A MULTIPLICITY FORMULA OF K-TYPES

CHEN WAN

ABSTRACT. In this paper, by proving a simple local trace formula for
real reductive groups, we prove a multiplicity formula of K-types for
all irreducible representations of real reductive groups. This multiplic-
ity formula expresses the K-characters in terms of the Harish-Chandra

characters.
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1. INTRODUCTION

Let G be a connected real reductive group and K = G? be a maximal com-
pact subgroup of G where 6 is a Cartan involution. Let 7 be an irreducible
smooth representation (i.e. an irreducible Casselman-Wallach representa-
tion) of G and 7 be an irreducible representation of K, the goal of this
paper is to study the multiplicity of K-types

m(m,7) = dim(Homg (7, 7)).

By Section 8.2 of [10], there exists a continuous linear functional O » on
C*(K), called the K-character, such that

Oalf)= Y mmr) [ 607k

Telrr(K) K

where 6, (k) = tr(7(k)) is the character of 7. In particular, we have m(m, 1) =
@K’,r(éT). By Theorem 8.2.2 of [I0], we know that the K-character O . is
equal to the Harish-Chandra character 6, of m on the regular semisimple
elements K N Gyrey. In our previous paper [13], we proposed a conjectural
multiplicity formula for general spherical pairs. A special case of our conjec-
tural multiplicity formula is a conjectural multiplicity formula for K-types
(note that (G, K) is a spherical pair). The main result of this paper is
to prove this conjectural multiplicity formula of K-types. This multiplicity
formula also implies a formula of the K-character in terms of the Harish-
Chandra character.

1.1. Main results. Let S(G, K) be the set of K-conjugacy classes (x € K
is any element in the conjugacy class) such that the pair (G, K,) is a
minimal spherical pair. Here G (resp. K, ) is the neutral component of the
centralizer of z in G (resp. K). We refer the reader to Section 2.6 of [13]
for the definition of minimal spherical pair. In the case of K-types, the pair
(G, K;) is a minimal spherical pair if and only if G, is split modulo the
center (i.e. the difference between the rank of G and the split rank of G
is equal to the difference between the rank of Zg, and the split rank of Zg,
where Zg, is the center of G;). In Section 3 we will define a measure on the
set S(G, K). Let 6 be a quasi-character on G (we refer the reader to Section
2 for the definition of quasi-character) and 0 be a smooth function on K
that is invariant under conjugation, define

* 1
mgeom,G,K(979K) " /S(G,K) C(Gt,Kﬁ Gt7R) . ‘ZK(t) KN Gt‘
DY) 2A )20k (t)co(t)dt

where

e cy(t) is the average of the regular germs of 6 at t defined in Section

2.4
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e the constant ¢(Gy, KNGy, R) is the number of connected components
of ByN K NGy (By is any Borel subgroup of G) defined in Section
5 of [13];
e DY (resp. DX) is the Weyl determinant of G' (resp. K) and A(t) =
DY) DX (t)~>;
o Zk(t) is the centralizer of ¢ in K.
The integral above is not necessarily absolutely convergent and it needs to be
regularized. We refer the reader to Section 3 for details. The main theorem
of this paper is a multiplicity formula for K-types.

Theorem 1.1. For any irreducible smooth representation w of G and for
any irreducible representation T of K, we have the multiplicity formula

m(ﬂa T) = mgeom,G,K(ewa éT)

Remark 1.2. The ezpression Mgeom,c,Kx (O, éT) is called the geometric mul-
tiplicity.

Corollary 1.3. The K-character O, is equal to

@Kﬂr(f) = mgeom,G,K(emef), fe COO(K)
where 6)f(i’?) = fK f(k‘_1$k), x € K is the orbital integral of f.

1.2. Organization of the paper and remarks on the proofs. In this
section we will briefly explain the proof of Theorem [I.1} The first step is to
show that both the multiplicity and the geometric multiplicity behave nicely
under parabolic induction. For the multiplicity, this is a direct consequence
of the Iwasawa decomposition and the Frobenius reciprocity. For the geo-
metric multiplicity, this is a direct consequence of Proposition [2.9] Combine
this with the Langlands classification, we only need to prove the multiplicity
formula for tempered representations. This also proves the multiplicity for-
mula for all the representations when G does not have discrete series ( <=
G does not have a maximal elliptic torus).

To prove the multiplicity formula for tempered representations, we follow
the method developed by Waldspurger in his proof of the local Gan—Gross—
Prasad conjecture (8], [9]). To be specific, we will prove a local trace formula
for the K-types which would imply the multiplicity formula for tempered
representations. We would like to point out that Waldspurger’s method was
later adapted by other people for some other cases including the unitary
Gan-Gross—Prasad model ( [2], [3]), the Ginzburg-Rallis model ([11], [12]),
the Galois model ([4]), the Shalika model ([5]) and some strongly tempered
spherical pairs ([14], [15]). Based on these works, the author proposed a
conjectural multiplicity formula and a conjectural local trace formula for
general spherical varieties in [13].

Compared with all the existing cases above, there are two difficulties in
the proof of the local trace formula for K-types. The first difficulty is on the
spectral expansion. For all the known cases above, when the spherical pair
is strongly tempered (recall that we say a spherical pair (G, H) is strongly
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tempered if all the tempered matrix coefficients of G are integrable over H
up to modulo the center), the proof of the spectral expansion used the fact
that the multiplicity is less or equal to 1 (i.e. the spherical pair is a Gelfand
pair). But this is not true for the case of K-types. To solve this issue, we
combine the method in the known strongly tempered cases with the proof
of the spectral expansion in the Galois model case due to Beuzart-Plessis
[4] (which does not use the Gelfand pair condition but is only for discrete
series instead of tempered representations). We refer the reader to Section
4 for details.

The second difficulty is on the geometric expansion. The most important
step in the proof of the geometric expansion is to descend the test function
to the Lie algebra and then take the Fourier transform. However, this only
works when the K-type is trivial (i.e. 0x = 1). In general when the K-
type is nontrivial, it is not clear how to take the Fourier transform on the
Lie algebra. Instead, we will first prove the geometric expansion when the
K-type is trivial. Then we will prove the general case by using the trivial
K-type case and the spectral side of the trace formula. We refer the reader
to Section 5 and 6 for details.

This paper is organized as follows. In Section 2 we introduce basic no-
tation and conventions used in this paper. We will also discuss some facts
about quasi-characters and strongly cuspidal functions. In Section 3 we
state the multiplicity formula and the local trace formula. We also show
that the trace formula implies the multiplicity formula. We will postpone
the proof of a technical lemma to the Appendix. In Section 4 we will prove
the spectral side of the trace formula. In Section 5 we will study the ana-
logue of the trace formula for Lie algebra. Finally in Section 6 we will prove
the geometric side of the trace formula.

1.3. Acknowledgments. We thank Raphaél Beuzart-Plessis for many help-
ful discussions, for the helpful comments on the first draft of this paper, and
for the proof of Statement (3) in Appendix A. We also like to thank Fangyang
Tian, David Vogan and Lei Zhang for many helpful conversations. The work
of the author is partially supported by the NSF grant DMS-2000192 and
DMS-2103720.

2. PRELIMINARY

2.1. Notation. Fix a nontrivial additive character ¢ : R — C*. Let G be
a connected real reductive group, K be a maximal compact subgroup of G,
K° be the neutral component of K which is a maximal connected compact
subgroup of G, 6 be the Cartan involution of G with K = G?, g be the Lie
algebra of G and € be the Lie algebra of K°. Let Zg be the center of G, Ag
be the maximal split torus of Zg.

We use Ggs, Greg (r€Sp. @ss, Oreg) to denote the set of semisimple and
regular semisimple elements of G (resp. g) and let T(G) (resp. Teu(G))
be a set of representatives of maximal tori (resp. maximal elliptic tori) of
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G. Here we say T C G is a maximal elliptic torus if 7" is a maximal torus
of G and T'/Zg is compact. Note that the set T¢;(G) is non-empty if and
only if G has discrete series. For z € G5 (resp. X € gss), let Zg(x) (resp.
Za(X) = Gx) be the centralizer of z (resp. X) in G and let G, be the
neutral component of Zg(z). Similarly, for any abelian subgroup 7' of G,
let Z¢(T') be the centralizer of T in G and let G be the neutral component
of Zg(T). We say x € G, is elliptic if x is contained in a maximal elliptic
torus and we use G C G4, to denote the set of elliptic elements of G. We
also use Gejjreg = Gep N Greg to denote the set of regular elliptic elements
of G. Similarly we can define gey and geyireq- Let Gss/conj be the set of
semisimple conjugacy classes of G. Finally, for z € G4 (resp. X € gss), let
D%(z) = |det(1 — Ad(x))|q/q.| (resp. DY (X) = | det(Ad(X)) be the
Weyl determinant.

We say a subset Q C G (resp. w C g) is G-invariant if it is invariant
under the G-conjugation, we say the set is completely G-invariant if it is
G-invariant and for any X € Q (resp. X € w), the semisimple part of X
also belongs to Q (resp. w). For any subset Q C G (resp. w C g), we define
the G-invariant subset

lg/ 9z lo/9x )

0% :={g7"glge G reQ}, w¥:={g7"g| g€ G, yeuw}

We say a G-invariant subset Q of G (resp. w of g) is compact modulo
conjugation if there exists a compact subset I' of G (resp. g) such that
Q C T (resp. w C I'%). A G-domain on G (resp. g) is an open subset of G
(resp. g) invariant under the G-conjugation.

We denote by X(G) the group of R-rational characters of G. Define
ac = Hom(X (G),R), and let af, = X(G) @z R be the dual of ag. We define
a homomorphism Hg : G — ag by Ha(g)(x) = log(|x(g)|) for every g € G
and x € X(G). This is a surjective homomorphism.

For a Levi subgroup M of G, let P(M) be the set of parabolic subgroups of
G whose Levi part is M, L(M) be the set of Levi subgroups of G containing
M, and F(M) be the set of parabolic subgroups of G containing M. We
have a natural decomposition ap; = af/[ @ ag. We denote by projzc\} and
proj the projections of aps to each factors. For each P € P(M), we can
associate a positive chamber aJ]S C apy. For each P = MU, we can also
define a function Hp : G — apyr by Hp(g) = Hyr(mg) where g = mgugkg is
the Iwasawa decomposition of g.

In this paper we shall freely use the notion of log-norms on algebraic
varieties as defined in Section 1.2 of [3]. For every algebraic variety X over
R, we will fix a log-norm ox on it. For C > 0, we use X [< C] to denote the
set {z € X| ox(z) < C}. In particular, we have log-norms og and oy on
G and g respectively. It will be convenient to assume, as we may, that og
is left and right K-invariant. Following Harish-Chandra, we can also define
the height function ||-||¢ on G (resp. ||-||4 on g), taking values in R>¢ so that
the log-norm oG on G (resp. o4 on g) is given by og(g) = sup(1,log(|lg||c))

(resp. aq(X) = sup(1, log([| X1[4)))-
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We fix a minimal Levi subgroup (resp. parabolic subgroup) My (resp.
Py = MyNp) of G and let A be a maximal split torus of My. Let (A, Py) be
the set of roots of A in Py and let AT = {a € A®| a(a) > 1, Va € S(A, Py)}.
Here A% is the neutral component of A under the analytic topology (i.e.
if A~ (R*)* then A® ~ (Rsq)¥). We have the Cartan decomposition
G=KA'K.

Remark 2.1. Throughout this paper we will always use ° to denote the
neutral component under the Zariski topology and ® to denote the neutral
component under the analytic topology. For example, if G = GL1(R) = R*,
then G° = G and G® = Ryy.

We say a parabolic subgroup of G is standard if it contains Py. We say
a Levi subgroup of G is standard if it is a Levi subgroup of a standard
parabolic subgroup and it contains Mj.

For two complex valued functions f and g on a set X with g taking values
in R>o, we write that

flz) < g(x)
and say that f is essentially bounded by g, if there exists a constant ¢ > 0
such that for all x € X, we have

[f(@)] < cg(x).
We say f and g are equivalent, which is denoted by

f(x) ~g()
if f is essentially bounded by g and g is essentially bounded by f.

Let C*°(G) be the space of smooth functions on G and let C°(G) (resp.
S(@Q)) be the space of smooth compactly supported functions (resp. Schwartz
functions) on G. We use C(G) to denote the Harish-Chandra-Schwartz space
of G (see Section 1.5 of [3] for details). On the Lie algebra level, let C'2°(g)
(resp. S(g)) be the space of smooth compactly supported functions (resp.
Schwartz functions) on g. We also use Z¢ to denote the Harish-Chandra
E-function of G.

Let C2%ysp(G) C C°(G) be the subspace of strongly cuspidal functions in

c,scusp

C°(G). Similarly we can define the spaces Sscusp(G); Cscusp(G), Codenspy(8),

c,scusp

and Sscusp(g). We refer the reader to Section 5 of [3] for the definition and
basic properties of strongly cuspidal functions.

2.2. Measure. We fix a non-degenerate symmetric bilinear form < -, - >
on g that is invariant under G-conjugation (i.e. Killing form). For f € S(g),
we can define its Fourier transform f — f to be

(2.1) f(X) = /f(Y)¢(< XY >)dY
g

where dY is the selfdual Haar measure on g such that f(X) = f(—X). Then
we get a Haar measure on G such that the Jacobian of the exponential map
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isequal to 1 at 0 € g. If H is a subgroup of G such that the restriction of the
bilinear form to h is also non-degenerate, then we can define the measures
on h and H by the same method.

Let G be a split real reductive group with trivial center, K = G? be
a maximal compact subgroup of G, ¢ be the Lie algebra of K° and p =
t1 be the orthogonal complement of £ in g (i.e. g = p @ € is the Cartan
decomposition). Let t C p be a maximal abelian subspace. Since G is split,
we know that t is the Lie algebra of a maximal split torus T of G. Let
B = TN be a Borel subgroup of g and B = TN be its opposite. We have
the Iwasawa decomposition G = BK = BK and T N K is a finite group.
The next lemma will be used in the proof of the geometric side of the trace
formula.

Lemma 2.2. For f € S(p), we have (W (T) is the Weyl group)

= 1 G 1/2 -1
/pf(X)dX_ W) - [TNK| /t/KD W2 f(k~'Yk)dkdY.

Proof. The lemma is a consequence of the following three facts.

e Every element in p N g, is K-conjugated to an element of t.

e Two elements in p N g,y are G-conjugated to each other if and only
if they are K-conjugated to each other.

e The Jacobian of the map p//K — t//W(T) is equal to DE(-)'/2,

The first fact follows from the fact that two different choices of maximal
abelian subspace of p are K-conjugated to each other. The second fact
follows from the first fact and the fact that the normalizer of T" in G is
contained in TK.

For the third one, let ¥ (resp. ¥) be the roots of T in n = Lie(N) (resp.
fi = Lie(N)). Then ¥ U Y is the set of roots of G with ¥ (resp. ¥) being
the set of positive (resp. negative) roots. For a € ¥ U X, let V, be the
root space of a. Since G is split, we know that V,, is one dimensional and
the Cartan involution 6 will map V,, onto V_, for all @« € ¥ U . Hence
we can fix 0 # X, € V, such that 6(X,) = X_, for all & € X UX. Then
{Xa+X_o|a€X}isabasisof tand p =t Span{X, — X_o| o € L}.
Combining with the definition of the Weyl determinant we know that the
Jacobian is equal to D@ (-)'/2. This finishes the proof of the lemma. O

2.3. Representations. We say a representation 7 of G is irreducible (resp.
finite length) smmoth if it is an irreducible (resp. finite length) Casselman-
Wallach representation of G. We say a finite length smooth representation m
of GG is an induced representation if there exists a proper parabolic subgroup
P = MN of G and a finite length smooth representation 7 of M such that
7 = I$(r). Here I(-) is the normalized parabolic induction.

We use R(G) to denote the Grothendieck group of finite length smooth
representations of G, and we use R(G)ing C R(G) (resp. R(G)temp C R(G))
to denote the subspace of R(G) generated by induced representations (resp.
tempered representations).
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Proposition 2.3. We have R(G) = R(GQ)inda+R(G)temp (i-e. R(G) is gen-
erated by induced representations and tempered representations). Moreover,
if Teu(G) = 0, then R(G) = R(G)ina-

Proof. The first part is a direct consequence of the Langlands classification.
For the second part, since T¢;(G) = 0, G does not have any elliptic rep-
resentations. This implies that all the tempered representations of G are
generated by induced representations. This proves the proposition. U

2.4. Quasi characters. Let Nil(g) be the set of nilpotent orbits of g and
Nilyeq(g) be the set of regular nilpotent orbits of g. In particular, the set
Nilyeq(g) is empty unless G is quasi-split. For every O € Nil(g) and f €
S(g), we use Jo(f) to denote the nilpotent orbital integral of f associated
to O. Harish-Chandra proved that there exists a unique smooth function
Y — j’((’),Y) on greq, which is invariant under G-conjugation and locally
integrable on g, such that for every f € S(g), we have

Jo(f) = /f(Y)j’(O, Y)dY.
g

We refer the reader to Section 4.2-4.4 of [3] for the definition of quasi-
characters. Let 6 (resp. ') be a quasi character on G (resp. g). Given
x € Ggs (resp. X € gss), we have the germ expansions

D(z exp(X))"/?6(x exp(X))

= DYmexp(X)'? > cpo@)i(0,X)+O(X]),
O€Nilreg(gz)

DE(X + V)20 (X +Y)

= DX+ > o(X)i(0,Y)+0(Y))
OENil7'eg(gX)

for X € g, (resp. Y € gx) close to 0. Here ¢y o(z) € C (resp. cgr 0(X) € C)
are called the regular germs of 0 (resp. #') at x (resp. X).

The most important examples of quasi-characters on G are the Harish-
Chandra characters of finite length smooth representations of G. Examples
of quasi-characters on g are the functions j(0,-) (O € Nil(g)) defined above.

We use QC(G) (resp. QC(g)) to denote the set of quasi-characters on G
(resp. g), and we use QC.(G) (resp. QC.(g)) to denote the set of quasi-
characters on G (resp. g) whose support is compact modulo conjugation.
We also use SQC(g) to denote the space of Schwartz quasi-character on g
defined in Section 4.2 of [3]. We have QC.(g) C SQC(g). If Q (resp. w)
is an open completely G-invariant subset of G (resp. g), we define QC(2)
(resp. QC(w)) to be the set of quasi-characters on §2 (resp. w). Similarly we
can also define the spaces QC.(Q2), QC.(w). We refer the reader to Section
4.2-4.4 of [3] for the topology on these spaces.

For f € Cscusp(G) (resp. f € Sscusp(8)), let §5 be the quasi-character on
G (resp. g) defined via the weighted orbital integrals of f. For f € Sscusp(9),
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let éf =40 i be the Fourier transform of 6. We refer the reader to Section
5.2 and 5.6 of [3] for details.

Definition 2.4. Let 0 be a quasi-character on G. For x € G, define the
average of the reqular germs to be

1 ; ; .
co(x) = { Vg2 20N ilyey(aa) 0.0(2) i Nilrey (92) 70
0 if Nilreg(gz) =10

Remark 2.5. (1) The set Nilyeqg(g,) is non-empty if and only if G is
quasi-split.
(2) For & € Greg, co(x) is just 6(z).

Definition 2.6. For A€ R*, Il € R and 0 € QC(g), define
My (0)(X) = N0\ 1X), X eg.
We also use 0 to denote M) (), i.e. Ox(X) = 0(A\"1X).

Lemma 2.7. For A # £1, 1 € Z~o and 0 € QC.(g), the following hold.

(1) If co,0 = 0 for all O € Nilyeq(g), then there exists 01,602 € QC.(g)
such that 0 = (M) 52 — 1)1 + 05 and 0 ¢ Supp(f). Here
0(G) = dim(G) — rank(G).

(2) Forl > §(G)/2, there exists 61,02 € QC.(g) such that 0 = (My; —
1)401 + 02 and 0 ¢ Supp(6).

Proof. The first part is just Proposition 4.6.1(i) of [3]. The second part
follows from the same proof as in loc. cit. together with the fact that the
function D(:)Y/25(0,-) is locally bounded for all O € Nil(g) (Theorem 17
of [7]). O

Remark 2.8. If we assume that 0 < A < 1, then the above lemma is also
true when we replace QC.(g) by QC.(w) for any complete G-invariant convex
neighborhood w of 0 in g. Here we say w is conver if for any X € w and
0< A< 1, we have AX € w.

Let P = M N be a parabolic subgroup of GG, 8 be a quasi-character of
M and 0 = I§(0)r) (we refer the reader to Section 3.4 and 4.7 of [3] for the
definition of parabolic induction of quasi-characters). For all z € G, let
X (z) be a set of representatives for the M-conjugacy classes of elements
in M that are G-conjugated to x. The following proposition was proved in
Proposition 4.7.1 of [3] and it tells us the behavior of cg(z) under parabolic
induction.

Proposition 2.9. For all x € G5, D% (x)'/2cy(x) is equal to
Za(x) 1 Gal Y 1Zun(y) : My| 7 DM (1) 2¢q,, (y).
yEXn ()

In particular, co(x) = 0 if the set Xp(z) is empty.
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The next lemma is well known (e.g. Lemma 3.2 of [I]) and it will be used
in our proof of the geometric side of the trace formula.

Lemma 2.10. Let G be a quasi-split real reductive group and O1, Oy be two
regular nilpotent orbits of g. Then there exists g € Resc/rG such that the
g-conjugation map preserves G and it sends O1 to Os.

Remark 2.11. Since any two maximal compact subgroups of G are conju-

gated to each other, we may choose g in the above lemma such that g~ 'Kg =
K.

3. THE TRACE FORMULA AND THE MULTIPLICITY FORMULA

In this section, we will state the trace formula and the multiplicity for-
mula. In Section we will define the distribution I(f,0x) in the trace
formula. The key is to show that the integral defining I(f, ) is absolutely
convergent. In Section and Section we will define the spectral and
geometric sides of the trace formula. The key is to regularize the integral
defining the geometric multiplicity. The trace formula and multiplicity for-
mula will be stated in Section In Section we will show that the
trace formula implies the multiplicity formula.

3.1. The distribution I. Let 8 be a smooth function on K that is in-
variant under conjugation. For f € C(G), define

I(f,x,GK):/Kf(x_ler)GK(k:)dk.

Set ||0k|| = maxgex |0k (k)|. Let ©x be a set consists of some smooth
K-invariant functions on K with a fixed upper on both the functions and
derivatives, i.e. there exists C' > 0 such that

d
10xll < €, | 0k (kexp(tX))] < C- || X]le

for all 0 € O,k € K and X € €. Our goal is to prove the following
proposition.

Proposition 3.1. For d > 0, there ezists a norm vq on C(G) such that

11(f,2,05)] < va(H) U160k || + 110k [N (@) 0674 ()~

for all g € Ok, v € G and f € Cyeusp(G). Here =C s the Harish-Chandra
=-function on G.

The proof of the proposition is technical, but it is very similar to Theorem
8.1.1 of [3]. By the Cartan decomposition G = KATK, it is enough to
consider the case when z = a € AT, For every standard parabolic subgroup
Q = LUg of G with A C L and § > 0, set (R(A,Ug) is the set of roots of A
in Ug)

AQH () = {a € AT| |a(a)| > ¥79%¢@ | Vo € R(A,Up)}.
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We choose § > 0 small so that the complement of

UQ standardAQF’— (6)

in AT is compact modulo the center Zg. Hence we only need to prove the
estimate for a € A9 (4).

Let Q = LUQ be the opposite parabolic subgroup of @, Kg = KNQ. Up
to conjugating L by some element in Ug we may assume that Ko C L and we
let Kj, = Kg. We can define the function 6k 1 on K, to be 0x 1, = 0k|Kk, -

Set K9 = K, x Ug and define 6% on K? to be Gg(kLuQ) = Ok (k).
We fix the Haar measures on K9, Kg ~ Kp, and UQ so that

f(E@)dkC :/ f(krug)dugdkr.
K@ K JUq
For f € C(G) and a € A", we define
19(fea0i0) = [ fla™ K202 (k)ar®.
K@

Since I9(f,a,0x) = 0 if f is strongly cuspidal, we are reduced to prove the
following proposition.

Proposition 3.2. There exists a constant ¢ > 0 depends on the choice of
Haar measures such that for all d > 0, we have

1(f,a,0K) — eI?(f,a,05)] < va(H)(|16x || + V10 ])Z (@) 0626 (@)~

for all 0 € Ok, a € A9T(8) and f € C(G). Here vy is a norm on C(G)
depends on d.

Proof. Let K' = KN PyNy and let u : K’ — Ny be the map sending & to the
unique element u(k) in Ny so that ku(k)~! € Py. Recall that Py = MgNy is
a minimal parabolic subgroup of G and Py = MyNj is its opposite parabolic
subgroup. By the Iwasawa decomposition we know this map is submersive
at the identity. Hence we can find a relatively compact open neighborhood
U of 1 in Ny and an R-analytic section

k:U— K, u— k(u)

to the map u(-) over U with k(1) = 1. Set Uy =UNUg and K = Kok(Up).
By the same argument as in (8.1.7) of [3], we have
(1) The map ¢ : Kg x Uy — K, (kg,u) — kgk(u) is an R-analytic
embedding with image K and there exists a smooth function j on
Ug such that

/]C (k) dk = /K Q /u plhak(u)i(wdudio
for all ¢ € L'(K).
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By Lemma 1.3.1(ii) of [3], for € > 0 small enough, we have
alUg[< ea(;/ZG(a)]a_l C Ug
for all a € A9*(5). We set
K< = Kgk(aUg[< €0G/z¢ (a)]a_l), K@<eo — KraUg[< eag/ZG(a)]a_l,
I(ati) = [ S k(b
K<ea

[9<%(f, a,0x) = / f(a~1kRa)0% (K2)dk?
KQ <ea

for a € A9F(8). Let 0 < 8o < §/2 and ¢ = j(1). We only need to prove the
following 3 inequalities (4 is a norm on C(G) depends on d)

(3.1) 1(f,a,0K) — I<°(f,a,60x)| < va( )10 |IE (a)* 0624 (a)
(32)  [I9(f,a.0K) — I%°(f,a,0k)| < va(HIIOK|[E (@) 06 24 (@) 7,

(3.3) [I<°(f,a,0k) — cI9<(f,a,0k)| < va(f)V/]|0k||EC (a)2e %7626 (@)
for all Ox € Ok, a € A9T(§) and f € C(G).

Remark 3.3. The three inequalities above is an analogue of (8.1.8)-(8.1.10)
of Bl. In our case, since Ko = Kp is compact, we only need to use

Kq, Ky, instead of Kql< €0g)z,(a)], KL[< €0g/z.(a)] in the definition of
K<e,a’ KQ,<e,a‘

By the same argument as in (8.1.11) of [3] (note that Proposition 6.4.1(iii)
and Proposition 6.8.1(v) of loc. cit. are trivial for our case since K is
compact), we have

(34)  0azs(a) < ogyz,(a k), 0cz,(a) < 06 z,(a" ka)
for all a € A9*(5), k € K — K< and k¢ € K¢ — K@< As a result,

we have

I(f.a.0x) — I<(f,a,01)]| < / [ ka) O (k)| dk < va(f)10x |
K_K<ea

: / =% (a " ka)og(a  ka) " dk < va(f)||0k oGz, (@) / 2% ka)dk
K—K<ea K

= va(HlOxlloc)zq(@) =% (e )= (a) ~ va(HIOxlloG) 2 (@)= (a)?,

and

19(f, 0, 0xc) — 19, 0, 05| < / | a™ " ka)brc ()| dk
KQ_KQ:.<ea

[

<va(Plexl- [ =6(a~ ka)oa(a~ ka)~Hdk
KQ_KQ,<ea

< (D)0l 2 ()24 / =% ha)og(a™ ha) Uk
K
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:Vd(f)H@KHUG/ZG() d(5Q /K/U (a™ kau)a(;( 1kau) ddk
LJUq

< va( P10k |0 2, (a)2o0(a) "L /K =L (4~ ka) dk
L

~va(HI0x oGz, (a) *0q(a) T E (a2 (a) < va( )10k |06/ 25 (a) =% (a)?
for all 0x € O, a € A9+ () and f € C(G). Here we have used Proposition
1.5.1 (i), (iv) and (vi) of [3]. The norm v, is the above inequalities can be

chosen to be v4(f) = supyeq |%| This proves and (3.2).
For (3.3]), we have

I<(f 0, 05c) = / / _ Fla~ kpk(ug)a)0x (krk(ug))j(ug)dugdka,
Kr JaUgl<eog)z (a)]la=?

IQKE(fv a, QK) :/ / f(a’lkLuQa)OK(kL)dqukL.
Kp JaUgl<eog, 7, (a)la~™

Fix ¢ > 0 with 0 < 209 < ¢’ < ¢ and fix d’ > 0 large. We first show that in
order to prove ({3.3)), it is enough to prove the following statement.

(2) For € > 0 small, we have

/(@™ kpk(ug)a)fx (krk(uq))j(uq) — cf (a™ ' ka)dx (k)]

< va(HVIOKIES (e~ kCa)og(a kPa) ¥ e~ 7 7e/26()
for all 0 € O, a € ALT(8), ug € alg[< eog)z,(a)la™, ki €
K, f € C(G), and for some norm v4 on C(G). Here we have set
k9@ = krug.
In fact, if (2) holds, then we have
I 0,0) 120,800 < val )V [oe 5o [ =0(a1ka)

KQ:<e,a
oc(a~ k%)~ dk? < va(f)\/0x|le” = 7cr2a(@ / 2% "k%a)og(a k%a) Y dk

KQ
< va(HV18x e 27026 Ag(a) T EF (a7)EH(a) < valf)V/10x e 70176 D=6 (a)?
for all O € Ok, a € A9 (§) and f € (G

)

). Here the inequalities in the
third line follow from Proposition 1.5.1(i), (iv) and (vi) of [3]. This proves
(3-3)-

To prove (2), first by Lemma 1.3.1(ii) of [3] together with the facts that kr,
belongs to a compact set and ||0%||, ||0k|| are bounded, we know that there
exists a constant C' that depends on the upper bounds of |||, ||0%]], ||7l, [|7’]]
(in particular, it only depends on the set © ) such that

10 (kL (uq))s(uq)—cOk (k)| = |0k (kLk(uq))j(ug)—0xk (kr)j(1)| < Cre™® 76/2a (),
|0k (kLk(uq@))j(uq) — Ok (k)| < C - |0k ||
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for all O € O, a € A9*(4), ug € algl< €0Gz,(a)la™t, kp € Kp. This
implies that
. ¥
10 (kL k(ug))j(uq) — e (kp)| < C-e” 2 7626 \/][fk]]
for all 0x € Ok, a € ALH(5), ug € allg[< €0¢yz.(a)la™t, kr € K. Hence
in order to prove (2), it is enough to prove the following statement:
(3) For e > 0 small, we have

|f (@ kpk(ug)a)—f(a™ ' k9a)| < va(f)e ® 7026 WEC (0 ka0 (a kPa)

for all a € A9H(6), ug € alg[< €0cz,(a)a™t kp € Ki, f € C(G),
and for some norm v4 on C(G).
This follows from the same argument as (8.1.17) of [3]. Now we have finished
the proof of the proposition. O

Remark 3.4. From the proof of the proposition, we know that we can replace
10| by [|0k f|| where

O || = 05 (k)|
1011 kem%i};pwf)‘ K (k)|

We can also replace the space Cgeysp(G) by CSCUSP(G/Aé)f the Mellin trans-
form of the space Cseusp(G) with respect to the trivial character of Aé.

Definition 3.5. For [ € Cscusp(G/Aé), define
KAS\G

By Proposition above and Proposition 1.5.1(v) of [3], we know the inte-
gral is absolutely convergent.

Remark 3.6. Note that the double integral

/ / f(z7 k)0 (k)dkda
KAS\G JK

is not absolutely convergent in general.

3.2. The spectral side. Let 7 be a finite dimensional representation of K
and 0,(k) = tr(r(k)), k € K be its character. For f € Cscusp(G/AS), we
define the spectral side of the trace formula to be

Lpeelf7) = [ D@0y (mym(a, ).
X(G/AG)

Here X (G/AZ) (resp. Xou(G/AS)) is the set of virtual tempered represen-
tations (resp. elliptic representations) of G whose central character is trivial
on A2 defined in Section 2.7 of [3]. The number D(7) and the measure dr
were also defined in Section 2.7 of [3]. As in Section 5.4 of loc. cit., for
T € X(G/AS), we can define a map

f € Cocusp(GJAL) v 04(m) € C



MULTIPLICITY FORMULA 15
via the weighted character (this map was denoted by f ~ 0 () in loc. cit.).

3.3. The geometric side. In this section we will define the geometric side
of the trace formula and the geometric multiplicity. These have already
been defined in [I3] when K is connected (i.e. K = K°). We just needs to
slightly extend the definitions to the non-connected case. We also need to
regularize the integral in the geometric multiplicity.

Definition 3.7. (the support of geometric multiplicity) Let S(G, K) be the
set of K-conjugacy classes © € K such that the pair (G, K;) is a minimal
spherical pair. We refer the reader to Section 2.6 of [13] for the definition
of minimal spherical pair. The set S(G, K) is the support of the geometric
multiplicity.

Remark 3.8. (1) The pair (Gg, Ky) is a minimal spherical pair if and
only if Gy is split modulo the center.

(2) This definition is just Definition 4.1 of [13]. Here since K is com-
pact, the elliptic condition in loc. cit. is automatic. Also the quasi-
split condition in loc. cit. is a direct consequence of the condition
that (Gg, Kz) is a minimal spherical pair.

In order to define the measure on S(G, K), we will give an equivalent
definition of S(G, K). The next definition is an analog of Definition 4.3 of
[13].

Definition 3.9. Let T(G, K) be the set of all the closed (not necessarily
connected) abelian subgroups T of K (up to K-conjugation) satisfying the
following three conditions.

(1) The pair (G, K1) is a minimal spherical pair.

(2) We have T'= Zz, 1y N K where Zy 1) is the center of Zg(T). In

particular, we have Zg i = Zg N K CT.

(3) There exists t € T such that (G, Kt) = (G, K7).
Let T(G,K)° = {T € T(G,K)| T = T°Zg k} where T° is the neutral
component of T which is a subtorus of K°.

For T € T(G, K), there exists a nonempty subset C(T, K) of the component
group T/T° satisfying the following two conditions:

e For v € C(T,K), (Gt, Kt) = (Gr, Kr) for almost all t € yT°.

e ForyeT/T° - C(T,K), (G, K;) # (Gp, Kr) for all t € vT°.

Definition 3.10. For T € T(G, K), let Tk = Uyccrx)yI° CT C K and
W(K,T) = Ng(T)/Zk(T) where Ng(T') is the normalizer of T in K. Let
Ty be the Zariski open subset of T consisting of those elements t € Tk
such that (G, K¢) = (G, K1).

Remark 3.11. For T € T(G,K)°, (Gt,K:) = (Gr,Kr) for almost all
teT and we have T =1T.
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Lemma 3.12. The support of the geometric multiplicity S(G, K) is equal
to the set Upcr(a,m)Tr//W (K, T).

Proof. From the definition it is clear that T} //W (K,T) belongs to the
support S(G, K) for all T € T(G, K). For the other direction, given t €
S(G,K), let T'= Zz,4) N K. Then it is easy to see that 7' € T(G, K) and
t € Ty //W(K,T). This proves the lemma. O

The lemma above gives us a natural measure on the set S(G, K). More
specifically, since Tk is a finite union of translations of the subtori T°, the
Haar measure on 7° induces a measure on T (we choose the Haar meausre
on T° so that the total volume is equal to 1) such that Tx — T} has measure
zero (because T} is a Zariski open subset of Tk). This gives us a measure
on T} and hence a measure on the support S(G, K).

Lemma 3.13. For T € T(G, K), we have dim(Kr) = @ + dim(7") and

dim(G) — dim(Gr) = §(G)
- +

2 2

Proof. By the definition of 7 (G, K), we know that (here By is a Borel
subgroup of Gr) dim(K7) is equal to
dim(Gr)—dim(Br)+dim(KrNZg,) = dim(Gr) —dim(Br) +dim(KNZg,.)
§(Gr)

2
For the second equation, by the first equation, we have

dim(K) — dim(Kr) +dim(7) = dim(K)

= dim(Gy) — dim(Br) + dim(T) = + dim(T).

dim(K)—dim(Kr)— dim(G) ;dim(GT) + 5(2G) +dim(7T) = dim(K)— 5(C2;T)
_ dim(G) —2dim(GT)+5(2G) _ dim(K)—dim(G) —2rank(GT)+5(2G) _ dim(K).
This proves the lemma. ([

Definition 3.14. For 0 € QC(G), 0 € C®(K)X and s € C (C(K)K is
the space of smooth K-invariant functions on K ), define

1
/S(GK) (G, KNG R) - | Zk(t) : KNGy
DEOV2AR) TV 20k (t)co(t)dt
where the constant ¢(Gy, K N Gy, R) is the number of connected components

of BiN (K NGy) (By is any Borel subgroup of Gy) defined in Section 5 of
[13] and A(t) = DY (t)D¥ ()2

Mgeom,G,K,s (97 HK) =

We also need to define the Lie algebra analogue of the geometric multi-
plicity. Let Sre(G, K) be the union of t for T € T (G, K)° where t is the
Lie algebra of 7°. The measure on 7°//W(K,T) induces a measure on
SLie(G, K).
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Definition 3.15. For 0 € QC.(g), 0x € C()X and s € C (C®®)K is
the space of smooth K-invariant functions on K ), define

m e(0,0K) = / !
geom,G,K,s,Lie\V, VK = 100 (C.K) C(Gx,K n Gx,R)

DE(X)VZAX) V205 (X)eg(X)dX

where the constant ¢(Gx, K N Gx,R) is the number of connected compo-
nents of Bx N (K N Gx) (Bx is any Borel subgroup of Gx ) and A(X) =
D¢ (X)DX(X)2.

Proposition 3.16. The integral defining Mgeom,c.k,s(0,0K) is absolutely
convergent when % > Re(s) > 0. Moreover, the limit

lim Mgeom,G,K,s (9’ QK)
s—0+

exists and it defines a continuous linear form on QC(G) x C=(K)X.

Remark 3.17. The topology on QC(G) was defined in Section 4.4 of [3].
The topology on C®(K)X is induced from the usual locally convex topology
on C*(K).

Proof. To simplify the notation, we will assume that the center Zg is trivial.
The proof is very similar to Proposition 11.2.1 of [3]. We first need a lemma.

Lemma 3.18. The integral fS(G K) A(t)*~1/2dt is absolutely convergent when
% > Re(s) > 0. Moreover, there exists d > 0 such that

lim sd/ A(t)*12dt = 0.
s—0+ S(G,K)

Proof. This is a technical lemma and we will postpone the proof to the
appendix. O

Using the above lemma together with the fact that the function D% (t)'/2¢y(t)
is locally bounded (Proposition 4.5.1 of [3]), we know that the integral defin-
ing Mgeom,c.k,s(0, 0K ) is absolutely convergent when % > Re(s) > 0. It
remains to show that the limit lim, g+ Mgeom,q,K,s(0, 0K ) exists (once we
have proved the limit exists, by the uniform boundedness principal principal
in Appendix A.1 of [3] we know that it defines a continuous linear form).
We follow the same argument as in Proposition 11.2.1 of [3].

For x € K, K NG, is a maximal compact subgroup of G,. For a quasi-
character 6, on G, a smooth function 0k , on Zx (x) NG, that is invariant
under conjugation, and s € C, let Mgeom, @, K,2,s(0z, 0K ) be the analogue
of Mgeom,c,Ki,s(0) for the model (G, K N G;). In particular, we know that
it is well defined when 1 > Re(s) > 0. Let Q, C G, be a G-good open
neighborhood of = (we refer the reader to Section 3.2 of [3] for the definition
of G-good open neighborhood) and set Q = QF. If Q, is sufficiently small, by

the definition of the set S(G, K'), we have S(G, K)NQ = S(Gz, KNG) Ny
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Combining with Proposition 4.5.1.1(iv) of [3], we have the following claim
which is an analogue of (11.2.11) of [3].

Claim 1. With the notation above, we have the equality
Mgeom,G,K,s (0, GK) = ‘ZK(x)/KmG:c|71’mgeom,G,K7x,S((nx,G)Sil/Qex,Qz ) 779167_1(250K’ZK (x)ﬂGz)

for all € QC.(Q) and s € C with § > Re(s) > 0. Here 6,0, is
the semisimple descent of § (which is a quasi-character on G) de-
fined in Section 3.2 of [3], n..c(y) = DY(y)D% (y)~* and 0, k (y) =
DX (y)D"=(y) 1.
Then by the same argument as in (11.2.12) of [3], the above claim implies
the following claim.

Claim 2. The limit lim, o+ Mgeom,G,K,s(0, 0K) exists when 1 ¢ Supp(#) or
1 ¢ Supp(Ox).
Let w C g be a G-excellent open neighborhood of 0 (we refer the reader to
Section 3.3 of [3] for the definition of G-excellent open neighborhood) and set
) = exp(w). We only need to show that the limit lim, o+ Mgeom,q,K,s(0, OK)
exists for all § € QC.().
In order to prove this, we study the Lie algebra analogue of mgeom,q,k,s(0, 0k ).
Like the group case, we know that the integral defining mgeom,c,x,s,Lie (0, 0K )
is absolutely convergent for % > Re(s) > 0. The following claim is a direct
consequence of the definition of mgeom,q,k,s(0, 0k ) and Mgeom,c. ks, Lie(0, 0K ).

Claim 3. For § € QC.(Q) and 0x € C(K)X with Supp(x) C 2, we have

Mgeom,G,K,s (97 HK) = mgeom,G,K,s,Lie((jG)871/20un (jK)1/27286K,w)

for all s € C with 3 > Re(s) > 0. Here 6, (resp. 0k,,) is the
descent of 6 (resp. Ok) to the Lie algebra (defined in Section 3.3
of [3]) whose support is contained in w (resp. ¢t Nw) and jg(X) =
D€ (exp(X))D%(X)~! (resp. jx(X) = D (exp(X))DX(X)™).
Combining Claim 2 and Claim 3, we know that the limit lim,_,o+ Mgeom,q,K.s,Lie (6, 0K )
exists for all § € QC.(w) and O € C®¥)EK with 0 ¢ Supp(d) or 0 ¢
Supp(0k ). Moreover, in order to prove the proposition, it is enough to show
that the limit lim,_,o+ Mgeom,q,K,s,Lie (0, 0K ) exists for all § € QC.(g) and
Ok € COO(E)K.
By Lemma [3.13] and Lemma [3.18] together with the same argument as in
the proof of (11.2.18) and (11.2.19) of [3], we have the following two claims.

Claim 4. There exists d > 0 such that for all § € QC.(g), Ox € C®(£)X and
A € R*, we have

lim 1)1
s—=0t “— ( )

mmgeom,G,K,s,Lie((M/\,dim(K))iev (Mx0)"0k) = 0.
=0 ’

Claim 5. The limit lim, g+ Mgeom,q,K,s,Lie(0, 0 ) exists for all § € QC.(g)
and O € C°(£)X with 0 ¢ Supp(#) or 0 ¢ Supp(Ok).
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We first consider the case when 6 is the constant function. In this case,
Claim 4 above becomes

Claim 6. There exists d > 0 such that for all § € QC.(g) and A € R*, we have

lim mgeom,G’,K,s,Lie((M)\,dim(K) - 1)d‘9’ GK) = 0.
s—0F

If G is not split, we have dim(K) > §(G)/2. By Claim 5, Claim 6 and
Proposition we know that the limit lim, g+ Mgeom,q, ks, Lie(0, Ok ) exists
for all 8 € QC.(g).

If G is split, by Claim 5, Claim 6 and Proposition we know that
the limit lim, o+ Mgeom G, K.s,Lic (0, 0K ) exists for all § € QC.(g) such that
cg,0 = 0 for all O € Nil,eq(g). Hence it is enough to show that the limit
exists when 0 € Span{j(0,-)| O € Nil,es(g)} in a neighborhood of 0.

For O1, O3 € Nil,ey(g), if 0 is equal to 5(O1,-)—5(O2, -) in a neighborhood
of 0, let g € Resc/rG be an element as in Lemma and we can write 6
as 01 — 6y where 0; is equal to j’((’)i, -) in a neighborhood of 0. We know that
0 ¢ Supp(96; — 03) where 901(X) = 01(g~*Xg). This implies that the limit

lim mgeom,G,K,s,Lie(ea HK) = lim mgeom,G,K,s,Lie(gl — 0, QK)
s—07t s—07+

= lim mgeam,G,K,s,Lie(QHI - 92, OK)
s—0t
exists. As a result, it is enough to show that the limit exists when 6 =
ZOeNz'lmg(g) 7(0,-) in a neighborhood of 0. But this follows from the fol-
lowing two facts

o0 =3 0 N“mg(g)}(O, -) is parabolically induced from a maximal
torus of a Borel subgroup of G (Section 3.4 of [3]);
e the intersection of a Borel subgroup of G with K is finite.

Now we consider the case when 0 is not the constant function. Since
we have already proved the limit exists when 0 is a constant function. We
may assume that 0x(0) = 0. Since § € QC.(g), we may also assume that
Ok is compactly supported.

Consider the space V = QC(g)®C>(£)X realized as functions on gyey X E.
Let V. C V be the subspace consisting of functions whose support is compact
modulo conjugation. For © € QC(g)®C>®(£)X, O(-, X) is a quasi-character
on g for all X € ¢. Hence we can still define the regular germ cg (Y, X) :=
co(.,.x)(Y). For Re(s) > 0, we can also define meom,c, ks, Lie(©) for © € V..
Claim 4 implies that

lim mgeom,G,K,s,Lie((M)\,dim(K) - 1)d@) =0

s—0t
for all © € V.. Here (M) gim(x))©(X,Y) = |A|~dmEoA1X, A71Y).
Claim 5 implies that the limit limg_, o+ Mgeom,@, K,s,Lie(O) exists when © € V,,
and 0 ¢ Supp(0©).

Let © =0 x O € V.. We need a lemma.
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Lemma 3.19. For A € R* with A # +1, we can write © as (M,\7dim(K) —
1)901 + O, for some ©1,05 € V, with 0 ¢ Supp(O2).

Proof. The proof is very similar to Proposition 4.6.1(i) of [3]. We may
assume that |[A\| > 1. It is enough to show that the sequence

(0.9} .
(i+d—1)! -
Y (M gim(x))'©
7!

i=0
converges in V. Let L be an invariant subset of g x £ that is compact
modulo conjugation. Let I(g@€) be the space of G x K-invariant differential
operators on g & €. We only need to show that

o0

i d—1)! i
Z (ZZ.!)QL,U((M)\,dim(K)) 0)

=0
converges for all v € I(g & ) where
qr,u00 = sup  DY(X)V29(u)O0(X,Y)|, O € V.
(X,Y)ELm(g'r'eg XE)

We may assume that v is homogeneous. It is enough to show that

(3.5) L.u((My gim(r))'©) < |A| ™
for all ¢ > 0.

If deg(u) > 0, by enlarging L we can assume that A\™'L C L. Then for
i > 1, we have

L (M) dim(x))'©)
— |)\|—z deg(u)—i(dim(K)—46(G)/2) sup DG(}\—zX)l/Q‘a(u)@()\—zX’ )\—zy)|
(X,Y)ELQ(Ereg Xf)
< |A[deel®) sup DE(X)210(w)O(X, V)| < [N gp ,(O).

(X,Y)EATILN(greg xt)
This proves (3.5)). If u = 1, since 6 (0) = 0, we have

DE(X)?O(X,Y) = O([Y))
for (X,Y) € greg x € close to 0. Hence we have

L1 (M) dim(rc))'©) = | A THAIm{E)=0(E)/2) sup DE(X)%10(X,Y)|
(X,Y)EATLN(Greg X )
< sup DYX)PO(X, V)| < A
(X,Y)EATILN(Greg Xt)
for all ¢ > 0. This finishes the proof of the lemma. ([

By the lemma above, we have

lim mgeom,G,K,s,Lie(eaeK) = lim mgeom,G,K,s,Lie(@)
s—0t s—0t

= l_igl+ Mgeom,G,K,s,Lie (M dim(K) — 1)d91) + Mgeom,G,K,s,Lie(O2)
S

= lim Mgeom,G,K,s,Lie (@2) .
s—0+
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In particular, we know that lim, ,o+ Mgeom,,K,s,Lie (0, 0k ) exists. This fin-
ishes the proof of the proposition. O

Definition 3.20. For 6 € QC(G) and 0k € C®(K)¥X, define

mgeom,G’,K(ea 9[{) = 1_1)I(I)1+ mgeom,G,K,s(ev QK)
s

For 6 € QC.(g) and Ok € C=(£), define

Mgeom,G,K,Lie (07 HK) = h%L mgeom,G,K,s,Lie(ga GK) .
5—

The next Corollary is a direct consequence of the proof of the proposition
above.

Corollary 3.21. (1) Let z € K, Q, € G, be a G-good open neighbor-
hood of x and Q = QS . If Q, is sufficiently small, we have
Mgeom,G,K (97 QK) = ‘ZK (x)/Kme’_1'mgeom,G,K,x((nx,G’)_l/Qea:,Qx ) nx,KgK‘KﬂGx)
foralld € QC.(Q). Here Mgeom,c K,z (-, ) is the analogue of Mgeom, Kk (- *)
for the model (G, K NG,).
(2) For 6 € QC.(g) and 0 € C(£)X, we have
mgeom,G,K,Lie(97 HK) = ’)\|_ dim(K)mgeom,G,K,Lie(9A> GK,A)-
(3) Let w C g be a G-excellent open neighborhood of 0 and let Q@ =
exp(w). Then

mgeom,G,K(9> QK) = mgeom,G,K,Lia((jG)_1/20wa]’;{/QGK,LU)
for all § € QC.(Q) and Ok € C®(K)K with Supp(fx) C QN K.
Definition 3.22. For f € Cscusp(G/Aé), define

Igeom(fa HK) = mgeom,G’,K(ef; HK)
If w is a finite length smooth representation of G, and 7 is a finitely dimen-
sional representation of K, define the geometric multiplicity
Mgeom (777 T) = Mgeom,G,K (07” 07'\/) = mgeom,G,K(eﬂ'a E)

where TV is the dual representation of T.
3.4. The trace formula and the multiplicity formula.

Theorem 3.23. Let O be a smooth function on K that is invariant under
conjugation. For f € CSCUSP(G/Aé), we have

I(f, 9[{) = Igeom(f7 HK)

If 0 = 0, where T is a finite dimensional representation of K, then
I(fa OK) = Ispec(fa T)-

Theorem 3.24. Let 7 be a finitely dimensional representation of K. The
multiplicity formula

m(m, T) = Mgeom (T, T)
holds for all smooth finite length representations m of G.
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Remark 3.25. It is enough to prove the multiplicity formula when © and T
are irreducible. Moreover, up to twist ™ by some character, we only need to

prove the multiplicity formula when the central character of 7 is trivial on
A4,
G

To end this subsection, we give some examples for the multiplicity for-
mula. First, when G = GL,(R) or when G is a complex reductive group,
the multiplicity formula was proved in our previous paper [I3]. We refer
the reader to Section 9 and 10 of [I3] for details. If G = Sp,(R), then
K ~ Uyp(R). The group Usp(R) contains the following 6 types of conju-
gacy classes (Gy is the neutral component of the centralizer of the conjugacy
class in G):

(1) £12, G ~ Spy(R);

(2) diag(1, 1), Gy ~ Sp(R) x Spy(R):
(3) diag(a,a) where a € C! with a # £1, Gy ~ Uao(R);

(4) diag(a,a) where a € C! with a # £1, Gy ~ Uy 1(R);

(5) diag(a,+1) where a € C! with a # +1, G; ~ Spy(R) x Ui (R);

(6) diag(a b)whereabE(Clvvlthab;é:tlanda;é b,b, Gy ~ U (R) x

Ur(R);

For the 6 types of conjugacy classes above, G} is split modulo the center for
all the cases except Type (3). As a result, the set S(G, K) consists of the
remaining 5 types of conjugacy classes. Type (1) (resp. Type (2)) conjugacy
class is discrete and the measure on it is just the discrete measure (i.e. each
point has measure 1), and the constant ¢(Gt, K NG, R) - | Zk (t) : KNGy is
equal to 4. The measure on Type (4) (resp. Type (5)) conjugacy classes is
induced from the Haar measure on C', and the constant ¢(Gy, K N Gy, R) -
|Zk(t) : K NGy is equal to 1 (resp. 2). Finally the measure on Type (6)
conjugacy classes is induced from the Haar measure on C' x C! and the
constant ¢(Gy, K NGy, R) - |Zk(t) : K NGy is equal to 1. As a result, the
multiplicity formula for Sp,(R) is

co, (12)07(I2) + co, (—12)07(—1I2)
4

m(m, T) = Mgeom (T, T) =

K(diag(1,—1))co. (diag(1, —1))0=(diag(1, — *
+D (d 9(17 1)) Gﬁ(d 5(17 1))07'(6[ 9(17 1))+% . DK(dz'ag(a,Ez))ceﬂ(diag(a,c_z))
* DX (diag(1, a))co. (diag(1, a))0(diag(1,a))

ot 2

-0z(diag(a,a))da +

K (diag(~1,0))cp, (diag(~1,))0x (diag(~1, )
2

1

+= / DX (diag(a,b))0x(diag(a, b))b5(diag(a, b))dadb.
2 Jorxer
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3.5. Trace formula implies multiplicity formula. In this subsection,
we will assume that the trace formula in Theorem holds, the goal is to
prove the multiplicity formula in Theorem The key ingredient of the
proof is to show that both the multiplicity and the geometric multiplicity
behave nicely under parabolic induction.

To be specific, let P = M N be a parabolic subgroup of G. Up to conju-
gating M we may assume that PN K C M. Let Kpy = PNK=MnNK.
It is a maximal compact subgroup of M. Let ¢ be a smooth finite length
representation of M and m = I§ (o). Let 7 be a finitely dimensional repre-
sentation of K and 7y = 7|x,,. We need to prove the following proposition.

Proposition 3.26. With the notation above, we have
m(m, ) = m(o, Tar), Mgeom (T, T) = Mgeom (0, Tar)-

Proof. The first identity m(m,7) = m(o, 7ar) follows from the Iwasawa de-
composition G = PK and the reciprocity law. Now we prove the second
identity mgeom (7, T) = Mgeom (0, Tar).

We have a natural map from ¢y 1 Mgs/conj to Ggs/conj. For tyr €
Mgs/conj, it is clear from the definition that

(3.6) tm € S(M,Ky) <= wuc(tu) € S(G,K).

Fortyr € S(M, Ky), let t = uyrq(tar) € S(G, K). We fix a representative
of the conjugacy class t;; and denote it by ty. Then tg is also a representative
of the conjugacy class t. We have

DE#)DFM (t5) ™1 = | det(1 — Ad(t))

[n/ne |
This implies that
(3.7) DX () D (#)~1/2 = DM (¢)) DM (t5,) /2.

We also need to show that
(3.8)
[ ZG(to) : Gy, |Zn(to) + My, |

‘ZK(to) : (KﬁGto)’ . C(GtO,KQGtO,R) - ‘ZKM(tO) : (KM tho)’ . C(MtoyKM ﬂGtO,R)'

Since K NGy, (resp. Ky N My,) a maximal compact subgroup of Gy, (resp.
M;,) and Zg (to) (resp. Zk,,(to)) is a maximal compact subgroup of Zg (o)
(resp. Zar(to)), we have

Za(to) : G| |Znm(to) : My
|ZK(t0) : (KﬂGtOM |ZK1W(tO) : (KM N Mt0)|
Hence it is enough to show that ¢(Gy,, K N Gy, R) = ¢(My,, Kar N My, R).
But this just follows from the definition of ¢(G, K, R) and the fact that M,

is a Levi subgroup of Gy,.
Then the identity mgeom (7, T) = Mgeom (0, Tar) follows from the definition

of the geometric multiplicities, (3.6)), (3.7)), (3.8), and Proposition O
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Now we prove the multiplicity formula. By induction, we will assume that
the multiplicity formula holds for all proper Levi subgroups of G. Combining
with the proposition above, we only need to prove the multiplicity formula
for elliptic representations. In particular, this proves the multiplicity formula
for all representations of G when G does not admit a maximal elliptic torus
( <= there is no elliptic representation of G).

Assume that G admit a maximal elliptic torus. The multiplicity formula
will be a direct consequence of the trace formula and the proposition above.
The argument is the same as the GGP case (Proposition 11.5.1 of [3]), we
will only give a sketch of the proof. First, as in Proposition 11.5.1(ii) of [3],
using the trace formula, the proposition above, and the assumption that the
multiplicity formula holds for all proper Levi subgroups, we know that for
all strongly cuspidal function f € Cyeysp(G /Aé)7 we have

(3.9) Z D(m)0;(m)(m(7, ") — Mgeom (7,7")) = 0.
T€Xo1(G/AB)

Then by Corollary 5.7.2(iv) of [3], for each m € X.;(G/AZ), there exists
fr € Cscusp(G/AS) such that for all 7’ € X (G/AZ), 04(') # 0 if and only
if # = /. Put fr in the equation ([3.9)), we have

D(m)0, (m)(m(7, ) = mgeom (7, 7)) = 0,

which implies that m(7, 7) = mgeom (7, 7). This proves the multiplicity
formula.

In the next few sections we will prove the trace formula. By the above
discussion, we only need to consider the case when G admit a maximal
elliptic torus. By induction, we will assume that the trace formula holds for
all groups whose dimension is less than G. Also to simplify the notation, we
will assume that the center of G is trivial for the rest of the paper.

4. THE SPECTRAL SIDE

In this section we will prove the spectral side of the trace formula. In
Section 4.1 we slightly reformulate the spectral expansion. In Section 4.2
we will discuss some explicit elements in the Hom space. Finally in Section
4.3 we will prove the spectral expansion.

4.1. A reformulation. Let G’ = G x K and we diagonally embeds K into
G'. For f" € Cseusp(G'), define

() = [ Fe ki to(r) = [ 1)

e ) = [, D0 (i

where m(7n’) = dim(Hompg (7’,1)). By choosing f' = f x 6, with f €
Cscusp(G) we know that in order to prove the spectral expansion, we only
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need to show that
Io(f') = Ior spec(f')
for all f’ € Cseusp(G').

4.2. Explicit intertwining operator.

Lemma 4.1. Let ' be an irreducible tempered representation of G' and
| € Hompg (7', 1) be a K-invariant linear form. Then there exists d > 0 and
a continuous semi-norm vy on w such that

(7' ()e)| < va(e)2 (x)ocr ()
foralle € @’ and x € G'.

Proof. Let Py, be a minimal parabolic subgroup of G’ (it is the product
of a minimal parabolic subgroup of G with K). We only need to prove the
inequalities for z € A™.

Let Xy,---,X, be a basis of p;;, and let

Apin =1 = (X§ + -+ X2) € U(Pmin)-
Let k be an integer greater than dim(P,,;,) + 1. By elliptic regularity, there
exists ©1 € C¥1(Ppin) and g € C°(Ppin) with ki = 2k — dim(Pn) — 1
such that
(1) (Ayin) + 7' (p2) = Ido
for all 7. Let ¢x be a smooth function on K such that [, ¢x(k)dk = 1.
Then we have
l(n'(a)e) = Un' (1) (A )7 (a)e) + U (02)7 (a)e)
= U(r (o)’ ()7 (a™ AT ina)e) + U’ (p2)7 (a)e)
= U (px * 1) ()7 (@™ AR ja)e) + U (0xc * 2)m (a)e).
It is clear that the map a € AT — o 'AF . a € U(g) has bounded image.
Moreover, we know that the functions px * @; (i = 1,2) belong to C*1(G").
Hence the lemma follows from the following fact which is (7.3.7) of [3].

e There exists k] > 1 such that for all ¢ € Cfl(G’ ), there exists a
continuous semi-norm v, on 7’ such that

17 (9)7 (9)e)] < vp(e)2 (g)
for all e € 7’ and g € G'.
U

Corollary 4.2. Forl € Homg(n',1),v € " and f € C(G’), the integral
@ (9)v)dg

is absolutely convergent and is equal to l(7'(f)v).

Proof. The proof is the same as (7.5.1) and (7.5.4) of [3], we will skip it
here. g
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Fix a G'-invariant scalar product (-,-) on 7. Define a sesquilinear form
By ' x 7' — C, Br(v,0) :/ (7' (k)v,v")dk.
K

The integral is convergent since K is compact. It factors through B, :
e X e — C. where 7 is the space of K-coinvariants in 7’. The next
lemma follows from the fact that K is compact.

Lemma 4.3. The sesquilinear form By : wh x wf. — C is non degenerate
and the map

ven = Bu(,v) € Homg(n', 1)
1S surjective

Remark 4.4. The above lemma is highly nontrivial for general strongly
tempered spherical pairs (although we expect it to be true), especially when
the spherical pair is not a Gelfand pair, i.e. when the multiplicity is greater
than 1.

We also define the linear form £,/ : End(7")>* — C to be (here End(7")>°
is the space of smooth vectors in End(7’) and we refer the reader to Section
2.2 of [3] for the topology on End(n’)>)

Lo (T) = / te(a (k)T
K
For e, e’ € 7/, by abusing of notion, we define

Loere) = Lo(Thpr) = /K (e, (K)e)dk

where T, . € End(m)* is defined to be T, ./(eg) = (eo,€')e. The lemma
above implies that
Lo #0 < m(r') #0.
Since L, is a continuous sesquilinear form on 7/, it defines a continuous
linear map
Ly =7~ e Lu(e,-)

where 7/~=°° denotes the topological conjugate-dual of 7’ endowed with the

K J—
strong topology. The operator L, has image in 7/~ = Homg (7/,1)
which is finite dimensional. For T" € End(7')*, it extends uniquely to a
continuous operator T : w/~°° — 7/. This gives two operators
TLy 7 =7, LyT : 7/= — /=0,
and we have
tr(TLy) = tr(LpoT) = Lo(T).
The next corollary is a direct consequence of Lemma[4.3]and it is an analogue
of Corollary 7.6.1 of [3].

Corollary 4.5. Let K C Xiemp(G') be a compact subset. Then there ex-
ists a section T € C(Xiemp(G'),E(G")) such that the restriction of LT to
Hompg (7,1) is the identity map for all m € K.
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Here we refer the reader to Section 2.6 of [3] for the definition of Xiepmp(G'),
C(Xemp(G'), E(G")) and C*°(Xiemp(G'), E(G")). The next lemma is an ana-
logue of Lemma 7.2.2 of [3].

Lemma 4.6. (1) The maps
T € Xyemp(G') = Ly € Hom(m, 7=°), T € Xyemp(G') — L € End(m) ™

are smooth in the sense of Lemma 7.2.2(1) of [3].

(2) Forall S,T € End(n')* such that the restriction of LT to Homg (7', 1)
is the identity map, we have SL € End(7')*> and % =
Lo (SLyT).

(3) ForS,T € C(Xemp(G'),E(G")), the section m +— Sz LT € End(m)>
belongs to C™°(Xiemp(G'), E(G")).

(4) Let f € C(G') with compactly supported Fourier transform m €
Xiemp(G') — 7(f). We have

/ F(k)dk: = / Ca(r(f)ulm)dr.
K Xtemp(G')

Here p(m)dm is the Plancherel measure defined in Section 2.6 of [3].

(5) Let f as in part (iv) and let f' € C(G') such that for all m belongs
to the support of f, the restriction of Lym(f') to Homg (7, 1) is the
identity map. Then we have

/ EW(W(f))[’W(W(f/)),u(ﬂ‘)dﬂ‘: / / f(kgk‘/)f’(g)dgdk'dk
Xiemp(G') KJK JG!

m(m)

Proof. The proof of the first part is the same as Lemma 7.2.2(i) of [3]. For
the second part, the proof of SL,, € End(n")* follows from the same argu-
ment as in Lemma 7.2.2(ii) of [3]. As for the eqaution, we have L/ (SLT) =
tr(LSLuT). Since the images of L,/S and L,+T are contained in Homg (7', 1)
and the restriction of LT to Homg (7/,1) is the identity map, we have

‘CW’ (T)

m(n’)

EW/(SLTF/T) = tI‘(LTr/SLﬂIT) = tI‘(LﬂIS) = ﬁw/(S) = ﬁﬂ./(S) .

This proves the second part.
The proof of part (3)-(5) is almost the same as Lemma 7.2.2(iii)-(v) of
[3], there is only one difference.
e Compared with Lemma 7.2.2(v) of [3], the last part of the lemma
has an extra m(m) on the left hand side of the equation, this comes
from the extra m(m) on the second part of the lemma.

We will skip the details here. O

4.3. The proof of the spectral expansion. In this subsection we are
going to show that for all f € Cseusp(G’), we have

Ig/(f) = IG”,spec(f)'
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By Lemma 5.4.2 of [3] and Proposition both sides of the equation are
continuous on f € Cseysp(G’), hence it is enough to prove the equation
for all f € Cseusp(G’) whose Fourier transform m € Xjepp(G') — w(f) is
compactly supported. For the rest of this subsection we will fix a function
[ € Cscusp(G') whose Fourier transform is compactly supported.

For f" € C(G’), define

Kﬁf’(gl,QQ) = /;/ f(gl_lg.QQ)f/(g)dga 91,92 € le
K}J,(g,x) = /}{Kff,(g,kx)dk, g, v e,
K?c’f/(l‘,y) = /I<K}7f/(k:x,y)dk, T,y € G/,

Jaux(f; f/) = K]2c7f/(x,a:)dx.
K\G’

The next lemma is a direct consequence of Theorem 5.5.1(i)-(ii) of [3] (note
that K is compact).

Lemma 4.7. (1) Let « € {1,2,A}. For all d > 0, there exists d > 0
such that

’K}vf'(glng)‘ < EG (91)00/(91)_dEG J

(92)oc(92)"

1K 11(91, 92)| < 9 (91) 060 (91)" E (g92) 06 (92) ™%,
K po(w,2)] < 29 (2) 0 (@)~

for all g1, g0, 2 € G'.
(2) The triple integral defining Jouz(f, f')

/ / / K7 i (kya, kyw)dk dkyda
K\G'JK JK

s absolutely convergent.

Proposition 4.8. We have
Tows (1 f) = / D(x)0;(x) Lo (2 (7))
X(G)
Proof. We have
oz (f, f / / / Kff, (k1x, kox)dkidkodx
K\G’

:/K/X(G/)D(TF)G )0z (R(k dTrdk:—/ o / D(m gf (R(k‘)f/)dk‘dﬂ'
= [ D@8y L
X (@)
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where the first equality on the third line follows from Theorem 5.5.1(v) of
[3]. O

Now we are ready to prove the spectral expansion. Recall that we have
fixed a function f € Cseusp(G’) whose Fourier transform is compactly sup-
ported. Let K be the support of the Fourier transform of f. By Lemma [4.6]
we have

Ios(f,2) = /X oy EEE@T G )i

By Corollary there exists a function f’ € C(G’) such that the restriction
of Lym(f") to Homg (7, 1) is the identity map for all m € K. Fix such a f’.
We have

L (n(f) = m(n) =m(7), = € K.
This implies that

_ Lala@r(F)ra e | en
= [ e plm)dm = K3 (2, 2)

where the last equation follows from Lemma In particular, we have

o) = Jusel £ 1) = [, DT

= [ DB smm(Edn = Lo el 1)
X(G")
This finishes the proof of the spectral expansion.

5. THE DISTRIBUTION ON THE LIE ALGEBRA

In this section, we will study the analogue of the distribution on the Lie
algebra when G is split. Let G be a split real reductive group with trivial
center, K = GY be a maximal compact subgroup of G, £ be the Lie algebra
of K° and p = £ be the orthogonal complement of € in g (i.e. g =p D¢
is the Cartan decomposition). Let t C p be a maximal abelian subspace.
Since G is split, we know that t is the Lie algebra of a maximal split torus
T of G. Let B = TN be a Borel subgroup of G, B = TN be its opposite
and W(T') be the Weyl group. For f € Sscusp(g), define

Iie(f,g) = /E F(g™ kg)dk, Tpac(f) = /K rods

As in the group case, we know that the integral defining Ir;.(f) is absolutely
convergent. The goal of this section is to prove the following theorem.

Theorem 5.1. For all f € Sscusp(g), we have

1
ILie(f) = c(G,K,R) - |[W(T)|

where ¢(G, K,R) = |K NT| is the constant defined in Definition |3.14).

/DG(X)1/2éf(X)dX
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Since both side of the theorem are continuous on f, we only need to prove
the identity when the support of f is compact modulo conjugation. For the
rest of this section, we will assume that the support of f is compact modulo
conjugation.

The first step is to introduce a sequence of truncation functions (kyx)n>o
on K\G. Let (recall that T2 is the neutral component of 7" under the
analytic topology)

TH={teT? at)>1, Vaec A}, T~ ={teT? at) > 1, Va € A}

where A (resp. A) is the set of positive root with respect to B = TN (resp.
B = TN). We have the Iwasawa decomposition G = BK = BK and the
Cartan decomposition G = KTTK = KT~ K. We fix a sequence (ky)n>1
of smooth functions ky : G — [0, 1] satisfying the following three conditions.

e The function sy is bi-K-invariant.
e There exists C7 > C5 > 0 such that for all z € GG, we have

oa(g) < CoN = kn(g) =1, kn(g) # 0= 0a(g) < C1N.
e There exists C > 0 such that
!*HN( X2) im0l < C - | Xy
forallzt € G, X € gand N > 1.

It is clear that such functions exist. For N > 1, define

Inpae(f) = /K N 0o

We have ILie(f) = limNHoo IN,Lie(f)-
Lemma 5.2. For f € S(g), we have

o(G,K, Rl) W (D] /tDG(X)I/z /T\G knr(9)f(g X g)dgdY

where knT(9) = [7 kN (tg)dt.

InLie(f) =

Proof. By the Fourier inversion formula and Lemma [2.2] we have

ILie(f.9) /f lkgdk—/f X g)dX

1
DE(X)2f(g7 K Xkg)dX dk.
NEGHE |/ / Y 9
This implies that
1 .
Inze(f) = kv (9) / / DO(X)2f (g~ kX kg)dY dk
rmwwmw ™9 [, )

~ o(G,K, R /DG 1/2/ kn(9)f (9~ X g)dgdX
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1 / G 1/2/ pro—1
= DY (X knT(9)f(9” Xg)dgdX.
o kB iy J P @ X
This proves the lemma. ([

Lemma 5.3. There exists C > 0 and k > 0 such that
lknr(g)] < CN*
for all N >1 and g € G.

Proof. This is a direct consequence of the definition of kx and Ky 7. O

For [ > 0, let t<; be the set of X € t such that D(X) <, and let t5; be
its complement. We define

Ivi(f) = [ DE(x)V2 /T Ll X () (g™ Xg)dgay

t>1

where 1.1¢ v is the characteristic function of the set {g € Glog(g) < log N'}.

Lemma 5.4. The following statements hold.
(1) There exist k € N and ¢ > 0 such that | In Lie(f) |< eN® for all
N >1.
(2) There existb > 1 and ¢ > 0 such that | IN7Lie(f)—WIN’N4(f) |<

cN~ for all N > 1. In particular, we have

1
Trie(f) = Jim Inrie(f) = (G, K,R) - |[W(T)| s Iy ():

Proof. This is a direct consequence of the Lemma above and (1.2.3), (1.2.4)
of [3]. O

The next step is to change the truncation function xy. Let a = ar and a™
be the positive chamber with respect to the Borel subgroup B = T'N. For
Y € a*, we have the positive (G, T)-orthogonal set (Yp)pep(r) as defined
in Section 1.9 of [3]. For g € G, we can define the (G, T)-orthogonal set
Vg, Y) = V9, Y)p)pepr) with Y(g,Y)p = Yp — Hp(g). As in (10.10.1)
of [3], we have the following statement.

(1) There exists ¢ > 0 such that for all g € G and Y € a™ with

<c-i
og(g) < c- inf 3(Y),

the (G, T')-orthogonal set V(g,Y) = (V(g,Y)p) pep(r) is positive.
On the other hand, if Y = (Vp)pep(r) is a positive (G, T')-orthogonal

set and Q = LU € F(T), we will denote by og(-,y) (resp. chg()) the
characteristic function in a of the sum of aj with the convex hull of the
family (Vp)pcg (vesp. the characteristic function of ak + ag). By Lemma
1.8.4(3) of [6], we have

(5.1) Y R V)TC-Vo) =1, (€ ar.

QeF(T)



32 CHEN WAN

For Y € a™, define the function 9(Y,-) on T\G to be

B(Y, g) = /T o (Hr(t), Vg, Y))dt.
Set
_ G(yv\1/2 -1 ~ fro—1
Ty no(f) = / DO(x) / Lerog v (g7 X 9)3(Y, ) f (g~ X g)dgd X
T ™G
foral N>1andY € a™t.

Proposition 5.5. There exists ci,co > 0 such that

[Ty n-o(f) = Iy n-o(f)]| < N7
for all N > 1 and Y € a* that satisfy the following two inequalities

(5.2) c1log(N) < inf a(Y), sup a(Y) < caN.
acl a€A

Proof. Let wy be a compact subset of t such that Supp(f) N (t — wp)¥ =0
(recall that Supp( f) is compact modulo conjugation), and let Ay be the
subset of wy x T\G consisting of pairs (X,g) such that DY(X) > N~°
and og(g ' Xg) < logN. Let Q = LU € F(T) be a proper parabolic
subgroup and Q = LU be its opposite. Let By be the set of quadruple
(X,l,u,k) € t x T\L x U x K such that (X,luk) € Ay. Define

W olg) = /T o (tg)o R (Hr (1), (9, Y ))ro(Har(£) — Vg, Y)q)dt

forall N > 1, (X,g9) € Ay and Y € a™ that satisfy . The proposition
can be proved by the exact same argument as Proposition 10.10.1 of [3] once
we have proved the following lemma which is an analogue of (10.10.10) of
[3] for our case.

Lemma 5.6. For ¢y large enough, we have
|/<;§Q(luk) - I€§7Q(lk)| <Nt
for all N > 1, (X,l,u,k) € By and Y € a*t satisfying (5.2)).

Proof. By (1.2.2) of [3], we know that there exists ¢ > 0 such that for all
N > 1 and for all (X,l,u,k) € By, up to translating [ by an element of
T, we have og(l),0q(u) < clog(N). As a result, we only need to prove the
following statement.

(2) For ¢; large enough, we have

Ikn.o(ug) — kN olg)) < N7t

forall N > 1, u € U, g € G and Y € a' satisfying (5.2) and the
inequalities og(u), oq(g) < clog(N).
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We have
kN0 (ug)—kN.9)] < /T |k (tug)—kn (tg) | oF (Hr (1), V(9. Y ) 1q(Ha (1) ~Y(9,Y)g)dt.

By the definition of xy and condition on g,u, we know that there exists
C > 0 such that

kn(tug) — kn(tg) #0 = og(t) < CN.
Since the volume of the set {t € T| og(t) < CN} is bounded by C'N* for
some C’, k > 0, it is enough to prove the following statement.
(2) For ¢y large enough, the following holds: for all ¢ € T" satisfying

o (Hr (1), (9, Y))rq(Ha(t) = Y(9.Y)g) = 1,
we have
|k (tug) — ki (tg)] < N7
forall N > 1, wu € U, g € Gand Y € at with og(u),06(g) <
clog(N) and ¢;log(N) < infaen a(Y).

Fix a large constant C's > 0 and let 25 be the set of roots of T"in Ug. By
choosing the constant ¢; in large enough, we know that for all t € T
satisfying

o (Hr (1), Y(9,Y))7q(Hu(t) = V(9. Y)Q) = 1,
we have
< B, Hr(t) >> C3log(N), VB € 25

forall N>1, u€U, g€ GandY € a" with og(u),06(g9) < clog(N) and
c1log(N) < infhea a(Y'). This implies that for any Cs4 > 0, we can choose
c1 large enough such that the following holds: for all ¢ € T satisfying
o (Hr (1), V(9. Y )ro(Hu () = Y(9.Y)o) = 1,
we have
tut™" € exp(B(0, N~9)), B(0,N~%) = {X € g| |X||q < N~}

forall N>1, u€U,ge GandY € a" with og(u),06(g9) < clog(N) and
c1log(N) < infaea a(Y). Then (2) follows from the last condition of the
truncation function xy. This proves the lemma. O

O

Now Theorem follows from the proposition above and the exact same
argument as in Section 10.11 of [3]. We will skip the details here.

6. THE GEOMETRIC EXPANSION

In this section, we will prove the geometric expansion of the trace formula.
In Section 6.1, we will prove some reductions. In Section 6.2 we will prove
the geometric expansion for a special 0. In Section 6.3, we will prove the
geometric expansion for the general case.
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6.1. Some reductions. In this subsection we will prove some reductions for
the geometric expansion. By our inductional hypothesis, we know that the
multiplicity formula and trace formula hold for all the proper Levi subgroups
of G and for all the groups G; where 1 # t € G4,. By the spectral side of the
trace formula and the fact that the multiplicity formula holds for all induced
representations, we have the following proposition which is an analogue of
Proposition 11.5.1 of [3].

Proposition 6.1. For any 0k € C®(K)X, the distribution I1(f,0k) only
depends on the quasi-character 0y. Moreover, there exists a continuous lin-
ear form J(-,-) on QC(G) x C®(K)X such that

i J(@f,HK) =1I(f,0k) — Igeom(fa HK) Jor all f € Cscusp(G) and O €
C=(K)%;
o J(-,-) is supported on Gy x K.

Proof. The proof is exactly the same as Proposition 11.5.1 of [3]. By the
spectral expansion proved in the previous section and the fact that the
multiplicity formula holds for all induced representations, we can just define
J(0,0K) to be

J(0,0K) = Z D(m)D(1)0k (7)(m(7, T) — Mgeom (T, T))
TEXey(G),m€Xen (K)

. / DC (2)0(2)0x (2)dz
Ten(G)

where I (G) is the set of regular elliptic conjugacy classes of G and Ok (1) =
tr(7(0k)). It is clear that .J is supported on Gy x K. By (2.7.2), Proposition
4.8.1 and Corollary 5.7.2 of [3] we know that J is continuous. This proves
the proposition. O

Combining the proposition above with Corollary 5.7.2 of [3], we have the
following corollary.

Corollary 6.2. It is enough to prove the geometric expansion when f is
a Schwartz function and Supp(f) is contained in QS where Q, is a small
G-good open neighborhood of G, for some x € Gy;.

Proposition 6.3. The geometric expansion holds when 1 ¢ Supp(fy).

Proof. The proposition follows from the same semisimple descent argument
as in Section 11.6 of [3]. To be specific, we may assume that the test function
f is of the form as in the Corollary above with 1 # x € G¢y. By the
proposition above, we may also assume that f comes from a strongly cuspidal
function f, of G, supported on €2, under the map in Proposition 5.7.1 of
[3]. If = is not conjugated to an element of K, then by choosing 2, small
enough we have I(f,0k) = Ijeom(f,0k) = 0. It remains to consider the case
when z € K.
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By Proposition 5.7.1 of [3] and Corollary|3.21)(1), we know that (note that

12(@)/ K 0 Gul = 26(2)/Gul)
Igeom(f7 QK) - Igeom,x((nx,G)_1/2fx,Qma nx,KgK’KﬂGz)
where Igeom o is the analogue of Igeom, for the model (G, K NG;). Here we
have used the identity Igeom.z(fz: Or|knG.) = Igeom,z(* fz, Ok |Kna,) for all
z € Zg(x) and fy € Cseusp(G2) which is due to the facts that O is invariant
under K-conjugation and every element in Zg(x) can be written as z = 2129
with 21 € Zg(x), z2 € G, (note that ?f,(g) := f.(2"1gz)). Hence in order
to prove the proposition, it is enough to show that
I(f,0k) = L((02,6) " o0 M, kO | G

where I, is the analogue of I for the model (G, K N G,).
To prove this, by choosing €2, small, we have

1(f,0x) = /K . /K 91 (k)05 () dkdg

= |Zk(z)/ KNGy ™" / / / N (ke)* f (k) Ok (ki) dkodkdg
K\G J(KNGz)\K J KNG

~\ze@/knc [
K\G J (KNG:)\K J KNGy
nx,K(kx)nx,G(k’z)il/2 (kgf)z,ﬂz (kz)el((km)dkmdkdg

:\ZK(x)/KﬂGx\l/ / /
z\G (KﬂGz)\Gz KNGz

nx,K(kx)nw,G(kx)_1/2 (gf)x,ﬂz (gm_lkxgx)eK(kx)dkxdgzdg-
Here the equation on the second line follows from (3.2.5) of [3] and the
equation on the third line follows from the definition of the function f, o,
in Section 3.2 of [3].
Introduce a function a on Zg(z)\G as in Proposition 5.7.1 of [3]. Then
Proposition 5.7.1 of [3] implies that for all g € G \G, there exists z € Zg(x)
such that

/(K GG /K G Um,K(kx)nx,G(k:c)_l/z(gf)x,Qz(gglkmgx)el((kﬁdkmdga:
NGy z NGy

is equal to

() Ie((Me.c) V2% fos ek Ok | kG,) = () e (Me.) 2 fas e 1Ok | kG, )

where the last equation again follows from the fact that every element in
Za(x) can be written as z = 2129 with 21 € Zg(x) and 2z € G,. This
implies that

I(f,0r) = |ZK(x)/KmGw’_1'Im((nz,G)_1/2fx,Qx7nz,KeK‘KﬁGx)'/G \G a(g)dg

= Ix((nx,G)_1/2fx,Qza Ux,KGK’KmGz)-
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This finishes the proof of the proposition. U

6.2. A special case. Throughout this subsection, we will use f (resp. F)
to denote test function on the group (resp. Lie algebra). For f € Cseusp(G)
and O € C®(K)X (resp. F € Sseusp(g) and 0 € C®(£)K), we have
defined

I(f,x,GK):/Kf(xlkx)eK(k)dk, J(f,eK)z/K I(f,z,0x)dz,

\G

Igeom(fa OK) = mgeom,G,K(‘gﬁgK)a ILie(F’$>9K) = /F($_1Xx)9K<X)an
t

ILie(F7 HK) = / \ ILie(Fa IL‘,@K)d.’E, Igeom,Lie(Fa ‘9K) = mgeom,G,K,Lie(eFa HK)
K\G

For 0 € QC(G) (resp. 0 € QC.(g)), let

Igeom(9> QK) = mgeam,G,K(ga 9[{), Igeom,Lie (07 GK) = mgeom,G,K,Lie(97 GK)

If O is the identity function, we will omit 0 in the expression, e.g. we will
use I(f) to denote I(f,0x) when 0 = 1.

Let w C w C g be two convex G-excellent open neighborhoods of 0 and
let Q = exp(w), Q' = exp(w’). By choosing w’ small, we can find a function
k0 € C°(K)X such that

e Ok is supported on 2 N K;

e the restriction of the function j}(/z - (0K p)w to W' is the identity

function.

Lemma 6.4. For f € Sscusp(Q) and 0 € C®(K)X with Supp(fk) € Q,
we have

I(f, QK) = ILie(jgl/ZfUJu j}l(/Q’eK,w)a Igeom(fa HK) = ILie,geom(jal/wa’a j}l(/2'0K,w)‘

Proof. The second identity is a direct consequence of the Corollary For
the first equation, by (3.3.2) of [3], we have

I(f,x,eK):/Kf(a;1ka:)9K(k)dk:/ P2 (2 exp(X)2)0k o (X)dX

ne

= /E 3 (X056 (X) fule ™ X )0k (X)AX = T1ie (g fur 51 Ok o, ).
This proves the lemma. ([

Proposition 6.5. (1) There exists a continuous linear form Jr,e on
QC.(W') such that

Irie(F) = Jrie(0F)
Jor all F € Sseysp(w').
(2) We have Jp;(0) = Igeomeie(G) for all® € QC.(W') with 0 ¢ Supp(f).
(3) We have Jric(0y) = |A9™UE) T (0) for all @ € QC.(w') and X € R
with 0y € QC.(W').
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Proof. For the first part, by Proposition there exists a linear form J’ on
QC(G) such that J'(8f) = I(f,0k,0) for all f € Cscusp(G). Using the above
lemma, we just need to let Jr;.(6) = J’(j(l;/2 -0q) (6o € QC(92) was defined
in Section 3.3 of [3]). The second part follows from Proposition

For the third part, by Proposition 5.6.1 of [3], we only need to prove the
equation when 6 = 0 for some F' € Scysp(w’). Since 6y € QC.(w'), we may
choose F such that F)\ € Sseusp(w’) where F)\(X) = F(A™1X). We have
Inie(F) = Jpie(0) and Ip;e(Fy) = Jrie(6)). Then the equation follows from
the fact that Iz, (Fy) = |AY™E) I (F). O

Proposition 6.6. (1) If G is not split (<= dim(K) > 6(G)/2), then
JLie(e) = geomLie(e) fOT‘ all 0 € QCC(W/)'
(2) If G is split, there exists ¢ € C such that Jr;c(0) — Igeom,Lic(8) =
c-cp(0) for all 0 € QC. ().

Proof. If G is not split, by Lemma there exists 01,62 € QC.(w’) such
that 6 = (M) gim(x)—1)01+02 with 0 ¢ Supp(2). By the corollary above, we
have JLie(GQ) = geom,Lie(eg) and JLie((M/\,dim(K) - 1)91) =0. By Corollary
we have Ijeom, Lie (M dim(x) — 1)01) = 0. This proves the first part.

If G is split, by the same argument as in the non-split case we know that
that there exist constants co for O € Nilyc4(g) such that

JLie(e) - Igeom,Lie(H) = Z Co - 09,(’)(0)
OENilyeg(g)
for all # € QC.(w'). For any O1,02 € Nilyeg(g), let g € Resc/rG be an
element as in Lemma Since ¢"!Kg = K, the linear forms Jr;. and
Igeom,Lie are invariant under g-conjugation. This implies that co, = co,.
This proves the lemma. ([

Proposition 6.7. Assume that G is split.
(1) There ezists a continuous linear form Jr;,e on SQC(g) such that
Iie(F) = Jrie(0F)
for all F' € Sscusp(9)-

(2) We have Jric(0)) = |NT™FE) T (0) for all X € R* and § € SQC(g).
(3) We can extend the linear form Igeom,rie(0) on QCc(g) to SQC(g).
(4) We have Jpie(0) = Igeom,Lic(8) for all@ € SQC(g) with 0 ¢ Supp(8).
(5) There exists ¢ € C such that Jrie(0) — Igeom,Lie(0) = ¢ - ca(0) for all

0 € SQC(g).
Proof. For the first part, by Theorem [5.1] we just need to let
1 o
Trie(0) = [perorraix.
(G, K R) - [W(T)| Jy

This also proves the second part (note that dim(K) = 6(G)/2). The third
part follows from Proposition 4.6.1(ii) of [3]. For (4), by the same argument
as in Proposition 11.7.1(iv) of [3], we may assume that § € QC.(w). Then
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(4) has already been proved in the previous proposition. The last part
follows from the the first four parts of the proposition together with the
same argument as in the previous proposition. This finishes the proof of the
proposition. [l

Proposition 6.8. Assume that G is split. Then Jr;c(0) = Igeom,Lic(0) for
all 0 € SQC(g).

Proof. We follow the same argument as in Section 11.9 of [3]. Let 6y and
6 = 0y be the quasi-character defined in Section 11.9 of [3]. We have ¢g(0) #
0. In order to show ¢ = 0, it is enough to show that Jr.(0) = Igeom,Lic(8).
Since 6 is supported in t and t N S (G, K) = {0}, we have

= MCG(O) = (G K,Rl) WD) /tDG(X)l/wo(X)dX

where the second equation is just (11.9.4) of [3]. Combining with Theorem
we have Jrie(0) = Igeom,Lie(6). This finishes the proof of the proposition.
O

Igeom,Lie (9)

6.3. The proof of the geometric expansion. In this subsection we will
prove the geometric side of the trace formula. By the argument in the
previous two subsections, it is enough to prove the geometric expansion

ILie(F; GK) - geom,Lie(F; GK)
on the Lie algebra for F € C2,.,.,(g) and Ox € C>(£)X. We also know that

c,scusp
the geometric expansion holds when F' and 0 satisfy one of the following
three conditions
o 0¢& Supp(F);
e 0¢ Supp(0i):
[ 9[{ =1.

Let w C g be an G-excellent open neighborhood of 0 and let 2 = exp(w).

Proposition 6.9. (1) There exists a continuous linear form Jr, on
QC.(w) x C®(wN &)X such that

Itie(F,0K) = Jrie(OF, 0K)

for all F € Sscysp(w) and 0 € C(wnN £)K.

(2) We have Jric(8,0K) = Igeom,Lie(0, 0K) for all § € QC.(w) and O €
C>®(w N &)X with 0 ¢ Supp(f) or 0 ¢ Supp(Ox).

(3) We have JLie(H)\;HK,/\) = |)\‘dim(K)JLie(9,9K) fO?" all 0 € QCC(W),
O € C°(wNE)X and X € R* with 0 € QC.(w) and O € C=(wN
oK.

Proof. The proof is the same as Proposition [6.5, we will skip it here. O

By the homogeneous property of the linear form Jr;., we can extend it
to all € QC.(g) and Ox € C*(£)X. We get the following corollary.
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Corollary 6.10. (1) There exists a continuous linear form Jr;e on QC.(g) %
C>=(6)X such that

Itie(F,0K) = Jric(OF, 0K)

for all F' € Sseusp(g) and 0 € C° (€)X with Supp(F) being compact
modulo conjugation.

(2) We have Jrie(0,0K) = Igeom,Lic(6,0K) for all § € QC.(g) and O €
C>= (&)X with 0 ¢ Supp(d) or 0 ¢ Supp(fx).

(3) We have Jrie(0x,0x.) = |NT™E) J10(0,05) for all § € QC.(g),
O € C()K and X € R*.

Let V = QC(g)®C>(8)K realized as functions on gy x € and let V, be
the subspace of V' consisting of functions whose support is compact modulo
conjugation. We can extend the linear forms Jp; and Igeom,rie to Ve. By
the above corollary and Corollary we have

(1) J1ie(©) = Igeom,Lic(©) for all © € V. with 0 ¢ Supp(©);
(2) JLie(M dim(r)©) = JLie(©) and Igeom,Lie(M)\,d_im(K)@) = Igeom,Lie(©)
for all © € V, where My, gim(x)O(X, Y) = [N~ 4mE)o(A~1X, A71Y).

Our goal is to prove
JLie(ea QK) = Lgeom,Lie (07 QK)

for all § € QC.(0) and O € C>(€)X. Since we have already proved the case
when 0 = 1. We may assume that 05 (0) = 0 and it is compactly supported.
By Lemma we can write © = 0 x 0 € V. as (M) gim(x) — 1)O1 + O2
for some O1,05 € V, with 0 ¢ Supp(©2). By (1) and (2) above, we have

JLie(G) = JLie(®2) == Igeom,Lie(@Q) = Igeom,Lie(G))-

This finishes the proof of the geometric expansion.

APPENDIX A. THE PROOF OF LEMMA B.1§

Our goal is to prove the following lemma.

Lemma A.1. The integral fs( A(t)5=Y2dt is absolutely convergent when

G,K)
% > Re(s) > 0. Moreover, there exists d > 0 such that

lim sd/ A(t)*~2dt = 0.
S(G,K)

s—0t

By induction, we may assume that the lemma holds for all redutive groups
whose dimension is less than G. Since S(G, K) is compact, it is enough to
prove the absolute convergence and the inequality near an element x € K.
If x # 1, this follows from the inductional hypothesis (applied to the model
(Gz, K NGy)). Hence we only need to prove the case when x = 1. In other
words, we only need to prove the following statement.
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(1) For all T € T(G, K)°, the integral [,., A(t)*~1/2dt is absolutely con-
vergent when % > s > 0 and there exists d > 0 such that

lim s? [ A®t)*Y2dt = 0.
s—0F To
If T is not a maximal torus of K, then Gt is not abelian. On the other

hand, by the definition of 7 (G, K), we know that G is split modulo the
center. Let T” be a maximal split torus of G7 that is 0-stable, and let Ly
be the centralizer of 7" in G. Then we know that Ly is a proper 6-stable
Levi subgroup of G with 7' C L. Then (1) follows from the inductional
hypothesis (applied to the model (L, K N Ly)). Hence it remains to prove
the following statement.

(2) Let T be a maximal torus of K. Then the integral [, A(t)s~V2dt is

absolutely convergent when % > s > 0 and there exists d > 0 such
that
lim sd/ A(t)*Y2dt = 0.
s—07t T
If T is not a maximal torus of G ( <= G does not have any discrete
series), we can find a #-stable proper Levi subgroup L of G such that T C L.
Then (2) follows from the inductional hypothesis (applied to the model
(L, K N L)). From now on, assume that 7" is a maximal torus of G and let
n = dim(7T) = rank(G). We have dim(K) > %.
Let w be a small convex neighborhood of 0 in t and let w’ C w be a open
subset such that
e 0¢uw;
o w—{0} =U2)5 -
Here ' is the closure of w' and 4 - w’' = {5;X| X € w'}. For example,
we can let w’ to be any open subset contains w — % -w and is contained in

w— % -w. It is enough to show that

(3) the integral | A(X)*~12dX is absolutely convergent when 1>s5>
0 and there exists d > 0 such that
lim sd/ A(X)124X = 0.
s—07F w
By induction (applied to (Gx, GxNK) where X is any semisimple element
of w') we know that
(4) the integral [ , A(X )¥~1/2d X is absolutely convergent when 3>s>
0 and there exists d > 0 such that
lim sd/ A(X)*712dx = 0.
(A}/

s—0t

Since the function DY(X) (resp. DX (X)) is homogeneous of degree
dim(G) — n (resp. dim(K) — n), together with the inequality dim(K) >
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%, we know that A(#)°~1/2 is homogeneous of degree greater or equal

to —m 4+ 2ns for 0 < s < % This implies that

o.9] oo 1
/ A(X)12dX < Z/l AX)PTVX <Y / A(X)12dx
w i=0 " 37 i=0 w

:7121/ A(X)*12aX.

2
Then (3) follows from (4), the inequality above and the fact that
ns
lim s+ ——— = 0.
B T
This proves the lemma.
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