map Y → YΣ

such that the image of t0(F ) ∩ ωT is contained in a compact subset of Ξ + Λ.

Proof. We only write down the proof for the split case, the proof for the non-split case is

similar. Given t ∈ t0(F ), we want to find an element of the form


0 0 X

aI2 0 Y

0 bI2 0

 that

is a conjugation of t. As in the proof of Lemma 10.4.1, the characteristic polynomial of t

gives us the determinant and trace of both X and Y , and also an extra equation (i.e. the
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λ-coefficient). Once t lies in a compact subset, all these five values are bounded. Hence

we can definitely choose X and Y such that their coordinates are bounded. Therefore,

both elements belong to a compact subset.

Combining the above Lemma and Proposition 2.4.2, we can choose the map Y → γY

with the property that there exists c > 0 such that

σ(γY ) ≤ c(1+ | logDG(Y ) |) (10.22)

for all Y ∈ t0(F ) ∩ ωT .

10.6 Calculation of Iκ(f)

By Lemma 10.2.1,

I(f, g) = (gf ξ)ˆ(0) =

∫
Σ

gf̂(Ξ +X)dX.

This implies that

Iκ(f) =

∫
H(F )U(F )\G(F )

∫
Σ

gf̂(Ξ +X)dXκ(g)dg.

By Lemma 10.4.1, Remark 10.4.3 and Lemma 10.4.4, the interior integral equals

ΣT∈T (G) |W (G,T ) |−1

∫
ZH(F )\H(F )U(F )

∫
t0(F )

gf̂(y−1γ−1
Y Y γY y)DG(Y )1/2dY dy

= ΣT∈T (G) |W (G,T ) |−1

∫
ZH(F )\H(F )U(F )

∫
t0(F )

γY ygf̂(Y )DG(Y )1/2dY dy.

So we can rewrite Iκ(f) as

Iκ(f) = ΣT∈T (G) |W (G,T ) |−1

∫
t0(F )

∫
ZG(F )\G(F )

f̂(g−1Y g)κ(γ−1
Y g)dgDG(Y )1/2dY.

For T ∈ T (G), Y ∈ t0(F ), define κY on AT (F )\G(F ) to be

κY (g) = ν(AT )

∫
ZG(F )\AT (F )

κ(γ−1
Y ag)da. (10.23)
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Then we have

Iκ(f) =ΣT∈T (G)ν(AT )−1 |W (G,T ) |−1

×
∫
t0(F )

∫
AT (F )\G(F )

f̂(g−1Y g)κY (g)dgDG(Y )1/2dY.
(10.24)



Chapter 11

Calculation of the Limit

limN→∞Ix,ω,N (f )

In the previous chapter, we made the transfer of the integral Ix,ω,N (f) to the form that

is similar to the Arthur local trace formula. The only difference is that our truncated

function is different from the one given by Arthur. In this chapter, we first show that

we are able to change the truncated function. Then by applying Arthur’s computation

of the truncated function, we are going to compute the limit limN→∞ Ix,ω,N (f). This

is the most technical chapter of this paper. In Section 11.1 and 11.2, we study our

truncated function κN and introduce Arthur’s truncated function. From Section 11.3

to Section 11.5, we prove that we are able to change the truncated function. In Section

11.6, we compute the limit limN→∞ Ix,ω,N (f) by applying Arthur’s computation of the

truncated function.

11.1 Convergence of a Premier Expression

For x ∈ Hss(F ) elliptic, using the same notation as in Section 9.2, we have

Ix,ω(f, g) =

∫
h′x(F )

∫
h′′(F )

gf ξx,ω(X ′ +X ′′)dX ′′dX ′.

143
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Then we can write Ix,ω,N (f) as

Ix,ω,N (f) =

∫
h′x(F )

∫
Hx(F )Ux(F )\G(F )

∫
h′′(F )

gf ξx,ω(X ′ +X ′′)dX ′′κN (g)dgdX ′.

Rewrite the two interior integrals above as∫
Gx(F )\G(F )

∫
Hx(F )Ux(F )\Gx(F )

∫
h′′(F )

g′′gf ξx,ω(X ′ +X ′′)dX ′′κN (g′′g)dg′′dg.

After applying the formula (10.24), together with the fact that we have defined t′ = h′x

in Section 9.2, we have

Ix,ω,N (f) =ΣT∈T (Gx)ν(AT ∩ ZGx\AT )−1 |W (Gx, T ) |−1

×
∫
t′(F )×(t′′)0(F )

DGx(X ′′)1/2

×
∫
ZGxAT (F )\G(F )

gf ]x,ω(X ′ +X ′′)κN,X′′(g)dgdX ′′dX ′

(11.1)

where

κN,X′′(g) = ν(AT ∩ ZGx\AT )

∫
ZGx∩AT (F )\AT (F )

κN (γ−1
X′′ag)da. (11.2)

Note that the formula (10.24) is only for the case when x is in the center. However, as

we explained at the beginning of Section 10, when x is not contained in the center, the

computation is easier, and we can get a similar formula as (10.24) with replacing t0 by

(t′′)0 and replacing G by Gx.

Lemma 11.1.1. For T ∈ T (Gx), let ωT ′′ be a compact subset of t′′(F ). There exist a

rational function QT (X ′′) on t′′(F ), k ∈ N and c > 0 such that

κN,X′′(g) ≤ CNkσ(g)k(1 + | log(|QT (X ′′)|F )|)k(1 + | logDGx(X ′′)|)k

for every X ′′ ∈ (t′′)0(F ) ∩ ωT ′′ , g ∈ G(F ), N ≥ 1.

Proof. We first prove the following statement:

(1) There exist c′, c > 0 such that κN,X′′(g
′g) ≤ κ′′c′N+cσ(g)(g

′) for all g ∈ G(F ) and

g′ ∈ Gx(F ). Here κ′′N is the truncated function for Gx defined in the similar way as κN .

In fact, let g′ = m′u′k′, k′g = muk with m,m′ ∈M(F ), u, u′ ∈ U(F ) and k, k′ ∈ K.

Then κN (g′g) = κN (m′m). If this is nonzero, let

m′ =


m′1 0 0

0 m′2 0

0 0 m′3

 ,m =


m1 0 0

0 m2 0

0 0 m3

 .
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By the definition of κN (as in (5.4) and (5.5)), we have

σ((m′j)
−1(mj)

−1mim
′
i)� N.

On the other hand, we know σ(m)� σ(g). Hence σ(mi)� σ(g), which implies that

σ(m′i(m
′
j)
−1)� σ((m′j)

−1(mj)
−1mim

′
i) + σ(mi) + σ(mj)� N + σ(g).

This proves (1).

Now we have

κN,X′′(g) = ν(AT )

∫
ZGx∩AT (F )\AT (F )

κN (γ−1
X′′ag)da

≤ ν(AT )

∫
ZGx∩AT (F )\AT (F )

κ′′c′N+cσ(g)((γX′′)
−1a)da

≤ κ′′c′N+cσ(g),X′′(1).

So it reduces to show the following:

(2) There exist an integer k ∈ N, and c > 0 such that

κ′′N,X′′(1) ≤ cNk(1 + | log(|QT (X ′′)|F )|)k(1 + | logDGx(X ′′)|)k.

Again here we only prove for the case where x is in the center. Otherwise, we are

in the lower rank case, whose proof is similar and easier. If x is in the center, Gx = G

and X ′′ = X. For simplicity, we will replace X ′′ by X, κ′′N by κN and DGx(X ′′) by

DG(X) for the rest of the proof. We first deal with the case when T is split. By

Lemma 10.5.1, we know for X ∈ ωT , XΣ belongs to a compact subset of Ξ + Λ, and

σ(γX)� 1 + | logDG(X)|.
If a ∈ AT (F ) such that κN (γ−1

X a) = 1. By the definition of κN (as in (5.4) and

(5.5)), we have γ−1
X a = hvy where v ∈ U(F ), h ∈ H(F ), and y ∈ G(F ) with σ(y)� N .

Therefore yXy−1 = v−1h−1XΣhv. Since XΣ belongs to a compact subset, σ(yXy−1)�
N , and hence

σ(v−1h−1XΣhv)� N.

By Lemma 10.3.1, the isomorphism (10.2) is algebraic. This implies σ(v) � N and

σ(h−1XΣh)� N .
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Now let

XΣ =


0 0 Z

aI2 0 Y

0 bI2 0

 .

By Proposition 2.4.2, we can find s ∈ GL2(E) such that s−1Zs is a diagonal matrix

and σ(s) � 1 + | log(DGL2(E)(s−1Zs))|. Here E/F is a finite extension generated by

the elements in F×/(F×)2. Note that DGL2(E)(s−1Zs) = tr(Z)2 − 4 det(Z), while the

right hand side can be expressed as a polynomial of the coefficients of the characteristic

polynomial of XΣ, so it can be expressed as a polynomial on t0(F ). We remark that if

x is not in center, this will be polynomial on t′′(F ).

After conjugating by s, we may assume that Z is a diagonal matrix with distinct

eigenvalues λ1 and λ2 (we only need to change h to sh). Here the eigenvalues are

distinct because of the ”generic position” assumption. After multiplying by elements in

the center and in the open compact subgroup, together with the Iwasawa decomposition,

we may assume that

h =

(
1 x

0 1

)(
A 0

0 1

)
and (

1 −x
0 1

)
Y

(
1 x

0 1

)
=

(
y11 y12

y21 y22

)
.

Since σ(h−1XΣh)� N , we have σ(h−1Zh), σ(h−1Y h)� N . This implies

σ(x(λ1 − λ2)), σ(Ay12), σ(A−1y21)� N.

Here for t ∈ F , σ(t) = log(max{1, |t|}). Therefore, we obtain that σ(x)� max{1, N −
log(|λ1 − λ2|)}. Here Z and Y belong to a fixed compact subset before conjugation.

Furthermore, after conjugating by s and

(
1 x

0 1

)
, σ(Y ) � σ(s) + σ(

(
1 x

0 1

)
). So we

have

σ(A) � max{1, N − σ(y12)}

� max{1, N + σ(

(
1 x

0 1

)
) + σ(s)− σ(y12y21)} (11.3)
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and

σ(A−1) � max{1, N − σ(y21)}

� max{1, N + σ(

(
1 x

0 1

)
) + σ(s)− σ(y12y21)}. (11.4)

Note that here by the ”generic position” assumption, we have y12y21 6= 0.

Recall that as in the proof of Lemma 10.4.1, we have the following relations between

the coefficients of the characteristic polynomial of XΣ and the data given by Z and Y :

coefficient of λ4 = btr(Y ) := ba4,

coefficient of λ3 = abtr(Z) := aba3,

coefficient of λ2 = b2 det(Y ) := b2a2,

coefficient of λ = ab2(λ coefficient of det(Z + λY )) := ab2a1,

coefficient of λ0 = a2b2 det(Z) := a2b2a0.

Then we have {
y11 + y22 = a4

λ1y11 + λ2y22 = a1

and {
λ1 + λ2 = a3

λ1λ2 = a0

.

This implies {
y11 = a1−λ1a4

λ2−λ1

y22 = λ2a4−a1
λ2−λ1

.

So we have

y11y22 = −λ1λ2a
2
4 − a1a4(λ1 + λ2) + a2

1

(λ1 − λ2)2
=
a0a

2
4 − a1a3a4 + a2

1

a2
3 − 4a0

.

In particular, y12y21 = det(Y ) − y11y22 = a2 − y11y22 is a rational function of the ai’s,

and hence it is a rational function on t0(F ). Also

σ(

(
1 x

0 1

)
) = σ(x)� max{1, N − log(|λ1 − λ2|)} (11.5)
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where the right hand side can be expressed as a logarithmic function of some rational

function on t0(F ).

Finally, combining (11.3), (11.4), (11.5), and the majorization of s, we can find

a rational function QT (X) on t0(F ) such that σ(h) � N + (1 + log |QT (X)|). Then

combining the majorization of v, y and γY , we know that up to an element in the center,

if κN (γ−1
X a) = 1, we have

σ(a)� N + (1 + logQT (X)) + (1 + logDG(X)). (11.6)

Since mes{a ∈ (ZGx ∩ AT (F ))\AT (F ) | σZGx\Gx(a) ≤ r} � rk for some k ∈ N, the

Lemma follows from the definition of κN,X′′ (as in (11.2)).

Now if T is not split, since we are talking about majorization, we may pass to a finite

extension. Then by the same argument as above, we can show that if κN (γ−1
X a) = 1 for

some a ∈ AT (F ), up to an element in the center, the estimation (11.6) will still holds.

Then we can still prove the lemma as in the split case.

Now let QT be a finite set of polynomials on t′′(F ) that contains DGx(X ′′), the

denominator and numerator of QT (X ′′) and some other polynomials that will be defined

later in Section 11.5. For l > 0, let t0(F )[≤ l] be the set of X = X ′ +X ′′ ∈ t0(F ) such

that there exists Q ∈ QT with |Q(X ′′)|F ≤ l, and let t0(F )[> l] be its complement in

t0(F ). We define IN,≤l to be the integral of the expression of Ix,ω,N (f) restricted on

(t′(F ) × (t′′)0(F )) ∩ t0(F )[≤ l] (as in (11.1)). Similarly we can define IN,>l. We then

have

Ix,ω,N (f) = IN,≤l + IN,>l. (11.7)

Lemma 11.1.2. The following statements hold.

1. There exist k ∈ N and c > 0 such that | Ix,ω,N (f) |≤ cNk for all N ≥ 1.

2. There exist b ≥ 1 and c > 0 such that | IN,≤N−b |≤ cN−1 for all N ≥ 1.

Proof. By condition (5) of a good neighborhood (as in Definition 3.1.1), there exists a

compact subset Γ ⊂ G(F ) such that (gf ξx,ω )̂ = 0 if g /∈ Gx(F )Γ.

By replacing ZGxAT (F )\G(F ) by ZGxAT (F )\Gx ·γ for some γ ∈ Γ, we can majorize

γf ]x,ω by a linear combination of functions f ′ ⊗ f ′′ where f ′ ∈ C∞c (g′x(F )), and f ′′ ∈
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C∞c (g′′(F )). So the integral in (11.1) is majored by∫
t′(F )×(t′′)0(F )

DGx(X ′′)1/2

∫
ZGxAT (F )\Gx(F )

f ′(X ′)f ′′(g−1X ′′g)κN,X′′(γg)dgdX ′′dX ′.

(11.8)

Now we fix a compact subset ωT ′′ ⊂ t′′(F ) such that for every g ∈ Gx(F ), the function

X ′′ → f ′′(g−1X ′′g) on t′′(F ) is supported on ωT ′′ . By Proposition 2.4.2, up to an element

in ZGx(F )AT (F ), we may choose g such that σ(g) � 1 + | log(DGx(X ′′))|. Using the

lemma above, we have

κN,X′′(γg)� Nkφ(X ′′)

where

φ(X ′′) = (1 + | log(|QT (X ′′)|F )|)k(1 + | log(DGx(X ′′))|)2k.

So the expression (11.8) is majored by

Nk

∫
t′(F )×(t′′)0(F )

DGx(X ′′)1/2

∫
ZGxAT (F )\Gx(F )

f ′(X ′)f ′′(g−1X ′′g)φ(X ′′)dgdX ′′dX.

This is majored by

Nk

∫
t0(F )

JGx(X ′ +X ′′, f ′ ⊗ f ′′)φ(X ′′)dX ′′dX ′ (11.9)

where JGx is the orbital integral. Due to the work of Harish-Chandra, the orbital

integral is always bounded, and hence (11.9) is majored by

Nk

∫
ω
φ(X ′′)dX ′′dX ′ (11.10)

where ω is a compact subset of t0(F ). By Lemma 2.4 of [W10], φ(X) is locally integrable,

and hence the integral in (11.10) is convergent. This finishes the proof of the first part.

For the second part, by the same argument, we have majorization

| I |N,≤N−b� Nk

∫
ω∩t0(F )[≤N−b]

φ(X)dX.

Then, by the Schwartz inequality, the right hand side is majored by

Nk(

∫
ω∩t0(F )[≤N−b]

dX)1/2(

∫
ω∩t0(F )[≤N−b]

φ(X)2dX)1/2

� Nk · ΣQ∈QTmes{X ∈ ω || Q(X) |F≤ N−b} � Nk(N−b)r

for some r > 0 that only depends on the dimension of t0. Now we just need to let b

large such that Nk(N−b)r � N−1. This finishes the proof of the Lemma.
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Definition 11.1.3. With the notations above, let I∗x,ω,N (f) = IN,>N−b.

By the Lemma above, we have

lim
N→∞

(Ix,ω,N (f)− I∗x,ω,N (f)) = 0. (11.11)

11.2 Combinatorial Definition

Fix T ∈ T (Gx), let M] be the centralizer of AT in G. This is a Levi subgroup of G, it

is easy to check that AT = AM]
. Since x is elliptic, we know ZGx ∩ AT = ZG for any

T ∈ T (Gx), and hence we have ν(AT ∩ ZGx\AT ) = ν(ZG\AT ) = ν(AT ). Note that we

always choose the Haar measure on G so that ν(ZG) = 1.

Let Y = (YP])P]∈P(M]) be a family of elements in aM]
that are (G,M])-orthogonal

and positive. Then for Q = LUQ ∈ F(M]), let ζ → σQM]
(ζ,Y) be the characteristic

function on aM]
that supports on the sum of aL and the convex envelop generated

by the family (YP])P]∈P(M]),P]⊂Q. Let τQ be the characteristic function on aM]
that

supports on aLM]
+ a+

Q. The following proposition follows from 3.9 of [Ar91].

Proposition 11.2.1. The function

ζ → σQM]
(ζ,Y)τQ(ζ − YQ)

is the characteristic function on aM]
, whose support is on the sum of a+

Q and the convex

envelope generated by (YP])P]∈P(M]),P]⊂Q. Moreover, for every ζ ∈ aM]
, the following

identity holds.

ΣQ∈F(M])σ
Q
M]

(ζ,Y)τQ(ζ − YQ) = 1. (11.12)

11.3 Change the Truncated Function

We use the same notation as in Section 11.2. Fix a minimal Levi subgroup Mmin of G

contained in M], a maximal open compact subgroup Kmin of G that is in good position

with respect to Mmin and fix Pmin = MminUmin ∈ P(Mmin). Let ∆min be the set of

simple roots of AMmin in umin. Given Ymin ∈ a+
Pmin

, for any P ′ ∈ P(Mmin), there exists

a unique element w ∈ W (G,Mmin) such that wPminw
−1 = P ′. Set YP ′ = wYPmin .
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The family (YP ′)P ′∈P(Mmin) is (G,Mmin)-orthogonal and positive. For g ∈ G(F ), define

Y(g) = (Y (g)Q)Q∈P(M]) to be

Y (g)Q = YQ −HQ̄(g).

Then it is easy to show the following statements.

(1) There exists c1 > 0 such that for any g ∈ G(F ) with σ(g) < c1 inf{α(YPmin);α ∈
∆min}, the family Y(g) is (G,M])-orthogonal and positive. And Y (g)Q ∈ a+

Q for all

Q ∈ F(M]).

We fix such a c1. Note that for m ∈ M](F ), Y(mg) is a translation of Y(g) by

HM]
(m). Hence Y(g) is (G,M])-orthogonal and positive for

g ∈M](F ){g′ ∈ G(F ) | σ(g′) < c1 inf{α(YPmin);α ∈ ∆min}}.

For such g, let

ṽ(g) = ν(AT )

∫
ZG(F )\AT (F )

σGM]
(HM]

(a),Y(g))da. (11.13)

(2) There exist c2 > 0 and a compact subset ωT of t0(F ) satisfying the following

condition: If g ∈ G(F ), and

X ∈ t0(F )[> N−b] ∩ (t′(F )× (t′′)0(F ))

with (gfx,ω)](X) 6= 0, then X ∈ ωT and σT (g) < c2 log(N).

In fact, since (gfx,ω)](X) = (fx,ω )̂(g−1Xg), g−1Xg is contained in a compact subset

of gx,0(F ). This implies that X belongs to a compact subset of t0(F ). By Proposition

2.4.2, we have

σT (g)� 1+ | logDGx(X) |= 1+ | logDGx(X ′′) |� log(N)

where the last inequality holds because X ∈ t0(F )[> N−b] and belongs to a compact

subset.

Now we fix ωT and c2 as in (2). We may assume that ωT = ωT ′ × ωT ′′ where ωT ′ is

a compact subset of t′(F ) and ωT ′′ is a compact subset of t′′(F ). Suppose that

c2 log(N) < c1 inf{α(Ymin) | α ∈ ∆min}.

Here c1 comes from (1). Then ṽ(g) is defined for all g ∈ G(F ) satisfying condition (2).
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Proposition 11.3.1. There exist c > 0 and N0 ≥ 1 such that if N ≥ N0 and c log(N) <

inf{α(Ymin) | α ∈ ∆min}, we have∫
ZGx (F )AT (F )\G(F )

gf ]x,ω(X)κN,X′′(g)dg =

∫
ZGx (F )AT (F )\G(F )

gf ]x,ω(X)ṽ(g)dg (11.14)

for every X ∈ t0(F )[> N−b] ∩ (t′(F )× (t′′)0(F )).

Proof. For any ZPmin ∈ a+
Pmin

, replacing YPmin by ZPmin , we can construct the family

Z(g) in the same way as Y(g). Assume that

c2 log(N) < c1 inf{α(Zmin) | α ∈ ∆min}. (11.15)

For g ∈ G(F ) with σ(g) < c2 log(N), Z(g) is still (G,M])-orthogonal and positive.

So for a ∈ AT (F ), by Proposition 11.2.1, we have

ΣQ∈F (M])σ
Q
M]

(HM]
(a),Z(g))τQ(HM]

(a)−Z(g)Q) = 1.

Then we know

ṽ(g) = ν(AT )ΣQ∈F (M])ṽ(Q, g) (11.16)

and

κN,X′′(g) = ν(AT )ΣQ∈F (M])κN,X′′(Q, g) (11.17)

where

ṽ(Q, g) =

∫
ZG\AT (F )

σGM]
(HM]

(a),Y(g))σQM]
(HM]

(a),Z(g))τQ(HM]
(a)−Z(g)Q)da

(11.18)

and

κN,X′′(Q, g) =

∫
ZG\AT (F )

κN (γ−1
X′′ag)σQM]

(HM]
(a),Z(g))τQ(HM]

(a)−Z(g)Q)da.

(11.19)

(3) The functions g → ṽ(Q, g) and g → κN,X′′(Q, g) are left AT (F )-invariant.

Since for t ∈ AT (F ), HP ′(tg) = HM]
(t) + HP ′(g) for all P ′ ∈ P(M]). We can just

change variable a → at in the definition of ṽ(Q, g) and κN,X′′(Q, g). This gives us the

left AT (F )-invariance of both functions, and proves (3).

Now for X ∈ t′(F )× (t′′)0(F ), we have∫
ZGxAT (F )\G(F )

gf ]x,ω(X)κN,X′′(g)dg = ν(AT )ΣQ∈F(M])I(Q,X) (11.20)



153

and ∫
ZGxAT (F )\G(F )

gf ]x,ω(X)ṽ(g)dg = ν(AT )ΣQ∈F(M])J(Q,X) (11.21)

where

I(Q,X) =

∫
ZGxAT (F )\G(F )

gf ]x,ω(X)κN,X′′(Q, g)dg (11.22)

and

J(Q,X) =

∫
ZGxAT (F )\G(F )

gf ]x,ω(X)ṽ(Q, g)dg. (11.23)

Then it is enough to show that for all Q ∈ F(M]), I(Q,X) = J(Q,X).

Firstly we consider the case when Q = G. Suppose

sup{α(ZPmin) | α ∈ ∆min} ≤

inf{α(YPmin) | α ∈ ∆min},

log(N)2.
(11.24)

Then we are going to prove

(4) There exists N1 > 1 such that for all N ≥ N1, g ∈ G(F ) with σT (g) ≤ c2 log(N),

and for all X ′′ ∈ ωT ′′ ∩ (t′′)0(F )[> N−b], we have

κN,X′′(G, g) = ṽ(G, g). (11.25)

Here t′′[> N−b] means that we only consider the polynomials DGx(X ′′) together with

the numerator and the denominator of QT (X ′′) which are elements in QT .

In order to prove (4), it is enough to show that for all a ∈ AT (F ) with σGM]
(HM]

(a),Z(g)) =

1, we have σGM]
(HM]

(a),Y(g)) = κN (γ−1
X ag). Since both sides of (11.25) are left AT (F )-

invariant, we may assume that σ(g) ≤ c2 log(N).

By the first inequality of (11.24), σGM]
(HM]

(a),Z(g)) = 1 will implies

σGM]
(HM]

(a),Y(g)) = 1.

Then by the second inequality of (11.24), together with the fact that σ(g)� log(N), we

know | Z(g)P ′ |� log(N)2 for every P ′ ∈ P(M]), here | · | is the norm on aM]
/aG. Then

combining with the fact that σGM]
(HM]

(a),Z(g)) = 1, we know that up to an element

in the center, σ(a) � log(N)2. Since the integrals defining I(Q,X) and J(Q,X) are

integrating modulo the center, we may just assume that σ(a)� log(N)2.

By (10.22) and the fact that X ′′ ∈ ωT ′′ ∩ (t′′)0(F )[> N−b], we know σ(γX) �
1+ | logDGx(X) |� log(N), and hence σ(γ−1

X ag) � log(N)2. By the definition of κN ,
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together with the relations between the norm of an element and the norm of its Iwasawa

decomposition, we can find c3 > 0 such that for any g′ ∈ G(F ) with σ(g′) < c3N , we

have κN (g′) = 1. Now for N large enough, we definitely have σ(γ−1
X ag) < c3N . For

such N , we have κN (γ−1
X ag) = 1 = σGM]

(HM]
(a),Y(g)). This proves (4).

Combining (2) and (4), together with (11.22) and (11.23), we have

I(G,X) = J(G,X) (11.26)

for every N ≥ N1 and X ∈ t0(F )[> N−b] ∩ (t′(F )× (t′′)0(F )).

Now for Q = LUQ ∈ F(M]) with Q 6= G We can decompose the integrals in

(11.22) and (11.23) by

I(Q,X) =

∫
Kmin

∫
ZGxAT (F )\L(F )

∫
UQ̄(F )

ūlkf ]x,ω(X)κN,X′′(Q, ūlk)dūδQ(l)dldk (11.27)

and

J(Q,X) =

∫
Kmin

∫
ZGxAT (F )\L(F )

∫
UQ̄(F )

ūlkf ]x,ω(X)ṽ(Q, ūlk)dūδQ(l)dldk. (11.28)

The following two properties will be proved in Section 11.4 and 11.5.

(5) If g ∈ G(F ) and ū ∈ UQ̄(F ) with

σ(g), σ(ūg) < c1 inf{α(ZPmin) | α ∈ ∆min},

then ṽ(Q, ūg) = ṽ(Q, g).

(6) Given c4 > 0, we can find c5 > 0 such that if

c5 log(N) < inf{α(ZPmin) | α ∈ ∆min},

we have κN,X′′(Q, ūg) = κN,X′′(Q, g) for all g ∈ G(F ) and ū ∈ UQ̄(F ) with σ(g), σ(ū), σ(ūg) <

c4 log(N), and for all X ′′ ∈ ωT ′′ ∩ (t′′)0(F ))[> N−b].

Based on (5) and (6), we are going to prove the following statement.

(7) There exists c5 > 0 such that if

c5 log(N) < inf{α(ZPmin) | α ∈ ∆min}, (11.29)

we have I(Q,X) = J(Q,X) = 0 for all X ∈ t0(F )[> N−b] ∩ (t′(F )× (t′′)0(F )).
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In fact, by (2), we may assume that X ∈ ωT . We first consider I(Q,X). By (2),

we can restrict the integral
∫
ZGxAT (F )\L(F ) in (11.27) to those l for which there exist

ū ∈ UQ̄(F ) and K ∈ Kmin such that σT (ūlk) < c2 log(N). Then up to an element

in AT (F ), l can be represented by an element in L(F ) such that σ(l) < c6 log(N) for

some constant c6. We can find c7 > 0 such that for all l, ū and k with σ(l) < c6 log(N)

and σ(ūlk) < c2 log(N), we have σ(ū) < c7 log(N). Now let c4 = c2 + c7, and choose

c5 as in (6). Then by applying (6), we know that for fixed k ∈ Kmin, l ∈ L(F ) with

σ(l) < c6 log(N), we have

ūlkf ]x,ω(X)κN,X′′(Q, ūlk) = ūlkf ]x,ω(X)κN,X′′(Q, lk) (11.30)

for all ū ∈ UQ̄(F ). On the other hand, if σ(ūlk) ≥ c2 log(N), both side of (11.30) are

equal to 0 by (2). Therefore (11.30) holds for all ū, l and k.

From (11.30), we know that in the expression of I(Q,X) (as in (11.27)), the inner

integral is just ∫
UQ̄(F )

ūlkf ]x,ω(X)dū.

This is zero for Q 6= G by Lemma 3.7.2. Hence I(Q,X) = 0. By applying the same

argument except replacing (6) by (5), we can also show that J(Q,X) = 0. This proves

(7), and finishes the proof of the Proposition.

The last thing we need to do is to verify that we can find ZPmin satisfies condition

(11.15), (11.24) and (11.29). This just follows from the conditions we imposed on N

and YPmin .

11.4 Proof of 11.3(5)

By (11.18), we have

ṽ(Q,G) =

∫
ZG(F )\AT (F )

σGM]
(HM]

(a),Y(g))σQM]
(HM]

(a),Z(g))τQ(HM]
(a)−Z(g)Q)da.

The function ζ → σQM]
(ζ,Z(g)) and ζ → τQ(ζ − Z(g)Q) only depend on HP̄ ′(g) for

P ′ ∈ F(M]) with P ′ ⊂ Q. For such P ′, HP̄ ′(ūg) = HP̄ ′(g) for ū ∈ UQ̄(F ). Therefore

for all ū ∈ UQ̄(F ), we have

σQM]
(HM]

(a),Z(g))τQ(HM]
(a)−Z(g)Q) = σQM]

(HM]
(a),Z(ūg))τQ(HM]

(a)−Z(ūg)Q).
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Now for all a ∈ AT (F ) with the property that

σQM]
(HM]

(a),Z(g))τQ(HM]
(a)−Z(g)Q) 6= 0,

we need to show that

σGM]
(HM]

(a),Y(g)) = σGM]
(HM]

(a),Y(ūg)). (11.31)

For any P ′ ∈ P(M]) with P ′ ⊂ Q, it determines a chamber aL,+P ′ in aLM]
. Let ζ = HM]

(a),

and fix a P ′ such that projLM]
(ζ) ∈ CL(aL,+P ′ ) where CL means closure.

Lemma 11.4.1. ζ ∈ CL(a+
P ′).

Proof. By the definition of the functions σQM]
and τQ, together with the fact that

σQM]
(HM]

(a),Y(g))τQ(HM]
(a) − Z(g)Q) 6= 0, we know that ζ is the summation of an

element ζ ′ ∈ a+
Q and an element ζ ′′ belonging to the convex envelop generated by Z(g)P ′′

for P ′′ ∈ P(M]) with P ′′ ⊂ Q. For any root α of AM]
in g, positive with respect to P ′,

if α is in UQ, then it is positive for all P ′′ ⊂ Q above. By 11.3(1), Z(g)P ′′ ∈ a+
P ′′ , and

α(ζ ′′) > 0. Also we know α(ζ ′) > 0 because α is in UQ and ζ ′ ∈ a+
Q. Combining these

two inequalities, we have α(ζ) > 0.

If α is in UP ′ ∩ L, then α(ζ) = α(projLM]
(ζ)) ≥ 0 by the choice of P ′. So the lemma

follows.

By Lemma 3.1 of [Ar91], for ζ ∈ CL(a+
P ′), σ

G
M]

(ζ,Y(g)) = 1 is equivalent to certain

inequality on ζ − Y(g)P ′ . This only depends on HP̄ ′(g). Since P ′ ⊂ Q and HP̄ ′(g) =

HP̄ ′(ūg), (11.31) follows. This proves 11.3(5).

11.5 Proof of 11.3(6)

Same as in Section 10.6, we fix a map X ′′ → γX′′ such that

1. There exists a compact subset Ω of Ξ + Σ such that X ′′Σ = γ−1
X′′X

′′γX′′ ∈ Ω for all

X ′′ ∈ ωT ′′ ∩ (t′′)0(F ).

2. There exists c1 > 0 such that σ(γX′′) < c1 log(N) for all X ′′ ∈ ωT ′′ ∩ (t′′)0(F )[>

N−b]
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For Q = LUQ ∈ F(M]), let Σ+
Q be the roots of AM]

in uQ.

Lemma 11.5.1. For c > 0, there exists c′ > 0 satisfying the following condition: For

given a ∈ AT (F ), g ∈ G(F ), ū ∈ UQ̄(F ) and X ′′ ∈ ωT ′′ ∩ (t′′)0(F )[> N−b], assume

that σ(g), σ(ū), σ(ūg) < c log(N), and α(HM]
(a)) > c′ log(N) for all α ∈ Σ+

Q. Then

κN (γ−1
X′′aūg) = κN (γ−1

X′′ag).

Proof. We first prove:

(3) It’s enough to treat the case when T ∈ T (Gx) is split.

In fact, if F ′/F is a finite extension, we can still define κF
′

N on G(F ′) in the same

way as κN . It is easy to see that κF
′

N = κNvalF ′ ($F ) on G(F ), and hence we can pass to

a finite extension of F . Therefore we may assume that T and Gx are split. This proves

(3).

(4) Let X ′′ → γX′′ , XΣ
′′ = (γX′′)

−1XγX′′ be another local sections satisfying Condi-

tions (1) and (2). Then the lemma holds for γX′′ , X
′′
Σ if and only if it holds for γX′′ , XΣ

′′.

For X ′′ ∈ t′′(F ), by Lemma 10.4.1, there exist u(X ′′) ∈ Ux(F ) and t(X ′′) ∈ Hx(F )

such that

XΣ
′′ = u(X ′′)−1t(X ′′)−1X ′′Σt(X

′′)u(X ′′).

By the choice of X ′′Σ, we have t(X ′′)−1X ′′Σt(X
′′) ∈ Ξ + Λ. It follows that u(X ′′) and

t(X ′′)−1X ′′Σt(X
′′) can be expressed in terms of polynomials of XΣ

′′. Hence they are

bounded. By Lemma 11.1.1, we know

σ(t(X ′′))� 1+ | log | QT (X ′′) |F | .

So for X ′′ ∈ (t′′)0(F )[> N−b] ∩ ωT ′′ , we have σ(t(X ′′))� log(N).

Note that the conjugations of X ′′ by γX′′ and by γX′′t(X
′′)u(X ′′) are the same.

Since X ′′ is regular, there exists y(X ′′) ∈ T (F ) such that γX′′ = y(X ′′)γX′′t(X
′′)u(X ′′).

The majorization of γX′′ , γX′′ , t(X
′′), and u(X ′′) implies that σ(y(X ′′)) � log(N) for

X ∈ t0(F )[> N−b] ∩ ωT . Let c > 0, a, g, ū,X ′′ be as in the statement of lemma. Since

κN is left H(F )U(F )-invariant, we have

κN ((γX′′)
−1aūg) = κN (γ−1

X′′aū
′g′), κN ((γX′′)

−1ag) = κN (γ−1
X′′ag

′)

where g′ = y(X ′′)−1g and ū′ = y(X ′′)−1ūy(X ′′).
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Now suppose that the Lemma holds for γX′′ , X
′′
Σ. By the above discussion, there

exists c′′ > 0 such that σ(g′), σ(ū′), σ(ū′g′) < c′′ log(N) for g and ū as in the lemma.

Let c′ be the c′ associated to c = c′′ for γX′′ and X ′′Σ. This c′ is what we need for γX′′

and XΣ
′′. The proof for the reverse direction is similar. This proves (4).

We go back to the proof of the lemma. We only deal with the case when x is in

the center, the other cases follow from the same method and the calculation is much

easier. In this case, X = X ′′. We replace X ′′ by X for the rest of the proof. Since

T is split, M] = T . We may choose P] = M]N] ∈ P(M]) and only consider those

a ∈ AT (F ) with HM]
(a) ∈ CL(a+

P]
). Then we must have P] ⊂ Q. By conjugating by a

Weyl element w, we may assume that P] ⊂ P̄ is the lower Borel subgroup. Note that

when we conjugate by w, we just need to make the following transfers: X → wXw−1,

γX → wγX , a → waw−1, ū → wūw−1 and g → wg. This is allowable by (4). Also

note that although in (3) we reduce to the case where T split, it still matters whether

we are starting from the split case or the nonsplit case since the definition of κN really

depends on it. If we are in the nonsplit case, we can make P̄ ⊂ Q since P̄ is the minimal

parabolic subgroup in this case; but this is not possible in the split case since P̄ will no

longer be the minimal parabolic subgroup.

For X = diag(x1, x2, x3, x4, x5, x6) ∈ t0,reg(F ), if | x2 − x1 |F≥ max{| x3 − x4 |F , |
x5 − x6 |F }, define

X ′Σ =


X1 0 0

aI2 X2 0

0 bI2 X3


where we defineX1 =

(
x1 0

0 x2

)
, X2 =

(
x3 +m 1

−m2 +Bm x4 −m

)
, andX3 =

(
x5 + n −n2 + Cn

1 x6 −m

)
with

m =
A+B + C

2
· A+B − C

2A
, n =

A+B + C

2
· A+ C −B

2A
,

where A = x2 − x1, B = x4 − x3, and C = x6 − x5. Then the map X → X ′Σ satisfies

condition (1). (Note that we assume | A |≥ max{| B |, | C |}.) We can find an element

pX ∈ P̄ of the form pX = ūXmX such that pXX
′
Σp
−1
X = X where

mX =


m1 0 0

0 m2 0

0 0 m3

 ∈M, ūX ∈ Ū .
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It follows that mXdiag(X1, X2, X3)m−1
X = X. So we can choose

m1 = I2,m
−1
2 =

(
1 1

−m B −m

)
,m−1

3 =

(
1 1

−n C − n

)
.

Similarly, we can define mX and X ′Σ for the case when | x3 − x4 |F≥ max{| x1 − x2 |F
, | x5 − x6 |F } or | x5 − x6 |F≥ max{| x1 − x2 |F , | x3 − x4 |F }.

Now by adding polynomials x1 − x2, x3 − x4 and x5 − x6 into the set QT , for

any X ∈ ωT ∩ t0(F )[> N−b], we have σ(m) � log(N). Applying Proposition 2.4.2

again, we know that pX , X
′
Σ satisfy Conditions (1) and (2). In fact, here we know

that σT (pX) � log(N) and σ(mX) � log(N) for X ∈ ωT ∩ t0(F )[> N−b], these force

σ(ūX)� log(N). Now by (4), it is enough to prove this Lemma for pX , X
′
Σ.

We will only deal with the case when | x2 − x1 |F≥ max{| x3 − x4 |F , | x5 − x6 |F },
the rest cases follow from a similar calculation. Applying the Bruhat decomposition,

we have

m−1
2 =

(
1 1

0 B −m

)(
1 0
m

m−B 1

)
= bX,2wX,2.

Similarly we can decompose m3 and m1 in this way. Let

bX = diag(bX,1, bX,2, bX,3), wX = diag(wX,1, wX,2, wX,3).

By adding some more polynomials on QT , we may still assume that σ(wX) � log(N).

(Note that m
m−B and n

n−C are rational functions of the xi’s.) It follows that σ(bX) �
log(N). Now we can write

p−1
X = bXwX(ūX)−1 = bXvX

for some vX = wX(ūX)−1 ∈ U](F ), and we still have σ(bX), σ(vX) � log(N). Since

P] ⊂ Q, we can write vX = nXuX where nX ∈ U](F ) ∩ L(F ) and uX ∈ UQ(F ). Then

we have

vXaūg = nXuXaūg = nXaūg · (g−1ū−1a−1uXaūg)

= a((a−1nXa)−1ū(a−1nXa)) · (a−1n−1
X ag) · (g−1ū−1a−1uXaūg)

= aū′g′k.
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For all a ∈ AT (F ) with inf{α(HM]
(a)) | α ∈ Σ+

Q} > c4 log(N) for some c4 > 0 large,

a−1uXa− 1 is very close to zero. Hence we can make

k = g−1ū−1a−1uXaūg ∈ K

for all σ(g), σ(ū) < c log(N). Since κN is right K-invariant, we have

κN (p−1
X aūg) = κN (bXvXaūg) = κN (bXaū

′g′),

κN (p−1
X ag) = κN (bXvXag) = κN (bXag

′).
(11.32)

Also since HM]
(a) ∈ CL(a+

P]
), a−1nXa is a contraction of nX , and hence we still have

σ(ū′), σ(g′)� log(N).

If we are in the non-split case, then we have already make P̄ ⊂ Q, and hence

UQ̄ ⊂ U . So the ū′ of the first equation in (11.32) can be moved to the very left

via the a-conjugation and the bX -conjugation. Then we can eliminate it by using left

U-invariance property of κN . This proves the Lemma.

If we are in the split case, we may assume that ū′ ∈ UQ̄(F )∩M(F ) since the rest

part can be switched to the front via the a-conjugation and the bX -conjugation, and then

be eliminated by the left U -invariance property of κN . Let g′ = u′m′k′ be the Iwasawa

decomposition with u′ ∈ U(F ),m′ ∈ M(F ) and k′ ∈ K. Then σ(m′) ≤ c0 log(N) for

c0 = lc where l is a fixed constant only depends on G. (Here we use the fact that

the Iwasawa decomposition preserves the norm up to a bounded constant which only

depends on the group and the parabolic subgroup.) We can eliminate u′ and k′ by the

left U -invariance and right K-invariance properties of κN . Now applying the Iwasawa

decomposition again, we can write m′ = b′k′ with b′ upper triangle. By the same reason,

we have σ(b′) ≤ c1 log(N) for some c1 = l′c0 = ll′c. Again by the right K-invariance

property of κN , we can eliminate k′. b′ can be absorbed by a and ū′. After this process,

we will still have the majorization for ū′ (i.e. σ(ū′) � log(N)), and we will still have

α(HM]
(a)) > c′′ log(N) for all α ∈ Σ+

Q, here c′′ = c′−c1. So we may assume that m′ = 1.

In this case, we have

κN (bXag
′) = κN (bXa), κN (aū′g′) = κN (bXaū

′).

Now let bXa = diag(l1, l2, l3) and let bXaū
′ = diag(l′1, l

′
2, l
′
3) where li and l′i are all

upper triangle 2-by-2 matrices. Since ū′ is an unipotent element and σ(ū′) � log(N),
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l′i = lini for some unipotent element ni with σ(ni) � log(N). Then we know for any

1 ≤ i, j ≤ 3, l−1
i lj =

(
a x

0 c

)
, and (l′i)

−1l′j = n−1
i

(
a x

0 c

)
nj . Since in the definition

of κN for the split case (as in (5.4)), we do allow the unipotent part to be bounded by

(1 + ε)N while the diagonal part is bounded by N , those ni’s will only add something

majorized by N +C log(N) on the unipotent part and not change the semisimple part.

So if we take N large so that εN > C log(N), we have

κN (bXaū
′g′) = κN (bXag

′).

This finishes the proof of the split case, and finishes the proof of the Lemma.

We prove 11.3(6).

For c4 > 0, by 11.3(1), we impose the mirror condition

c4 log(N) < c1 inf{α(ZPmin) | α ∈ ∆min}

to ZPmin to make sure all terms are well defined.

By the same argument as in Section 11.4, we know that the function ζ → σQM]
(ζ,Z(g))τQ(ζ−

Z(g)Q) is invariant under g → ūg. Therefore

κN,X′′(Q, ūg)− κN,X′′(Q, g) (11.33)

=

∫
ZG\AT (F )

σQM]
(HM]

(a),Z(g))τQ(HM]
(a)−Z(g)Q)(κN (γ−1

X′′aūg)− κN (γ−1
X′′ag))du.

Let c = c4 be as in Lemma 11.5.1. Then we get some c′ > 0. For a ∈ AT (F ) with

σQM]
(HM]

(a),Z(g))τQ(HM]
(a)− Z(g)Q) 6= 0, by the definition of σQM]

and τQ, together

with the majorization of g, we have

inf{α(HM]
(a)) | α ∈ Σ+

Q} − inf{α(ZPmin) | α ∈ ∆min} � − log(N). (11.34)

Now choose c5 > 0 such that c5 >
c4
c1

. We also require that

inf{α(ZPmin) | α ∈ ∆min} > c5 log(N).

Combining with (11.34), we have

inf{α(HM]
(a)) | α ∈ Σ+

Q} > c′ log(N).
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We claim that this is the c5 we need for 11.3(6). In fact, by the discussion above together

with Lemma 11.5.1, we know that for g and ū as in 11.3(6), κN (γ−1
X′′aūg) = κN (γ−1

X′′ag)

whenever σQM]
(HM]

(a),Z(g))τQ(HM]
(a)−Z(g)Q) 6= 0. This means that the right hand

side of (11.33) equals zero. Hence κN,X′′(Q, ūg) − κN,X′′(Q, g) = 0. This finishes the

proof of 11.3(6).

11.6 Principal Proposition

Proposition 11.6.1. There exists N1 > 0 such that for N > N1, X ∈ t0(F )[> N−b],

and x ∈ Hss(F ) elliptic, we have∫
AT (F )ZGx (F )\G(F )

(gfx,ω)ˆ(X)κN,X′′(g)dg = ν(AT )ν(ZGx)θ]f,x,ω(X).

Proof. By Proposition 11.3.1, we can replace the function κN,X′′ by the function ṽ(g, YPmin)

in the integral above. Then by the computation of ṽ(g, YPmin) in [Ar91], together with

the same argument as in Proposition 10.9 of [W10], as YPmin goes to infinity, the integral

equals

(−1)
aM]−aGΣQ∈F(M])c

′
QI(Q) (11.35)

where c′Q are some constant numbers with c′G = 1, and

I(Q) =

∫
ZGx (F )AT (F )\G(F )

gf ]x,ω(X)vQM]
(g)dg. (11.36)

IfQ = LUQ 6= G, we can decompose the integral in (11.36) as
∫
ZGx (F )AT (F )\L(F ),

∫
Kmin

and
∫
UQ(F ). Since vQM]

(g) is UQ(F )-invariant, the inner integral becomes∫
UQ(F )

ulkf ]x,ω(X)du.

By Lemma 3.7.2, this is zero because f is strongly cuspidal. Therefore

I(Q) = 0. (11.37)

For Q = G, we can replace the integral on ZGx(F )AT (F )\G(F ) by T (F )\G(F ) and

multiply it by meas(T (F )/ZGxAT (F )). Then we get

I(G) = meas(T (F )/ZGxAT (F ))DGx(X)1/2J ]M],x,ω
(X, f) (11.38)
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where J ]M],x,ω
(X, f) is defined in (3.17).

Now combining (11.35), (11.37) and (11.38), together with the definition of θ]f,x,ω

(as in (3.19)) and the fact that

ν(T )meas(T (F )/ZGxAT (F )) = ν(AT )ν(ZGx),

we have ∫
AT (F )ZGx\G(F )

(gfx,ω)ˆ(X)κN,X′′(g)dg = ν(AT )ν(ZGx)θ]f,x,ω(X).

This finishes the proof of the Proposition.

Finally, for x ∈ Hss(F ) elliptic, let

Jx,ω(f) =ΣT∈T (Gx) |W (Gx, T ) |−1 ν(ZGx)

×
∫
t′(F )×(t′′)0(F )

DGx(X ′′)1/2θ]f,x,ω(X)dX.
(11.39)

Proposition 11.6.2. The integral in (11.39) is absolutely convergent, and we have

lim
N→∞

Ix,ω,N (f) = Jx,ω(θ, f).

Proof. The proof for the first part is the same as Lemma 10.10(1) of [W10]. For the

second part, by Lemma 11.1.2, it is enough to consider limN→∞ I
∗
x,ω,N (θ, f). Then the

proposition just follows from Proposition 11.6.1 together with (11.1).
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The Proof of the Trace Formula

In this chapter, we are going to prove the geometric side of the trace formula. In Section

12.1, by applying the computation in the previous chapter, we are going to compute the

limit limN→∞IN (f) in terms of the distribution θ̂f for the Lie algebra case. Then in

Section 12.2, we are going to prove the Lie algebra version of the trace formula based

on a hypothesis. In Section 12.3, we will finish the proof of the trace formula based on

the trace formula of the reduced model (i.e. the Whittaker model). Finally, in Section

12.4, we prove the trace formula for the reduced model.

12.1 Calculation of limN→∞IN(f): the Lie Algebra Case

If f ∈ C∞c (g0(F )) is a strongly cuspidal function, we define

J(f) = ΣT∈T (G) |W (G,T ) |−1

∫
t0(F )

DG(X)1/2θ̂f (X)dX. (12.1)

Lemma 12.1.1. The integral in (12.1) is absolutely convergent, and we have

lim
N→∞

IN (f) = J(f).

Proof. The first part is similar to the first part of Proposition 11.6.2. For the second

part, let ω ⊂ g0(F ) be a good neighborhood of 0. Suppose that Supp(f) ⊂ ω. Then

we can relate f to a function Φ on ZG(F )\G(F ) which is supported on ZG(F ) exp(ω).

By Proposition 9.3.4, we know IN (f) = IN (Φ). Then by applying Proposition 11.6.2

to the function Φ and x = 1, we have limN→∞ IN (f) = J1,ω(Φ). By Proposition 3.7.4,

164
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θ]Φ,1,ω is the partial Fourier transform of θΦ,1,ω = θf . But for x = 1, partial Fourier

transform is just the full Fourier transform. Thus θ]Φ,1,ω = θ̂f . Also we know that

ν(ZGx) = ν(ZG) = 1. Therefore

lim
N→∞

IN (f) = J1,ω(Φ) = J(f).

This proves the Lemma for those f whose support is contained in ω.

In general, replacing (a, b) in the definition of ξ (as in (5.1)) by (λa, λb) for some

λ ∈ F×, we get a new character ξ′, and let f ′ = fλ. Then for Y ∈ h(F ), we have

(f ′)ξ
′
(Y ) =| λ |− dim(U)

F f ξ(λY ).

This implies

Iξ′,N (f ′) =| λ |− dim(U)−dim(H/ZH)
F Iξ,N (f). (12.2)

On the other hand, we know

θ̂f ′(X) = | λ |− dim(G/ZG)
F θ̂f (λ−1X),

DG(λX)1/2 = | λ |δ(G)/2
F DG(X)1/2.

By changing of variable in (12.1), (note that this is allowable since t0(F ) is invariant

under scalar in the sense that for t ∈ t0(F ), λ ∈ F×, we have λt ∈ t0(F ), see Remark

10.4.3) we have

Jξ′(f
′) =| λ |− dim(G/ZG)+dim(T/ZG)+δ(G)/2

F Jξ(f). (12.3)

Since

−dim(G/ZG) + dim(T/ZG) + δ(G)/2 = −dim(U)− dim(H/ZH) = −15,

together with (12.2) and (12.3), we know that limN→∞ Iξ,N (f) = Jξ(f) if and only if

limN→∞ Iξ′,N (f ′) = Jξ′(f
′). Then for any f , we can choose λ such that Supp(f ′) ⊂ ω.

Applying the first part of the proof to f ′, we get limN→∞ Iξ′,N (f ′) = Jξ′(f
′), which

implies limN→∞ Iξ,N (f) = Jξ(f). This finishes the proof of the Lemma.
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12.2 A Premier Result

Consider the following hypothesis.

Hypothesis: For every strongly cuspidal f ∈ C∞c (g0(F )) whose support dose not

contain any nilpotent element, we have

lim
N→∞

IN (f) = Igeom(f).

In this subsection, we will prove the following proposition.

Proposition 12.2.1. If the above hypothesis holds, we have

lim
N→∞

IN (f) = Igeom(f)

for every strongly cuspidal function f ∈ C∞c (g0(F )).

In order to prove the above proposition, consider the following morphism:

f → E(f) = lim
N→∞

IN (f)− Igeom(f) = J(f)− Igeom(f) (12.4)

defined on the space of strongly cuspidal functions f ∈ C∞c (g0(F )). This is obviously a

linear map.

Lemma 12.2.2. The map E is a scalar multiple of the morphism f → cθf ,O where O
is the regular nilpotent orbit of g(F ). In particular, E = 0 if G = GL3(D).

Proof. We first prove:

(1) E(f) = 0 if cθf ,O = 0 for every O ∈ Nil(g(F )).

Suppose that cθf ,O = 0 for every O ∈ Nil(g(F )). We can find a G-domain ω

in g0(F ), which has compact support modulo conjugation and contains 0, such that

θf (X) = 0 for every X ∈ ω. Let f ′ = f1ω and let f ′′ = f−f ′. Then these two functions

are also strongly cuspidal. The support of f ′′ does not contain nilpotent elements. By

the hypothesis, we know that E(f ′′) = 0.

On the other hand, since θf (X) = 0 for every X ∈ ω, we have θf ′ = 0 and θ̂f ′ = 0.

By the definition of Igeom(f) and J(f), we know that J(f ′) = 0 = Igeom(f ′). Hence
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E(f) = E(f ′) + E(f ′′) = 0. This proves (1).

Now for λ ∈ (F×)2, let f ′ = fλ. We have θf ′ = (θf )λ. For O ∈ Nil(g(F )), by (3.4),

we have

cθf ′ ,O =| λ |− dim(O)/2
F cθf ,O. (12.5)

We then show:

(2) E(f ′) =| λ |−δ(G)/2
F E(f) =| λ |−15

F E(f)

By (12.3), we have

J(f ′) =| λ |−15
F J(f). (12.6)

Now for Igeom(f), let T ∈ T as in Section 5.2. The expression for Igeom(f) related to T

is ∫
t0(F )

cf (Y )DH(Y )∆(Y )dY. (12.7)

If T = {1}, (12.7) = cf (0) is the germ associated to the unique regular nilpotent

orbit of g(F ). By (3.4), we have

cf ′(0) =| λ |−δ(G)/2
F cf (0) =| λ |−15

F cf (0).

If T = Tv for some v ∈ F×/(F×)2, v 6= 1 as in Section 5.2, the nilpotent orbit asso-

ciated to cf is the unique regular nilpotent orbit Ov of GL3(Fv), which is of dimension

12. By (3.4) again, we have

cf ′(X) =| λ |−6
F cf (λX).

Moreover, we have DH(λ−1X) =| λ |−2
F since dim(h) − dim(hx) = 2, and ∆(λ−1X) =|

λ |−6
F ∆(X) since dim(u) − dim(ux) = 6. Therefore by changing variable X → λ−1X,

we have ∫
t0(F )

cf ′(Y )DH(Y )∆(Y )dY =| λ |bF
∫
t0(F )

cf (Y )DH(Y )∆(Y )dY (12.8)

where b = −6− 2− 6− dim(t0) = −15. Combining (12.7) and (12.8), we have

Igeom(f ′) =| λ |−15
F Igeom(f). (12.9)
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Then (2) just follows from (12.6) and (12.9).

Now (1) tells us that E is a linear combination of cθf ,O for O ∈ Nil(g(F )). We know

that dim(O) ≤ 30 and the equality holds if and only if G = GL6(F ) and O is regular.

Hence the Lemma follows from (2) and (12.5).

In particular, by the lemma above, we have proved Proposition 12.2.1 for G =

GL3(D). Now we are going to prove the case when G = GL6(F ).

By the discussion above, in this case, E(f) = cregcθf ,Oreg for some complex number

creg. It is enough to show that creg = 0. Our method is to find some special f such

that E(f) = 0 and cθf ,Oreg = 1. This will implies that creg = 0. The way to find this f

is due to Waldspurger, see [W10].

By 6.3(3) and 11.5 of [W10], for T ∈ T (G) (here T (G) is the set of equivalent

classes of maximal subtorus of G(F )) and X ∈ t0(F ) ∩ greg(F ), we can construct a

neighborhood ωX of X in t0(F ) and a strongly cuspidal function f [X] ∈ C∞c (g0(F ))

satisfy the following conditions:

1. For T ′ ∈ T (G) with T ′ 6= T , the restriction of θ̂f [X] to t′0(F ) is zero.

2. For every locally integrable function ϕ on t0(F ) which is invariant under the

conjugation of Weyl group, we have∫
t0(F )

ϕ(X ′)DG(X ′)1/2θ̂f [X](X
′)dX ′ =|W (G,T ) | meas(ωX)−1

∫
ωX

ϕ(X ′)dX ′.

3. For every O ∈ Nil(g), we have

cθf [X],O = ΓO(X)

where ΓO(X) is the Shalika germ defined in Section 2.5.

Now let Td be the unique split torus of T (G). This is possible since we are in the

split case now. Fix Xd ∈ td,0(F ) ∩ greg(F ). Then we can find ωXd and f [Xd] as above.

Let f = f [Xd]. By condition (3) above and Lemma 11.4(i) of [W10], we know that

cθf ,Oreg = 1. This implies

E(f) = creg. (12.10)



169

Now by condition (1) above, we know that each components of the summation in

Igeom(f) is 0 for T ∈ T with T 6= {1}. Then by applying condition (3) above and

Lemma 11.4(i) of [W10] again, we have

Igeom(f) = cθf ,Oreg = 1. (12.11)

On the other hand, by condition (1) and (2),

J(f) = ΣT∈T (G) |W (G,T ) |−1

∫
t0(F )

DG(X)1/2θ̂f (X)dX

=|W (G,Td) |−1

∫
td,0(F )

DG(X)1/2θ̂f (X)dX

= meas(ωXd)
−1meas(ωXd) = 1.

(12.12)

Here we use the fact that (td)
0(F ) = td,0,reg(F ), which has been proved in the proof of

Lemma 11.5.1.

Now combining (12.10), (12.11) and (12.12), we have

creg = E(f) = Igeom(f)− J(f) = 1− 1 = 0.

This finishes the proof of Proposition 12.2.1.

12.3 Proof of the Trace Formula

Consider the following four assertions:

(th)G: For every strongly cuspidal function f ∈ C∞c (ZG(F )\G(F )), we have limN→∞ IN (f) =

Igeom(f).

(th′)G: For every strongly cuspidal function f ∈ C∞c (ZG(F )\G(F )) whose support

does not contain any unipotent element, we have limN→∞ IN (f) = Igeom(f).

(th)g: For every strongly cuspidal function f ∈ C∞c (g0(F )), we have limN→∞ IN (f) =

Igeom(f).

(th′)g: For every strongly cuspidal function f ∈ C∞c (g0(F )) whose support does not

contain any nilpotent element, we have limN→∞ IN (f) = Igeom(f).
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Lemma 12.3.1. The assertion (th)G implies (th)g. The assertion (th′)G implies (th′)g.

Proof. Suppose that (th)G holds. For any strongly cuspidal function f ∈ C∞c (g0(F )),

we need to show E(f) = 0. In the proof of Lemma 12.2.2, we have proved that

E(f) =| λ |15
F E(fλ). So by changing f to fλ, we may assume that the support of f is

contained in a good neighborhood ω of 0 in g0(F ). Same as in Lemma 12.1.1, we can

construct a strongly cuspidal function F ∈ C∞c (ZG(F )\G(F )) such that J(f) = J1,ω(F )

and Igeom(f) = I1,ω(F ). By Propositions 9.3.4, 9.4.1, and 11.6.2, we have J1,ω(F ) =

limN→∞ IN (F ) and I1,ω(F ) = Igeom(F ). By (th)G, we have Igeom(F ) = J1,ω(F ), which

implies E(f) = 0.

The proof of the second part is similar to the proof of the first part: we only need

to add the fact that if the support of f does not contain any nilpotent element, then

the support of F does not contain any unipotent element.

We first prove (th′)G.

Proof. Let f ∈ C∞c (ZG(F )\G(F )) be a strongly cuspidal function whose support does

not contain any unipotent element. For x ∈ Gss(F ), let ωx be a good neighborhood of

0 in gx(F ), and let Ωx = (x exp(ωx))G · ZG. We require that ωx satisfies the following

conditions:

1. If x belongs to the center, since f is ZG(F )-invariant, we may assume that x = 1.

We require that Ωx ∩ Supp(f) = Ω1 ∩ Supp(f) = ∅. This is possible since the

support of f does not contain any unipotent element.

2. If x is not conjugated to any element in H(F ), we choose ωx satisfies the condition

in Section 9.1.

3. If x is conjugated to a non-elliptic element x′ ∈ Hss(F ), we choose ωx satisfies the

condition in Section 9.2.

4. If x is conjugated to an elliptic element x′ ∈ Hss(F ) not in the center, we choose

a good neighborhood ωx′ of 0 in gx′(F ) as in Section 9.3, and let ωx be the image

of ωx′ by conjugation. Moreover, we choose ωx′ small enough such that Ωx′ does

not contain split element.
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Then we can choose a finite set X ⊂ Gss(F ) such that f = Σx∈X fx where fx is the

product of f and the characteristic function on Ωx. Since limN→∞ IN (f) and Igeom(f)

are linear functionals on f , we may just assume that f = fx.

If x = 1, by the choice of Ω1 we know that f = 0, and the assertion is trivial.

If x is not conjugated to an element of H(F ), then the assertion follows from the

choice of Ωx and the same argument as in Section 9.1.

If x is conjugated to a non-elliptic element of H(F ), then the assertion follows from

the choice of Ωx and the same argument as in Section 9.2.

If x is conjugated to an elliptic element of H. By Propositions 9.3.4 and 9.4.1, it is

enough to prove that

lim
N→∞

Ix,ω,N (f) = Ix,ω(f). (12.13)

Now we can decompose θf,x,ω as

θf,x,ω(X) = Σb∈Bθ
′
f,b(X

′)θ′′f,b(X
′′) (12.14)

where B is a finite index set, and for every b ∈ B, θ′f,b(X
′) (resp. θ′′f,b(X

′′)) is a quasi-

character on g′x(F ) (resp. g′′(F )). By Proposition 6.4 of [W10], for every b ∈ B, we

can find f ′′b ∈ C∞c (g′′(F )) strongly cuspidal such that θ′′f,b(X
′′) = θf ′′b . Then by the

definition of Ix,ω(f) (as in (9.24)), we have

Ix,ω(f) = Σb∈BI
′(b)Igeom(f ′′b )

where

I ′(b) = ν(ZGx)

∫
g′x(F )

θ′f,b(X
′)dX ′, Igeom(f ′′b ) = cθ′′f,b,O(1)

with O be the unique regular nilpotent orbit in g′′(F ). Here we use the fact that the

only torus in Tx is ZGx , which implies that ν(T ) = ν(ZGx) and DHx(X) = ∆′′(X) = 1

for all X ∈ t0(F ) .

On the other hand, by Proposition 11.6.2, we have

lim
N→∞

Ix,ω,N (f) = Jx,ω(f) = Σb∈BI
′(b)J(f ′′b )

where

J(f ′′b ) = ΣT∈T (Gx) |W (Gx, T ) |−1

∫
(t′′)0(F )

DGx(X)1/2θ̂f ′′b (X)dX.
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In order to prove (12.13), we only need to show that Igeom(f ′′b ) = J(f ′′b ). This is just

the Lie algebra version of the trace formula for the model

(Gx, Ux),

which is just the Whittaker model of GL3(Fv). The proof is very similar to the Ginzburg-

Rallis model case, we will prove it in the next section.

Finally we can finish the proof of the trace formula. By Lemma 12.3.1, we only need

to prove the group case. We use the same argument as in the proof of (th′)G above,

except that in the x = 1 case, we don’t have Ω1∩Supp(f) = ∅. In this case, still by using

localization, we can reduce to the Lie algebra case. Now since we have proved (th′)G,

together with Lemma 12.3.1, we know that (th′)g holds. Then by applying Proposition

12.2.1, we know that (th)g holds. This proves (th)G and finishes the proof of the trace

formula.

12.4 The proof of Igeom(f ′′b ) = J(f ′′b )

In this section, we are going to prove

Igeom(f ′′b ) = J(f ′′b ), (12.15)

which is the geometric side of the Lie algebra version of the local trace formula for

the Whittaker model of GL3(Fv). There are two ways to prove it, one is to apply the

method we used in previous sections to the Whittaker model case; the other one is to

use the spectral side of the trace formula together with the multiplicity formula of the

Whittaker model proved by Rodier in [Rod81].

Method I: By the same argument as in Section 12.2, we only need to prove (12.15)

for f ′′b whose support does not contain any nilpotent element. Then by changing f ′′b to

(f ′′b )λ, we may assume that the function f ′′b is supported on a small neighborhood of 0.

Then we can relate f ′′b to a function Φx on Gx(F )/ZGx(F ). By the same argument as in

the Ginzburg-Rallis model case, we know that in order to prove (12.15), it is enough to

prove the geometric side of the local trace formula for Φx, i.e. limN→∞ IN (Φx) = cΦx(1).

Here IN (Φx) is defined in the same way as IN (f) in Section 5.2. In other word, we first
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integrate over Ux, and then integrate over Gx/UxZGx . cΦx(1) is the germ of θΦx at 1

associated to the unique regular nilpotent orbit of gl3(Fv).

Since f ′′b does not support on nilpotent element, Φx does not support on unipotent

element. This implies that cΦx(1) = 0. On the other hand, since the only semisimple

element in Ux is 1, by the same argument as in Section 10.1, the localization of IN (Φx)

at y ∈ Gx(F )ss is zero if y is not in the center. If we are localizing at 1, since the

support of Φx does not contain unipotent element, we will still get zero once we choose

the neighborhood small enough. Therefore limN→∞ IN (Φx) = 0 = cΦx(1), and this

proves (12.15).

Method II: Same as in Method I, we only need to prove the group version of the

trace formula, i.e. limN→∞ IN (Φx) = cΦx(1). By applying the same method as in

Chapter 4-8, we can prove a spectral expansion of limN→∞ IN (Φx):

lim
N→∞

IN (Φx) =

∫
Πtemp(Gx(F ),1)

θπ(Φx)m′(π̄)dπ (12.16)

where Πtemp(Gx(F ), 1) is the set of all tempered representations of Gx(F ) with trivial

central character, dπ is a measure on Πtemp(Gx(F ), 1) defined in Section 2.9, θπ(Φx) is

defined in Section 3.5 via the weighted character, and m′(π̄) is the multiplicity for the

Whittaker model (here we are in the GLn case, all tempered representations are generic,

so m′(π̄) is always 1).

By the work of Rodier, m′(π̄) = cπ̄(1) where cπ̄(1) is the germ of θπ̄ at 1 associated

to the unique regular nilpotent orbit of gl3(Fv). Therefore (12.16) becomes

lim
N→∞

IN (Φx) =

∫
Πtemp(Gx(F ),1)

θπ(Φx)cπ̄(1)dπ. (12.17)

Finally, as in Proposition 3.5.3, we have

θΦx =

∫
Πtemp(Gx(F ),1)

θπ(Φx)θπ̄dπ.

Combining with (12.17), we have limN→∞ IN (Φx) = cΦx(1) and this proves (12.15).



Chapter 13

The Proof of the Main Theorems

In this chapter, we are going to prove our main theorems (i.e Theorem 1.2.1 and Theo-

rem 1.2.2) for the p-adic case. The key ingredient in the proof is the trace formula we

proved in previous chapters. In Section 13.1, by applying the trace formula, we prove

a multiplicity formula for the Ginzburg-Rallis model. In Section 13.2, by applying the

relations between the distribution characters under the Jacquet-Langlands correspon-

dence in [DKV84], together with the multiplicity formulas, we will prove Theorem 1.2.1.

In Section 13.3, we are going to prove Theorem 1.2.2.

13.1 The Multiplicity Formulas

Let π be an irreducible tempered representation of G(F ) with central character η = χ2.

Similar to Section 5.2, we define the geometric multiplicity to be

mgeom(π) =
∑
T∈T
|W (H,T )|−1ν(T )

∫
ZG(F )\T (F )

cπ(t)DH(t)∆(t)ω(t)−1dt.

Here cπ(t) = cθπ(t) is the germ associated to the distribution character θπ. The multi-

plicity formula is just

m(π) = mgeom(π). (13.1)

Let π = IG
Q̄

(τ) for some good parabolic subgroup Q̄ = LUQ and some discrete series

τ of L(F ). In Section 5.4, we have defined the geometric multiplicity mgeom(τ) for the

reduced model (L,RQ̄). The following lemma tells us the relations between mgeom(π)

and mgeom(τ).

174
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Lemma 13.1.1. With the notation above, we have

mgeom(π) = mgeom(τ).

Proof. This is a direct consequence of Lemma 3.3.1(2). In fact, if Q̄ is of Type I, by

applying the lemma, we know that the germs associated to π and τ are the same:

DG(t)1/2cπ(t) = DL(t)1/2cτ (t), ∀t ∈ Treg(F ), T ∈ T .

This implies

∆(t)cπ(t) = ∆Q(t)cτ (t).

Hence mgeom(π) = mgeom(τ). Note that in Section 5.4, we have only defined ∆Q for

the middle model; for the trilinear GL2 model, ∆Q is just 1.

If Q̄ is of Type II, by applying the lemma, we know that the germ cπ(t) is zero for

all t ∈ Treg(F ), T ∈ T with t 6= 1. Therefore we have mgeom(π) = cπ(1) = 1 = cτ (1) =

mgeom(τ). This proves the lemma.

The rest part of this subsection is to prove the multiplicity formula (13.1). If π is

not a discrete series, with the notation above together with the inductional hypothesis,

we have m(τ) = mgeom(τ). Combining with Corollary 6.6.4 and the lemma above, we

have

m(π) = m(τ) = mgeom(τ) = mgeom(π).

This proves (13.1).

From now on we assume that π is a discrete series. Combining the trace formula

Igeom(f) = Ispec(f) and Proposition 3.5.3, we have∫
Π′temp(G,η−1)

θf (Π)m(Π̄)dΠ +

∫
Π2(G,η−1)

θf (Π)m(Π̄)dΠ (13.2)

=

∫
Π′temp(G,η−1)

θf (Π)mgeom(Π̄)dΠ +

∫
Π2(G,η−1)

θf (Π)mgeom(Π̄)dΠ.

Here as before, Π2(G, η−1) ⊂ Πtemp(G, η
−1) is the subset consisting of discrete series,

and Π′temp(G, η
−1) = Πtemp(G, η

−1) − Π2(G, η−1). By the above discussion, we know

the multiplicity formula holds for all Π ∈ Π′temp(G, η
−1). Therefore (13.2) becomes∫

Π2(G,η−1)
θf (Π)m(Π̄)dΠ =

∫
Π2(G,η−1)

θf (Π)mgeom(Π̄)dΠ. (13.3)
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Now take f ∈ C∞c (ZG(F )\G(F ), η) to be the pseudo coefficient of π̄. This means that

tr(π̄(f)) = 1 and tr(σ(f)) = 0 for all σ ∈ Πtemp(G, η
−1) with σ 6= π̄. The existence

of such an f was proved in Lemma 3.8.1. The lemma also shows that f is strongly

cuspidal. For such an f and for any Π ∈ Π2(G, η−1), we have θf (Π) = tr(Π(f)). Hence

it is nonzero if and only if Π = π̄. Therefore (13.3) becomes

θf (π̄)m(π) = θf (π̄)mgeom(π).

Hence mgeom(π) = m(π), and this proves (13.1).

13.2 The Proof of Theorem 1.2.1

In this subsection, we prove Theorem 1.2.1 by applying the multiplicity formula (13.1)

in the previous section. Let G = GL6(F ) and let GD = GL3(D). Similarly we can

define H0, H0,D, U and UD. Let π, πD, χ, ω, ωD, ξ and ξD be the same as in Conjecture

1.1.3. We assume that π is tempered. By (13.1), we have

m(π) = cθπ ,Oreg(1) + Σv∈F×/(F×)2,v 6=1 |W (H,Tv) |−1 ν(Tv)

×
∫
ZH\Tv(F )

ω−1(t)cπ(t)DH(t)∆(t)dt

and

m(πD) = Σv∈F×/(F×)2,v 6=1 |W (HD, Tv) |−1 ν(Tv)

×
∫
ZHD\Tv(F )

ω−1
D (t′)cπD(t′)DHD(t′)∆D(t′)dt.

Here we use t to denote elements in GL6(F ) and t′ to denote elements in GL3(D). We

can match t and t′ via the characteristic polynomial: we write t ↔ t′ if they have the

same characteristic polynomial. Since π is tempered, it is generic. So by [Rod81], we

have cθπ ,Oreg(1) = 1. Also for v ∈ F×/(F×)2, v 6= 1, we have

|W (HD, Tv) |=|W (H,Tv) |, ZH = ZHD .

So in order to prove Theorem 1.2.1, we only need to show that for any v ∈ F×/(F×)2, v 6=
1, the sum of ∫

ZH(F )\Tv(F )
ω−1(t)cπ(t)DH(t)∆(t)dct
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and ∫
ZH(F )\Tv(F )

ω−1
D (t′)cπD(t′)DHD(t′)∆D(t′)dct

′

equals 0. For t, t′ ∈ Tv(F ) regular with t↔ t′, we have

DH(t) = DHD(t),∆(t) = ∆D(t′), ω(t) = ωD(t′).

Therefore it is enough to show that for any v ∈ F×/(F×)2, v 6= 1, and for any t, t′ ∈
Tv(F ) regular with t↔ t′, we have

cπ(t) + cπD(t′) = 0. (13.4)

By Section 13.6 of [W10] or Proposition 4.5.1 of [B15], we have

cπ(t) = DG(t)−1/2|W (Gt, Tqs,t|−1 lim
x∈Tqs,t(F )→t

DG(x)1/2θπ(x)

and

cπD(t′) = DGD(t)−1/2|W ((GD)t′ , Tqs,t′ |−1 lim
x′∈Tqs,t′ (F )→t

DGD(x′)1/2θπD(x′)

where Tqs,t (resp. Tqs,t′) is a maximal torus contained in the Borel subgroup Bt (resp.

Bt′) of Gt (resp. (GD)t′). Note that if t, t′ ∈ Tv is regular, both Gt and (GD)t′ are

isomorphic to GL3(Fv) which is quasi-split over F , hence we are able to choose the

Borel subgroup Bt (resp. Bt′). In particular, |W (Gt, Tqs,t)|−1 = |W ((GD)t, Tqs,t)|−1.

Also for those matched t ↔ t′, we have DG(t) = DGD(t). And for x ∈ Tqs,t(F ) (resp.

x′ ∈ Tqs,t′(F )) sufficiently close to t (resp. t′) with x ↔ x′, they are also regular

semisimple and we have DG(x) = DGD(x′). Therefore in order to prove (13.4), it is

enough to show that for any regular semisimple x ∈ G(F ) and x′ ∈ GD(F ) with x↔ x′,

we have

θπ(x) + θπD(x′) = 0. (13.5)

This just follows from the relations of the distribution characters under the Jacquet-

Langlands correspondence (see [DKV84]). This proves Theorem 1.2.1

13.3 The Proof of Theorem 1.2.2

Let π be an irreducible tempered representation of GL6(F ) with central character χ2.

Let π = IG
Q̄

(τ) for some good parabolic subgroup Q̄ = LUQ and some discrete series τ
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of L(F ). By our assumptions in Theorem 1.2.2, Q̄ can not be of type (6) or type (4, 2).

Then there are two possibilities: Q̄ is of type (2, 2, 2) or Q̄ is of Type II.

If Q̄ is of type (2, 2, 2). By a similar argument as in Section 7.3, we have ε(1/2, π,∧3⊗
χ−1) = ε(1/2, τ × χ−1). Combining with Prasad’s results for the trilinear GL2 model

([P90]) and the fact that m(π) = m(τ), we prove Theorem 1.2.2.

If Q̄ is of Type II, by Corollary 6.6.3, m(π) = 1. Hence it is enough to prove the

following proposition.

Proposition 13.3.1. If Q̄ is of Type II, we have ε(1/2, π,∧3 ⊗ χ−1) = 1.

Proof. Since Q̄ is of Type II, it is contained in some Type II maximal parabolic sub-

groups. There are only two Type II maximal parabolic subgroups: type (5, 1) and type

(3, 3).

If Q̄ is contained in the parabolic subgroup Q5,1 of type (5, 1), then there exists a

tempered representation σ = σ1 ⊗ σ2 of GL5(F )×GL1(F ) such that π = IGQ5,1
(σ). Let

φi be the Langlands parameter of σi for i = 1, 2. Then φ = φ1 ⊕ φ2 is the Langlands

parameter for π. Hence we have

∧3(φ) = ∧3(φ1 ⊕ φ2) = ∧3(φ1)⊕ (∧2(φ1)⊗ φ2).

Since the central character of π is χ2, det(φ) = det(φ1) ⊗ det(φ2) = χ2. Therefore

(∧3(φ1)⊗χ−1)∨ = ∧2(φ1)⊗det(φ1)−1⊗χ = ∧2(φ1)⊗det(φ2)⊗χ−1 = ∧2(φ1)⊗φ2⊗χ−1.

This implies that

ε(1/2, π,∧3 ⊗ χ−1) = det(∧3(φ1)⊗ χ−1)(−1) = (det(φ1))6(−1)× χ−10(−1) = 1.

If Q̄ is contained in the parabolic subgroup Q3,3 of type (3, 3), there exists a tempered

representation σ = σ1 ⊗ σ2 of GL3(F )×GL3(F ) such that π = IGQ3,3
(σ). Let φi be the

Langlands parameter of σi for i = 1, 2. Then φ = φ1 ⊕ φ2 is the Langlands parameter

for π. Hence we have

∧3(φ) = ∧3(φ1 ⊕ φ2)

= (∧2(φ1)⊗ φ2)⊕ (φ1 ⊗ ∧2(φ2))⊕ det(φ1)⊕ det(φ2).

Since the central character of π is χ2, det(φ) = det(φ1) ⊗ det(φ2) = χ2. Therefore

(∧2(φ1)⊗φ2⊗χ−1)∨ = (φ1⊗det(φ1)−1)⊗ (∧2(φ2)⊗det(φ2)−1)⊗χ = φ1⊗∧2(φ2)⊗χ−1
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and (det(φ1)⊗ χ−1)∨ = det(φ2)⊗ χ−1. This implies that

ε(1/2, π,∧3 ⊗ χ−1) = det(∧2(φ1)⊗ φ2 ⊗ χ−1)(−1)× det(φ1)(−1)× χ−1(−1)

= det(∧2(φ1))3(−1)× det(φ2)3(−1)× χ−10(−1)× det(φ1)(−1)

= (det(φ1)2(−1))3 × (det(φ2)(−1))3 × det(φ1)(−1)

= det(φ1)(−1)× det(φ2)(−1) = χ2(−1) = 1.

This finishes the proof of the proposition and hence the proof of Theorem 1.2.2.



Chapter 14

The Generic Case

In this Chapter, by applying the open orbit method, we prove some partial results for

the general generic representations when F is archimedean. In Section 14.1, we consider

the complex case and we will prove Theorem 1.2.3. In Section 14.2, we consider the real

case and we will prove Theorem 1.2.4. Finally in Section 14.3, we will talk about how

to remove the extra assumptions on Theorem 1.2.3(2) and Theorem 1.2.4(1) based on

the results on the holomorphic continuation of the generalized Jacquet integral due to

Raul Gomez in [G].

14.1 The Case When F = C

In this subsection we assume that F = C. By the same computation as in Section 7.1,

we know that the epsilon factor is always 1. Hence we only need to prove that m(π) = 1.

By the strong multiplicity one theorem, we only need to show that m(π) 6= 0.

We first consider the first part of Theorem 1.2.3. In other words, with the same

notation as in Chapter 1, we assume that P̄ ⊂ Q. Then there are four possibilities

for Q: type (6), type (4, 2), type (2, 4) or type (2, 2, 2). The idea is to first reduce our

problem to the reduced model (L,R ∩Q) by the open orbit method, then reduce it to

the tempered case which has been considered in Chapter 7.

If Q = G is of type (6), by twisting π by some characters, we can assume that π

is tempered. Note that twisting by characters will not change the multiplicities. Then

by applying the result in Chapter 7, we know that m(π) = 1 and this proves Theorem
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1.2.3.

If Q is of type (4, 2), then L = GL4(F )×GL2(F ) and RQ = R ∩Q is of the form

RQ = HU0,Q

where

U0,Q(F ) = {u = u(X) :=


1 X 0

0 1 0

0 0 1

 | X ∈M2(F )}.

The restriction of the character ξ on U0,Q(F ) is just ξ(u(X)) = ψ(tr(X)) and the

character ω on H(F ) is defined as usual. This is just the middle model defined in

Section 4.5.

By the definition of Q, π is of the form IGQ (τ1| |t1 ⊗ τ2| |t2) where τ1, τ2 are tempered

and t1 < t2. Hence any element f ∈ π is a smooth function f : G(F ) → τ = τ1| |t1 ⊗
τ2| |t2 such that

f(lug) = δQ(l)1/2τ(l)f(g) (14.1)

for all l ∈ L(F ), u ∈ UQ(F ) and g ∈ G(F ). Here we use the letters π, σ, τ to denote both

the representations and the underlying vector spaces. Let Q̄ = LUQ̄ be the opposite

parabolic subgroup of Q. It is easy to see that UQ̄ ⊂ U and U = UQ̄U0,Q. For any

f ∈ π, define

JQ(f) =

∫
UQ̄(F )

f(u)ξ−1(u)du. (14.2)

By Proposition 2.6.1 together with the assumption that t1 < t2, the integral above is

absolutely convergent.

Proposition 14.1.1. 1. For all f ∈ π, u ∈ UQ̄(F ) and l ∈ RQ(F ), we have

JQ(π(u)f) = ξ(u)J(f) (14.3)

and

JQ(π(l)f) = τ(l)J(f). (14.4)

2. The function

JQ : π → τ, f → JQ(f)

is surjective.
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Proof. Part (1) follows from (14.1) and changing variables in the integral (14.2). For

part (2), fix a function ϕ ∈ C∞c (UQ̄(F )) such that
∫
UQ̄(F ) ϕ(u)ξ−1(u)du = 1. For any

v ∈ τ , since Q(F )UQ̄(F ) is open in G(F ), the function

f(g) =

{
δQ(l)1/2τ(l)ϕ(u)v if g = u′lu with l ∈ L(F ), u ∈ UQ̄(F ), u′ ∈ UQ(F );

0 else

belongs to π. Then we have

JQ(f) =

∫
UQ̄(F )

f(u)ξ−1(u)du =

∫
UQ̄(F )

ϕ(u)ξ−1(u)vdu = v.

This proves (2).

We consider the Hom space HomRQ(F )(τ, (ω⊗ ξ)|RQ(F )) and let m(τ) be the dimen-

sion of this space. In other word, m(τ) is the multiplicity of the middle model. The

following proposition tells us the relations between m(π) and m(τ).

Proposition 14.1.2. With the notations above, we have

m(τ) 6= 0⇒ m(π) 6= 0.

Proof. If m(τ) 6= 0, choose 0 6= l0 ∈ HomRQ(F )(τ, (ω ⊗ ξ)|RQ(F )). Define an operator l

on π to be

l(f) = l0(JQ(f)).

Since l0 6= 0 and JQ is surjective, we have l 6= 0. Hence we only need to show that

l ∈ HomR(F )(π, ω ⊗ ξ).
For h ∈ R(F ), we can write h = h1u1 with h1 ∈ RQ(F ) and u1 ∈ UQ̄(F ). By (14.3)

and (14.4), we have

l(π(h)f) = l0(JQ(π(h1u1)f)) = l0(τ(h1)JQ(π(u1)f))

= ω ⊗ ξ(h1)l0(JQ(π(u1)f)) = ω ⊗ ξ(h1)l0(ξ(u1)JQ(f))

= ω ⊗ ξ(h)l0(JQ(f)) = ω ⊗ ξ(h)l(f).

This implies l ∈ HomR(F )(π, ω ⊗ ξ) and finishes the proof of the Proposition.
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By the proposition above, we only need to show that m(τ) 6= 0. It is easy to see that

the multiplicity m(τ) is invariant under the unramified twist, hence we may assume that

τ is tempered (note that originally τ is of the form τ1| |t1 ⊗ τ2| |t2 with τ1 and τ2 being

tempered). Then by applying the argument in Chapter 7 to the middle model case, we

can show that the multiplicity m(τ) is always nonzero for all tempered representations

τ . This proves Theorem 1.2.3.

If Q is of type (2, 4), the argument is the same as the (4, 2) case, we will skip it

here.

If Q is of type (2, 2, 2), the argument is still similar to the (4, 2) case: we first

reduce to the trilinear GL2 model case by the open orbit method. Then after twisting

by some characters we only need to consider the tempered case. Finally, by applying

the argument in Chapter 7 to the trilinear GL2 model case, we can show that the

multiplicity is nonzero and this proves Theorem 1.2.3. We will skip the details here.

Now the proof of Theorem 1.2.3(1) is complete.

Then we consider the second part of Theorem 1.2.3. As in Chapter 1, we

assume that π = IGB (⊗6
i=1χi) where B is the lower Borel subgroup, χi = σi| |si , σi are

unitary characters, and si are real numbers with s1 ≤ s2 ≤ · · · ≤ s6. By the assumption

Q ⊂ P̄ , we have s2 < s3 and s4 < s5. Also as in Section 1, we write π = IG
P̄

(π0) with

π0 = π1 ⊗ π2 ⊗ π3 and πi be the parabolic induction of χ2i−1 ⊗ χ2i. Then π consists of

smooth functions f → π0 such that

f(mug) = δP̄ (m)1/2π0(m)f(g) (14.5)

for all m ∈ M(F ), u ∈ Ū(F ) and g ∈ G(F ). We still want to apply the open orbit

method. For f ∈ π, define

J(f) =

∫
U(F )

f(ug)ξ−1(u)du. (14.6)

By Proposition 2.6.1 together with the assumption on the exponents si, the integral

above is absolutely convergent. By the same argument as in the previous case, we can

show that

m(π0) 6= 0⇒ m(π) 6= 0. (14.7)

Here m(π0) is the multiplicity for the trilinear GL2 model. In fact, for 0 6= l0 ∈
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HomH0(F )(π0, ω). By a similar argument as in Proposition 14.1.2, we know that

l(f) := l0(J(f))

is a nonzero element in HomR(F )(π, ω⊗ ξ). This proves (14.7). Now by our assumption

on π0 together with the work by Loke for the trilinear GL2 model in [L01], we know

that m(π0) 6= 0. This implies that m(π) 6= 0 and finishes the proof of Theorem 1.2.3.

Remark 14.1.3. The assumption Q ⊂ P̄ is only used to make the generalized Jacquet

integral J(f) to be absolutely convergent. Hence in general, if one can prove the holomor-

phic continuation of the generalized Jacquet integral J(f), then the assumption Q ⊂ P̄

in Theorem 1.2.3(2) can be removed. This will be discussed in Section 14.3.

14.2 The Case When F = R

In this section by applying the open orbit method to the case when F = R, we prove

Theorem 1.2.4. Let π be an irreducible generic representation of G(F ) with central

character χ2. With the same notation as in Chapter 1, there is a parabolic subgroup

Q = LUQ containing the lower Borel subgroup and an essential tempered representation

τ = ⊗ki=1τi| |si of L(F ) with τi tempered, si ∈ R and s1 < s2 < · · · < sk such that

π = IGQ (τ).

We first consider the case when πD = 0. Then by our assumptions in Theorem

1.2.4, Q is nice. If Q ⊂ P̄ , let π0 = IMQ∩M (τ). It is a generic representation of M(F )

and we have π = IG
P̄

(π0). By the same argument as in previous section, we can show

that

m(π0) 6= 0⇒ m(π) 6= 0 (14.8)

where m(π0) is the multiplicity of the trilinear GL2 model. Since πD = 0, the Jacquet-

Langlands correspondence of π0 from M(F ) = (GL2(F ))3 to (GL1(D))3 is zero. By

applying the result for the trilinear GL2 model in [P90] and [L01], we have m(π0) = 1.

Combining with (14.8), we know m(π) 6= 0. Hence m(π) = 1 since we already know

m(π) ≤ 1. Therefore

m(π) +m(πD) = m(π) = 1.

This proves Conjecture 1.1.3. For Conjecture 1.1.4, we only need to show that when

πD = 0, the epsilon factor ε(1/2, π,∧3 ⊗ χ−1) is always equal to 1. Since πD = 0, by
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the local Jacquet-Langlands correspondence in [DKV84], π0 is not an essential discrete

series (i.e. discrete series twisted by characters), hence at least one of the πi (i = 1, 2, 3)

is a principal series. Therefore we can find a generic representation σ = σ1 ⊗ σ2 of

GL5(F ) × GL1(F ) such that π is the parabolic induction of σ. Then by the same

argument as in Chapter 7, we can show that

ε(1/2, π,∧3 ⊗ χ−1) = 1.

This finishes the proof of Conjecture 1.1.4.

If Q ⊂ P̄ , there are only four possibilities for Q: type (6), (4, 2), (2, 4) and (2, 2, 2).

If Q is type (6), by twisting π by some characters we can assume that π is tempered,

then both Conjecture 1.1.3 and Conjecture 1.1.4 are proved in Chapter 7. If Q is type

(4, 2) or (2, 4), by the same argument as in the previous subsection, we can reduce to

the middle model case by the open orbit method. Then by twisting some characters,

we only need to consider the tempered case which has already been proved in Chapter

7. If Q is type (2, 2, 2), the argument is similar except replacing the middle model by

the trilinear GL2 model.

Now the proof of Theorem 1.2.4(1) is complete.

Then we consider the case when πD 6= 0. As a result, π = IG
P̄

(π0) is the

parabolic induction of some essential discrete series π0 = π1| |s1 ⊗ π2| |s2 ⊗ π3| |s3 of

M(F ) where πi are discrete series of GL2(F ) and si are real numbers. As usual, we

assume that s1 ≤ s2 ≤ s3. On the mean time, πD is of the form IGD
P̄D

(π0,D) where

π0,D = π1,D| |s1 ⊗ π2,D| |s2 ⊗ π3,D| |s3 is the Jacquet-Langlands correspondence of π0

from M(F ) to MD(F ). Let m(π0) (resp. m(π0,D)) be the multiplicity of the trilinear

GL2(F ) (resp. GL1(D)) model.

Proposition 14.2.1. With the notations above, in order to prove Theorem 1.2.4(2), it

is enough to show that

m(π0) 6= 0⇒ m(π) 6= 0; m(π0,D) 6= 0⇒ m(πD) 6= 0. (14.9)

Proof. By Prasad’s result for the trilinear GL2 model, we have

m(π0) +m(π0,D) = 1, (14.10)
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and

m(π0) = 1 ⇐⇒ ε(1/2, π0 × χ−1) = 1; m(π) = 0 ⇐⇒ ε(1/2, π0 × χ−1) = −1. (14.11)

Combining (14.9) and (14.10), we have m(π) +m(πD) ≥ 1, this proves the first part

of Theorem 1.2.4(2). For the second part, by the argument in Section 7.3, we have

ε(1/2, π,∧3 ⊗ χ−1) = ε(1/2, π0 × χ−1). (14.12)

Now if ε(1/2, π,∧3 ⊗ χ−1) = 1, by (14.12), we have ε(1/2, π0) = 1. Combining with

(14.11), we have m(π0) = 1. Together with (14.9), we have m(π) = 1. On the other

hand, if m(π) = 0, by (14.9), we have m(π0) = 0. Combining with (14.11), we have

ε(1/2, π0 × χ−1) = −1, therefore ε(1/2, π,∧3 ⊗ χ−1) = −1 by (14.12). This finishes the

proof of Theorem 1.2.4(2).

By the proposition above, it is enough to prove (14.9). If s1 = s2 = s3, by twisting

π by some characters, we may assume that π is tempered (note that the multiplicities

for both the Ginzburg-Rallis model the the trilinear GL2 model are invariant under

twisting by characters). Then the relation (14.9) has already been proved in Corollary

6.6.2. In fact, by Corollary 6.6.2, we even have m(π) = m(π0) and m(πD) = m(π0,D).

If s1 < s2 = s3, let π2,3 be the parabolic induction of π2 ⊗ π3, it is a tempered

representation of GL4(F ). We also know that π will be the parabolic induction of

π′ = π1| |s1 ⊗ π2,3| |s2 . Let m(π′) be the multiplicity for the middle model. By applying

the open orbit method as in the previous subsection, we have

m(π′) 6= 0⇒ m(π) 6= 0.

Hence in order to prove m(π0) 6= 0 ⇒ m(π) 6= 0, it is enough to show that m(π0) 6=
0 ⇒ m(π′) 6= 0. Again by twisting π′ by some characters, we may assume that π′

is tempered. Then by applying Corollary 6.6.2 again, we have m(π0) = m(π′) which

implies m(π0) 6= 0 ⇒ m(π) 6= 0. The proof of the quaternion version is similar. This

proves (14.9).

If s1 = s2 < s3, the argument is the same as the case above, we will skip it here.

If s1 < s2 < s3, (14.9) follows directly from the open orbit method as in the previous

subsection.

Now the proof of Theorem 1.2.4(2) is complete.
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14.3 Holomorphic Continuation of the Generalized Jacquet

Integrals

In the previous subsections, we have already seen that the extra conditions of Q in The-

orem 1.2.3(2) and Theorem 1.2.4(1) can be removed if the generalized Jacquet integral

J(f) defined in (14.6) has holomorphic continuation. In this subsection, we are going

to remove the condition on Q based on the following hypothesis.

Hypothesis: The generalized Jacquet integrals have holomorphic continuation for

all parabolic subgroups whose unipotent radical is abelian.

The Hypothesis has been proved by Gomez and Wallach in [GW12] for the case

when the stabilizer of the unipotent character is compact, and proved by Gomez in [G]

for the general case. The second paper is still in preparation, this is why we write it as

a hypothesis.

Let F = R or C, π be a generic representation of GL6(F ) of the form π = IG
P̄

(π0)

for some generic representation π0 of M(F ) = (GL2(F ))3. By the discussion in Section

14.1 and 14.2, we know that in order to prove Theorem 1.2.3(2) and Theorem 1.2.4(1)

for π, it is enough to show that

m(π0) 6= 0⇒ m(π) 6= 0 (14.13)

where m(π0) is the multiplicity for the trilinear GL2 model.

Let Q4,2 = L4,2U4,2 be the parabolic subgroup of GL6(F ) containing P̄ of type (4, 2),

and let π1 = I
L4,2

P̄∩L4,2
(π0). Then in order to prove (14.13), it is enough to show that

m(π0) 6= 0⇒ m(π1) 6= 0, m(π1) 6= 0⇒ m(π) 6= 0 (14.14)

where m(π1) is the multiplicity for the middle model. Note that the unipotent radicals

of Q4,2 and P̄ ∩L4,2 are all abelian. Therefore by the hypothesis, the generalized Jacquet

integrals associated to Q4,2 and P̄ ∩L4,2 have holomorphic continuation. This allows us

to apply the open orbit method as in the previous sections, which gives the relations in

(14.14). This proves (14.13), and finishes the proof of Theorem 1.2.3(2) and Theorem

1.2.4(1) without the assumptions on Q.
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Gross-Prasad, 2e partie : extension aux représentations tempérées. in ”Sur

les conjectures de Gross et Prasad. I” Astérisque No. 346 (2012), 171–312
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Appendix A

The Cartan Decomposition

A.0.1 The problem

In this Appendix, we are going to prove the weak Cartan decomposition for the trilinear

GL2 model (as in Proposition 4.2.3). Let F be a p-adic field, OF be the ring of integers,

$F be the uniformizer, | | = | |F , and let Fq be the residue field with q = pn. Let

G(F ) = GL2(F ) × GL2(F ) × GL2(F ), H(F ) = GL2(F ) diagonally embedded into G,

K ′ = GL2(OF ) ∪ GL2(OF )

(
1 0

0 $F

)
, K0 = GL2(OF ) × GL2(OF ) × GL2(OF ) be the

maximal compact subgroup of G(F ), K = K0(K ′ ×K ′ ×K ′)K0 be a compact subset

of G(F ) with K = K0KK0, and let

A+ = {(

(
1 −1

0 1

)
a1

(
1 1

0 1

)
, a2, a3)|a1, a2 ∈ A−0 , a3 ∈ A+

0 }

where A+
0 = {

(
a 0

0 b

)
|a, b ∈ F×, |a| ≥ |b|} and A−0 = {

(
a 0

0 b

)
|a, b ∈ F×, |a| ≤ |b|}.

Our goal is to show that

G(F ) = H(F )A+K. (A.1)

We first do some reductions. For (g1, g2, g3) ∈ G(F ), by timing some elements

on K−1 on the right and by timing some elements in the center (which is contained

in A+), we may assume that det(g1) = det(g2) = det(g3) = 1. Then by timing

(g−1
1 , g−1

1 , g−1
1 ) ∈ H(F ) on the left, we only need to consider elements of the form

(1, g, g′). Applying the Cartan decomposition GL2(F ) = GL2(O)A+
0 GL2(O) to g and
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g′, then by absorbing the right GL2(OF ) part by elements in K0, we only need to con-

sider elements of the form (1, ka, k′a′) with k, k′ ∈ GL2(OF ) and a, a′ ∈ A+
0 . Then by

timing (a−1k−1, a−1k−1, a−1k−1) ∈ H(F ) on the left, and absorbing k−1 by elements in

K0, we only need to consider elements of the form (a, 1, g) with a ∈ A−0 and g ∈ GL2(F ).

Applying the Iwasawa decomposition to g, we may assume that g is upper triangular.

Therefore we only need to consider elements of the form

(a, a′, b)

where a ∈ A−0 with det(a) = 1, a′ = I2, and b is upper triangular with det(b) = 1. Then

by timing (u, u, u) ∈ H on the left with u =

(
1 −1

0 1

)
, and absorbing the u in the

second coordinate by elements in K0, we only need to consider elements of the form

(ua, a′, b) (A.2)

where a ∈ A−0 with det(a) = 1, a′ = I2, and b is upper triangular with det(b) = 1.

By the discussion above, in order to prove (A.1), it is enough to prove the following

proposition.

Proposition A.0.1. For all elements g = (ua, a′, b) of the form (A.2), there exist

h ∈ H(F ), t ∈ A+ and k ∈ K0 such that

g = htk.

A.0.2 The case when b is diagonal

In this section, we prove Proposition A.0.1 for the case when b is a diagonal matrix. We

let a =

(
x−1 0

0 x

)
with |x| ≥ 1. By our assumption, b =

(
y 0

0 y−1

)
or

(
y−1 0

0 y

)
with

|y| ≥ 1.

Case 1: If b =

(
y 0

0 y−1

)
, let

h = (I2, I2, I2) ∈ H(F ), t = (uau−1, I2, b) ∈ A+, k = (u, I2, I2) ∈ K.

Then we have

g = htk.
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Case 2: If b =

(
y−1 0

0 y

)
, let

h = (

(
0 −1

1 2

)
,

(
0 −1

1 2

)
,

(
0 −1

1 2

)
) ∈ H(F ), t = (uau−1, I2, b

−1) ∈ A+,

and let

k = (u

(
1 0

− 1
x2 1

)
,

(
2 1

−1 0

)
,

(
2
y2 1

−1 0

)
) ∈ K.

Then we have

g = htk.

This proves Proposition A.0.1 when b is a diagonal matrix.

A.0.3 The general situation

In this section, we prove Proposition A.0.1 for the general case (i.e. b is a upper

triangular matrix). We still let a =

(
x−1 0

0 x

)
with |x| ≥ 1. The proof breaks into four

cases.

Case 1: If b =

(
a b

0 c

)
with |a| ≥ |b|, then b =

(
a 0

0 c

)(
1 b

a

0 1

)
with

(
1 b

a

0 1

)
∈

GL2(OF ). By timing some elements in K0, we reduce to the case when b is a diagonal

matrix, which has been considered in the previous section.

Case 2: If b =

(
1 t

0 1

)(
y 0

0 y−1

)
with |y| ≥ 1. If |t| ≤ |y|2, we are back to Case 1.

So we may assume that |t| > |y|2 ≥ 1. Let

h = (

(
1− t−1 0

t−1 1

)
,

(
1− t−1 0

t−1 1

)
,

(
1− t−1 0

t−1 1

)
) ∈ H(F ), t = (uau−1, I2,

(
t
y 0

0 y
t

)
) ∈ A+,

and let

k = (u

(
1 0
1
x2t

1− t−1

)−1

,

(
1− t−1 0

t−1 1

)−1

,

(
− 1
y2 −1

1 y2

t

)−1

) ∈ K.

Then we have

g = htk.
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Case 3: If b =

(
1 t

0 1

)(
y−1 0

0 y

)
with |y| ≥ 1 and |t| > 1. Let

h = (

(
t
t+1 0

1
t+1 1

)
,

(
t
t+1 0

1
t+1 1

)
,

(
t
t+1 0

1
t+1 1

)
) ∈ H(F ), t = (uau−1, I2,

(
yt 0

0 1
yt

)
) ∈ A+,

and let

k = (u

(
1 0
1

x2(t+1)
t
t+1

)−1

,

(
t
t+1 0

1
t+1 1

)−1

,

(
0 −1
t
t+1

1
ty2

)−1

) ∈ K.

Then we have

g = htk.

Case 4: If b =

(
1 t−1

0 1

)(
y−1 0

0 y

)
with |y|, |t| ≥ 1. If |t| ≥ |y|2, we are back to

Case 1. So we may assume that 1 ≤ |t| < |y|2. There are two subcases.

Case 4(a): If |t| ≥ |x|2. We time g by (

(
1 −t−1

0 1

)
,

(
1 −t−1

0 1

)
,

(
1 −t−1

0 1

)
)

on the left. Note that a−1u−1

(
1 −t−1

0 1

)
ua =

(
1 x2t−1

0 1

)
∈ GL2(OF ). Hence by

modulo an element in K0, we may assume that b =

(
y−1 0

0 y

)
is a diagonal matrix,

which has been considered in the previous section.

Case 4(b): If 1 ≤ |t| < |x|2. We have three subcases.

Case 4(b)(i): If |t+ 1| ≥ 1. Let

h = (

(
1
t 1 + 1

t(t+1)

1 1
t+1

)
,

(
1
t 1 + 1

t(t+1)

1 1
t+1

)
,

(
1
t 1 + 1

t(t+1)

1 1
t+1

)
) ∈ H(F ), t = (uau−1, I2,

(
y 0

0 1
y

)
) ∈ A+,

and let

k = (u

(
t+1
t 0
1
x2 − t

t+1

)−1

,

(
1
t 1 + 1

t(t+1)

1 1
t+1

)−1

,

(
0 1

1 1
(t+1)y2

)−1

) ∈ K.

Then we have

g = htk.
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Case 4(b)(ii): If t = −1. We time g by (u−1, u−1, u−1) on the left and ab-

sorb the second u−1 by some elements in K0. As a result, we may assume that

g = (

(
x−1 0

0 x

)
, I2,

(
y−1 0

0 y

)
) with |x|, |y| ≥ 1. If |y| ≥ |x|, let

h = (

(
0 x−1

x 0

)
,

(
0 x−1

x 0

)
,

(
0 x−1

x 0

)
) ∈ H(F ), t = (I2,

(
x−1 0

0 x

)
,

(
x−1y 0

0 xy−1

)
) ∈ A+,

and let

k = (

(
0 1

1 0

)
,

(
0 1

1 0

)
,

(
0 1

1 0

)
) ∈ K.

If |y| < |x|, let

h = (

(
y−1 y−1

−y 0

)
,

(
y−1 y−1

−y 0

)
,

(
y−1 y−1

−y 0

)
) ∈ H(F ),

t = (u

(
x−1y 0

0 xy−1

)
u−1,

(
y−1 0

0 y

)
, I2) ∈ A+,

and let

k = (u

(
1 0

x−2y2 1

)
,

(
y−2 1

−1 0

)−1

,

(
1 1

−1 0

)−1

) ∈ K.

Then for both cases, we have

g = htk.

Case 4(b)(iii): If |t+ 1| < 1 with t 6= −1, then |t| = 1. If |(t+ 1)y2| ≤ 1, we have

b =

(
1 t−1

0 1

)(
y−1 0

0 y

)

=

(
1 −1

0 1

)(
1 t−1 + 1

0 1

)(
y−1 0

0 y

)

=

(
1 −1

0 1

)(
y−1 0

0 y

)(
1 (t−1 + 1)y2

0 1

)

with

(
1 (t−1 + 1)y2

0 1

)
∈ GL2(OF ). Then up to modulo an element in K0, we can

eliminate

(
1 (t−1 + 1)y2

0 1

)
, and we have reduced to Case 4(b)(ii).
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If |(t+1)x2| ≤ 1, we time g by (

(
1 −t−1 + 1

0 1

)
,

(
1 −t−1 + 1

0 1

)
,

(
1 −t−1 + 1

0 1

)
) ∈

H(F ) on the left, then modulo an element in K0 to eliminate a−1u−1

(
1 t−1 + 1

0 1

)
ua =(

1 (t−1 + 1)x2

0 1

)
∈ GL2(OF ) in the first coordinate and

(
1 t−1 + 1

0 1

)
∈ GL2(OF ) in

the second coordinate, we have still reduced to Case 4(b)(ii).

Now the only case left is when |(t+ 1)y2|, |(t+ 1)x2| > 1. Let

h = (

(
1
t+1 0
t
t+1 1

)
,

(
1
t+1 0
t
t+1 1

)
,

(
1
t+1 0
t
t+1 1

)
) ∈ H(F ),

t = (u

(
x−1 0

0 x(t+ 1)

)
u−1,

(
t+ 1 0

0 1

)
,

(
y(t+1)
t 0

0 − t
y

)
) ∈ A+,

and let

k = (u

(
1 0

− t
x2(t+1)

1

)
,

(
1 0

−t 1

)
,

(
0 1

1 −y−2t

)−1

) ∈ K.

Then we have

g = htk.

The proof of Proposition A.0.1 is finally complete.



Appendix B

The Absolutely convergence of

I(f )

In this appendix, we prove Proposition 8.1.1. The proof goes exactly the same as

Proposition 7.1.1 of [B15]. In the loc. cit., the author is dealing with the Gan-Gross-

Prosad model case, but the proof of that Proposition worked for general cases except

the following five results which are specified to the GGP model case: Lemma 6.5.1,

Lemma 6.6.1, Proposition 6.4.1, Proposition 6.7.1 and Proposition 6.8.1 in the loc. cit.

But we already proved the above five results for the Ginzburg-Rallis model in Chapter

4, see Lemma 4.1.1, Proposition 4.2.1, Proposition 4.2.3, Lemma 4.3.1, Lemma 4.3.3,

Proposition 4.4.1 and Lemma 4.4.2. Therefore the argument in the loc. cit. can be

applied to our case smoothly. We only include the proof here for completion.

We first prove (1): for all d′ > 0, we have

|I(f, x)| � qd′(f)

∫
ZR(F )\R(F )

ΞG(x−1hx)σ0(x−1hx)−d
′
dh

for all f ∈ C(ZG(F )\G(F ), η−1) and x ∈ R(F )\G(F ). Here for all f ∈ C(ZG(F )\G(F ), η−1),

qd(f) = supg∈G(F )|f(g)|ΞG(g)−1σ0(g)d.

Then by Proposition 4.4.1(5), if d′ is large enough, there exists d > 0 such that∫
ZR(F )\R(F )

ΞG(x−1hx)σ0(x−1hx)−d
′
dh� ΞR\G(x)2σR\G(x)d

198
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for all x ∈ R(F )\G(F ). This proves (1).

For (2), we use the same notations as in Chapter 4. In other word,

• P̄0 = M0Ū0 is a good minimal parabolic subgroup of G0, A0 = AM0 .

• A+
0 = {a0 ∈ A0(F ) | | α(a0) |≥ 1, ∀ α ∈ Ψ(A0, P̄0)}.

• P̄min = P̄0Ū = MminŪmin is a good minimal parabolic subgroup of G, Amin =

AMmin = A0.

• A+
min = {a ∈ Amin(F ) | | α(a) |≥ 1, ∀ α ∈ Ψ(Amin, P̄min)}.

• ∆ is the set of simple roots of Amin in Pmin, and ∆P = ∆ ∩Ψ(Amin, P ).

Again by the weak Cartan decomposition in Section 4.2, it is enough to prove the

estimation of the proposition for x = a ∈ A+
0 . Moreover, we can fix an open compact

subgroup (not necessarily maximal) K ⊂ G(F ), and we only need to prove the following

statement:

(i) For all d > 0, there exists a continuous seminorm νd,K on CK(ZG(F )\G(F ), η−1)

such that

|I(f, a)| � νd,K(f)ΞR\G(a)2σR\G(a)−d

for all a ∈ A+
0 and f ∈ Cscusp,K(ZG(F )\G(F ), η−1).

We set

Aa+
min = {a ∈ A+

0 | |α(a)| ≤ σR\G(a), ∀α ∈ ∆P }.

We first prove the following statement:

(ii) For all d > 0, there exists a continuous seminorm νd,K on CK(ZG(F )\G(F ), η−1)

such that

|I(f, a)| � νd,K(f)ΞR\G(a)2σR\G(a)−d

for all a ∈ A+
0 \A

a+
min and f ∈ CK(ZG(F )\G(F ), η−1).

In fact, we can fix α ∈ ∆P and prove (ii) for all a ∈ A+
0 with |α(a)| > σR\G(a). As in

the proof of Claim 6.2.4, since ξ is nontrivial on nα(F ), we can find a constant C > 0

such that

I(f, a) = 0
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for all a ∈ Amin(F ) with |α(a)| > C and for all f ∈ CK(ZG(F )\G(F ), η−1). Combining

with the estimation in part (1), we prove (ii).

By (ii), in order to prove (i), it is enough to prove the following statement:

(iii) For all d > 0, there exists a continuous seminorm νd,K on CK(ZG(F )\G(F ), η−1)

such that

|I(f, a)| � νd,K(f)ΞR\G(a)2σR\G(a)−d

for all a ∈ Aa+
min and f ∈ Cscusp,K(ZG(F )\G(F ), η−1).

Claim B.0.2. In order to prove (iii), it is enough to prove the following statement:

(iv) For all d > 0, there exists a continuous seminorm νd,K on CK(ZG(F )\G(F ), η−1)

such that

|I(f, a)| � νd,K(f)ΞR\G(a)2σR\G(a)−d

for all a ∈ A+
min and f ∈ Cscusp,K(ZG(F )\G(F ), η−1).

In fact, by the definition of Aa+
min, every element a ∈ Aa+

min can be written as a = a+a−

with

a+ ∈ A+
min, σ(a−)� log(1 + σR\G(a)).

Then by (iv), for all a ∈ Aa+
min, we have

|I(f, a)| ≤ νd,K(a−f)ΞR\G(a+)σR\G(a+)−d. (B.1)

Then (iii) will follows from the following three inequalities (whose proofs are trivial):

I1 If ν is a continuous seminorm on CK(ZG(F )\G(F ), η−1), there exist a continuous

seminorm ν ′ on CK(ZG(F )\G(F ), η−1) and c1 > 0 such that

ν(gf) ≤ ν ′(f)ecσ0(g)

for all g ∈ G(F ) and f ∈ CK(ZG(F )\G(F ), η−1).

I2 There exists c2 > 0 such that ΞR\G(xg) � ΞR\G(x)ec2σ0(g) for all g ∈ G(F ) and

x ∈ H(F )\G(F ).

I3 σR\G(xg)−1 � σR\G(x)−1σ0(g) for all g ∈ G(F ) and x ∈ H(F )\G(F ).
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This proves Claim B.0.2. Now we only need to prove (iv).

For any maximal parabolic subgroup Q̄ = MQUQ̄ containing P̄min and for any δ > 0,

set

AQ̄,+min(δ) = {a ∈ A+
min| |α(a)| ≥ eδσ0(a), ∀α ∈ Ψ(Amin, UQ̄).

Once we choose δ small, the complement of

∪Q̄A
Q̄,+
min(δ)

in A+
min is relatively compact modulo the center. Here Q̄ runs over all maximal parabolic

subgroups containing P̄min. Therefore in order to prove (iv), it is enough to prove the

following statement:

(v) For all proper maximal parabolic subgroups Q̄ containing P̄min and for all d > 0,

there exists a continuous seminorm νQ̄,d,K on CK(ZG(F )\G(F ), η−1) such that

|I(f, a)| � νQ̄,d,K(f)ΞR\G(a)2σR\G(a)−d

for all a ∈ AQ̄,+min(δ) and f ∈ Cscusp,K(ZG(F )\G(F ), η−1).

Now fix a Q̄ as in (v), let

UR = R(F ) ∩ P̄min(F )Umin(F ).

By the Bruhat decomposition, UR is an open subset of R(F ) containing the identity

element. Let

u : UR → Umin(F )

be the F -analytic map sending h ∈ UR to the unique element u(h) ∈ Umin(F ) such that

hu(h)−1 ∈ P̄min(F ). Since P̄min is a good parabolic subgroup, we have p̄min + r = g.

Together with the fact that the differential of u at 1 is given by d1u(X) = pumin(X)

where pumin is the linear projection of g onto umin with respect to the decomposition

g = p̄min ⊕ umin, we know that the map u is submersive at the identity element.

Therefore we can find a relatively compact open neighborhood Umin of 1 in Umin(F )

and an F -analytic section

h : Umin → UR

u→ h(u)
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of the map u such that h(1) = 1. Without loss of generality, we assume that the Levi

component MQ of Q̄ contains Mmin, and let Q = MQUQ be the opposite parabolic

subgroup of Q̄ with respect to MQ. Set

UQ = Umin ∩ UQ(F ), RQ̄ = R ∩ Q̄, UR,Q = RQ̄(F )h(UQ).

It is easy to see that the map

RQ̄(F )× UQ → R(F ) : (hQ̄, uQ)→ hQ̄h(uQ)

is an injective F -analytic local isomorphism. Hence its image UR,Q is an open subset of

H(F ) containing the identity element. Let j be the Jacobian of this map, it is a smooth

function on RQ̄(F )×UQ and it is obviously invariant under the RQ̄(F )-translation. For

simplicity, we write j(uQ) = j(hQ̄, uQ). Therefore for all ϕ ∈ L1(UR,Q), we have∫
UR,Q

ϕ(h)dh =

∫
RQ̄(F )

∫
UQ
ϕ(hQ̄h(uQ))j(uQ)duQdhQ̄. (B.2)

Fix ε > 0 small. We need the following statement:

(vi) Let 0 < δ′ < δ and let c0 > 0. If ε is small enough, we have

aUQ[< εσ0(a)]a−1 ⊂ exp(B(0, c0e
−δ′σ0(a)) ∩ uQ(F ))

for all a ∈ AQ̄,+min(δ).

In fact, if σ0(a) ≤ ε−1, the left hand side is empty, hence (vi) holds. If σ0(a) > ε−1, we

can find α > 0 such that

| log(u)| ≤ eασ(u)

for all u ∈ UQ(F ). We can also find β > 0 such that

|aXa−1| ≤ βe−δσ0(a)|X|

for all X ∈ uQ(F ) and a ∈ AQ̄,+min(δ). As a result, for ε > 0, we have

| log(aua−1)| = |a log(u)a−1| ≤ βe−δσ0(a)| log(u)|

≤ βe(aε−δ)σ0(a) = βe(aε+δ′−δ)σ0(a)e−δ
′σ0(a)
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for all a ∈ AQ̄,+min(δ) and u ∈ UQ[< εσ0(a)]. Then we only need to choose ε small enough

such that βe(aε+δ′−δ)σ0(a) ≤ c0 for all a ∈ Amin(F ) with σ0(a) > ε−1. This proves (vi).

By (vi), for ε small, we have

aUQ[< εσ0(a)]a−1 ⊂ UQ

for all a ∈ AQ̄,+min(δ). Fix such ε, we define

U ε,a
R,Q̄

= RQ̄[σ0 < εσ0(a)]h(aUQ[< εσ0(a)]a−1).

Then (v) will be a consequence of the following two statements:

(vii) For all d > 0, there exists a continuous seminorm νd,K on CK(ZG(F )\G(F ), η−1)

such that ∫
ZR(F )\(R(F )\Uε,a

R,Q̄
)
|f(a−1ha)|dh ≤ νd,K(f)ΞR\G(a)2σR\G(a)−d

for all a ∈ AQ̄,+min(δ) and f ∈ CK(ZG(F )\G(F ), η−1).

(viii) For all d > 0, there exists a continuous seminorm νd,K on CK(ZG(F )\G(F ), η−1)

such that

|
∫
ZR(F )\Uε,a

R,Q̄

f(a−1ha)ω(h)ξ(h)dh| ≤ νd,K(f)ΞR\G(a)2σR\G(a)−d

for all a ∈ AQ̄,+min(δ) and f ∈ Cscusp,K(ZG(F )\G(F ), η−1).

We first prove (vii), we need a claim.

Claim B.0.3. For all a ∈ AQ̄,+min(δ) and h ∈ R(F )\U ε,a
R,Q̄

, we have

σ0(a)� σ0(a−1ha).

In fact, by Lemma 1.3.1 of [B15] and Proposition 4.2.1(3), it is enough to show that

we can find ε′ > 0 such that

R(F ) ∩ (Q̄[σ0 < ε′σ0(a)]aUQ[< ε′σ0(a)]a−1) ⊂ U ε,a
R,Q̄

(B.3)
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for all a ∈ AQ̄,+min(δ). Fix ε′ > 0 small, let a ∈ AQ̄,+min(δ). If σ0(a) ≤ (ε′)−1, the left hand

side of (B.3) is empty and there is nothing to prove. If σ0(a) > (ε′)−1, we assume that

ε′ < ε. Let h ∈ R(F ) ∩ (Q̄[σ0 < ε′σ0(a)]aUQ[< ε′σ0(a)]a−1). We have

aUQ[< ε′σ0(a)]a−1 ⊂ aUQ[< εσ0(a)]a−1 ⊂ UQ.

Let h = qu with q ∈ Q̄[σ0 < ε′σ0(a)] and u ∈ aUQ[< ε′σ0(a)]a−1 ⊂ UQ. By the definition

of the map h, uh(u)−1 = (h(u)u−1)−1 ∈ P̄min(F ) ⊂ Q̄(F ). Hence h = q(uh(u)−1)h(u)

with q(uh(u)−1) ∈ R(F )∩Q̄(F ) = RQ̄(F ). Therefore we can find u ∈ aUQ[< ε′σ0(a)]a−1

such that hh(u)−1 ∈ RQ̄(F ). By the definition of U ε,a
R,Q̄

, in order to prove (B.3), we only

need to show that if ε′ is small enough, we have

σ0(hh(u)−1) < εσ0(a). (B.4)

By (vi), if ε′ is small enough, the sets aUQ[< ε′σ0(a)]a−1 remain in a fixed compact

subset as a varies in AQ̄,+min(δ). Hence h(u) is uniformly bounded which is independent

of a and h. This implies σ(h(u))� 1� ε′σ0(a) since σ0(a) > (ε′)−1. Therefore

σ0(hh(u)−1)� σ0(h) + σ(h(u))� ε′σ0(a).

This proves (B.4), and finishes the proof of Claim B.0.3.

By the claim above, given d > 0, for all d′ > 0, we have∫
ZR(F )\(R(F )\Uε,a

R,Q̄
)
|f(a−1ha)|dh� qd′(f)σ0(a)−d

′/2

∫
ZR(F )\R(F )

ΞG(a−1ha)σ0(a−1ha)−d
′/2dh

for all a ∈ AQ̄,+min(δ) and f ∈ CK(ZG(F )\G(F ), η−1). By Proposition 4.4.1(5) and Lemma

4.2.6(2), for d′ large, the right hand side above is essentially bounded by

qd′(f)σ0(a)−dΞR\G(a)2

for all a ∈ AQ̄,+min(δ). This proves (vii).

Now the only thing left is to prove (viii). By (B.2), we have∫
ZR(F )\Uε,a

R,Q̄

f(a−1ha)ω(h)ξ(h)dh =

∫
ZR(F )\RQ̄[σ0<εσ0(a)]

(B.5)

·
∫
aUQ[<εσ0(a)]a−1

f(a−1hQ̄h(uQ)a)ω(hQ̄h(uQ))ξ(hQ̄h(uQ))j(uQ)duQdhQ̄
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for all f ∈ C(ZG(F )\G(F ), η−1) and a ∈ AQ̄,+min(δ). Without loss of generality, we

assume that j(1) = 1. Every hQ̄ ∈ RQ̄(F ) can be written as hQ̄ = uQ̄(hQ̄)mQ(hQ̄) with

uQ̄(hQ̄) ∈ UQ̄(F ) and mQ(hQ̄) ∈MQ(F ). We need a lemma.

Lemma B.0.4. Let 0 < δ′ < δ and let d′ > 0. There exists a continuous semi-norm

µd′,K on CK(ZG(F )\G(F ), η−1) such that if ε is small enough, we have

|ω ⊗ ξ(h(uQ))j(uQ)− 1| = 0 (B.6)

and

|f(a−1ha)− f(a−1mQ(hQ̄)uQa)| = 0 (B.7)

for all a ∈ AQ̄,+min(δ), uQ ∈ aUQ[< εσ0(a)]a−1 and hQ̄ ∈ RQ̄[σ0 < εσ0(a)]. Here h =

hQ̄h(uQ).

Proof. We first prove (B.6). Since the functions (ω⊗ ξ) ◦h ◦ exp and j ◦ exp are smooth

functions on log(UQ) ⊂ uQ(F ), we can choose a compact neighborhood ωQ ⊂ log(UQ)

of 0 such that the two functions above are constant on ωQ. By (vi), if ε is small enough,

for all a ∈ AQ̄,+min(δ), we have

aUQ[< εσ0(a)]a−1 ⊂ exp(ωQ). (B.8)

Therefore the left hand side of (B.6) is always 0, and this proves (B.6).

Now we prove (B.7). Let ωG ⊂ g(F ) be a compact neighborhood of 0 on which the

exponential map is well defined and we have exp(ωG) ⊂ K. For hQ̄ ⊂ RQ̄(F ), uQ ∈ UQ
and a ∈ Amin(F ), we have

a−1mQ(hQ̄)uQa = k−1
1 a−1hak−1

2

where h = hQ̄h(uQ), k1 = a−1uQ̄(hQ̄)a and k2 = a−1u−1
Q h(uQ)a. Since f is bi-K-

invariant, in order to prove (B.7), it is enough to prove the following claim.

Claim B.0.5. Let 0 < δ′ < δ. Then if ε small enough, we have

a−1uQ̄(hQ̄)a ∈ exp(B(0, e−δ
′σ0(a)) ∩ ωG) (B.9)

and

a−1u−1
Q h(uQ)a ∈ exp(B(0, e−δ

′σ0(a)) ∩ ωG) (B.10)

for all a ∈ AQ̄,+min(δ), uQ ∈ aUQ[< εσ0(a)]a−1 and hQ̄ ∈ RQ̄[σ0 < εσ0(a)].
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The proof of (B.9) is the same as the proof of (vi), we will skip it here. For (B.10),

let p̄min(u) = h(u)u−1 for all u ∈ Umin. It defines an F -analytic map from Umin to

P̄min(F ), and we have

a−1u−1
Q h(uQ)a = a−1u−1

Q p̄min(uQ)uQa (B.11)

for all a ∈ AQ̄,+min(δ) and uQ ∈ aUQ[< εσ0(a)]a−1. Since p̄min(1) = 1, there exists an open

neighborhood U ′Q ⊂ UQ of 1 and an F -analytic map uQ ∈ U ′Q 7→ X(uQ) ∈ p̄min(F ) such

that

p̄min(uQ) = eX(uQ)

for all uQ ∈ U ′Q. Applying (vi) again, we know that for ε small enough, we have

aUQ[< εσ0(a)]a−1 ⊂ U ′Q for all a ∈ AQ̄,+min(δ). Therefore (B.11) becomes

a−1u−1
Q h(uQ)a = eAd(a−1u−1

Q )X(uQ).

Hence in order to prove (B.10), we only need to show that if ε is small enough, we have

Ad(a−1u−1
Q )X(uQ) ∈ B(0, e−δ

′σ0(a)) ∩ ωG (B.12)

for all a ∈ AQ̄,+min(δ) and uQ ∈ aUQ[< εσ0(a)]a−1.

There exists α > 0 such that

|Ad(g−1)X| ≤ eασ0(g)|X|

for all g ∈ G(F ) and X ∈ g(F ). Hence we have

|Ad(a−1u−1
Q )X(uQ)| = |Ad(a−1u−1

Q a)Ad(a−1)X(uQ)| ≤ eαεσ0(a)|Ad(a−1)X(uQ)|

for all a ∈ AQ̄,+min(δ) and uQ ∈ aUQ[< εσ0(a)]a−1. Moreover, by the definition of A+
min,

there exists β > 0 such that

|Ad(a−1)X| ≤ β|X|

for all a ∈ A+
min and X ∈ p̄min(F ). Therefore we have

|Ad(a−1u−1
Q )X(uQ)| ≤ eαεσ0(a)|Ad(a−1)X(uQ)| ≤ βeαεσ0(a)|X(uQ)|

for all a ∈ AQ̄,+min(δ) and uQ ∈ aUQ[< εσ0(a)]a−1. So in order to prove (B.12), we only

need to show that if ε is small enough, we have

X(aUQ[< εσ0(a)]a−1) ⊂ β−1e−αεσ0(a)(B(0, e−δ
′σ0(a)) ∩ ωG)
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for all a ∈ AQ̄,+min(δ). This just follows from (vi) and the fact that the map X(·) is an

analytic map. This finishes the proof of the lemma.

Combining the lemma above and (B.5), we conclude that in order to prove (viii), it

is enough to prove the following statement:

(ix) For all d > 0, there exists a continuous seminorm νd on C(ZG(F )\G(F ), η−1) such

that

|
∫
ZR(F )\RQ̄[σ0<εσ0(a)]

∫
aUQ[<εσ0(a)]a−1

f(a−1mQ(hQ̄)uQa)ω(hQ̄)ξ(hQ̄)duQdhQ̄|

≤ νd(f)ΞR\G(a)2σR\G(a)−d

for all a ∈ A+
min and f ∈ Cscusp(ZG(F )\G(F ), η−1).

We use Iε
Q̄

(f, a) to denote the integral above. By changing the variable uQ → auQa
−1,

we have

IεQ̄(f, a) = δQ(a)

∫
ZR(F )\RQ̄[σ0<εσ0(a)]

∫
UQ[<εσ0(a)]

f(a−1mQ(hQ̄)auQ)duQω(hQ̄)ξ(hQ̄)dhQ̄.

Since f is strongly cuspidal, we have∫
UQ[<εσ0(a)]

f(a−1mQ(hQ̄)auQ)duQ = −
∫
UQ[≥εσ0(a)]

f(a−1mQ(hQ̄)auQ)duQ.

For d1 > 0, the integral above is bounded by

qd1(f)

∫
UQ[≥εσ0(a)]

ΞG(a−1mQ(hQ̄)auQ)σ0(a−1mQ(hQ̄)auQ)−d1duQ. (B.13)

Since σ0(mQuQ)� σ0(uQ) for all mQ ∈MQ(F ) and uQ ∈ UQ(F ), for all d2 > 0, (B.13)

is essentially bounded by

qd1(f)σ0(a)−d2

∫
UQ[≥εσ0(a)]

ΞG(a−1mQ(hQ̄)auQ)σ0(a−1mQ(hQ̄)auQ)−d1+d2duQ.

For d3 > 0, by Proposition 2.8.3, if d1 is large enough, the integral above is essentially

bounded by

δQ̄(mQ(hQ̄))ΞMQ(a−1mQ(hQ̄)a)σ0(a−1mQ(hQ̄)a)−d3 .
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Therefore for such d1, |Iε
Q̄

(f, a)| is essentially bounded by

δQ(a)qd1(f)σ0(a)−d2

∫
ZR(F )\RQ̄(F )

δQ̄(mQ(hQ̄))ΞMQ(a−1mQ(hQ̄)a)σ0(a−1mQ(hQ̄)a)−d3dhQ̄

(B.14)

for all a ∈ Amin and f ∈ Cscusp(ZG(F )\G(F ), η−1). Let GQ = Q̄/UQ̄, it can be identified

with MQ. Since R∩UQ̄ = {1} by Proposition 4.2.1, RQ̄ can be identified with a subgroup

of GQ̄ as in Chapter 4. Then (B.14) becomes

δQ(a)qd1(f)σ0(a)−d2

∫
ZR(F )\RQ̄(F )

δQ̄(hQ̄)ΞGQ(a−1hQ̄a)σ0(a−1hQ̄a)−d3dhQ̄.

By Lemma 4.4.2(1) and (3), if d3 is large enough, the last term above is essentially

bounded by

δQ(a)qd1(f)σ0(a)−d2ΞGQ(a)2

for all a ∈ A+
min. By Proposition 2.8.3(1), Lemma 4.2.6(2) and Proposition 4.4.1(2),

there exists d4 > 0 such that

δQ(a)ΞGQ(a)2 � ΞR\G(a)2σ0(a)d4

for all a ∈ A+
min. Once we take d2 = d+ d4, we know that for d1 large enough, we have

|IεQ̄(f, a)| � qd1(f)ΞR\G(a)2σ0(a)−d

for all a ∈ A+
min and f ∈ Cscusp(ZG(F )\G(F ), η−1). Then (ix) will follows from Lemma

4.2.6(2).

Now the proof of Proposition 8.1.1 is finally complete.



Appendix C

The Reduced Models

In this appendix, we will summarize our results for the reduced models of the Ginzburg-

Rallis model. The proof of these results are similar to the Ginzburg-Rallis model case we

considered in this paper, hence we will skip them here. For simplicity, we will use (G,R)

instead of (GQ̄, RQ̄) to represent the reduced models. For any irreducible admissible

generic representation π of G(F ), we use m(π) to denote the multiplicity for the reduced

model.

C.1 Type II Models

As mentioned in Section 5.4, if (G,R) is a Type II reduced model, the geometric side

of the trace only contains the germ at the identity element. Therefore the multiplicity

formula for the model (G,R) is just

m(π) = mgeom(π) := cθπ ,Oreg(1).

In particular, by the work of Rodier, we know that the multiplicity m(π) is always 1.

C.2 Trilinear GL2 Model

In this section, let (G,H) and (GD, HD) be the trilinear GL2 models introduced in

Section 4.5. We use m(π) and m(πD) to denote the multiplicities. Then by applying

our methods in this paper, we can prove the following theorem.

209
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Theorem C.2.1. If π is an irreducible tempered representation of G(F ) whose central

character equals χ2 on ZH(F ), let πD be the Jacquet-Langlands correspondence of π to

GD(F ) if it exist; otherwise let πD = 0. Then we have

m(π) +m(πD) = 1.

Remark C.2.2. If F is p-adic or R, the above Theorem has been proved by Prasad

[P90] and Loke [L01] for general generic representations by using different methods.

In the loc. cit., they also proved the epsilon dichotomy conjecture for this model. In

[L01], the author also proved the complex case for generic representations satisfy certain

assumption.

Moreover, if F is p-adic, we can also prove the local trace formulas for this model

and the multiplicity formulas for m(π) and m(πD). In particular, we can show that the

multiplicity formula

m(π) = mgeom(π) :=
∑
T∈T
|W (H,T ) |−1 ν(T )

∫
ZG(F )\T (F )

cπ(t)DH(t)χ(det(t))−1dt

holds for all tempered representations π of G(F ). Here cπ(t) is the germ associated

to θπ defined in Section 5.4. Similarly, we can also prove the multiplicity formula for

m(πD).

Remark C.2.3. In fact, we can show that the multiplicity formulas above hold for

all generic representations. We first consider the split case. If π = π1 ⊗ π2 ⊗ π3 is

an essentially discrete series of GL2(F ) × GL2(F ) × GL2(F ), by twisting π by some

characters, we may assume that π is a discrete series. Note that this is allowable since

both m(π) and mgeom(π) are invariant under the unramified twist. This proves the

multiplicity formula when π is an essentially discrete series. If π is not an essentially

discrete series, then one of the πi is a principal series. By the work of Prasad in [P90],

we know that the multiplicity equals 1 in this case. On the other hand, by Lemma 3.3.1,

the germ cπ(t) equals zero for all t ∈ Tv(F )reg and v ∈ F×/(F×)2 with v 6= 1. Therefore

mgeom(π) = cπ(1) = 1. This proves the multiplicity formula.

If we are in the quaternion case, every irreducible representation πD of GD(F ) is

an essential discrete series. So we only need to twist πD by some characters and then

apply our results for the discrete series.
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C.3 The Generalized Trilinear GL2 Models

In this section, we consider the generalized trilinear GL2 models. Although these models

are not the reduced models for the Ginzburg-Rallis model, they are very similar to the

trilinear GL2 model case we considered in the previous section, hence our methods in

this paper can also be applied to these models. These models were first considered by

Prasad in [P92] for general generic representations using different methods. By using

our method in this paper, we can prove the tempered case. In this section, F is a p-adic

field.

Case I: Let K/F be a cubic field extension, G(F ) = GL2(K), and let H(F ) =

GL2(F ). On the mean time, let GD(F ) = GL1(DK) and let HD(F ) = GL1(D) where

DK = D ⊗F K is the unique quaternion algebra over K. For a given irreducible

representation π of G(F ), assume that the restriction of the central character ωπ :

K× → C× to F× equals χ2 for some character χ of F×. χ will induces a one-dimensional

representation σ of H(F ). Let

m(π) = dim HomH(F )(π, σ). (C.1)

Similarly we can define m(πD) for an irreducible representation πD of GD(F ). The

following theorem has been proved by Prasad in [P92] for general generic representations

using different method. By using our method in this paper, we can prove the tempered

case.

Theorem C.3.1. If π is a tempered representation of G(F ), let πD be the Jacquet-

Langlands correspondence of π to GD(F ) if it exist; otherwise let πD = 0. Then

m(π) +m(πD) = 1.

We can also prove the local trace formulas for this model and the multiplicity for-

mulas for m(π) and m(πD). In particular, we can show that the multiplicity formula

m(π) = mgeom(π) :=
∑
T∈T
|W (H,T ) |−1 ν(T )

∫
ZG(F )\T (F )

cπ(t)DH(t)χ(det(t))−1dt

holds for all tempered representations π of G(F ). Here cπ(t) is the germ associated to θπ

defined in the same way as the trilinear GL2 model case. Similarly, we can also prove the
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multiplicity formula for m(πD). Moreover, by the same argument as in Remark C.2.3

together with Prasad’s results in [P92], we can show that the multiplicity formulas above

hold for all generic representations.

Case II: Let E = Fv be a quadratic extension of F where v is a non-trivial

square class in F×. Let G(F ) = GL2(E) ⊕ GL2(F ), H(F ) = GL2(F ), GD(F ) =

GL2(E)×GL1(D), and letHD(F ) = GL1(D). As in the previous cases, we can define the

multiplicity m(π) (resp. m(πD)) for the model (G(F ), H(F )) (resp. (GD(F ), HD(F ))).

By using our method in this paper, we can still prove that the summation of the mul-

tiplicities over any tempered L-packet is 1. We can also prove the local trace formulas

and the multiplicity formulas. Moreover, by the same argument as in Remark C.2.3

together with Prasad’s results in [P92], we can also show that the multiplicity formulas

hold for all generic representations. However, there is one difference between this case

and all the previous cases, this will be discussed in the following remark.

Remark C.3.2. In all the previous cases, for the geometric side of the trace formulas

(or the multiplicity formulas), we are integrating the germs of the distribution over all

the nonsplit tori of H(F ). But in this case, we only need to integrate over those nonsplit

tori which is not isomorphic to Tv. The reason is that in this case, both G(F ) and GD(F )

contain GL2(E). As a result, for an element in Tv(F )∩H(F )reg (or Tv(F )∩HD(F )reg),

although it is elliptic in H(F ) and HD(F ), it will no longer be elliptic in G(F ) or GD(F ).

Therefore the localization at this element will be zero. This is why the torus Tv will not

show up in the multiplicity formulas and the geometric side of the local trace formulas.

C.4 The Middle Models

In this section, let (G,R) and (GD, RD) be the middle models introduced in Section 4.5.

We use m(π) and m(πD) to denote the multiplicities. Then by applying our methods

in this paper, we can prove the following theorem.

Theorem C.4.1. If π is an irreducible tempered representation of G(F ) whose central

character equals χ2 on ZH(F ), let πD be the Jacquet-Langlands correspondence of π to

GD(F ) if it exist; otherwise let πD = 0. Then we have

m(π) +m(πD) = 1.
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Conjecture C.4.2. In general, we expect that the above theorem holds for all generic

representations.

We can also prove the epsilon dichotomy conjecture for this case. We need some

preparation: let π = π1 ⊗ π2 be an irreducible generic representation of G(F ) =

GL4(F ) × GL2(F ). Let ωπ1 (resp. ωπ1) be the central character of π1 (resp. π2).

As in the Ginzburg-Rallis model case, we assume that ωπ1ωπ2 = χ2. Let φ1 (resp. φ2)

be the Langlands parameter of π1 (resp. π2). Then we have

∧3(φ1 ⊕ φ2) = (∧2(φ1)⊗ φ2)⊕ (∧3(φ1))⊕ (φ1 ⊗ (det(φ2))).

Since det(φ1) det(φ2) = χ2, we have

(∧3(φ1)⊗ χ−1)∨ = det(φ1)−1 ⊗ φ1 ⊗ χ = φ1 ⊗ (det(φ2))⊗ χ−1.

This implies that

ε(1/2,∧3(φ1)⊗χ−1)ε(1/2, φ1⊗(det(φ2))⊗χ−1) = det(∧3(φ1)⊗χ−1)(−1) = χ−4(−1)ωπ1(−1) = ωπ1(−1).

Hence the multiplicity is related to the epsilon factor

ωπ1(−1)ε(1/2,∧2(φ1)⊗ φ2 ⊗ χ−1).

The following conjecture is the epsilon dichotomy conjecture for the middle model.

Conjecture C.4.3. With the notations and the assumptions above, the followings hold.

m(π) = 1 ⇐⇒ ωπ1(−1)ε(1/2,∧2(φ1)⊗ φ2 ⊗ χ−1) = 1,

m(π) = 0 ⇐⇒ ωπ1(−1)ε(1/2,∧2(φ1)⊗ φ2 ⊗ χ−1) = −1.

Our results for the conjecture above can be summarized in the following theorem.

Theorem C.4.4. Assume that π is tempered. The followings hold.

1. If F is archimedean, then Conjecture C.4.3 holds.

2. If F is p-adic and if π is not a discrete series, then Conjecture C.4.3 holds.
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Proof. The proof is similar to the Ginzburg-Rallis model case in Chapter 7 and 13. In

other word, if F = C, by the same argument as in Section 7.1, we can show that the

epsilon factor is always equal to 1. Then by applying Theorem C.4.1 above, we know

that the multiplicity is also equal to 1, this proves the conjecture.

If F = R, then by the same argument as in Section 7.3, we can reduce the problem to

the trilinear GL2 model case. Then the conjecture will follows from the work of Prasad

[P90] and Loke [L01].

Finally if F is p-adic, by our assumption, there are two possibilities: either π is

induced from the trilinear GL2 model or π is induced from some Type II model. If π is

induced from the trilinear GL2 model, we can again reduce the problem to the trilinear

GL2 model case and then applying Prasad’s result in [P90]. If π is induced from some

Type II model, then πD = 0. By Theorem C.4.1 above, we know that m(π) = 1. By

the same argument as in Section 13.3, we can show that the epsilon factor is also equal

to 1 in this case, and this proves the conjecture.

Remark C.4.5. Assume that F is p-adic. If the central characters of π1 and π2 are

both trivial, we can find a representation Π of SO(6) × SO(3) associated to π. Then

it is easy to see that the multiplicity m(π) is equal to the multiplicity m(Π) for the

Gan-Gross-Prasad model. Also one can show that the epsilon factor associated to π

is equal to ε(1/2,Π). Then by applying the work of Moeglin and Waldspurger for the

Gan-Gross-Prasad model in [MW12], we know that Conjecture C.4.2 and Conjecture

C.4.3 hold for all generic representations π with ωπ1 = ωπ2 = 1.

Moreover, if F is p-adic, we can also prove the local trace formula for this model

and the multiplicity formulas for m(π) and m(πD). In particular, we can show that the

multiplicity formula

m(π) = mgeom(π) :=
∑
T∈T
|W (H,T ) |−1 ν(T )

∫
ZG(F )\T (F )

cπ(t)DH(t)∆Q(t)χ(det(t))−1dt

holds for all tempered representations π of G(F ). Here cπ(t) is the germ associated to

θπ defined in Section 5.4, and ∆Q(t) is some normalized function also defined in Section

5.4. Similarly, we can also prove the multiplicity formula for m(πD).

Finally, as in Chapter 14, if F is archimedean, we will have some partial results

for the general generic representations. We first consider the case when F = R. Let
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π = π1⊗π2 be a generic representation of G(F ) = GL4(F )×GL2(F ), and let πD be its

Jacquet-Langlands correspondence to GD(F ). By the Langlands classification, there is

a parabolic subgroup Q = LUQ of GL4(F ) containing the lower Borel subgroup and an

essential tempered representation τ = ⊗ki=1τi| |si of L(F ) with τi tempered, si ∈ R and

s1 < s2 < · · · < sk such that π1 = I
GL4(F )
Q (τ). We say Q is nice if Q ⊂ P̄2,2 or P̄2,2 ⊂ Q.

Here P̄2,2 is the parabolic subgroup of GL4(F ) of type (2, 2) and containing the lower

Borel subgroup. Then our results can be summarized in the following theorem.

Theorem C.4.6. With the notations above, the followings hold.

1. If πD = 0, assume that Q is nice, then Conjecture C.4.2 and Conjecture C.4.3

hold.

2. If πD 6= 0, we have

m(π) +m(πD) ≥ 1.

Moreover, we also have

ωπ1(−1)ε(1/2,∧2(φ1)⊗ φ2 ⊗ χ−1) = 1⇒ m(π) = 1,

m(π) = 0⇒ ωπ1(−1)ε(1/2,∧2(φ1)⊗ φ2 ⊗ χ−1) = −1.

As in the Ginzburg-Rallis model case, the assumption on Q can be removed if we

can prove the holomorphic continuation of certain generalized Jacquet integrals (i.e. the

hypothesis in Section 14.3).

Then we consider the case when F = C. We still let π = π1 ⊗ π2 be a generic

representation of G(F ) = GL4(F )×GL2(F ). As in the Ginzburg-Rallis model case, we

know that Conjecture C.4.3 will follows from Conjecture C.4.2. For Conjecture C.4.2,

let B = M0U0 ⊂ GL4(F ) be the Borel subgroup consists of all the lower triangular

matrix, here M0 = (GL1)4 is just the group of diagonal matrices. Then π1 is of the

form IGB (χ) where χ = ⊗4
i=1χi is a character on M0(F ). For 1 ≤ i ≤ 4, we can find

an unitary character σi and some real number si ∈ R such that χi = σi| |si . Without

loss of generality, we assume that si ≤ sj for any i ≥ j. Then if we combine those

representations with the same exponents si, we can find a parabolic subgroup Q = LUQ

containing B with L = ×ki=1GLni , a representation τ = ⊗ki=1τi| |ti of L(F ) where τi

are all tempered and the exponents ti are strictly increasing (i.e. t1 < t2 < · · · < tk)
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such that π = I
GL4(F )
Q (τ). On the other hand, we can also write π1 as I

GL4(F )

P̄2,2
(π0) with

π0 = π11 ⊗ π12 and π1i be the parabolic induction of χ2i−1 ⊗ χ2i.

Theorem C.4.7. With the same assumptions as in Conjecture C.4.2 and with the

notation above, the followings hold.

1. If P̄2,2 ⊂ Q and if π2 is an essentially tempered representation, Conjecture C.4.2

holds.

2. If Q ( P̄ and if π′ = π11⊗π12⊗π2 satisfies the condition (40) in [L01], Conjecture

C.4.2 holds.

As in the Ginzburg-Rallis model case, the assumption on Q in Theorem C.4.7(2) can

be removed if we can prove the holomorphic continuation of certain generalized Jacquet

integrals (i.e. the hypothesis in Section 14.3).
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