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Abstract. In this paper, we form a conjecture about the multiplicities of all the strongly
tempered spherical varieties without Type N root for tempered representations. This gen-
eralizes the epsilon dichotomy conjectures in [GGP] and [WZ].

1. Introduction

Let F be a local field of characteristic 0, G be a connected reductive group defined over
F and H be a closed connected subgroup of G. Assume that H is a spherical subgroup of
G (i.e. H admits an open orbit in the flag variety of G). We say the spherical pair (G,H)
is reductive if H is reductive.
We say that the spherical pair (G,H) is the Whittaker induction of a reductive spherical

pair (G0, H0) if there exists a parabolic subgroup P = MN of G and a generic character ξ of
N(F ) such thatM ≃ G0 andH0 is contained in the neutral component of the stabilizer of the
character ξ in M under the adjoint action. If this is the case, we say (G,H) is the Whittaker
induction of (G0, H0, ξ) (if H is already reductive, we can just let (G0, H0, ξ) = (G,H, 1)). In
this paper, we will restrict ourselves to the case when (G,H) is the Whittaker induction of
a reductive spherical pair (G0, H0, ξ). We can extend the character ξ to H(F ) by making it
trivial onH0(F ). For an irreducible smooth representation π of G(F ) whose central character
is trivial on ZG,H(F ) = ZG(F ) ∩H(F ), we define the multiplicity

m(π, ξ) = dim(HomH(F )(π, ξ)).

To simplify the notation we will use m(π) instead of m(π, ξ) to denote the multiplicity if
the choice of ξ is clear. We say that the representation is (H, ξ)-distinguished (or just H-
distinguished if the choice of ξ is clear) if the multiplicity is nonzero. One of the fundamental
problems in the Relative Langlands Program is to study the multiplicity m(π, ξ). In general,
one expects the multiplicity m(π, ξ) to be finite and to detect some functorial structures of
π. We refer the reader to [SV] for a detailed discussion of these types of problems.

Among all spherical pairs, there is a special category called strongly tempered spherical
pairs. More precisely, when H is reductive, we say the pair (G,H) is strongly tempered if all
the matrix coefficients of tempered representations of G(F ) are integrable on H(F )/ZG,H(F )
(here ZG is the center of G and ZG,H = ZG ∩ H). When H is not reductive and if the
model (G,H) is the Whittaker induction of a reductive spherical pair (G0, H0, ξ), then we
say that the pair (G,H) is strongly tempered if and only if (G0, H0) is strongly tempered.
According to the general conjecture of Sakellaridis and Venkatesh in Conjecture 16.5.1 of
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[SV], for a strongly tempered spherical pair (G,H), if we assume that the spherical varieties
X = G/H do not have a Type N spherical root (we refer the reader to Section 3.1 of
[SV] for the definition of spherical roots), then almost all the tempered local Vogan L-
packets of G(F ) should contain at least one (H, ξ)-distinguished representation (i.e. almost
all tempered local Vogan L-packets are (H, ξ)-distinguished). The key point is that in a
strongly tempered case, the L-group of the spherical variety X = G/H is the L-group
of G, and hence one expects that almost all tempered local Vogan L-packet should be
distinguished. Moreover, if the spherical variety only has one open Borel orbit over the local
field F , then the general conjecture of Sakellaridis and Venkatesh predicts that almost all
tempered local Vogan L-packets of G(F ) should contain exactly one (H, ξ)-distinguished
representation (this is usually called a strong multiplicity one on L-packets). In general, we
expect the multiplicity of each tempered local Vogan L-packet of G(F ) to be equal to the
number of open Borel orbits of X(F ).
The most famous examples of strongly tempered spherical pairs without Type N root

are the so-called Gan–Gross–Prasad models (SOn+2k+1 × SOn, SOn ⋉ N) and (Un+2k+1 ×
Un, Un ⋉ N). Here U is some unipotent subgroup. For these cases, the local conjecture
was formulated by Gan, Gross, and Prasad in Section 17 of [GGP]. In it, they not only
conjectured the property of strong multiplicity one on generic L-packets (i.e. each generic L-
packet contains a unique distinguished element and its multiplicity is equal to one), but they
also conjectured about the unique distinguished element in each L-packet. More precisely,
for each local L-packet Πϕ (ϕ : W ′

F → LG is a Langlands parameter), let Zϕ be the centralizer
of the parameter and Sϕ = Zϕ/Z

◦
ϕ be its component group. The local Langlands conjecture

states that there is a natural bijection between the L-packet and the set of irreducible
representations of Sϕ (denoted by Ŝϕ). In Section 17 of [GGP], they defined a quadratic
character of Sϕ using some local epsilon factor and conjectured that the unique distinguished
element in a generic L-packet is the one associated with this quadratic character. This is
usually called the epsilon dichotomy conjecture. In our previous paper [WZ], we formulated
the epsilon dichotomy conjecture for 10 strongly tempered spherical varieties and we proved
the conjecture in many cases including all the archimedean cases.

In this paper, we will make a general epsilon dichotomy conjecture for the Whittaker
induction of any strongly tempered spherical varieties without Type N root, and in Section
3 we will show that our conjecture recovers the conjectures in [GGP] and [WZ]. The most
important advantage of our conjecture is that, unlike the conjectures in [GGP] and [WZ], our
conjecture does not rely on specific knowledge of the component group Sϕ and the centralizer
Zϕ (in [GGP], the authors wrote down the component group Sϕ explicitly and then define the
character on it; in [WZ], we specifically write down elliptic elements in Zϕ and then define
the function on it explicitly). The reason we can do this is that based on all the existing
examples of strongly tempered spherical varieties, we find that the L-function associated
with strongly tempered spherical varieties should satisfy a property called anomaly free.
During our preparation of this paper, we were very happy to learn that in the work of Ben-
Zvi–Sakellaridis–Venkatesh [BSV], they also find the same property and it also serves as a
key ingredient in their proposed relative Langlands duality (the name “anomaly free” comes
from their paper). We refer the reader to Section 2 for more details. One of the key points
for anomaly free is that it allows us to take “square root” of the local epsilon factor (or the
global L-function in the setting of [BSV]).
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Another advantage of our conjecture is that it applies to a general strongly tempered case,
we do not even need to assume that the model has a unique open Borel orbit (in particular,
it may not have strongly multiplicity one over the L-packet). In Section 4, we will discuss
some examples with more than one open Borel orbit, and we will show that our conjecture
holds for these models.

Remark 1.1. In [Pras], Prasad gave a beautiful conjecture for the multiplicity of Galois
model (G,H) = (ResE/FH,H) where E/F is a quadratic extension. The Galois model
case and the strongly tempered case are the two extreme cases in terms of the behavior of
multiplicity. The Galois model case is purely related to functoriality, while the strongly
tempered case is purely related to the epsilon dichotomy. We believe for general spherical
variety without Type N root, the behavior of the multiplicity should lie in between these
two extreme cases. In other words, it should be a combination of functoriality and epsilon
dichotomy. An example would be the Guo-Jacquet model (GL2n(F ),GLn(E)) for which the
multiplicity is related to both the functoriality and certain epsilon factor. We are currently
trying to combine these two conjectures to make a conjecture of the multiplicity for general
spherical variety without Type N root.

The paper is organized as follows. In Section 2 we will discuss the endoscopic datum, the
local Langlands conjecture, and the anomaly free representation of L-groups. Then we will
state our conjecture. In Section 3 we will show that our conjecture recovers the conjectures
in [GGP] and [WZ]. In Section 4, we will prove our conjecture for some cases with more
than one open Borel orbit.

Acknowledgement: We thank Raphael Beuzart-Plessis, Tasho Kelatha, Yiannis Sakel-
laridis, Akshay Venkatesh, and Jun Yu for the helpful discussions. The work of the first
author is partially supported by the NSF grant DMS-2000192 and DMS-2103720. The work
of the second author is partially supported by AcRF Tier 1 grants A-0004274-00-00 and
A-0004279-00-00 of the National University of Singapore.

2. Representation of L-group

2.1. Extended endoscopic triple. Let G be a connected reductive group defined over F .
Following Definition 2 of [K], we say (G′, s, Lη) is an extended endoscopic triple of G if G′ is a

quasi-split connected reductive group define over F , s is a semisimple elment of Ĝ, and Lη is
an L-embedding from LG′ into LG such that the image of Lη commutes with s and it induces
an isomorphism between Ĝ′ and Ĝs (here Ĝs is the neutral component of the centralizer of

s in Ĝ).
In this paper, we will restrict ourselves to the case when each endoscopic datum E =

(G′,G ′, s, Lη) of G (we refer the reader to Definition 1 of [K] for the definition of endoscopic
datum) is also an extended endoscopic triple (this is equivalent to say that G ′ in the endo-
scopic datum is an L-group) so that we only need to consider extended endoscopic triple
instead of the more complicated endoscopic datum.

Remark 2.1. This assumption is true in many cases. For example, when G is a classical
group, or when the derived group Gder of G is simply connected.

2.2. The local Langlands conjecture. In this subsection, we recall the local Langlands
conjecture in Conjecture E of [K]. Let G be a quasi-split reductive group defined over F and
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let {Gα | α ∈ H1(F,G)} be the set of pure inner forms of G. Let Πirr,temp(Gα) be the set of
irreducible tempered representations of Gα(F ). The local Langlands conjecture states that⋃

α∈H1(F,G)

Πirr,temp(Gα)

is a disjoint union of finite sets (i.e. the local tempered Vogan L-packets)

∪ϕΠϕ

where ϕ runs over all the tempered L-parameters of G and

Πϕ =
⋃

α∈H1(F,G)

Πϕ(Gα)

consists of a finite number of tempered representations with Πϕ(Gα) ⊂ Πirr,temp(Gα) such
that the following conditions hold.

• There is a unique generic element in Πϕ(G) with respect to any Whittaker datum of
G.

• For the given Whittaker datum, there is a bijection between Ŝϕ, the set of irreducible
representations of the component group Sϕ = Zϕ/Z

◦
ϕ of the Langlands parameter ϕ

(Zϕ is the centralizer of Im(ϕ) in Ĝ), and Πϕ (denoted by π ↔ χπ) satisfies the
following conditions.

– The trivial character of Sϕ corresponds to the unique generic element of Πϕ(G)
with respect to the given Whittaker datum.

– For α ∈ H1(F,G), the distribution character

θΠϕ(Gα) =
∑

π∈Πϕ(Gα)

dim(χπ)θπ

is stable. Moreover, ι(Gα)θΠϕ(Gα) is the transfer of θΠϕ(G) where ι(Gα) is the
Kottwitz sign.

– For any α ∈ H1(F,G) and π ∈ Πϕ(Gα), the restriction of the central character

of χπ to Z(Ĝ)ΓF is equal to χα. Here χα is the character of Z(Ĝ)ΓF associated
to α via the Kottwitz isomorphism. Note that the representation χπ of the
component group can be viewed as a representation of the centralizer Zϕ of the

image of ϕ, the group Z(Ĝ)ΓF belongs to the center of Zϕ and hence it makes

sense to talk about the restriction of the central character of χπ to Z(Ĝ)ΓF .
– For s ∈ Sϕ and for an extended endoscopic triple (G′, s′, Lη) of G such that
s′ ∈ sZ◦

ϕ and ϕ factors through Lη, let Πϕ,s(G
′) be the corresponding L-packet

of G′ and let θΠϕ,s(G′) be the distribution character of that packet (which is a
stable character on G′(F )). Then for α ∈ H1(F,G), the character

θΠϕ,α,s =
∑

π∈Πϕ(Gα)

tr(χπ(s))θπ

is the endoscopic transfer of ι(Gα)θΠϕ,s(G′).
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2.3. Anomaly free representation of L-groups. Given a symplectic representation ρX :
LG → GL(V ) of LG, for an extended endoscopic triple (G′, s, Lη), let Vs,− be the −1-
eigenspace of ρX(s). Then the extended endoscopic triple induces a symplectic representation
of LG′ on Vs,− which will be denoted by ρX,s,Lη,−.

Definition 2.2. (see also Definition 5.1.2 and Proposition 5.1.5 of [BSV]) Assume that
G is quasi-split. Let T ⊂ G be the maximal quasi-split torus. We say that a symplectic
representation ρX : LG → GL(V ) of LG is anomaly free if it satisfies the following two
conditions.

• The restriction of the representation (ρX , V ) to LT can be decomposed into a direct
sum of two representations that are dual to each other, i.e.

(ρX |LT , V ) ≃ (ρ,W )⊕ (ρ∨,W ).

• There exists a character χ of LT and a character η of LG′ such that det(ρ) = χ2 ·η|LT .

Remark 2.3. (1) If G is split ( ⇐⇒ T is split), the first condition in the definition is
always true.

(2) The second condition in the definition does not depend on the decomposition ρX =
ρ⊕ ρ∨ in the first condition.

(3) If ρX = ρ0 ⊕ ρ∨0 where ρ0 is a representation of LG, then it is anomaly free.
(4) If ρX = ρ1 ⊕ ρ2 with ρi being a representation of LG that is anomaly free, then ρX is

anomaly free.

Definition 2.4. We say the symplectic representation ρX of LG is anomaly free under en-
doscopy if for every extended endoscopic triple (G′, s, Lη) of G, the symplectic representation
ρX,s,Lη,− of LG′ is anomaly free.

Remark 2.5. If G is split adjoint, all its endoscopic groups are split. Then ρX is anomaly
free under endoscopy if for any s ∈ Ĝss, the representation of Ĝs on Vs,− is anomaly free.

2.4. Multiplicity for strongly tempered spherical varieties. Let (G,H) be a strongly
tempered spherical pair that is the Whittaker induction of (G0, H0, ξ). We assume that G
has a quasi-split pure inner form and we let Gqs be the quasi-split pure inner form of G. We
also assume that (ResE/FG0, ResE/FH0) is strongly tempered for any finite field extension
E of F 1.

The L-group of the spherical variety X = H\G should be LGX = LG/ZG,H
2. According to

the work of Sakallaridis and Wang ([Sa], [SW]), there is a representation ρX : LGX → GL(V )
of LGX associated to (G,H, ξ) so that the square of the global period integral associated to
X should be related to the central value of the automorphic L-function associated to ρX .
To continue our discussion, we assume the following conjecture (see a similar assumption in
Section 5 of [BSV]).

Conjecture 2.6. The representation ρX is symplectic and anomaly free under endoscopy.

1this is to avoid those models that are only strongly tempered because G0 is not split. For example, if G0

is compact (say isomorphic to SL1(D) for some division algebra D over F ), then even the model (G0, G0) is
strongly tempered but it is not strongly tempered after a suitable finite field extension

2this is not true if we do not assume (ResE/FG0, ResE/FH0) is strongly tempered for any finite field

extension E of F
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Let ϕ′ : W ′
F → LGX be a tempered Langlands parameter. We are going to define a

function ωϕ′,ρX on Zϕ′ . For s ∈ Zϕ′ , there exists an extended endoscopic triple (G′, s, Lη) of
G (not necessarily unique) such that ϕ′ factors through Lη (i.e. there exists ϕ0 : W

′
F → LG′

such that ϕ′ = Lη ◦ ϕ0). Let T ′ be a maximal quasi-split torus of G′. Since ρX is anomaly
free under endoscopy, the symplectic representation ρX,s,Lη,− of LG′ is anomaly free. Hence
we can decompose the representation ρX,s,Lη,−|LT ′ as ρ ⊕ ρ∨ and there exists a character χ
(resp. η) of LT ′ (resp. LG′) such that

det(ρ) = χ2 · η|LT .
We define

ωϕ′,ρX (s) = η ◦ ϕ0(−1)ϵ(
1

2
, ρX,s,Lη,− ◦ ϕ0) ∈ {±1}.

It is clear that this definition is independent of the choice of the decomposition ρX,s,Lη,−|LT ′ =
ρ⊕ρ∨ and det(ρ) = χ2η|LT . However, it still depends on the choice of the extended endoscopic
triple (G′, s, Lη) and the lifting ϕ0. To continue our discussion, we assume the following
conjecture.

Conjecture 2.7. The function ωϕ′,ρX is well defined (i.e. it is independent of the choice of
the extended endoscopic triple and the lifting), it induces a function of Sϕ′ (i.e. it is constant
on each connected component of Zϕ′), and it is a character of Sϕ′.

Let ϕ : W ′
F → LG be a tempered Langlands parameter of G(F ). We would like to define

a set of irreducible representations of the component group Sϕ. Let I ′ be the set of liftings
of ϕ to LGX . For each lifting ϕ′ : W ′

F → LGX of ϕ, the above discussion gives us a quadratic
character ωϕ′,ρX of Sϕ′ and we also have a map i from Sϕ′ to Sϕ

3. We use i(Sϕ′) to denote
the image of the map i. And we let I be the subset of I ′ containing those ϕ′ such that the
character ωϕ′,ρX is trivial on ker(i).

Definition 2.8. Let χϕ′,ρX ,i (1 ≤ i ≤ |Sϕ/i(Sϕ′)|) be the irreducible components of Ind
Sϕ

i(Sϕ′ )
(ωϕ′,ρX ),

i.e. Ind
Sϕ

i(Sϕ′ )
(ωϕ′,ρX ) = ⊕iχϕ′,ρX ,i. We define

I(ϕ, ρX) = {χϕ′,ρX ,i| 1 ≤ i ≤ |Sϕ/i(Sϕ′)|, ϕ′ ∈ I}.
This is a multi-set, some irreducible representations may appear more than once.

Now we can formulate our conjecture for the multiplicity. We assume that the map
H1(F,H) → H1(F,G) is injective 4 (i.e. G/H(F ) = G(F )/H(F )). Let Gqs be the quasi-split
pure inner form of G. The Whittaker datum of Gqs(F ) is a ker(H1(F,ZG) → H1(F,G))-
torsor.

Conjecture 2.9. Let π be an irreducible tempered representation of G(F ) whose central
character is trivial on ZG,H(F ), and let ϕ be the Langlands parameter of π. There exists a
choice of Whittaker datum of Gqs (only depends on (G,H, ξ), in particular, independent of π)
such that under this choice of Whittaker datum, the multiplicity m(π) is equal to the number
of irreducible representations in I(ϕ, ρX) that is equal to ωπ. Here ωπ is the irreducible

3This map is not necessarily injective/surjective
4If we do not make this conjecture, then our conjecture would be for the multiplicity of G/H(F ), instead

of G(F )/H(F ). We refer the reader to Section 4 for an example of this kind.
6



representation of Sϕ associated to π under the local Langlands correspondence (with respect
to the choice of Whittaker datum).

Moreover, the choice of the Whittaker datum is not necessarily unique. All the possible
choices form a Im(ker(H1(F,ZG,H) → H1(F,H)) → ker(H1(F,ZG) → H1(F,G)))-torsor.

Remark 2.10. The above conjecture is similar to the epsilon dichotomy conjecture for the
Gan-Gross-Prasad models in [GGP] and for 10 strongly tempered models in our previous
paper [WZ]. But there are two important improvements (both in the definition of ωϕ′,ρX ).
First, in [WZ], when we define ωϕ′,ρX , we only consider s ∈ Zϕ that belongs to an elliptic
extended endoscopic triple (this is true for the models in [WZ] but is not true for the general
case). In our definition in this paper, we do not require the elliptic condition.

Secondly, in our definition in [WZ], we explicitly write down s and define the term η ◦
ϕ0(−1) in the definition of ωϕ′,ρX by an explicit formula. In [GGP], they explicitly write
down a representative for each element of Sϕ and then define the function ωϕ′,ρX by an
explicit formula. In this paper, we define the term η ◦ ϕ0(−1) in a conceptual way using
the anomaly free property. This is a very important improvement because for general groups
(e.g. E7, E8), it is very hard (at least for us) to explicitly write down the component group
Sϕ and representative of elements in Sϕ for the general Langlands parameter.

Another important point in Conjecture 2.9 is that we can consider the case when there
is more than one open Borel orbit (i.e. the multiplicity for the L-packet is not necessarily
one). This is the first time such a conjecture has been proposed (other than in some lower-
rank cases). The key is to use the set of liftings and to consider the induced representation

Ind
Sϕ

i(Sϕ′ )
(ωϕ′,ρX ).

2.5. How to prove Conjecture 2.9 and some open questions. In this subsection, we
discuss some ideas about proving Conjecture 2.9 and some open questions. The first step
is to prove a multiplicity formula m(π) = mgeom(π) for all tempered representations. Here
mgeom(π) is defined in [Wan] and is called the geometric multiplicity. Such a multiplicity
formula has been proved for many strongly tempered spherical varieties such as the Gan-
Gross-Prasad models and the models in [WZ]. Moreover, for each given model, it seems that
the current trace formula method (invented by Waldspurger in his proof of the orthogonal
Gan-Gross-Prasad conjecture [Wal1], [Wal2]) can be used to prove the multiplicity formula.
But it is still not clear at this moment how to write down the proof for the general case
without using any feature pertaining to the specific model.

After proving the multiplicity formula, one can study the behavior of the geometric mul-
tiplicity under endoscopic. Together with some inductional hypothesis (i.e. we assume the
epsilon dichotomy conjecture holds for some models related to the endoscopic group of G),
we can reduce the proof of Conjecture 2.9 to the computation of the sum of the multiplicity
over the L-packet. This idea was invented by Waldspurger in his proof of the orthogonal
Gan-Gross-Prasad conjecture [Wal]. As in the proof of the multiplicity formula, it seems
that Waldspurger’s method can be used for any given model, but it is not clear how to write
it for a general case. In particular, if G′ is an endoscopic group of G, it is not clear in general
which models of G′ should be related to (G,H). For a specific model, we know the model
associated to G′ by direct computation, but we do not have a general theory to explain this
(i.e. we need a relative endoscopic theory for strongly tempered spherical varieties).
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The last step, which is also the most difficult step, is to study the multiplicity of the
L-packet. The goal is to relate it to the epsilon factor (under the language of [WZ], we call
this the weak epsilon dichotomy conjecture, or just the weak conjecture). For this step, we
do not have a systematic way to solve it at this moment. For the Gan-Gross-Prasad model,
this was done by relating the multiplicity of the L-packet to the twisted multiplicity of the
Gan-Gross-Prasad model of the general linear group. But this method does not work if the
Langlands functoriality ρX : LG → GL(V ) is not of twisted endoscopic type (in particular it
does not apply to any of the cases in [WZ]). For all the models in [WZ] except the model
(GSp6 × GSp4, G(Sp4 × Sp2)), in our recent paper [WZ2], we proposed a method to prove
the weak conjecture using the “dichotomy” behavior of certain degenerate principal series of
GSp6. The reason this method works is due to the fact that for all the models in [WZ] except
the model (GSp6 ×GSp4, G(Sp4 × Sp2)), the epsilon factor can be defined using some local
Rankin-Selberg integral involving the degenerate principal series of GSp6 (in particular this
method cannot be used to prove the weak conjecture of the Gan-Gross-Prasad model) 5. It is
not clear at this moment how to prove the weak conjecture for the general case (although for
all the strongly tempered models we know except the model (GSp6 ×GSp4, G(Sp4 × Sp2)),
one of the two methods discussed here can be used to prove the weak conjecture) 6.

Another open question is regarding the case when G/H(F ) ̸= G(F )/H(F ). In this case,
Conjecture 2.9 studies the multiplicity of G/H(F ), not the multiplicity of G(F )/H(F ). This
is compatible with the philosophy of Sakellaridis-Venkatesh in [SV], but it would be nice to
have a conjecture for the multiplicity of G(F )/H(F ).

The last open question we will discuss here is about the choice of Whittaker datum in Con-
jecture 2.9. In Conjecture 2.9, we were not able to specify the choice of Whittaker datum, we
only conjectured that all the possible choices form an Im(ker(H1(F,ZG,H) → H1(F,H)) →
ker(H1(F,ZG) → H1(F,G)))-torsor. Among all the known cases, the Whittaker datum is
unique for all the models in [WZ] so this is not an issue; for the Gan-Gross-Prasad model,
the Whittaker datum is not unique, and in Section 12 of [GGP] they gave a specific choice
of the Whittaker model. But at this moment we do not know how to generalize it to general
strongly tempered spherical varieties.

2.6. Why do we need anomaly free? In this subsection, we will explain why we need
the condition of anomaly free from the point of view of our paper and the work of Ben-Zvi–
Sakellaridis–Venkatesh [BSV].

From our point of view, the anomaly free condition is used to define the term η ◦ ϕ0(−1)
in the character

ωϕ′,ρX (s) = η ◦ ϕ0(−1)ϵ(
1

2
, ρX,s,Lη,− ◦ ϕ0) ∈ {±1}.

In all the previous epsilon dichotomy conjectures ([GGP], [WZ]), this term was defined
by an explicit computation. It was given so that for most unramified parameter ϕ0, the
value of ωϕ′,ρX (s) should be equal to 1 (this is because for most unramified parameters the
component group is trivial and hence we need the character to also be trivial). With the
assumption of anomaly free, we know that for most unramified parameter ϕ0, the epsilon

5The reason we exclude the model (GSp6 × GSp4, G(Sp4 × Sp2)) is that at this moment there is no
Rankin-Selberg integral defining the epsilon factor associated to this model.

6an interesting point is that it seems these two methods are disjoint, we do not know any example where
both methods can be used to prove the epsilon dichotomy conjecture.
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factor ϵ(1
2
, ρX,s,Lη,− ◦ ϕ0) is equal to η ◦ ϕ0(−1) and hence we can define the character ωϕ′,ρX

in this way.
From the point of view of [BSV], one of the goals in [BSV] is to equip each Hamiltonian G-

space with the automorphic quantization, without passing the metaplectic cover of G. They
introduce the notion of “anomaly-free” to Hamiltonian G-spaces in [BSV, Definition 5.1.2]
and conjecture such symplectic varieties admit an automorphic and spectral quantization.
When M is a symplectic vector space, Definition 2.2 is equivalent to their definition (see
[BSV, Proposition 5.1.5]). Moreover, Examples 5.1.7 and 5.1.9 in [BSV] give more hyperspe-
cial vector spaces examples and elaborate more detailed connections with our table in [WZ]
and our example in Remark 2.3.

3. Know examples with multiplicity one

In this section, we will show that our conjecture recovers the epsilon dichotomy conjecture
in [GGP] for the Gan–Gross–Prasad model and the epsilon dichotomy conjecture in [WZ]
for 10 strongly tempered models.

3.1. The Whittaker model. Let G be a quasi-split reductive group defined over F , N be
a maximal unipotent subgroup of G, and ξ be a generic character of N(F ). In this case
LGX = LG and the representation ρX is zero-dimensional.

In this case, it is clear that Conjecture 2.6 and 2.7 are satisfied. Moreover, the set I(ϕ, ρX)
contains a unique element which is the trivial character of Sϕ. Then Conjecture 2.9 follows
from the local Langlands conjecture (in this case, the choice of Whittaker datum is unique
and should be the one associated to ξ).

3.2. The Gan-Gross-Prasad model. In this subsection, we will show that for the Gan–
Gross–Prasad models, Conjecture 2.9 is the same as the epsilon dichotomy conjecture in
[GGP]. We will only consider the orthogonal group case (G,H) = (SOa+2b+1×SOa, SOa⋉N),
the unitary group case follows from a similar argument. In this case, LGX = LG = Sp2m(C)×
SO2n(C) or LG = Sp2m(C) × O2n(C) where {2m + 1, 2n} = {a + 2b + 1, a}. And the
representation ρX is the 4mn-dimensional tensor product representation of LGX . Moreover,
ZG,H is trivial and the choice of Whittaker datum is unique (defined in Section 12 of [GGP]).

Let ϕ : W ′
F → LG be a tempered L-parameter. Let M (resp. N) be the self-dual

representation of W ′
F by composing ϕ with the standard representation of Sp2m(C) (resp.

O2n(C) or SO2n(C)). As in Section 4 of [GGP], we can decompose M and N as

M =⊕a1
i=1 m1iM1i +⊕a2

i=12m2iM2i +⊕a3
i=1m3i(M3i ⊕M∨

3i)

N =⊕b1
j=1 n1jN1j +⊕b2

j=12n2jN2j +⊕b3
j=1n3j(N3j ⊕N∨

3j),

where M1i, N2j are of symplectic type, M2i, N1j are of orthogonal type, and M3i, N3j are not
self-dual. Then Zϕ and Sϕ are given by

Zϕ =Πa1
i=1O(m1i,C)× Πa2

i=1Sp(2m2i,C)× Πa3
i=1GL(m3i,C)

× Πb1
j=1O(n1j,C)× Πb2

j=1Sp(2n2j,C)× Πb3
j=1GL(n3j,C)

Sϕ =(Z/2Z)a1 × (Z/2Z)b1 .

We just need to show that the function ωϕ,ρX defined in the previous section is the same as
the character χN × χM defined in Section 6 of [GGP].
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We first recall the definition of χN × χM . For aM ∈ (Z/2Z)a1 , let MaM = ⊕iM1i where i
runs over all the components of aM with −1 coordinate. Similarly, we can also define NaN

for aN ∈ (Z/2Z)b1 . In Section 6 of [GGP], they define

χN(aM)χM(aN) =ϵ(MaM ⊗N)ϵ(M ⊗NaN ) det(MaM )(−1)dim(N)/2

× det(N)(−1)dim(MaM )/2 det(NaN )(−1)dim(M)/2 det(M)(−1)dim(NaN )/2.

Here to simplify the notation, for a symplectic representation V ofW ′
F , we use ϵ(V ) to denote

ϵ(1
2
, V ).
Next, we show that ωϕ,ρX coincides with χN × χM . Let

s = (g1i, g2i, g3i, h1j, h2j, h3j)

be an element in Zϕ with

g1i ∈ O(m1i,C), g2i ∈ Sp(2m2i,C), g3i ∈ GL(m3i,C),
h1j ∈ O(n1j,C), h2j ∈ Sp(2n2j,C), h3j ∈ GL(n3j,C).

Let aM×aN be the corresponding element in Sϕ. We let I1 (resp. J1) be the set of 1 ≤ i ≤ a1
(resp. 1 ≤ j ≤ b1) such that g1i ∈ O(m1i,C)−SO(m1i,C) (resp. h1i ∈ O(n1j,C)−SO(n1j,C))
and let I2 (resp. J2) be the complement of I1 (resp. J1) in {1, 2, · · · , a1} (resp. {1, 2, · · · , b1}).
We let I1,odd (resp. I1,even) be the set of i ∈ I1 such that m1i is odd (resp. even). Similarly,
we can define I2,odd, I2,even, J1,odd.J1,even, J2,odd, J2,even. By Proposition 5.1 of [GGP], we have

χN × χM(s) =Πi∈I1Π1≤j≤b1ϵ(M1i ⊗N1j)
n1j det(N1j)

n1j ·dim(M1j)

2

× Πj∈J1Π1≤i≤a1ϵ(M1i ⊗N1j)
m1i det(N1j)

m1i·dim(M1j)

2

=Π(i,j)∈I1×J2,odd∪I2,odd×J1∪I1,even×J1,odd∪I1,odd×J1,evenϵ(M1i ⊗N1j) det(N1j)
dim(M1j)

2 .

Next, we study the −1-eigenspace Vs,− of ρX(s). The eigenspace Vs,− is a direct sum of
−1-eigenspace associated to gki × hlj with 1 ≤ k, l ≤ 3. We will study them separately.

We first study the −1-eigenspace associated to g1i×h2j. By using the tensor representation
we can view g1i × h2j as an element in GL(m1in2j) and we let 2k be the dimension of the
−1-eigenspace of this matrix (it is easy to see that this dimension is an even number). Then
it is easy to see that the −1-eigenspace associated to g1i × h2j is 2k-copy of M1i ⊗ N2j.
This representation is obviously anomaly free and we can choose the character η in the
definition of anomaly free to be trivial for this representation. Moreover, by Proposition 5.1
of [GGP], the epsilon factor associated to it is also equal to 1. Hence the contribution of this
−1-eigenspace to the character ωϕ,ρX is just 1.

Similarly, we can show that the contribution of the −1-eigenspaces coming from

g1i × h3j, g2i × h1j, g2i × h2j, g2i × h3j, g3i × h1j, g3i × h2j, g3i × h3j

to the character ωϕ,ρX is also 1.
It remains to consider the −1-eigenspace associated to g1i×h1j. By a similar argument as

above we can show that the contribution of the −1-eigenspaces coming from g1i × h1j with

(i, j) ∈ I1 × J2,even ∪ I2,even × J1 ∪ I1,odd × J1,odd ∪ I1,even × J1,even ∪ I2 × J2

to the character ωϕ,ρX is also 1.
10



Next, we consider the −1-eigenspace associated to g1i × h1j with (i, j) ∈ I1 × J2,odd. By
using the tensor representation we can view g1i×h1j as an element in GL(m1in2j) and we let
k be the dimension of the −1-eigenspace of this matrix (it is easy to see that this dimension
is an odd number). Then it is easy to see that the −1-eigenspace associated to g1i × h1j is
k-copy of M1i ⊗ N1j. This representation is obviously anomaly free and we can choose the

character η in the definition of anomaly free to be det(N1j)
dim(M1j)

2 . Moreover, the epsilon
factor associated to it is equal to ϵ(M1i ⊗ N1j)

k = ϵ(M1i ⊗ N1j). Hence the contribution of

this −1-eigenspace to ωϕ,ρX is ϵ(M1i ⊗N1j) det(N1j)
dim(M1j)

2 .
Similarly, we can show that the contribution of the −1-eigenspace associated to

g1i × h1j, (i, j) ∈ I2,odd × J1 ∪ I1,even × J1,odd ∪ I1,odd × J1,even

to ωϕ,ρX is also ϵ(M1i⊗N1j) det(N1j)
dim(M1j)

2 . This implies that ωϕ,ρX is the same as χN ×χM .
In particular, we have proved that for the Gan–Gross–Prasad model, Conjecture 2.9 is the
same as the epsilon dichotomy conjecture in [GGP].

3.3. The models in [WZ]. In this subsection, we will show that Conjecture 2.9 recovers the
epsilon dichotomy conjecture of the 10 models considered in [WZ]. We will only consider the
most complicated model (E7,PGL2 ⋉N). The other models in [WZ] follows from a similar
and easier argument. We will first prove Conjecture 2.6. Then as in [WZ], by assuming the
weak conjecture (Conjecture 1.6 of [WZ]) holds for the model (E7,PGL2⋉N), we will prove
Conjecture 2.9.

We first prove Conjecture 2.6 for this model. In this case, LGX = LG = Ĝ ×W ′
F where

Ĝ = E7,sc(C) is the simply connected form of E7 and ρX is the 56-dimensional representation
of E7,sc(C). To prove Conjecture 2.6, we only need to prove the following proposition.

Proposition 3.1. For s ∈ Ĝss, let Vs,− be the −1-eigenspace of ρX(s). The representation

of Ĝs on Vs,− is anomaly free.

Proof. We use ρX,s,− to denote the representation of Ĝs on Vs,−. If s is elliptic, the rep-
resentation ρX,s,− was described in Section 2.5 of our previous paper [WZ]. From there it
is easy to see that ρX,s,− is anomaly free, we just need to use the fact that the following
representations are anomaly free (which follows from an easy direct computation):

• the representation ρX of Ĝ;
• the tensor representation of Spin12(C)× SL2(C)/(Z/2Z);
• the Half-Spin representation of Spin12(C);
• the exterior square L-function of SL6(C)/(Z/3Z);
• the representation ∧2 ⊗ std representation of SL4(C)× SL2(C)/(Z/4Z).

When s is not elliptic, consider the following Dynkin diagram of E7.

α1 α2 α3 α4 α5 α6

α7

Let Li be the maximal Levi subgroup of Ĝ associated to the simple roots ∆ − {αi} for
1 ≤ i ≤ 7 with ∆ = {α1, α2, · · · , α7}. It is enough to show that ρX |Li

is anomaly free under
11



endoscopy for all i. If i = 4, 6, 7, the restriction of ρX to Li is of the form ρX = ρ ⊕ ρ∨ for
some representation ρ of Li. Hence we know that ρX |Li

is anomaly free under endoscopy.
If i = 1 (resp. 2, 3, 5), then the restriction ρX to Li is of the form ρ⊕ ρ∨ ⊕ ρ′ where ρ is

a representation of Li and ρ′ is the Half-Spin representation of Spin12(C)×GL1(C)/(Z/2Z)
(resp. the exterior cube representation of SL6(C)/(Z/3Z), ∧2⊗std representation of SL4(C)×
SL2(C)/(Z/4Z), the tensor product representation of Spin10(C) × SL2(C)/(Z/4Z)). It re-
mains to show that ρ′ is anomaly free under endoscopy. The argument is the same as above
and we will skip it here (i.e. we first consider the elliptic elements of Li for which we can
explicitly write down the representation Vs,− and show that it is anomaly free, then we can
further reduce to maximal Levi subgroup of Li). This proves the proposition. □

Next, we assume the weak conjecture (Conjecture 1.6 of [WZ]) holds for the model
(E7,PGL2⋉N), we will prove Conjecture 2.9. Let (G,H) and (GD, HD) be as in Section 8 of
[WZ]. Let ϕ : W ′

F → LG be a tempered L-parameter of G and let ωϕ be the character of Sϕ

corresponds to the unique distinguished element in the L-packet Πϕ = Πϕ(G)∪Πϕ(GD). We
need to show that ωϕ,ρX = ωϕ. In our previous paper (Section 2 of [WZ]), we have defined
a function ωϕ,H on the elliptic elements of Zϕ and we have proved in Section 8 of [WZ] that
ωϕ,H = ωϕ on the elliptic elements of Zϕ. It is clear from the definition that the functions
ωϕ,H and ωϕ,ρX are the same on all the elliptic elements formulas. Hence by using the result
in Section 8 of [WZ] we proved that ωϕ,ρX (s) = ωϕ,H(s) for all s ∈ Zϕ with s elliptic.

When s is not elliptic, the argument is the same as the elliptic case in Section 8 of [WZ].
Namely, let (G′, s, Lη) be the extended endoscopic triple such that ϕ factors through Lη (i.e.
there exists ϕ0 : W ′

F → LG′ such that ϕ = Lη ◦ ϕ0). Then we study the behavior of the
geometric multiplicity of the model under endoscopy between G and G′. When s is elliptic,
this is done in our previous paper (Section 8.3 of [WZ]). If s is non-elliptic, the argument
is the same. We can first pass from G to its Levi subgroup Ls (this step has already been
done in Proposition 8.1 of [WZ]), then we can study the endoscopic transfer of the geometric
multiplicity between Ls and G′ (the argument is the same as the one in Section 8.3 [WZ]).
After we proved this identity, we get some formulas of distributions on G′ which can be
related to some models of G′. Then by using the weak conjecture, we can relate it to a
certain epsilon factor and prove that ωϕ,ρX (s) = ωϕ,H(s). Since the argument is the same as
the elliptic case in Section 8 of [WZ], we will only list the models related to G′ and skip the
remaining details.

• If Ls is associated to one of the following subsets of ∆

{α4, α6, α7}, {α4, α6, α7, αi}, i = 1, 2, 3, 5,

{α4, α6, α7, αi, αj}, {i, j} = {1, 2}, {1, 3}, {1, 5}, {2, 5}, {3, 5},
∆∖ {αi}, i = 2, 3,

it is of Type A and we must have G′ = Ls. In this case, the model related to G′ is
the model (G′, G′ ∩H) as in Proposition 8.1 of [WZ].

• If Ls is associated to {α2, α3, α4, α6, α7}, Ls is of Type D4 × A1. In this case, G′ is
either equal to Ls or of the type (A1)

5. If G′ is of Type (A1)
5, the model related

to G′ is the trilinear GL2 model. If G′ = Ls, the model related to G′ is the model
(G′, G′ ∩H).

• If Ls = L5, Ls is of Type D5×A1. In this case, G′ is either equal to Ls or of the type
A3 × A1 × A1 × A1. If G′ = Ls, the model related to G′ is the model (G′, G′ ∩ H).
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If G′ is of the Type A3 × A1 × A1 × A1, the models related to G′ are the model
(GL4 ×GL2,GL2 ×GL2) and the trilinear GL2-model.

• If Ls = L1, Ls is of Type D6. In this case, G′ is equal to Ls, of Type D4×A1×A1 or of
Type A3×A3. If G

′ = Ls, the model related to G′ is the model (G′, G′∩H). If G′ is of
the Type D4×A1×A1, the model related to G′ is the model (GSO8×GL2,GL2⋉N).
If G′ is of Type A3 × A3, the model related to G′ is the Whittaker model.

• For all the other cases, the model related to G′ is the Whittaker model.

4. Some other examples without multiplicity one

In this section, we discuss some models with more than one Borel orbits. We will show
that our conjecture holds for these cases.

4.1. The model (SL2,GL1). In this section we consider the model (G,H) = (SL2,GL1)
(i.e. H is a maximal split tori of G). In this case, LG = PGL2(C) and LGX = SL2(C).
For a tempered parameter ϕ of G(F ), the central character of the packet Πϕ(G) is trivial if
and only if there is a lifting ϕ′ of ϕ to GX(F ). In this case, the set of liftings I ′ contains
|F×/(F×)2|/|Sϕ| many elements (any two different liftings are differed by a twist of quadratic
character). The L-packet Πϕ(G) contains |Sϕ| many representations and it is easy to see that
each of them has multiplicity |F×/(F×)2|/|Sϕ| = |I ′|. In fact, let J be the set of quadratic
characters η such that ϕ′ ≃ ϕ′ ⊗ η. Then |I ′| = |F×/(F×)2|/|J | and |Sϕ| = |J |.

The representation ρX of LG = SL2(C) is just std⊕ std. It is easy to see that Conjecture
2.6, 2.7 hold and the character ωϕ′,ρX of Sϕ′ is just the trivial character. As a result, the set
I is equal to I ′ and the set

{χϕ′,ρX ,i| 1 ≤ i ≤ |Sϕ/Sϕ′|, ϕ′ ∈ I}
contains all the characters of Sϕ, each of them appears exactly |I| = |F×/(F×)2|/|Sϕ| times.
The choice of Whittaker datum does not matter in this case since the map ker(H1(F,ZG,H) →
H1(F,H)) → ker(H1(F,G) → H1(F,G)) is a bijection. This proves Conjecture 2.9.

4.2. The model (SL2, E
1). In this section, we consider the model (G,H) = (SL2, E

1)
where E/F is a quadratic extension, ηE/F is the quadratic character associated to E/F and
E1 = ker(ηE/F ) (i.e. H is a maximal elliptic tori of F ). As in the previous case, we have
LG = PGL2(C) and LGX = SL2(C). For a tempered parameter ϕ of G(F ), the central
character of the packet Πϕ(G) is trivial if and only if there is a lifting ϕ′ of ϕ to GX(F ), the
set of liftings I ′ contains |F×/(F×)2|/|Sϕ| many elements and the L-packet Πϕ(G) contains
|Sϕ| many representations.
For this model, X(F ) is not equal to G(F )/H(F ) and it is equal to X(F ) = G(F )/H(F )∪

G(F )/H ′(F ) where H ′(F ) is another maximal elliptic tori of G(F ) that is isomorphic to E1

(if ηE/F (−1) = 1 then H ′ is not conjugated to H; if ηE/F (−1) = −1 then we may just choose
H ′ to be H). Hence Conjecture 2.9 studies the multiplicity

m(π) = dim(HomH(F )(π, 1)) + dim(HomH′(F )(π, 1)).

In this case, any maximal elliptic tori of G(F ) that is isomorphic to E1 is either conjugated
to H or H ′. Since any two representations in the L-packet Πϕ(G) can be conjugated to
each other by an element of GL2(F ), we know that the multiplicity m(π) is constant among
representations in the L-packet Πϕ(G).
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If we view PGL2 (resp. E1) as SO3 (resp. SO2), then ρX is just the 4-dimensional tensor
representation of LSO3×LSO2. It is easy to see that Conjecture 2.6 and Conjecture 2.7 hold
in this case. Moreover, the component group Sϕ′ (ϕ′ ∈ I ′ and πϕ′ is the irreducible tempered
representation of PGL2(F ) associated to ϕ′) is either trivial or Z/2Z. If it is trivial, we have

ηE/F (−1)ϵ(
1

2
, πϕ′ , ρX) = 1.

If it is equal to Z/2Z, then the character ωϕ′,ρX is trivial (resp. the sign character) if
ηE/F (−1)ϵ(1

2
, πϕ′ , ρX) = 1 (resp. ηE/F (−1)ϵ(1

2
, πϕ′ , ρX) = −1). This implies that

I = {ϕ′ ∈ I ′| ηE/F (−1)ϵ(
1

2
, πϕ′ , ρX) = 1}

and the set
{χϕ′,ρX ,i| 1 ≤ i ≤ |Sϕ/Sϕ′|, ϕ′ ∈ I}

contains all the characters of Sϕ, each of them appears exactly |I| times. Moreover, for any
ϕ′ ∈ I ′, if we let J ′ be the set of quadratic characters η such that

ηE/F (−1)ϵ(
1

2
, πϕ′ ⊗ η, ρX) = 1,

then |I| = |J ′|
|J | . Here we recall from the previous subsection that J is the set of quadratic

characters η such that ϕ′ ≃ ϕ′ ⊗ η.
Let ϕ′ be an element in I ′. We can view πϕ′ as a tempered representation of GL2(F )

with trivial central character and we have Πϕ(G) = πϕ′ |SL2(F ). The model (PGL2, E
1) is the

famous Waldspurger model and we let m′(πϕ′) be the multiplicity of πϕ′ with respect to this
model. The epsilon dichotomy conjecture for the Waldspurger model implies that

m′(πϕ′) = 1 ⇐⇒ ηE/F (−1)ϵ(
1

2
, πϕ′ , ρX) = 1; m′(πϕ′) = 0 ⇐⇒ ηE/F (−1)ϵ(

1

2
, πϕ′ , ρX) = −1.

Hence we have (η runs over all the quadratic characters modulo the subgroup {1, ηE/F})

dim(HomH(F )(Πϕ(G), 1)) = dim(HomH′(F )(Πϕ(G), 1)) =
∑
η

m′(πϕ′ ⊗ η) =
|J ′|
2

=
|I| · |Sϕ|

2
.

This implies that for any π ∈ Πϕ(G), we have m(π) = |I|. This proves Conjecture 2.9.

Remark 4.1. By a similar argument we can also verify Conjecture 2.9 for the triple product
model of SL2 (i.e. (G,H) = ((SL2)

3, SL2)) and U2 (i.e. (G,H) = ((U2)
3, U2)).

4.3. The model (U6, U2 ⋉ N). In this subsection, we discuss the unitary Ginzburg-Rallis
model (U6, U2⋉N) studied in our previous paper [WZ1]. In this case, LG = GL6(C)⋉Z/2Z
and LGX = SL6(C)⋉ Z/2Z. For a tempered parameter ϕ of G(F ), the central character of
the packet Πϕ(G) is trivial if and only if there is a lifting ϕ′ of ϕ to GX(F ). In this case, the
map Sϕ′ → Sϕ is injective, and we have Sϕ = Sϕ′ (resp. |Sϕ/Sϕ′| = 2) if and only if ϕ′ is not
isomorphic to ϕ′ ⊗ ηE/F (resp. ϕ′ is isomorphic to ϕ′ ⊗ ηE/F ). The set of liftings I ′ contains
|2 · Sϕ′/Sϕ| many elements and we have I = I ′.
The representation ρX of LGX = SL6(C) ⋉ Z/2Z is the 20-dim exterior cube representa-

tion. By a similar but easier argument as the Gan–Gross–Prasad model case we can prove
Conjecture 2.6 and 2.7 for this model. In this case, the set

{χϕ′,ρX ,i| 1 ≤ i ≤ |Sϕ/Sϕ′|, ϕ′ ∈ I}
14



contains 2 elements. If the lifting is unique, then |Sϕ/Sϕ′ | = 2 and these two characters are
the two characters of Sϕ whose restriction to Sϕ′ is equal to ωϕ′,ρX . If there are two liftings,
then Sϕ = Sϕ′ and the two characters are just ωϕ′,ρX for ϕ′ ∈ I (this is equivalent to we only
consider one lifting but we consider ρX and ρX ⊗ ηE/F ).
The choice of the Whittaker model does not matter since the map ker(H1(F,ZG,H) →

H1(F,H)) → ker(H1(F,G) → H1(F,G)) is a bijection.
We will prove Conjecture 2.9 in this case by assuming Conjecture 1.6 of [WZ] holds for

the model (GU6, GU2 ⋉ N) 7. Like the argument in Section 5 of [WZ], the key is to study
the behavior of the multiplicity under endoscopy.

First, we consider the case when there are two liftings. In this case, the two choices of
Whittaker data give the same parametrization of the L-packet. We use ϕ′

i (i = 1, 2) to denote
these two liftings. In this case Sϕ = Sϕ′

i
. For s ∈ Sϕ = Sϕ′

i
, as in Section 5.4 of [WZ], we can

choose s′ ∈ sZ◦
ϕ′
i
so that s′ is conjugated to ±I6 or ±diag(I4,−I2). The value of ωϕ′

i,ρX
(s) is

defined in Section 2.5 of [WZ]. Let

IG = {i| ηE/F (−1)ϵ(
1

2
,Πϕ′

i
, ρX) = εG}

where εG is equal to 1 (resp. −1) if G is quasi-split (resp. non quasi-split). Then IG is the
set of i such that ωϕ′

i,ρX
corresponds to a representation in Πϕ(G).

By Conjecture 1.6 of [WZ] and Proposition 5.2 of [WZ1], the multiplicity of the L-packet
Πϕ(G) is equal to |IG|. If |IG| = 0, then the two characters ωϕ′

i,ρX
do not correspond to a

representation in Πϕ(G) (both of them correspond to a representation of the pure inner form
ofG). This proves Conjecture 2.9. If |IG| = 2, then the two characters ωϕ′

i,ρX
both correspond

to a representation in Πϕ(G). Also in this case the L-packet Πϕ(G) has multiplicity two and
we let ωϕ,i (i = 1, 2) be the two characters correspond to the distinguished elements in Πϕ(G)
(these two characters may be the same). In this case, by the same argument as in Section
5.4 of [WZ], we can show that (note that in this case the multiplicity formula was proved in
[WZ1] and we can prove the endoscopic identity of the geometric multiplicity by the same
argument as in Proposition 5.8 of [WZ])

ωϕ,1(s) + ωϕ,2(s) =
∑

π∈Πϕ(G)

χπ(s)m(π) = ωϕ′
1,ρX

(s) + ωϕ′
2,ρX

(s), ∀s ∈ Sϕ.

This implies that {ωϕ,1, ωϕ,2} = {ωϕ′
1,ρX

, ωϕ′
2,ρX

} and proves Conjecture 2.9 in this case. If
|IG| = 1, we may assume that ϕ′

1 ∈ IG. In this case, the L-packet Πϕ(G) has multiplicity
one and we let ωϕ be the character corresponding to the distinguished elements in Πϕ(G).
In this case, by the same argument as in Section 5.4 of [WZ], we can show that

ωϕ(s) =
∑

π∈Πϕ(G)

χπ(s)m(π) = ωϕ′
1,ρX

(s), ∀s ∈ Sϕ.

This implies that ωϕ = ωϕ′
1,ρX

and proves Conjecture 2.9.
Next, we consider the case when the lifting is unique and we use ϕ′ to denote this lifting.

In this case, if ηE/F (−1)ϵ(1
2
,Πϕ′ , ρX) = −εG, the multiplicity of the L-packet Πϕ(G) is equal

to 0 and the two characters in I
Sϕ

Sϕ′
(ωϕ′,ρX ) does not correspond to a representation in Πϕ(G)

7In our paper [WZ2] we have proposed a method to prove this conjecture, and we will prove it in our next
paper.
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(both of them corresponds to a representation of the pure inner form of G). This proves
Conjecture 2.9. If ηE/F (−1)ϵ(1

2
,Πϕ′ , ρX) = εG, the multiplicity of the L-packet Πϕ(G) is

equal to 2 and the two characters in I
Sϕ

Sϕ′
(ωϕ′,ρX ) both correspond to a representation in

Πϕ(G). We let χ1, χ2 be these two characters and we let ωϕ,i (i = 1, 2) be the two characters
corresponding to the distinguished elements in Πϕ(G). In this case, the two representations
that correspond to {χ1, χ2} are independent of the choice of the Whittaker datum. In fact,
if one choice of Whittaker datum ωϕ,i corresponds to some representation πi of the L-packet,
then under the other choice of Whittaker datum ωϕ,1 (resp. ωϕ,2) corresponds to π2 (resp.
π1).

By the same argument as in Section 5.4 of [WZ], we can show that

ωϕ,1(s) + ωϕ,2(s) =
∑

π∈Πϕ(G)

χπ(s)m(π) = χ1(s) + χ2(s), ∀s ∈ Sϕ′ .

Since χ1 and χ2 are the only two characters of Sϕ whose restriction to Sϕ′ is equal to ωϕ′,ρX ,
we only need to show that ωϕ,1 ̸= ωϕ,2. Choose s ∈ Sϕ − Sϕ′ and we just need to show that
ωϕ,1(s) + ωϕ,2(s) = 0. We can fine s′ ∈ sZ◦

ϕ such that s′ belongs to an elliptic endoscopic

triple (G′, s′, Lη) of G with G′ = U5 × U1 or G′ = U3 × U3 and ϕ factors through LG′. Then
we need to study the behavior of the geometric multiplicity under the endoscopic transfer
between G and G′. By a similar but easier argument as in Proposition 5.8 of [WZ], we can
show that mgeom(θ) = 0 if θ is the endoscopic transfer of a stable distribution θ′ of G′(F ).
Here θ is a quasi-character on G(F ) and the geometric multiplicity mgeom(θ) is defined in
Section 5.2 of [WZ1]. This implies that

ωϕ,1(s) + ωϕ,2(s) =
∑

π∈Πϕ(G)

χπ(s)m(π) = 0.

Hence ωϕ,1 ̸= ωϕ,2 and this finishes the proof of Conjecture 2.9.
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Math. 146(2010), no.5, 1180-1290.
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