MULTIPLICITIES FOR SOME STRONGLY TEMPERED
SPHERICAL VARIETIES

CHEN WAN AND LEI ZHANG

ABSTRACT. In this paper, we study the local multiplicity of 10
strongly tempered spherical varieties. We will formulate a uniform
epsilon dichotomy conjecture for all these models regarding the
unique distinguished element in tempered L-packets. Then we will
prove this conjecture in many cases, including all the Archimedean
cases.

1. INTRODUCTION AND MAIN RESULTS

Let F' be a local field of characteristic 0, G' be a connected reductive
group defined over F', H be a connected closed subgroup of GG, and x be
a unitary character of H(F'). Assume that H is a spherical subgroup of
G (i.e. H admitting an open orbit in the flag variety of G'). We say the
spherical pair (G, H) is reductive if H is reductive. For every irreducible
smooth ! representation 7 of G(F'), we define the multiplicity

m(m, x) = dim(Hompgp (7, X)).

We say m is (H, x)-distinguished (or just H-distinguished if the choice
of x is clear) if the multiplicity is nonzero. Also to simplify the notation
we will use m(m) instead of m(m, x) to denote the multiplicity if the
choice of x is clear. One of the fundamental problems in the Relative
Langlands Program is to study the multiplicity m(m, x). In general,
one expects the multiplicity m(m, x) to be finite and to detect some
functorial structures of . We refer the reader to [SV17] for a detailed
discussion of these kinds of problems.

Among all the spherical pairs, there is a special category called
strongly tempered spherical pairs. More precisely, when H is reductive,
we say the pair (G, H) is strongly tempered if all the matrix coefficients
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of tempered representations of G(F') are integrable on H(F)/Z¢g uy(F)
(here Zg is the center of G and Zg g = Zg N H). When H is not
reductive and if the model (G, H) is the Whittaker induction (we re-
fer the reader to Section 2.6 of [Wan] for the definition of Whittaker
induction) of a reductive spherical pair (G, Hp), then we say the pair
(G, H) is strongly tempered if and only if (Gg, Hy) is strongly tempered.
According to the general conjecture of Sakellaridis and Venkatesh in
Conjecture 16.5.1 of [SV17], for a strongly tempered spherical pair
(G, H), if we assume the spherical varieties X = G/H does not have
Type N spherical root (we refer the reader to Section 3.1 of [SV17]
for the definition of spherical roots), then almost all the tempered
local Vogan L-packets of G(F') should contain at least one (H,x)-
distinguished representation (i.e. almost all the tempered local Vogan
L-packets are (H, x)-distinguished). Moreover, if the spherical variety
only has one open Borel orbit over the local field F', then the general
conjecture of Sakellaridis and Venkatesh predicts that almost all the
tempered local Vogan L-packets of G(F') should contain exactly one
(H, x)-distinguished representation (this is usually called strong mul-
tiplicity one on L-packets).

The most famous examples of strongly tempered spherical pairs with-
out Type N root are the so call Gan—Gross—Prasad models (SO, ;211 X
SO, SO, x U) and (Uy,yok+1 X Up, U, x U). Here U is some unipotent
subgroup. For these cases, the local conjecture was formulated by Gan,
Gross, and Prasad in Section 17 of [GGP]. In it they not only conjec-
tured the property of strong multiplicity one on generic L-packets, but
they also conjectured about the unique distinguished element in those
L-packets. More precisely, for each local L-packet Il4, let Z; be the
centralizer of the parameter and S, = Z,/ Z§ be its component group.
The local Langlands conjecture states that there is a natural bijection
between the L-packet and the set of irreducible representations of Sy

(denoted by S,). In Section 17 of [GGP], they defined a quadratic
character of S4 using some local epsilon factor and conjectured that
the unique distinguished element in a generic L-packet is the one asso-
ciated with this quadratic character. This is usually called the epsilon
dichotomy conjecture.

In his pioneering works, Waldspurger developed a new method us-
ing local harmonic analysis to study the multiplicities. His idea is to
first prove a local trace formula for the model which will imply a mul-
tiplicity formula m(7m, X) = Mgeom (T, X). Here mgeom (7, x) is defined
via the Harish-Chandra character 6, of m and is called the geometric
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multiplicity. Then by using the multiplicity formula together with var-
ious relations of the Harish-Chandra characters of representations in
a local L-packet, one can explicitly compute the multiplicity. In his
works [Wall], [Wal2] and [Wal3], Waldspurger applied this idea to the
orthogonal Gan—Gross—Prasad models and proved the local conjecture
in the p-adic case. Later his method was adapted by Beuzart-Plessis
([Beul], [Beu2], [Beu3], [Beud]), Wan ([Wanl5], [Wanl6], [Wanl7]),
Beuzart-Plessis—-Wan ([BW]), Wan—Zhang ([WZ1], [WZ2]), Luo ([Luo])
for many other cases. Guided by all these works, in [Wan], the first au-
thor gave a uniform definition of the geometric multiplicity mgeom (7, X)
and proposed the conjectural multiplicity formula for all the spherical
varieties.

In our previous paper [WZ2], we studied ten spherical pairs that
are strongly tempered and without Type N spherical root. For each
of the models, we computed its local relative character at unramified
places. Our computation of the local relative characters shows that
like the Gan—Gross—Prasad models case, the global period integrals of
these models are related to the central values of certain automorphic
L-functions L(s, 7, px) where px is some finite dimensional represen-
tations of the L-group LG of symplectic type (see Table 1 for details).
This allows us to formulate the Ichino-Tkeda type conjectures for these
models. Locally, following the method of Waldspurger, we proved the
multiplicity formulas in many cases. By using the multiplicity formu-
las, we proved the strong multiplicity one on tempered L-packets (i.e.
the summation of the multiplicities is equal to 1 over every tempered
local L-packet) for these models. In particular, our results suggested
that these models should have similar local and global behaviors as the
Gan—Gross—Prasad models. In other words, many nice properties of
the local multiplicities and global period integrals are not just enjoyed
by the Gan—Gross—Prasad models, they can also be applied to gen-
eral spherical varieties that are strongly tempered and without Type
N spherical root.

Guided by this philosophy, it is natural to expect that for each of the
models considered in our previous paper, like the Gan—-Gross—Prasad
models case, the unique distinguished element in the L-packet should
be determined by the local epsilon factor €(s,m, px). In this paper,
we will formulate a uniform epsilon dichotomy conjecture for all these
models. By studying the behaviors of the geometric multiplicities under
parabolic induction and under endoscopy, we will prove the epsilon di-
chotomy conjecture in many cases including all the Archimedean cases.
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1.1. The conjectures and main results. We recall the following
table of spherical varieties from Section 1 of [WZ2| (note that px is a
representation of the L-group *(G/Zg x)). Each model (G, H) in the
table is strongly tempered without Type N root and has a unique open
Borel orbit.

Ne G H Px
1| GL4 x GL, GL, x GL, (A? @ stdy) @ stdy @ stdy
2 GU4 X GU2 (GU2 X GUQ)O (/\2 X Stdg) D Std4 D Std4
3 | GSpg x GSp, | (GSp, x GSp,)° Spin,; ® Spiny
4 GL6 GL2 x U /\3
5 GU6 GU2 x U A3
6 GSpyg GLy, x U Spiny,
7 GSp6 X GL2 GL2 x U Spil’l7 X Stdg
8 GSOg X GLQ GL2 x U HSplIlS X Stdg
9 G8012 GL2 x U HSpin12
10 E7 PGL2 x U wr
TABLE 1

Here std,, is the standard representation of GL,(C) and std, is its
dual representation; Spin,, ., ; is the Spin representation of Spin,,, ,,(C);
HSpin,,, is a half-Spin representation of Spin,, (C); w; is the 56 dimen-
sional irreducible representation of E;(C). We refer readers to later
sections for more details about py in the unitary group cases (i.e. Mod-
els 2 and 5). We will also recall the definitions of all the models in later
sections.

When H is reductive, let x = 1 be the trivial character of H(F);
when H = Hy X U is not reductive, let x = 1 ® £ where £ is a generic
character of U(F) defined in our previous paper [WZ2] (we will recall
the definitions in later sections). Let 7 be an irreducible representation
of G(F') whose central character is trivial on Zg g (F), we want to study
the multiplicity m(7) = m(7, x). In our previous paper [WZ2], we have
proved a multiplicity formula in the p-adic case and the complex case
for all the models in the above table except the model associated to
E;. In the real case, we are only able to prove the multiplicity formula
for the first four models. Moreover, we proved that if we assume the
multiplicity formula and the local Langlands conjecture holds, then the
summation of the multiplicities is equal to one over every tempered
local Vogan L-packet (i.e. we have the strong multiplicity one on the
L-packet).
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Remark 1.1. In fact, as we explained in Section 9 of [WZ2|, the mul-
tiplicity formula not only implies that the summation of the multiplic-
ities 1s equal to one over every tempered local Vogan L-packet 11y, it
also implies that the unique distinguished element in the L-packet cor-
responds to a character of the component group S, (note that for Model
3 and Model 6-10 in Table 1, the component group is not necessarily
abelian). To be specific, combining the multiplicity formula and the
character identity in the local Langlands correspondence, we have

Z dim(x)m(m) =1,

where ™ runs over the representations in the packet and x. is the ir-
reducible representation of the component group Sy associated to .
Hence the irreducible representation of Sy that corresponds to the unique
distinguished element in the packet must be a character.

If FF = C, the tempered L-packet only contains one element and its
multiplicity is equal to 1. For the rest of this paper, we assume that
F # C. To formulate the epsilon dichotomy conjecture, we need to
define a character of the component group. Let (G, H, x) be one of the
models in the table above, and ¢ : W}, — LG be a tempered Langlands
parameter of G (here G is the L-group and W}, is the Weil-Deligne
group) whose central character is trivial on Zg g (F'). This is equivalent
to say that ¢ : W} — “G/Z¢g i is a tempered Langlands parameter of
G/Zg . Let Iy = Usent(r,6/26.1)116(Ga) be the associated tempered

L-packet, Zy C G/Z¢ n be the centralizer of the parameter, and S, =
Z4/Z; be the component group. The local Langlands conjecture states

that we have a bijection between the L-packet I, and the set §¢ of
irreducible representations of S4. We refer the reader to Section 2 for
more details.

Next, we define a quadratic character of the component group Se.
We fix an additive character 1) of F' and we use V' to denote the un-
derlying space of the representation px (i.e. px : “G/Zqy — GL(V)).
For s € S4, we will show in Lemma 2.4 that there exists an ellip-
tic extended endoscopic triple (G',s',Ln) of G such that the Lang-
lands parameter ¢ factors through n and s’ € $Zg4. For the model
(GL4 x GLg, GLy x GL3), we require the lifting s’ to be of the form
+(1y, I3). Let Vo _ be the —1 eigenspace of V' with respect to the
operator px(s'). Since s commutes with I'm(¢), the space Vi _ is sta-

ble under px(Im(¢)), this gives us a representation px 4+ of W on
Vo, le. pxos : Wi = GL(Vy ). If (G, H) is not the two models
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associated to the unitary groups, we define

1
we,m(8") = 6(5, Px 6.5 P)-
In the two unitary group cases, we need to add some extra sign, we refer
the reader to Section 2.5 for details. In Section 2.5, we will show that
€(3, px.6,5, ) € {£1} and is independent of the choice of the additive
character ¢ of F.

Remark 1.2. For all the models in Table 1, the Whittaker datum of G
is unique. So we don’t need to discuss the choice of Whittaker datum.

Remark 1.3. The extra sign in the two unitary group cases is an
analogue of the extra sign in the Gan—Gross—Prasad model case (Section

6 of [GGP]).

Conjecture 1.4 (Epsilon Dichotomy Conjecture). (1) The func-
tion we g is well defined (i.e. it is independent of the choice
of the elliptic extended endoscopic triple) and it is a quadratic
character of S,.
(2) The unique (H, x)-distinguished element in the L-packet 114 is
the one associated to the character wg pr.

Remark 1.5. Unlike the Gan—Gross—Prasad models case, the compo-
nent group Sy for most models in Table 1 is not necessarily a 2-group
(not even necessarily abelian). But we still expect that the unique dis-
tinguished element in the L-packet corresponds to a quadratic character

Of S¢.

There is also a weak form for Conjecture 1.4. For each model (G, H)
in Table 1 except the model (GU, x GUs, (GU, x GUy)?), the model has
a unique pure inner form associated to the unique quaternion algebra
D defined over F'. We will denote this model by (Gp, Hp).

Conjecture 1.6. Let (G, H) be a model in Table 1 that is not (GUy X
GU,, (GUy x GU)%) or (GUg, GUy x U). The unique distinguished
element in the packet 11, belongs to I14(G) (resp. 114(Gp)) if and only
if €(3, 1, px) =1 (resp. e(5,1g, px) = —1).

For the model (GUg,GUy X U), the unique distinguished element
in the packet 11y belongs to I14(G) (resp. I4(Gp)) if and only if
ne/p(=1)e(5, My, px) = 1 (resp. ne/p(=1)e(3,10y, px) = —1) where
ne/r s the quadratic character associated to the quadratic extension
E/F defining the unitary group.
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We refer the reader to Conjecture 5.1 for the weak form of Conjecture
1.4 for the model (GU4 x GU,, (GUy x GU,)?). As in the Gan—Gross—
Prasad model case, we also expect Conjecture 1.4 and 1.6 to be true
for all the generic local L-packets.

Proposition 1.7. Conjecture 1.4 implies Conjecture 1.6 (or Conjec-
ture 5.1 if (G, H) = (GUy x GUy, (GUy x GU3)?) ). Moreover, if T is
a discrete L-packet of G with |I1,(G)| = 1, then Conjecture 1.4 holds
for the L-packet 11, if and only if Conjecture 1.6 (or Conjecture 5.1 if
(G, H) = (GUy x GUy, (GUy x GU,)?)) holds for the L-packet I1,.

Proof. We will only consider the model (E7, PGLy x U). The argument
for the other models is similar. In this case, G = E7 +(C) is the simply
connected form of E7 and its center Zg is isomorphic to Z/27Z. Let z
be the nontrivial element in the center.

We first prove the first part of the conjecture. Let II4 be a tempered
L-packet of G and assume that Conjecture 1.4 holds for II;. We need
to prove Conjecture 1.6 for II,. By our assumption we know that w g
is a well defined quadratic character of S, and it corresponds to the
unique distinguished element in the packet. Let sy € S, be the image
of z. By our definition of wy i, we have (note that px(z) = —1y)

we, i (80) = w1 (2) = €(5, 1Ly, px).

2
Then Conjecture 1.6 follows from the fact that wy g corresponds to an
element in I14(G) (resp. I4(Gp)) if and only if wy p(2) = 1 (resp.
W¢7H(Z) = —1)

For the second part, if I, is a discrete L-packet of G with |II,(G)| =
1, we have

S = Zy = Zg =127, |l14(Gp)| = 1.

In this case, it is clear that wg g is well defined and is a quadratic
character of Sy. Moreover, we have

1
wen (1) =1, wen(z) = 6(5

In particular, wy g corresponds to the unique element in I1;(G) (resp.
I14(Gp)) if and only if €(3, 4, px) = 1 (resp. €(5, 1y, px) = —1). This
proves the proposition. 0

7H¢>7PX)'

In this paper, by using the multiplicity formulas and the character
identities in the local Langlands conjecture, we will prove Conjecture
1.4 in many cases, including all the archimedean cases. In order to
state our result, we first need to define a partial order for the models
in Table 1.
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Definition 1.8. Consider the following diagram of the models in Table
1

(GUG,GUQ X U) — (GU4 X GUQ,GUQ X U)

(GSp, x GLy x GLy, (GLy x GLy)?) +—— (GSpg x GSpy, (GSp, x GSp,)?)

J

(Gsplo, GL2 X U) (GSpG X GLQ, GLQ X U)
(GSOg X GLQ,GLQ X U) (GSOlg, GL2 X U)
(GL4 X GLQ, GL2 X GLQ) (GLﬁ, GL2 X U)

We say a model (G, H) is smaller than another model (G', H') if there

is a line connecting these two models with the arrow pointing to (G, H).

For example, there are two models smaller than (GSp,y, GLy x U):
(GSpg x GLo, GLy x U) and (GSOg x GLg, GLy x U).

Remark 1.9. The only models in the above diagram that do not appear
in Table 1 are the models (GUy x GUy, GUy X U) and (GSp, x GLy X
GLy, (GLy x GLy)?). The reason is that up to some finite isogeny,
these two models are essentially the Gan-Gross-Prasad models (SOg X
SO3,503 X U) and (SO5 x SOy, SOy). Although the epsilon dichotomy
conjecture is known for Gan-Gross-Prasad model of special orthogonal
groups and unitary groups, it is still open for these two models. We
refer the reader to Sections 5 and 7 for the details about these two
models (note that each of these two models also has a unique pure
inner form associated to the quaternion algebra D). The analogue of
Congecture 1.6 for these two models are stated in Conjecture 5.6 and
Congecture 7.4.

Theorem 1.10. Let (G, H) be one of the models in Table 1 that is not

(E7,PGLy X U). Assume that the multiplicity formula holds for the

model (G, H) and for all the models smaller than (G, H). Also assume

that the local Langlands conjecture (see Section 2.3) holds for G. Let
g = Uner (r,c/z6. 1) 1ls(Ga) be a tempered L-packet.

(1) ]f (G, H) = (GL4 X GLQ,GLQ X GLQ) or (GU4 X GUQ, (GU2 X

GU,)?), there is no model smaller than (G, H). Assume that the

central character of Il is trivial (not just trivial on Zg p(F')),

or assume that 11, is not a discrete L-packet with |I1,(G)| =1
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(this is always the case when F is Archimedean). Then Con-
jecture 1.4 holds for the L-packet 11,.

(2) If (G,H) is one of Models 3-9 of Table 1, Assume that the
weaker form of the conjecture (i.e. Conjecture 1.6, Conjecture
5.6 or Conjecture 7.4) holds for all the models that are smaller
than (G, H). Assume that 11, is not a discrete L-packet with
III4,(G)| =1 (this is always the case when F is Archimedean,).
Then Conjecture 1.4 holds for the L-packet 11,.

In particular, the above theorem proves Conjecture 1.4 in the Archimedean
case because by induction we can always assume that the weak form of
the conjecture holds for all the models that are smaller than (G, H).

Corollary 1.11. Let FF = R and let (G, H) be one of the models in
Table 1 that is not (E7,PGLy x U). Assume that the multiplicity for-
mula holds for the model (G, H) and for all the models smaller than
(G,H). Then Conjecture 1.4 and 1.6 (or Conjecture 5.1 if (G, H) =
(GUy x GUy, (GUy x GU3)%) ) hold for all tempered L-packets of G.

Remark 1.12. For Models 14, the multiplicity formula m(m) = Mgeom ()
has been proved for both the p-adic case and the real case ([Wanlb],
(Wan16], [WZ2|, [PWZ19]). For Models 5-9, the multiplicity formula
m(m, X) = Mgeom (T, X) has been proved for the p-adic case (WZ1],
[(WZ2]). One can prove the multiplicity formula for the smaller models
(GU4 X GUQ, GU2 X U) and (GSp4 X GL2 X GLQ, (GL2 X GLQ)O) by a
very similar argument. For the remaining cases, one needs to solve two
technical issues in order to prove the multiplicity formulas (see the proof
of Theorem 9.8 of [WZ2| for details). We will recall the multiplicity
formula for all the models in later sections.

When the packet 11, is discrete with |II4(G)| = 1, since Conjecture
1.4 is equivalent to Conjecture 1.6 (or Conjecture 5.1), the above theo-
rem implies that if we assume that Conjecture 1.6 (or Conjecture 5.1)
holds for all the models that are smaller than (G, H) and for the model
(G, H), then Conjecture 1.4 holds for (G, H).

Corollary 1.13. Let (G, H) be one of the models in Table 1 that is
not (E7, PGLy X U). Assume that the multiplicity formula holds for the
model (G, H) and for all the models smaller than (G, H). Also assume
that the local Langlands conjecture holds for G. Moreover, assume that
the weaker form of the conjecture (i.e. Conjecture 1.6, Conjecture 5.1,
Congecture 5.6 or Conjecture 7.4) holds for both the model (G, H) and
for all the models smaller than (G, H). Then Conjecture 1.4 holds for
(G, H).
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In fact, if we assume the weaker form of the conjecture holds for the
model (G, H) and the model is not (GSp,,, GLa X U), we can prove the
weaker form of the conjecture for all the models smaller than it.

Theorem 1.14. Let (G, H) be one of the models in Table 1 that is
not (GSpyg, GLa X U) or (E7, PGLy X U). Assume that the multiplicity
formula holds for the model (G, H) and for all the models smaller than
(G, H). Also assume that the local Langlands conjecture holds for G.
Then the weaker form of the conjecture (i.e. Conjecture 1.6, Conjecture
5.1) for the model (G, H) implies the weaker form of the conjecture (i.e.
Conjecture 1.6, Conjecture 5.6 or Conjecture 7.4) for all the models
smaller than (G, H).

Combine the above theorem with Corollary 1.13, we get the following
corollary.

Corollary 1.15. Let (G, H) be one of the models in Table 1 that is
not (GSpy, GLa x U) or (E7,PGLy x U). Assume that the multiplicity
formula holds for the model (G, H) and for all the models smaller than
(G,H). Also assume that the local Langlands conjecture holds for G.
Then Congecture 1.4 is equivalent to the weaker form of the conjecture
(i.e. Conjecture 1.6, Conjecture 5.1) for the model (G, H).

Remark 1.16. For the model (E7,PGLy X U), by assuming the local
Langlands conjecture and the multiplicity formula, we can prove similar
results as above. However, the smaller models are more complicated in
this case. We will postpone the discussion of this model to Section 8
(see Theorem 8.7 and 8.9).

For the model (GSpyg, GLo x U), Conjecture 1.6 for this model will
only imply Congecture 1.6 for one of the smaller models (GSpgx GLa, GLgx
U). It does not imply Conjecture 1.6 for the model (GSOg x GLg, GLg X
U). We refer the reader to Remark 6.7 for details.

Remark 1.17. By Theorem 1.1 of |GZ], we also know that when F is
p-adic, Conjecture 1.6 for the model (GSO12, GLa X U) (resp. (GSOg X
GLg, GLy x U) ) implies Conjecture 1.6 for the model (GSpyq, GLa x U)
(resp. (GSpg x GLo, GLy X U) ).

Now let’s briefly explain the proof of Theorem 1.10 and 1.14. Let
(G, H) be one of the models in Table 1. Our assumption in Theorem
1.10 (i.e. the packet is not discrete with only one element) tells us the
L-packet II, is either the parabolic induction of some L-packet of a
Levi subgroup M of G, or the endoscopic transfer of some L-packet
of an elliptic endoscopic group G’ of G. Then by studying the behav-
iors of the geometric multiplicities under parabolic induction and under
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endoscopic transfer, we can relate the multiplicity of the L-packet I
to the multiplicities of certain models related to M or G'. The only
exception would be the model (GU; x GUsy, (GU,y x GU,)?) which re-
quires some extra effort. This is because unlike the rest 9 models in
the table, the model (GUy x GUs, (GUy x GU;)?) has more than one
pure inner form. We refer the reader to Sections 3 and 5 for details.
There are two types of models we will get under this process, either
some model that has already been studied (e.g. Whittaker models,
Gan-Gross—Prasad models), or a model that is smaller than (G, H)
under Definition 1.8. This is why we make the assumption on smaller
models in Theorem 1.10. This proves Conjecture 1.6 for the L-packet
and also proves Theorem 1.14. As a result, we get a formula of the
epsilon factor €(1/2,11,, px) in terms of the Harish-Chandra character
of the L-packet. Combining the formula of epsilon factor with the for-
mula of the geometric multiplicity under endoscopy and the definition
of we, i, we can prove Theorem 1.10.

On the other hand, for the discrete L-packets with only one element,
if one can prove the same formula of the epsilon factor e(%, ¢, px) in
terms of the Harish-Chandra character of the L-packet, then one can
prove the conjecture for this case. In the Gan—Gross—Prasad models
case, such a formula was proved by Waldspurger and Beuzart-Plessis
using the Rankin-Selberg integrals of the general linear groups and the
theory of twisted endoscopy. However their method cannot be directly
applied to our cases in Table 1 because the representations px in Ta-
ble 1 are more complicated than the Gan-Gross—Prasad models case
(in particular, the Langlands functoriality between G and GLgim(py)
is not of twisted endoscopic type). In ongoing work, we are trying to
completely prove Conjecture 1.4 by studying the multiplicity of certain
models related to the Rankin-Selberg integrals.

Finally, we want to emphasize that the assumption that the spher-
ical variety has a unique open Borel orbit is essential. Without this
assumption, the multiplicity will no longer satisfy strong multiplicity
one on the L-packet, and the summation of the multiplicities over the
L-packet should be equal to the number of open Borel orbits (although
we still expect the distinguished elements to be related to certain ep-
silon factors). In another ongoing work, we are trying to formulate the
epsilon dichotomy conjecture for general strongly tempered spherical
varieties.

1.2. Organization of the paper. In Section 2, we will give the basic
notation of the paper and define the epsilon factors that appeared in our
conjecture. We will also recall the structure of the L-packet under the
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local Langlands conjecture. In Section 3, we will explain the strategy of
the proof. In Section 4, we will consider the models (GL4 x GLg, GLg X
GL2) and (GLg, GLax U). These are the easiest cases since the L-packet
contains at most one element for each group (in particular Conjecture
1.4 is equivalent to Conjecture 1.6). In Section 5, we will consider the
models (GUy x GUy, (GU; x GUy)?) and (GUs, GUy x U). The model
(GUy x GU,, (GUy x GU3)?) is the most complicated case in this paper.
In Section 6, we will consider the models (GSOg x GLy, GLy x U),
(GSOlg, GL2 X U), (GSp6 X GLQ,GLQ X U) and (GSplO,GLQ X U) In
Section 7, we will consider the model (GSpg x GSp,, (GSp, x GSp,)°?).
In Section 8, we will consider the model (E7, PGLy x U).
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2. PRELIMINARY

2.1. Notation. Let F' be a local field of characteristic 0, and ¢ : F' —
C* be a nontrivial additive character. Let G be a connected reductive
group defined over F', g be the Lie algebra of G, Zs be the center
of G, and Ag be the maximal split torus of Zg. We use Gy, Gregy
(resp. @ss, Greg) to denote the set of semisimple and regular semisimple
elements of G (resp. g). For € Gy, (resp. X € gss), let Zg(x) (resp.
Za(X) = Gx) be the centralizer of x (resp. X) in G and let G, be the
neutral component of Z(x). Similarly, for any abelian subgroup T' of
G, let Zg(T) be the centralizer of T in G and let G be the neutral
component of Zg(T). We say x € G(F) is elliptic if Aq = Ag,.
We use G(F)er (resp. G(F)regert = G(F)eu N Greg(F)) to denote the
set of elliptic elements (resp. regular elliptic elements) of G(F'). For
x € Ggs(F) (resp. X € gss(F)), let

DG(x) = | det(1 — Ad(x))|q/q.|r (resp. DG(X) = | det(ad(X))g/gx |F)

be the Weyl determinant where | - | is the normalized absolute value
on F. Finally, we use T(G) (resp. Teu(G)) to denote a set of repre-
sentatives of maximal tori (resp. maximal elliptic tori) of G(F'). For
T € T(G), we use W(G, T) to denote the Weyl group.

For a quasi-character 6 on G(F') and = € Gy (F), let co(x) be the
average of the regular germs of 6 at x. For a regular nilpotent orbit
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O of g,(F), let ¢po(x) be the regular germ of # at = with respect to
O. We refer the reader to Section 4 of [Beu3] for the definition and
basic properties of quasi-characters. If 7 is a smooth finite length rep-
resentation of G(F'), we use 0, to denote its Harish-Chandra character
(which is a quasi-character) and we use

cr(z) = cp, (), cro(x) = o, 0(x)

to denote the regular germs. If M is a Levi subgroup of G' and M
is a quasi-character on M (F), we use i§,(6™) to denote the parabolic
induction of M to G(F). It is a quasi-character of G(F). We refer the
reader to Sections 3.4 and 4.7 of [Beu3] for details. The following two
propositions will be used in later sections.

Proposition 2.1. (Proposition 4.5.1 of [Beu3]) Let 0 be a quasi-character
on G(F) and v € Gs(F). If G, is not quasi-split, then co(x) = 0. If
G, 1s quasi-split, let B, C G, be a Borel subgroup and Tys , C B, be a
mazimal torus. Then we have
DY () co(x) = [W (G, Tysa)| lim D (a")29(z).
2/ €Tys o (F)—x

Proposition 2.2. (Proposition 4.7.1 of [Beu3]) Let 6 = i§,(0™) and
v € Gu(F). Let Xy(x) be a set of representatives for the M(F)-

conjugacy classes of elements in M(F) that are G(F')-conjugated to x.
Then D% (x)Y2cy(x) is equal to

|Za(2)(F) : Go(E)] Y 1 Zu(y)(F) : My(F)| 7 DM () 2equ (y).

yeXn (z)
In particular, co(x) = 0 if the set Xy (x) is empty.

Lastly, we recall the endoscopic transfer of quasi-characters. Let
(G',s',n) be an extended endoscopic triple of G (defined in Section
1.3 of [K]), and let 6 (resp. #') be a quasi-character on G(F) (resp.
G'(F)). Assume that ¢ is stable. We say 6 is the endoscopic transfer

of ¢ if
D%(x)"?0(x) =Y D (y)"*Aly, )0 (y)
y

for all x € G,¢y(F). Here y runs over regular semisimple stable con-
jugacy classes of G'(F), and A(y,x) is the transfer factor defined in
Section 2.3 of [K] (the definition is the same as the one in [LS] if G is
quasi-split). Note that for given x there are only finitely many stable
conjugacy classes y such that the transfer factor is nonzero. In later
sections, we will write down the explicit formula of the transfer factors
in some special cases.
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Remark 2.3. For all the groups in Table 1, the endoscopic group is al-
ways an L-group. Hence we only need to consider the extend endoscopic

triple in this paper instead of the general endoscopic datum defined in
[LS].

2.2. The groups. In this subsection, we will define all the reductive
groups that will be used in later sections. Let £ = F(y/€) be a qua-
dratic extension of F', ng/r be the quadratic character associated to E,
Ng/p (resp. trg/p) be the norm map (resp. trace map), and x — Z be
the Galois action on E. Denote w, to be the longest Weyl element of
GL,,. Define the quasi-split even unitary similitude group GU,, ,(¥) to
be

(2.1) GU,n = {9 € Resp/pGLay | 'gwang = 1(g)wan}

where [(g) € F* is the similitude factor of g. If F' = R, we can also
define the groups
(2.2)

GU, 4 = {9 € Resc/rGL,, | tg - diag(1,, —1,)g = l(g) - diag(I,, —1,)}

for p+q = n with p # q. To be compatible with the standard notation
in the Archimedean case, when F'is p-adic, we will use GU,41,-1 =
GU,,_1 nt1 to denote the non quasi-split inner form of GU,, ,,.

Let
, (0 —1 (0 T, (0 J
J2_(1 0>’J2"_(J§ o )ol={n o
0 0o J
and Ly, = 0 Lsp—a 0 ). Define
~J, 0 0

GSOun = {g € GLuy, | 'gLang = 1(g) Lan, det(g) = 1(g)*"},
GSO2,(D) = {g € GLaun(D) | ' 5,9 = 1(g) T3, }-

Here D/F is unique quaternion algebra over F. We also define
GSpy, = {9 € GLan | '9J3,9 = 1(9) 3.}

GSp,(D) = {g € GL.(D) | 'gwng = l(g)w,}.

We can also define PGSOy, = GSOy,, /GLy, PGSO, (D) = GSOs,(D)/GLy,
PGSp,, = GSp,,/GL; and PGSp,,(D) = GSp,(D)/GL;. Also for
any two similitude groups GH; and GHs, we will use G(H; x Hy) =
(GH; x GH,)? to denote the subgroup

{(g1,92) € GHy x GHy | l(g1) = l(g2)}
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of GH, x GH,. And we use (GH; x GH,)! to denote the subgroup

{(91,92) € GHy x GHy | I(g1) = 1(g2) ™"}

of GH1 X GH2

Lastly, we use E; to denote the split adjoint reductive group of Type
E; and we use E7 4. to denote the split simply connect reductive group
of Type Fr.

2.3. The local Langlands conjecture. In this subsection we recall
the local Langlands conjecture in Conjecture E of [K]. Let G be a quasi-
split reductive group defined over F' and let {G,, | o € H'(F, G)} be the
set of pure inner forms of G. Let Il temp(Go) be the set of irreducible
tempered representations of G,(F'). The local Langlands conjecture
states that

UaEHl(F,G)Hirr,temp(Goc)
is a disjoint union of finite sets (i.e. the local tempered Vogan L-
packets)

Uslly

where ¢ runs over all the tempered L-parameters of G and

Iy = User(rc)p(Ga)
consists of a finite number of tempered representations with I14(G,) C
I temp(Gao) such that the following conditions hold.

e There is a unique generic element in I14(G) with respect to any
Whittaker datum of G. A

e For the given Whittaker datum, there is a bijection between Sy,
the set of irreducible representations of the component group
Sy = Zy/Z3 of the Langlands parameter ¢, and Il (denoted
by 7 > x,) satisfies the following conditions.

— The trivial character of S, corresponds to the unique generic
element of II,(G) with respect to the given Whittaker da-
tum.

— For a € H'(F,G), the distribution character

O, (ca) = Z dim(xx)0x

TI'EH¢ (Ga)

is stable. Moreover, ((Gq)0,(q.,) is the transfer of Op,(q)
where ((G,) is the Kottwitz sign.

— For any o € H'(F,G) and 7 € I4(G,), the restriction
of the central character of y, to Z(G)FF is equal to xq.
Here ,, is the character of Z (G’)FF associated to a via the
Kottwitz isomorphism. Note that the representation y, of
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the component group can be viewed as a representation
of the centralizer Z, of the image of ¢, the group Z (G)FF
belongs to the center of Z, and hence it makes sense to
talk about the restriction of the central character of x, to
Z(G)'r.

— For s € S and for an extended endoscopic triple (G, §', i)
of G (defined in Section 1.3 of [K]) such that s’ € sZ3 and
¢ factors through 7, let I, ,(G’) be the corresponding L-
packet of G’ and let Oy 0.5(G") be the distribution character
of that packet (which is a stable character on G'(F)). Then
for « € HY(F,G), the character

9H¢,a,s = Z tr(XW(S))QTF

TI'EH¢ (Ga)

is the endoscopic transfer of +(Ga )0, (c)-

In this paper, we will assume that the local Langlands conjecture
holds for all the groups in Table 1. To end this subsection, we will
prove the existence of the lifting in our definition of the character of
the component group. To be specific, let (G, H) be one of the models
in Table 1 and let ¢ : Wj — *(G/Zg 1) be a tempered L-packet. Our
goal is to prove the following lemma.

Lemma 2.4. For s € S;, there exists an elliptic extended endoscopic

triple (G',s',tn) of G/Zc.m such that s' € sZg and ¢ factors through
L

7.
Proof. We will only consider the F; case, the rest cases follow from a
similar and easier argument. Let G = E; be the split adjoint reductive
group of Type E; and its dual group G= E7 5(C) is simply connected
(in particular Zx(t) = G, for all t € G.,). To prove the statement, it
is enough to show that for any s € Sy, there exists s' € sZ3 such that

s’ is elliptic in G. Here we say a semisimple element ¢ € G is elliptic if
and only if the center of G, is finite modulo the center of G.

By induction we may assume that this is true for all the maximal
Levi subgroups M of G, i.e. for any tempered L-parameter ¢,; of M
and for any s); € Sy,,, there exists sy, € smZg,, that is elliptic in M.

Now we are ready to prove the statement. Let s’ be any element in
sZg. If the center of Gy is finite then we are done. If not, let A be

a split torus of the center of Gy. The centralizer of A in G is a Levi
subgroup of G. Both s and I'm(¢) belong to the centralizer of A in G.
In particular, there exists a maximal Levi subgroup M of G such that
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s, Im(¢) C M. Let Zy be the centralizer of Im(¢) in M. We have
Zom C Zyand Z3 C Zg \ C Zg.

By induction, we know that we may choose s’ so that it is elliptic in
M. If M is one of the following four maximal Levi subgroups of G:

SLy(C) x SLs(C) x GL1(C)/(Z/15Z),
SLy(C) x SLg(C) x GL1(C)/(Z/6Z), SL:(C) x GLy(C)/(Z/7Z),

the only elliptic elements in M are the center Z - Moreover, each
connected component of the center Z,; contains an element of Zg.
Hence we may choose s" so that it belongs to the center Z (in particular
it is elliptic in G).

If M = Eg,.(C) x GLy(C)/(Z/37Z), we have three cases. If s’ belongs
to the center of M , as in the previous case, we may choose s’ so that it
belongs to the center Z. If the centralizer of " in M is of Type A; x As,
then it is easy to see that there exists an element in s'Z7, C s'Z7 ,, C

s/

s'Z; that is elliptic in G and whose centralizer in G is isomorphic to

Spin,o(C) x SLy(C)/(Z/2Z). If the centralizer of s’ in M is of Type
Ay X Ay X Ag, then it is easy to see that there exists an element in
§'Z%,  Cs'Zg ), C s'Z] that is elliptic in G and whose centralizer in G
is isomorphic to SLe(C) x SL3(C)/(Z/3Z). This proves the case when
M = Eg.(C) x GLy(C)/(2/37).

If M = Sping,(C) x GLi(C)/(Z/2Z), we have three cases. If s
belongs to the center of M , as in the previous case, we may choose s’
so that it belongs to the center Z4. If the centralizer of s" in M is of
Type Dy x Ay x Ay, then it is easy to see that there exists an element
in §'Z5 C §'Z;5, C s'Z; that is elliptic in G and whose centralizer

£

in G is isomorphic to Spin;,(C) x SLy(C)/(Z/2Z). If the centralizer
of &' in M is of Type A3 x As, then it is easy to see that there exists
an element in s'Z7,  C s'Z3 ), C §'Z3 that is elliptic in G and whose

E]

centralizer in G is isomorphic to SLs(C)/(Z/2Z). This proves the case
when M = Spin,(C) x GL{(C)/(Z/27Z).

If M = Spin,,(C) x SLy(C) x GL1(C)/(Z/AZ), we have two cases. If
s' belongs to the center of M , as in the previous case, we may choose
s’ so that it belongs to the center Z,. If the centralizer of s’ in M is
of Type A3 x A; x A; x Ay, then it is easy to see that there exists

an element in §'Z7,  C s'Z3 ,, C s'Zj that is elliptic in G and whose

S
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centralizer in G is isomorphic to SLy(C) x SLy(C) x SLy(C)/(Z/AZ).
This finishes the proof. O

2.4. Transfer factors for GU,,, GSp,, and GSO,,. In this subsec-
tion, we will discuss the transfer factors for GU,,, GSp,,, and GSOs,,
which are defined by the same formula as the classical groups case in
[Wal]. The only difference is that the similitude groups have fewer con-
jugacy classes compared with the classical groups. This will be used in
later sections when we study the behavior of the geometric multiplicity
under endoscopy.

We first discuss the semisimple conjugacy classes for these groups.
For GSp,,,(F'), the conjugacy classes of Sp,,, (F') are given by (Section
1.3 of [Wal])

(Fiy Fleiy 4, Ci)ier
where

e I, is a finite extension of degree d; with Ziel d; = n, and F;
is either a quadratic extension of Fly; or F; = Fy; & Fly,.

o z; € ker(Np,p,,) and

¢; € (ker(trp/py,) NVES)/Im(NF,/F,,)

where Np,/p,, (resp. trpp,,) is the norm map (resp. trace
map).

The conjugacy classes of GSp,,,(F) are very similar to Sp,,(F'), and
the only difference is that (¢;);c;r needs to belong to a quotient of

Wies(ker(trr,/py,) O F)/Im(NE,/py,)-
To be specific, we say two elements (¢;);e; and (});er in
Wies(ker(trppe) N EFT)/Im(NE, py,)

are equivalent if they are differed by an element of F'*, i.e. there exists
c € F* such that cc; = ¢, for all i € I. We use

Wier(ker(trp/py,) O FS) [ Im(Neyey,) ) ~

to denote the quotient under this equivalence. Then the conjugacy
classes of GSp,,,(F') are given by

(Fi, Fyj, @y, Ci)ie[
where

e F,; is a finite extension of degree d; with Zie ;di = n, and Fj
is either a quadratic extension of F; or F; = F; ® F.,.
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o z; € I and
(ci)ier € Wicr(ker(trp py,) O F7) /[ IM(NF, )/ ~
such that NFz/Fiz(xl) = NFj/Fij (IEJ) € F* for all ’l,j el

Next we consider GSO,, (F'). For our application, we only need to
consider the split case. The conjugacy classes of SO,, (F') are described
by (Section 1.3 of [Wal] and Section 1.4 of [Wal3])

(F, Fiaiy T, Ci)ier

where

e [, is a finite extension of degree d; with Zie ;di = n, and F;
is either a quadratic extension of F; or F; = F; & F.,.
o ¢; € FJ;/Im(Ng,p,,) and ; € ker(Np,/p,,).
e The quadratic form associated to (F;, Fl;, ¢;)ier (defined in Sec-
tion 1.3 of [Wal]) defines the split even special orthogonal group.
Unlike the symplectic case, each (Fj, Fy;, x;, ¢;)ier determines two
conjugacy classes in SOy, (F') differed by the outer automorphism. The
conjugacy classes of GSOy,(F') are very similar to SOy, (F'), the only
difference is that (¢;);e; needs to belong to the quotient (the equivalence
relation is defined in the same way as in the symplectic case)

HiEIF:Ei/Im(NFi/F:ti)/ ~ -
The conjugacy classes of GSO,,(F) are described by
(Fi, Fiei, w4, ¢ )ier
where

e [, is a finite extension of degree d; with Zie ;di = n, and Fj
is either a quadratic extension of Fl; or F; = F; ® F.,.
e z; € F and

(¢i)ier € HiGIF:>I:<i/Im<NFi/F:ti>/ ~

such that Ng,/r,,(2;) = Np,/p,,(7;) € F* for all i,j € I.
e The quadratic form associated to (Fj, Fly;, ¢;);es defines the split
even special orthogonal group.
Again each (F;, Fy;, z;, ¢;)ies determines two conjugacy classes in GSOa,, (F')
differed by the outer automorphism.
For GU,,, let E/F be a quadratic field extension and we consider the
group GU, ,(F) with p+¢ = 2n (if F is p-adic we require p € {n,n+1}).
The conjugacy class of U, ,(F') is given by (Section 1.3 of [Wal])

(Fy, Firiy @i, G)ier

where
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e I; is a finite extension of degree d; with ), ., d; = n, and
F,=F,;®r E.

® ¢ c (ker(trFi/Fﬂ) N EX)/Im<NFi/Fii> and z; € ker(NFi/Fﬂ)'

e The Hermitian form associated to (F;, Fi;, ¢;)ier (defined in Sec-
tion 1.3 of [Wal]) defines the unitary group U,,.

The conjugacy classes of GU,, ,(F) are very similar to U, ,(F'), the only
difference is that (¢;);e; needs to belong to a quotient of

Wier(ker (trr,/py,) O F)/Im(NE,/py,)-
To be specific, we say two elements (¢;);er and (¢});er in
Wier(ker(trp/p,,) NE)/Im(NE,/p.,)
are equivalent if they are differed by an element of F'*. We use
Hies (ker(tr e,) 0 FX) /TN ,)] ~

to denote the quotient under this equivalence. Then the conjugacy
classes of GU,,,(F) are given by

(Fy, Flaiy i, Ci)ier
where

e [, is a finite extension of degree d; with Zie[ d; = n, and
F,=F,,®rF.
e z; € F* and

(ci)ier € Wier(ker(trp, p.,) N E)/Im(NE,yp.,)/ ~

such that Ng,/p,,(2;) = Np,/p,,(x;) € F* for all i,j € I.
e The Hermitian form associated to (Fj, Fiy;, ¢;)ies defines the uni-
tary group U, ,.

Remark 2.5. The stable semisimple conjugacy classes for all the cases
above are given by (F;, Fy;, x;), i.e. the only difference between rational
conjugacy classes and stable conjugacy classes is the extra c; for rational
conjugacy classes.

Next we discuss the extended elliptic endoscopic triple (G, s', n) for
these groups. For GSp,,,, the group G is of the form G(Sp,,,, X SOa,,)
with n = nj+nsq, ny # 1, and SO, is the split even special orthogonal
group. The projection of the element s" € GSpin,,, ,;(C) to SOg,41(C)
is conjugate to the matrix diag(Zan, 11, —Ion,)-

For GSOs,,,, the group G’ is of the form G(SOg,, x SOs,,) with n =
ny + ng, ny,ng # 1, and SOy, (resp. SOs,,) is the split even special
orthogonal group. The projection of the element s’ € GSpin,, (C) to
SO2,(C) is conjugate to the matrix diag(lon,, —Ian,)-
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For GU,,, the group G’ is of the form G(Uy, n, X Unyn,) with n =
ny + ny and the projection of the element s’ € GLa,(C) x GL;(C) to
GL2,(C) is conjugate to the matrix diag(ls,,, —Ion,). In all these cases
Ly is the natural embedding from LG’ into LG.

Finally we recall the definition of the transfer factor. Let (G, s',n)
be an elliptic extended endoscopic triple for G = GSp,,, (resp. GSOs,,,
GU,,) with

G' = G(Spyy,, X SOgy,) (resp. G(SO2n, X SO2,), G(Uny iy X Unyiny))-

Let y = (y*,y ™) be a stable conjugacy class of G'(F") corresponding to
(I+a (-F;’,v F:,tzv yi)iGIJr)? (‘[_7 (Ela F:,tw yi)iEI*)

where y* is a stable conjugacy class of GSp,,,, (resp. GSOs,,, GUy, ;)

correspondes to (I, (F/, F',,yi)icr+) and y~ is a stable conjugacy class

of GSOgyy, (resp. GSOgy,, GU,, »,) correspondes to (I, (F}, F'L;, yi)ier-)-

Let x be a conjugacy class of G(F') corresponding to (Fj, Fly;, i, ¢;)icr-

If G is not the even special orthogonal group, we say x and y are
associated to each other if

[:I+U177 (EaF:tiuxi):(E/7Fiiuyi)a Viel

If GG is the even special orthogonal group, then we still need the above
relation holds. In addition, there are 2 conjugacy classes of G associated
to (F}, Fii, T, ¢i)ier and there are four stable conjugacy classes of G
associated to

(I, (F, Flyyyi)iers) U (I, (FY, Flgy Yi)ier)
Each conjugacy class of GG corresponds to two stable conjugacy classes
of G'.
The transfer factor A(y, z) is nonzero only if x and y are associated
to each other. If this is the case, then the transfer factor is given by

(Section 1.10 of [Wal])

AG/,G(.% r) = Hz’e[*nFi/Fii(ci )
where * only depends on the stable conjugacy class of x. In this paper,
we do not need the explicit formula of . Instead, we only need to know
whether the transfer factors are trivial or non-trivial. Hence we will

not recall the definition of * here and we refer the reader to Section
1.10 of [Wal] for details.

2.5. The epsilon factor. Let (G, H, x) be one of the models in Table
1, ¢ : Wi — LG/Zg i be a tempered Langlands parameter of G, 1, be
the associated tempered L-packet, Z,; be the centralizer of the parame-
ter and Sy be the component group. We fix an additive character ¢ of
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I and we use V' to denote the underlying space of the representation
px (ie. px : Y'G — GL(V)). For s € Sy, by Lemma 2.4, we can find
an elliptic extended endoscopic triple (G’,s’,%n) such that s’ € sZg
and ¢ factors through 7. For the model (GL4 x GLy, GLy x GLs), we
require the lifting s’ to be of the form =+(I4, I5). Let Vi _ be the —1
eigenspace of V with respect to the operator px(s’). Since s’ commutes
with Im(¢), the space Vi _ is stable under px(Im(¢)), this gives us a
representation px s of Wi on Vy _ ie. pxeq: Wp — GL(Vy ). If
the model is not the two models in Table 1 related to unitary groups,
we define

1
we, i (8) = €(§,px,¢,s/, Y).

For the two models related to unitary groups, we refer the reader to
Sections 2.5.2 and 2.5.3 for its definition. Since px is a sympletic rep-
resentation, px 4« is also symplectic and hence we have the following
proposition.

Proposition 2.6. The function wy g ts independent of the choice of
the character v and takes values in {£1}.

For the rest of this paper, we will skip v in the expression of the
epsilon factor. In later sections we will also show that under certain
assumption, the definition of wy g (s) is independent of the choice of the
elliptic extended endoscopic triple (G’, s',%n) and w, g is a quadratic
character of Sg.

The goal of this subsection is to explicitly describe the representation
Px.ss for each case.

2.5.1. The general linear group case. We first consider the two models
for general linear groups. For the model (GLy x GLg, GLy X GLg), the
dual group of G/Z¢ y is

(GL4(C) x GLo(C)' = {(g1,92) € GL4(C) x GLy(C) |
det(g1) = det(g2) "'}

In this case, the component group S, is either the trivial group or Z/27Z.
If Sy = Z/27Z then —(Iy, ) belongs to the non-neutral component
component of Z,. Recall that in this case we require the lifting of the
element in Sy to Z, to be of the form +(1y, I5). We have wy p(s) =1
if s = ([4, [2) and
w¢7H(3) = 6(1/27 Iy, PX) € {:tl}

if 8, = —(]4, Ig)

For the model (GLg, GLy X U), the dual group of G/Z¢ p is SLg(C).
The component group Sy is Z/6Z, Z./3Z, Z/2Z or the trivial group. In
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this case, the lifting s’ € Z; is of the form s’ = als with a® = 1. We
have wy g (s) = 1 if @ has order 1 or 3, and

we,m(s) = €(1/2,114, px) € {£1}

if a has order 2 or 6.

2.5.2. The model (GUy x GUy, (GUy x GU,)?). Next we consider the
model (GUy; x GUsy, (GUy x GU,)Y). In this case the dual group of
G/Zcm is (GLy(C) x GL2(C))* x GL;(C) and the L-group is
((GL4(C) x GLy(C))' x GL{(C)) x {1,0}
where o acts by the involution
(g, h,a) € (GLy(C) x GLy(C))" x GL;(C)
= (Jtg I BPhTIS adet(g)).

The representation px = p; @ pa where p; is the tensor product of
the exterior square representation of GL4(C) with the standard repre-
sentation of GLy(C) and p, is the standard representation of GL4(C)
plus its dual. In particular, we have dim(p;) = 12 and dim(ps) = 8.
We refer the reader to Section 6.4 of [WZ2] and Section 3.1 of [Z] for
the o-action on these spaces.

In this case the lifting s’ is of the form s’ = (s1,s2,a) with s; €
GL4(C) either equal to 14 or conjugate to diag(ly, —1Is), so = £1s,
and a € C*.

If s; = £1,, then

1 .
E(§7PX,¢>,3’) - 1 lf 31 = [4752 = 12’

1 1 .
€(§>pX,¢>,s’) = €(§,H¢,p1) € {:i:l} if S1 = I4, So9 = —[2,
1 1 .
€(§7PX,¢,S’) = 6(§,H¢,p2) € {il} if 51 = _14732 = IQa
1 1 .
€(§,PX,¢,S/) = €(§,H¢,px) € {1} if s; = =14, 80 = —1Is.

Let ng/r be the quadratic character of /' and let x4 be the central
character of the L-packet of GU, induced by II,. We define

W¢7H(8) =1if S1 = 14, So9 = IQ,

1 .
we,m(8) = UE/F(—l)X¢(—1)€(§7H¢,P1) e {£1}if sy = Iy, 89 = —1Is,

1 :
o (5) = Xo(—Ve(5: T p2) € {1} i 53 = ~Tiysp = I,

1 .
W, (s) = 77E/F(—1)€(§,H¢>PX) e {£1}if sy = — 1y, 50 = —Io.



24 CHEN WAN AND LEI ZHANG

If s; does not belong to the center, let W be the 4 dimensional
standard representation of GL4(C) and we can decompose W as

W =W, ,®W,_

where Wy, 4 (resp. Wi, ) is the +1 (resp. —1) eigenspace of s; and
dim(Ws, ;) = dim(W,, ~) = 2. We can also decompose p; o ¢ as

P1Od=pryg D Py

where the underlying vector space of p; ¢ 4 is the tensor product rep-
resentation of GLy(C) x GLy(C) x GL2(C) (the first and second copy
of GLy(C) comes from the decomposition W = Wy, L & W, _) and the
underlying vector space of p) , 4 is the tensor product of the standard
representation of the third GLy(C) copy with the direct product of the
exterior square representation of the first two GLy(C) copy.

We can also decompose py o ¢ as

p2 © ¢ = p2,8/7¢,+ @ p278/7(b7_

where the underlying vector space of ps ¢ 4 + (resp. p2.¢ ) is the stan-
dard representation of GLy(C) associated to Wy, 1 (resp. W;, _) plus
its dual. All of these four representations are self-dual of symplectic
type. We have

1 1 ‘
E(§v PX.6,5) = 6(57/)1,5’@ D pasr,p—) € {£1}if 59 =D,
1 1, _
(5 Px00) = (5 Phs @ o) € {1} i 53 = — o,

In this case, the parameter ¢ factors through the L-group of G' =
G(Uy x Uy) x GUy where the first two copies of Us correspond to the
decomposition W = Wy, , & W, _. We let II,(G’) be the associated
L-packet and let x4+ 1 (resp. Xe.s 2, Xs.s7,3) be the central character of
the L-packet of U, obtained by restricting the L-packet I14(G’) to the
first (resp. second, third) U, copy in G'. Then we have

Xo,s' 1Xd,s',2Xp,s',3 = 17 X¢,s’,1(_1)x¢,s/,2(_1> = X¢(_1)
We define

1 .
we, i () = UE/F(_l)X¢,s/,2(—1>€<§7Pl,s/,¢> D posop—) € {1} if 59 = Iy,

1 )
we,n(8) = X¢,5/71(_1)6<§7p/1,8’,¢ D posg,—) € {£1}if 59 = —1s.
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2.5.3. The model (GUg, GUyxU). Next we consider the model (G, H) =
(GUg, GUg x U). In this case the dual group of G/Z¢ g is SLg(C), and
the L-group is SLg(C) x {1,0} where o acts by the involution

g < SL()(C) — J(jtg_ljﬁ_l.

The representation px is the exterior cube representation of SLg(C)
and we refer the reader to Section 3.1 of [Z] for the o-action on this
space. Let W be the 6-dimensional standard representation of SLg(C).
In this case the lifting s’ is conjugate to one of the following 4 matrices:
diag(ilg, :l:]4)

If s = £, then 6(%70)(,(;5,3’) =1if & = I and

1
6(57 pX,¢>,s’) - 6(1/27 H¢7 PX ¢) < {j:l}
if s = —Ig. In this case we define wy y(s) = 1if s’ = I and

we,n(s) = ne/r(=1)e(1/2,1ly, px, ) € {£1}
if & = —1Ig.
If " does not belong to the center of the dual group, we can decom-
pose W as
W=Wy, oWy _
where Wy o (resp. Wy _) is the +1 (resp. —1) eigenspace of s’ and
dim(Wy 1) € {2,4}. In this case we can also decompose px o ¢ as

Px 0O = Pros B P20,
where the underlying vector space of p; 4 ¢ is the tensor product of the
exterior square representation of GL4(C) with the standard represen-
tation of GLy(C), and the underlying vector space of ps 4 ¢ is the direct
sum of the exterior cube representation of GL4(C) and the tensor prod-
uct of the standard representation of GL4(C) with the exterior square
representation of GLy(C). If dim(Wy ;) = 2 (resp. dim(Wy ;) = 4),

we have
1

G(E,px,@s') = 6<1/27102,¢),s’) € {£1}

1
(resp' €<§7pX’¢7S,) - 6(1/2;/)1,(;5,3’) € {:]:1})'

In this case the parameter ¢ factors through the L-group of G' =
G(Uy x Uy). Let I1,(G") be the associated L-packet and let x, ¢ be the
central character of the L-packet of U, induced by I14(G’). We define

wo, i (8) = Xo.s (=1)€(1/2, o) € {£1}

(resp. we,1(8) = NE/r(—1)Xe,s (—1)e(1/2, p1,s) € {£1})
if dim(Wy ;) =2 (resp. dim(Wy ;) = 4).
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2.5.4. The model (GSpg x GLg, GLy x U). Next we consider the model
(GSpg x GL2, GLy x U). The dual group of G/Zg g is

(GSpin,(C) x GLy(C))* = {(g1,92) € GSpin,(C) x GLy(C) |
[(g1)~" = det(g2)}-

The center of the dual group is isomorphic to GL;(C) x Z/27Z. Let
W be the 7 dimensional standard representation of GSpin,(C). In this
case, up to multiplying the lifting by some element belonging to the
neutral component of the center, the lifting s’ is of the form s’ = (s1, I5)
with s; € Spin,(C) such that s; induces a decomposition of W

W =W, .&W,_

where Wy, 4 (resp. Wy, _) is the +1 (resp. —1) eigenspace of s; and
dim(Wy, —) € {0,4,6}.

If s’ belongs to the center of the dual group ( <= dim(W,, _) = 0),
then wy g(s) = 1 if s’ belongs to the neutral component of the center
of of the dual group and

weu(s) = €(1/2,1ly, px) € {£1}

if s does not belong to the neutral component of the center of of the
dual group.

If s does not belong to the center of the dual group and if the order
of s’ is 4, then dim(W,, _) = 6 and it is easy to see that the space Vy _
is zero and we have wy () = 1. In this case we can decompose px o ¢
as

PXO¢:P¢@PZ

where the underlying vector space of p, (resp. pg) is the tensor product
of the standard representation of GLy(C) with a Half-Spin representa-
tion of the even Spin group associated to Wy, _. This implies that
(3,11 ) =1
€\g, g, PX :
If s’ does not belong to the center of the dual group and the order of
s"is 2, then dim(Ws, —) = 4. Moreover, in this case, we can decompose
the representation py o ¢ as

Px 0P = ps g+ D Psg—

where the underlying vector space of py 4+ (resp. py ) is the tensor
product of the Spin representation of the odd Spin group associated to
W, + with a Half-Spin representation of the even Spin group associated
to Wy, — and the standard representation of GLo(C), and it is the
+1 (resp. —1) eigenspace of px(s’). Both of them are self-dual of
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symplectic type and we have

1
we,m () = G(E,Ps/,¢,—) € {£1}.

Remark 2.7. For each decomposition W = W, & W_ of the space W
with Aim(W_) = 4, there are exactly two elements

s' = (s1,15),s" = (s}, I) € (GSpin,(C) x GLy(C))°
differed by the nontrivial element in center of Spin,(C) such that
Wy=Wg, =W, , W =W, =Wy

‘e
The +1 (resp. —1) eigenspace of px(s') is equal to the —1 (resp. +1)
eigenspace of px(s”). A similar version of this remark also applies to

all the other models related to GSp and GSO.

2.5.5. The model (GSpyy, GLaxU). Next we consider the model (G, H)
= (GSp;g, GLy x U). The dual group of G/Z¢ y is Spiny, (C). Let W
be the 11-dimensional standard representation of Spin;;(C). In this
case, the lifting s’ induces a decomposition of W

W =Wy, ®Wy_

where Wy 4 (resp. Wy _) is the +1 (resp. —1) eigenspace of s’ and
dim(Wy ) € {0,4,6,8,10}.

If s’ belongs to the center of the dual group ( <= dim(Wy _) = 0),
then wg g(s) =11if s =1 and

wo,u(s) = €(1/2, 114, px) € {£1}
if 8" # 1.

If s does not belong to the center of the dual group and if the order
of §" is 4, then dim(Wy _) € {6,10} and it is easy to see that the space
Vy _ is zero and we have wy (s) = 1. In this case, we can decompose
px © ¢ as

px 0 d = py® py
where the underlying vector space of p, (resp. pg) is the tensor product
of the Spin representation of the odd Spin group associated to Wy
with a Half-Spin representation of the even Spin group associated to
Wy . This implies that e(3,II,, px) = 1.

If s’ does not belong to the center of the dual group and the order
of s is 2, then dim(Wy _) € {4,8}. Moreover, in this case, we can
decompose the representation px o ¢ as

PX © )= psg1 D Psg-
where the underlying vector space of py 4+ (resp. ps ) is the tensor
product of the Spin representation of the odd Spin group associated to
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W 4 with a Half-Spin representation of the even Spin group associated
to Wy _ and it is the +1 (resp. —1) eigenspace of px(s’). Both of them
are self-dual of symplectic type and we have wg g (s) = €(3, psg—) €

{1},

2.5.6. The model (GSpg x GSp,, G(Sp, X Sp,)). Next we consider the
model (GSpg x GSpy, G(Spy X Spy)). The dual group of G/Z¢ g is

(GSpin,(C) x GSpins(C))! = {(g1,92) € GSpin,(C) x GSpins(C) |
l(Ql)l(92) = 1}-

The center of the dual group is isomorphic to GL;(C) x Z/2Z. Let V;
(resp. V) be the 7 (resp. 5) dimensional standard representation of
GSpin,(C) (resp. GSpins(C)). In this case, up to multiplying the lifting
by some element belonging to the neutral component of the center, the
lifting s’ is of the form s' = (s1, s2) with (s1, s2) € Spin,(C) x Sping(C).
It induces the decomposition

‘/1 = ‘/1751,-&- ¥ ‘/1,81,—7 ‘/2 = ‘/2,52,—&- @ ‘/2,82,—

where

o Vi + (vesp. Vi, ) is the +1 (resp. —1) eigenspace of s; and
dim(Vi,, ) € {0,4,6}.
o Vs, 1 (vesp. Vo, ) is the +1 (resp. —1) eigenspace of sy and
dim(Va, ) € {0,4}.
If s" belongs to the center of the dual group ( <= dim(Vi,, ) =
dim(Va,, ) = 0), then wy y(s) = 1 if s’ belongs to the neutral compo-
nent of the center of of the dual group and

wo,r(s) = €(1/2,11y, px) € {£1}

if " does not belong to the neutral component of the center of the dual
group.

Then we consider the case when s does not belong to the center of
the dual group. If the order of &' is 4 ( <= dim(V;, ) = 6), it
is easy to see that px(s’) does not have —1 eigenspace and we have
wy.m(s) = 1. Moreover, we can decompose px © ¢ as

px 06 = ps®py

where the underlying vector space of p, (resp. pg) is the tensor product
of a Half Spin representation of the even Spin group associated to V; 5, —
with the Spin representation of the Spin group associated to V5. This
implies that e(%,Hd,,pX) =1.
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If the order of s’ is 2, there are three cases. The first case is when
dim(Vi 5, —) = 4 and dim(Va, —) = 0 (in particular, sy belongs to the
center of GSping(C)). We can decompose the representation px o ¢ as

PX 0P = P gt D P -

where the underlying vector space of py s (resp. pgs_) is the +1
(resp. —1) eigenspace of px(s'), and it is the tensor product of the
Spin representation of GSpins(C) with the Spin representation of the
odd Spin group associated to Vi, + and a Half-Spin representation
of the even Spin group associated to V4, —. Both representations are
self-dual of symplectic type. We have wg i (s) = €(3, ps.o—) € {£1}.

The second case is when dim(V; s, —) = 0 and dim(Vz,, ) = 4 (in
particular, s; belongs to the center of GSpin,(C)). We can decompose
the representation py o ¢ as

Px OO = pyo+ D Psg-

where the underlying vector space of py 4 (resp. pgs—) is the +1
(resp. —1) eigenspace of px(s'), and it is the tensor product of the
Spin representation of GSpin,(C) with a Half-Spin representation of
the even Spin group associated to Vi, —. DBoth representations are
self-dual of symplectic type. We have wg i (s) = €(3, ps.o—) € {£1}.

The last case is when dim(Vig, —) = dim(Va,, ) = 4. We can
decompose the representation px o ¢ as

Px OO = ps gt D Pspt— D Psg—+ DB Ps p——

where the underlying vector space of each of the four representations
is the tensor product of a Half-Spin representation of the even Spin
group associated to Vi, — with the Spin representation of the odd
Spin group associated to V; ;4 and a Half-Spin representation of the
even Spin group associated to Vi s . Moreover py 4 1+ @ ps .5 —— (resp.
Ps' . +— B psr.p—4) 18 the +1 (resp. —1) eigenspace of px(s’). All of the
four representations in the decomposition are self-dual of symplectic
type. In this case, wy g (s) is equal to
1

6(§,p5/7¢7+_ D psg,—+) € {£1}.

2.5.7. The model (GSOg x GLy, GLy x U). Next we consider the model
(GSOg x GLy, GLy x U). The dual group of G/Z¢ p is

(GSping(C) x GLy(C))" = {(g1,92) € GSping(C) x GLy(C) |
1(g1)™" = det(ga)}-
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The center of the dual group is isomorphic to
C* X Z/2Z x Z)2Z

where C* and the first copy of Z/27Z act trivially under the Half-Spin
representation px, and the second copy of Z/27Z acts via the sign char-
acter.

Let W be the 8-dimensional standard representation of GSping(C).
In this case, up to multiplying the lifting by an element belonging to the
neutral component of the center, the lifting s is of the form s’ = (s1, I5)
with s; € Sping(C) and s; induces a decomposition

W=Wy oW, _

where Wy,  (resp. W, _) is the +1 (resp. —1) eigenspace of s; and
dim(W,, —) € {0,4,8}.

If s" belongs to the center of the dual group ( <= dim(W,, _) €
{0,8}), then wy g(s) =1 if

s e C* xZ/)2Z x {1}
and wy g (s) = €(1/2,1,, px) € {£1} if
s e C* xZ)27 x {—1}.

If s" does not belong to the center of the dual group, then dim(Ws, ) =
4. We can decompose the representation px o ¢ as

PX O D= Psipt D P
where the underlying vector space of py 4+ (resp. ps 4 —) is the tensor
product of a Half-Spin representation of the even Spin group associated
to Wy, + with a Half-Spin representation of the even Spin group associ-
ated to W, _ and the standard representation of GLy(C), and it is the
+1 (resp. —1) eigenspace of px(s’). Both representations are self-dual
of symplectic type and we have wg g (s) = €(3, pss—) € {£1}.

2.5.8. The model (GSO15, GLaxU). Next we consider the model (G, H)
= (GSOy3, GLy x U). The dual group of G/Z¢ g is Spin;4(C). The cen-
ter of the dual group is (Z/27Z)? and we will denote it by

{1,2,2/, 22}

where z belongs to the kernel of the map Spin;,(C) — SO12(C) and 2’
is the unique nontrivial element in the center that acts trivially on the
Half-Spin representation px.

Let W be the 12 dimensional standard representation of Spin;,(C).
The lifting s" induces a decomposition

W =Wy, &Wy_
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where Wy 4 (resp. Wy _) is the +1 (resp. —1) eigenspace of s’ and
dim(W,_) € {0,4,6,8,12}.

If s" belongs to the center of the dual group ( <= dim(Wy _) €
{0,12}), then wy p(s) =11if s € {1,2'} and

wo,n(s) = €(1/2, 114, px) € {£1}
if s € {z,22'}.

If s does not belong to the center of the dual group and if the order
of s" is 4, then dim(Wy _) = 6 and it is easy to see that the space Vi _
is zero. This implies that wy g (s) = 1. In this case we can decompose
px o ¢ as

px 0 =ps D p,
where the underlying vector space of p, (resp. pg) is the tensor product
of a Half-Spin representation of the even Spin group associated to Wy
with a Half-Spin representation of the even Spin group associated to
Wy _. This implies that e(%, Iy, px) = 1.

If s’ does not belong to the center of the dual group and the order
of ¢ is 2, then dim(Wy _) € {4,8}. Moreover, in this case, we can
decompose the representation px o ¢ as

PX O )= Psg1 D Psg-

where the underlying vector space of py 4+ (resp. ps 4 —) is the ten-
sor product of a Half-Spin representation of the even Spin group as-
sociated to Wy with a Half-Spin representation of the even Spin
group associated to Wy _ and it is the +1 (resp. —1) eigenspace of
px(s’). Both of them are self-dual of symplectic type and hence we
have wy, i (s) = €(3, psr.p,—) € {£1}.

2.5.9. The E7 case. The last case is the model (E7, PGLy x U). The
dual group is the simply connected form E7,.(C). We have five cases
for the lifting s’

The first case is when s’ belongs to the center of the dual group
(which is isomorphic to Z/27Z). In this case, we have wy g(s) = 1 if
s’ =1 and

won(s) = €(1/2, 1y, px) € {+1}
if &' # 1.

The second case is when Gy ~ Spin,(C) x SLy(C)/(Z/2Z). Up
to conjugation there are two such elements differed by the nontrivial
element in the center, and both of them has order 2. In this case the
restriction of the representation px to the centralizer Gy decomposes
as p1 @ pa where p; is a Half-Spin representation of Spin,,(C) and ps is
the tensor product of the standard representation of Spin;,(C) with the
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standard representation of SLy(C). Both representations are self-dual
of symplectic type. We can decompose the representation px o ¢ as

Px 0P = ps g+ D Psg—

where the underlying vector space of py 4 (resp. pg ) is the +1
(resp. —1) eigenspace of px(s’). Moreover, we know that the underly-
ing vector space of py 4+ (resp. py ) is either the space of p; (resp.
p2) or the space of ps (resp. p1) depending on whether px(s’) acts
identically on the space of p; or on the space of py. In both cases we
have wy, i (s) = €(5, psrg,—) € {£1}.

The third case is when Gy ~ SLg(C) x SL3(C)/(Z/3Z). Up to con-
jugation there are two such elements differed by the nontrivial element
in the center, one has order 6 and the other one has order 3. In this
case the restriction of the representation px to the centralizer GSI de-
composes as

px = p1 D p2 & (p2)”
where p; is the exterior cube representation of SLg(C) and p, is the ten-

sor product of the standard representation of SLg(C) with the standard
representation of SL3(C). We can decompose px o ¢ as

pPx © Q= py.g D P,s',¢

where the underlying vector space of py 4 (resp. p;,’d,) is p1 (resp.
p2 @ (p2)¥). In particular, we have

6(1/2, H¢, pX) = 6(1/2, ,OSI,¢).

If the order of ' is 3, then px(s’) does not have —1 eigenspace and
we have wy g(s) = 1. If the order of s is 6, then the —1 eigenspace of
px(s') is the space of p; and we have wy y(s) = €(3, py ) € {£1}.

The fourth case is when Gy ~ SL;(C) x SLy(C) x SLy(C)/(Z/AZ).
Such an element is unique up to conjugation. In this case, the restric-
tion of the representation px to the centralizer Gy decomposes as

px = p1® pa® ps @ (p3)"

where p; (resp. pg) is the tensor product of the exterior square rep-
resentation of the first (resp. second) SL4(C) copy with the standard
representation of SLy(C), and p3 is the tensor product of the standard
representation of the first SL4(C) copy with the dual of the standard
representation of the second SL4(C) copy. We can decompose px o ¢
as

Px © qb = Ps',p,1 D Ps! .2 S pls’,¢>
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where the underlying vector space of py g1 (resp. py g2, Pl ) is the
space of p; (resp. p2, p3 @ (ps3)”). In particular, we have

€(1/2,10y, px) = €(1/2, psr .91 ® psr,p.2).

If &' is of the form (14, £ily, I) (resp. (4, £ily, —1I5)), the —1 eigenspace
of px (') is the space of ps (resp. p1), and we have wg 1 (s) = €(3, psp2) €
{£1} (vesp. wym(s) = e(%, psi o) € {£1}).

The last case is when Gy = SLg(C)/Z,. Such an element is unique
up to conjugation. In this case the restriction of the representation
px to the centralizer é’sx decomposes as p; @ (p1)" where p; is the
exterior square representation of SLg(C). It is easy to see that the —1
eigenspace of px(s') is zero and hence wy g (s) = 1. Moreover, We can
decompose px o ¢ as

PX 0D =Py D Py
where the underlying vector space of py 4 (resp. py ;) is the space of
p1 (resp. (p1)Y) and we have

6(1/2, H¢, px) =1.
This finishes the description of px 4« for all the models in Table 1.

3. THE STRATEGY OF THE PROOF

In this section, we will explain the strategy of the proof of Theorem
1.10. Roughly speaking, the idea is to use the multiplicity formula
m(m) = Mgeom () of the model (G, H) to study the behaviors of the
multiplicity under parabolic induction and endoscopic transfer (note
that our assumption of the L-packet in Theorem 1.10 implies that the
L-packet is either of endoscopic type or the parabolic induction of an
L-packet of some Levi subgroup). Then we can reduce the problem to
some models that are smaller than (G, H), for which we can use the
assumption in Theorem 1.10.

We first explain the strategy for all the models (G, H) in Table 1
except the model (GU,; x GUsy, (GU,y x GU,)?). The model (G, H)
has a unique pure inner form (Gp, Hp) corresponding to the unique
quaternion algebra D over F. We have the multiplicity formulas

m(m) = Mgeom (), M(TD) = Mgeom (TD)
for these models. We will recall the definition of the geometric mul-
tiplicities Mgeom (7) and Mmgeom(mp) in later sections. Now let I, =
[I4,(G) UIl,(Gp) be a tempered L-packet. We first consider the case
when Il is not discrete with |II4(G)| = 1. In this case, one of the two
statements is correct.
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(1) The L-packet IL; is the parabolic induction of an L-packet IL y
of a proper parabolic subgroup M of G.

(2) There exists a proper elliptic extended endoscopic triple (G’, s', £n)
of G such that the Langlands parameter ¢ factors through the
L-group of GG/, i.e. the L-packet is of endoscopic type.

If the L-packet is the parabolic induction of an L-packet of a proper
Levi subgroup (we may assume that the Levi subgroup is a maximal
Levi subgroup), by studying the behavior of the geometric multiplicity
Mygeom () under parabolic induction, we only need to consider certain
model associated to the Levi subgroup (denoted by (M, My)). If there
is an analogue of the Levi subgroup M in the pure inner form Gp
(denoted by Mp), then we can also study the behavior of mgeom(7mp)
under parabolic induction and hence we only need to consider certain
model associated to the Levi subgroup (denoted by (Mp, My p)). For
all the cases in Table 1, the models (M, My ) and (Mp, My p) are either
models that are smaller than (G, H), or they have been considered in
previous works. On the other hand, if there is no analogue of the Levi
subgroup M in the pure inner form Gp, we will show in later sections
that the model (M, My ) is just the Whittaker model which is well
understood. Combining with our assumption in Theorem 1.10, we can
prove the weak conjecture for this L-packet.

For example, for the model (G, H) = (GSpgx GSp,, (GSp, x GSp,)°),
if the Levi subgroup is

GSpg X (GLg x GLy) (resp. (GSp, x GLy x GL;) x GSpy),
we can reduce to the model

(M, MH) = (GSp6 X GLQ,GLQ X U)

(resp. (M, My) = (GSp, x GLy x GLs, (GLy x GL)?))

which is smaller than (G, H). All the other maximal Levi subgroups
do not have an analogue in the pure inner form Gp(F') = GSps(D) x
GSpy(D) and the model (M, My) is just the Whittaker model.

If the L-packet is of endoscopic type, by studying the behaviors of
the geometric multiplicity mgeom (7) (resp. Myeom(mp)) under the en-
doscopic transfer from G’ to G (resp. Gp), we only need to consider
certain model associated to G'. For all the cases in Table 1, the model
associated to G’ is either smaller than (G, H) or has been considered
in previous works. Combining with our assumption in Theorem 1.10,
we can prove the weak conjecture for this L-packet. This also proves
Theorem 1.14.
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For example, for the model (G, H) = (GSpgx GSp,, (GSp, x GSp,)°),
if the endoscopic group is

GSpg x GSOy4 (resp. G(Sp, x SO4) x GSpy),
then we can reduce to the model
(GSpg x GLg, GLy x U) (resp. (GSp, x GLy x GLg, (GLy x GL3)?))

which is smaller than (G, H). If the endoscopic group is GSOg x GSp,,
we get the Whittaker model.

In both cases above, once we have proved the weak conjecture for the
L-packet, we get a formula of the epsilon factor €(1/2,I1,, px) in terms
of the Harish-Chandra character of the L-packet. We also have analo-
gies of the formulas for smaller models by our assumption in Theorem
1.10. Combining the formulas of epsilon factors with the formula of
the geometric multiplicity under endoscopy and the definition of wy #,
we can prove Theorem 1.10.

To be specific, by Remark 1.1, the unique distinguished element in
the packet corresponds to a character of the component group. We use
wg to denote this character and we can view it as a character of the
centralizer Zy. For s € Sy, let (G',s',n) be an elliptic extended endo-
scopic triple such that ¢ factors through *n and s’ € SZ 5 (its existence
was proved in Lemma 2.4). We just need to show that wg g (s) = we(s').
In fact, this will imply that our definition of wy g is independent of the
choice of the lifting s’ (i.e. it is a well-defined function on Sy) and it is
a character of S,. Combining with the fact that Im(wy g) € {£1}, we
know that wg = wg g is a quadratic character of Sy.

To prove the identity wy m(s) = wy(s’), there are two cases. If s
belongs to the center of the dual group, then the identity follows from
the definition of wg fr, the multiplicity formula, and the formula of the
epsilon factor €(1/2,11,, px). If s' does not belong to the center of the
dual group, the identity follows from the behavior of the geometric
multiplicity under endoscopy, the definition of wy g, and the formula
of some epsilon factor associated to G’ (obtained from the weak con-
jecture).

Remark 3.1. In general it is not enough to compute the multiplicities
by studying the endoscopic relations because one also needs to compute
the summations of the multiplicities

> omm), Y, mlmp).

7T€H¢(G) 7TD€H¢,(GD)
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But for all the cases in Table 1, we have already proved the multiplicity
one on the L-packet:

Z m(m) + Z m(mp) = 1.

71'6H¢(G) TI'DGH¢(GD)

The endoscopic relations will tell us the parity of the summations

Z m(7), Z m(mp),

7I'€H¢(G) WD€H¢(GD)

which allows us to compute these two summations (i.e. if the summa-
tion is odd then it must be 1, and if it is even then it must be 0).

The remaining case is when the packet is discrete with only one ele-
ment. In this case, the packet is not of the endoscopic type or parabolic
type. Moreover, the epsilon dichotomy conjecture and the weak con-
jecture are equivalent in this case. If we want to prove Conjecture 1.4,
we still need to prove a formula of the epsilon factor e(1/2,11,, px) in
terms of the Harish-Chandra character of the L-packet. However, the
epsilon factors €(1/2,11,, px) in Table 1 are more complicated than the
Gan—Gross—Prasad models case and we are not able to prove such a
formula at this moment (one of the key obstacles is that the Lang-
lands functoriality from G/Zg g to GLgim(,y) induced by px is not
known and this functoriality is not of twisted endoscopic type as in the
Gan-Gross—Prasad model cases). This is why we exclude this case for
Models 3-10 of Table 1 in our main theorem.

For the remaining two models (GL4 x GLy, GLy x GL2) and (GUy X
GU,, (GUy x GU,)?%), we can prove the conjecture when the central
character is trivial. Under this assumption, we can replace the groups
GLy4, GLo, GUy, GUy by PGLy, PGLy, PGU,, PGU,. Then using some
lower rank isomorphisms together with the multiplicity formulas, we
can reduce to the cases of the Gan—Gross—Prasad models

(SOG X SOg,SOg X U), (U4 X Ul,Ul X U)

which have been studied in [Wal3] and [Beul].

In ongoing work, we are trying to prove this formula of epsilon factor
and hence completely prove Conjecture 1.4 by studying the multiplicity
of certain models related to the Rankin-Selberg integrals.

Finally, we consider the model (G, H) = (GU;x GU,, (GUy x GU,)?),
which is the most difficult model in Table 1. The reason is that it has
more than one pure inner form. In the p-adic case (resp. real case),
it has 3 (resp. 4) pure inner forms which will be denoted by (G;, H;)
for 1 < i <3 (resp. 1 <i <4). We refer the reader to Section 5 for
details. If the packet is the parabolic induction of some packet of a
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Levi subgroup, we can prove the conjecture by the same argument as
in all the other cases. On the other hand, if the packet is of endoscopic
type, this will be more difficult than all the other cases.

To be specific, the group G has a unique elliptic endoscopic group
that is G’ = G(Us x Us) x GU,. Like in all the other cases, we
want to study the behavior of the geometric multiplicities mgeom ()
and Mgeom (7;) (where 1 <4 < 3 in the p-adic case and 1 < ¢ <4 in the
Archimedean case) under the endoscopic transfer. Here 7 (resp. ;) is
a tempered representation of G(F) (resp. G;(F')). However, unlike all
the other cases, these will not be related to the multiplicities of some
models associated to G'. The reason is that some terms in the geomet-
ric multiplicities can not be eliminated under the endoscopic transfer
(to be specific, the terms correspond to the regular elliptic conjugacy
classes of H(F') and H;(F)), which is largely due to the fact that there
are more than one pure inner forms. To solve this issue, instead of
considering the behavior of each geometric multiplicity under the en-
doscopic transfer, we will consider some combinations of them. More
specifically, in the p-adic case, we will consider

mgeom(ﬂ-> - mgeom<7rl)7 mgeom(ﬂ-2) - mgeom(ﬂ-3)-

In the real case, we will consider

mgeom (71-) - mgeom(ﬂ-l) - mgeom(ﬂ-4)7 mgeom<ﬂ-2) - mgeom(w3)~

By considering these combinations, we can eliminate the terms corre-
sponding to the regular elliptic conjugacy classes of H(F') and H;(F).
Then the endoscopic transfer of these combinations can be related to
some models of G'. We refer the reader to Section 5 for details.

4. THE MODELS (GL4 x GLy, GLy x GLg) AND (GLg, GLy X U)

4.1. The models and the conjectures. In this subsection, we recall
the definitions of the models (GL4 x GLy, GLy X GL2) and (GLg, GLg X
U). We will also state Conjecture 1.4 more explicitly for these models
(note that for these two models Conjecture 1.4 and Conjecture 1.6 are
equivalent because the packets I1,(G) and I1,(Gp) contain at most one
element).

We start with the model (GLyx GLy, GLy X GLy). Let G = GLyxGLs
and H = GLy x GL3 embedded into G via the map

(a,b) — (diag(a,b),b).

For the pure inner form, let D/F be the quaternion algebra, Gp =
GLs(D) x GLy(D) and Hp = GLy(D) x GL;(D) embedded into Gp



38 CHEN WAN AND LEI ZHANG

via the map
(a,b) — (diag(a, b),b).

In this case, px = p1 @ p2 with p; = A?2 ® stdy and py = std, D std).
Moreover, the local L-packet contains at most one element for each
group and we have

€(1/2,m px) = €(1/2,m,p1) - €(1/2,7, p2) = €(1/2,m, p1) - wr, (=1)

for all irreducible representations m = m; ® my of G(F'). Here w,, is the
central character of m; and we have w,, (—1) = wr,(—1). As a result,
Conjecture 1.4 becomes the following conjecture.

Conjecture 4.1. Let 1 = m; ® my be an irreducible tempered represen-
tation of G(F) whose central character is trivial on Zg g(F). Let mp
be the Jacquet-Langlands correspondence of m from G(F') to Gp(F) if
it exists; otherwise let mp = 0. Then (note that x =1 in this case)

m(m) =1 <= e(1/2,m px) =1,
m(np) =1 <= €(1/2,m,px) = —1.
For the model (GLg, GLy x U), let G = GLg, H = Hy x U with
Hy = {diag(h,h,h) | h € GLy},

L X Z
U={uX.Y,2)=|0 I, Y||XY,Z€ Matso}.
0 0 Iy

The generic character on U(F') is defined to be
§(u(X,Y, Z)) = (tr(X) + tx(Y)).

This extends to a character x of H(F') that is trivial on Hy(F). Sim-
ilarly, we can define its pure inner form (Gp,Hp,xp) with Gp =
GLg(D) and H07D = GLl(D)

In this case, px = A and the local L-packet contains at most one
element for each group. Conjecture 1.4 becomes the following conjec-
ture.

Conjecture 4.2. Let w be an irreducible tempered representation of
G(F) with trivial central character. Let wp be the Jacquet-Langlands
correspondence of m from G(F) to Gp(F) if it exists; otherwise let
mp = 0. Then

m(r) =1 <= €(1/2,m,px) =1,

m(rp) =1 <= €(1/2,7m,px) = —1.
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To end this subsection, we discuss the multiplicity formula of these
two models. For each of these two models, there is a canonical embed-
ding from GL, into Hy and hence into G (in the first case, this is the
diagonally embedding), denoted by v. Similarly, there is a canonical
embedding from GL;(D) to Hy p(F') and hence into Gp(F), denoted
by vp. Let 0 (resp. 0p) be a quasi character of G(F') (resp. Gp(F)),
and define the geometric multiplicity to be

Mgeom(0) = co(1)+ > |[W(GLy, 7)™
T€Teu(GL2)

- / D (u(t)) ol (1),
T(F)/ZgLy (F)

mgeom<9D> = Z |W(GL1<D>7T)|71

T€Ten(GL1(D))

| DH (up(t) e, (v (1) .
T(F)/ZgL, (p)(F)

Recall that 7¢;(GLsg) (resp. 7o (GL1(D))) is a set of representatives of
maximal elliptic tori of GLy(F) (resp. GL;(D)). We have the multi-
plicity formulas ([Wanl15], [Wan16], [PWZ19])

m(m) = Mgeom(0x); M(TD) = Mgeom (O )

for all tempered representations m (resp. mp) of G(F) (resp. Gp(F))
with trivial central character.

As we explained in our previous papers ([Wanl5], [Wan16], [PWZ19]),
the multiplicity formula implies the strong multiplicity one on the L-
packet, i.e.

m(m) +m(7p) = Mgeom (Or) + Mgeom(Orp) = cr(1) =1

where 7 and mp are as in Conjecture 4.1 and Conjecture 4.2.

By the multiplicity formula, we know that for these two models,
Conjecture 1.4 is equivalent to the following conjecture which expresses
the epsilon factor in terms of the Harish-Chandra character.

Conjecture 4.3. Let m be an irreducible tempered representation of
G(F) whose central character is trivial on Zg g(F'). Then

e(1/2,m px)+1
mgeom(eﬂ) = ( / 9 X> .
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4.2. The proof of Theorem 1.10 and 1.14 for (GL; x GLy, GLy X
GL2) and (GLg, GLy x U). For the model (GLg, GLy x U), when F'
is Archimedean, or when 7 is not a discrete series of GLg(F') or the
parabolic induction of a discrete series of GL4(F') x GLy(F'), Conjecture
4.2 has already been proved in Theorem 1.4 of [Wanl6]. The same
argument can be applied to the (GLy x GLy, GLy x GLs) model case
to prove Conjecture 4.1 when 7 is not a discrete series.

To prove the remaining parts of the theorem, we consider another
model (GL4 x GLg, GLy X U) defined in Appendix A.3 of [Wan16]. This
model is essentially the Gan—Gross—Prasad model (SOg x SO3, SO3x U)
because of the isomorphisms PGL; ~ PGSOg and PGLy ~ SO3. The
geometric multiplicities for the models (GLy; x GLy, GLy x GL2) and
(GLy x GLg, GLy x U) are the same (Appendix A.3 of [Wanl6] and
Section 9.5 of [PWZ19]). This implies that these two models have the
same multiplicity for all tempered representations.

We first consider the model (GLy X GLy, GLy X GLs). The only case
remaining is when 7 has trivial central character. If this is the case, 7
can be identified with a tempered representation of GSOg x SO3 and we
have €(1/2,7, px) = €(1/2, 7, p1). By restriction we get a tempered L-
packet of SOgxSOj3 (denoted by IT = II; ®IIy). Moreover, the geometric
multiplicity of the model (GLy x GLg, GLy x U) in Appendix A.3 of
[Wan16] is the same as the geometric multiplicity of the Gan—Gross—
Prasad model (SOg x SO3,S03 x U) in Section 13.1 of [Wall]. Hence
the multiplicity formulas imply that m(m) is equal to the multiplicity of
the L-packet II for the Gan—Gross—Prasad model (SOg x SO3, SO3x U).
Combining with Theorem 4.3 of [Wal3], we know that

m(ﬂ') =1 << 6(1/2,1_[1 X Hg) = 1,

TTL(’T(’D) =1 << 6(1/2,H1 X HQ) =—1.

Then Conjecture 4.1 follows from the fact that e(s,m, p1) = €(s,II; x
II5). This finishes the proof of Theorem 1.10 for the model (GLy X
GLQ, GL2 X GLQ)

For the model (GLg, GLy X U), it remains to prove the case when 7
is the parabolic induction of a discrete series 7" = m; ® m9 of GL4(F') X
GL2(F) under the assumption that Conjecture 1.6 holds for the model
(GL4 x GLg, GLs x GLy) ( <= Conjecture 4.1 holds). In this case,
Corollary 5.15 of [Wan16] implies that the multiplicity of 7 is equal to
the multiplicity of 7" for the model (GL4 x GLy, GLy x U), which is
equal to the multiplicity of 7’ for the model (GLy x GLg, GLg x GLg) by
the above discussion. Together with the assumption that Conjecture
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4.1 holds, we have
m(m) =1 < €(1/2,7',p1 ® pa2) = 1,
m(rp) =1 <= €(1/2,7,p1 & p2) = —1.
Then Conjecture 4.1 follows from the fact that
e(1/2,m, px) =€(1/2, 7', p1)e(1/2, 1) @ wy))e(1/2,m @ wil)
=wn, (—1) - €(1/2,7, p1) = €(1/2, 7, p1 & p2),
where w,, is the central character of m;. This finishes the proof of

Theorem 1.10 for the model (GLg, GLy x U).

Remark 4.4. The discussion above also shows that if Conjecture 4.2
holds for all irreducible representations m induced from GL4(F)x GLy(F),
then Conjecture 4.1 holds. This proves Theorem 1.14 for the model
(GLG, GL2 X U)

We can also slightly generalize the conjecture for the model (GLg, GLo x
U). To be specific, let x" be a character of H(F') defined by
¥ (diag(h, b, hyu(X, Y, 2)) = a(det(h)E(u(X, Y, 2))

where « is any character of F* (in particular if & = 1 then we re-
cover the character x). Let 7 be an irreducible representation of G(F')
with central character a? and we can define the multiplicity m(m, x').
Similarly we can also define the character x/, of Hp(F') and the mul-
tiplicity m(mp, x)p). Similar to the case when a = 1, we can define the
geometric multiplicity

Mgeom(0,X') = co(1)+ Y |[W(GLy, T)|™"
T€Teu(GL2)

- / D (u(8))ea (w(£)X (w(1))
T(F)/ZgL, (F)

Mn(OoXp) = > W(EL(DLD) [

TeTu(GL1 (D)) T(F)/ZgL, (p)(F)
D2 (wp(t))co, (vp (1)) X p(vo(t)dt.
We have the multiplicity formulas ([Wan15], [Wan16))
m(7r, X/) - mgeom(97n X/)v m(WD, X/D) = mgeom(Qﬂ'Da X/D)

for all tempered representations 7 (resp. mp) of G(F) (resp. Gp(F))
with central character a?. Again the multiplicity formula implies the
strong multiplicity one on the L-packet.
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For the epsilon dichotomy conjecture, let ¢, be the character of W,
corresponding to «. Then the following conjecture is a generalization
of Conjecture 4.2.

Conjecture 4.5. Let m be an irreducible tempered representation of
G(F) with central character o* and let ¢, be the Langlands parameter
of . Let wp be the Jacquet-Langlands correspondence of m from G(F)
to Gp(F) if it exists; otherwise let 1p = 0. Then

m(7T>X/) =1 < 6(1/27 (PX © ¢7r) ® ¢;1) =1,

m(,/TDaxlD) =1 — 6(1/27 (pX o ¢7r) ® ¢;1) =—L

By the same argument as in the case when o« = 1, we can prove the

above conjecture when 7 is not a discrete series by assuming Conjecture
4.1 holds.

Remark 4.6. For the rest models in Table 1, we can also put some non-
trivial algebraic characters on the reductive part of H(F') and we can
still formulate the epsilon dichotomy conjecture. However, by twisting
the representation of G(F') by some suitable characters we can easily
reduce the conjecture to the case when the character is trivial on the
reductive part of H(F'). For example, for the model (GSO1q, GLy x U),
when we put a character a o det on the GLo(F)-part, by twisting the
representation of GSO12(F) by the character o= ol we can reduce to the
case when « is trivial. Hence for the rest models we will only consider
the case when the character is trivial on the reductive part of H(F).

5. THE MODELS (GUy x GU,, (GUy x GU,)Y) AND (GUg, GUy x U)

In this section we will consider the models
(GUy4 x GU,, (GUy x GU,)Y), (GUs, GUy x U).
In Section 5.1, we define the model (GUy; x GUsy, (GU, x GU,)?) and

study the behaviors of the geometric multiplicities under parabolic in-
duction and endoscopic transfer. This is the most complicated case of
this paper. In Section 5.2, we will define and study the smaller model
(GUy, GUy x U), which will be used in our proof. In Section 5.3, we
will prove Theorem 1.10 for (GU4 x GU,, (GUy x GU,)?). Finally, in
Section 5.4, we will prove Theorem 1.10 for (GUg, GUy X U). Through-
out this section, let £ = F(y/€) be a quadratic extension of F, ng/r
be the quadratic character associated to E, Ng/p (resp. trg/p) be the
norm map (resp. trace map), and z — T be the Galois action on F.
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5.1. The model (GUy x GUs, (GUy x GU,)?). For the model (GUy x
GUQ, (GUQ X GUQ)O), let G = GU272 X GUl,l and

H = (GUy1 x GUy )" = {(h1, he) € GUyy x GUyy | U(hy) = I(hy)}.

We can embed H into G via the map

a 0 b a b
(hl,hQ)GHf—)( 0 hy O ,hl)EG, h2:(C d)
c 0 d

The pure inner forms are

(G1, Hy) = (GUygs x GUsgy, (GUyg x GUg2)"),

(Ga, Hy) = (GUsz; x GUy 4, (GUy; x GUgy)?),

(G37 Hs) = (GU3,1 X GUz,o, (GU2,0 X GUl,l)O)a
(G4, H4) = (GU470 X GUv27()7 (GUQ,O X GUQQ)O)

where the last pair (G4, Hy) only appears in the Archimedean case.
Now we formulate the analogy of Conjecture 1.6 for this case. Let

I, = I,(G) U(UI14(G;)) be a tempered L-packet whose central char-

acter is trivial on Zg g(F'). Recall that we have defined the epsilon

factors e(%, Iy, p1), e(%, I1,, p2) and the central character x, in Section
2.

Conjecture 5.1. The unique distinguished element belongs to 11,(G)
if and only if
1

Xo(= 1y (~ Ve, o, 1) = Xo(~D)el5, Tl 2) = 1.

The unique distinguished element belongs to I1,(Gy) U Il4(Gy) if and
only if

1 1
o=y (~1)ely o, p1) = xol 1)l T o) = 1
The unique distinguished element belongs to 11,(Gs) if and only if
1 1
Xo(=1)ne/r(=1)e(5, g, p1) = =xo(=1)e(5, Iy, p2) = L.
The unique distinguished element belongs to I14(G3) if and only if

1

X~ (~1)el5, o, p2) = xo(—1)el5, T o) = —1.
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Next we recall the definition of the geometric multiplicities from
Section 9 of [WZ2]. Let T be the unique element in 7 (GUy,) =
Teu(GUsgp) that is isomorphic to

E*Y = {(a,b) € E* x E* | aa = bb} C E* x E*.
For T € 7Zzz(GU1,1) = ﬁll(GUQ’()) with T' 75 To, let
(T xT) ={(t1,ta) €T x T | I(t1) = I(t2)}.

Up to conjugation, there is a unique embedding from (7 x T)° to
(GUy1xGUy1)° (resp. (GUguxGUp2)?). Combining with the diagonal
embedding from T to (T x T)°, we get an embedding from T to G
(resp. G1(F")) that factors through H (resp. H;). We will denote this
embedding by v (resp. vy r).

For Ty, in the p-adic case up to conjugation there are two embed-
dings from (T x Tp)? to (GUy; x GUp1)? (resp. (GUgg x GUg2)?).
Combining with the diagonal embedding from Ty to (Ty x Tp)?, we get
two embeddings from Tj to G (resp. Gp). The centralizer of the image
of one of the embeddings is quasi-split, and we will denote this embed-
ding by v, (resp. vy 1), while the centralizer of the image of the other
embedding is not quasi-split. In the Archimedean case, we can define
the embedding vy, in the same way as in the p-adic case. On the other
hand, up to conjugation there is only one embedding from (T, x Tp)°
to (GUgg x GU[),Q)O and this defines the embedding v} 7;,. Note that in
this case the centralizer of the image of v 7 is still quasi-split.

Meanwhile, consider the following two subgroups of (Tp x Ty)° (we
identify Ty with E*° := {(a,b) € E* x E* | aa = bb}):

Ty ={(1,1) x (1,a) € (Ty x Tp)° | a € E'},

Ty = {(L.a) x (1Lb) € (Ty x )" | a,b € B},

The two embeddings from (T, x Tp)° to (GU1 1 xGU; 1)° (resp. (GUy %
GUy)?) induce two embeddings from T} to G (resp. Gs) that are
conjugate to each other. Let vy (resp. VQ’TO/) be one of the embeddings.
Note that the projection of these embeddings to the first GU, ; factor
is the trivial map. The centralizers of the image of these embeddings
are quasi-split.

On the other hand, the two embeddings from (T, x Ty)? to (GUy; X
GUy,)? induce two embeddings from 7§ to G. The centralizer of the
image of one of the embeddings is quasi-split (we will denote this em-
bedding by vy) and the centralizer of the image of the other embedding
is not quasi-split. Similarly, we can also define the embeddings v; v
from T to G; for 1 <i < 3.
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Now we are ready to define the geometric multiplicity. Let 6 (resp.
6;) be a quasi-character on G(F) (resp. G;(F')) with trivial central
character. For T" € Tou(GUy 1) = Teu(GUqyg), we use T*(F') to denote
T(F)/Zqu,,(F) =T(F)/Zgu,,(F). Define

Mnl®) = )+ Y WD [ D (1)o(0)dt

Tenll(H) T(F)/ZGJ‘I(F)

+% 2. /T*<F)DH(VT(t))Cé(VT(t))dt

TeTen(GUL,1)

i Ty (F) D (wry(#))eolvry(t))dt

+ / DH(VTél (t))co(vry (t))dt,
Ty (F)

Myeom (1) = ) \W(H1>T)\‘1/ D™ (1)6, (t)dt
TeTeu(Hr) T(F)/Zgy,m, (F)

1
- l)H1 mr Co,\1,T d
by [ D G )

+ / Z)H1 (VLT[S, (t))Cgl (VI,T(’)’ (t))dt,

o (F)
@) = W T) D (1) (1)t

TeTenu(Hz) T(F)/ZGy,1y(F)

+ DHz(VZTé (t))CQQ(VQ’Té (t))dt
Ty(F)

+ / DH2(I/27T6/(t))692 (VQ,T(’)/ (t))dt,
Ty (F)

Mgeom(B3) = > [W(H3, T)|™! / D (4)05(t)dt

TETon(Hs) T(F)/ZGs,1s(F)
—i—/ DH3(V3,T6/(t))003(V3,T6’ (t))dt.
Ty (F)
If we are in the Archimedean case, we also define

(@) = Y0 WHLD [ D (1) (1)

TeTen(Ha) T(F)/ZG,,m1,(F)
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In our previous paper [WZ2], we have proved the multiplicity formulas
m(m) = Mgeom(0r), M(T:) = Mgeom (Ox,)
for all tempered representations m (resp. m;) of G(F') (resp. G;(F)).

Remark 5.2. The above integrals need to be regularized, i.e. we replace
DH(:) (resp. D™i(-)) by

DG<.)1/2(DH(_)fQDG(_))sfl/Z

(resp. DO ()/2(D(-) D% () 2)

and take the limit lim,_,o+. Since this reqularization does not affect our
later computation, to simplify the notation, we will not include this
reqularization in the expression of the multiplicity formula.

Next we study the behavior of the geometric multiplicities under
parabolic induction. Let 6 be a quasi-character of G(F'), M = M; x My
be a maximal proper Levi subgroup of G = GUy 5 x GUy; and 6™ be a
quasi-character of M (F'). If M, is a maximal quasi-split torus of GU 4
and M; = GUy,, the embedding vr; from T§ to G factors through M.
We then define

mgeom(QM) = CgM(l) + DH(VT(/) (t))CQJ\/I(l/Té (t))dt
T3 (F)
If M is the Siegel Levi subgroup and M; = GU; ;, up to conjugation
we may assume that the embedding v factors through M for all T' €
Te(GUy1). Then we let

1
mgeom(eM) = cou (1) + 5 Z / DGUl‘l(t)CeM (vr(t))dt.
TeTu(GULL) Y T ()

The last case is when M; ~ GU; ; X Resg/pGL; and My = GUy ;. Let
¢ (resp. ) be an embedding from E*? into GUy 1(F) (resp. GUao(F)).
We define (note that M = Resg/pGL; x GUy; x GUy ;)

mgeom(QM) = com(l)+ /E1 com (1, 0(1,a), I3) 4+ com (1, als, t(a, 1))da

+/ com (1, 0(a,b), (1, a))dadb.
2,0

We also need to discuss the parabolic induction of GG; for 1 <i < 3.
Let 6; be a quasi-character of G;(F), M* = Mj x M} be a maximal

proper Levi subgroup of G; and ™" be a quasi-character of M*(F).
For (Gy, Hy), we must have M; = GUyq. If M| is the Siegel Levi
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subgroup, up to conjugation we may assume that the embedding v,
factors through M* for all T € T.;(GUsap). Then we let
1
Mm@ =2 Y / DSY20 (£) ¢ (117 (1)) .
T€Teu(GU2,0) T=(F)

If M} ~ GUy x Resg/rGL1, we define (note that M = Resp/prGL; X
GU171 X GU270)
mgeom(eMl) N / Corrt (17 aIQ7 L/(CL, 1))da
El

+/ cout (1, 0(a, ), (1, a))dadb.
2,0

For the model (Gy, Hy), if M3 is a maximal quasi-split torus of GU
and M? = GUjz;, the embedding vo,r; from T} to Gy factors through
M?. We then define

myeom<9M2) = DH2(V27T6 (t))cour (VZ,T(S (t))dt.
Ty(F)

The remaining case is when M3 = GUy 5 and M} ~ GUs X Resg/rGLy.
In this case, we define

mgeom(9M2) = /E1 06M2(17L,(1aa)7]2)da

+/ conz(1, 0 (a,b), (1, a))dadb.
E2,0

For the model (G3, H3), G5 has a unique proper Levi subgroup M? ~
ResE FGL1 X GUQQ X GUQ 0- We define
/ ) ;

mgeom(eMg) - / Com3 (17 L/<0J7 b)a ['/(17 a))d(ldb
E2,0
The following proposition is a direct consequence of Proposition 2.2.

Proposition 5.3. Let 0 (resp. 0;) be a quasi-character on G(F) (resp.
Gi(F)). Assume that 0 (resp. 0;) is the parabolic induction of a quasi-

character 0™ (resp. 0™") of a proper mazimal Levi subgroup M(F) of
G(F) (resp. M'(F) of Gi(F)). We have

mgeom(0> = mgeom(eM)a mgeom(ei) = mgeom<0Mi>-

Next we study the behavior of the geometric multiplicities under en-
doscopic transfer. The group G has a unique proper elliptic endoscopic
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group G’ = G(Uy; x Up1) x GUy . Let (G, s',n) be a proper elliptic
extended endoscopic triple with

G'=G(Uiy x Upy) x GUyy, s = (diag(lr, —12), 1, —15,1) € G,

G = GL4(C) x GL;(C) x GLy(C) x GL;(C),

and 7 is the natural embedding. This model is different from all
the other cases considered in this paper, mainly because it has more
than one pure inner form. For all the other cases, we only need to
compute Mgeom(0) when 6 is the endoscopic transfer of some stable
character of G'(F'), which will give us the geometric multiplicity of a
model associated to G'. But for the current model, if we only compute
Mgeom (6) (resp. Mgeom(0;) for 1 < i < 4), the expression we get does
not correspond to the geometric multiplicity of a model associated to
G'. This is due to the term in mgeom (6) (resp. Mmgeom(6;)) associated to
T € Toy(H) (resp. T € Toy(H;)). Instead, we will consider the behavior
of some combinations of M yeom (#) and myeom (0;). By doing this, we can
eliminate the terms corresponding to 7' € 7oy (H) and T' € Toy(H;).

Let 0" be a quasi-character on G'(F). We fix an embedding ¢ from
E?Y into GU, as before. We define

Mgeom,1(0) = Cef(1)+/ cor (12, 1(a, 1), 1)) + co((e(a, 1), Iy, 1))

+2cq (als, Io, t( da+2/
co ((¢(a,b), Iz, 1(a, 1)) + cor (L2, t(a, b), 1(a, 1)))dadb,

Mgeoma() = [E e (0(0,1), o, 1) ~ o (T, 00, 1), T))da
+2 /El . co((t(a,b), Iz, (a, 1))
—cor((Iz,t(a,b),(a,1)))dadb.

Proposition 5.4. Let 6 (resp. 0;) be a quasi-character on G(F) (resp.
Gi(F)). Assume that 0 (resp. 0;) is the endoscopic transfer of a stable
quasi-character ' of G'(F) . We have

mgeom<0) - mgeom(‘gl) - mgeom(94) - mgeom,l (Ql)a

mgeom(92> - mgeom(ei’)) - mgeom,Q(Ql)'
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Proof. We will only prove the first identity, the second identity follows
from a similar argument. Recall that

Mgeom(®) = )+ S W (H,T)! / DH(1)0(t)dt
TeTou (H) T(F)/Zg,u(F)
1
+§ Z / t))co(vr(t))dt
T€Ten(GU1,1)
+ D (v () co(vry (1)) dt
T}(F)

+/T~<F>D (v (B)) o (v (1)),

Mgeom(@) = S (W(HLT)[! / D (4)6, (1) dt
T(F)/Zgy,m, (F)

TeTeu(Hr)

1
s> [ DM )
T€Te;1(GU2,0) T=(F)

+ / DH1 (l/LTé/(t))Cgl (VI,T(’)’ (t))dt,
II(F)

(@) = Y WHLD [ D (£)0,(£)d

TeTen(Ha) T(F)/Zg,,m,(F)

First it is easy to see from Proposition 2.1 and the definition of trans-
fer factors that cy(1) = cg/(1). Next we study the term corresponds to
T§. For t = (1,1) x (1,a) € T{(F'), under the notation of Section 2.4,
we know that D (vpy (t))co(vry(t)) is equal to the limit of the value of

(D%)Y/2 . 0 at the conjugacy class (note that ¢; is unique in this case
and hence we will ignore it)

(E@E,E, M, \{Y)U(E,F,a)U(E,F,1)) x (E®E,E, (A, \;}))
times DGUl’l(Li“’l))_l/Q as \; € F* — 1. The value of (D%)Y/2. 0 at the
conjugacy class

(E®@E,E, 0, \{))U(E,F,a)U(E,F,1)) x (E®E,E, (A, \;1))
is equal to the summation of the values of (D%)Y/2¢ at

(diag(A1, ATY), ea, 1), diag(Ae, A5 1))

and
(t(a,1),diag(A, A7 1), diag( X, Ay 1)).
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The transfer factor is equal to 1 on (¢(a, 1), diag(A, A7 1), diag(Xa, Ay 1))
because the quadratic character npgp/r is trivial. Combining with the
argument in Section 1.11 of [Wal], we know that the transfer factor is
also equal to 1 on (diag(A, \[1), t(a, 1), diag(Xe, Ay 1)), If we take the
limit as \; € F* — 1, we get

4D ((Iy, t(a, 1), L)) e (I, 1(a, 1), 1))
+4D% ((1(a, 1), I, L)) ¢ ((1(a, 1), I, I)).
Combining with the equations
DY ((I5, (a, 1), I,))"* = DY ((1(a, 1), Iy, I1))"/* = DSV (u(a, 1))/,
we know that D" (v (t))co(vry(t)) is equal to
co (L2, t(a, 1), 1)) + cor((e(a, 1), 12, I5)).
This implies that

_ DH(VT(S (t))co (VTé (t))dt

_ /E (T 0(a,1), 1) + o (o0, 1), o, T))do.

Next we study the terms correspond to Tj. For t = (1,a) x (1,b) €
T4(F), we know that D" (vgy(t))co(vry(t)) is equal to the limit of the
value of (D%)1/2.0 at the conjugacy class (note that ¢; is unique in this
case and hence we will ignore it)

(E®B,E,(AMAT))U(E, Foa)U(E,F.b) x (B, F,a)U(E, F,1))
times
DY 4, 1) 2+ DY (o0, )
2
as A € F* — 1. The value of (D%)'/2 -0 at the conjugacy class

(Fe F,F,(MAY))U(E,F,a)U(E,F,b)) x (E,F,a) U (E, F,1))

is equal to the summation of the values of (D%)Y/2¢ at
(diag(X, A7), e(a, b), e(a, 1))

and
(10, B), diag(\ A1), o(a 1)),

The transfer factor is equal to 1 on (c(a,b),diag(\, A71),c(a, 1))) be-
cause the quadratic character npgp/p is trivial. Combining with the
argument in Section 1.11 of [Wal], we know that the transfer factor is
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also equal to 1 on (diag(\, A™1),c(a, b),t(a,1)). If we take the limit as
A€ F* = 1, we get

2DG/((_[2’ t(a,b), a, 1)))1/209/((12, t(a,b),(a,1)))

+2D% ((1(a, b), I, (a, 1)) %co ((¢(a, b), Iy, 1(a, 1))).
Combining with the equations

DY ((u(a,b), o, 1(a, 1)))"* = D ((Iz, u(a, b), u(a, 1))
= DOV 1, 1) 2D o, 1),
we know that D (vgy (t))co(vry(t)) is equal to

69’((127 L(CL, b)v L(CL, 1))) + 09’((L(a’ b)v Iy, L(a> 1)))
Similarly, we can show that D™ (v g (t))ca, (v1,1y (1)) is equal to (the
negative sign comes from the Kottwitz sign between GU; ; and GUsp)

—cor((Iz,t(a,b),t(a,1))) — co((e(a,b), Iz, t(a, 1))).
This implies that

/ DH (v () oy (£))dt — / D (1 (8) oy (vazy (1)t
Ty (F)

Ty (F)

is equal to

2/];1 | cl(o(ab) Bvo(a, 1)) + i (o(aB). (0. 1))

Next we study the terms correspond to T € Toy(GUy,) and T €
Teu(GUszp). We know that there is a natural bijection T" <+ Frr between
Teu(GUy 1) and the set of quadratic extensions of F. If Fir # E, then
Er = Fr ®p E is a quadratic extension of E. For t € T'(F'), we can
identify it with an element in £ (by abusing of notation we still denote
it by t), and D (vp(t))co(vr(t)) is equal to the limit of the value of
(D%)Y2 . 9 at the conjugacy class (t is the conjugation of ¢ by the
nontrivial element in Gal(Er/Fr))

(Br & Er, Ep, \t, \"'t) X (Er, P, t)

. DCYL1(4) . . . .
times =——— as A — 1. Note that ¢; is unique in this case and hence

we will ignore it. It is easy to see that the above conjugacy class does
not correspond to a conjugacy class of G'(F'). Hence we know that
DH (vp(t))co(vr(t)) = 0 and

/T*(F) D™ (vr(t))eo(vr(t))dt = 0.

If Fr = E, T*(F) is isomorphic to E*. For t € T*(F) corresponding
to a € E', DH(vp(t))co(vr(t)) is equal to the limit of the value of
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1(DY)1/2 - 9 at the conjugacy class (note that ¢; is unique in this case
and hence we will ignore it)

(E®E,EXa,\'"a HYU(E@ E,E,AN A1) x ((E,F,a)U(E, F,1))

DY (4(a,1)) 1/
4

times as A — 1. The value of (D%)'/2.9 at the conjugacy

class

(E® E,E, M, ' Y U(E®E,E,\AY) x (B, F,a) U(E, F,1))

is equal to the summation of the values of (D%)Y/2¢ at
(diag(), A1), diag(ad, aAY), (a, 1))
and
(diag(aX, aX™), diag(\, A7), t(a, 1)).

The transfer factor is equal to 1 because the quadratic character npgr/r
is trivial. If we take the limit as A € F** — 1, we get

ADY (15, aly, (a, 1)) *co (12, alz, 1(a, 1)))

+4D% ((aly, I, v(a, 1)) %co ((aly, Ir, o(a, 1))).
Hence DT (vp(t))co(vr(t)) is equal to
cor (L2, aly, i(a, 1)) + co((alz, I3, t(a, 1))).
This implies that

1

Ly / D (wr(t))colvr (£))dt
T€Te1(GU1,1) T=(F)

1

= §/E1 C@/((IQ,CLIQ,L(G,l)))+CG’((a[27[27L(a71)))da

— /E1 co ((aly, Iy, t(a,1)))da.

Similarly, we can show that (the negative sign comes from the Kottwitz
sign between GU;; and GUjp)

% Z / Yz (t))co, (r,7(1))dt

T€Ten(GUz2,0)
= —/ co((aly, I, 1(a,1)))da.
Bl

This recovers all the terms in mgeom,1(6'). It remains to show that the
summations of the terms correspond to Ty (H), Teu(H1) and Ty (Hy)
are equal to zero. Fix a stable regular elliptic conjugacy class t of H.
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We use H(ty) (resp. H;(ts)) to denote the rational conjugacy classes
of H(F') (resp. H;(F)) in tg. We only need to show that

(5.1) do—- D b)) =0
teH (tst) i€{1,4}, t;€H;(tst)

We have three cases (the second and third cases only happen in the
p-adic case).

e { is of the form
to = ((E, F, (l1> U (E, F, ag)) X ((E, F, bl) U (E,F, bg))
with ag, bl € E* and

ne/r(a1) = ne/r(az) = ne/r(bi) = Ne/r(bs).
e { is of the form
tes = ((E,F,a1) U (F, F,a3)) x (E', F', )
or
te = (E',F',b) x (E,F,a1) U (E, F,ay))
where F' # E is a quadratic extension of F, ' = F' Qp F,
a; € E* and b € (E')* such that
ne/r(ar) = nesr(az) = neyr (D).
e ¢ is of the form
tqa = (E',F',a) x (E", F",b)

where F' # E (resp. F” # FE) is a quadratic extension of F,
F =F @pFE E'"=F'®rF, ac (E) and b € (E")* such
that
nE’/F’(a) = nE”/F”(b) c F*.
We will only consider the first case, the remaining two cases follow from
a similar and easier argument.
From now on, assume that

bt = ((E7 F7CL1) U (E, F,(Ig)) X ((E7 F7bl) U (E7F7 b2>>
with a;, bz € E* and
77E/F(CL1) = UE/F(CQ) = TZE/F(bl) = 77E/F(bz)~

Then the sets H(ts) and Hy(ts) U Hy(ts) each contain two elements.
As a stable conjugacy class of G = GUg o x GUj 3, g corresponds to

((E,F, al)U(E,F, CLQ)U(E,F, bl)U(E7 F, bg)) X ((E, F, al)U(E,F, CLQ)).
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Let 1,2 be two elements in ker(trg,r) N E* that belong to different
Im(Ng p)-orbits. If ng/p(—1) = 1, then the two elements in H(t) are
of the form (viewed as conjugacy classes of GU, x GU,)

(5.2)  ((E,F,a1,e1)U(E,F,a3,e1)U(E,F,bi,e1) U (E, F,by,e1))
X((E, F,a1,e1) U (E, F,as,¢€1)),

(5.3)  ((E,Fya1,e1)U(E, F,as,e1) U (E, F,by,e9) U (E, F, by, e3))
X((E, F,a1,e1) U (F, F,as,¢1))

and the two elements in Hi(ty) U Hy(ts) are of the form (viewed as
conjugacy classes of GUy x GUy)

(5.4)  ((E,F,a1,e1)U(E, F,a3,e9) U (E, F,by,e1) U (E, F,by,&))
X((E, F,a1,e1) U (E, F,as,¢€9)),

(5.5)  ((E,F,a1,e1) U (E, F,a9,e9) U (E, F,by,e9) U (E, F, by, €1))
X((E, F,a1,e1) U (FE, F,as,¢e3)).

The stable conjugacy class ¢4 corresponds to 6 stable conjugacy classes

of G'(F):

(E,F,a1)U(E, F,a9))x((E, F,b))U(E, F b)) X ((E, F,a,)U(E, F,as)),
(E,F,by)U(E, F,by))x((E, F,a1)U(E, F,a2))x((E, F,a1)U(E, F,as)),
(E,F,a1)U(E,F,b))x((E, F,a3)U(E, F,by))x((E, F,a,)U(E, F,as)),
(E,F,a1)U(E, F,by))x((E, F,a2)U(E, F,b1))x((E, F,a,)U(E, F,as)),

(E, F,a3)U(E, F,b)))x ((E, F,a1)U(E, F, b))% ((E, F, a1)U(E, F, as)),

By our definition of the transfer factor, we know that the transfer
factors between the conjugacy classes (5.2), (5.3), (5.4), (5.5) and the
conjugacy class (5.6) are equal to each other. This implies that the
value of @ at the conjugacy class (5.6) does not contribute to the left
hand side of (5.1). Similarly, we can also show that the value of 6" at
the conjugacy class (5.7) does not contribute to the left hand side of
(5.1).

On the other hand, by our definition of the transfer factor, we know
that the transfer factors between the conjugacy classes (5.2), (5.3)
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(resp. (5.4), (5.5)) and the conjugacy class (5.8) are opposite to each
other. This implies that the value of ¢ at the conjugacy class (5.8)
does not contribute to the left hand side of (5.1). Similarly, we can
also show that the values of 6 at the conjugacy class (5.9), (5.9) and
(5.10) do not contribute to the left hand side of (5.1). This proves
(5.1).

If ng/p(—1) = —1, then the two elements in H(ts) U Ha(ts) are of
the form (viewed as conjugacy classes of GUy x GUs)

((E,F,ay,e1) U (E, F,as,e1) U (E, F,by,e1) U (E, F,by,e1))
X((F, F,a1,e1) U (FE, F,as,¢€1)),
((E,F,a1,e1) U (E, F,as,e1) U (E, F,b1,e0) U (E, F, by, e3))
X((E, F,a1,e1) U (F, F,as,¢1))

and the two elements in H(ty) are of the form (viewed as conjugacy
classes of GUy x GU,)
(

((E7F7a17€1) U E7Faa'27€2) (Ea Fablagl) U <E7F7b2752>>

U
X((E, F,a1,e1) U (FE, F,as,¢€9)),
((E,F,a1,e1) U (E, F,as,e9) U (E, F,by,e9) U (E, F,by,e1))
X((E, F,a1,e1) U (FE, F,as,¢€3)).

We can prove (5.1) by a similar argument. This finishes the proof of
the proposition. O

5.2. Some preparation. Let II,(G) be a tempered local L-packet
of G(F) whose central character is trivial on Zg y(F) and O, ) =
ZWEH¢(G) 6, be the distribution character of II4(G). Recall the px =

p1 @ p2 with
p1 = N2 @ stds, po = stdy @ sth.

We consider another model associated to G. Let () = LU be a par-
abolic subgroup of G with L ~ (GL2(E) x GLy(F)) x GUy;. Up
to conjugation there are two generic characters of U(F) correspond-
ing to two Hermitian forms of dimension 2. Let ¢, be the charac-
ter whose centralizer in L(F) is isomorphic to GU; ;(F) x GUy(F).
We can diagonally embed GU, ; into this centralizer and we will de-
note its image by H{. The model (G,H' = H]| x U,1¢,) is essen-
tially the Gan—Gross—Prasad model (SOg x SO3,SO3 x U) and it is
an analogy of the model (GL; x GLy, GLy X U) of the previous sec-
tion for unitary similitude groups. This model has a unique pure inner
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form (GD,H/D = H(/),D X U, ZZJ_) with GD = Gl = GUQ,Q X GU270 and
Hy p ~ GUsyy. One can easily prove the multiplicity formulas

i =+ 3 / D Oeror, @

(S EE T VI B L

TeTeu(Hy p /ZH'

for these models by the same arguments as in the orthogonal Gan-—
Gross—Prasad models case in [Wall] and [Wal2]. Here for t € T,.,(F),
Or 4 (resp. Or_) is the regular nilpotent orbit in g;(F) (resp. (gp):(F))
corresponding to the character ¢, (resp. 1_). We will denote this
model by (GUy x GU,y, GUy x U).

The above multiplicity formulas imply that

Yo omm)'+ Y, mmp)

m€ll,(G) mp€lly(Gp)
is equal to
1 :
Cen¢(c)(1) + B Z / DH (t)c9n¢(G>VOT,+ (t)dt
TeTu(HY) T(F)/Z s (F)

1 /
_'_5 Z / DHD (t)cel'[q&(GD)’OT,f (t>dt = 09n¢(c)(1> =1,

TeTenu(H /ZH'

i.e. the summation of the multiplicities is equal to 1 over every tem-
pered local L-packet. In particular, we know that for an irreducible
tempered representation of G(F'), the expression
1 'Y
1 / D' (t)er o, (t)dt
reTu(Hy) * TE)/ 2y (F)

is equal to 0 or —1.
The goal of this section is to prove the following lemma (recall the x,
is the central character of the L-packet of GU, obtained from II14(G)).

Lemma 5.5. (1) We have

Xo(—1)e(5,1g, p2) — 1
D (vyy () Con ) (Vg (8))dt = 22 :
Ty (F)
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(2) If 114(G) is not a discrete L-packet with only one element, or if
the central character of I14(QG) is trivial, then

1 /
- / DH (t)Coy, ) (£t
TETou(H)) T(F)/ZH’ (F)

Xo(=1)nE/r(—1)e(5, Iy, p1) — 1
5 .

(3) If 114(G) is not a discrete L-packet with only one element, or if
the central character of I14(QG) is trivial, then

Z / DH/(t>c‘9H¢(G)7OT,+ (t>dt
T

TGTell(Hl (B)/ 2y (F

Xo (=)0 r(—1)e(5. 114, p1) — 1
5 .

Proof. The first part follows from the multiplicity formulas and the
epsilon dichotomy for the Gan—-Gross—Prasad model (Uy x Uy, U; X U)
proved in [Beul], [Beu3], [Xue] (we just need to first restrict the L-
packet to GUj 9, then further restrict to Us o). Note that

1

X¢<—1)5(§7

is equal to the epsilon factor of the base change of the packet to GL4(E).
The second part is equivalent to the third part since Con 6.0 + (t) =

H(ba p2)

Con, () (t) (this is because the character 0, (q) is stable). We first con-

sider the case when the packet is induced from a maximal Levi sub-
group M. In this case we will prove the second part of the lemma. We
use I14(M) to denote the corresponding L-packet of M such that the
packet II;(G) is induced from the packet I14(M). If M(F) is equal to
GUgo(F) x (GL1(E) x GLy(F)), by Proposition 2.2, we have

1 !/

2 Z / D" (t)09n¢<c) (t)dt
TeTaHy) Y TE)/ 2y (F)

_ o= Xe(=Dmeyp(=De(z. g, pr) — 1

2
Note that in this case we can decompose p; o ¢ as the direct sum of a
6-dimensional representation with its dual and the determinant of the
6-dimensional representation is equal to x4(—1)ng/p(—1) at —1. This

implies that X¢(—1)77E/F(_1)6<%7H¢7p1) =1
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If M(F) is isomorphic to GLy(E) x GLi(F) x GUy 1 (F), we may
assume that M = L. By Proposition 2.2, we have

/ DH (t)ety o (1)t
TGTe”(Hé) T(F)/ZH(’)(F)

= Do ()0, (ar (t)dt.
2 2 /T<F>/ZH6<F> ’

TeTen(H))

| — N | —

Meanwhile, the epsilon factor X¢(—1)e(%,ﬂ¢,p1) is equal to the ten-
sor product epsilon factor of GLy(E) x GLo(F) x GL(F) as in The-
orem D of [P92]. To be specific, we can decompose p; o ¢ as the
direct sum of an 8-dimensional representation with two 2-dimensional
representations that are dual to each other and whose determinant
is equal to x4(—1) at —1. The epsilon factor corresponds to the 8-
dimensional representation is equal to the tensor product epsilon factor
of GLy(F) x GLo(F) x GL;(F) while the epsilon factor of the remain-
ing 4-dimensional representation is equal to x,(—1). Then the second
part follows from the epsilon dichotomy (Theorem D of [P92]) and
the multiplicity formula (Section 4.5 of [WZ1]) for the generalized tri-
linear model (GL2(FE) x GLo(F), GLy(F')). Note that Section 4.5 of
[WZ1] and Theorem D of [P92] only considered the p-adic case, but
the multiplicity formula in the Archimedean case follows from a very
similar argument as in the p-adic case, while the epsilon dichotomy in
the Archimedean case follows from the epsilon dichotomy of the Wald-
spurger model (because all tempered representations of GLy(C) are
principal series).

If M(F) is isomorphic to GUy 1 (F) x GLy(E) x GUy 1 (F), by Propo-
sition 2.2, we have (L is an embedding from E*° to GUy(F))

Y / DH (1), (1)t

TET” H/ /ZH/

_ /E O, () (T2, a, e(a, 1))da.

By first restricting the packet to the second and third components of
M(F) and then further restricting to Uy (F) x Uy 1(F) we get an L-
packet of Uy (F') x Uy 1(F) and we let II be its base change to GLy(E) x
GLy(E). We can decompose p; 0 ¢ as the direct sum of a 4-dimensional
representation with two 4-dimensional representations that are dual to
each other and whose determinant is equal to 1 at —1. The epsilon fac-
tor corresponding to the first 4-dimensional representation is equal to
the tensor product epsilon factor of II times ng/p(—1)xs(—1). Hence
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Xo(—1)ng/r(—1)e(3, 11y, p1) is equal to the tensor product epsilon fac-
tor of II. Then the second part follows from the epsilon dichotomy and
the multiplicity formula for the Gan-Gross—Prasad model (Us, Uy).

It remains to prove the third part for the remaining cases (i.e. when
the packet is discrete). We just need to show that if

Xo(= 1y (~e(5: Ty, ) = 1,
(resp- (e (~ e, o, ) = ~1)

then the distinguished element for the model (GU, x GUy, GUy x U)
belongs to 11,(G) (resp. I4(Gp)).

If the packet is discrete with one element, then ' must be p-adic and
by assumption we know the central character is trivial. In this case
under the lower rank isomorphisms PGUy 9 ~ PGSOg¢ and PGU; ; ~
SO, II,(G) induces an L-packet of SOg x SO3 (here SOj3 is the split
odd special orthogonal group of rank 1 and SOy is a quasi-split but not
split even special orthogonal group of rank 3). Then the second part
follows from the multiplicity formulas and the epsilon dichotomy for
the Gan-Gross—Prasad model (SOg x SO3,S503 x U) ([Wall], [Wal2],
[Wal3)).

The last case is when II;(G) is discrete and contains more than
one element. In this case, the centralizer Z4 contains an element that
does not belong to the center. Hence we can find a proper elliptic
extended endoscopic triple (G, s’, ') such that ¢ factors through ),
G = G(U171 X U171) X GU171, s = (81,1,12,1) € Z¢ with S1 being
conjugated to diag(lz, —I2). We use II,;(G’) to denote the associated
L-packet of G'. We know that the character

Z X7r<3/>07r
7I'€H¢(G)
of G(F') is the transfer of the stable character
O, = Z 0,
TEH¢(G")

of G'(F).
By the same argument as in the orthogonal Gan—Gross—Prasad model
case in Section 3.3 of [Wal3} we can prove that

S s Ly / D (t)er o, (£)d)

melly(G) TGT” H/ /ZH/
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is equal to (recall that T*(F) = T(F)/Zgu,,(F) = T(F)/Zau,,(F))
CGH¢(G1)(1) + /E1 O, 1) (als, I3, 1(a,1))da

1
3 2 / DOV ()0, () (t, 8, t)dt.

T€Teu(GU1,1)

Meanwhile, as in Section 2.5, we can decompose p; o ¢ as

P1OD =Py D Py

The packet II,(G’) induces a packet of Uy ; by restricting to the third
copy of G'. By the epsilon dichotomy and the multiplicity formula for
the Gan—Gross—Prasad model (Us, U;), we have

X¢(_1>77E/F(—1)6(l,p/175/7 )—1
\/;1 Ce“d)(G') (a]27 12, L(CL, ].))da — 2 2 ¢ .

On the other hand, by Theorem 8.1 of [La], the packet II,(G") is the
restriction of an irreducible tempered representation II' of GU; ;1 (F) x
GU1(F) x GUy 1 (F) to G'(F) (the choice of IT" is not unique) and I’
induces an irreducible tempered representation IT of GLy(F) x GLy(F) X
GLy(F). By the epsilon dichotomy ([P90], [L01]) and the multiplicity
formula ([Wan16]) for the trilinear GLy model ((GL3)?, GLz) , we have

1 la s’ —1
5 2 / DSV (1) o (b £, )t — 2 P) T L

2
T€Ten(GU1,1)

This implies that

€%, pree) + xa(—1 —1)e(, 04
Z Xﬂ'( ,)m/(ﬂ') _ (2 P1, #’) X¢( )QUE/F( ) (2 P1,s ,q&).

7TEH¢(G)
If Xo(—1)nE/r(—1)e(5, 14, p1) = 1, then

€<17p1,8',¢) +X¢<_1)UE/F(_1) ( 7pls ¢) 1

and hence the unique distinguished element belongs to Il4(G). If
Xo(=1)ne/r(=1)e(5,11s, p1) = —1, then

€(5.P1.50.6) + Xo(=1)nE/r(—1)e(5, P o 4)
2

and hence the unique distinguished element belongs to I1,(Gp). This
proves the lemma. O

=0
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It is clear that for a tempered L-packet I1,(G) of G(F') whose central
character is trivial on Zg y(F), the identity

!

1
5 >/ D (t)cay, (1)t
TETEH(H(’,) T(F)/ZH(/)(F)

Xo(—=1)ngyp(—1)e(3, 1y, p1) — 1
2

is equivalent to the following conjecture which is an analogy of Conjec-
ture 1.6 for the model (G, Hy x U) = (GUy x GUg, GUy x U).

Conjecture 5.6. The unique distinguished element for the model (GU4x
GUq, GUy x U) belongs to I14(G) (resp. 1l4(Gp)) if and only if

1
X¢(—1)77E/F(—1)6(§7H¢a01) =1

(resp. Xo~ V(= 1), o, 1) = —1).

5.3. The proof of Theorem 1.10 for (GU, x GU,, (GUy x GU,)Y).
In this subsection we will prove Theorem 1.10 for (GU4 x GU,, (GUy X
GU,)?). Let Iy = [14(G) UTL,(G;) be a tempered L-packet of G/Z¢g u
and let Ory, () (resp. O, (c;)) be the distribution character of the packet
IIy(G) (vesp. Mg(Gi)). Then we know that Or, ) is the transfer of
aﬁnd,(gi) where a3 = 1 and a; = as = a4 = —1. Combining with the
multiplicity formula, we have (note that Con, (1) = 1 since there is a

unique generic element in the packet)

mgeem(eﬂd)(G)) + mgeom(0H¢(G1)) + mgeom(0H¢(G4)>
= 1+ DH(VTé(t))09H¢(G)(VT6 (t))dt,
Ty(F)
mgeom(6H¢(G)> + Mgeom (6H¢(G2))
1
= 143 > D (vr(t) oy, (ve(0) .
2 T(F) »(@
T€Teu(GU1,1)
mgeom(6H¢(G3)) + mgeom(9H¢(G1)) + mgeom<0H¢(G4))

1
- ¥ / D™ (vr(1) oy, (ve (1),
T€Teu(GU1,1) T(F)

Mgeom (O11,(Gs)) + Mgeom (Om,(G2)) = — /T - D" (vry(t))con, (o) (v (t))dt.
0

From now on, assume that either Il is not a discrete L-packet with
¢
III,(G)| = 1 or the central character of II4(G) is trivial. Combining
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the above equations with Lemma 5.5, we have

(512) mgeom(en¢(g)) =1 «<—
1 1
X¢(—1)77E/F(—1)6(§,H¢,p1) = X¢>(—1)€(57H¢7/)2) =1,

Mgeom (O11,(G1)) + Mgeom (On,(cy)) =1 =
_Xd)(_l)nE/F(_l)e(%vH¢7P1) = X¢(—1)€(%>H¢7P2) =1,
Mgeom (O11,(Gy)) = 1 ==
X¢(—1)77E/F(—1)€(%»H¢7,01) = —X¢(—1)€(%>H¢7P2) =1,
Mgeom (On,(cs) =1 <

1 1
X¢>(—1)77E/F(—1)€(§7H¢7/?1) = X¢(—1)€(57H¢;pz) = -1

This proves Conjecture 5.1 for the packet II,.

Let wg be the character of S, corresponding to the unique distin-
guished element of the L-packet and we also view it as a character of
Z4. Fix s € S4. By Lemma 2.4, there exists an elliptic extended en-
doscopic triple (G',s',n) of G/Zg i such that s' € sZg and ¢ factors
through “n. We need to show that wy g (s) = wy(s').

By the above relation and the definition of wy i we know that wy, g (s) =
Xo(s") if " belongs to the center of the dual group. Then we consider
the case when s’ does not belong to the center of the dual group. We
will only study the case when

s' = (s1,15,1) € G/Zey = GL4y(C) x GLy(C) x GLy(C).

The case when s’ = (s1, —I5, 1) follows from a similar argument (recall
that s; is an element in GL4(C) which is conjugate to diag(ls, —1I5)).
We first consider the case when the distinguished element belongs to
II,(G) UIL,(Gh) UIL,(Gy). This implies that
1

Xo(=Dee(~ 1), o, 1) € {1}, Xo(~1)ely, Mo, p) = 1

As in Section 2.5 we have a decomposition (we refer the reader to
Section 2.5 for various notation)

P1Od = piye® P'l,sf,¢, P20 Q= p2spt D P2y
and the equation
1
we,m(8) = nE/F(_l)qu,s’,Q(_l)e(Ea P1s'6 D P56, )-

The Langlands parameter ¢ induces a parameter ¢ of G” = G(U;; X
Up1) x GUyp; and we let I1,(G”) be the corresponding L-packet.
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By the formula of endoscopy in Proposition 5.4 together with the
epsilon dichotomy and the multiplicity formula for the Gan—Gross—
Prasad model (Us, U;), we know that

S oEmE - Y xmmm) = Y X))

melly(G) m1 €4 (G1) m4€ll4(Gy)
is equal to
(DX (el prras) — 1
+
2
N/ (=1)Xg,s2(=1)e(5: p2,606,-) — 1
_|_
2
1 /
+(1m/r (= x6(=1)e(5, P1v0) — 1)

+(77E/F(—1)X¢(—1)€(%a Proo) = Der(=Dxssa(=1e(3, prso4) — 1)
2

+(77E/F(—1)X¢(—1)€(%, Proo) = Der(=Dxss2(=1e(3, prs9-) — 1)
2

_ Xo(—1)e(3, P10 o) - (Ko 1 (—1)€(3, po.s0.4) + Xor2(—1)e(S, p2,57.6,-))
5 :

Since x4(—1)e(3, 1y, p2) = 1, we have

1 1
X¢,sf,1(—1)€(§7Pz,s',¢,+) = X¢,s’,2(—1)€(§7Pz,s',qs,—)
which implies that
(5.13)
Yo oxamm) = D xm(mm) = Y X ()m(m)
W€H¢(G) 71'1€H¢(G1) 7T4€H¢(G4)
is equal to
1, 1
Xo(=1)e(5: Pro ) - Xow2(=1e(5, p2so-).

If xo(—=1)ne/r(—1)e(3,s, p1) = 1, the distinguished element be-
longs to I1,(G) and we have

1 1
Xo(=1)e(5: Ao o) = /e (=1)e(5: prs6)-
This implies that wy(s’) is equal to (5.13) which is equal to
1 1

X¢,s’,2(—1)77E/F(—1)€(§7ﬂl,s',¢>) : 6(5, P2,s',6,—) = Wo, 1 (S).
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If xo(—1)np/r(—1)e(3,14, p1) = —1, the distinguished element be-
longs to II,(G) UIl,(G4) and we have

1 1
X¢(_1)6(§7 pll,s’,(b) = _nE/F(_1)€(§7 pl,s’,¢)'

This implies that w,(s") is equal to —1 times (5.13) which is equal to

1 1
X¢,s',2(—1)77E/F(—1)€(§7 P1s'¢) 6(57 P2,s',6,—) = Wo, 1 (S).

This proves the identity wy(s’) = we,m(s) when the distinguished ele-
ment belongs to I1,(G) UIL,(G1) UIl,(G4). The argument for the case
when the distinguished element belongs to I1;(G2) UIl,(G3) is similar
(we just need use the second equation in Proposition 5.4) and we will
skip it here. This finishes the proof of the theorem.

5.4. The proof of Theorem 1.10 and 1.14 for (GUgs, GUy x U). In
this subsection we will prove Theorem 1.10 for the model (GUg, GUy X
U). We first recall the definition of the model. Let G = GUj33, and
P = LU be the standard parabolic subgroup of G with

g
L(F) ={m(g,h) = h |
I(h)g*

g € GLy(E), g* = wy'g 'wsy, h € GU 1 (F)},
Let & be a generic character of U(F') given by
E(u(X, V) = pu(X, Y))), Mu(X, V) = trgp(tr(X)).
Then the stabilizer of £ under the adjoint action of L(F) is
Ho(F) :=={m(h,h) | h € GUy1(F)} = {diag(h,h,h) | h € GUy1(F)}.

Let H = Hy x U and we extend the character £ to H(F) by mak-
ing it trivial on Ho(F'). The model (G, H,€) is the analogue of the
Ginzburg—Rallis model. We can also define the quaternion (non quasi-
split) version of this model by letting Gp = GU, 5 be the non quasi-split
unitary similitude group. In this case, we have Hyp = GUs.

For a quasi-character @ (resp. 0p) of G(F') (resp. Gp(F')), define the
geometric multiplicities

Mgeom(®) = (D) + S [W(Ho, T)| / DH (t)eo(t)

TeTenu(Ho) T(F)/Za,u(F)
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mgeom(eD) = Z |W(H0,D7TD)|_1

Tp€Teu(Ho,p)

. / DH5 1)y (1),
Tp(F)/Zcpup (F)

In our previous paper [WZ1], we have proved the multiplicity formulas

m(m) = Mgeom(0x); M(TD) = Mgeom (O )

for all tempered representations m (resp. mp) of G(F) (resp. Gp(F))
in the p-adic case. For the rest of this section we will assume that
the multiplicity formulas hold for both the p-adic case and the real
case. Now we study the behaviors of the geometric multiplicities under
endoscopy and under parabolic induction. We first define the geometric
multiplicities associated to parabolic subgroups and elliptic endoscopic
groups.

Let M be a proper maximal Levi subgroup of G and # be a quasi-
character on M(F). If M is the Siegel Levi subgroup of G, define
Mgeom(0M) = cgu(1). Otherwise, M corresponds to a proper Levi
subgroup Mp of Gp. Let 9%’3 be a quasi-character on Mp(F). If
M = L (and hence Mp = Lp), define

mgeom(eM) = CeM(l) + Z ’W(H(]? T>’71
TeTeu(Ho)

: / Do (1)oM (t)dt,
T(F)/Z¢,u(F)

mgeom(HAD/ID) = Z |W(H07D7TD)|_1

Tp€Teu(Ho,p)

. / DHon (194 (1) dt.
TD(F)/ZGD,HD(F)
If M(F) ~ GUys(F) x GLy(E), let To(F) ~ E*° be a maximal
elliptic torus of GUy;(F) and we fix an isomorphism Tp(F) ~ E2°.
We embed it into M (F') via the map:

v(t) = diag(a, b,t,b,a), t € Ty(F) corresponds to (a,b) € E*°.

Note that the image of the embedding is contained in the Levi sub-
group GUy 1 (F) x GL;(E) x GL;(E). Similarly, we can also define an
embedding from a maximal elliptic torus Ty p(F) ~ E*° of GUy(F)
into Mp(F') which is denoted by vp. Define

mgeom(QM) = cou (1) + / DGUl’l(t>CgM<I/(t>>dt,
To(F)/Zau, , (F)
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Mo 07 = | DE0(t)c,pap (v (1)

To,p(F)/Zgu, o (F)

The following proposition is a direct consequence of Proposition 2.2.

Proposition 5.7. Let 0 (resp. 0p) be a quasi-character on G(F') (resp.
Gp(F)). Assume that 8 (resp. Op ) is the parabolic induction of a quasi-

character 0™ (resp. «9%1]3) of a proper mazximal Levi subgroup M of G
(resp. Mp of Gp). We have

mgeom(e) = mgeom<6M)> mgeom(eD) - mgeom(egD)'

Next we study the behavior of the geometric multiplicities under
endoscopic transfer. Let (G’,s',Ln) be a proper extended endoscopic
triple with G' = G(Uyy X Uss), ' = (diag(ly, —14),1) € G = GLg(C) x
GL;(C) and 7 be the natural embedding. Let ¢’ be a quasi-character
on G'(F). Using the diagonal embedding from GU;; to GUsgy in the
previous case we get a diagonal embedding from GU;; to G’ (denoted
by v/). Like in the previous case, we have an embedding, denoted by
v, from E' into G'(F) given by a — diag(1,t(a,1),1) x aly. We define

Maon®) = o) 5[ DS e )

T€Tenu(GU1,1)

+ DGU“( (a,1))co (v(a))da,

Myeom p(0) = Z / DO (0 (v (1)

T€Tenu(GU1,1)
— DGU“( (a,1))cy (v(a))da.
El

Proposition 5.8. Let 6 (resp. 0p) be a quasi-character on G(F') (resp.
Gp(F)). Assume that 0 (resp. Op) is the endoscopic transfer of a stable
quasi-character ' of G'(F) . We have

mgeom(e) = mgeom(el)y mgeom(eD) - mgeom,D(9,)~

Proof. We will only prove the quasi-split case, the quaternion case fol-
lows from a similar argument. Recall that

Mgeom(0) = co(1) + > [W(Ho, T)|™" / DT (t)cy(t)dt.
TETou(Ho) T(F)/Za,u(F)

The proof of the identity cp(1) = cg/(1) is easy and we will skip it here.
Now we fix T' € Ty (Hp) and we will study the term corresponding to T’
in Mygeom(0). The element t € T'(F) C G(F) is of the form diag(to, to, to)
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with ¢y € GUy 1 (F') belongs to the torus that is isomorphic to 7. There
is a natural bijection T' <» Fr between T (Hy) and the set of quadratic
extensions of F'.

If Fr # E, then By = Fr ®p E is a quadratic extension of £ and
we can identify ¢, with an element in £ whose norm (with respect to
the quadratic extension Er/Fr) belongs to F'*. By Proposition 2.2,
we know that (assume that t € T,.,(F), i.e. t does not belong to the
center) D (t)cy(t) is equal to

1
DGUI’I(to)_1/2DG(t)1/2C9(t> — 5 )\eblixn/l\ﬁl DGUl,l(tO)—l/Q

DC(diag(Mo, to, A~ 'to))"/?0(diag(Mo, to, A~ o).
Under the notation of Section 2.4, the conjugacy class diag(\tg, tg, A" )
is of the form (note that ¢; is unique in this case and hence we will ig-
nore it)
(Er, Fr,to) U (Br @ Er, Er, (Mo, A~ ')).

This conjugacy class corresponds to a unique conjugacy class in G’ =
G(Ul,l X UQ’Q) given by

(BEr, Fr,ty) x (Er @ Er, Er, (Mo, A\ ')

and the transfer factor is trivial since the quadratic character g, e,/ B,
is trivial. As a result, we know that D (t)cy(t) is equal to

1 ) B ' B
5 AG;IXH}\_H DGV (to) 1/2DG(d1ag()\t0, to, A 1t0>>1/2
-0(diag (Ao, to, A~ 'to))
1 ) B ) . )
- 5 AE;IXH}HI DSYL(10) V2D (1, x diag(Atg, A" t)) 2

'9/(t0 X diag()\tg, )\_1t0))
= Z)GUL1 (to)il/zDG/(to X diag(to,to))l/QCQ/(to X diag(to, to))
= DO (tg) ey (V (1))
where the second equality follows from Proposition 2.2. This implies
that the terms in Mmgeom (#) and mgyeom (0') associated to 1" are equal to
each other.

If Er = FE, then we can identify t, with an element in (a,b) €
E*Y. By Proposition 2.2, we know that (assume that ¢ € T,.,(F))
DM (t)co(t) is equal to 1 DSVr1(tg)~1/2 times the limit of DY(-)/?cy (")
at the conjugacy class

(EvFa CL) U (Ea F; b) U (E D E, E, ()\1&,/\1_1d)) U (E fan) E’7 E‘, ()\2b7 /\2—15))
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as A\; — 1. In this case ¢; is again unique and we will ignore it. This
conjugacy class corresponds to three conjugacy classes in G = G(Uy 1 x
Us2) given by

(E,F,a)U(E,F,b))x(E®E, E,(Ma,\['a))U(EDE, E, (\b, \;'D))),
(EQE,E,(Ma,\'a)x ((E,F,a)U(E, F,b)U(E®E, E, (b, \;'D))),
(E®E,E, (b, \'0))x (B, F,a)U(E,F,b)U(E®E, E, (\a, \'a))).

The transfer factor for the first conjugacy class is trivial since the qua-
dratic character nggp/p is trivial. Moreover, by the same argument as
in the previous case, this recovers the term in mgyeom (0') associated to
T.

For the second and third conjugacy classes, the transfer factor is still
trivial by Section 1.11 of [Wal]. The second and third conjugacy classes
give us the expression

1 ,
~ lim DU ()72 DY (diag(ady, adyt) x diag(b)g, to, Ay b))Y?

MNEFX XNi—1

-0 (diag(ad, ad;h) x diag(bAg, to, A5 'D))

1 :
+7, Jim DSYLL(10) V2D (diag(bAg, bA; 1) xdiag(ad, to, A a))*/?

¢’ (diag(bXa, bA; 1) x diag(aly, to, \;'a))
= DV ()72 DY (al, x diag(b, to, b)) ey (al, x diag(b, to, b))
+ DSV ()2 DY (0], x diag(a, to, a))?cy (b, x diag(a, to, a))
= DY (tg)cp (aly x diag(b, to, b)) + DU (tg)ce (by x diag(a, to, a)).

Up to modulo the center, this recovers the term associated to E' in
Mygeom (6'). This finishes the proof of the proposition. O

Let II, = II4(G) U II4(Gp) be a tempered L-packet of G/Zg u.
We assume that II,(G) is not discrete with one element. We first
prove that the distinguished element belongs to I14(G) if and only if
ne/r(—1)e(3, 4, px) = 1, which is equivalent to the equation

(5.14) S (W(Hy, T / D¥ (t)coy, o) (1)t

TGEZZ(HO) T(F)/ZG,H(F)

5 .
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There are two cases. The first case is when the packet is induced
from a maximal Levi subgroup M of G. If M is the Siegel parabolic
subgroup, we have

> Wt [ DY (t)cgy o, (1)t

TE'Te”(H()) T(F)/ZG,H(F)

nE/F(_l)E(%v H¢, PX) -1
2

Note that in this case we can decompose the representation px o ¢ into
the direct sum of a 10-dimensional representation with its dual such
that the determinant of the 10-dimensional representation is equal to
ne/r(—1) at —1. This implies that nE/F(—l)e(%,Hqs,pX) =1.

If M >~ GUspx GL{(E) (resp. M ~ GU;; x GLy(E)), (5.14) follows
from Proposition 5.7 and Lemma 5.5 (1) (resp. Theorem D of [P92]).

Next we consider the case when the packet is discrete. By our as-
sumption the packet II4(G) contains more than one element. Hence
there exists a proper elliptic extended endoscopic triple (G’,s’,Ln) of
G such that ¢ factors through n, G' = G(Uy; x Uss) and s’ € Z.
The L-parameter ¢ of G induces an L-parameter (still denoted by ¢) of
the endoscopic group G’. As in Section 2, we can decompose py o ¢ as
P1.o.s B p2.ss Where dim(py 4 ) = 12 and dim(ps 4+) = 8. By the en-
doscopic relation in Proposition 5.8 and Lemma 5.5 (note that since we
have assumed that Conjecture 5.6 holds, the three identities in Lemma
5.5 hold for all tempered L-packets), we have

> w3 Wt [ D (t)ee(1)dt)

nelly(G) TeTon(Ho) T(F)/Z¢.u(F)

1
= oy (1) + > 3 / *(F)DGU“(t)209n¢<c,)(y’(t))dt
)

T€Ten(GU11

+ DGUl,l (ta)
E‘l
Xos' (= 1)0e/r(—1)e(5, pro5) =1 | Xoo(—1)e(5, p260) — 1
+
2 2
_ Xow (=Dnm/r (=15, pros) + Xow (= 1e(5, p2o.5)
) .
Here x5 was defined in Section 2.5. Note that by Theorem 8.1 of [La],
the packet I1,(G’) is the restriction of an L-packet II' of GUy 9 x GUy 4
which allows us to apply Lemma 5.5. In particular, we know that the

above summation is nonzero ( <= the distinguished element belongs
to IT,(G)) if and only if ng/r(—1)e(5, 4, px) = 1. This proves (5.14).

(v(a))da

00H¢ (G/)

-1+
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Now we prove Theorem 1.10. Let I, = I1,(G) UIL4(Gp) be as above
and let wy € §¢ correspond to the unique distinguished element in the
packet and we also view wy as a character of Z,. For s € Sy, by Lemma
2.4, there exists an elliptic extended endoscopic triple (G’,s’,Ln) of
G /Z m such that " € sZ3 and ¢ factors through L. We need to show
that wy(s") = we,m(s).

The above discussion implies that we(s') = we u(s) if s belongs to
the center. It remains to consider the case when s’ does not belong to
the center. We only consider the case when the —1 eigenspace of s is 4
dimensional. The argument for the case when the —1 eigenspace of s

is 2 dimensional is similar (note that s’ € G/Zg y = SLg(C)). In this
case the L-parameter ¢ induces an L-parameter of G” = G(Uy 1 x Uy 2)
(still denoted by ¢). We still decompose px o ¢ as p1 4 ¢ P p2,ss Where
dim(py ¢s) = 12 and dim(pe4+) = 8. By our discussion above, we
know that

> xals)m(m)

W€H¢(G)
is equal to

qu,s’(_l)nE/F(_l)G(%: P1,6,s) + X¢>,s’<_1)€(%7 02.6.5')
5 .

Similarly, we can also show that
Y. Xap(s)m(mp)
ﬂ'DEHd)(GD)

is equal to

~Xo,s (= 1)nE/p(—1)e(3, pro.s) + Xow (—1)e(3, p2,6.57)
5 .

If the distinguished element belongs to I14(G), then

1
UE/F(_1)€(§7 H¢v PX) =1

and we have
we(s) = ) xal(s)m(m)
7TEH¢(G)

Xos (= )nE/r(—1)e(3, pros) + Xo,s (—1)e(3, pas.s)
2

1

= X¢75/(_1)6<§’ p2,¢,s/) = w¢7H(S)'
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If the distinguished element belongs to II,(Gp), then
1

and we have
ws(s) = D Xap(s)m(mp)
7TD€H¢(GD)
_X¢,s’(_1>77E/F(_1)6(%7 p1,¢,s’) + Xo,s! (_1)6(%7 p2,¢,s’)
2

= Xow (Dl pro) = wip(s).
This completes the proof of Theorem 1.10 for the model (GUg, GUs X
U).

Lastly, we prove Theorem 1.14 for the model (GUg, GUy X U). As-
sume that Conjecture 1.6 holds for the model (GUg, GUy x U), the goal
is to prove Conjecture 5.1 for the smaller model (GUy x GUg, GUy x U).
Let I14(GU4 x GU,) be a tempered L-packet whose central character
is trivial on {(aly,als)| a € E*}. By restriction it induces a tempered
L-packet II,(G") of G” = G(Uy1 x Us2) with trivial central character
and hence a tempered L-packet of I14(G’) with G’ = G"/Z¢gn. By the
endoscopic transfer this induces a L-packet I14(G/Zg n) of G/Zg u.
Let (G, s',n) be the elliptic extended endoscopic triple as above. The
endoscopic relation in Proposition 5.8 implies that

S xel)m(m)

W€H¢(G)
is equal to
1
ORI DR / DI ey, (V1))
T€Ten(GU1,1) T(F)

+ DGU1’1 (ta)
El

1

=1+ >, 3 / DI, g, (V (1))t

TeTu(GUy,y) ~ 7T
Xo(—1)e(5, 1Ty, po) — 1
5 .

By Conjecture 1.6 together with the fact that x, € {£1} for all 7 €

I1,(G), we know that the above expression is equal to
5 )

(v(a))da

CGH¢‘ (Gl)

_|_

+
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By our discussion in the previous subsection, we know that
3 / DS ()2, o (V ()it € (0,1}
T€Teu(GU1,1) )
and our goal is to show that it is equal to

Xo(—=1)np/p(—1)e(5, 1y, p1) — 1
2 M

which is equivalent to show that

> / DI e, g, (V (1))t

T€Te1u(GU1,1)

is nonzero if and only if

1
X¢(—1)77E/F(_1)€(§,H¢,P1) = -1
If .
I+ >, 5 / DI e, g, (V (1))t
TeTu(GUy ) ~ /T )

X¢(_1)6<%7 H¢7 pZ) -1 o 77E/F(—1)6(%’ H¢7 pX) +1

+ - 9

2 2
we have

1
> [ DO, ()
2 Jrp) ¢

T€Teu(GUL1)
_ UE/F(—l)E(%,H@PX) - X¢(—1)f(%>n¢,ﬂz)
5 .
Since 1/ p(—1)e(3, g, px), xo(—1)e(5, g, p2) € {1} and

1
UE/F(_l)E(iv

we know that

1 1
Iy, px) = X¢(—1)€(§7 Iy, P2)'X¢(—1)77E/F(—1)6(§, g, p1),

> / DO e, g, (V (1))t

T€Te1(GU1,1)

is nonzero if and only if X¢(—1)77E/F(—1)€(§, H¢,,p1) = 1.

If
1+ ¥ / - DSV (82, () (8))dt

Te€Teu(GU1,1)

2 2 ’
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we have

1
S . / DOV (120, ((1))dt

T€Teu(GUL1

_ nyr(=1)e(5 g, px) — Xo(=De(5, Mg, p2) ]
5 .

Since the left hand side is either 0 or -1, we have

1 1

and
1 1 1
77E/F(—1)6(§a Iy, px) = X¢(—1)€(§a Iy, P2)'X¢(—1)77E/F(—1)6(§, Iy, p1)-

This implies that

1
o5 DSV ()2 (V(8))dt
)2 *(F) A

T€Tenu(GU1

is nonzero if and only if x4(—1)ng/r(—1)e(5, 14, p1) = —1. This proves
Conjecture 5.1.

6. THE MODELS (GSOg x GLg, GLy X U), (GSO1q, GLy x U),
(GSpg x GLy, GLy X U) AND (GSpyq, GLa X U)

In this section, we consider the models (GSOg x GLg, GLy x U),
(GSO12,GLy X U), (GSpg x GLg, GLy x U) and (GSp,y, GLy x U). In
Section 6.1, we will define the models and the multiplicity formulas. In
Sections 6.2 and 6.3, we will prove the main theorem for these models.
The proofs for these four models are very similar to each other.

Each of the two models associated to even special orthogonal groups
has two versions (corresponding to the two Siegel parabolic subgroups)
and they are differed by the outer automorphism of even special or-
thogonal groups. We will only consider one of them, the other one can
be studied by the same argument.

6.1. The models and the multiplicity formulas. We start with
the model (GSOg x GLg, GLy x U). Let

, (0 —1 , (0 T, (0 J]
JQ_(l 0>7J2n_(J2 0 7L4_ _Jé 0

0 0 J5
and Ly, = 0 Lap—a 0 ). Define
—J) 0 0

GSOu, = {9 € GLuy | 19 Lung = 1(g) Lun, det(g) = 1(g)*"},
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GSO2,(D) = {g € GLa2u(D) | 'gJ5,9 = 1(g)J5,}.
Let G = GSOg X GLQ, H = HO x U with
Hy = {diag(h, h,h,h) x h | h € GLy}

and U be the unipotent radical of the standard parabolic subgroup
P = LU of G = GSOg x GLy where

L = {diag(hy, ha, thi, th})xhs | h; € GLa,t € GLy}, h* = J5'h='(J5) 1.
We define a generic character £ on U(F) to be £(u) = ¥(A(u)) where

]2 X % *
0 I, Y =«
0 0 Iy =
0 0 0 I

AMu) =tr(X) +tr(Y), u =

Similarly we can also define the quaternion algebra version of this model
(GD,HD) with GD = GSO4(D> X GLl(D) and H07D = GLl(D)
For the model (GSO12, GLy X U), let G = GSO1, H = Hy x U with

Hy = {diag(h, h,h, b, 1, h) | h € GLy}

and U is the unipotent radical of the standard parabolic subgroup
P = LU of G where

L = {diag(hu, ho, hy, this, ths, thY) | hi € GLo, t € GLy Y.
We define a generic character £ on U(F) to be £(u) = ¥ (A(u)) where

[2 X = *
IQ Y x
0 I, Z
0 0 I
0 0 0 &L
0 0 0 0 0 I

Au) =tr(X) +tr(Y) +tr(2), u =

* % X X
* ¥ X X X

o O oo

Similarly we can also define the quaternion algebra version of this model
(GD,HD) with GD = GSOG(D) and H07D = GLl(D)
For the model (GSpg x GLg, GLy x U), define

GSpy, = {9 € GLa, | 'gJ5,9 = 1(9) ], },

GSp, (D) = {g € GLa(D) | ‘gwng = l(g)w,}

where w,, is the longest Weyl element of GL,,. Let G = GSpg x GLo,
H = Hy x U with

Hy = {dlag(h, h, h) X h | h e GLQ}
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and the unipotent radical U of the standard parabolic subgroup P =
LU of G = GSpg x GLy where

L= {(h17 hg,d@t(hg)hf) X hg | hz € GLQ}
We define a generic character £ on U(F) to be £(u) = ¥ (A(u)) where

_[2 X
AMu)=tr(X), u=|0 L, =
0 0 I

Similarly, we can also define the quaternion algebra version of this
model (Gp, Hp) with Gp = GSp4(D) x GL(D) and Hyp = GL1(D).
For the model (GSp,,, GLs x U), let G = GSpy,, H = Hy x U with

Hy = {diag(h, h, h, b, h) | h € GLy, h* = J3'h~'(J3) ™'}

and the unipotent radical U of the standard parabolic subgroup P =
LU of G where

L= {dlag(hl, hg, hg, det(hg)h;, det(h;;)h;) | hl S GLz}
We define a generic character £ on U(F) to be {(u) = ¥ (A(u)) where

I, X *x x %
0 LY x x
AMu) =tr(X)+tr(Y),u=10 0 L * =
0 0 0 I, =

0 0 0 0 I

Similarly, we can also define the quaternion algebra version of this

model (Gp, Hp) with Gp = GSp;(D) and Hyp = GL1(D).
Let (G, H) be one of the four models above. For a quasi-character ¢
(resp. 0p) of G(F) (resp. Gp(F')), define the geometric multiplicities

1
Mgeom(0) = co(1) + > 5 / D (t)co(t)dt,
TETo (Ho) T(F)/Zg,u(F)
1

mgeom(eD) - Z 5 / DHD (t)CQD (t)dt
TDE%ll(HO,D) TD(F)/ZGD,HD(F)
In our previous paper [WZ2], we have proved the multiplicity formulas

m(m) = Mgeom(0r), M(TD) = Myeom (0np)

for all tempered representations m (resp. mp) of G(F) (resp. Gp(F))
in the p-adic case. For the rest of this section we will assume that the
multiplicity formulas hold for both the p-adic case and the real case.
To end this subsection, we will discuss the behavior of the geomet-
ric multiplicities under parabolic induction. Let M be a proper Levi
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subgroup of G and 8™ be a quasi-character on M (F). If M does not
contain the Levi subgroup L up to conjugation, define meom(0™) =
com(1). Otherwise, M corresponds to a proper Levi subgroup Mp of
Gp. Moreover, up to conjugation we may assume that L € M and
Lp C Mp. Let 0, Mb he a quasi-character on Mp(F). Define

mgeom<9M) = CaM Z /

T€Teu(Ho) F)/Zc.u(F
DM( )2 (t )DHO( )" equ(t )dt

Mp _
Mgeom(0p”) = /
TDGTe” (Ho,p) Tp(F)/Zcp,mp (F

DMp ()Y/2 pHop (1)=1/2¢ MD( )dt

The following proposition is a direct consequence of Proposition 2.2
(one just needs to use the fact that D (t) = D% (t)Y/2DHo(1)=1/2 for
t € Ho(F)).

Proposition 6.1. Let 0 (resp. 0p) be a quasi-character on G(F') (resp.
Gp(F)). Assume that 6 (resp. 0p) is the parabolic induction of a quasi-
character 6M (resp. 9%’3) of a proper Levi subgroup M of G (resp. Mp
of Gp). We have

mgeom(e) = mgeom(eM)v mgeom(eD) = mgeom(eg[))'

6.2. The proof of Theorem 1.10 and 1.14 for (GSOqy, GLy x U)
and (GSOgx GLg, GLyxU). In this subsection, we will prove Theorem
1.10 for (GSO2, GLy x U) and (GSOg X GLg, GLy x U). The proof for
the model (GSOg x GLy, GLy x U) is very similar (and easier) to the
proof for the model (GSO;2,GLy x U). So we will only consider the
model (GSOlg, GL2 X U)

Let (G, H) be the model (GSO12, GLy X U) defined in the previous
subsection. We will first study the behaviors of the geometric multi-
plicities under endoscopic transfer. Then we will prove Theorem 1.10.

Let (G',s',In) be a proper extended elliptic endoscopic triple of
G/Zgnu. The projection of s € G/Zgy = Spin;y(C) to SO12(C) is

conjugated to
diag([G, —Iﬁ), diag(Ig, —14) or diag(I4, _[8)

We will only consider the first two cases since the third case is very
similar to the second case.

If G’ = G(SOg x SOg)/GL™8 | we just let
mgeom(9/> - C@/(l), mgeom,D(Ql) =0.
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If G’ = G(SOg x SO4)/GL{™ as explained in Section 2.5, when we

restrict the representation px to G/ = (G/Zq 1), we can decompose
it as

Px = Ps+ D Ps,—
where py 4 (resp. pg ) is the tensor product of a Half-Spin represen-
tation of Sping(C) with a Half-Spin representation of Spin,(C) and it
is the +1 (resp. —1) eigenspace of px(s’).

Up to conjugation the group G’ has 4 Levi subgroups that are iso-
morphic to GLy x GLy x GLy X GLl/GL(lhag. There are exactly 2 of
these 4 Levi subgroups whose elliptic conjugacy classes correspond to
the elliptic conjugacy classes of L/Z¢q g (the elliptic conjugacy classes
of the other 2 Siegel Levi subgroups correspond to the elliptic con-
jugacy classes of o(L) where ¢ is the outer automorphism of G), w
denote them by L, L,. By switching L; and L, we may assume that
the GSOg-component of Ly (resp. Ls) corresponds to the Half-Spin
representation of Sping(C) appeared in py 4 (resp. py ).

Remark 6.2. For each Levi subgroup of GSOg(C) that is isomorphic
to GLg x GLy x GLy, we can construct the model (GSOg x GLg, GLgy X
U) as in the previous subsection. Hence it corresponds to a Half-Spin
representation of Sping(C). Up to conjugation there are two such Levi
subgroups differed by the outer automorphisms.

We can embed Hy/Zg g ~ PGL, diagonally into L; (denoted by ;).

We define
mgeom(el) - C@’ Z /

TETen(Ho) F)/Zc.u(F)

ZDHO Vo (v(t))dt,
Mgeomp(®@) = 3 /

T T (Ho) F)/Zg u(F)
2

D (=) DRty cor (vi(t) )dt.

=1

Proposition 6.3. Let 0 (resp. 0p) be a quasi-character on G/Zg u(F).
Assume that 0 (resp. 0p ) is the endoscopic transfer of a quasi-character

¢ of G'(F) . We have

mgeom(e) - mgeom(0,)7 mgeom<0D) - mgeom,D(el)-
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Proof. We first consider the split case, the proof of cs(1) = cg(1) is
straightforward and we will skip it here. We only need to study the
term DH(t)Cg(t) for t = diag(to,to,to, to,to,to) and t[) € GLZ(F)ell,reg-
Let E/F be the quadratic extension associated to t, and we can identify
to with an element of E*. By Proposition 2.1, we know that
D" (t)cy(t)
is equal to
1
_DGL2(t0)_1/2 ' hm DG(g(t();)\17)\27)\3))1/20(g(t07/\17/\27A3>>
48 NjEFX 1
where g(tg, A1, A2, A3) is the conjugacy class of G corresponding to (g
is the conjugation of ¢y under the nontrivial element in Gal(E/F))
(E® E,E,(Mto, \{ 1)) U(E @ E, E, (Aato, \y o))
U(E @ E, E, (Asto, A3 o))
and has a nonempty intersection with L (recall that in the even special
orthogonal group case each data above gives two conjugacy classes
differed by the outer automorphism). Here 48 is the cardinality of the
Weyl group of the centralizer of ¢, which is of type C5. Note that
HiEIF:E@'/Im(NFi/Fii)/ ~

is trivial for this conjugacy class.

When G’ = G(SOg x SOg)/GLY™ there is no conjugacy class in G’
corresponding to the conjugacy class g(to, A1, A2, A3) of G. This implies
that cg(t) = 0. In particular, we have

Mgeom (0) = co(1) = cor(1) = Mgeom(0').
When G = G(SOsg x SO4)/GLY  there are six conjugacy classes in
G’ corresponding to the conjugacy class g(tg, A1, A2, A3) of G:
(E@ E,E,(\Mto, \ 1)) U(E @ E,E, (Aato, X\ 1))
x(E® E, E, (\sto, A\310)),
(E® E,E,(Mto, \] 1)) U(E @ E, E, (\sto, \3 1))
x(E® E, E,(A\ato, \;'t)),
(E@ E,E,(M\ato, \y '10)) U (E @ E,E, (\sto, \3 1))
x(E @ E,E, (A\to, \{'t)).
Note that each data above gives 4 conjugacy classes of G’ and two of
them correspond to the conjugacy class g(to, A1, A2, A3) of G. The other
two correspond to the image of g(ty, A1, A2, A\3) under the outer auto-

morphism. For the two conjugacy classes corresponding to g(to, A1, A2, A3),
one of them has a nonempty intersection with the Levi subgroup L,
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and the other one has a nonempty intersection with L,. The transfer
factor is trivial in this case since the character nggp /g is trivial.

Let ¢i(to, A1, A2, A3) (1 < ¢ < 2) be the two conjugacy classes of
G’ associated to one of the three data above that corresponds to the
conjugacy class g(to, A1, A2, A3) of G and has a nonempty intersection
with the Levi subgroup L;. By Proposition 2.1, we have

lim DG (g] (to, /\1, /\2, /\3))1/29/(93 (to, )\1, )\2, )\3))

A EFX—1
= 16 - D% (15(t))?co (v4(to))

where 16 comes from the cardinality of the Weyl group, which is
of type Cy x A;. Then the proposition follows from the fact that
D% (v5(t9)) /2 DS 2 (15)~1/2 = DHo(t,)3. This proves the split case.

For the quaternion case, the proof is exactly the same as the split
case with one exception. The only difference is that the transfer factor
between ¢g(to, A1, Ao, A3) and gi(to, A1, A2, A3) is equal to 1 when i =
1 and is equal to —1 when ¢ = 2. This difference comes from the
extra pairing (inv[z](6*, ), s*) in the definition of the transfer factor
in Section 2.3 of [K]. With the same notation as in loc. cit., for
the conjugacy classes we considered here, both H(T, S) and mo(ST)
are isomorphic to Z/2Z. Also it is easy to see that inv[z](d*,0) is
the nontrivial element in H'(T, S) and the element s belongs to the
identity component (resp. the non-identity component) of ST when
i =1 (resp. ¢ = 2). In particular the pairing (inv[z](*, ), s*) is equal
to 1 (resp. —1) if ¢ = 1 (resp. ¢ = 2). This finishes the proof of the
proposition. ]

Let I, = II,(G) U Il4(Gp) be a tempered L-packet with trivial
central character. Assume that II, is not discrete with |II,(G)| = 1.
We first show that the unique distinguished element belongs to I14(G)
if and only if e(%, I1,, px) = 1, which is equivalent to say that

61) Y / (3.1, px) =1

2
T€Teu(Ho) F)/Zc.n(

(t) 09n¢(c) (t) dt =

There are two situations. The first situation is when the packet
I1,(G) is induced from a packet II,(M) of a maximal Levi subgroup
M(F) of G(F). If M = GLg x GL; (resp. M = GSOg x GLy),
(6.1) follows from Proposition 6.1 and Conjecture 1.6 for the model
(GLg, GLy x U) (resp. (GSOg x GLy, GLy X U)). To be specific, in this
case, Proposition 6.1 implies that the multiplicity of the packet I14(G) is
equal to the multiplicity of the packet I14(M) with respect to the model
(GLg, GLyx U) (resp. (GSOgx GLg, GLaxU)). Meanwhile, the epsilon
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factor €(3, 11y, px) is equal to the epsilon factor of the packet ITy(M)
associated to the model (GLg, GLy X U) (resp. (GSOgx GLg, GLyx U)).
This proves (6.1) (note that both the model (GLg, GLy x U) and the
model (GSOg x GLy, GLy X U) are smaller than the model (G, H)).

If M = GLy x GSO, = GLy x (GLy x GLy)/GL{™ %% as in the
previous two cases, (6.1) follows from Proposition 6.1 and Conjecture
1.6 for the model (GL4, GLy x GLy). By Remark 4.4, we know that
Conjecture 1.6 for the model (GL4, GLy x GL2) follows from Conjecture
1.6 for the model (GLg, GLy x U).

If M = GSOg x GL3 or GSOyg x GL4, then it is easy to see that both
sides of (6.1) are equal to 0 and this proves the equation.

Remark 6.4. By the above discussion, we know that if the weak con-
jecture (Conjecture 1.6) holds for the model (GSO12,GLy x U), then
it also holds for the models (GLg, GLy x U), (GSOg x GLg, GLy X
U), (GLy x GLg, GLy x GLg). Similarly, if the weak conjecture holds
for the model (GSOg x GLg, GLg X U), then it also holds for the model
(GLy x GLg, GLy x GLy). This proves Theorem 1.14 for the models
(GSOH, GL2 X U) and (GSOg X GLQ, GL2 X U)

The second situation is when the packet I14(G) is discrete. By our
assumption, we must have |II;(G)| > 1. Hence there exists a proper
elliptic extended endoscopic triple (G’,s’,n) of G such that ¢ factors
through 7 and s’ € Z4. If the order of s is equal to 2, let W =
W, 1 @W; _ be the decomposition of the 12-dimensional quadratic space
as in Section 2.5. Up to multiplying s’ by an element in the center,
we may assume that dim(Wy ;) = 8. Then the L-parameter ¢ of G
can be viewed as an L-parameter (still denoted by ¢) of the endoscopic
group G' = G(SOsx SO4)/GLI™. As in Section 2.5, we can decompose
pPx © ¢ as py .+ D py g Where the underlying vector space of py 4 4
(resp. py .4 ) is the tensor product of a Half-Spin representation of the
even Spin group associated to Wy ;. with a Half-Spin representation of
the even Spin group associated to Wy _ and it is the +1 (resp. —1)
eigenspace of px(s).

By our formula of endoscopy in Proposition 6.3, we know that (note
that the Kottwitz sign between G and Gp is —1)

> ls)mlm) = Myeom (0,

7I'€H¢(G)

S 0 (5)m(TD) =~y ()

7TD€H¢(GD)
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where ¢ = 01, (qr) is the distribution character of the L-packet I14(G").
Note that in this case S, is not necessarily abelian.

The L-packet I14(G’) induces an L-packet of G(SOg x SO4). By
Theorem 8.1 of [La], such an L-packet is the restriction of an L-packet
of the group GSOg x GSO, = GSOg x (GLy x GLy/GL{™%49) 4
G'. This gives an L-packet of the group G” = GSOg x GLgy x GLo,
denoted by IL;(G"). We use 6" to denote the distribution character of
this packet. Up to switching the two GLs copies we assume that the
Half-Spin representation of Spin,(C) = Spin, (W, _) appeared in py 4 +
(resp. ps.4.—) is the 2-dimensional standard representation of the dual
group of the first (resp. second) copy of GLs.

In this case, the embedding v; (resp. vs) of PGLy into G’ in-
duces a diagonal embedding of GL, into GSOg and the first copy
(resp. second copy) of GLy. Note that the restriction of these two
embeddings to GSOg are differed by the outer automorphism. Com-
bining with the multiplicity formula and Conjecture 1.6 for the model
(GSOg x GLgy, GLy x U), we know that

(%7 p8'7¢,+) + 6(%7 pS/@,*)
2 )
1 1
6(5, Ps’,¢,+) - 6(57 Ps',¢>,—)
5 .

Mgeom (01) = =

mgeom,D(Ql) -
In particular, this implies that

e(lv :08’7¢7+) + E(la ,05/7(257_)
> () = e P ln o),
7r€H¢(G)

_6(%7 :08',¢>7+> + 6(%7 ps’,¢>,7)

S trlny(&)mimn) = ; .

mp€lly(Gp)

As a result, we know that the unique distinguished element belongs to
I1,(G) if and only if €(3, ps.p+) = €(3, psr.p,—) which is equivalent to
6(%7 Iy, px) = 1.

If the order of s’ is equal to 4, let W = Wy, & Wy _ be the de-
composition of the 12-dimensional quadratic space as in Section 2 with
dim(Wy ;) = dim(Wy _) = 6. Then the L-parameter ¢ of G can be
viewed as an L-parameter (still denoted by ¢) of the endoscopic group
G’ = G(SOg x SOg)/GLY 9 Let ¢ be the distribution character of
I1,(G"). Then Proposition 6.3 implies that

S tlamm) =) =1 S e, (s))m(rp) =0,

7T€H¢(G) 7TD€H¢.(GD)
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i.e. the unique distinguished element belongs to II,(G). In this case,
by our discussion in Section 2.5, we also know that e(%, I, px) = 1.
This proves (6.1).

Now we are ready to prove the theorem. Let wy € §¢ correspond
to the unique distinguished element in the packet. By Remark 1.1 we
know that w, is a character and we view it as a character of Z,. For
5 € Sy, by Lemma 2.4, there exists an elliptic extended endoscopic
triple (G',s',*n) of G/Zg u such that s € sZg and ¢ factors through
Lp. We need to show that wg(s’) = wsm(s). The above discussion
implies that wy(s’) = ws m(s) if s’ belongs to the center of the dual
group.

If s’ does not belong to the center of the dual group, there are two
cases. If the order of s’ is equal to 4, by the discussion above we
know that the unique distinguished element belongs to II,(G). By the
definition of wy g we know that wy g(s) = 1. This implies that

we(s') = tr(wy(s')) = Z tr(x-(s"))m(m) =1 = wy u(s).

7T€H¢(G)

If the order of s’ is equal to 2, let W = Wy @& Wy _ be the
decomposition of the 12 dimensional quadratic space as in Section
2.5 with dim(Wy ;) € {4,8}. We will only consider the case when
dim(Wy 1) = 8, the other case follows from a similar argument. By
our discussion above, we have

Z tr(X (S/))m(’f(‘) = 6(%’ IOS',d),Jr) + 6(%7,03'@,,)

2
7T€H¢(G)
_E(la ps’,qb,—i-) + E(la ps’,@—)
>t (N)mlmp) = — 2P TE B
TI'DEH(;/)(GD)

By the definition in Section 2.5, we have
1
Woi1(8) = €(5, Psr.0.-)-

We have two cases. If the unique distinguished element belongs to
I1,(G), we have
1 1 1
6(57 H¢v pX) =1, E(Evps’,ti),-ﬁ-) = €(§>p8’y¢7—)'
This implies that
wols') = tr(ws(s)) = Y tr(xa(s))m(r)

7T€H¢(G)
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6(%,[33’74),4-) +€(%7IOS’,¢,—> 1

= 2 = 6(5’ pslyd):*)'
If the unique distinguished element belongs to 11,(Gp), we have
1 1 1
€(§7H¢’pX) = -1, e(iaPS’,dﬁ-) = _e(iaps’#ﬁ—)'

This implies that

wo(s') = tr(we(s)) = D tr(xmp(s))m(mp)
WDGH¢(GD)
_€<%7p8/,¢7+) + 6(%7p8/,¢7*) 1

= 9 = €(§7p8’,¢7—)'

This finishes the proof of Theorem 1.10 for the model (GSO12, GLa X U).

6.3. The proof of Theorem 1.10 for (GSp,,, GLyx U) and (GSpg x
GLg, GLy X U). In this subsection, we will prove Theorem 1.10 for
(GSpyg, GLe x U) and (GSpg x GlLg, GLy x U). The proof for the
model (GSpg x GLg, GLy x U) is very similar (and easier) to the proof
for the model (GSp,y, GLy x U). So we will only consider the model
(GSpyg, GLy x U).

Let (G, H) be the model (GSp;,, GLy x U) defined in Section 6.1.
We will first study the behavior of the geometric multiplicities under
endoscopic transfer. Then we will prove Theorem 1.10.

Let (G',s',En) be a proper elliptic extended endoscopic triple of
G/Z¢ . If G = PGSOy or G(Sp, x SOg)/GLI™, we just let

mgeom(ﬁl) = 691(1), mgeom’D(Q’) = O
If G’ = G(Spg x SOMQLE“"% (resp. G' = G(Sp, x SOg)/GL{™#8)  the
projection of s € G/Zs g = Spiny;(C) to SO11(C) is conjugated to
(I7,—1I4) (resp. (I3,—Ig)). For such s, as explained in Section 2.5,

when we restrict the representation py to G/ = (G7ZZH)S/, we can
decompose it as

Px = Ps' + D Ps' —
where py 4 (resp. py.—) is the tensor product of the Spin representa-
tion of Spin,(C) (resp. Sping(C)) with a Half-Spin representation of
Spin, (C) (resp. Sping(C)). Moreover the underlying vector space of
ps + (resp. py ) is the +1 (resp. —1) eigenspace of px(s’).

Up to conjugation the group G’ has 2 Levi subgroups that are are
isomorphic to GLy x GLy x GLsy X GLl/GLfiag, we denote them by
Ly, Ly. When G = G(Spg xSO4)/GLI8 we assume that the Half-Spin
representation of Spin,(C) appeared in p,  (ps—) corresponds to the
GSOy-component of Ly (resp. Ly). When G/ = G(Spy x SOg)/GL{™,
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we assume that the Half-Spin representation of Sping(C) appeared in
ps+ (resp. ps_) corresponds to the GSOg-component of L; (resp. Ls).

Remark 6.5. We already explained how to relate the Levi subgroup of
GSOg to the Half-Spin representation in the previous subsection. For
the GSOy case, a Levi subgroup that is isomorphic to GLy X GL; cor-
responds to a Levi subgroup of its dual group GSpin,(C) = (GLg(C) x
GL(C))? that is isomorphic to GLy(C) x GL{(C). Then it corre-
sponds to the Half-Spin representation of GSpin,(C) whose restriction
to GLo(C) is the standard representation.

Like the orthogonal group cases in the previous subsection, we can
embed Hy/Zg g ~ PGL, diagonally into L; (denoted by v;). We define

Mgeom(0) = co(1)+ Y /

T€Ten(Ho) F)/Zc.u(F)
2

ZDHO< )309/(1/@'@))6115,
Mgeomp(®) = 3 /

T€Teu(Ho) B)/Zc,u(F)
2
> (=1 Doty cpr(vy(t) )t
i=1
Proposition 6.6. Let 0 (resp. 0p) be a quasi-character on G/Zg u(F).
Assume that 0 (resp. Op ) is the endoscopic transfer of a quasi-character

0 of G'(F) . We have
Mgeom(0) = Mgeom (¢)-

Proof. The proof is very similar to the orthogonal group case in the
previous subsection, we will skip it here. l

Remark 6.7. When G' = G(Spy x SOg)/GLY™ | myeom(0') contains
the geometric multiplicity of the two (GSOg x GLgy, GLy x U)-models
(note that these two models are differed by the outer automorphism).
This is why Conjecture 1.6 for the model (GSpyy, GLa X U) cannot
imply Conjecture 1.6 for the model (GSOg X GLy, GLy x U). This is
different from the (GUg, GUy X U) case in the previous section. In that
case, the endoscopic relation in Proposition 5.8 contains the geometric
multiplicity of the model (GUy x GUy, GUy X U) and the Gan-Gross-
Prasad model for Uy x Uy (whose epsilon dichotomy is already known).
Hence we can use the endoscopic identity to show that Conjecture 1.6
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for the model (GUg, GUqy X U) will imply Conjecture 5.6 for the model
(GU4 X GUQ,GUQ X U)

Now we are ready to prove Theorem 1.10 for this case. The proof is
very similar to the previous case and we will only give a sketch of it.
Let II, = II,(G) UIL,(Gp) be a tempered L-packet with trivial central
character. Assume that II,(G) is not discrete with |II,(G)| = 1. We
first show that the unique distinguished element belongs to I14(G) if
and only if (1, 11y, py) = 1.

There are two situations. The first situation is when the packet
I1,(G) is induced from a packet II,(M) of a maximal Levi subgroup
M(F) of G(F). If M = GLy x GLg (resp. M = GSpg x GLy), this
follows from Proposition 6.1 and Conjecture 1.6 for the model

(GLy x GLg, GLy x GLs), (resp. (GSpg X GLy, GLy x U)).

The model (GSpg x GLa2, GLy x U) is smaller than (G, H), by our
assumption we know that Conjecture 1.6 holds for (GSpg x GLg, GLg X
U). As for the model (GLy x GLy, GLy x GL3), by our assumption
and the fact that the model (GSOg x GLgy, GLy x U) is smaller than
(G, H), we know that Conjecture 1.6 holds for (GSOg x GLg, GLy X
U). Combining with Remark 6.4, we know that Conjecture 1.6 holds
for (GLy x GLg, GLy x GLg). This also proves that if Conjecture 1.6
holds for the model (GSp,y, GLa X U), then it also holds for the model
(GSpg x GLg, GLy x U).

If M = GSpg x GL; or GSp, x GL3, Proposition 6.1 implies that the
unique distinguished element in the packet belongs to II,(G). Also it
is easy to see that the epsilon factor e(%, Iy, px) is equal to 1 in this
case.

Next we consider the case when the packet is discrete. By our as-
sumption we have |II;(G)| > 1. Hence there exists a proper elliptic
extended endoscopic triple (G, s’, “n) of G such that ¢ factors through
Ly and s’ € Z,. By the endoscopic identity in Proposition 6.6 and the
same argument as in the orthogonal group case, we know that

Y ula)mm) =) =1, Y t(xn,(s))m(mp) =0

7I'€H¢(G) WD€H¢(GD)

if the order of s’ is equal to 4, and

E(lv Ps’,¢,+) + E(la pS’,qﬁ,—)
S s mir) = oo Blorras),
TI'EH¢(G)

e(lyps’@,*) - E(laps’,¢,+)
St () = (2P Z
7TD€H¢(GD)
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if the order of s is equal to 2. Here we need to use Conjecture 1.6 for
the models (GSpg x GLg, GLy X U) and (GSOg x GLy, GLy x U) (both
of them are smaller than the model (GSp,,, GLy x U)).

If the order of s’ is equal to 4, the endoscopic relation implies that
the unique distinguished element belongs to 1I,(G). By our discussion
in Section 2.5 we know that €(3, Iy, px) = 1.

If the order of s is equal to 2, we know that the unique distinguished
element belongs to I14(G) if and only if €(3, py 1) = €(%, py 4, ) which
is equivalent to e(%, Iy, px) = 1.

Now we prove Theorem 1.10. Let wy € §¢ correspond to the unique
distinguished element in the packet. By Remark 1.1 we know that w is
a character we view it as a character of Z;. For s € Sy, by Lemma 2.4,
there exists an elliptic extended endoscopic triple (G', s',n) of G/Za.n
such that s' € sZ3 and ¢ factors through Ly, We need to show that
we(s") = wy r(s). The above discussion implies that wy(s') = we g (s)
if s’ belongs to the center of the dual group.

If s’ does not belong to the center of the dual group, there are two
cases. If the order of s’ is equal to 4, by the discussion above we
know that the unique distinguished element belongs to I1,(G). By the
definition of wy g we know that wy g(s) = 1. This implies that

we(s') = tr(wy(s')) = Z tr(x.(s"))m(m) =1 = wy u(s).
w€lly(G)

If the order of s’ is equal to 2, by our discussion above, we have

Z tr(x.(s"))m(r) = (3, pso4) + €(3, psr6-)

2
7r€H¢(G)
_E(la p8’7¢,+) + E(lv p8’7¢,—>
>ty () mlmp) = — 2P DO
mp€lly(Gp)
By the definition in Section 2.5, we have

1
we, i () = 6(57 st b, )-

We have two cases. If the unique distinguished element belongs to
I1,(G), we have
1 1 1

€(§7H¢7PX) = 17 6(§7p5',¢7+) - 6(57P5’,¢,—)'

This implies that

wo(s) = tr(we(s)) = D tr(xal(s))m(m)

7T€H¢(G)
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6(%,[33’74),4-) +€(%7IOS’,¢,—> 1

= 9 = E(éjpS’Jbﬁ)'
If the unique distinguished element belongs to 11,(Gp), we have
1 1 1

€(§7H¢7PX) = _17 €(§7p5’,¢,+) = _E(gups’,(b,*)'
This implies that

wo(s) = tr(we(s)) = Y tr(xmp () m(mp)

7TD€H¢(GD)

— _6<%7psl’¢7+) + 6<%7p5,’¢77) — 6(1 p / )
2 o st

This finishes the proof of Theorem 1.10 for the model (GSp,,, GLax U).

7. THE MODEL (GSpg x GSp,, (GSp, x GSp,)?)

In this section, we consider the model (GSpgx GSp,, (GSp, x GSp,)?).
In Section 7.1, we will define the models and the multiplicity formulas.
We will also study the behaviors of the geometric multiplicities under
endoscopic transfer and under parabolic induction. In Section 7.2 we
will discuss the smaller model (GSp, x GLy x GLg, (GLy X GLy)Y). In
Section 7.3, we will prove the main theorem for this model.

7.1. The models and the multiplicity formulas. Let G = GSp X
GSp, and

H = (GSp, x GSpy)® = {(g1,92) € GSp, x GSp, | l{g1) = U(g2)}-

There is a natural embedding from the group (GSp,x GSp,)? into GSpy.
Together with the projection map from (GSp, x GSp,)? to GSp,, we
get an embedding from H to G. Similarly, we can define the model
(GD, HD) with

Gp = GSpy(D) x GSpy(D), Hp = (GSp,y(D) x GLy(D))°,

Next we recall the definition of the geometric multiplicities from
Section 9 of [WZ2|. For T € T.;(GSp,), let

T = {(ty, - ,t,) € T" | det(t;) = det(t;) for all 1 < i,j < n}.

We use ¢, to denote the diagonal embedding from T to T™". We can
view T™Y as a maximal elliptic torus of GSp,,,. Moreover, up to GSp,,,-
conjugation, there are 2"~! distinct embeddings from 7™ to GSp,,,.
When n = 2, there are two embeddings vs, v/4 from T*° to GSp, and
the centralizer of the image of 15019 (resp. vhoty) in GSp, is the quasi-
split (resp. non quasi-split) unitary similitude group of two variables.
Meanwhile, there are four embeddings from T°%° to (GSp, x GSp,)°
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and there are two of them whose projection to GSp, coincides with vs.
Composing with the embedding from (GSp, x GSp,)? to GSpg, we get
two embeddings v, v3s from T3 to GSpg. We use

Vr; = (l/3i o [,3) X (Vg o Lg)

to denote the two embeddings from 7" to G (both factor through H). It
is easy to see that these two embeddings are conjugated to each other
in H and we will use v to denote one of it.

Meanwhile, let ¢1 o be the embedding from T2%° to T3 given by

(tla t?) — (tla t27 t2)

Among the four embeddings from 7%° to GSpg, there are two of them
(denoted by vs,v4) such that the centralizers in GSpg of the image
of 50119 and V4 o 115 are quasi-split (the centralizer is the quasi-
split unitary similitude group of two variables times an abelian group).
Up to conjugation we may assume that vs, v4 factor through (GSp, x
GSp,)? and the projection to GSp, of v3 0119 (resp. V40 t129) is equal
to vy (resp. v4). We use

V201 = (V30 t19) X Vg, V1209 = (V50 L12) X V)

to denote the two embeddings from 72° to G. Both of them factor
through H.

Finally, for 171, Ty € Tou(GSp,y) with T} # T, (this will not happen in
the Archimedean case), let

(Ty x T)? = {(t1,t2) € Ty x Ty, | det(t;) = det(t3)}.

Similarly, we can define (T} x Ty x T3)°. Up to conjugation, there
is only one embedding from (77 x T3)° to GSp, and there are two
embeddings from (T} x Ty x T5)° to GSpg. The two embeddings induce
two embeddings from (T} x T3)° to GSpg (we first map T, diagonally
into (Ty x Ty)Y). We let v be the embedding such that the centralizer
of its image is quasi-split (the centralizer of the other embedding is not
quasi-split). Up to conjugation we may assume that v factors through
(GSp, x GSp,)? and its projection to GSp, is equal to the embedding
from (7T; x T3)° to GSp,. This gives us an embedding vp, 7, from
(Ty x T3)° to G that factors through H.

Let 6 be a quasi-character on G(F'). Define the geometric multiplicity
to be

Myeom(®) = o)+ S W (H,T)[! / D ()0(t)dt

TGE”(H) T(F)/ZG,H(F)
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S / DH (v (t))co(vr(t))dt

TETo(GSpy) T(F)/ZaL, (F

+ DH(I/T2,07i(t))CQ(VT2,07i(t))dt)

1€{1,2}
ST
4
T, T2€Teu(GSpy), T1 # 12
DH(VThTz (t))c9(yT1 T2 <t>>dt
Similarly, for the quaternion version (Gp, Hp), we can also define the
embeddings vr,, Vr20 55 VI pThp for Tp, T1.p, To.p € Tau(GL1(D)) =

Teu(GSp,) with Ty p # To p. Let p be a quasi-character on Gp(F).
Define the geometric multiplicity mgeom (6p) to be

SS W (Hp, Tl / DHo (10, (1)t
Tp(F)/Zcp,up (F)

Tp€Teu(Hp)

1 Hp
+§ Z (/TD /ZaL, (D) ( )D (o (O)on 0 ()

Tp€Ten(GL1(D))

/T2’0(F)/ZGL2(F)

/(T1 xT2)(F)/ZgL, (F)dias

+ / D2 vy (t))cop (vgzo,(£))di)
Z 2’O(F)/ZGLl(D)(F) b S

ie{1,2}

1
1 )
T1,p,T2,pETen(GL1(D)), 71, p#T2, D

DHD (VTl,D,Tz,D (t)>c9D (VT1,D,T2,D (t))dt'

In our previous paper [WZ2], we have proved the multiplicity formulas

/(T1,D xT2,p)*(F)/ZgL, (py(F)d1a8

m(m) = Mgeom(0r), M(Tp) = Mgeom (0, )
for all tempered representations.

Remark 7.1. If F =R, the above integrals need to be reqularized, i.e.
we replace DY (-) (resp. DAP(-)) by DE()V2(DH(-)72D%(-))*=1/2 (resp.
DCp ()2(DHp()=2D%p (.))571/2) and take the limit lim,_+. Since
this reqularization does not affect our later computation, to simplify
the notation, we will not include this reqularization in the expression
of the multiplicity formula.

Next we study the behavior of the geometric multiplicities under
parabolic induction. Let M be a proper Levi subgroup of G' and 6™ be
a quasi-character on M (F'). Let L(F) (resp. Lp(F)) be the standard
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Levi subgroup of G(F) (resp. Gp(F)) that is isomorphic to

(resp. (GLy(D) x GLy(D)) x (GL1(D) x GL,(F))).

If M does not contain the Levi subgroup L up to conjugation, define
mgeom(eM) = C@M(l).

Otherwise, M corresponds to a proper Levi subgroup Mp of Gp. More-
over, up to conjugation we may assume that L C M and Lp C Mp.
Let 9%’3 be a quasi-character on Mp(F'). We have a natural embedding
t (resp. tp) of GSpy(F) (resp. GLi(D)) into L(F) (resp. Lp(F)) given
by h — diag(h, h,h) x diag(h, h). When the Levi subgroup M is not
isomorphic to (GLy(F') x GLy(F)) x GSp,(F'), we define

1
mgeom(eM) CGM(]') + 5 Z /
T€Te11(GSpsy) T(F)/ZGSp2 (F)

DM (1)) 2 DO (1) 2y u(1) i,

2

Tp€Teu(GLy
DMD (LD (t))l/QDGLl(D)(LD (t))_1/269]DV1D (LD(t))dt

) - /
(D)) Tp(F)/ZgL, (py(F)

DO | —

When M is isomorphic to (GLa(F) x GLo(F)) x GSp,(F), for T,
Ty € Tai(GSpy) (resp. Tip, Top € Teau(GL1(D))), there is a natu-
ral embedding from (T} x T3)° (resp. (Ty.p X To.p)°) into the Levi
subgroup GLy x GLy of GSpy (resp. GL1(D) x GL1(D) of GSp4(D))
given by (tl,tg) — diag(tl,tg,tl). When T 7é 15 (resp. TI,D 7é TQVD),
up to conjugation there is a unique embedding from (7} x T3)° (resp.
(T1.px Ty p)°) into GSp, (resp. GSpy(D)). This gives us an embedding,
denoted by 1, 1, (resp. i1y p.1 ), from (77 X T3)° (vesp. (T1,p %X T3,p)")
into M (resp. Mp).

When T' =T, = Ty (vesp. Tp = Thp = Top), up to conjugation
there are two embeddings from 720 = (T} x T)° (vesp. 15" = (Th.p X
Ty p)°) into GSp, (resp. GSp,(D)). This gives us two embeddings,
denoted by t7z2; (resp. tpz2 ;) with 1 <i <2, from T%° (resp. T%°) into
M (resp. Mp). We define mgye,m(6™) to be
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1
(T-1)e (1) + 3 2 (/ D2 (1) 2conr (u(t))dt
TGﬁll(GSpg) T(F)/ZGSP2(F)

2

+ Z / DGSp2 (tl)DGSp2 (tQ)CQZ\J (LT2=0,2' (tl, tg))dtldtg)
i—1 YT?0(F)/Zgspy (F)

1
7 >
T1,72€Ten(GSpy), T1#7T>
DGSp2 (tl)DGSp2 (tQ)CgM (LTl,TQ (tl, tQ))dtldtQ,

/(VTI XT2)O(F)/ZGSp2 (F)diag

For the quaternion side, we define mgeom(ﬁg’j) to be

(7.2) % >

Tp€Tenu(GL1(D

(/ DGLI(D)((/D(t))QCGMD(LD(t))dt
y Y To(F)/Zav, () (F) ’

2
+ Z / DGLl(D) (tl)DGLl (D) (tg)ceMD (LTé’O,i (tl, tQ))dtldtQ)
i=1 TLQJ’O(F)/ZGLl(D)(F) b

1
T >
Ty,p,T2,0€Teu(GL1(D)),T1,p#T2,p
Z)GL1 (D) (tl)DGLl(D) (t2>CngD (LTLD,TQ,D (tl ) tZ))dtldt2

/(T1,D xTa,p)°(F)/Zav, (py(F)*9

The following proposition is a direct consequence of Proposition 2.2.

Proposition 7.2. Let 6 (resp. 0p) be a quasi-character on G(F') (resp.
Gp(F)). Assume that 0 (resp. Op) is the parabolic induction of a quasi-
character 6M (resp. 0%’3) of a proper Levi subgroup M of G (resp. Mp
of Gp). We have

Mgeom(6) = mgeom(eM)> Mgeom (0p) = mgeom(eé\)@)'

Next we study the behavior of the geometric multiplicities under
endoscopic transfer. Let (G, s',n) be a proper elliptic extended en-
doscopic triple of G/Z¢ . Up to multiplying s’ by an element in the
neutral component of the center of the dual group, we may assume that

s' = (s1, 82) € Spin,(C) x Sping(C) C GTZEH,
G/Zan = {(91,92) € GSping(C) x GSping(C) | (g1)I(g2) = 1}.

We will only consider the case when one of s; is the identity element.
Under this assumption, we have G/ = GSOg x GSp,/GL{* GSp, x
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GSO,4/GLI™ or G(SpyxS04)xGSp, /GLI™E. If &' = GSO¢x GSp, /GL{™8,
we define

mgeom(el) = Cgl(l), mgeom,D<9/) = 0.

If G' = GSpg x GSO,/GLI™, we have s; = 1 and the projection
of so € Spins(C) to SO5(C) is conjugated to diag(l, —1I;). As we
explaimﬂi& Section 2.5, when we restrict the representation px to
G = (G/Zg.m)s, we can decompose it as ps 1+ @ ps— where p, 4 (resp.
ps.—) is the tensor product of the Spin representation of Spin,(C) with
a Half-Spin representation of Spin,(C) and it is the +1 (resp. —1)
eigenspace of px(s).

We have an embedding from GSp, = GLy into GSpg given by h +—
diag(h, h, h). On the other hand, the group GSO4 has two Siegel par-
abolic subgroups which give us two embeddings from GL, into GSO,.
Combining these embeddings we get two embeddings from PGL, into
G’ which will be denoted by ¢; and 5. We assume that the Half-Spin
representation of Spin,(C) appeared in ps 4 (resp. ps ) corresponds to
the Siegel Levi subgroup of GSO4 associated to ¢; (resp. t3). We define

Maon®) =0 3" 5 [ DO ol ) e a0t

T€Ten(PGL2)

mmn@)= 325 [ D07 eol0) = ottt

T€Teu(PGL2

If G = G(Sp, x SO4) x GSp,/GLY we have s, = 1 and the
projection of s; € Spin,(C) to SO7(C) is conjugated to diag(Is, —1I4).
When we restrict the representation px to G = (G/Zg.m)s, we can
decompose it as ps + @ ps - where ps 4 (resp. ps ) is the tensor product
of the Spin representation of Sping(C), a Half-Spin representation of
Spin,(C) and the Spin representation of Spin;(C), and it is the +1
(resp. —1) eigenspace of px(s').

Like in the previous case, we still have two embeddings from PGL,
into G' which will be denoted by ¢; and . For 71,75 € To(GLy),
up to conjugation there are either one (when 7} # T3) or two (when
Ty = T3) embeddings from (7} x T3)°(F) into GSp,(F). We fix one of
such embeddings (the choice does not matter since ¢’ is stable). Mean-
while, we can embed T} into GSp,, and there are two ways to embed
T, into GSO, (again corresponding to the two Siegel parabolic sub-
groups). This gives us two embeddings from (T} x T5)°(F)/GLy (F)die8
into G’(F') which will be denoted by vp, 1, ,;, 1 <i < 2. We still assume
that the Half-Spin representation of Spin,(C) appeared in ps i (resp.
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ps—) corresponds to the Siegel Levi subgroup of GSO, associated to
L1, vy 1y1 (Y€Sp. to, vy 1, 2). We define myeom (6') to be

cor(1) +% > D2 ()2 (g (1a(1)) + cor(1a(t)))dt
TeTeu(PGL2) )

+ ) d(Tl,Tg)/

Tl,TQE’Tg”(GLQ) (Tl XTQ)O(F)/GL1(F)diag
DEL2xGLe (t1,t2)(cor (v 1y 1 (t1, 1)) + cor (v 1y 2(t1, ta)) ) dE 1 dis,

For the quaternion side, we define mgyeom p(€') to be

% 2 )/T(F)DGLQ(t)Q(CG'(Ll(t))—Ce'(ba(t)))dt

TE’Te”(PGLQ
+ ) ATy /
T1,T2€7;ll(GL2) (Tl XTQ)O(F)/GLl(F)diag

DOL2xCL2 (1, 1)) (cy (v, mya(ti,te)) — co (v 1y 2(ts, t2)))dt 1 dts
where d(Tl, TQ) =1if T1 = T2 and d(Tl, TQ) = le if T1 7é TQ.

Proposition 7.3. Let 0 (resp. 0p) be a quasi-character on G/Zg u(F).
Assume that 0 (resp. Op) is the endoscopic transfer of a stable quasi-

character 0" of G'(F'). We have
mgeom(e) = mgeom(e/)> mgeom(eD) = mgeom,D(el)-

Proof. We will only prove the split case, and the quaternion case follows
from a similar argument. Like in Proposition 6.3, the only difference
between the split case and the quaternion case is that there is an extra
—1 in the transfer factor for certain conjugacy classes.

The identity cg(1) = co (1) is easy and we will skip the proof. Next we
study the terms corresponding to 7" € Tey(H) in myeom(#). We would
like to show that these terms are equal to zero. To do this, we only need
to show that the transfer factor is non-trivial for elements in T'(F"). We
first describe the elliptic conjugacy classes in H(F'). We can view H
as a subgroup of GSps. Then the elliptic conjugacy classes of H(F)
are just the elliptic conjugacy classes of GSpy that have a nonempty
intersection with H(F'). To be specific, GSpg has three types of elliptic
conjugacy classes corresponding to

(1) (K,Ky), Ki/F is a cubic extension and K /Ky is a quadratic
extension.

(2) (E,E+)U (EL, F), E/EL, E/F and E./F are quadratic ex-
tensions.



94 CHEN WAN AND LEI ZHANG

(3) (E1, F)U (E9, F)U (Es, F), E;/F is a quadratic extension for
1< <3

The first type has no intersection with H(F'), so we only have Type
(2) and Type (3).

For a Type (2) (resp. Type (3)) conjugacy class, if there exists a
conjugacy class in G’ = (G(Sp, x SO4) x GSp,)/GL{™ corresponding
to it, then ng/p, is trivial on F* (resp. E; = E; for some i # j). In
both cases the group

Wier(ker(trp/py,) N ES) [ Im(Neye,) /) ~

is isomorphic to Z/2Z or (Z/27)*. Note that (Z/27)* only happens in
Type (3) when E), = Ey = Ej.

On the other hand, for a Type (2) (resp. Type (3)) conjugacy class,
if there exists a conjugacy class in ' = GSOg x GSp,/GLY corre-
sponding to it, then g g, |px = N, /r (vesp. E; # E; for all i # j and
E; is contained in Fy ®p F3). In both cases the group

Wier(ker(trp py,) N ES) [ Im(Neyey,) /) ~

is isomorphic to Z/27Z.

By our definition of the transfer factors in Section 2.4, under the
endoscopic relation between GSpg and GSOg (resp. G(Sp, x SOy4)),
the transfer factors associated to the conjugacy classes of Type (2) and
(3) are non-trivial. Moreover, they are equal to a constant times a
non-trivial character on

Hiel(ker(trFi/F:ti) N EX)/Im(NFi/F:Ei)/ ~ .

This implies that when G/ = GSOg x GSp,/GL or G(Sp, x SO4) x
GSp,/GLY  the term corresponding to T € Toy(H) in Mgeom () is
equal to 0.

On the other hand, if G = GSpg x GSO4/GLY we need to study
the projection of the above conjugacy classes to GSp,. The projection
of Type (2) conjugacy classes to GSp, corresponds to

(2) (E,Ey), E/EL and E./F are quadratic extensions.
The projection of Type (3) conjugacy classes to GSp, corresponds to
(3) (Ey, F)U (Ey, F), E;/F is a quadratic extension for 1 < < 2.

For Type (2)’ (resp. (3)’) conjugacy classes, there exist conjugacy
classes in GSO4 corresponding to them if and only if ng g, is trivial
on F* (resp. Ey = Ey). If this is the case, the group

Wier(ker(trp py,) N ES) /IM(NE, )/ ~
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is isomorphic to Z/27Z. Moreover, the transfer factors are non-trivial,
and equal to a constant times the non-trivial character on

HiEI(keT(trFi/Fii) N EX)/Im(NFi/Fj:i)/ ~ .

This shows that the term corresponding to 7' € Tey(H) in Mgeom(6) is
equal to 0.

Then we need to study the terms correspond to T, T*? and (T} x Ty)°
in Mgeom (0) for T,T; € Tou(GSp,) with T # Ty. First we study the
term corresponding to T'. Like in the previous cases, T' corresponds to
a quadratic extension Er of F and we can view t € T'(F') as an element
of Ef. For t € T(F), the regular germ

D (vr(t))eo(vr(t))

is equal to w times the limits of DE(-)'/20(-) at

(Er @ Er, Er, M, ATO))U (Er, Fit) x (Er @ Ep, Ep, (M, A7)
as A — 1. In this case the group
Wicr(ker(trp p.,) N E)/Im(Ng,/p,,)/ ~
is the trivial group.
If G’ = GSOg x GSp,/GL{™ there is no conjugacy class in G’

corresponding to the above conjugacy classes of G(F'). As a result, the
term corresponding to 7" in Mmgyeom (#) is equal to 0.

If G’ = GSpg x GSO4/GLY9 or G(Sp, x SO4) x GSp,/GL  the
transfer factors are trivial since the quadratic character ng,.¢p, /5, is
trivial. By the same argument as in the cases of the previous section,
we know that

D" (vr(t))co(vr(t)) = D2 ()" (o (1a (1)) + cor(12(t)))
where k = 2 if G’ = G(Sp, x SO4) x GSp,/GLY and k = 3 if G’ =
GSpg x GSO4/GL{™. Hence the terms correspond to T' in mgeem(6)
and Myeom (8') are equal to each other.

For the term corresponding to T%° the regular germ (here t =
(t1,t2) € T*°(F))

DH(VTQ,O’Z'<t))G(VTQ,O’Z'<t)), 1 < 7 < 2

is equal to
D (vpzo (1)) D (20 4(t)) /2
2

times the limit of DY(-)'/26(-) at
((ETEBETv ET7 (At27 A_1£2))U (ETu F; tl)) X ((ET7 F; tl)U (ETv F7 tQ)a Ci)



96 CHEN WAN AND LEI ZHANG

as A — 1. In this case the group
Wier(ker(trp,/py,) O F )/ Im(Nr,p.,) [ ~

is isomorphic to Z/27Z. More specifically, the GSpg-component of this
group is trivial and the GSp,-component of this group is Z/2Z. We
use ¢;, 1 <1 <2 to denote the two elements in this group.

If G = GSO¢ x GSp,/GLY there is no conjugacy class in G’
corresponding to the above conjugacy classes of G(F'). As a result, the
term corresponding to T%% in mgeom(6) is equal to 0.

If G’ = GSpg x GSO,4/GL  the transfer factors are non-trivial and
they are equal to a constant times the sign character of

H’iEI(keT(trFi/Fii) N EX)/Im(NFi/Fj:i)/ ~ .

This implies that the term corresponds to 7% in myeom (0) is equal to
0.

If G = G(Spy x SO4) x GSp,/GL{ the transfer factors are triv-
ial since the quadratic character ng,gp, /g, is trivial. By the same
argument as in the cases of the previous section, we know that

DH(VTQ,OJ (t))CG(VTz,oJ (t)) + DH(VT2,072(t))CG(VT2,072(t))

=2 DOLXCla () 1) (o (vra(ti, ta)) + co(vrra(ty, t2))).

This shows that the terms corresponding to T%° in mgepm (6) and myeem (6')
are equal to each other.

Finally, for the term corresponds to (71 X T3)% (T} # T2) in Myeom (6),
the regular germ D (vr, 1,(¢))0(vr, 1, (1)) (here t = (t1,t2) € (T} X
T)°(F)) is equal to

D (v, 1, (1)) D (vry 1, (1)) ~1/2
2

times the limit of DY(-)Y/26(-) at
((BEr,®Er,, Er,, (M2, N '0))U(Ery, Fyt1)) x ((Bry, Fyt1)U(Eg, F,12))
as A — 1. In this case the group

Wier(ker(trrpy,) O F7) /Im(NEpy,) /) ~

is trivial. ' '

If G’ = GSOg x GSp,/GL{™ or GSps x GSO,/GL{™ there is no
conjugacy class in G’ corresponding to the above conjugacy classes of
G(F). As a result, the term corresponding to (77 x 7%)% in mygeom (6) is
equal to 0.
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If G = G(Spy x SO4) x GSp,/GL{ the transfer factors are triv-
ial since the quadratic character NEr,@Er, | Er, is trivial. By the same
argument as in the cases of the previous section, we know that

DH(VThTQ (t))ce(yTl,Tz (t))
= DOYXCla ) 1) (o (vry iy (ths t2)) + cor(Vry 1y 0 (i, 12))).

This shows that the terms correspond to (77 x T5)° in mgeom(0) and
Mgeom (0') are equal to each other. This finishes the proof of the propo-
sition. ]

7.2. The model (GSp, x GLy x GLg, (GLy x GL32)?). In this section
we discuss the model (GSp, x GLy x GLg, (GLgy x GL3)?). This model
is smaller than (GSpg X GSpy, (GSp, x GSp,)?) and we need to assume
the weak conjecture holds for this model in order to prove Theorem
1.10 for (GSpg x GSpy, (GSp, x GSp,)?).

Let G = GSp, X GLy x GLy, we have an embedding from (GLy x GLy)°
into GSp, (resp. GLa x GL2) which induces a diagonal embedding from
this group to G, we will use H C G to denote the image. There is also
a quaternion version (Gp, Hp) of this model with Gp = GSp,(D) x
GLy(D) x GLy(D) and Hp = (GL{(D) x GL1(D))". The models
(G,H) and (Gp, Hp) are essentially the Gan—Gross—Prasad model for
GSpin; x GSpin,. The representation px in this case is the tensor
product of the standard representations of the two GL3(C) copies with
the Spin representation of GSpin;(C).

We can define the character of the component group wgs g by the
same formula as all the cases in Table 1. This allows us to formulate
the epsilon dichotomy conjecture for this model as in all the cases in
Table 1. We can also formulate the weak form of the conjecture as in
Conjecture 1.6.

Conjecture 7.4. Let Il be a tempered L-packet whose central charac-
ter is trivial on Zg y(F'). The unique distinguished element in Il; for
the model (GSp, x GLg X GLg, (GLy x GL2)?) belongs to I14(G) (resp.
14(Gp)) if and only if €(3, 114, px) = 1 (resp. €(3,114, px) = —1).

Lastly, we discuss the multiplicity formula of this model. For a quasi-
character 6 (resp. 0p) of G(F') (resp. Gp(F)), we define the geometric
multiplicity by the formula (7.1) (resp. (7.2)). The multiplicity formu-
las

m(7) = Mgeom (), M(TD) = Mgeom(TD)
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for tempered representations can be proved by the same argument as
the orthogonal Gan—Gross—Prasad model case. Moreover, the multi-
plicity formulas imply that the summation of the multiplicities is equal
to 1 over every tempered local L-packet.

Remark 7.5. Our argument in this paper can also be applied to the
model (GSp, x GLy x GLy, (GLy x GL)%). It proves the epsilon di-
chotomy conjecture when the packet is not discrete with |I1,(G)| = 1.
On the other hand, when the packet is discrete with |I1,(G)| = 1, if
we assume the packet has trivial central character, then the epsilon
dichotomy conjecture follows from the epsilon dichotomy of the Gan-

Gross-Prasad model (SO5 x SOy, SOy4) proved in [Wal3].

7.3. The proof of Theorem 1.10 and 1.14 for (GSpgx GSp,, (GSp, x
GSp,)?). In this subsection we will prove Theorem 1.10 for the model
(GSpg x GSpy, (GSp, x GSp,)?). The argument is very similar to the
four models in the previous section, we will only give a sketch of the
proof. Let II, = I14(G) UIl4(Gp) be a tempered L-packet whose cen-
tral character is trivial on Zg g (F'). We assume that 11, is not discrete
with [II4(G)| = 1.

The first step is still to prove that the unique distinguished element
belongs to I1,(G) if and only if €(3, 1, px) = 1. There are two cases.

The first case is when the packet is induced from a maximal parabolic
subgroup M of G. If M does not contain the Levi subgroup L of GG that
is isomorphic to (GLy x GLs) x (GL2 x GL;), Proposition 7.2 implies
that the unique distinguished element belongs to II,(G). It is also easy
to see that e(3, 114, px) = 1 in this case.

If M = GSp6 X (GL2 X GLl) (resp. M = (GL2 X GLQ) X GSp4),
then the statement follows from Proposition 7.2 and Conjecture 1.6
for the model (GSpg x GLg, GLy x U) (resp. Conjecture 7.4 for the
model (GSp, X GLy x GLy, (GLy x GL,)?)). Note that both models
are smaller than (G, H). This also proves Theorem 1.14 for the model
(GSpg x GSpy, (GSpy x GSp,)").

The second case is when the packet I14(G) is discrete. By our as-
sumption, we must have |II4(G)| > 1. Hence there exists a proper
elliptic extended endoscopic triple (G',s’,n) of G such that ¢ factors
through 7 and s’ € Z;. We may also assume that s’ = (s1,1) or
(1,s5). If the order of s is equal to 4, then G’ = GSOg x GSp, /GL{™
and Proposition 7.3 implies that

Z tr(xx(s'))m(r) = 09H¢(G’)(1) =1,

7T€H¢(G)
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Y (xap(s))m(rp) =0,
mp€lly(Gp)

i.e. the unique distinguished element belongs to II,(G). In this case,
by our discussion in Section 2.5, we also know that e(%, I, px) = 1.

If G’ = GSpg x GSO,/GL{™8 (resp. G(Sp, x SO,) x GSp,/GL"%),
in Section 2.5, we have decomposed px o ¢ into py ¢+ @ psy—. By
Proposition 7.3 and the same argument as in the previous section, we
have

Z tr(x«(s"))m(7) = (3, ps0,-) + €(5, Psr0,4)

2 )
7T€H¢(G)
6(l7p/7¢7_)_€(l7p/7¢>+>
S el ()mlmp) = SR S Pt
mp€lly(Gp)

Here we need to use Conjecture 1.6 for the model (GSpgx GLy, GLyx U)
(resp. Conjecture 7.4 for the model (GSp, X GLy X GLg, (GLa x GL)?)).
As a result, we know that the unique distinguished element belongs to
I14(G) if and only if €(3, py.p+) = €(3, ps.p,—) which is equivalent to
E(%? Iy, pX) = 1.

Now we can prove the theorem. Let wy € 5’¢ corresponds to the
unique distinguished element in the packet. By Remark 1.1 we know
that wy is a character and we view it as a character of Z4. For s €
Se, by Lemma 2.4, there exists an elliptic extended endoscopic triple
(G', ', n) of G/ Zg y such that s' € sZ3 and ¢ factors through 7. We
need to show that wy(s’) = wy, m(s). The above discussion implies that
we(s") = wy m(s) if s’ belongs to the center of the dual group.

For general s’ = (s1,s2) with s; € Spin;(C) and so € Sping(C), by
our definition of wy y we know that

W¢,H(317 82) = W¢>,H<517 1)w¢>,H(17 52)~

Hence it is enough to consider the case when s’ = (s1,1) or s’ = (1, s5).

If the order of s’ is equal to 4, by the discussion above we know that
the unique distinguished element belongs to II,(G). By the definition
of wy g we know that wy g(s) = 1. This implies that

wls) = tr(we(s)) = Y tr(xa(s))m(r) =1 = wyu(s).
7TEH¢(G)
If the order of s’ is equal to 2, by our discussion above, we have

€(l7 p8'7¢:+> + 6(17 IOS',¢>,*>
> trlslmim) = Lol Lelaprac)
7T€H¢(G)
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_6(%7 108’,¢>,+> + 6(%7 ps',fb,—)

Sty () mlmn) = ) .

TrDEH¢(GD)

By the definition in Section 2.5, we have
1
wWon(s) = €(5, P ,-)-

We have two cases. If the unique distinguished element belongs to
I1,(G), we have
1 1 1

6(57 Htf)v PX) = ]-7 6(§a p8'7¢,+) = €(§7p8/7¢7—)'

This implies that

wo(s) = tr(we(s)) = D tr(xals))m(m)

Tr€H¢(G)
= 6(%7 p5/7¢v+) + 6(%’ psl’(b’i) = 6(1 p / )
2 PR
If the unique distinguished element belongs to I14(Gp), we have
1 1 1
€(§7H¢apX) = _17 6(§ap8'7¢,+) = _6(§’p5'7¢7—)'

This implies that

wols) = tr(wa(s) = Y tr(xmp(s))mlmp)
mp€lly(Gp)

_€<%7p5/7¢7+) + 6(%7p8/,¢7*) 1

= 9 = €(§,Ps’,¢,—)-

This finishes the proof of Theorem 1.10 for the model (GSpg X
GSpy, G(Spy % Spy)).

8. THE MODEL (FE7, PGLy x U)

8.1. The model and the multiplicity formula. Let G = E; be
the split adjoint reductive group of Type E;, and let P = LU be the
parabolic subgroup of G of Type A; x A; x A; defined in Section 7
of [WZ2]. Let & : U(F) — C* be the generic character defined in
loc. cit. and let Hy C L be the stabilizer of £ which is isomorphic to
PGL,. Let H = Hy x U and we extend the character £ to H(F') by
making it trivial on Hy(F'). We can also define the quaternion version
(Gp,Hp = Hop X Up,&p) where Gp is the unique pure inner form of
G (Gp has split rank 4) and Hy p(F) ~ PGL; (D). We refer the reader
to Section 7 of [WZ2] for more details of this model. Let 7 (resp. 7p)
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be an irreducible representation of G(F') (resp. Gp(F')), we define the
multiplicities
m(rm) = dim(Hompy(r)(m,§)), m(rp) = dim(Homp,r)(7p,Ep)).

For the multiplicity formula, let 6 (resp. 6p) be a quasi-character of
G(F) (resp. Gp(F)). Define the geometric multiplicities

1
mgeom(e) - CH(]-) + Z —/ DH(t)Cg(t)dt,
TETou (Ho) T(F)/Zg,u(F)
1
mgeom(eD) = Z 5/ DHD<t)CQD(t)dt
T €T (Ho.p) Tp(F)/ZGp Hp (F)

For the rest of this section we will assume that the multiplicity formulas

m(m) = Mgeom (0r), M(TD) = Myeom (Onp)

hold for all tempered representations m (resp. 7p) of G(F') (resp.
Gp(F)).

To end this subsection, we will discuss the behavior of the geomet-
ric multiplicities under parabolic induction. Let M be a proper Levi
subgroup of G and 6 be a quasi-character on M(F). If M does not
contain the Levi subgroup L up to conjugation, define mgeom (0™) =
com(1). Otherwise, M corresponds to a proper Levi subgroup Mp of
Gp. Moreover, up to conjugation we may assume that L € M and
Lp C Mp. Let 6 Mb he a quasi-character on Mp(F). Define

Mgeon(0¥) = ()4 Y /

TeTeu(Ho) F)/Zc.n(
DM( )2 (t )DHO( )" Pepu (t )dt
mgeom(eé\)@) = /
TD€7-6” (Ho,p) Tp(F)/Zep,up (F

DMp ()12 pHop (1)=1/2¢ i (L )dt
D

The following proposition is a direct consequence of Proposition 2.2
(one just need to use the fact that D (t) = DY(t)Y/2DHo(t)=1/2 for
t € Ho(F)).

Proposition 8.1. Let 0 (resp. 0p) be a quasi-character on G(F') (resp.
Gp(F)). Assume that 6 (resp. 0p) is the parabolic induction of a quasi-
character 6M (resp. 9%’3) of a proper Levi subgroup M of G (resp. Mp
of Gp). We have

mgeom(‘g) = mgeom(eM)y mgeom(eD) - mgeom(egD)'
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8.2. The smaller models. In this subsection we will discuss the mod-
els that are smaller than the model (E7, PGLy x U). There are three
smaller models. The first one is (GSpin;, x GSpins, GSping x U) which
is an analogy of the Gan—Gross—Prasad model (SO x SO3,SO3 x U).
To be specific, let () = M N be the parabolic subgroup of GSpin,, as-
sociated to the simple roots %4£% . We can define a generic character

2
¢n of N(F') similar to the Gan—Gross—Prasad model case and its sta-

bilizer in M (F') is isomorphic to GSping(F) = GLy(F'). This defines
the model (GSpin,, x GSping, GSping x U).

To define the other two models, we need to use the group GHSpin,,, =
GSpiny,, /{1, z} where z is an order 2 element in the center of GSpiny,
that does not belong to the connected component of the center (there
are two such elements differed by the outer automorphism). Note that
the map GSpiny,(F') — GHSpin,,,(F) is not surjective. An example
would be GHSpin, ~ GLy; x PGLs.

The center of the group GHSpin,, is GL;, it has a unique Half-
Spin representation, and it is equipped with a similitude character
[ : GHSpin,, — GL;. We use GHSpiny, to denote the dual group
of GHSpin,,, and it is also equipped with a similitude character [ :
GHSpiny,, — GL;(C) whose kernel is Spiny,,(C). Moreover, the group
GHSpiny,, has two Half-Spin representations, one of them has deter-
minant 1 and the other one has a nontrivial determinant. We use
HSping,, (resp. HSpiny,) to denote the Half-Spin representation with
determinant 1 (resp. nontrivial determinant.)

The two remaining smaller models of the model (E7, PGLy x U) are
related to the group GHSpin,,. Another way to describe the group
GHSpin,, is that it is the Levi subgroup of the group E7 of Type
Dg. Similarly, its dual group GHSpinj, is the Levi subgroup of the
group Fr..(C) of Type Dg and we have GHSpin;, ~ Spin,(C) x
GL,(C)/{1,(z,—1)}. Under this isomorphism, the HSpinj, represen-
tation is just a Half-Spin representation of Spin,, and the HSpinj,
representation is a Half-Spin representation of Spin,, tensor with the
standard representation of GL.

One of the reduced model is an analogy of the model (GSO13, GLy X
U) for the group GHSpin,,. Let (G, H = Hyx U, §) = (E7, PGLyx U, &)
be the model defined in the previous subsection. Recall that we also
have the Levi subgroup P = LU. Let () = M N be the Levi subgroup
of G = E; with P C () and M ~ GHSpin,, and let My = M N H =
Hox (UNM). The first smaller model is just (M, My, &|ar,,). We will
denote this model by (GHSpin,,, PGLy x U).
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Remark 8.2. With the notation above, UNM is the unipotent subgroup
of the parabolic subgroup PN M = L x (UNM) of M. The character
Elunm is a generic character whose centralizer in L(F') is Ho(F) X
Zyi(F) =~ PGLy(F) x GLy(F).

The other one is an analogy of the Gan—Gross—Prasad model (SO15 x
SO3,503 x U). To be specific, let Q = M N be the parabolic subgroup
of GHSpin,, associated to the simple roots ©£% . We can define a
generic character £y of N(F) similar to the Gan-Gross-Prasad model
case whose stabilizer in M (F’) is isomorphic to GSpins(F') = GLy(F).
This defines the model (GHSpin,, x GSping, GSping X N, {y). We will
denote this model by (GHSpin,, x GSping, GSping x U).

Let (G,H = Hy x U,§) be one of the smaller models above. We
can also define the quaternion version of the model in a similar way.
We will denote it by (Gp, Hp = Hop X Up,&p). Let m (resp. mp)
be an irreducible representation of G(F) (resp. Gp(F')) whose central
character is trivial on Zg y(F) = Zg(F) N H(F) (vesp. Zg, u,(F) =
Za,(F)N Hp(F)), we define the multiplicities

m(m) = dim(Homp gy (7, £)), m(rp) = dim(Hompy, 7 (7p,Ep)).

For the multiplicity formula, let 6 (resp. 6p) be a quasi-character of
G(F) (resp. Gp(F')). Define the geometric multiplicities

1
Mgeom(0) = o)+ >, 5 / D" (t)ey(t)dt,
) < JTE) 261 (F)

TeTeu(Ho

Mgeom(Op) = > D2 (t)cq, (t)dL.

.,
Tt p) 2 TD(F)/ 2611 (F)
We will assume that the multiplicity formulas

m(m) = Mgeom(0r), M(TD) = Myeom (Onp)

hold for all tempered representations.

Remark 8.3. The multiplicity formula for the models (GHSpin;, X
GSping, GSping X U) and (GSpin,, x GSping, GSping x U) can be proved
by a similar argument as the Gan—Gross—Prasad model case. When F
is p-adic, the multiplicity formula for the model (GHSpin,y, PGLy X U)
can be proved by a similar argument as the model (GSO1q, GLgy x U).

Like in all the previous cases, combining the multiplicity formula
and the local Langlands correspondence, we know that each tempered
L-packet contains a unique distinguished element, and the unique dis-
tinguished element corresponds to a character of the component group.
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To formulate the weak conjecture for the smaller models, we need
to define the representation py of the dual group. If the model is
(GSpin,, x GSping, GSping x U), we let px be the 30-dimensional
tensor product L-function of GSO19(C) x GSp,(C). If the model is
(GHSpiny,, PGLy x U), we let px be the representation HSpin], of
GHSpinj,. If the model is (GHSpiny, x GLg, GLy x U), let px be
the tensor product of the 12-dimensional standard representation of
GHSpiny, with the 2-dimensional standard representation of GLy(C).
Let I, = I14(G) UIL4(Gp) be a tempered L-packet whose central char-
acter is trivial on Zg y(F). We can formulate the weak conjecture in
this case.

Conjecture 8.4. The unique distinguished element in 11, belongs to
II,(G) (resp. 114(Gp)) if and only if

1

1
€(§,H¢,px) = 1? (7“68]7. €(§7H¢apX) = _1)

Remark 8.5. We can also formulate the epsilon dichotomy conjecture
for these smaller models.

8.3. The endoscopic relation. In this subsection we will study the
behavior of the geometric multiplicity under endoscopy. Let G = Er
and Gp be its pure inner form. Let 6 (resp. 0p) be a quasi-character
of G(F) (resp. Gp(F)). Recall that we have defined the geometric
multiplicities

1
Mgeom(0) = co(1) + > = / D™ (t)eq(t)dt,
TeTen(Ho) T(F)/Zc.u(F)

Mgeom(Op) = > Do (£)cg, () dt.

),
TocTontHo.0) 2 JT0(F) /26y 1y (F)

Let (G',s',In) be a proper elliptic extended endoscopic triple of
G, and let ' be a stable quasi-character of G’(F'). Assume that 6
(resp. 6p) is the endoscopic transfer of . To define myeom (#') and
Mgeom,n(0'), we have 4 situations. Note that like in the previous cases,
we always choose 7 to be the natural embedding from “G’ into £G.

If G = SLg(C)/Zy, we let

Mgeom(0') = cor(1), Mgeom,p(0') = 0.
If
G’ = SLg(C) x SL3(C)/Zs = {(g1, 92) € GLg(C) x GL3(C) |
det(g,) = det(g2)*}/{(a*Is, als) | a € GL1(C)},
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we have
G/ = {(gl,gg) S GLGXGLg ’ det(gl)2 = det(gg)}/{(a167a4lg) ‘ a < GLl}

We can embed PGL; into G via the map h +— (diag(h, h, h) xdet(h)?I3)
and we will denote this embedding by v. We define

Maon®) = o)+ Yo [ DM )

T€7~ell PGLQ)

Mgeomp(®) =c(s) Y L[ DOyt ()t

TeTu(PGLy) = 7T
where £(s") is equal to 1 if the order of s’ is 3 and it is equal to —1 if

the order of s’ is 6.
If

G’ = SL4(C) x SLy(C) x SLy(C)/Z,4
= {(g1,92,93) € GL4(C) x GL4(C) x GLy(C) | det(gy) = det(gs)
= det(g3) '} /{(aly, aly, a?15) | a € GL(C)},
we have
G" = {(g1, 92, 93) € GLy x GLy x GLg | det(g;) det(g2)

= det(gg>2}/{(0,[47 bI4, ablg) | a, b S GLl}
In this case, §' is equal to (I, +ily, +15). We have two embeddings
vy, vy from PGLy into G’ given by

41 (h> = (dlag(h7 h)a 147 h)a V2(h> = (]47 dlag(ha h)7 h)
We define

mgeom = 09/ + Z Z / l)PGL2 Ce’(Vz( ))dt

=1 TeT (PGL2)
2

/ ! ) 1
Mm@ =(HY (-1 YL / DPCL2 (1) (vs(1))dt
i=1 TeT(PGLy) = Y T(F)
where £(s') is equal to —1 if &' = (Iy,+il4, I5) and it is equal to 1 if
s = (14, :|:i14, —]2)
The last case is when
G = Sping,(C) x SLy(C)/Z,
= {(91.0,92) | (g1, 0) € Spiny,(C) x GL1(C) /{1, (z, = 1)},
g2 € GLy(C), det(go) = a*}/{(1,a,aly) | a € GL(C)}
= {(g1,92) € GHSpinj, x GL,(C) |
l(g1) = det(ga)~'}/GLy (C) =09,
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There are two choices of s, the —1 eigenspace of px(s’) (here py is the
56-dimensional representation of Ey; 4. (C)) is either 24 dimensional or
32 dimensional depends on the choice of s’. In this case, we have

' = {(g1,92) € GHSpin,, x GLy | [(g1) = det(gy)}/GLI™.

By our discussion of the smaller model (GHSpin,y, PGLs X U) in the
previous subsection, we have an embedding from PGL; into GHSpin,,
which induces an embedding from PGL, into G by making it trivial
on the GLy-component. We denote this embedding by 1. By our
discussion of the smaller model (GHSpin;, x GLs, GLy X U), we have a
diagonal embedding from GL, into GHSpin,, x GLs which induces an
embedding from PGL; into G. We denote this embedding by v5. We
define

Mgeom () = co()+Y . > %

i=1 T€To(PGL2)

/ DY (8) 72D (i (1)) ey (vi(t) ),
T(F)

1=1 T€Te1(PGL2)
/ DP2 ()72 DY (wi(1)) e (vi(1))dt
T(F)

where ¢(s) is equal to —1 (resp. 1) if the —1 eigenspace of px(s’) is
24-dimensional (resp. 32-dimensional).

Proposition 8.6. Let 6 (resp. 0p) be a quasi-character on G(F') (resp.
Gp(F)). Assume that 0 (resp. Op) is the endoscopic transfer of a stable
quasi-character 0" of G'(F') . We have

mgeom(e) = mgeom(el)y mgeom(eD) - mgeom,D(9,)~

Proof. We will only prove the case when G’ = Spin,,(C) x SLy(C)/Zs.
The rest case follows from a similar argument. Like in all the previous
cases, the only difference between the split case and the quaternion case
is the extra sign in the transfer factor. Hence we will only consider the
split case.

The proof of the equation ¢y(1) = co(1) is easy and we will skip it
here. We fix a quadratic extension E/F and let Tp € Ty (PGLy) =
Teu(Hp) correspond to E (for simplicity we identify Hy with PGLy).
We just need to show that the term corresponds to Tg in myeom () is
equal to the term corresponds to Ty in M geom (6').
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Let Ty be the centralizer of Ty in the Levi subgroup L of G, which is
a maximal torus of G. On the other hand, let L; be the Levi subgroup
of G’ which is of Type A; x A; x A; on the GHSpin,,-copy and is a
maximal torus on the GLy-copy such that it contains v1(Tg). Let Lo
be the Levi subgroup of G’ which is of Type Dy on the GHSpin,,-copy
and is equal to GLg on the GLy-copy such that it contains v5(Tg). Let
Ter ; be the centralizer of v;(Tx) in L;, which is a maximal torus of G'.

Let W = W(G,T¢) and W; = W(G', Ter ;) be the Weyl groups. We
have

|W| = 9216, |W;| =768, |Ws| = 1536

and W; can be naturally identified as a subgroup of W for i = 1,2.
Note that W (resp. Wy, Ws) is of Type

Fy x (A))? (resp. Cs x (A1)*, Dy x (A})?).

The W-action stabilizes Tk and its action on Tg factors through the
Weyl group W(PGLs, Tg) ~ Z/2Z. 1t is easy to see that there are
natural isomorphisms f; : T¢(F') ~ T;(F) whose restriction to Tg(F)
are the identity map (here by abusing of notation we identify T with
v;(Tg)) and satisfy the following condition:

o for v € T(F) N Gyey(F), there are exactly

9216 9216
18 =12 =——+ —
8 0 768 * 1536

conjugacy classes o of G'(F) with A(y,v¢) # 0. Each of
them is represented by an element f;(wyw™!) for 1 <7 < 2 and
w e W/W,.
Next we show that the transfer factor A(vy,v¢) is always equal to
1 for any v € Tg(F) N Grey(F) and vor = fi(wyw™'). We follow
the notation in Section 3 of [LS]. It is easy to see that in this case
ST, € Mo (Tg}ad) is the identity component. This implies that the terms
Ar(v,ve) and Appr, (7, 7¢r) are equal to 1. Also for any root a of Tg
outside G', we have F., = F, and hence we can choose the y-data x,
to be the trivial character. This implies that A;;(7y,v¢) = 1. Lastly,
it is easy to see that a € H'(Wp,T¢) is the trivial cocycle (note that
for any regular semisimple element ¢ € Tg(F), the stable conjugacy
class of ¢ only contains one rational conjugacy class). This implies that
Arrn(v,7¢) = 1. This proves that the transfer factor A(y,vqg/) is
always equal to 1 for any v € T(F) N Grey(F) and o = fi(wyw™).
For t € Tp(F) N Hoyeg(F), we have

L wm DEw )

D () 2¢p(t) =
O 0l) = 153 ernri® o
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where 1152 is the cardinality of the Weyl group of G¢(F') (which is of
Type Fy). Similarly, for ¢t € T(F) N PGLy,(F), we have

!’ ]_ !’
D (i (1) 2eo (1 (1) = — li D (" 20(t'
(1 (8))eo (1 () 96 t/ETG/J(F)ﬂlGH’TlEg(F)Hm(t) (#)76(t),

o 1/2 1
D (v (1)) Peq (v(t)) = TO2 ety oI (1) suatt)
Here 96 (resp. 192) is the cardinality of the Weyl group of (G"),, ) (F)
(resp. (G")wy)(F')), which is of Type C5 x Ay (resp. Dy).
Combining the above discussion, we know that D (t)cs(t) is equal
to

DG’ (t’)I/QQ(t’).

DL ()~ Y2(D (1 (1) 2y (1 (t)) + DY (va(1))2eo (1a(1)))

for all t € TE(F) N Hyeg(F) = Tp(F) N PGLy ey (F). Here we have
used the identity D (t) = DPC2(¢)=1/2D%(#)!/2. Hence the term cor-
responds to T in Myeom (f) is equal to the term corresponds to Tg in
Mygeom (6'). This proves the proposition. O

8.4. The main result and the proof. In this subsection we are going
to state and prove our main results for the model (E7, PGLy x U).
Let G = FE;, ¢ : Wgp — G be a tempered Langlands parameter, and
II, = II,(G) UIL4(Gp) be the associated tempered L-packet. Like in
all the other cases, we assume that the local Langlands correspondence
holds for G.

Theorem 8.7. Assume that Conjecture 8.4 holds. If the packet 11, is
not discrete with |IL;(G)| = 1, then Conjecture 1.4 holds for packet IL.

Corollary 8.8. Conjecture 1.4 holds when F = R.

Theorem 8.9. Assume that the Conjecture 1.6 holds for the model
(E7,PGLy x U). Then Conjecture 8.4 holds.

Corollary 8.10. Conjecture 1.6 is equivalent to Conjecture 1.4 for the
model (E7,PGLy x U).

By using Propositions 8.1 and 8.6, the proof of Theorem 8.7 and 8.9
is almost the same as all the previous cases. We will only give a sketch
of the proof.

The first step is to prove Conjecture 1.6 when II, is not discrete with
II,(G)| = 1. When II, is not discrete, it is induced from a maximal
parabolic subgroup M of GG. In this case, if M does not contain L up to
conjugation, then Proposition 8.1 implies that the unique distinguished
element belongs to I14(G). Also in this case it is easy to see that the
epsilon factor e(%, I1,, px) is equal to 1.
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If M is of Type Dg, then then Conjecture 1.6 follows from Proposi-
tion 8.1, Conjecture 8.4 for the model (GHSpin,,, PGLy x U) and the
multiplicity formula for the model (GHSpin,,, PGLy x U).

Remark 8.11. As in the previous cases, the above discussion also im-
plies that Conjecture 1.6 for the model (E;,PGLy X U) would imply
Congecture 8.4 for the model (GHSpin,,, PGLy x U). Similarly, Con-
jecture 8.4 for the model (GHSpin,y, PGLy x U) would imply Conjecture
4.5 (we just need to consider the mazimal Levi subgroup of GHSpin,,
that is isomorphic to GLg X GLy. By Remark 4.4, it would also imply
Congecture 4.1.

If M is of Type D5 x A;, Conjecture 1.6 follows from Proposition 8.1,
Conjecture 8.4 for the model (GHSpin;, x GSpins, GSpins X U) and the
multiplicity formula for the model (GHSpin,, x GSping, GSping x U).
Note that in this case, M = Spin,o(C) x SLy(C) x GL,(C)/(Z/AZ). We
have a projection map

M = Spin,,(C) x SLy(C) x GL{(C)/(Z/AZ)
— Spin,(C) x SLy(C)/(Z/AZ) = SO19(C) x SLy(C)/(Z/2Z)

Combining with Theorem 8.1 of [Lal, each Langlands parameter of M
induces a Langlands parameter of GSpin,;, x GSping, this allows us to
apply Conjecture 8.4 for the smaller model (GSpin,,x GSpins, GSping X
U).

Remark 8.12. The above discussion also implies that Conjecture 1.6
for the model (E7, PGLy x U) would imply Conjecture 8.4 for the model
(GSpin,, x GSping, GSping x U). Note that by the above description of
M and Theorem 8.1 of [La], a tempered L-packet of GSpin,, x GSpin,
whose central character is trivial on the diagonal GL; would induce a
L-packet of M.

If M is of Type A5 x Ay, Conjecture 1.6 follows from Proposition 8.1,
Conjecture 4.5 (see Remark 8.11), and the multiplicity formula for the
model (GLg, GLy x U). Note that in this case, M = SLy(C) x SLg(C) x
GL1(C)/(Z/67Z). We have a projection map

M = SLs(C) x SL¢(C) x GL;(C)/(Z/67Z)
— SLg(C) x GL1(C)/(Z/67Z) = GLg(C).
Hence each Langlands parameter of M induces a Langlands param-

eter of GLg, which allows us to apply Conjecture 4.5 for the model
(GLG, GL2 X U)
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If M is of Type A3 x Ay x Aj, then Conjecture 1.6 follows from
Proposition 8.1, Conjecture 4.1 (see Remark 8.11), and the multiplicity
formula for the model (GL4y x GLg, GLs x GLy). Note that in this
case, M = SLy(C) x SL3(C) x SL4(C) x GL(C)/(Z/12Z). We have a
projection map

M = SLy(C) x SLg(C) x SL4(C) x GL,(C)/(Z/127)

— SLo(C)xSLy(C)/(Z/4Z) = GL4(C)xGLy(C) /{(aly, a*L) | a € C*}.
Combining with Theorem 8.1 of [Lal, each Langlands parameter of M
induces a Langlands parameter of GLs x GLo, this allows us to apply
Conjecture 4.1 for the model (GL4 x GLg, GLy x GLs).

If I14(G) is discrete, since |I1,(G)| > 1, there exists a proper elliptic
extended endoscopic triple (G', s’, “n) of G such that ¢ factors through
In and ¢ € Zs. We can view ¢ as a Langlands parameter of G'. If
G’ = SLg(C)/Zs,, Proposition 8.6 implies that

S tla)mm) =1, 3 tr(xa(s))m(m) = 0.

TI'GH¢(G) 7TEH¢(GD)

In this case, by the discussion in Section 2.5 we also know that

1
6(§,H¢,px) = 1

This proves Conjecture 1.6.
If

G' = SLg(C) x SL3(C)/Z3 = {(g1, 92) € GLs(C) x GL3(C) |
det(g,) = det(g2)*}/{(a*Is, als) | a € GL1(C)},

by Theorem 8.1 of [Lal, we can lift a Langlands parameter of G’ to a
Langlands parameter of GLg x GL3. Then by Proposition 8.6, Conjec-
ture 4.5 and the multiplicity formula of the model (GLg, GLy x U), we
have (recall that e(s") = 1 if the order of " is 3 and it is equal to —1 if
the order of s’ is 6)
1+e(}, py
S (e (s)mim) = L2 P)
7I'€H¢(G)
€ l7 s’ -1
> tr(an(s)mim) = —e(s) - LD L
m€lly(Gp)
where pgy 4 is defined in Section 2.5. In particular, we know that the
unique element belongs to the packet IT4(G) if and only if €(3, py.y) = 1.
By our discussion in Section 2.5, we have €(3, py ») = €(3, 114, px). This
proves Conjecture 1.6.
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It

G/ = SL4(C) X SL4(C) X SLQ(C)/Z4
= {(g1,92,93) € GL4(C) x GL4(C) x GLy(C) | det(gy) = det(go)
= det(g3)}/{(aly, aly, a*ly) | a € GL1(C)},

by Theorem 8.1 of [La], we can lift a Langlands parameter of G’ to
a Langlands parameter of GL, x GL4 X GLy. Then by Proposition
8.6, Conjecture 4.1 and the multiplicity formula of the model (GL4 x
GL2, GLy x GLg), we have (recall that e(s') = —1 if &' = (Iy, £ily, I5)
and e(s') = 1if s’ = (Iy, £ily, —13))

(3, P01 D P 6,2)
> tr(xa(s))m(r) = =2 5 :
TI'GH¢(G)

(3, p5.01) — €(3, Ps 6.2)
Z tr(xx(s"))m(m) = e(s) - =2 5 :
7TEH¢(GD)

where py 4 is defined in Section 2.5. In particular, we know that the
unique element belongs to the packet I1,(G) if and only if

1
€(§’ps/,¢71 @ ps/,¢,2) py 1

By our discussion in Section 2.5, we have

1 1
6(§,psf,¢>,1 D ps p2) = 6(57 Iy, px).

This proves Conjecture 1.6.
If

G = Spin;»(C) x SLy(C)/Zy = {(g1, g2) € GHSpin{,(C) x GLy(C) |
I(g1) det(gy) = 1}/GLy (C)ti=diag,

by Theorem 8.1 of [La], we can lift a Langlands parameter of G’
to a Langlands parameter of GHSpin;, X GLy;. Then by Proposi-
tion 8.6, Conjecture 8.4 and the multiplicity formula of the models
(GHSpin,y, PGLy x U) and (GHSpin,, x GSping, GSping x U), we have

E(lv Ps’ ¢+ D pS’,(b,—)
S t(s)m(m) = SR ,
W€H¢(G)

€(3,p5.0-) = €(3:P5.6.+)
> (el = 2L e
WEH¢(GD)

where py 4 and py 4 are defined in Section 2.5. In particular, we
know that the unique element belongs to the packet 11,(G) if and only
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if (3,104, px) = €(3,ps' 6+ D ps.s—) = 1. This finishes the proof of
Conjecture 1.6 when II; is not discrete with |II4(G)| = 1.

Now we are ready to prove Theorem 8.7. Let w, € §¢ correspond
to the unique distinguished element in the packet. By Remark 1.1 we
know that w, is a character and we view it as a character of Z,. For
s € Sy, by Lemma 2.4, there exists an elliptic extended endoscopic
triple (G, s',%n) of G/Zg i such that s’ € sZg and ¢ factors through
Ln. We need to show that wg(s’) = wsu(s). The above discussion
implies that wy(s’) = wy m(s) if s’ belongs to the center of the dual
group.

If ' does not belong to the center of the dual group, there are four
cases. If G’ = SLg(C)/Zs, the above discussion implies that the unique
distinguished element belongs to II,(G) and

> el )mr) = 1
W€H¢(G)
By the definition of wy i we know that wy g(s) = 1. This implies that

we(s') = tr(wg(s')) = Z tr(x«(s))m(m) =1 = wy u(s).

W€H¢(G)
If ¢ = SLg(C) x SL3(C)/Zs, by our discussion above, we have
_ 1+ 6(%, ps/,¢)

> tl()mlm) = —— 2

7I'€H¢(G)

1
S (s )mim) = —e(s) - 2L L
m€lly(Gp)
By the definition in Section 2.5, we have wy g (s) = €(3, py o) if the
order of s" is 6 and wy g(s) = 1 if the order of s’ is 3. We have two
cases. If the unique distinguished element belongs to I1,(G), we have
€(3, ps,p) = 1. This implies that

wo(s') = tr(we(s) = Y tr(xa(s"))m(m)
m€lly(G)

_ 1+ 6(%, ,03/,¢) 1

2 =<3

If the unique distinguished element belongs to I1,(Gp), we have e(%, Ps'.) =
—1. This implies that

wo(s) = trws(s)) = D tr(xnp(s))m(mp)

WD€H¢(GD)

Psre) =1 =wyu(s).
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= —()e(, o) = won(s).

If ' = SL4(C) x SL4(C) x SLy(C)/Zy, by our discussion above, we
have

(3, Ps'.01 D P 6,2)
Z tr(xx(s"))m(r) = =2 5 ,
TFEH¢(G)

/) . E(%vps’,(b,l) - E(%7p5',¢72) .

So (s )mlr) = <(s .

WEH¢(GD)

By the definition in Section 2.5, we have wy i (s) = €(3, pyo2) if the
s = <I4, :|:i14,[2> and wd,,H(s) = 6(%,p5/7¢71> if the s’ = ([4, :i:i[4, —[2).
We have two cases. If the unique distinguished element belongs to
I14(G), we have €(3, py.p1) = €(3, psr.p2) = we,m(s). This implies that

wo(s) = tr(we(s)) = D tr(xal(s))m(m)

Tr€H¢(G)

(50501 @ pys2)
= 9 = Wy,H (S) .
If the unique distinguished element belongs to I1;(Gp), we have €(3, py 51) =

—¢€(3, ps,p2). This implies that

wo(s) = tr(ws(s)) = Y tr(xep(s))mlmp)

WD€H¢(GD)

6(%7 ps’,¢,1> - 6(%’ ps’,¢,2)
2
If G’ = Spin,,(C) x SLy(C)/Zs,, by our discussion above, we have

€L, ps st ® poro-)
> tr(xa(s))m(r) = =2 :

=¢g(s') - = wen(s).

2
7T€H¢(G)
€<l7p8’7¢,—) - E(lv ps’,¢,+)
> tr()mim) = o) apean)
w€lly(Gp)

By the definition in Section 2.5, we have wg y(s) = €(3, po.o—). We
have two cases. If the unique distinguished element belongs to II,(G),
we have (1, py 6.1 )€(3, psrs—) = 1, i.e. €(3, ps.o4) = €(3, ps',6—)- This
implies that

wo(s) = tr(we(s)) = D tr(xal(s))m(m)

7T€H¢(G)
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€(3: P50+ ®pso-) 1
— 2 ¢)+ ¢ — 6(5, ps/7¢77) = W¢7H(S)

2
If the unique distinguished element belongs to I1,(Gp), we have
1 1 1 1
6(57/)5/@#)6(5’%’@,*) =-1= €(§>p8’,¢,+) = _e(iapswbﬁ)'

This implies that

wo(s) = tr(ws(s)) = D tr(xap(s))m(mp)

7rD€H¢(GD)
1 1
€ 59 Ms’ -)— € 20 P’ — 1 —
(2 p 7¢7 ) 2 (2 p 7¢,+) — €(§7PS/7¢)77> w(b:H(S).

This finishes the proof of Theorem 8.7.

Lastly, we prove Theorem 8.9. Assume that the Conjecture 1.6 holds
for the model (E7, PGLs x U). We need to prove Conjecture 8.4. By
Remark 8.11 and Remark 8.12 we know that Conjecture 8.4 holds for
the models (GHSpin,,, PGLy x U) and (GSpin,, x GSping, GSping x U).
[t remains to prove it for the model (GHSpin;, x GLg, GLy x U). We
just need to use the endoscopic relation in Proposition 8.6 for the case
when G’ is of Type Dg x A together with Conjecture 8.4 for the model
(GHSpin,,, PGLy x U). The argument is the same as the proof of
Theorem 1.14 for the model (GUg, GUy X U) in Section 5.4 and we will
skip it here. This completes the proof of Theorem 8.9.
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