PERIODS OF AUTOMORPHIC FORMS ASSOCIATED
TO STRONGLY TEMPERED SPHERICAL VARIETIES
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ABSTRACT. In this paper, we compute the local relative characters
for 10 strongly tempered spherical varieties in the unramified case.
We also study the local multiplicity for these models. By proving
a geometric multiplicity formula, we show that the summation of
the multiplicities is always equal to 1 over each local tempered
Vogan L-packet defined on the pure inner forms of the strongly
tempered spherical varieties. Finally, we formulate the Ichino-
Ikeda type conjecture on a relation between the period integrals
and the central values of certain automorphic L-functions for those
strongly tempered spherical varieties.
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1. INTRODUCTION AND MAIN RESULTS

Let k£ be a number field and A its ring of adeles. Let GG be a reductive
group defined over k, and H a closed connected subgroup of G. We say
(G, H) is a spherical pair if X = H\G is a spherical G-variety (i.e., a
Borel subgroup of G has a dense orbit in X). We assume that (G, H)
is a spherical pair for the rest of this paper. We say the spherical pair
(G, H) is reductive if H is reductive. Let Zg be the center of G and let
Zau = ZcNH. If (G, H) is reductive, for a cuspidal automorphic form
¢ on G(A) whose central character is trivial on Zg g (A), we define the
period integral Py () to be ]

P () = ¢(h) dh.

/H(k)ZG,H(A)\H(A)

Besides the reductive cases, one can also study the case when the
spherical pair (G, H) is the Whittaker induction of a reductive spherical
pair (Gg, Hy) (we refer the reader to Definition [2.2| for the definition of
Whittaker induction). In this case, we have H = Hyx U where U is the
unipotent radical of H and is also the unipotent radical of a parabolic

n general if we allow ¢ to have nontrivial central characters, then we can also
put some characters on H
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subgroup of GG, and the period integral is defined to be

Pal(g) == / o(h)E(R) ™ dh
H(k)Zg,u(A)\H(A)

where & = 11, is a generic character on U (k)\U(A), extended to H(A)
trivially on the reductive part Hy(A). We refer the reader to Definition
for the definition of generic characters.

Let 7 be a cuspidal automorphic representation of G(A) whose cen-
tral character is trivial on Zg g(A). One of the most fundamental
problems in the relative Langlands program is to establish the rela-
tion between Ppyl,-the period integral restricted to the space of m,
and special values of some automorphic L-functions L(sg, 7, px) of m.
For example, if G = SO,4; x SO,, and H = SO,,, then (G, H) is
the famous Gross—Prasad model defined in |[GP1], [GP2] and its pe-
riod integrals are related to the central value of the tensor L-function
L(1/2,m X my) (here m = m @y is a cuspidal automorphic representa-
tion of SO,41(A) x SO, (A), and the representation py is the standard
tensor product representation of “G). This point of view was most
systematically put forward by Sakellaridis [Sal2], and Sakellaridis-
Venkatesh [SV17]. As in [SV17], the spherical varieties under the
consideration in this paper have no Type N spherical root and are
wavefront. We refer the reader to Sections 2.1 and 3.1 of [SV17] for the
definitions of wavefront and spherical roots.

In general, in order to find the L-functions related to the period inte-
gral Py (¢) for ¢ = ®,¢, € ®,m,, one needs to compute the local rela-
tive character /g, (¢,) for the spherical pair (G, H,) := (G(k,), H(k,))
over unramified places v € |k|. If the model (G, H) is strongly tem-
pered (see Section for the definition of strongly tempered) or is the
Whittaker induction of a strongly tempered pair (Gg, Hy), the local
relative character Iy, (¢,) is defined to be the integration of the matrix
coeflicients over H(k,), i.e.

LD In(6,) = / (1o (W) o, 60)En(1) ™ .
Z¢ 1 (ko)\H (kv)

Note that if (G, H) is the Whittaker induction of a strongly tempered
pair, the integral above needs to be regularized (see Section for
details). In general, if the model (G, H) is not strongly tempered, the
local relative character Iy, (¢,) is defined via the Plancherel formula.

For details, see Section 17.3 of [SV17].
For each spherical pair (G, H), one expects that the local relative
character Iy, (¢,) equals the quotient of some special values of some
L(s0,mv,px)

local L-functions 7

Ay times a product of certain special values of
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local zeta functions (denoted by Ax,) over all the unramified places.
For instance, for the orthogonal Gross—Prasad model (which is strongly
tempered), the local relative character was computed by Ichino-Ikeda
[I}, which is equal to

L(%, 7Tl,”u X 772,11)
L(1,m,,Ad)

Here for any reductive group G defined over k that is split over an
unramified extension, we use Ag(s) = IlyeAc(s) to denote the L-
function of the dual MY to the motive M associated to G introduced
by Gross in [GI.

In [Sa], Sakellaridis developed a general method to compute the local
relative characters at unramified places under certain conditions. He
showed that the L-function L(s, 7, px) is determined by the so-called
“virtual colors” of the spherical variety X and the extra factor Ay, is
related to the volume of X (O,) (O, is the ring of integers of k,). He
also explicitly computed the virtual colors of many spherical varieties
and hence the L-functions L(s, 7, px) (see Page 1379 of [Sal).

In this paper, following the method of Sakellaridis, we explicitly com-
pute the local relative characters for all the strongly tempered reductive
spherical varieties without Type N spherical root. We also compute
the local relative characters for 7 non-reductive spherical varieties that
are the Whittaker inductions of the trilinear GL; model (GL3, GLy).
Our computation shows that the period integrals for these strongly
tempered spherical varieties are always related to the central value of
some L-functions of symplectic type, i.e. sqg = % and px is a self-dual
representation of *(G/Zg ) of symplectic type. Moreover, we show
that the extra factors Ax, is equal to Ag(1)/Amy/zg 4.0(1) for all the
models under consideration (we would like point out that this is only
true in the strongly tempered case). Note if H is reductive we just let
H=Hyand U = 1.

In addition, we study the local multiplicities for all the models con-
sidered in this paper (except for the E; case). By proving a geometric
multiplicity formula, we show that the summation of the multiplicities
is always equal to 1 over each local tempered Vogan L-packet defined
on the pure inner forms of these spherical varieties. In other words,
our results indicate that all these strongly tempered spherical varieties
enjoy the same local and global properties with the Gan—Gross—Prasad
models.

Finally, combining our formulas of the local relative characters and
our results for the local multiplicities, we are able to formulate the
Ichino—Ikeda type conjectures for these models.

- As0,41,0(1).
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1.1. The local relative character. By the classification of split re-
ductive spherical pairs in [BP| (here we say the spherical pair (G, H) is
split if both G and H are split), it is easy to show that a split strongly
tempered reductive spherical pair is either one of the following 4 cases

(1.2) (GLns1 % GLy, GLy), (SOns1 x SOy, SO,),

(GL4 x GLg, GLy x GL3), (GSpg x GSpy, (GSp, x GSp,)?),

or it is a split symmetric pair (recall that we say a symmetric pair is split
if the real form associated to it is split, e.g. (GL,,SO,), (Sps,, GL,)).
Here (GSp, x GSp,)° = {(g,h) € GSp, x GSp, | I(g) = I(h)} where [
is the similitude character of GSp. We refer the reader to Section
for the explicit description of the embeddings. By the classification of
spherical root system in [BP], all the split symmetric pairs have Type
N spherical root unless G only has one simple root (i.e. G is of Type
Ay). If G only has one simple root, then split symmetric pair (G, H)
is essentially the model (PGLg, GL;). So we only need to consider the

4 models in (|1.2]).

Remark 1.1. For each model in , we can always modify the
groups up to some central elements and some finite isogeny, which
will give us some other models with the same root systems (this will
also preserve the strongly tempered property). For example, the model
(GSpg x GSpy, (GSp, x GSp,)?) and the model (Spg X Spy, Spy X Sps)
have the same root systems. In this paper, we will always choose the
spherical pairs (G, H) so that over the local field k,, there is only one
open Borel orbit in G(k,)/H(k,). For ezample, the model (GSpg X
GSp,, (GSp, x GSp,)?) we choose indeed has only one open Borel orbit
(see Section 3.1) while the model (Spg X Spy, Spy X Spy) has [k /(kX)?|-
many open Borel orbits.

We also want to point out that for a fixed root system, we may have
more than one models with this root system and such that there is a
unique open Borel orbit over every local field. An easy example would be
the models (SO4 x SO3,S03) and ((PGLy)?, PGLy). Another exzample
is (GLyy1 x GL,, GL,,) and (U1 x Uy, Uy,).

The first one (GL,,+1 X GL,,, GL,,) is the model for the Rankin-Selberg
integral of GL,+; x GL,. There is also an analogue of this model for
unitary groups, which is call the unitary Gan—Gross—Prasad model.
The local relative characters have been computed by R. Neal Harris [H|
for both the general linear case and the unitary case. In the general
linear case (resp. unitary case), px is the standard tensor product

representation of LG (resp. the standard product representation of
base change). The second one (SO, 41 X SO,,, SO,,) is the Gross—Prasad
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model for special orthogonal groups and the local relative characters
have been computed by Ichino and Ikeda [II]. In this case, px is the
standard tensor product representation of “G. For these three models,
the period integrals are related to the central values of the tensor L-
functions.

In this paper, we give an explicit formula for the local relative charac-
ters over unramified places for the remaining two cases (GLy X GLgy, GLg X
GL,) and (GSpg x GSp,, (GSp, x GSp,)?), as well as the analogue of
the model (GLy x GLy, GLy X GLy) for unitary groups. We also com-
puted 7 non-reductive cases that are the Whittaker inductions of the
trilinear GLy-model (GL3, GL,) (which is strongly tempered).

To be specific, we consider the following table where (G, H) is the
spherical pair and py is a representation of the L-group of G/Z¢ y.

Ne G H PX AX,U = AG,’U<1)/AHO/ZG H,v(l)
1 GL4 X GLQ GLQ X GL2 (/\2 &® Stdg) D Std4 D Std4 Cv(1>§v(3>gv(4)

2 GU4 X GUQ (GUQ X GUQ)O (/\2 ® Stdz) S Std4 ©® Std4 *

3 | GSpg x GSp, | (GSp, x GSp,)° Spin, ® Sping Co(1)2%¢,(4)¢,(6)

4 GL6 GL2 x U /\3 (v(1>(v(3>Cv(4)@)(5)@1(6)

5 GUs GUy x U A3 Kok

6 GSpyg GLy x U Spin; Gu(1 ) v(4)Gu(6)C0(8)C(10)
7 | GSpg x GLy GLy x U Spin, ® stdsy Co(1)G(2)(4)E,(6)

8 GSOg X GL2 GLQ x U HSp1n8 & Stdg CU( )2C ( ) (4) ( )

9 GSOq, GLy x U HSpin,, Co(1)Gu(4)Cu(6 ) (o(8)¢,(10)
10 E; PGLy, x U wy Co(6)C0(8)C,(10)(,(12)¢,(14) ¢, (18)

TABLE 1

Here std,, is the standard representation of GL,(C) and std, is its
dual representation, Spin,,_ ; is the Spin representation of Spin,,, ,,(C),
HSpin,,, is a half-Spin representation of Spin,, (C), w; is the 56 dimen-
sional representation of F;, and

= Co(1)?Co(4) L1, My yen ) L (3, 1y 5, )

*k = Cv(1)<0(4)gv<6)[’(17 Uk;/ku)[f(?’? Uk;/ku)L<57 nk;/ku)

where 7 1, is the quadratic character for the quadratic extension
k) /k,. We refer the reader to Section [f] for more details about the
representation px for Models 2 and 5.
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Theorem 1.2. For all the spherical pairs in Table |1, assume that all
the data are unramified over v. Then
AG,’U(1> L(%aﬂ-vapX)

(1.3) In,(¢) = Attyszemo(1)  L(1, 7y, Ad)

where px is a self-dual symplectic representation of *(G/Zq u) given
in Table 1.

Remark 1.3. In , we choose the local Haar measure dh such
that vol(H(QO,),dh) = 1. If we replace it by Weil’s canonical mea-
sure deanh = Apyjze po(1)dh ([Weil, Chapter 2]), then the constant
AHy/ze.40(1) in the above theorem will disappear.

In Section [2, we will explain our strategies of the proof of this theo-
rem. We will also give the formulas of the Whittaker—Shintani functions
of these 10 spherical pairs in Propositions and [2.31]

For the rest of this subsection, we explain how we derive the non-
reductive models in Table [I Model 4 was introduced by Ginzburg-
Rallis in [GR] and Model 5 is an analogue of Model 4 for similitude
unitary groups. Model 9 and 10 are inspired by one row of the Magic
Triangle introduced by Deligne and Gross in [DG] (which is a general-
ization of the the Freudenthal’s Magic Square). We recall the following
row in the Magic Triangle in [DGl Table 1], a series of algebraic groups
of type:

A1CA?Z:A1XA1XA1C03CA5CD6CE7.

In this sequence, we observe the spherical pair of type (A3, A;) corre-
sponding to the trilinear GLs-model. And the algebraic groups G of
types As, Dg and FE; have a parabolic subgroup P = LU such that
the Levi subgroup L is of type A? and the stabilizer Hy of the generic
characters € of U is of type A;. This gives us the Whittaker inductions
of the trilinear GLgo-model for these 3 groups, which are the Models
4,9, and 10 respectively. Meanwhile, the group of type C3 does not
have a Levi subgroup of type A%, but it can be fixed by considering the
product C3 x Aj. This explains Model 7.

In addition, these non-reductive models are also related to the de-
generated Whittaker models of smooth admissible representations (we
refer the reader to [GZ] for more details.) For instance, consider the
degenerated Whittaker model W he(m) of an irreducible representation
7 of GSOyy with respect to (U,€) in Model 9. Here (U, &) is arisen
from a nilpotent orbit of partition [6,6] in the Lie algebra of GSOqs
and Whe(m) is considered as an Hp-module in sense of [GZ]. (Note
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that the partition [6, 6] is used to label two distinct stable nilpotent or-
bits. However, the corresponding models have no essential differences
as explained in Section [8.3]) The distinguished problem in Model 9 is
equivalent to determine when the trivial representation of Hy is a quo-
tient representation in Whe(m). By using the theta correspondence,
Gomez and Zhu in |GZ] showed that the Hy-module Whe() is isomor-
phic to the degenerated Whittaker model of certain representations of
GSp,, as an Hy-module, arisen from the nilpotent orbit of the partition
[5,5] in the Lie algebra of GSp,,. Hence, following |[GZ], Model 6 and
Model 9 are directly bridged by the theta correspondence. Similarly,
Model 7 and Model 8 are also bridged by the theta correspondence.

Finally, Model 8 can be viewed as a reduced model of Model 9. To
be specific, we can choose a parabolic subgroup of GSO;5 in Model
9 whose Levi subgroup is isomorphic to GSOg x GLy such that the
intersection of the Levi subgroup with the subgroup H of GSO;s in
Model 9 is exactly the subgroup H of GSOg x GLj in Model 8. Under
this point of view, we can also view Model 7 as a reduced model of
Model 6, view Model 4 as a reduced model of Model 9 and view Model
9 as a reduced model of Model 10. This explains all the non-reductive
models in Table[I[] We summarize the relations among these models in
the following diagram:

(GLG, GLQ X U)

Treduced

(E7, PGLQ X U) E— (GSO]_Q, GLQ X U) me(dGSOS X GLQ, GL2 D! U)

reduced

(GUs, GU, % U)

outer form

]:H—correspondence ]:O—COrrespondence

(GSplO, GL2 X U) meSGSPG X GLQ, GL2 X U)

Remark 1.4. Besides the 7 non-reductive cases in the table abowve,
there are another three more non-reductive spherical pairs that are the
Whittaker induction of strongly tempered reductive spherical pairs with-
out Type N spherical root:

(1) The Whittaker models for quasi-split reductive groups.

(2) The non-reductive Gan—Gross—Prasad models for the general
linear groups, the unitary groups, or the orthogonal groups.
They are the Whittaker inductions of the reductive Gan—Gross—
Prasad models.



STRONGLY TEMPERED SPHERICAL VARIETIES 9

(8) The model (GSOyy, (GLs x GL1) x U) introduced by Ginzburg
|Gi] in his study of the Spin L-function of GSO1o. This is the
Whittaker induction of the model (GLg x GLg, GL3).

The local relative characters of the Whittaker models have been com-
puted by Lapid-Mao in [LM] and the local relative characters of the
non-reductive Gan—Gross—Prasad models have been computed by Liu in
[L]. The period integral of the model (GSOqq, (GLy x GLy) x U) has
been studied by Ginzburg in [Gi] and its local relative character can be
computed by the same method as in this paper. The local relative char-
acters over unramified places for these models are also of the form
as our models in Table[1 The representation px is the tensor represen-
tation for the non-reductive Gan—Gross—Prasad models, and the Spin
representation of GSpin,,(C) for the model (GSOy, (GLa x GLy) X U).
For the Whittaker model, the numerator L-function L(%, T, px) 1S just
1.

In general, by a tedious case by case argument (i.e. we checked all
the parabolic subgroups of all the reductive groups) which we will not
include wn this paper, we believe that any spherical pair that are the
Whittaker induction of a strongly tempered spherical pair without Type
N spherical root must be one of the 10 cases above (7 in Table |l and
3 in this remark). Hence the local relative character of a spherical pair
that is either strongly tempered or the Whittaker induction of a strongly
tempered spherical pair should always be the form (1.3)) over unramified
places.

1.2. The local multiplicity. Let (G, H) be one of the models in Table
[l If H is reductive, take x to be the trivial character of H(k,); if
H = Hy x U is non-reductive, take x to be the character 1 ® &, of
H(ky,) = Ho(k,) x U(k,) where &, is the generic character of U(k,). Let
7, be an irreducible admissible representation of G(k,) whose central
character is trivial on Zg g(k,). Define the multiplicity

m(m,) = dim Homg ) (70, Xo).

In Section [9] for all the models in Table [I] except the E; case, we will
prove a multiplicity formula m(m,) = Mgeom(m,) for all the tempered
representations over non-archimedean fields or complex field. In the
real case, we can prove the multiplicity formula for Models 1-4. Then
by using the multiplicity formula, together with the character identity
in the local Langlands conjecture, we can show that the summation of
the multiplicities is always equal to 1 over every local tempered Vogan
L-packet (i.e. strong multiplicity one over the L-packet). Moreover, we
will also show that the unique distinguished element in the L-packet
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corresponds to a character of the component group (note the the com-
ponent group for some cases in Table [1}is not necessarily abelian). We
refer the reader to Section [ for more details.

Remark 1.5. The local multiplicity of some models in Table |1 has
already been studied in our previous works. More specifically, Model
4 has been studied by the first author ([Wanl5|, [Wanl6], [WanlT7]),
Model 5 has been studied in our previous paper [WZ|, and Model 1 has
been studied in [PWZ19].

Remark 1.6. Like in the Gan—Gross—Prasad model case (Section 17
of [GGP]), one can also formulate an explicit conjecture about the
unique distinguished element in the L-packet using the local epsilon fac-
tor €(s, my, px) (i.e. the epsilon dichotomy conjecture). We will discuss
this in our next paper [WZ1].

1.3. The Ichino—Ikeda type conjecture. Combining the results in
the previous two subsections, we can now formulate the Ichino—Ikeda
type conjectures for all the models in Table I} Let (G, H) be one of
these models. Since we assume that the central character is trivial on
Za m, we are actually working with the model (G/Z¢g p, H/Zg i). Fol-
lowing the definition in Section 16.5 of [SV17], the pure inner forms of
the spherical varieties are parameterized by the set H'(k, H/Zg 1) For
all the models in Table[I]except Model 2, there is a natural bijection be-
tween the set H'(k, H/Zg 3) and the set of quaternion algebras D over
k. For each quaternion algebra D/k (or for each D € H'(k, H/Z¢g ;) in
the case of Model 2), we can define an analogue of the model (G, H) as-
sociated to D, which will be denoted by (Gp, Hp). We can also define
the period integral Py, (¢p) and the local relative character Iy, , (¢p,v)
where ¢p is a cuspidal automorphic form on Gp(A). We refer the
reader to later sections for the detailed descriptions of (Gp, Hp) for
each spherical variety in Table [l Remark that in our cases Gp and
Hp are not the pure inner forms of G and H in general. But after mod-
ule the central part Zg g, they become pure inner forms of G/Z¢ i and
H/Z¢ n, respectively.

We fix a global tempered cuspidal L-packet II, = UpIls(Gp) of G(A)
whose central character is trivial on Zg g (A). For each mp € I1,(Gp) in
the L-packet, as in Section 17.4 of [SVIT], let v : mp — Acusp(Gp(A))
be an embedding such that the period integral is identically zero on
the orthogonal complement of v(mp) in the mp-isotypic component
Acusp(Gp(A))r,. This embedding is not unique if the multiplicity of
7p in Aeusp(Gp(A)) is greater than 1, but it does not affect the global
conjecture.
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We first consider all the models in Table [1] except the first one. For
those models, the center of H/Zq y is anisotropic.

Conjecture 1.7. Let D/k be a quaternion algebra that may be split (or
D e HY(k,H/Zg ) if we are in the case of Model 2), mp € 114(Gp)
and ¢p € v(mp). We have

1 ) CH/ZG,H lim AG<8)S
’Scb’ AHo/ZG,H(l)S s—1 L(17 H(ba Ad)S

L<1/27 H¢>7 pX)S ' HUES[HD,U (¢D,v)

‘PHD (¢D)‘2 =

where

e S is a finite subset of |k| such that ¢ is unramified outside
S, and AH/ZG,H<]‘)S7 Ag(8>s, L(1/2, H¢, px)s, L(l, H¢>7 Ad)s are
the partial L-functions.

® Chyzs.p 18 the Haar measure constant of H/Zg u defined in Sec-
tion 1 of [II] (see also Section 1 of [L]), and the period integral
P, is defined by the Tamagawa measure on Zg,, g, (A)\Hp(A).

o Sy is the conjectural global component group associated to the
L-packet 11,. We refer the reader to Section 3.2 of [LM| for
details.

Then we consider the first model (GLy x GLg, GLy X GL3) in Table
. In this case, we have Zy/Z¢ n = GL; and

(G/Zgw, H] Zc.m) = (GLy x GLy/GL{™ ., GLy x GLy/GL{™).
Conjecture 1.8. Under the above notation, we have
1 Ch/zy i Ag(s)®
1Sl Amgyzy (1)% s=1 L(1,1y, Ad)®
-L(1/2, Ty, px)* - MoesCo(D)my, , (¢0.0)-

Note that we have the extra factor (,(1) due to Zy/Zgng = GL;.
This point of view has been discussed in Section 17.5 of [SV17].

In particular, we have the following weak global conjecture, which is
a direct consequence of the conjectures above and the multiplicity-one
theorem on the local Vogan packets.

|7DHD (¢D)|2

Conjecture 1.9. The following are equivalent:
(2) There exists a quaternion algebra D/k (or D € H'(k,H/Zq i)
if we are in the case of Model 2) such that the period integral
Pu,(¢p) is nonzero for some ¢p € v(np) and 7p € I1,(Gp).
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Moreover, if the above conditions hold, there exist a unique D and a
unique mp € l,(Gp) that satisfy Condition (2).

When D/k is split, one direction of Conjecture has been proved
for Models 1 and 4 in joint works of the first author with Pollack and
Zydor ([PWZ18], [PWZ19]).

Finally, similar to Gan—-Gross—Prasad models as discussed in Section
27 of [GGP], one expects that the central value of L-functions in Models
2 and 3 of Table 1| are related to the arithmetic geometry of the cycles
of the certain Shimura varieties. In Model 2, GUy x GUj and (GUy x
GU,)Y can be associated with Shimura varieties of dimensions 5 and
2 (resp. 3 and 1). In Model 3, GSps x GSp, and (GSp, x GSp,)°
can be associated with Shimura varieties of dimensions 9 and 4. Then
predicted by Beilinson—Bloch Conjecture, the order of L(s, 7, px) at
s = 1/2 should be related to the rank of the Chow groups of the
corresponding cycles, which are all in the middle degree. Like in Gross—
Prasad models, Conjecture would help one to relate the height
pairing against the cycles to the first derivatives L'(1/2, 7, px).

1.4. Organization of the paper. In Section [2] we explain the strat-
egy of our computation of the local relative characters. In Sections
and [4, we compute the local relative characters for the two split reduc-
tive cases in Table [T} In Sections [f] and [7} we study the non-reductive
cases for GLg and E7, respectively. In Section [6], we deal with the non-
split models (GUy x GUy, (GU, x GUy)?) and (GUg, GLy x U) in Table
[1} In Section [§ we compute the formulas for the remaining 4 models.
Finally, in Section [9] we will study the local multiplicity for all these
models.
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and Yifeng Liu for the helpful comments on the first draft of this paper.
We also thank an anonymous referee for all the helpful comments and
corrections. The work of the first author is partially supported by the
NSF grant DMS-2000192 and DMS-2103720. The work of the second
author is partially supported by AcRF Tier 1 grants A-0004274-00-00
and A-0004279-00-00 of National University of Singapore.
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2. THE STRATEGY

In this section, we will explain the strategy of our computation. In
the reductive cases, we closely follow the method developed by Sakel-
laridis in [Sa]. For the Whittaker induction cases, due to the non-trivial
unipotent radical of H, the local characters Iy, (¢,) in in these
cases are not absolutely convergent. To overcome this convergent issue,
we modify the method by regularizing the unipotent integrals. Then
for all cases, we can reduce the computation of local relative characters
to evaluate the local integrals associated to each simple root of G and
verify certain combinatorial identities. We refer the reader to the de-
tailed strategies in Section for the reductive case and in Section
[2.5.1] for the non-reductive case.

More precisely, in Section [2.1] we discuss some notation and con-
ventions of spherical varieties. Then we discuss the strategies for the
reductive cases in Sections [2.2) and 2.3 and for the non-reductive cases
in Sections [2.4] and [2.5] respectively.

In Sections [2Hg] we only consider the non-archimedean places v such
that all data are unramified. Denote by F' = k, a p-adic field. Let
Opr be its ring of integers. Fix a uniformizer w, and denote by IF, the
residue field of F' with cardinality ¢ and of characteristic p with p # 2.
Fix a nontrivial unramified additive character ¢ : FF — C* of F.

2.1. Notation. Let G be a connected reductive group defined over F,
and Zg be the center of G. We fix a maximal open compact subgroup
K of G(F) and let dg be the Haar measure on G(F') such that the
volume of K is equal to 1. Denote by W the Weyl group of G(F).

Definition 2.1. Let P = LU be a proper parabolic subgroup of G
defined over F. For a character € : U(F) — C* of U(F), denote by
L¢ the neutral component of the stabilizer of & in L (under the adjoint
action).

A character £ is called a generic character of U(F) if dim(L¢) is
minimal, i.e. dim(L¢) < dim(Lg) for any character £ of U(F). It is
easy to see that if & is a generic character, so is ' for all | € L(F),
where '€ is the character of U(F) defined by '¢(n) = £(17 nl).

Moreover, there are finitely many generic characters of U(F') up to
L(F)-conjugation, which are in bijection with the open L(F)-orbits
in u(F)/[u(F),u(F)] induced by the adjoint action on the Lie algebra
u(F) of U(F).

Let H C G be a connected closed subgroup also defined over F'. We
say that H is a spherical subgroup if there exists a Borel subgroup B of
G (not necessarily defined over F' since G(F') may not be quasi-split)
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such that BH is Zariski open in GG. Such a Borel subgroup is unique
up to H(F)-conjugation. Then, (G, H) is called a spherical pair and
X = G/H is the corresponding spherical variety of G.

From now on, we assume that H is a spherical subgroup. We say

the spherical pair (G, H) is reductive if H is reductive.

Definition 2.2. A spherical pair (G, H) is called a Whittaker induction
of a reductive spherical pair (Go, Hy) if there exists a parabolic subgroup
P = LU of G, and a generic character £ : U(F) — C* such that
H = Hyx U where Gy = L and Hy = L¢ C L is the neutral component
of the stabilizer of & in L.

Alternatively, we say that (G, H) is the Whittaker induction of the
triple (Go, Ho,&). For convenience, we also consider a reductive spher-
ical pair (G, H) as the Whittaker induction of (G, H,1).

Remark 2.3. In general the stabilizer of a generic character is not
necessarily a reductive or spherical subgroup of L. For instance, if
we take G = GL3 and a parabolic subgroup with Levi subgroup L =
GLy x GLy, then L¢ is isomorphic to the Borel subgroup of GLa, which
1s not reductive; if we take G = GlLg and a parabolic subgroup with
Levi subgroup L = GL3 x GL3 x GL3, then L¢ = GL3 is not a spherical
subgroup of L.

Finally, for a reductive spherical pair (G, H), we say it is strongly
tempered if all the tempered matrix coefficients of G(F') are absolutely
convergent on H(F')/Z¢ y(F'). If the spherical pair (G, H) is the Whit-
taker induction of a reductive spherical pair (G, Hy), we say (G, H) is
strongly tempered if (G, Hyp) is strongly tempered.

In the rest of this section, we assume that G is split (this is true for
all the models in Table [I| except the GUy; x GU,y and GUg cases). The
computation for the quasi-split case is slightly different from the split
case. We refer the reader to Section [f] for details.

2.2. The reductive case: some reduction. Let (G, H) be a reduc-
tive strongly tempered spherical pair with G(F') split. Assume that it
does not have Type N spherical root. Let B = T'N be a Borel sub-
group of GG defined over F', T' the maximal split torus in B and N the
unipotent radical of B, and B = TN be its opposite. There exists a
unique open Borel orbit B(F)nH (F') (note that for each root system,
we already choose suitable representatives (G, H) so that it has unique
open Borel orbit, see Remark [1.1]). For all the four models in (1.2)), it
is easy to verify H(F)Nn 'B(F)n = Zgu(F), i.e. the stabilizer of the
open Borel orbit belongs to the center of G.
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Remark 2.4. This is not true if the spherical pair has a Type N spher-
ical root. For example, for the model (GL3,SO3), the stabilizer of the
open orbit is isomorphic to (Z/27)? and does not belong to the center

of G.

Our goal is to compute the local relative character

I(¢g) = / Pp(h) dh
H(F)/Zg,u(F)

where ¢y is the unramified matrix coefficient of 7§ () normalized by
$9(1) = 1, 0 is a unitary unramified character of T'(F), and I§(-) is
the normalized induced representation from the Borel subgroup B. The
integral is absolutely convergent since (G, H) is strongly tempered. We
follow the method in Sections 6-7 of [Sal.

Let fp be the unramified vector in I§() with fs(1) = 1. Then
the normalized unramified matrix coefficient ¢y is given by ¢g(g) =
[i fo(kg) dk. This implies that

1 = h)dh = (kh)dkdh
(%) /H(F)/ZGH Folf) /H(F )/ Za,r(F) / 7ol

/ / fo(kh) dh dk.
F)/Zg,r( F)

Note that since the integral is convergent if we replace 6 by its absolute
value (which changes fy to fig = |fs]), the above double integral is
absolutely convergent. In particular, the integral

(2.1) / fg(kh) dh
H(F)/Zg,r(F)

is absolutely convergent for almost all k € K. As a function on k € G,
this integral is right H(F)-invariant and left (B(F), 5]13/ *f)-invariant,
where dp is the modular character of B. Since B(F)nH(F) is open
in G(F'), we have the integral is absolutely convergent for all
ke B(F)nH(F).
On the other hand, consider the function Yy on G(F) satisfying the

following conditions:

(1) Yy is supported on the open orbit B(F)nH (F') with Ys(n) =1

(2) Yy is right H(F)-invariant and left (B(F), 6‘15]13/2)—invariant.

For g € B(F)nH(F), Yy-1(g) is proportional to (2.1)) and then

/ folgh) dh = / Fo(nh) dh - Vo1 ().
H(F)/Zqg,r(F) H(F)/Zg u(F)
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In consequence, since the complementary set of B(F)nH (F') has mea-
sure zero, we have

I(¢g) = //H(F/ZGF Fo(kch) dh dk

_ / Vyi (k) d x / Folnh) .
K H(F) /26, (F)

To obtain a formula of I(¢y), it suffices to compute

/yg—l(k)dk and / fo(nh) dh.
K H(F)/Zg,n(F)

To evaluate the integral fH(F)/ZG () fo(nh) dh, we need the follow-
ing lemma. ’

Lemma 2.5. Under the above notation, for f € C*(G(F)), we have

Ag(1) —rk(Q)
flg)dg = —2 (1) / / F(bnh) dbdh,
/ - Dwyze (1) . H(F)/Za,1(F
where rk(G) is the F-rank of G.

Proof. Without loss of generality, it is sufficient to consider the case
n = 1, that is, H(F)B(F) is an open dense subset of G(F'). Denote
by deang, deand, and deanh the Weil’s canonical measures on the smooth
varieties G, B and H/Zg p, respectively. Since BNH = Zg y and BH
is open dense in G, by [Weil, Chapter 2] we have

/ f(g) dcang = / f(bh) dcanb dcanh-
G(F) H(F)/Zg,u(F) JB(F)

By [Weil, Chapter 2], since the smooth varieties X under considera-
tion are smooth over Op and have good reduction over F,, we have

| X (Fy)]
vol(X(OF),deant) = qdimz( .
This implies that
|G ()l | B(IFy)| |H/Z6,n(F,)|
deang = qim G dg, deand = W db, deanh = () ~dim(Zc 1) dh.

Since BN H = Z¢g i, we have

(B(E,)| - |H/Zo,u(F,)
dg = bh)dbdh.
/Gf (9)dg G(E,)] /HWGM L)
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Now the lemma follows from the following equation which is a conse-
quence of (3.1) and (5.1) of [G]

[BF)| - |H/Zau(Fy)| _  Ac(l)

= C(1)7kE),
GE,) Bizen
0
By Lemma , Jic Ye(k) dk = [ 1 (9)Va(g) dg is equal to
_Ball) - qy-rkee) / / L (bnh)6~16% (b) db dh
Anjze (1) H(F)/Zu(F) J B(F)

Au(l .
_ AAC(” k(G)/ folnh) dh,
H/Z¢n (1) H(F)/Zg,n(F)

where 1g is the characteristic function on K. As a result, we have
proved the following proposition, which reduces to evaluate the integral

Jie Yo(k) dE

Proposition 2.6. The local relative character I(¢g) is equal to

/yg 1 (k)dk X/ f (nh)dh
H(F)/Zg,u(F

A
_ H/ZGH 1)@ /yel dk:x/yo
S Ag(l)

In the next subsectlon we will explain how to compute the inte-
gral [, Vo(k)dk

Proposition 2.7. Let ® be the set of positive roots of G. There is a

decomposition of the weights of a representation px of G, denoted by
O =0T U060, such that

( ) —rk(G) |
R B LU (]
where 0 L
+1—qg e
0) = acd -
8O = 2

Moreover, we have

(2.3) H 1—q 267 H 1—q~ 26'7 ().

YVeoet YVeO~

Here for a € ®*, we use e () to denote (e (w)). For 4¥ € ©F,
we can identify it with a co-weight of G and we let ¢7” be the associated
homomorphism from GL; to 7. We define ¢7"(8) = 0(e"” (w)).
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Remark 2.8. For all the models in Table |l the representation px in
the proposition above (or Proposition for the non-reductive cases)
is just the representation px listed in Table [1. In Theorem 7.2.1 of
[Sal, for general (not necessarily strongly tempered) spherical varieties,
Sakellaridis proved the identities and for a Wx-invariant
set © of weights of G. Here Wy C W is the little Weyl group of X and
we have W = Wx if the model is strongly tempered. Later in Corollary
7.5.8 of [SW|, Sakellaridis-Wang proved that in the case when (G, H)
over functional fields is strongly tempered and H is reductive, © must
be the set of weights of a representation px of G. Our computation in
later sections shows that for all the non-reductive cases in Table |1, ©
15 also the set of weights of a representation px of G.

Combining Proposmons 2.6 and [2.7] we have

A
1o = 2222yt [y, ayanx [ 0 an

Ag<1) Ag(l) ) L(l/?,ﬂ',px)
AH/ZG,H(1> L(l,ﬂ',Ad) .

B AH/ZG,H (1)
L1/2,mpx)

This finishes the computation. The L-functions T Ad) is just the

Lx, L-function of the spherical variety X = G/H, defined in Definition
7.2.3 of [Sal.

C(1) ™MD B(O) - BO) =

2.3. The computation of Sy. Set
= / Vo(kg™') dg for g € G(F),
K

which is the Whittaker-Shintani function. (See [KMS03] for instance.)
In this section, our goal is to prove Proposition i.e. compute Sp(1).
Here, we follow the arguments and the notation in [KMS03]. The
unexplained notations and more details are referred to [KMS03, [Mac]
C80].

Let Z = B(Op)N(wOpr) be the Iwahori subgroup of G(F). For
all the strongly tempered models in the introduction, we can choose
a representative 7 in the open double coset of B(F)\G(F')/H(F) so
that it satisfies the following lemma (we will check this lemma for each
model in the later sections).

Lemma 2.9. Then there exists a representative n for the open dou-
ble coset of B(F)\G(F)/H(F) such that n € K and N(wOp)n C
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For w € W (W is the Weyl group of GG), let ®,, = 17,7 be the charac-
teristic function of ZwZ. Then 1x is equal to Y i, o (See [[wab6]
for instance.) Let « be a simple root and w, be the corresponding
reflection in W. We would need to compute

I,(0) = vol(T)™* o Yo(xn)(P1(z) + Dy, (z)) dz

for all simple roots a.
First, by Lemmal2.9] we have Iy C B(Or)nH(Op). Hence Yy(xn) =
1 for all x € Z. This implies that

(2.4) vol(Z)™* /G(F) Yo(xzn)®(x)de = 1.

For each root a € ®¢ of G, let (note that all the root spaces are one
dimensional since we have assumed that G is split)

(2.5) Ug: a € F > uy(a) € N(F)
be the one-parameter unipotent subgroup of G(F') associated to the

root «.

Lemma 2.10. We have

20) L) =1+q [ E75h) @)Ih(u-ala ) da
OF

where dg is the modular character of B.

Proof. This proof is similar to the one of Lemma 8.4 in [KMS03]. It is
sufficient to compute the integral

vol(Z)™* Vo(zn) dz.
TwaT

First, let us evaluate Vy(+) on the set Zw,Zn. Referring to [Mac, Chap-
ter 2], one has

TwoZ = B(Or)w,Uny(Op)N(wOpF) and U,(Or) = {uy(a) | a € Op},
By Lemma [2.9]
TwaIn C B(Op)w,Uy(Op)nH(OF).
As vol(Zw,T) = q - vol(Z), it follows that
Vo(zn)dz = wvol(Zw,T) Vo(waus(a)n) da

Twal Or

= q-vol(T) ; Vo(wata(a)n) da.
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Then, since watiq(a) = uq(a Nty - € (a™u_qo(a™?) for some t, €
T(OF), we have
Volwatialayy) = (07 55) (" (@) Vo(uala ).

This proves the lemma. O

Then for each model, by an explicit matrix computation, we will
show that there exists ) € © such that —f5) + a" € O (here we view
a as a weight on the dual group) and

(2.7) Vo(u_o(a ™)) = (e’ (1 +a™)) - [1+a™ |72
This implies that

(2.8)
L) =1 kg [ 05 @il ol o

=1+ q/ (9715%)(eav(a*1>>9(655¥(1 + cfl)) 1+ a’1|*1/2 da
OF

=1+4gq i 0(e” (a)) - la]™ - 0(’ (1 +a™")) -1 +a "% da

=1+ q/ (O(e®) | [TV (1 +a) - (0™ %) - [ [7?)(a) da
Of

B 1—q'e(0)

=la—1): (1 —q=1/2eB4(0))(1 — g~ 1/2e—Bate¥ ()

Here we use the fact that for unitary unramified characters yi, x2 of
F* the integral

(2.9) g /O o 1721+ a) - (x| [7Y2)(a)da

is absolutely convergent and is equal to

¢ xi(@) + ¢ xe(@) — 2 axe(w)

(I—g (@)1 — ¢ 2x2(w))
The proof of this identity is similar to (and easier than) the two iden-
tities in Section [6.21 We omit the details here.

Remark 2.11. The set {5, oV —BY | a € A(G)} is the set of virtual
weighted colors of X = G/H defined in Section 7.1 of [Sa]. There
15 another way to compute the virtual weighted colors using the Luna
diagram of X = G/H. In [Lu|, Luna computed the Luna diagram for
all the split reductive spherical varieties of Type A. The Luna diagram
of all the split reductive spherical varieties was computed in [BP]. In

q—2+(¢—1)-
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Section[d, we will use the model (GSpg x GSpy, (GSpy X GSp,)°) as an
example to explain how to use the Luna diagram to compute the virtual
weighted colors. We refer the reader to Remark[3.4 for details.

Definition 2.12. Let ©" be the unique subset of © satisfying the fol-
lowing condition:

e For every simple root a, we have O —w,0T = {BY, o¥ —3Y}.
Recall that for all the models in Table|1, © is the set of weights of the
representation px of G listed in Table 1l We define

1—qgler” v 1-— ’%ew
Haeq>+ q 1 (9) and CWS(Q) _ H’y co+ q ‘ (9)
H'y\/e®+ 1- q_ie’yv 1_[@6(1)Jr 1 —e

For a Weyl element w € W, the intertwining operator T,: I§(0) —
I§(w0) is defined by

Tu(f)(9) =

po) =

/ fw™ng)dn, f € I5(8).
N(F)NwN(F)w=1\N(F)

It is absolutely convergent when 6 is positive enough and admits a
meromorphic continuation (see Theorem IV.1.1 of [W03]).

By Theorem 1.2.1 of [Sa08], the space Homyr)(I5(6),1) is one-
dimensional for almost all # in the unitary line. In fact, for all the cases
in Table[T] the little Weyl group W of the spherical variety is equal to
the Weyl group W. This implies that the factor (M (67/2A4%) : W)
in loc. cit. is equal to 1. Moreover, since the spherical variety has a
unique open Borel orbit, the factor |H'(k, Ax)| in loc. cit. is also equal
to 1 (see Lemma 3.4.1 of [Sa0§]). This implies that the Hom-space is
one dimensional. In Section [0 we will prove a multiplicity formula of
the dimension of this Hom space for all the tempered representations
which will imply that the Hom-space Homy () (I§(6), 1) is actually one
dimensional for all unitary characters. But we don’t need this result in
our computation.

By the definition of )}, we can define an element ¢4 in the Hom-space
Homp () (15(6),1) to be

(2.10) (o(Po(f)) = /G , T9ula)do. tor 1 C(@),

where Py(f) = fB(F) (9’15%3) (b) f(bg) db is the canonical G(F')-equivariant

map from C®(G(F)) to I§(#). Since the Hom-space is one dimensional
for almost all 8, for each simple reflection w, € W associated to a sim-
ple root «, there exists a rational function b, (#) on € such that

(211) gwaﬂ o} Twa = ca(Q)bwa (9)69
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Here ¢, (0) = 1_1(1_;15& (0) is the c-function defined in [C80].

Our goal is to obtain a formula of b, (f). Similar to the proof of
Theorem 10.5 in [KMS03], to obtain b, (¢), we evaluate both sides of
equation (2.11) at Py(Py + P, ). Note that

Ty (Po(®1 + D)) = Ca(0)Pus(®1 + o, ).
Then, under the choice of ¢y, we have
vol(Z)1a(0) = Lo(Py © R(n)(P1 + Pu,)),
where R is the right translation of G(F'). On the other hand,
lue00 T (Poo R(1) (P14 P, ) = Ca(0)bug (0)lura (P R (1) (P1+Pus, )

= Co(0)vol(Z)1,(wa0).
Following , we obtain
1
(2.12) by (9) = Je(ad)

Lo(6)
Recall that So(g) = Co(R(9)Po(1x)). Plugging Ty, (Puao(lx)) =
ca(0)Po(1k) into the left hand side of (2.11)), we have
Swae(g) = ngQ(R(g)Pwae(lK))
= Cal(0) ™ (Cuwas © Twa)(R(9)Po(1x)) = b, (0)Sa(g)-
Thus for all simple roots « of G, we have

Swuﬂ(g) o o ]oc(woce) _ B(woﬁ)
= by, (0) = = .
So(9) 10(0) p(0)
This implies that Sp(g)/5(0) is W-invariant as a function of 6.
Proposition 2.13. Let T(F)" = {t € T(F)| t 'N(Op)t C N(Op)}
be the positive chamber of T(F'). Then

So(n~'1)/B(0) =4 M wol(T) S cws(wd)((wh)'62)(t), for t € T(F)*,
weW

where [(W) is the length of the longest Weyl element in W.

Proof. First, we show that
(2.13) Se(n~'t) = vol (Tt(AN)I) ' R(17:7)Se(n 1),
where R is the right convolution defined by
R(177)Se(n™h) = / 1zz(2)Sp(n '2) do = / Se(n~'z) d.
G(F)

Tt

Now, it is enough to show that
n 't ¢ H(Op)np 1T C H(Op)n 'K,
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which follows from Lemma [2.9]
Similar to Proposition 1.10 of [KMS03], there exists a basis { f,,: w €
W} of I§(6)T such that

(2.14) R(L112) fur = vol(TtT)(wb) " 62t 1) fo,
fi = Pal@1), Polli) = ¢ 3 cul0)f
weWw
for t € T(F)* where ¢, (6) = H ca(0).
a>0,wa>0

Recall that Sp(g) = lo(R(g9)Pe(1k)). Substituting (2.14)) into Sy, we
have

So(nt)/B(0) = d'“PBO) " Y culO)lo(R(n) fu) - (wh) 62 (7).

weW

By [@.4) and f, = Py(®P;), we have the coefficient of (w8) =182 (t?)
for w =11n Sp(nt)/B(0) is equal to

¢ IB0) " e (a) = ¢ vol(T)ews(9

1

);
where c1(0) = [[,cor ILC%(0). Since Sy(nt)/B(#) is W-invariant,

1—e~
by the linear independence of the characters (wf)~'d2(¢t~1) for generic
6, we obtain

Sa(n™'t)/B(0) = ¢ “Ivol(T) Y cws(wh)(wd) 62 (t71).

weWw

l

Since n € K, we have Sy(1) = Sp(n~!). Combining with the propo-
sition above, we have

So(1)/8(6) = ¢"™vol(T) > cws(wh).

Since vol(Z) = Ag(1)¢(1)7 () . ¢=lV) " we have
Se(1)/5(6) = Aa(1)C(1) ™™D Y ews(uwh).
weW

Hence in order to prove Proposition [2.7] it is enough to prove the
following lemma.

Lemma 2.14. The summation Z cws(wl) is independent of the
weW

choice of 6 and is equal to m.
G,H
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Proof. Since the spherical varieties for the reductive cases are affine,
the first part of this statement follows from Theorem 7.2.1 of [Sal. For
the second part, since the summation is independent of the choice of
0, we can compute it by plugging in some special . We will compute
it for each of our models in later sections. O

Remark 2.15. For all reductive cases, if we set 0 = (5]13/2 as in Lemma
4.2.8 of [Sa] (which is used in the proof of [Sa, Theorem 7.2.1]), then
the only nonvanishing term in the summation is the term corresponding
to the longest Weyl element, which is equal to m. We will show

this for all the reductive models in Table[T] in later sections.

2.3.1. The summary. By the discussion in the previous two subsec-
tions, in order to compute the relative character in the reductive case,
we just need to perform the following steps:

(1) Show that the double cosets B(F)\G(F')/H(F') have a unique
open orbit B(F)nG(F) and the representative n can be chosen
to satisty Lemma [2.9]

(2) Verify the identity (2.7) by expressing the product u_,(a)n in
terms of the decomposition B(F)nH (F'). This gives us the set
of virtual weighted colors of X.

(3) Compute the subset ©F of © and show that it satisfies ([2.3).

(4) Compute the constant ), cws(wf), i.e. Lemma [2.14] This

computation is easy for the reductive case, see Remark [2.15]

2.3.2. The trilinear model. To end this subsection, we use the trilinear
GLy model as an example to explain the method. This example also
appeared in Section 7.2.4 of [Sa] and we will use it for the non-reductive
cases in Table [I| , which are the Whittaker inductions of the trilinear
GLo-model. Let G = GLy x GLy x GLy and H = GL,y diagonally em-
bedded into G. Let B be the upper triangular Borel subgroup of G' and

no = (1o, ((1] (1)) ) ((1) (1)) ((1) i)) It is easy to see that B(F)noH (F)
is the unique open orbit and 7y satisfies Lemma [2.9]

Let © be the set of weights of the tensor product representation of
GL2(C) x GLy(C) x GLy(C). We can write it as {e; +¢j +¢e; | 1 <
i,7,k <2} Let o; (1 < < 3) be the simple root of the i-th copy of
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I 1—a 0\
l1-a 1—a 1—a . .
(o) 0o ) (F070)
1 -2\ /L 0\ (& 0 1 b\
— 1-b 1-b 1-b . .
u—a2(b)770_((0 ﬁ)a(o 1)7(0 1)) Mo (O 1—b) )
1 0 [+~ 0\ (X 0 10\
ooy D) D Do 010"

This proves (2.7) and implies that (note that the representation has
trivial central character)

GL5. We have

A / " \Y, v / " \VA / "
a1—61—|—62—|—€1, oy — a1—61—|—€1—|—62, a2—62—|—61—|—€1,

oy — By, =e1+e +ey, By =extel e, ay — B, =e+ey+el.
Then O will be the smallest subset of O satisfying the following two
conditions:
o ey te)+ejer+eh+efeatel +ef €OT.
e OF —w, ©F = {e; + e} +e5,e1 +ey +ef}, OF —w,,0F =
{e1+e€|+ey, eate+el}, OT—w,, 01 = {e1+es+e], eate)+el}.
As a result, we have

Ot ={es+ei+el,er+e)+ey,e1+eh+el,ea+e) +el}.
It is easy to see that OV satisfies (2.3)).

Finally, if we let 6 = (5,13/2, it is easy to see that for w € W, cyyg(wh) =
0 unless w is the longest Weyl element. If w is the longest Weyl element,

we have CWS(we) =1 —q_2 = C(Q)_l = m This proves Lemma

In conclusion, we have proved that the local relative character in
this case is equal to

) - L(1/2, 71 X my X 7o)

L(1,7,Ad)

where m = m ® T ® 73 is an unramified representation of G(F).

2.4. The Whittaker induced case: some reductions. In this sub-
section, we consider the Whittaker induced case. Let (G, H) be a Whit-
taker induction of a strongly tempered model (G, Hy). In other words,
there exists a parabolic subgroup P = LU of GG and a generic character
¢ of U(F) such that Gy ~ L and Hj is the neutral component of the
stabilizer of £ in M. Note that for all the cases we considered in Table
[1] the model (Go, Hy) is essentially the trilinear GLj-model.
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Let By = T'N, be a Borel subgroup of Gy, By = TN, be its opposite,
and P = LU be the opposite parabolic subgroup of P. Let N = NyU
and N = NoU. Then B = TN is a Borel subgroup of G and B = TN
is its opposite.

For all of our cases (as well as all the other Whittaker induced cases
in Remark , there exists a Weyl element wy such that the wg-
conjugation map

e induces an isomorphism between U and U,
e stabilizes L and fixes Hy C L.

Also there exists a homomorphism A : U(F) — F such that {(u) =
Y(A(u)) for all u € U(F). We extend A to H(F) by making it trivial
on Hy(F'). We also have a map a : GL; — Zp, such that

(2.15)

wy ta(t)we = a(t)™!, and A a(t)ua(t)™ ") = tA(u), for t € F*,u € U(F).

Let Bo(F)noHo(F') be the unique open Borel orbit of the model
(Go, Hp), and let n = nowy. Then B(F)nH(F') is the unique open
Borel orbit of the model (G, H) and the stabilizer of this orbit is Zg g =
H N Zg. Note that we always assume (G, Hy) does not have Type N
spherical root. The equation (2.15)) implies that n1a(t)n = a(t)!.

We want to compute the local relative character

(2.16) 1(69) = / do(hu)E(u) ™ dudh
Ho(F)/Zg,u(F) JU(F)

where ¢y is the unramified matrix coefficient of I§(6) with ¢y(1) = 1,
and 6 is a unitary unramified character of T'(F'). The general idea of
the computation is the same as the reductive case, the only difference
is some convergent issue. Unlike the reductive case, the integral above
is not absolutely convergent because of the extra unipotent integral.
Hence we need to regularize the unipotent integral.

There are three (equivalent) ways to regularize the unipotent inte-
gral. The first one is using the fact the the unipotent integral is stable,
i.e. there exists a compact open subgroup U of U(F) such that

Pp(hu)§(u) ™" du =0
u'-u
for all compact open subgroup U’ of U(F') with U C U’'. Hence we
can replace the integral over U(F') by an integral over the compact
subgroup Y. This regularization has been used by Lapid-Mao [LM]
in their computation for the Whittaker model, and used by Liu [L]
in his computation of the non-reductive Gan—Gross—Prasad models.
The advantage of this regularization is that it works for general matrix



STRONGLY TEMPERED SPHERICAL VARIETIES 27

coefficients, not just the tempered ones. (Of course, in order for the
integral of Hy(F') to be convergent, we still need the character 6 to be
close to the unitary line.)

The rest two regularizations are only for the tempered case. It uses a
critical fact that although the integral is not absolutely conver-
gent, the integral will become absolutely convergent if we replace U (F)
by U'(F) ={u € U(F) | AM(u) = 0}. (For all the models considered in
this paper, this can be proved by the same argument as Lemma 4.3.1
of [Wanl7h].) As a result, we only need to regularize the integral over
AMu) € F.

Remark 2.16. In particular, the integral
/ ou(m (A1) dh
H(F)/Zg,u(F)

is absolutely convergent for all ® € CX(F).

There are two ways to regularize the integral over A(u). The first
way is to replace the the integral over U(F) by the integral over

Un(F) ={u e U(F) [ |Mu)] < ¢"}.

Then one can show that for every matrix coefficient ¢ of 1§(6), there
exists N > 0 (depends on the level of ¢, i.e. the open compact subgroup
K' C G(F) where ¢ is bi-K'-invariant) such that the integral

1, = h “Ldudh
(d6) /H o / L olhgg)” o

is independent of n for n > N, i.e. the unipotent integral is stable
on the sequence U,(F) (the difference between this regularization and
the previous one is that the unipotent groups U, (F') we used here is
not compact). Hence we can just replace the integral over U(F') in
the definition of I(¢y) by the integral over U, (F) for some large n (in
fact, as ¢y is unramified, one can easily show that we can just replace
U(F) by Uy(F)). This regularization has been used by Waldspurger
in Lemma 5.1 of [W12] for the orthogonal Gan-Gross—Prasad model.
The same arguments work for all the Whittaker induction cases in this
paper.

Another way is to replace the character &(u)™* = ¥ (\(u))~! by some
Schwartz function ¢, (A(u)) (n > 0) of A(u) where

1
o= =lo, — 1 L0
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—1 .
vol(OF)

. 1
of the function mll +on O for n > 1. One can show that for

every matrix coefficient ¢ of I§(6), there exists N > 0 (depends on the
level of ¢) such that the integral

Im = h “Ldudh
(d0) /H s / L othgge) ! o

is independent of n for n > N.

This regularization has been used by Beuzart-Plessis (Proposition
7.1.1 of [B15]) for the unitary Gan-Gross—Prasad model (note that the
group 14+w" O} is just the group K, in loc. cit.) and by the first author
(Proposition 5.1 of [Wanl16]) for the Ginzburg-Rallis model. The same
argument works for all the Whittaker induction cases in this paper.
In the unramified case, we may just take n = 0 and the regularized
integral is given by the formula

I(69) = / do(R)po(A(h)) d.
H(F)/Zg u(F)

is the Fourier transform of 10; and ¢, is the Fourier transform

In order to compute this regularized integral, we need another two
regularized integrals.

Lemma 2.17. For f € I§(0), the integrals

/ | g dud
Ho(F)/Zg,u(F) J Un(F)

/H L S ) an

are absolutely convergent for all n.

Moreover, there exists N > 0 (depends on the level of f, i.e. the
open compact subgroup K' C G(F) where f is right K'-invariant) such
that both integrals are equal to each other and are independent of n for
n > N.

and

Definition 2.18. We use fé(F)/ZGH(F)f(nh)f(h)*l dh to denote the
reqularized integral ’

lim / f(nhu)é(u) ™ dudh
=00 HO(F)/ZG,H(F) n(F)
= lim f(h)en(A(R)) dh.

"0 JH(F)/Zg,n(F)
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Proof. We first prove the convergence. By replacing f by |f| and 6 by
|0] we may assume that f is a non-negative real valued function. Let
fo be the unramified vector in I§(6) with f5(1) = 1. Then the matrix
coefficient of f and fy is given by

b1.0(0) = /K f(kg) dg

By the discussion above, we know that the integral

/ / o1, (hu)€(u) " dudh
Ho(F)/Zg,u(F) JUn(F)

is absolutely convergent for all n. This implies that (note that f is a
non-negative real valued function) the triple integral

/ / / f(khu)é(u)~t dk dudh
HO F)/ZGH nF)

is absolutely convergent. In particular, the integral

/ / f(khu)é(u) "t dudh
Ho(F)/Za,u(F) JUn(F)

is absolutely convergent for almost all £ € K. But as a function on k €
K, this integral is left B(Op) and right H(Op) invariant. Combining
with the fact that n € K and BnH is Zariski open in G, we know that
the integral

/ | gt dud
Ho(F)/Zg,5(F) J Un(F)

is absolutely convergent for all n. This also implies that the integral
[ ramgam) an
H(F)

is absolutely convergent for all n since ¢, is a compactly supported
function.

Now we prove the second part of the theorem. We first prove the
following statement

(1) there exists N > 0 such that for all n > N, we have

/ / f(nhugu)é(u) ' dudh = 0
Ho(F)/Za,u(F) JUL(F)
for all uy € U(F) — U,(F).
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In fact, for n large, we have the function f(g) is right a(t)-invariant
for all t € 1+ @"Op. It is also left a(t)-invariant for all t € 1 + @O
since 6 is an unramified character. Then for uy € U(F) — U, (F), there
exists tg € 1 + @w"Oj such that (tg — 1)\(ug) € w 'O} (in particular,
W»((to — 1)A(up)) # 1). This implies that

/ / f(nhugu)é(w) ™ dudh
Ho(F)/Zg,u(F) JUL(F)

= / / f(a(tyHnhugu)é(u) ™ dudh
Ho(F)/Zg,u(F) JUL(F)

:/ / f(nhug(ug talto)uo)ua(te) ™ )E(w) ! dudh
Ho(F)/Zg,u(F) JUL(F)

_/ / f(nhug(ugta(to)uga(te) H)u)é(u) " dudh.
Ho(F)/Zg,u(F) JUL(F)

Here we use the fact that since v is unramified, &(u) = £(a(t)ua(t)™)
forw € Uy(F) and t € 1 + @"Op. By our choice of ug and ty, we know
that uy ta(to)uga(te) ™t € Ui(F), then an easy change of variable shows

that fHO(F)/Z&H(F) Jou ey f(nhugw)§ (u) " dudh is equal to

£y Yalto)upalto) ) /

Ho(F)/Z¢ u(F)

Since &(ug ta(to)uoalto) ™) = ¥((to — 1)A(ug)) # 1, we have

/ / f(nhugu)é(w) ™ dudh = 0.
Ho(F)/Zg,u(F) JUL(F)

This proves (1).
Now we are ready to prove the theorem. By (1), we know that for
all n > N, we have

/ / f(nhu)é(u) ' dudh = 0.
Ho(F)/Zg,u(F) JUpt1(F)=Un(F)

In particular, the integral

/ | e dudn
Ho(F)/Za,u(F) JUn(F)

is independent of n for n > N.

/ f(nhugu)é(w) ™ dudh.
Uy (F)
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For the second integral, choose n large so that the function f(g) is
right a(t)-invariant for all ¢ € 1 + @w"O. Then we have

/ / f(nhu)é(u) ™ dudh

Ho(F)/Za,u(F) J Un(F)

= / / fla(t)nhua(t))é(u) " dudhdt
1+w"(9;§ Ho(F)/Zg,u(F) JUn(F)

= / / f(nha(t) tua(t))€(u) " dudhdt
1+w"(91>; Ho(F)/Zg,u(F) JUn(F)

= / / F(nhuw)p(tA(u))~ dudh dt
1+w"(91>; Ho(F)/Zg,u(F) JUn(F)

= / / / f(hu) (N (w) M g-no, (A(u)) dt dudh.
Ho(F)/Z,u(F) JU(F) J14wm 0}

Here the measure dt on 1 + w"O} is chosen so that the total volume
is equal to 1. The function

T Y(tr) Mg-np,(x)dt
1+w"OF

1
=1gn . L onox (O)Y(tz) ™1 d
cr0p(@) [ g e (U2) " dy

is just 1o-no,-pn (recall that ¢, is the Fourier transform of the function
1 . A direct computation shows that the function ¢,

vol(14+wnOF) 11+w“0;)
is supported on @™ "Op, hence 1,-np,. - pn = @,. As a result, we have

/ / f(nhu)é(u) ™ dudh = / F(nh)en(A(R)) dh.
Ho(F)/Zg,u(F) JUn(F) H(F)

This proves the lemma. 0

Remark 2.19. As long as f is right T(Og)-invariant (for example
when f is unramified or when f is an Iwahori fived vector), we can
just take N = 0. We can also show that the integral

fmh)en(A(h)) dh
H(F)
is independent of n for n > 0.

Let Vog, Yoen, Vye be the function on G(F) satisfying the following
conditions:

® Vog, Yoens Vye are supported on the open orbit B(F)nH (F).
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e For b € B(F) and h € H(F'), we have
Voe(bnh) = 07152 (0)E(R), Voen(bnh) = 07165 (D)E(R) 1m0y (A(R)),

Vie(bnh) = 07162 (0)pn(A(R)).

Lemma 2.20. For ® € C>*(G(F)), the integrals

/ (9)Voen(g) dg and / (9)Vie(9) dg
G(F)

G(F)

are absolutely convergent for all n. Moreover, there exists N > 0 (de-
pends on the level of f, i.e. the open compact subgroup K' C G(F)
where f is right K'-invariant) such that both integrals are equal to each
other and are independent of n forn > N.

Definition 2.21. We use fG ®(9)Voe(g) dg to denote the regularized
integral
lim ®(9)Vogn(g)dg = lim ©(9)Vie(9) dg

Proof. By the same arguments as Lemma we can prove the follow-
ing statement

e For & € C°(G(F)), we have

(2.17)

/ ®(g)dg = AG—(Ugu)—ﬂf(G)/ / ®(bnh) dbdh.
G(F) Ao /26,1 (1) H(F)/Z6,m(F) J B(F)

This implies that the integral fG (9)Vo.en(g)dg is equal to the prod-

uct of %C(l) rR(&) with

/ / / ®(bnhu)~16"2(b)¢(u) " dbdu dh
Ho(F)Zg m(F) JUn(

-/ / | gt dudn
Ho(F)Zg,u(F) JHo(F)/Zg,u(F) JUn(F)

and the integral fG ®(9)Vse(g) dg is equal to the product of

Ag(1)

)T
AHO/ZG,H<1)
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with
/ / ®(bnh)0~15Y2(b)pn(A(R)) dbdh
H(F)/Zg,u(F) J B(F)
_ / / Fo (nh)ea(A(h)) dh.
Ho(F)Zg,u(F) v H(F)/Z¢,u(F)
Then the lemma just follows from the lemma above. 0

Remark 2.22. If ® is right T(Op)-invariant, then we can just take
N = 0. We can also show that the integral

/G L 20l do

is independent of n forn > 0. For any open compact subset K" C G(F),

we let

Ve aki= [ 1(oaelo)dg

G(F)

Recall that fy is the unramified vector in I§(0) with fp(1) = 1. We
have

g) = /K folkg) dk, 1(y) = /H o SR

_ / / bo(hu)E(u) ™ du.
Ho(F)/Zg,u(F) JUL(F)

This implies that

(2.18) I(¢g) = / / . Folkh)o(A(h)) dh dk

:// / fg(/{hu)g(u)_ldudhdk.
K JHo(F)/Zg,u(F) JUL(F)

The next lemma follows from the proof of Lemma
Lemma 2.23. For ug € U(F) — Uy (F), we have

/ / fo(nuohu)é(u) ™t dudh = 0.
Ho(F)/Zg,u(F) JUL(F)
Corollary 2.24. We have

A
I(¢g) = HOA/?(;H 1)@ /379 1e(k)dEk - /yef
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Proof. We have

I(¢y) :/ / / fg(k:hu)g(u)‘1 dudh dk.
KNB(F)nHo(F)U1(F) JHo(F)/Zg,u(F) J UL (F)

The function

ko / £ (khu)é (u) " du dh
Uy (F)

Ho(F)/Zg,u(F)

on KN B(F)nHy(F)U,(F) is a scalar of the restriction of the function
Vo-1¢ to KN B(F)nHo(F)Uy(F') and the scalar is equal to

/ / fo(nhu)é(u) ™" dudh.
Ho(F)/Za,u(F) JUL(F)
This implies that

I = h “Ldudh
(é0) /H i / | folaEC) ™

: / Vi1 (k) dk.
KOB(F)Ho(F)Us (F)

By Lemma 2.20] and Remark [2.22] we have

/ Ve b= [ sl d
KNB(F)nHo(F)U1(F) K

Hence it remains to show that

AHO/ZGH k(G /
2.19 T Y
( ) AG( 6,61

:/ / fo(nhu)é(u)~" dudh.
Ho(F)/ZG,H(F) UL (F)
By Lemma [2.20, Remark n and -, we have

AHo/ZG H rk / Y
Ac(l) £
k(G

A 1
_Mc(l)r / Voe-1 (k) dk
KNB(F)nHy(F)U1(F)

/Ho ") /U / x (bhu)0 ™62 (0)€ (u) ™ du

—/ / fo(nhu)é(u)~t dudh.
Ho(F)/Zg,q(F) JUL(F)
This proves (2.19)) and finishes the proof of the lemma. O
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In the next subsection, we will explain how to compute the regular-
ized integral [, Vo (k) dk. The result is summarized in the proposition
below.

Proposition 2.25. Let ® be the set of positive roots of G. There

1s a decomposition of weights of a representation px ofé (denoted by
© =01TUO" ) such that

AG( ) —rk(G) |
[ netbyan = 26D @ g
where
Ha€¢’+ 1-— q—leav
0) = - 0).
8O = T e )

Also ([2.3]) still holds.

The proposition above implies that (¢g) is equal to

Au() Ao()  L(1/2,7,px)
AHO/ZG,H<1) AHO/ZG,H(l) L(1>7TaAd)

This finishes the computation.

C(1)"™D - 5(0) - 5O =

2.5. The computation of [, Vs ¢(k)dk. Let

) Z/I:ye,s(kgl)de/* 1 (9'9)Voe(g') dg'.

G(F)

Our goal is to prove Proposition [2.25] i.e. compute

1):/*yg,g(k)dk:/lfyg,g(k)dk

Let Z = B(Op)N(wOpr) (resp. Iy = Bo(Or)No(wOr)) be the
Iwahori subgroup of G(F) (resp. Go(F) = L(F)). As in Lemma [2.9]
we can choose 79 so that

(220) Ng(@@p)ﬁo C T(OF)NQ(WOF)U()H()(OF)
Lemma 2.26. We haven € K and
N(WOF)T] - T(OF)N(YDOF)UHO(OF)U(WOF)

Proof. Since 19, wy € K, we have n = nowy € K. For i € N(wOp), we
write it as 7't with 7’ € No(@wOr) and @ € U(wOp). Since n = nowy
and 1y € L(Op), we have n~'un € U(w@wOp). Hence it is enough to
consider the case when i € Ny(wOp). Then the lemma follows from
(2.20) and the fact that Hy commutes with wy. ]
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For w € W, let ®,, = 17,7. Let a be a simple root and w, be the
corresponding element in W. As in the reductive case, we would need
to compute

I,(0) = vol(Z)™* /GtF) yg,g(x)(fbl(xn_l) + @, (zn71)) do

= vol(Z)™* o Vi e(2n)(P1(2) 4+ Do, () .

First, by the lemma above, we have Zn C B(Op)nHo(Op)U(wOF).
Hence ) (xn) = 1 for all # € Z. This implies that

vol(Z)™* Vo e(zn)®1(z)dz = 1.
G(F)

The next lemma follows from the same arguments as in the reductive
case.

Lemma 2.27. Let u, : F — N(F') be the homomorphism whose image
is the root space of a (the root space is one dimensional since we assume
that the group is split). Then

L) =ta [ 675 @ )lu-ala ) da
OF

Then for each model, by an explicit matrix computation, we will
show that for a € A(Gy), there exists 5 € © such that —8Y +a" € ©
and
(2:21) Vpe(u—ala)nh™") = @o(A()) - (™ (1 +a™")) - [1+a 712,
As in the reductive case, this will imply that

L—q'e ()

(1 _ q—1/2€5g(9))<1 _ q_1/26_5g+av(6,)).
Remark 2.28. In fact, by our choice of n = nowy, we only need to
verify the identity for the reductive model (Gg, Hy) and we know that
BY is just the color associated to o for the reductive model (Go, Hy).

For all of our cases in Table (1], since it is induced from the trilinear
GLa-model, we can just use the computations in Section [2.5.3.

On the other hand, if @ € A(G) — A(Gy), we will show that
(2.23) Voelu—ala™)n) = pola™).
This implies that

(2.24) 1.(0) = 1+Q/O B(c*"(a))-la| " -po(a™")da = q(1—q~"e™ (9)).

(2.22) a=(q—1)-
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Remark 2.29. Note that if we don’t reqularize the unipotent integral,
the integral we get here will be

L(0)=1+q [ 0" (a)-|a| " - ¢(a") da.
OF
This is not absolutely convergent (which is also the reason why the
original unipotent integral is not absolutely convergent). There are two
ways to reqularize this integral which correspond to the two ways to
reqularize the unipotent integral.
The first way is to use the fact that fwnolé

0 forn > 1, and reqularize the integral as

O(e” (@) ]l p(a™t) da =

L) =1+q [ 0 @)l v da,
OfUw~105

which is equal to g(1—q~e® (#)). The second way is to replace 1(a~")

by wo(a™t) as we did above which gives the same answer.

Definition 2.30. Let ©F be the unique subset of © satisfying the fol-
lowing two conditions:

e For every simple root o € Ag,, we have O —w,0% = {57, o¥—
Buts
e For every simple root a« € Ag — Ag,, ©F is stable under w,.

We then define

1—qte veor 1 —q 7"
Locar 10 (0) and ews(0) = L co- —(0).
vae®+ 1—qze” [Tocor 1 — e

Now by the exactly same arguments as in the reductive case (the only
difference is that for the definition of [y in ([2.10), we replace the integral
i) G(F) by the regularized integral | G*( F)), we can prove the following

p0) =

proposition.

Proposition 2.31. Let T(F)" = {t € T(F)| t 'N(Op)t C N(Or)}
be the positive chamber of T'(F'). Then

So(n~t)/6(0) =¢'Vvol(T) Z cwg(wﬁ)(we)_léé(t_l), forte T(F)*,
weW
where [(W) is the length of the longest Weyl element in W.

Since n € K, we have Sp(1) = Sp(n~!). Combining with the propo-
sition above, we have

So(1)/B(0) = ¢ vol(T) Y~ cws(wh).

weW
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Since vol(Z) = Ag(1)¢ (1)~ (D . ¢ lV) " we have
S(1)/B(0) = Ag(1)¢ (1)~ Z cws(wb).

weW
Hence in order to prove Proposition [2.25] it is enough to prove the
following lemma.

Lemma 2.32. The summation ) cws(wl) is independent of the
- : 1
choice of 0 and is equal to P

This lemma is much more difficult than the reductive case for two
reasons. First, Theorem 7.2.1 of [Sa] only works for the reductive case,
so we can not use it to imply that the summation is a constant. Sec-
ondly, in the reductive case, if we set 0 = 5119/ 2, then the only nonvan-
ishing term in the summation is the term corresponding to the longest

Weyl element, and it will be equal to m. But for all the non-
0/2G,H

reductive cases in Table[T], this is not true and actually it is impossible
to choose a 6 so that all the terms in the summation are equal to 0
except one. We believe that this is related to the fact that for the mod-
els in Table , the Type T spherical roots and Type (U, ) spherical
roots will sometimes interlace each other. For example, for the model
(GLg, GLy x U), the roots a; = e; — €;41 is of Type T when i = 1,3,5
and is of Type (U, 1) when i = 2, 4.

As a result, for each of these cases, we will prove this lemma by
a direct computation. Our computation is based on some reductive
steps. For example, for the model (GSO15, GLy x U), we will prove the
identity by proving another identity which allows us to reduce to the
identity for the model (GLg, GLg x U); for the model (GLg, GLy x U),
we will prove the identity by proving another identity which allows us
to reduce to an identity related to the group GL4 x GLs.

2.5.1. The summary. By the discussion in the previous two subsec-
tions, in order to compute the local relative character in the non-
reductive case, we just need to do the following steps:

(1) Define the Weyl element wy so that the wy-conjugation map
e induces an isomorphism between U and U,
e stabilizes L and fixes Hy C L.

(2) Define the map a : GL; — Zj, so that it satisfies (2.15).

(3) Show that the double coset By(F)\Go(F')/Ho(F) has a unique
open Borel By(F)nyGo(F) and the representative g can be cho-
sen to satisfy . Since all the cases in Table|l|are Whittaker
inductions of the trilinear GLy-model, this step has already been
verified in Section 2.3.2]
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(4) Verity the identity (2.21]) and (2.23)) by expressing the product
U_q(a)n in terms of the decomposition B(F)nH (F'). Since all

the cases in Table [Il are Whittaker induction of the trilinear

GLy-model, the identity (2.21]) and the colors have already been
computed in Section (see Remark [2.28)), so we only need

to verify .
(5) Compute the subset ©F of © and show that it satisfies ([2.3)).
(6) Compute the constant ), .- cws(wd), i.e. Lemma@ This
is the most technical part of the computation.

A final remark for the spherical roots. In Table [T} if a model
is reductive, then all the simple roots of the spherical variety are of
Type T, and our computation of 1,(f) in confirms Statement
6.3.1 of [Sa]; If a model is non-reductive, the Whittaker induction of
the trilinear model (G, Hyp), then for a simple root a of the spherical
variety, v is of Type T if « is a simple root of Gy (recall that G is
embedded as the Levi subgroup of GG) and the remaining simple roots
are of Type (U,%). In such case, our computation of I,(#) in (2.22))
and also confirms Statement 6.3.1 of [Sa].

3. THE MODEL (GSpg x GSp,, (GSp, x GSp,)?)

In this section, we compute the local relative character for the model
(GSpg x GSpy, (GSp, x GSp,)?). We closely follow the four steps in
Section [2.3.1] In Section [3.1], we will define this model and verify Step
(1), i.e. there is only one open orbit under the action of the Borel
subgroup. Then in Section 3.2 we will first study the matrix identities
of the product u_,(z)n to get the set of virtual weighted colors (Step
([2)). Then we will compute the set ©F (Step (3))) and finally we will

compute the constant > ;- cws(w8) (Step ().

3.1. The model and some orbit computation. Define the split
symplectic similitude group

GSan = {g € GLQn ’ gtJan = l(g)JZn}

1

where Js,, = (u? _8U"> and w,, = . Here [ is the simil-
" 1

itude character. Let Bs, be the Borel subgroup of GSp,,, consisting of
all upper triangular matrices. Set G = GSpg; x GSp, and

H = (GSp, x GSp,)? := {(hy, hy) € GSp, x GSp, | I(h1) = I(hy)}
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embeds into G via the map

(P, (a Z)) € (GSpy x GSp,)" = H

a 0 b
— (10 hy 0] ,hy) € GSpg x GSp, = G.
c 0 d

For the non-split version of this model, let D/F be a quaternion
algebra. Let

GSp,,(D) = {g € GLn(D) | g'wng = l(g)wn}
where g is the conjugation map on GL, (D) induced by the conjuga-
tion map on D. Let Gp(F) = GSps(D) x GSpy(D) and Hp(F) =

(GSpy(D) x GSp,(D))° = {(h1,ha) € GSpy(D) x GSp,(D) | I(h1) =
[(hy)} embeds into Gp(F) via the map

(s, ) = <(“ b ) € (GSpy(D) x CSpy(D))°

a
— (|0 O) ) € GSp4(D) x GSpy(D).
c
1 0 0 000 100 000
0o 1 0 00O 01 000O0O0
Set 1 = 0O 0 1 00O and 7! 001000
0 -1 -1 100 011100
-1 0 -1 010 101010
0 -1 0 001 010001

Proposition 3.1. The double cosets B(F)\G(F)/H(F') contain a unique
open orbit B(F)(n, I4)H(F). Here B(F) = Bg(F) x By(F).

Let H'(F) = {hy X hy € (GSpy X GSp,)° = H | hy € B4(F)} be a
subgroup of GSpg(F). Let X (F') = GSps(F')/Bs(F) be the flag variety
associated to GSpg(F'). We have a natural action of GSpg(F') on X (F)
which induces an action of H'(F) on X (F).

Let Ws = Span{w, w, wy, wy , wi,w} be the SlX dimensional sym-
plectic space defining GSpg where {w, wy, ws, wy , wi, wt} is the stan-
dard basis induced by Bg, i.e.

w = (1,0,0,0,0,0)", w; = (0,1,0,0,0,0)7,
Then X (F) is characterized by
X'(F) = {(v1,v2,v3) | (vi,v;) =0, v1,v2,v3 are linearly independent}.
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More specifically, X (F) = {Span{v:}, Span{vi,va}, Span{vy, vy, vs} |
(v1,v9,v3) € X'(F)}. The GSpg(F)-action is just

g- (U17U27U3) = (9U1;9U279U3>‘
Note that

n e (w, wi,we) = (w4 wi, wy +wh + wy, we + Wi+ wy).

Hence in order to prove the proposition, it is enough to prove the
following lemma.

Lemma 3.2. The H'(F)-action on X (F') contains a unique open orbit
represented by (w + wi, wy + w4+ wy, wy + wit + wy ).

Proof. First, we assume that (v, vs,v3) belongs to the Zariski open
subset such that

e v; has nonzero projection to the subspaces Span{w,w'} and
Span{w; };

e The projections of vy and v, to Span{w, w*} and Span{wy ,wi }
are linearly independent;

e The projections of vy, vy and vz to Span{ws, wy,wi} are lin-
early independent;

e The projections of v1, v and v3 to Span{w, w,wy } are linearly
independent.

Up to the H'(F)-action and because of the first condition we may
assume that v; = w + wi. Then by the second condition and since
(v1,v9) = 0, we may assume vy = w; + w + awy + bwy + cwi with

a,b,c € F and a # 0. Up to the action of an element
. t
dzag(Ig, (0 tz—vl) 712) € H/(F)7

we may assume that vy = w; + wh + wy + cwi. Note that such
an element fixes v;. Now let h be the element in H'(F') that fixes
w, Wi, wy, wy, wi and maps w to wt + cw. Then

hvy = vy, hvy = cvp + (w1 + wh + wy).

Hence we may assume that vy = wy + wt 4 wzl.

Finally, because (v, v9) = (w + wi, w; +wt 4+ w5 ) and by the third
condition, we may assume that v = ws + awi + bw; + cwy. Since
(v, v3) = (v9,v3) = 0, we have a = 1,b = 0. Hence vz = wy+wi +cws .
By the fourth condition, we know that ¢ # 0.

Now consider the element hy = diag(1,¢7',1,c71,1,¢71) € H'(F).
We have

—1 1 1
hovr = vy, hova = ¢ g, hovz = we + wy + wy.
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This proves the lemma. U

Now if we let Ng (resp. Nj) be the lower triangular unipotent sub-
group of GSpg (resp. GSp,) and we embed Ny into Ng via the embed-
ding of GSp, to GSpg. We also let Tg (resp. Ty) be the diagonal torus
of GSpg (resp. GSp,). The following lemma is a direct consequence of
the proof of the previous lemma.

Lemma 3.3. For all n € Ng(wOpr) and n' € Ny(wOp), we have
nnn’ S Bﬁ(F)nNG(’ZDOF)Tﬁ(OF>N/(WOF)

where N' is the lower triangular unipotent subgroup of GSp, via as a
subgroup of GSp.

We need a stronger result.
Lemma 3.4. For all n € Ng(wOpr) and n' € Ny(wOp), we have
nnn' € Ts(Or)N(wOr)nNe(wOp)Ts(Or )N (wOF).
Proof. The above lemma implies that
nnn’ € Ts(Op)Ne(Or)nNe(wOr)T65(Or) N'(wOp).

We just need to prove the element in Ng(Op) actually belongs to
Ns(wOp), which is equivalent to show that this element preserves the
sets Vi, Vs, Vs where

Vi = {(a1, ag, a3, as, ag, as)” | a; € OF, a; € wOp for all j # i}.
But this just follows from the fact that these three sets are fixed by
n, ’)7_1, TG(OF)7 NG(YDOF)N4(WOF), NG(WOF), N/(WOF)

This proves the lemma. U

The above lemma implies the following proposition which is Lemma
2.9 for the current case.

Proposition 3.5. For all n € Ng(wOpr) and n' € Ny(wOp), we have
(n,n')(n, 14) € T(Op)N(wOr)(n, 11) H(Or)

with B =TN.
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3.2. The computation. Let a; = €1 — 65,9 = €9 — €3, 03 = 2¢3 be
the simple roots of GSpg and o) = €] — ¢}, )y = 2¢}, be the simple roots
of GSp,. We want to compute the virtual weighted colors associated
to these simple roots. Set

1000 0 0 100 0 00
£ 100 0 0 010 0 00
0010 0 0 0z 1 0 00

() =109 901 0 ol “=@=]g00 1 0ol
0000 1 0 000 —x 10
0000 -2 1 000 0 01

100000
010000
u(m):001000
—a 002 100
000010
000001

We also let © the weights of the 32-dimensional representation Spin,®
Sping of GSpin,;(C) x GSpins(C). We can write it as

tey ey teg +e) + e

0 — (FAEEESy L (FAy

For a4, we have
(3.1)
(u*al (55)77’ ]4) = <b7 hil) ’ (777 [4) ’ (97 h)7 (b> hil) € B(F)7 (97 h) S H(F)

where
1 0 0 0 0 0
0 o % 0 & 0 o 0 ih
_001000h_0100
G U = T R B
o 0 0 0 1 0 o 0 0 1
Hixoooolfx
1 0 0 0 0 0
O z+41 0 O —z O
00 1 0 0 0
10 0 0 z+1 0 0
O 0 0 0 1 0
0O 0 0 0 0 =z+1
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This implies that (recall that 3y is defined by the equation (2.7)), also
note that the representation has trivial central character)

/ / / /
v _€el—extey —e+ e oV _ v _€1—ey—e3 e —E
o 2 2 b FPen 2 2

For a, we have have
(3.2)
(u_a2(l’)77, ]4) = (b’ h_1> ’ (777 14) ' (g’ h), (b7 h_l) S B(F>’ (g’ h) S H(F)

where
L0000 =
0 1 0 0 0 0 10 0 0
0o 01 %= 0 0 b= 01 %= 0
97l o oo L o o[""loo & ol
0 00 0 = 0 00 0 =
0O 00 O 0 1
l—2 0 0 0 T
0 1 0 0 0 0
b— 0 01—z —x 0 0
N 0 0 0 1 0 0
0 0 0 0 1—-z —z
0 0 0 0 0 1
This implies that
Y —e1+ey—es ef+ey v er+ex—e3  —e]—e
az = 2 9 927 Pa T 2 2

For a3, we have
(33) (u—aa (@Ua I4> = (gv h) ' (77’ 14) ’ (g_lv h_1)7 (97 h) S B(F> ﬂH(F)

where h = diag(1—z,1,1—2,1) and g = diag(1l,1—z,1,1—x,1,1—x).
This implies that

/ !/ / /
v _€er—extey —eptey oV _ v _ —eitextes e —e€

as 2 2 773 as 2 2

For o), we can reduce to the root ay (because the open orbit is
represented by the element (7, [;)) but we need to change u_,(z)n to
NU_a, (7)™ = nu_q,(—x). We have
(3.4)

(nu—tm(_x)? 14) = (b’ h_l)'(na ]4)'(97 h)? (b’ h_l) < B(F)v (gv h) S H(F)
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where
— 0 0 0 0 —
0 1 O 0 0 0 1 0 0 0
—x 1 —x
g=| 0 0 = 00, 0 = 0
0 0 O 1 0 0 |’ 0 0 1 0 |’
00 0 0 = 0 0o 0 0 =
0 0 O 0 0 1
1l—2z = 0 0 0 x
0 10 0 0 0
b— 0O 01 = 0 0
N 0 00 1—2 O 0
0 0 0 0 l—2 —x
0O 00 0 0 1
This implies that
v _ —eiteytes € —e N v _ €1~ €3~ €3 el — e,
oy T 9 + 9 » A 60/1_ 2 2

For o, we can reduce to the root a3 but we need to change u_q,(z)n
t0 NU_qy ()71 = Nu_n, (—2). We have
(3.5)

(Mo (=), La) = (g.h) - (., 1a) - (g7, h7Y), (9, h) € B(F) N H(F)

where h = diag(1+z,1,1+2z,1) and g = diag(1,1+z,1, 14,1, 1+2).
This implies that

/ / / /
v e —e+te —ejtey v  —e1te—e3 e tey
of = + , Qg = By = :

2 2 2 2
Remark 3.6. In this remark, we explain how to use the Luna diagram
to compute the virtual colors. We recall the following Luna diagram of

the model (GSpg X GSp,, (GSp, x GSp,)°) in Case (48) of [BP]:

';’;'O—Lo> O>_<(P

The middle row is the Dynkin diagram of G, from left to right we have
the simple Toots oy, afy, o, e, 3. For each simple root, there are two
colors associated to it (represented by the two o above and below the
simple root). There is a line connecting two colors if and only if they
are equal to each other. For o = ay,as, ol (resp. a = g, ) ), we use
BY to denote the color above (resp. below) a in the Luna diagram and
we use o — BY to denote the color below (resp. above) o in the Luna
diagram. The Luna diagram above implies that

V _ oV _ AV oav N AV N oV N AV N oV _ Vv
041_5043_ ady) a’l_a3 as) a;q Bo/l_al a1’ Ay af, = Fag:
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Combining the first three equations, we have
o) =B+ (&) = B) = (a5 — Bay) + (af = Ba,) = o +ag — 265,
This implies that

Vv Vv A% / !
v v v __0f fagz—ay  ep—extes  —ete

o1 Pag T oy 2 - 2 2
Combining with the last three equations, we have

—e1 + 62 + €3 6/1—6/2

V. o _ VoV
Ba’l_a?) ag T 9 + 2 ’
. _ Il
N_ Y, — Y — v _ Gt~ €e—€e3 € —&
al Oc’l_al ol 2 2 ’
/ /
N v v _ —ertex—e3 e te
aQ 0/2_ oy 2 2 ?
/ /
v _av _Gitea—e3  —e€ — 6
Y2 7 Pay = 2 2

This recovers the above computation of colors using matrix identities.

Proposition 3.7. O is consisting of the following 16 elements:

3.6
(el—l—)eg:teg teltel, eg—extes e te, eg—extes —el+e
2 2 ’ 2 2 2 2 ’
t(ep —exa—e3) € fte, —egtes—e3 € +é
2 2 2 2

Proof. By the computations of the virtual weighted colors above, we
know that ©7 is the smallest subset of © satisfies the following 6 con-
ditions:

e1tes—e3 | —€17€ ej—eates | —€1F€5 —eijdestes | €1-€5 e1—ea—eg
(1) { 2 + 2 2 + 2 ) 2 + 2 2 +
'31_'32 761+€2 e 4 € +62} c et.

)

(2) (@-i— ﬂ wa ) = {61 622+63 + *@'1;6'2’ 61—622—63 + eigeé}'
(3) OF — (OF Nw,,OF) = {ate=a | —6'12—6'2’ —evteazes | 5/1‘2*‘6'2}
) .
4 ot N O1) = {ei=cates —efites  —eitestes e1—¢h )
( ) ( + o +) {—61—12—62-1-6:— ‘3'12*6'27 61—622—63 +€/1*€2/2 }
(5) ©F = (07 Nuwa ©F) = {=orgases 4 ==, amgea 4 2=}
( ) _ (@-i— N wa2@+) — {61—622+€3 + *612+e27 —€1+262—€3 + 61262}‘

It is clear that the set in the statement satisfies these conditions. So
we just need to show that the set is the unique subset of © satisfying
these 6 conditions. Let ©" be another subset of © satisfies these 6
conditions. Then the set ©F N ©'" also satisfies these 6 conditions.
This implies that ©F — (T N ©") and O — (T N O'") are W-
invariant subsets of © (recall that W is the Weyl group of é) But
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the only W-invariant subsets of © are © and the empty set. Hence we
must have ©F = ©'". This proves the proposition. O

It is clear that O satisfies (2.3). So the last thing remains to prove
Lemma [2.14] for the current case.

Lemma 3.8. With the notation above, we have

! 1 —-2\2¢¢1 _ —4
2 ews(wh) = T = g~ LT,

Recall that cys(0) = e+ 17¢ 77 (0).

\
HaE¢'+ 1—e

Proof. Since the summation is independent of § (see Lemma [2.14)), we
set 0 = 5]13/ ?. The lemma follows from the following two claims:
(1) ews(wh) is zero unless w is the longest Weyl element.
(2) If w is the longest Weyl element, we have cyg(wf) = (1 —
~2)2 —4
¢ ) (1 —q¢)
The second claim is easy to prove so we will focus on the first one. Let

w = (s,s") € W so that cys(wh) is nonzero. Here s is a Weyl element
of GSpy and s’ is a Weyl element of GSp,. By abuse of language,

we can also view w = (s,s’) as a Weyl element of the dual group
GSpin,(C) x GSping(C). Then
(3.7) e (wh) = e 7 (0) £ ¢1%, 4V e O

The values of the modular character 5119{; ® on the weights

€1 tey+e3 ep+ex—e3 €1 —€ey3+e3 —€;+ex+€3 e —ex —e3

2 ’ 2 ’ 2 ’ 2 ’ 2 ’
—€1+e—€e3 —€ —exyte3 —€ —€ —¢€3
2 ’ 2 ’ 2

are equal to
A R U W VN

The values of the modular character 5]13/4 ® on the weights

/ / ! / / / / /
e t+ey, €5 —e —€e]t+e, —ep —e,

2 72 7 2 ’ 2
are equal to
P22, V2
Apply to the first eight weights in ©T, we know that
e1+ ey £ es e1+es+e3 —e; —eytes

e e
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1(61+e22:|:63 ) — {—61—262:te3 }

Since s is a Weyl element, we must have s~
This implies that

{s7'(e1),s M (e2)} = {—e1, —ea}, s(es) € {Fes).

If s7'(e;) = —eq,5 (e2) = —e; and s7'(e3) = e3, then s~! fixes
a—etes and M Combining with (3.7) and the fact that ©*
contains the following 7 elements

e —este3 € tey eg—estes —ej+ey, t(eg—ey—e3) € té
2 2 2 2 ’ 2 2 7

we know that

/ /
61:|:62 —e} + € el te, —e)—é€

s Ty (A2 Az

/ / / / / /
e} ey +e; +e;, —e] — e

—1
AED) LG Gy
It is easy to see that such an s’ does not exist, so we get a contradiction.
Similarly we can also get a contradiction when s™1(e;) = —eq, s71(es) =
—e1,5 Y (e3) = —ez or s7Y(ey) = —e1,5  (eg) = —e9, 57 (e3) = e3.
Now the only case left is when s7'(e;) = —ey, s ! (eg) = —ey and
s7!(e3) = —e3. In this case, we have s7'(aV) = —aV for all v €

{Fafeta} By the same argument as in the previous cases, we know
that

/ / / /
—e] ey e — e

2 2

/ /
elj:e2 —€] + €5

/1{
2

p=A

2

!/ / / /

2 ’ 2

/ /
e £ e
2

S )ed }

This implies that s"~'(¢}) = —e} and s~!(e}) = —e}. In particular
w = (s,5") is the longest Weyl element. This proves the lemma. O

To sum up, we have proved that the local relative character is equal
to

Ag(1) . L(1/2,7, px)
AH/ZG,H“') L(l,ﬂ',Ad)

L(1/2,m,Spin, ® Spiny)

= C(1)%¢(4)¢(6) L(1,7,Ad)

where 7 = 7 ® my is an unramified representation of GSpg(F') x
GSpy(F).
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4. THE MODEL (GL4 x GLg, GLy x GLy)

In this section, we compute the local relative character for the model
(GL4 x GLg, GLg x GLjy). We again closely follow four steps in Section
2.3.11

Let G = GLy x GLy and H = GLy x GLy embed into G via the
map (a,b) — (diag(a,b),b). Similarly, we can also define the quater-
nion version of this model. Let D/F be a quaternion algebra, and let
GD<F) = GLQ(D) X GLl(D) and HD(F) = GLl(D) X GLl(D) embed
into Gp via the map (a,b) — (diag(a,b),b).

We let ©® = 0, U O, U O3 with ©; being the weights of the repre-
sentation A? @ std of GL4(C) x GLy(C), ©, being the weights of the
standard representation of GL4(C) and O3 being the weights of the
dual of the standard representation of GL4(C). We can write ©; as

@1:{61+6j+6;€|1§Z<]§4,1§]€§2},

1 0 0 0 1 000
10 1 0 0 4 |0 100

Set n = 0 -1 1 0 and n— = 011 0l The proofs
-1 1 —-11 1 011

of the following two lemmas are similar to the (GSpg X GSp,, (GSp, %

GSp,)?) case, and we will skip them here.

Lemma 4.1. The double cosets B(F)\G(F)/H(F) contain a unique
open orbit B(F)(n, Is)H(F). Here B(F) = B4(F) x By(F) is the upper
triangular Borel subgroup.

Lemma 4.2. For all n € Ny(wOp) and n' € Ny(wOp), we have
(n,n")(n, I2) € T(Op)N(@Or)(n, 12)H(OF)
with B=TN.

Then we compute the colors for this case. Let ay = €1 — g9, =
€9 — €3, 3 = €3 — &4 be the simple roots of GL, and o = €] — &} be
the simple root of GLy. Set

10 00 1 000
o () = z 1 0 0 () = 0100
o 0010 ™™ 0z 1 0}~
0 001 0 001
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0
0
U—qag (£) = 1
x

o O O
oo = O
_o O O

We first study oy, we have
(4.1)
(U ()0, o) = (b, 1) - (n, 1) - (g, k), (b,h™") € B(F),(g,h) € H(F)

where
1 0 0 0
g= z+1  x+1 - h — x—i—l x+1> ,

0 0 =5 3H 1

0 0 O 1
r 0 0 0

y_ |0 e+1 0 0

0o 0 1 -z |

0 0 0 z+1
This implies that 8y = e; +es+ ey and of — ) = e1 + ey + €] (note

al
that the representation has trivial central character).
For ay, we have
(4.2)

(o (@), 1) = (b, 7") - (0, I2) - (9, 1), (b,h™") € B(F), (g, h) € H(F)

where L
T 0o Loy
g= b= <n ) ,
0 0 5 0 0
0 0 0 ﬁ
l—2 =x 0 0
- 0 1 0 0
- 0 01—z O
0o 0 0 11—z
This implies that 3y, = e; and o — (3, = —es.
For a3, we have
(4.3)

(o (@), I2) = (b, h7") - (0, I2) - (9, h), (b,h™") € B(F), (g, h) € H(F)

where

— 00 0 -2z 0 0 0
o ro 0o}, (1L 0Oy, _| 0 10 0
I=1to o1 o """ \o &=)"" 0o o1 o0

0 00 & 0 00 1—u
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This implies that 8y, = ey +e3 + ¢} and o — B, = e1 + e3 + ¢b.

For the root o’ on GL5, we can reduce to the root az on GL4 but we
need to change u_,, ()N to Nu_a,(—x). We have
(4.4)
(77“—043(_97)7 12) = (ba h_l)'(na 12)(97 h)v (ba h_l) € B(F)v (gv h) S H(F>

where
— = 0 0 l+z —z 0 0
o 1t oo}, (1 0oy, [0 10 0
9= lo o 1 o]""\0o&)" 1 0o 01 o0
0 0 0 0 0 0 l+u

This implies that Y, = es + e3 + €] and oY — BY, = €1 + €4 + €].
Proposition 4.3. ©F is consisting of the following 10 elements:
erteite;, 2 <i <3,1 < j <25 ertestel, eatestel; er, e, —e3, —€q.

Proof. By the computation of colors above, we know that ©F is the
smallest subset of © satisfying the following 5 conditions:

(1) 61+63+62,61+64+€1,€2+63+61,62, —e3 € OT.
(2) ©F — (6T N wal@J’) ={e1+e3+eyer+es+¢€)}
(3) OF — (0T Nw,,0T) = {ea, —e3}.

(4) ©F — (@+ﬂwa3@+) ={e; +e3+ €, ea+es+ei}.
(5) ©F = (0" Nwe©F) = {ex +es + e, e1 +eq+ €} )

It is clear that the set in the statement satisfies these conditions. So
we just need to show that the set is the unique subset of © satisfying
these conditions. The argument is exactly the same as the case (GSpg X
GSp,, (GSp, x GSp,)?) in Proposition . We will skip it here. O

It is clear that ©F satisfies (2.3)). The last thing remains to prove
Lemma [2.14] for the current case.

Lemma 4.4. With the notation above, we have

2 cws(wh) = Xy = emyee = L9 -

Proof. Since the summation is independent of 6, we set § = 5119/ ?. The
lemma follows from the following two claims:

(1) ews(wh) is zero unless w is the longest Weyl element.
(2) If w is the longest Weyl element, we have cyg(wf) = (1 —

¢ )1 —q?)?
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The second claim is easy to prove so we will focus on the first one. For
w = (s,8) € W =54 xSy, we know that cyg(wf) is nonzero if and
only if

(4.5) L= ¢ 0, 1= q720.0) 050 ry,

L= 20,008 01)s 1= a" 20500001y

are nonzero for 1 <7 < 4,2 < j <31 <k <2 where 6, = ¢*?,6, =
01 =q'12,05 =0y =q ' 05 =q 2

Using the four terms 1 — ¢~ %20, in ([£.5), we have s(1),s(2) €
{1,3,4}, s(3),s(4) € {1,2,4}. This implies that {s(1),s(2)} is equal
to {1,3} or {3,4}. If it is equal to {1, 3}, then 0,1)0s2) = ¢q. Hence
0s1)052)0% 1y oF Os1)052)0% (o) 18 equal to ¢'/2. This is a contradiction.
So we must have {s(1),s(2)} = {3,4}.

If s(1) = 3, then 0,1)0y) is equal to 1 or ¢ (depends on whether
5(3) = 2or s(3) = 1). In both cases, we have 05(1)65(3)9;,(1) or 85(1)98(3)6;,(2)

is equal to ¢'/2. This is a contradiction. So we must have s(1) = 4 and
s(2) = 3.
Now if 5(3) = 1, then 0y1)053) = 1, which implies that 95(1)95(3)9;,(1)

1/2  This is a contradiction. So we must

or 93(1)95(3)9;/(2) is equal to ¢

have s(3) =2 and s(4) = 1.
Finally, using the fact that 1 —¢~"/20,1)0)0% ) # 0 we know that

§'(1) = 2 and '(2) = 1. Hence w is the longest Weyl element. This

proves the lemma. O

To sum up, we have proved that the local relative character is equal
to

(1/2,7, A2 @ stdy) L(1/2, 71, stdy) L(1/2, 71, std} )
L(1,7,Ad)

where m = m; ® o is an unramified representation of GLy(F') x GLy(F).

B

5. THE MODEL (GLg, GLy x U)

In this section, we compute the local relative character for the model
(GLg, GLy x U). We closely follow the six steps in Section [2.5.1]
Let G = GL6, H = HO X U with

Hoy = {diag(h, h,h) | h € GLs},

I, X Z
U:{U<X7Y7X): 0 [2 Y |X7}/7Z€Mat2><2}'
0 0 I
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Let P = LU be the parabolic subgroup of G with L = {(hy, hs, h3) |
h; € GLy}. We define a generic character £ on U(F') tobe {(u(X,Y, 7)) =
Y(AMu(X,Y, Z))) where A(w(X,Y, Z)) = tr(X)+tr(Y). It is easy to see
that Hy is the stabilizer of this character and (G, H) is the Whittaker
induction of the trilinear GLy model (L, Hy, ). The model (G, H,§) is
the so called Ginzburg—Rallis model introduced by Ginzburg and Rallis
in |GRI.

We can also define the quaternion version of this model. Let D/F
be a quaternion algebra, and let Gp(F) = GL3(D), Hp = Hop X Up
with

Ho,p(F) = {diag(h,h,h) | h € GL1(D)},

1 X Z
Up(F)=|0 1 Y| |X,Y,Ze D}
00 1

Like the split case, we can define the character £p on Up(F') by replac-
ing the trace map of Matsyxo by the trace map of D.

0 0 I
Let wo = | 0 Iy 0 | be the Weyl element that sends U to its
I, 0 0

opposite. It is clear that the wy-conjugation map stabilizes L and fixes
Hy. We define the map a : GL; — Z to be

Cl(t) = (t]g, ]2, t_llg).
This clearly satisfies (2.15)). For the open Borel orbit, let

o = diag(I, (? é)(? (1)> ((1) i))

be the representative of the open Borel orbit for the model (L, Hy) as
in Section , and n = nowy. The relation has already been
verified in Section [2.3.2] This finishes the first three steps in Section
2.5.11

Now we compute the set of colors and also the set ©1. Let © be the
weights of the exterior cube representation of GLg(C). We can write it
as

®:{€l+€]+6k‘1§2<]<k§6}

Let a; = ¢; — €;41 be the simple roots for 1 < ¢ < 5. By the com-
putation of the trilinear GLy-model in Section and the discussion
in Section (in particular, Remark , we get the set of colors for
this case:

Vv
a1

v
a3

\
a1

v
as

\Y
=e1+es+e5 o) — = e1 + e3 + €g,

\Y
62+€3+€5, Qg — :€1+€3+€6,
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AV \ Vo
5a5—62+€3—|—65, a5 — a3—€1+€4—|—65.

Then we verify ([2.23]) for ay and ay.

For 9, let U— (a) = (xij)lgi,jg(ﬁ with Tiy = 1, T3o = Q and Tij = 0

for all the other (¢, 7). We have

I, 0 0 0 0
U_go(ap=m| 0 I X]|, X= (0 a) :
0 0 I

This proves (2.23)) for as.

For ay, let u_q,(a) = (2i;)1<ij<6 With z; = 1, 254 = @ and z;; = 0
for all the other (¢, 7). We have

L X 0 o
U_gy(ap=m|0 L 0], X= ( 0) .
0 0 I

This proves for ay. Next, we compute the set ©7.

Proposition 5.1. ©F is consisting of the following 10 elements:
e1+exte,e1+e3+ej,e1+eg+e5,6a+e3+ ey, + €3+ €5

where 3 <1 <6 and 4 < 5 < 6.

Proof. By the computations above, we know that ©F is the smallest

subset of O satisfying the following 5 conditions:

(1) e1+es+es,e1+e3+eg,ea+e3+e;5 €O,

(2) ©F — (0T Nw,,,©T) ={e; +eq+e5,e1 +e3+ es}
(3) OF — (Ot Nwa,©0") = {ea+e3+e5,e1 + €3+ €5}
(4) OF — (Ot Nw,,07) ={ea+e3+e5,e1 + €4 + €5}
(5) O©F is stable under w,, and w,,.

It is clear that the set in the statement satisfies these conditions. So
we just need to show that the set is the unique subset of © satisfying
these conditions. The argument is exactly the same as the case (GSpg x
GSpy, (GSpy x GSp,)°®) in Proposition [3.7 We will skip it here. O

It is clear that ©F satisfies (2.3)). The last thing remains to prove
Lemma [2.32] for the current case.

Lemma 5.2. With the notation above, we have

1 1 .
2 cwslwh) = g~ ~ )
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Proof. Recall that W = Sg is the permutation group of 6 variables.
The goal is to show that

-2

Z Hei+€j+€ke®+(1 - q_1/298(i)65(j)95(k)> =1—gq

Mi<ici<6(1 = Osiy/0s(5))

sESe

Here 6; are arbitrary variables satisfying the equation I1_ 6, = 1. We
define the subset O of ©F to be

Of ={e1teitej,er+estes,eatestes|2<i<3b<j<6}

It contains those weights in the A? ® stdsy representation of GL, x GLs.
We need a lemma.

Lemma 5.3. We embed Sy X Sy into Sg by letting Sy act on the first
four elements and Sy acts on the last two elements. Then

Z Hei+e]~+ek€®+(1 - q_1/29 6 J)es(k ) 1 q—2

$€52 %S5 H{(z,])|1<z<]<4 or 5<z<]<6}( s z)/e )

Proof. By the identity for the triple product in Section [2.3.2] we have
(here we embed Sy x Sy into Sy by letting the first Ss-copy act on the
first two elements and the second Ss-copy act on the last two elements)

=1 _q727

> i repcet (1= @200 05)0sr))
(1 — 95(1)/95(2))<1 - 85(3)/95(4))<1 - 88(5)/05(6))

where ©f = {e; +e3+e5,e1 +e3+ e, €1 + €4+ €35, €2 + €3+ e5}. Hence
in order to prove the lemma, it is enough to show that
Z (1 — q71/29 (9 95)(1 — qil/QQS(l 03(2)06)
H1<7,<2 3<g<4( s@)/0s))

s€859xS59x Sy

=1.

S€S4/SQ X So

This follows from an easy computation. O

Moo, tepeot(1=07 205085505
s€Ss Mi<icj<e(1-05(5)/0s(5))

By the lemma above, we have
is equal to
(1 - q_2) ) Z Hei+ej+eke®+ ®+(1 - q71/29 ] 0 ])es(k‘))

5€86/84% 52 icica 5<J<6( /Qs(g )

So it is enough to show that

Z Hei+eg+eke@+ @*(1 - 971/268(1' 0s(5)0s(k))

=1.
IMi<i<a 5<j<6( /9 )

(5.1)
SGSG/S4><52
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The set OF — OF isequal to {e; +¢; +e, | 1 <i<j<k <4} Itis
easy to see that the constant coefficient of the left hand side of
is equal to 1. So we just need to show that the ¢='/2, ¢, ¢7%/2, ¢72
coefficients are equal to 0. For this, we can replace the summation over
Se/Sy X Sy by the Summation over Sg, and we need to show that the
g V2 g7t q73/%, g %-coefficients of

Z I <icjanea(l — g7 205,05 051))
S Thai<as<g<e(1 =05 /0s)
are equal to 0. We can rewrite the function in the summation as
H1<z<]<k<4(1 —q 1/20 )9 @s(k)
hi<icas<i<e(l — Os0)/0s(s))
015,026 - Th<icj<rca(l = 72050057 0sr)

I cicas<j<e(Os() — Os(i))

0y 056) - i n<icj<a or s<i<i<er (Os) — Osi))

Mi<icj<e(0s() — Os(iy)
Th<icjen<a(l — q_l/Q‘gs(i)QS(j)QS(k))'

Since the denominator is (Sg,sgn)-invariant (sgn is the sign charac-
ter of Sg), we just need to show that the (S, sgn)-summation of the

q*1/2,q*1,q 3/2 , ¢ 2-coefficients of

(5.2) 8§06'H{(i,j)| 1<icj<dor s<i<j<6}(0j—0i) Th<icjcrca(1— ~1/29,0, 6k

are equal to 0. A direct Computation shows that 8§66H{(z,])| 1<i<j<4 or 5<i<j<6} <8j—
0;) is consisting of elements of the form

Hiefi, {al,ag,ag,a4} = {O, 1, 2,3}, {a5,a6} = {4,5}

Then any term H,-Hi appeared in the g~'/?-coefficient of - must
satisfy the condition {bs,bs} = {4,5}, and also satisfies at least one of
the following two conditions

e b, =4 for some 1 < i < 4;

o by =0b; forsome 1 <i<j <4
In both cases, we have b; = b; for some 7 # j. This implies that the
(S6, sgn)-summation of the g~'/?-coefficient is equal to 0.

Moreover, any term I1,6” appeared in the ¢—*, ¢%/2, ¢~ >-coefficients

of (5.2)) must satisfy the following two conditions

e b; € {4,5} for some 1 <i < 4;
[ ] {b5,b6} — {4, 5}
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This implies that b; = b; for some ¢ # j. This implies that the (Sg, sgn)-
summation of the ¢~ ¢3/2, ¢~2-coefficients are equal to 0. This fin-
ishes the proof of the lemma. O

To sum up, we have proved that the local relative character is equal

to
<<1><<3><<4>c<5><<6>%

where 7 is an unramified representation of GLg(F').

6. THE MODELS (GUg, GUy X U) AND (GUy x GU,, (GUy x GU,)Y)

6.1. The models. Let E = F(y/€) be a quadratic extension of F,
ne/r be the quadratic character associated to E, Ng/p (resp. trE/F)
be the norm map (resp. trace map), and x — Z be the Galois action
on E. Denote w, to be the longest Weyl element of GL,,. Define the
quasi-split even unitary similitude group GU,,,,(F) to be

(6.1) GUpn(F) = {g € GLy,(E): tgw2ng = l(g)wa2n}

where [(g) € F'* is the similitude factor of g.
We first define the model (GUg, GUy X U). Let G = GUjz3, and
P = LU be the standard parabolic subgroup of G with (¢* = ws'g ™~ ws)

L(F) :{m(g7h): ’ h |gEGL2<E)7 heGUl,l(‘F)}a
l(h)g*
L X Y
U(F):{U(X,Y): 12 X’ |X,Y€Mat2><2(E>,

I
X' = —wo'Xwy, wyY + Yws + X'wy X' = 0}.
Let & be a generic character of U(F') given by
E(u(X, V) = DA(X, Y))), (X, V) = trpp(tr(X)).
Then the stabilizer of £ under the adjoint action of L(F) is
H(F) := {m(h, h) | h € GU1(F)} = {diag(h, h,h) | h € GU,,(F)}.

Let H = Hy X U and we extend the character £ to H by making it
trivial on Hy. The model (G, H,§) is the analogue of the Ginzburg—
Rallis model in the previous section for unitary similitude group. We
can also define the quaternion (non quasi-split) version of this model
by letting Gp be the non quasi-split unitary similitude group (in the
archimedean case Gp = GUy»).
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Now we define the model (GUy x GUy, (GUy x GU;)Y). Let G =
GUQQ X GUl,l and H = (GUl,l X GULl)O = {(hl, hg) € GUl,l X GU171 ‘
[(h1) = l(ha)}. We can embed H into G via the map

a 0 b 0 b
(hl,hg) ceH— 10 h O ,hl) € G, hy = (C d) .
c 0 d

For the pure inner forms of this model, we use GUs g = GUj 5 to denote
the non quasi-split unitary similitude group of rank 2, and we use GUj;
to denote the non quasi-split unitary similitude group of rank 4 and
split rank 1 (we use these notation in order to be compatible with
the standard notation in the archimedean case). In the p-adic case,
the pure inner forms are (GUgs X GUsgyg, (GUgg x GUp2)?), (GUs; %
GU1,17 (GUl,l X GU270)0), (GU371 X GUZQ, (GU2,O X GULl)O). In the
archimedean case, there is an extra compact pure inner form (GUyq X
GUQ’O, (GUQ,O X GU270)0).

The goal of this section is to compute the local relative character
I(¢p) for these two models. As we mentioned in Section[2] the difference
between these models and all the other models is that since G is not
split, the root space maybe two-dimensional. In the next subsection, we
will prove two identities that will be used in our computation. Then we
will compute the relative character in the last two subsections. From
now on, we assume that E/F is unramified and € € Oj.

6.2. Two identities.

Lemma 6.1. Let n (resp. o) be a unitary unramified character of E*
(resp. F*). We have
(6.2)

2 2 o P =g H( =g 0’n(w))
ta /o ol e —om(etyve) dedy = S T ()

This integral is an analogy of (2.9)). We need this identity when the
root space is two dimensional. To compute it, we need the following
lemma.

2

Lemma 6.2. The equation 2> — ey?> — x = 0 has q nonzero solutions

in Fy x Fy.

Proof. The equation is equivalent to (2z — 1)? — ¢(2y)? = 1. So the
number of solutions is equal to |U;(F,)| = ¢ + 1. In particular, there
are ¢ nonzero solutions. O
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Now we prove Lemma . Set X = Op x Op UOf x Op. Then for
k > 0, we have
"X = {(z,y) € Op| mazx{|z|,ly]} = ¢~*}.

This implies that Op x Op is a disjoint union of w*X for k > 0. Also
for (z,y) € @* X, we have

x4+ yve € @O}
As a result, the left hand side of (6.2)) is equal to
1+Zq/ o(z? — ey? — x)n(x + yve) dr dy

k>0

—1—i—Zq2 2k/0w2 2? — w?ey? — )k (w) de dy

k>0

=1+ ZqQ ko / o(whs? — @hey? — 2) dz dy.
X

k>0
Now we study the integral f ko2 — whey? — 2)drdy. When
k > 0, by Theorem 10.2.1 in [I00], the integral is equal to
_ 1—q Yo(w)
2(((*=1)—(¢g—1 —1 (
¢ (=1 —=(¢-1)+(¢—-1) I~ o) )
_ 1—q¢Yo(w)
=202 1 ( .
g ((¢"—q+(q@—1) = o) )

When k£ = 0, by Theorem 10.2.1 in [I00] and the lemma above, the
integral is equal to

(- 1) - @)+ A
= (=) +(q—1) (1 — Z_i)aa(f:))) —q 2 +q (1 — Z_izg)-
This implies that the left hand side of is equal to
Lod)e®), I = 1)
U= fo‘?g - n;w)qg(cf -9+ - e

_ =g ) =g o"n(@))
(1 —g7to(@))(1 — ¢ 2on(w))
This proves Lemma [6.1] We also need the following identity.
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Lemma 6.3. We have (recall that ¢ = vy = 1o, — -1 _1O><)
_ 2z _
1+q2/ n(z+vey) [a* —ey’| l'w(ﬁ)dxdyzﬂl—q “n(w)).
02, e —¢&y
Proof. A direct computation shows that
2x ¢ —1
2 21
/Xﬁ(er\/Ey) ot — ey’ -@(m)dxdy: 7z
it R 1 = e el dway = -1
wX a? — ey? ¢
2z
/ n(x+Vey) - |2* — ey p(5——)dedy =0, k> 2.
wh X x? — ey
This proves the lemma. O

6.3. The computation for (GUg, GUs x U). In this subsection, we
compute the local relative character for the model (GUg, GUy x U).
First, all the arguments in Section still work for the current case,
the only exception is that the equation will become

(6.3) /G 0o = ﬁ%@m%(l)l

: / / ®(byh) dbdh.
H(F)/Zou(F) J B(F)

This is because in the Split case, |[T(F,)| = (¢—1)¥™®; for our current
model, |T(F,)| = (¢* — 1)*(q — 1) This implies that

A
I(¢o) = HX;?H)( /yelg )dk - /yeg

Now we compute the integral fK Voe(k)dk. Let ag =1 —e9, ap =
go — 3 and a3z = 2e3 be the simple roots of G(F). Note that the
root spaces of a; and as are two dimensional and the root space of

0 0 Iy
a3 is one dimensional. Let wg = | O o 0 | be the Weyl element
I, 0 0

that sends U to its opposite. It is clear that the wg-conjugation map
stabilizes L and fixes Hy. We define the map a : GL; — Z, to be

a(t) = (tly, I, t7'1y). This clearly satisfies (2.15)).
For the open Borel orbit, let

w2 )0 ) ()€ D)



STRONGLY TEMPERED SPHERICAL VARIETIES 61

be the representative of the open Borel orbit for the model (L, Hy), and
n = nowp. The relation can be easily verified as in the trilinear
GLs-model case in Section [2.3.2]

Now we compute the colors. Let © be the weights of the exterior
cube representation of G(C). We can write it as

The weight spaces of e;, —e; are two dimensional and the weight spaces

of % are one dimensional. More precisely, the exterior repre-
sentation of the L-group “GUjg of GUs is explicated in Section 3.1 [Z].
More details on the exterior cubic L-function of GUg are also given
there.

For ay, as in the split case, welet 1o, (0) = vol(Z)™" [ ) Vo (an)(P1(2)+

@y, (7)) dz. Since the root space is two dimensional, the same argu-
ment in the split case implies that

Lo,(0) = 1+¢° /O (0716 (e (2 +yva) ™)

Vi e(ug, (x4 yv/2) ") dz dy.

Here u_,, (a) = diag((cll ?) 1, <—1a (1)>) Meanwhile, a direct com-

putation shows that u_,, (z + y+/€)n is equal to

(0 1 e\ /L0
diog(57 1) (5 =) (G )
x+1

aingl (5 1) (5 20) (6 W)

: 1 x_y/e x  _ zta?—ye
Since TR T g T g and 1+ T = a e We have

L@ =1+ [ ol = e~ oo+ yvE) dedy
O%

where = 0(e®’) - (| |7 - 071) o Ng/r and o = 0(e%¥)|px - | |71/? with
oy = 2=%2=%. Combing with Lemma , we have

1 —q 2 ()
(1 — g=1/2e51(6))(1 — g~ 1/2e B (9))

: vV __ ei1—ez—e3 V _ Qv __ ei—eaztes
with 8y = <=5, o y, = e,

[,(0) =*(1—q")
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For as, as in the Ginzburg—Rallis model case, it is easy to see that

Pelu-asa)i) = oo+ ) ufe) = diagr, (1 1) (1 7)o

Then we have (note that the root space in this case is also 2-dimensional)

R R
o2 2?2 — ey
By Lemma |6.3] we know that
Loy (0) = ¢* - (1 — ¢ 72 (0)).
For a3, the root space is one dimensional, so we have the identity

Iy(6) =144 / (67162) (e ()0, (g0 )) da

Of

2
’ ) dx dy.

0

where u_, () = diag(Is, (x\l/g 1) , I5). On the other hand, u_,,(x)n

is equal to

dz‘ag((1 +66‘ﬁ 1__963\;/\_2) : (1 1__%2%6) ’ (1 _(fﬁ 1;"5{;@)) 1)

1 x+/€ 1 z+/€ 1 x+/€
; 1—22¢ 1—z22¢ 1—22¢ 1—x2¢ 1—x2¢ 1—22%€

X diag( e : R : N e ).
1—z2¢ 1—2x2%¢ 1—x2¢ 1—22%¢ 1—x2¢ 1—z2%¢

This implies that (note that all the characters are unramified and hence
their values at a + /€, a — /¢ are equal to 1 for all a € Op)

1—g e (0)
1— gt ()

with 3y, = ay — B, = es. Then we compute the set ©F.

Lemma 6.4. Let W = S3 x (Z/27)3 be the Weyl group of G and let
OT be the smallest subset of © satisfying the following two conditions:
(1) _81—522163763 €O,
(2) ©F — (0T Nw,,01) = {%}, 0" = w,,0T, Ot — (6T N
Way ©T) = {e3}.

Then we have ©F = {eq, ey, €3,

I,(0) =q+1=(qg+1):

e1testes
B F

Proof. 1t is clear that the set {ey, e, €3, %} satisfies both condi-
tions. So we just need to show that the set is the unique subset of ©
satisfying these conditions. The argument is exactly the same as the
case (GSpg X GSpy, (GSpy x GSp,)°) in Proposition 3.7 We will skip
it here. 0
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Now we decompose © as O;UO, and & = &,UP, where O, P, contain
the weights/roots whose weight spaces/root spaces are i dimensional.
More specifically,

:|:61 + €9 + €3

(I)l = {:EQ@Z}, (I)Q = {iel + €j}, @1 = { 5 },

@2 = {j:ei}, 1 S Z,] S 3,Z 7éj
Similarly, we can define ®; and ©; for i = 1,2. Set

Micpoeprl — g7

p0) =

Hie{lyg}nvvegjl — q-i/?@’y\/ .
Then it is clear that
. _ L(1/2,7,N3)
DA MBO)BO) = L2
The next lemma is an analogue of Lemma for the current case.

) \%
Hie{l’z}nwv€@+ 1—q 1/26"/
i

Lemma 6.5. Set cyys(0) = (0). Then

Wigq1,23 1 gt 1€
E Cws(we)
weW

is independent of 0 and is equal to ~——— =((2)' =1—-q¢ %

Abg/zgp M)
Proof. Our goal is to show that (6; are arbitrary variables)
Z w( H6197€2€{i1}(91 - q_lf V0105'05) - T, (1 — ¢7'6;)
(1 =51 =) = g2) (L = 0162)(1 — 0105)(1 — 0263)
1
A=)
is equal to ((2)™! = 1 — ¢~2. Multiplying both the denominator and

the numerator by 6 5/ ’0, 8/ 05 2 the denominator will be (W, sgn)-

invariant. Hence it is enough to show that

> san(w) - w (070,705 T (1 - g 7'6))

weW
'Hsl,sge{:l:l}(l - q71/2 V 919;1052))

is equal to 1 — ¢~? times

weWw 02

(6.4) 0772052721~ Dy = Dy - By
65 05 05

(]_ — 9102)(1 — 6103)(1 — 6203)(1 — 91)(1 — 92)(1 — 93)
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We need to study the ¢=*/2-coefficients (0 < ¢ < 10) of
070,705 ey ey (1= ¢ V2 V065657 - TTL (1 — '),

For k =1,3,5,7,9, the ¢ */?-coefficients are combinations of
071 05205%, ai,as € {0,—1, -2}, a3 € {1,0,—1}.

For any such triple (a1, a2, as), we either have a; = +a; for some i # j
or we have a; = 0 for some i. Hence the (W, sgn)-summation of the
q_k/z—coefﬁcients are all equal to 0 for £ =1,3,5,7,9.

The ¢°-coefficient is equal to 6] 5/ 20_3/ 203_ 1/2 , and the (¥, sgn)-summation
of it is equal to the denommator

The ¢ °-coefficient is equal to —(9?926’3, and the (W, sgn)-summation
of it is equal to zero since the powers of Ay and 63 are equal.

The ¢ !-coefficient is equal to

(91—3/292 1/26_1/2—1—9 3/29 3/291/2+0 3/26 3/29_1/2—1—8 3/26’2_3/29;3/2
4 5/29 1/2(9 1/2—1—9 3/29;5/29;1/2_9175/29273/29?1)/2.

The (W, sgn)-summation of all the terms except the last two are equal
to zero because either two of the powers are equal to other or two
of the powers are opposite to each other. The (W,sgn)-summation
of 07%%6,°%05 1% and 6;°%6,%%65/% are both equal to —1 times the
denominator (6.4). As a result, the (W,sgn)-summation of the ¢~'-
coefficient is equal to 0.

The ¢~ *-coefficient is equal to
gL 112971 | gU20=3/201/2 _ =1/2g-8/2g1/2 _ g1/2-1/20-1)2

1/2—-1/2,1/2 —1/2—-1/2,3/2 —1/2,1/251/2
—0,20, 120, — 070,203 — 00,70y,

The (W, sgn)-summation of all the terms is equal to zero because either
two of the powers are equal to other or two of the powers are opposite to
each other. As a result, the (W, sgn)-summation of the ¢~ *-coefficient
is equal to 0.

The ¢ 2-coefficient is equal to

g, 1/2(9 1/293 1/2 9;1/29;3/29?1)/2 _ 9;3/291/29;1/2 _ 973/2973/293/2
29, 3/2(9 1/291/2 9;3/20;1/29?:1/2 _ 9;3/292 3/201/2 s 5/29 1/291/2
_01—1/292 3/293 1/2 291—3/292—3/29;1/2 B 01—1/292 5/293—1/2
_91—1/292—3/203—3/2 _ 0;3/29;1/29;3/2 _ 9;3/20;5/29§/2_

The (W, sgn)-summation of all the terms except the last term is equal
to zero because either two of the powers are equal to other or two
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of the powers are opposite to each other. The (W, sgn)-summation of
3/2075/291/2 .
L 705,77705'7 is equal to the denominator (6.4)).
The ¢g3-coefficient is equal to

(9173/292 3/201/2+9 3/20 1/29 1/2+9 1/29 5/291/2+9 1/29 1/29 3/2

+20f1/2€;3/29 1/2+9 1/29 3/291/2+9 1/26 1/205 1/2—6}/26;3/20;1/2
3/2,-1/2,1/2 1/2,-1/291/2 3/21/2,1/2
10,320,201 4 20,20, 12037 + 07220370/
3/2,-1/23/2 1/2)1/2 )—1/2 1/2,-3/2 3/2
+O7320, 12032 012002012 g 2020502
The (W, sgn)-summation of all the terms is equal to zero because either
two of the powers are equal to other or two of the powers are opposite
to each other. Hence the (W, sgn)-summation of the ¢~3-coefficient is

equal to 0.
This finishes the proof of the lemma. O

Now by a very similar argument as in Section [2.3] our computation
of the colors and the lemma above implies that

| vmar= ey so)
Ho/Zg,u
There are only two differences
e The c-function function for GUyg is defined to be
1 — qflea\/
() = L5 0)
if the root space of « is one dimensional and is defined to be

1—qg 2
o(0) = ————(0
() = L2 0)
if the root space of « is two dimensional. This matches our
definition of 3(#) and ¢y (6) for this case.

e The volume of Iwahori subgroup of GUyg is equal to

Ag(1)¢(1) 7 ¢p(1)™ - g1,
This is why we get ¢(1)7!¢x(1)73 instead of ¢(1)7"*( for this
case.
This implies that

1(gg) = e

mC(l)_ Ce(1)™-B(0) - B(0)

o AG( ) . L(1/27 T, /\3)
a AHO/ZG,H<1) L(1, 7, Ad) ‘
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6.4. The computation for (GU, x GUy, (GUy x GU3)?%). In this sub-
section, we compute the local relative character for the model (GU, x
GU,, (GUy x GU,)%). We first study the open Borel orbit. Let B,
be the upper triangular Borel subgroup of GU,,,, and B = By X By be
a Borel subgroup of G. We write B = TN and let B = TN be the
opposite Borel subgroup.

1 0 0 O 1 0 0 0
Set n™! = _11 é (1) 8 and n = _11 (1) (1) 8 . The proofs
1 -1 11 1 1 -1 1

of the following two lemmas are similar to the (GSpg X GSp,, (GSp, X
GSp,)?) case, and we will skip them here.

Lemma 6.6. The double cosets B(F)\G(F)/H(F) contain a unique
open orbit B(F)(n, Is)H(F).

Lemma 6.7. For alln € N(wOp), we have
n(n, I2) € T(Op)N(@wOr)(n, 1;)H(OF).

Now all the arguments in Section still work for the current case,
the only exception is that the equation in Lemma will become

Ag(1) 301\ -2

6.5 B(g)dg = —9)_c (1731
(6.5 [, #0ra0= 5oy

- / / ®(byh) dbdh.

H(F)/Zg,u(F) JB(F)
This implies that

AH/ZGH(1
I0n) = = /y91 ) dk - /yg

Next we compute the colors. For this model, since the representation
m of G(F) is of trivial central character, the associated L-parameter
factors through the L-group of GU; x GUy/(Resp/rGL1)%, which
is a subgroup of the L-group of GUgs. The 20-dimensional represen-
tation px = A? ® stdy @ std, ® sth in this case is the restriction of
the 20 dimensional exterior cube representation of “GUg to L(GU, x
GUQ/(RGSE/FGLl)dmg). Let © be the weights of the representation
A% @ stdy @ stdy @ stdy. We can write it as

tey ey £e)
2
The weight spaces of ¢, +e; are two dimensional and the weight

0= , e, e | 1<i <2}

+eitest2e) . .
spaces of === are one dimensional.



STRONGLY TEMPERED SPHERICAL VARIETIES 67

Let ap = g1 — €9, 090 = 265 and o = 2¢ be the simple roots of G.
We can define [, I,, and I, as in the previous case. For a4, the root
space is two dimensional and we have the matrix identity

(6.6) (o, (z+yvE)n, I2) = (0,h7Y) - (n, I2) - (g, h)
with (b,h™') € B(F),(g,h) € H(F) where
1 0 0 0
I EERNGE! 0 ol . (1
ufod(x—i_y\/E)_ 0 O 1 O 7h_ O 1+$ )
0 0 —z+yye 1
l+2 0 0 0 s 0 Of 0
—y
| 0 L wE O [0 e 0
0 0 1+« O 0 0 0
1z
—yve 0 0 1 0 0 0 1

By the same argument as in the a; case in the previous subsection, we
have

1 —g “e*1 (0
[n,(0) = (1 —q ") 2 O
(1 _ q—1/265a1 (@))(1 _ q—1/2 oY =By, (5))
with 3y = — azee 622 % and o) — Vo= ai—eate; 622“1

For s, the root space is one dimensional and we have the matrix
identity

(67) (u—OéQ (x)na 12) = (b’ h_l) ’ (777 ]2) ’ (ga h)
with (b, h™Y) € B(F),(g,h) € H(F) where

1 0 00 1 0 0 T/
)= |0 L 000 1saE 0 0
W=y 22 101097 0 0 l+aye 0
0 0 01 T\/E 0 0 1
1—aye xe —xy/e —x\/E
1 0 1 —xy/e —x\/E
h = (14—[3\/5)[27 b= 1— 7222 0 0 1—1’26 —ZL‘2€—|—I‘\/§

0 0 0 1— /e
By the same argument as in the a3 case in the previous subsection (use

the fact that all the unramified characters have value 1 at a & /¢ for
a € Op), we have

1—q e (0)
(@) =qg+1=(qg+1)- i\

with By, = o — By, = ea.
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For o/, the root space is one dimensional and it can be reduced to
a2 but we need to change u_g,, ()1 to nu_a,(—x). We have the matrix
identity

(68) (nu—az(_x)a ]2) = (b> h_l) ' (777 12) ’ (97 h)
with (b,h™Y) € B(F),(g,h) € H(F) where
—a\/E
171;/5 0 0 1—z+/e
0 l+ave 2% 0 R
=1 o o —— o ['"T\ o L/
Ve 1—z/e 1+z\/e
—I\/E 1
1—z+/e 0 0 1—z+/e

—x+/€ /€ /€
1+zve 14zve 1+x/e
1—z\/e 0 /€
1+x/2 1+x/2
0 1—z\e  —x\/e
1+zve 14zy/e
0 0 0 1

By the same argument as in the a3 case in the previous subsection, we
have

o O =

1—q e (6)
L@ =q+1=(qg+1) - —91 ¢ Y
(0) = q (g+1)- = VAT
with Y, = o’V — Y, = €}. Then we compute the set OF.

Lemma 6.8. Let W = (Sy x (Z/27)?%) x (Z/27) be the Weyl group of
G and let ©F be the smallest subset of © satisfying the following two
conditions:

(1) 9=2%4 o) o € OF,
(2) OF — (07 Nwe,OF) = {9259} OF — (07 Nw,,07) = {ea},
Of — (0T Nw,OT) = {e}.

e1teste! }
5 .

— /
Then we have ©F = {ey, eq, €],

Proof. It is clear that the set {e;, e, €], elie;ie/l} satisfies the two con-

ditions. So we just need to show that the set is the unique subset of ©
satisfying these conditions. The argument is exactly the same as the
case (GSpg x GSp,, (GSp, x GSp,)°) in Proposition . We will skip
it here. U

Now as in the previous case, we decompose © as ©;U0, and ¢ = $;U
®, where ©;, ®; contain the weights/roots whose weight spaces/root
spaces are ¢ dimensional:

(1)1 = {:|:2€Z', :|:26/1}, CI)Q = {:t@l + 62}7
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+e; + eyt €
61 = {(— 2=, 0y = {ep kej), 1P <2.

Similarly, we can define ®; and O] for i = 1,2. Set

L A e
Hie{l,Q}H,y\/Egjrl — q*’i/Qe"/\/ .

po) =

Then it is clear that

C)2CE M)BO)BO) = %'

The next lemma is an analogue of Lemma for the current case.

. v
Hi€{1’2}n’yv€@2— 1—q 7«/26"/

v~ (0). Then

Lemma 6.9. Set cyys5(0) =

Hie{l,z}naeq)zr 1—ex

Z cws(wb)

weWw
1s independent of 0 and is equal to

! 1 —2)2 —1
m—(’() L, mee) = (1= ¢ )21 +¢7h).

Proof. Since H is reductive, Theorem 7.2.1 of [Sa] implies that the

summation is independent of . Now we let § = 5}3/ 2,

follows from the following two claims:

The lemma

(1) ews(wh) is zero unless w is the longest Weyl element.
(2) If w is the longest Weyl element, we have cpg(wf) = (1 —
)P (L+q7h).
The second claim is easy to prove so we will focus on the first one. Let
w=(s,s') € W with s € Sy x (Z/27)? and s’ € Z/27Z so that cys(wb)
1S nonzero.
The factor 1 —¢ e (wh) in the numerator of cyyg(w#) forces s’ to be
the longest Weyl element of GU; ;. The factors 1 —q e (wf), i = 1,2
in the numerator force s(e1), s(ez) € {£e1, —ea}. Hence there are four

possibilities of s: s(e1) = %ey, s(ez) = —eq or s(eg) = teq, s(ey) = —e.
If s(es) = teq,s(e1) = —eg or s(ey) = eq, s(ez) = —eq, one of the factors
1 — g /2erte2t€1 (wh) in the numerator is equal to 0. Hence we must
have s(e;) = —ey, s(eg) = —ea, i.e. w is the longest Weyl element. This
proves the lemma. O

As in the previous case, our computation of the colors and the lemma
above imply that

/ye yak = 20 gy 1)5 . 50),

Bl AH/ZGH
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This implies that

1(00) = )21 10) - 500

_ Ag(l) ) L(l/z,ﬂ',px)
AH/ZG,H(l) L<177T7Ad) .

7. THE MODEL (E;, PGLy x U)

In this section, we compute the local relative character of the model
(E7,PGLy x U). We closely follow the six steps in Section [2.5.1]

To define this model, we recall a description of the adjoint group of
type E7, following notation in [P20]. Let H3(H) be the degree three
central simple Jordan algebra over k. Here H is a quaternion algebra
over k and denote by N its norm map, tr the trace, and z > z* its
conjugation. More precisely, one may realize H3(H) as the vector space
of all 3 x 3 Hermitian symmetric matrices over H, which are of form

*

a zZ Yy
(7.1) J=1z2" b x|,
y xt c

where z,y,z € H and a,b,¢ € k. The Jordan algebra on Hj(H) is
defined by the composition J;0.Jy := %(J1J2+J2<]1) for Jy, Jy € H3(H),
where J;.J; and J,J; are under the matrix multiplications. The cubic
norm det on H3(H) is defined by

(7.2) det(J) := abc — aN(xz) — bN(y) — cN(z) + tr(zyz),
and the adjoint map f is
bc— N(x) y'z*—cz zx— by
J=| 2y —cz* ac— N(y) 2*y" —ax
2z —by yz—ar* ab— N(z)
Denote by (+,-,-) the symmetric trilinear form corresponding to the
cubic norm det with (A, A, A) = det(A) for A € Hz(H).
In [R97], Rumelhart constructed the Lie algebra g(Hs(H)) through
a Zs-grading. (Here we following the notation in [P20), Section 4.2].)
More precisely, define
(7.3) g=sbom’ e Vs Hy(H) @ Vy @ Hs(H)Y

where V3 and V3’ are the standard representation of sly and its dual
representation, respectively. Here let m® be the Lie algebra consisting
of all linear transformations ¢ on H3(H) such that

(d(21), 22, 23) + (21, O(22), 23) + (21, 22, P(23)) = 0
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for all 21, 29,23 € H3(H). And we refer the reader to Section 4.2.1 in
[P20] for the description of the Lie bracket on g(H3(H)).

Now, let us consider the identity component of the automorphism
group Aut(g(H3(H))), which is the quaternionic adjoint group of type
E7. In particular, if H is split, then it is the split adjoint group of FEx,
denoted by G. If H is not split, then we denote it by Gp, which is of
type Er4 and of k-rank 4.

Next, let us explicate this model for the split case. In this case, the
quaternion H is split and take H = My.o(F) with

= ( d _b) Ctr(r) —a+d, N(z) = det(z) = ad — be,

—c a
for z = (CCL Z) € H. We may identify Hs(H) to {A € Mgxe(F): A =
TA'T~1} as follows

a z y* aly, z y*

2 b x| = | 2 by x| € Msxe(F),

y x* c y x* cly

where I' = diag{ _01 (1) : _01 (1) : _01 (1) }. Then the cubic

norm det in on H3(H) is given by det(A) = Pf(I'A) where Pf
is the Pfaffian of the skew-symmetric matrices.

The Lie algebra m°(F') is isomorphic to slg(F) via the action of
slg(F) on H3(H) given by A - X := AX + XA* for X € H3(H) where
A* =T'AT~!. Consider V3 and V3’ in as the 3-dimensional vector
spaces of column vectors. The action of sl3(F') on V3 and V;' are given
by: for v € V3, 0 € V', and ¢ € sl3(F),

(7.4) 6(v) = ¢v and §(5) = —'¢5
where the products in the right hand sides are the matrix multiplica-
o A GLo(F), define &, € End(Hs(H)) by
P (X) := AXA* and P (X) := (A") XA
Write

(GL3xGLgxGL1)? = {(a,9,\) € GL3xGLgxGL; | A*Det(g)Det(a) = 1}
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where Det is the usual determinant of GL,. Define the map ¢ from
(GL3 x GLg x GL1)° to GL(g) as

L — apat

A gAg!

1R X = (av) @ AP 4(X)

5@ (a) 1 @ A ().
By a straightforward computation, we have the image of ¢ lies in G.
Moreover, the kernel of ¢ is ker v = {(wls, 215, (wz?)™1) | w, 2 € F*} =
F>* < B~

We take the unipotent subgroup U of Lie algebra u consisting of

elements

0 V1 Vs 02><2 X Yy
{ 0 vy ] € 5[3} () { Ogx2 z € 5[6}
0 O2x2

@le ® Hg(H) @ ng ® Hg(H) EB ng ® Hg(H)v,
where {wy, wy, w3} is the standard basis of F3. Then its corresponding
Levi subgroup L is given by the image

a g1
L({( b : g2 . A) | Det(g1)Det(go)Det(gs)abe = A3}).
¢ 93

For u € u, define the character £ of U by
E(exp(u)) = Y(vy + Tr(z) + Tr(z) +e)

where e is the entry corresponding to the simple root ag = es — eq, i.e.
the coefficient of wy ® (E55 + Egg). (E;; are the elementary matrices
in Mgye(F').) The stabilizer Hy of £ is given by the image

a g
t({( a , g ,\) | adDet(g) = 1, Det(g)*a*c = A\73})
c g

9
=u({(als, | g ], [aADet(g) = 1}),

g
which is isomorphic to PGLy(F). Let H = Hy x U and we extend the
character £ to H by making it trivial on Hy. The model (G, H,§) is
the Whittaker induction of the trilinear GLy model (L, Hy, ). We can
also define the quaternion (non-split) version of this model by letting
Gp be of type E;4. In the non-split case, Lp X Up is a minimal
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parabolic subgroup of Gp defined over F' and {p is a generic character
of Up. Then the stabilizer Hyp of {p in Lp is isomorphic to PD*.
Thus we obtain the quaternion (non-split) version (Gp, Hp,&p) with
HD = HO,D b UD~

Define the Weyl element wy of E7 by

wo: ¢ € sly — —@ € sls
A € slg— —A" € slg
vRX €V Hy—v® X eV, ® HY
SRy EVY @H{ — 7€ Va® Hg.

Then w2 = 1 and wy sends U to its opposite. It is clear that the
wp-conjugation map stabilizes L and fixes Hy. We define the map
a: GL; — Z to be

t tl,
a(t) = «( 1 , I ).
=t t
This clearly satisfies (2.15). For the open Borel orbit, let 79 = w7
where

be the representative of the open Borel orbit for the model (L, Hy) as
in Section , and n = nowy. The relation has already been
verified in Section [2.3.2] This finishes the first three steps in Section
251

Now we compute the set of colors and also the set ©1. Following the
notation in [B02], let oy = %(61 —1—58)—% ZZ:Q €, Qg = e1+eg and a1 =
g; —eg;_1 for 3 < i < 6 be the simple roots. Let © be the weights of
the 56-dimensional irreducible representation of E;(C), corresponding
to the 7-th fundamental weight w;, where w; = eg + %(eg —e7). We can
write it as

1
@:{:I:ei:izé(eg—@) |1<i<6}
18
U{§ izlaiei | #{i: a; =1} is even and a; = £1}.

By the computation of the trilinear GLy-model in Section and
the discussion in Section (in particular, Remark [2.28)), we get the
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set of colors for this case:
v _€eitex+es—es— e+ e

a7 2 )
v V_—61—€2—€3—|—€4—65+€6
057 - aq — 2 )
v_€1+62—63+€4+65—66
as 2
V. V_—61—€2—€3+64—65+€6
045 - as - 2 Y
v_€1+€2—€3+€4+€5—66
oy 2 )
v v €1 textez—e—e5+es
oy — By, = 5 .
Then we verify (2.23)) for ay, as, as and ag. Let
1
U—q,y (a’) = L( a 1 s, 1)7 U—qs <a> =Ild+a- adwz@(E5,5+E6,6)v’
1

U,_a4(&) = L(Ig, I6 + (ZE5,4, 1), u_%(a) = L([3, [6 + aEgyg, 1)
We have the following 4 identities
Uy (0)1) = Nti, (@), U—ay(@)7) = Ntay (@),

U—ay (a)n = nuoc4(_a)u63+€1(_a)v U—qg (a)ﬁ = 77“@.3—@4(—@)-
This proves (2.23)) for a1, as, ay and ag. In addition, we label the type
of each simple root in the following weighted Dynkin Diagram:

0 OZQ,T
0 2 0 2 2
O O O O O O

Oé7,T 016,(U7'(/)) Oé5,T 054,(U,’¢)) O[g,(U,@ZJ) 011,<U,'¢)

FiGUurRE 1. Weighted Dynkin Diagram of FE;

Note that this weighted Dynkin Diagram is associated to the spe-
cial nilpotent stable orbit of Balar-Carter label Eg. Its corresponding
unipotent stable orbit is the maximal unipotent orbit with a non-empty
intersection with the unipotent subgroup U.

Next, we compute the set ©%.
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Proposition 7.1. ©7 is consisting of the following 28 elements:

2?21 e — 2e; — 2e; — Z?Zl er + 2ey + 2ej

(7.5)

2 ’ 2 ’
(76) e1t+exte3tes+es+eg —€1+€2+€3+64+€5+€6—26k
' 2 ’ 2 ’
€g — €7
(7.7) Lem+ , for 1 <m <6,

where (i,7) € {(23), (24), (34), (25), (35), (45), (26), (36)}, 2 < k < 6
and (i',7") € {(56), (46)}.

Proof. By the computation of the colors, we know that ©1 is the small-
est subset of © satisfying the following 5 conditions:

(1) %(€1+62+63_64_65+66)7 %(_61_62_63+64_65+66)7 %(€1+
62—€3+€4+€5—66) cor.

(2) ©F — (0T Nwe,O0%) ={i(e1 +e2+e3—es—es5 +es),
ey —e3+e4—e5+¢eg)}

(3) OF — (O Nw,,0T) = {%(el +ey—e3+eq+e5—eg), %(—el -
€9 —e3+e4—e5 +66)}.

(4) OF — (0T Nwa,0) = {3(e1 +e2 —e3+es+e5 — eg), 2(er +
es+e3—es—e5+eg)t

(5) OF is stable under wea,, Way, Way and wy, .

(—e1—

N[ —=

It is clear that the set in the statement satisfies these conditions. So
we just need to show that the set is the unique subset of © satisfying
these conditions. The argument is exactly the same as the case (GSpg %
GSpy, (GSp, x GSp,)°) in Proposition 3.7 We will skip it here. O

It is clear that O satisfies . The last thing remains is to prove
Lemma for the current case. Denote by ©F the subset of ©F
consisting of the 12 weights in and ©F the complement of ©F
in ©F, that is, consisting of the 16 weights in and (7.6). Then
©5 corresponds to the weights of the GSO;5 model in Proposition .
We also decompose the set of positive roots T as & U & where
Py ={ejte | 1 <i<j <6} is the set of the roots contained in
GSO1s, and @ consists of the remaining positive roots, that is,

6 6
1
es — er, 5(68 —er+ Z(—l)“iei) with Zai odd.
i=1

i=1

Denote by W (Dg) the Wely group of the Levi subgroup of type Dg,
generated by the simple reflections w,, for i # 1. We embed W (Dg)
into the Weyl group W.
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Lemma 7.2. With the notation a,bove we have

1 -2
2 ews(uf) = r) =2 =0

Proof. By the identity for the GSO5 model case proved in Lemma 8.5
we have

[Lyeo: 1—g 2"
Z CWS(we) = Z ’i_[EG)“’+ s (wG)
acd

weW weW

=(1-q¢?- >

weW/W (D) HQE‘PT 1—e®

Hence it is enough to show that

Z 11 yveof l—q 2"
—_ eaV

weW/W (De) HaG‘DT 1—e

It is easy to see that the constant coefficient of the above summation

is equal to 1, so it is enough to show that all the ¢~/?-coefficients are

equal to 0 for 1 <7 < 12. We can replace the summation on W/W (Dg)

by the summation on W and rewrite the function inside the summation
(0; are arbitrary variables):

_1 \
[Lvcor 1— g b7
1 — e
l_L)zECDIr

\Y%

e Tlaeay 1 - e [Lyveor 1 — q‘ée”v( )
- e [[oear 1 — € v
17
2 176 —i -
97 Hi:Q 91' i H1§i<j§6(1 - ejei 1)(1 + 6j<9,;)

6 6
6. [T -1—0) J] a—ez e ")
1=2 =1

>~ a; odd

(w)

= w(

L0 = 000 =2 007
H1<z‘<j§6( _ejei )(1+9j0i)
where e?” (0 )—9 Hl N

Then the denominator becomes (W, sgn)-invariant, so it is enough to
show that the (W, sgn)—summation of the ¢~*/?-coefficient of

(7.8) Ha ST - 6,67 0+ 6,6)

1<i<j<6
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6
H(1 —1/2 9(9 )( —1/2 9—1075)
i=1
is equal to 0 for 1 < ¢ < 12. We need the following claim which follows
from the Weyl Denominator formula of type Dg.

Claim : the product

He T =007 (1+0;00) = Y sgn(w Hez b

weW (Dg)

is consisting of terms of the form
6

[16%. {larl. lazl. asl. laal. las]. las|} = {5.4.3,2,1,0}.
=1

Now we can study the coefficients of q*i/ 2 For the ¢~ 1/2

the above Clalm 1rnphes that any term Hl 1 07" appears in the ¢
coefficient of ( satisfies by = —8 and one of the following two con-
ditions

e b = £b; for some 1 < i # j < 6;

i {|b1|7 |b2|v |b3|v |b4|7 |b5|7 |b6|} = {674737 2, 170}‘

In the first case, by using a simple reflection in the Weyl group of
Dg, we know that the (I, sgn)-summation of the term is equal to 0. In
the second case, up to a Weyl element wy action, we may assume that
the term is of the form

-coefficient,
—1/2_

896 H 02 L _ —8(es— er)+30_,(i—1)e;+6ep (6)
However by changing variable 6! to 67, the weight

8(es —er) + Y (i — L)e; + beg
=2
is orthogonal to «y. This implies that the (W, sgn)-summation of the
gV 2—coefﬁclent is equal to 0.

For the ¢~ !-coefficient, the above claun implies that any term Hz 1 Qf
appears in the ¢~ —coeﬁiment of (7.8) satisfies b; = 2 S and one of the
following two conditions

e b = £b; for some 1 < i # j < 6;
o {|b1], b2, |bs], |bal, |b5|, |b6|} = {6,5,3,2,1,0} or {5,4,3,2,1,0}.

In the first case, by using a simple reflection in the Weyl group of
Dg, we know that the (W, sgn)-summation of the term is equal to 0. In
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the second case, up to a Weyl element wy action, we may assume that
the term is of the form
e—%(68—67)+22§:2(i—1)6i (0)
or
@_%(58_37)4‘2?:2(2'—1)61'4-595-&-666 (9)
By changing variable 67! — 67, the weight
6
(es —er)+ Y (i —1)e;

=2

15
2

is orthogonal to «y. And the weight

4
15
wm(?(eS - 67) + E (Z - 1)@' + 505 + 666)
=2

1
= 8(es —e7) + 5(61 + e + 3eg + Hey + 9es + 11eg)

is orthogonal to . This implies that the (W, sgn)-summation of the
g !-coefficient is equal to 0.

For the ¢ 3/?-coefficient, the above claim implies that any term
1, 6% appears in the ¢~'/?~coefficient of satisfies by = —7 and
one of the following two conditions

e b = £b; for some 1 <17 # j < 6;
i {|b1|7 |b2|7 |b3|7 |b4|7 |b5|7 |b6|} = {6747 3,2, 17 0} or {67 574a 27 17 0}

In the first case, by using a simple reflection in the Weyl group of
Dg, we know that the (W, sgn)-summation of the term is equal to 0. In
the second case, up to a Weyl element wy action, we may assume that
the term is of the form

6_7(68_67)+Z?:2(i_1)5i+666 ()

or
6_7(68—67)4-2?:2 (i—l)e¢+2‘;’:4 ie; (0) '

By changing variable 67 to 6, the weight

5
We, (T(eg — e7) + Z(Z — 1)e; + 6ep)
=2
15

1
= 7(68 — 67) —|— 5(61 —f- €9 —|— 363 + 564 —f- 765 —I— 1166)

is orthogonal to e; — e1; and the weight

3 5
WeasWa, (T(es — e7) + Z(z —1)e; + Z ie;)
i=2 i=4
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= 8(68 —67) + e2 + €3 +3€4+4€5+5€6

is orthogonal to e; — eo. This implies that the (W, sgn)-summation of
the ¢—3/2-coefficient is equal to 0.

For the g~2-coefficient, the above claim implies that any term H::1 Gf
appears in the ¢~ /?-coefficient of satisfies by = —% and one of
the following two conditions

e b = £b; for some 1 < i # j < 6;
[} {|b1|, |b2|, |b3|, |b4|, |b5|, |b6|} = {5,4, 3, 2, 1, 0}, {6, 5, 3, 2, ]., 0} or
{6,5,4,3,1,0}.

In the first case, by using a simple reflection in the Weyl group of
Dg, we know that the (I, sgn)-summation of the term is equal to 0. In
the second case, up to a Weyl element wy action, we may assume that
the term is of the form

e~ 5 (es—en+Tis(i-Dei ().
6—%(es—e7)+z?:2(i—1)ei+2?:5 ie; (0>7
or
6_%(38—67)4'624‘2?:3 ie; (0)
By changing variable 67 to 6, the weight

Wor (— (e — e) + 3 (i = 1)es)

2 ,
=2

1
= 7(68 — 67) + 5(61 + es + 363 + 564 + 765 + 966)

is orthogonal to ey — e1; the weight
4

6
13 . .
waSwal(?(eg —e7) + 22 (i —1)e; + EB ie;)
15
= ?(eg —e7) + ey + e3 + 2e4 + des + Heg
is orthogonal to ez — ey; the weight

6
13 ‘
w%wal(?(es —e7)+ e+ g ie;)
i=3

1
= 8(68 — 67) + 5(—61 + 362 + 363 + 564 + 765 + 966

is orthogonal to e3 — eo. This implies that the (W, sgn)-summation of
the ¢~ 2-coefficient is equal to 0.
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For the ¢ °/?-coefficient, the above claim implies that any term
1, 6% appears in the ¢~/?-coefficient of satisfies by = —6 and
one of the following two conditions

o b = £b; for some 1 < i # j < 6;
i {|bl‘> ’b2‘> ’b3‘> ’b4‘> ’b5‘> ’bG‘} = {6747 37 2, 17 0}? {67 574a 27 1> 0}7
or {6,5,4,3,2,0}.

In the first case, by using a simple reflection in the Weyl group of
Dg, we know that the (W, sgn)-summation of the term is equal to 0. In
the second case, up to a Weyl element wy action, we may assume that
the term is of the form

676(68767)+Z?=2(i71)€i+666 (9)7

6*6(68*67)+Z?:2(ifl)eﬂrZ?ﬂ; ie; (9)

or
e~ Sles—en)t iy iei (g,

By changing variable 67 to 6, under the action of w,,, we have

Wa,(0,1,2,3,4,6,—6,6) = (1,0,1,2,3,5,=7,7)
3 11579 1515
1,2,4,5,6,—6,6) = (2, —=, =, >, =, =, —— =

wOé1<O7 7 ) 75767 676) (27 2727272’27 27 2)
Wa, (0,2,3,4,5,6,—6,6) = (2,0,1,2,3,4, -8, 8).

Here (by,bs,...,bs) corresponds the weight Ele b;e;. In particular we
have b; = £b; for some 1 < ¢ # j < 6 which is just the first case. This
implies that the (W, sgn)-summation of the ¢~/2-coefficient is equal to
0.

For the ¢~3-coefficient, the above claim implies that any term H::1 Gf
appears in the ¢~ /?-coefficient of satisfies by = —% and one of
the following two conditions

e b = £b; for some 1 < i # j <6.
[ ) {|b1|, |b2|, |b3|, |b4|, |b5|, |b6|} is equal to

{5,4,3,2,1,0}, {6,5,3,2,1,0}, {6,5,4,3,1,0}, or {6,5,4,3,2,1}.

In the first case, by using a simple reflection in the Weyl group of
Dg, we know that the (W, sgn)-summation of the term is equal to 0. In
the second case, up to a Weyl element wy action, we may assume that
the term is of the form

67%(68767)4’2?:2(7;71)67; (9)7

6—171(68—87)+Z?:2(i—1)6i+2?:5 ie; (0)

Y

6_%(68—67)4'624'2?:3 ie; (Q)

)



STRONGLY TEMPERED SPHERICAL VARIETIES 81

or
6_71(68 67)+Z7, 2 Ze'L (0)

By changing variable 67" to 6, under the action of w,,, we have

11 11 13 13
1,0,1,2,3,4, —

11 11 3 11379

e, (0,1,2,3,4,5, —

(0.1,2,3.5,6, — o~ -2 L2 7.7
War ( 3= Gy 00
11 11 15 15
o (0.1.3.4, 2.-1,1,2,3.4,—
way(0,1,3,4,5,6,——, =) = (2, 3,4, =55
11 11 15 15

W, (1,2,3,4,5,6, ——, —) = (3,0,1,2,3,4, —

272 272 2 )
After the action of w,,, we have b; = £b; for some 1 <7 # j < 6 which
is just the first case. This implies that the (W, sgn)-summation of the
q 3-coefficient is equal to 0.

Due to symmetry, the remaining ¢~ */?-coefficients for 7 < i < 12
are vanishing by similar arguments and we omit the details here. This
finishes the proof of the lemma. 0

To sum up, we have proved that the local relative character is equal

to

OIS0 AT

where 7 is an unramified representation of F;(F).

8. THE REMAINING MODELS

In this section, we will compute the local relative characters for the
remaining 4 models in Table [[ The computations are very similar to
the cases in the previous sections.

8.1. The model (GSp,,, GLyxU). In this subsection, we compute the
local relative character for the model (GSp, o, GLg x U). For simplicity,
define

/
GSpy, = {g € GLan | 'g.J3,9 = 1(9)J3,}, where J;, = (5] JZSQ) :
2

Note that the skew-symmetric matrix J3, is different with Jy, when
n > 1 in Section and Jo, = Jj. We use J), here to simplify the
definition and computation. Let G = GSp,,, H = Hy x U with

Hy = {diag(h, h, h,det(h)h*,det(h)h*) | h € GLy, h* = Jy'h~ ' (J5) '}
= {diag(h, h,h,h,h)| h € GLy}
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and U be the unipotent radical of the standard parabolic subgroup
P = LU of G where

L= {(hl, hg, hg, det(hy,)h;, det(hg)hi) | hl S GLQ}
We define a generic character £ on U(F) to be {(u) = ¥(A(u)) where

ILh X x x %
0 L Y % x
AMu) =tr(X)+tr(Y), u=|0 0 L * =«
0 0 0 Iy =

0 0 0 0 I

It is easy to see that Hy is the stabilizer of this character and (G, H)
is the Whittaker induction of the trilinear GLy-model (L, Hy, &).

We can also define the quaternion version of this model. Let D/F be
a quaternion algebra, and let Gp(F') = GSp;(D) (the group GSp,,(D)
has been defined in Section 3.1), Hp = Hy p x Up with

Hop(F) = {diag(h,h,h,h,h) | h € GLy(D), h* = h~'}

and Up is the unipotent radical of the standard parabolic subgroup
Pp = LpUp of Gp where

Lp(F) = {(hy, ha, hs, Npr(hs)h3, Npyr(hs)h?) | hi € GLy(D)}.

Here Np,p : GL1(D) — F* is the norm map and & — Z is the conjuga-
tion map on the quaternion algebra. Like the split case, we can define
the character £p on Up(F) by replacing the trace map of Mataxs by
the trace map of D.
0 0 0 0 I
0 0 0 ILb O
Letwo= |0 0 I 0 0 | bethe Weyl element that sends U to
0 I, 0 0 O
IL 0 0 0 O
its opposite. It is clear that the wy-conjugation map stabilizes L and
fixes Hy. We define the map a : GL; — Z}, to be

a(t) = diag(t* Iy, tly, I, 5, t21y).
This clearly satisfies the equation ([2.15]). For the open Borel orbit, let

. 0 1 0 1 11 0 1
nozdlag(-[% (1 O))(l O> <O 1>a<1 0)7_12)

be the representative of the open Borel orbit for the model (L, Hy) as

in Section [2.3.2) and n = nowy. The relation (2.20)) has already been
verified in Section [2.3.2] This finishes the first three steps in Section

2511
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Now we compute the set of colors and also the set ©F. Let © be
the weights of the 32-dimensional representation Spin;; of GSpiny, (C).
We can write it as
:|:€1:|:62:i:€3:|:64j:€5

2 b

Let a; = €; — €441, 1 < i < 4 and a5 = 2¢; be the simple roots of
GSpyg. By the computation of the trilinear GLy-model in Section [2.3.2]
and the discussion in Section (in particular, Remark , we have

0={

v_€1—62—€3+64+65 v V_61—€2+63—€4—65
a1 2 ,CY]__ a1 2 Y
v_—€1+62+€3—€4+65 v v_61—€2+€3—€4—65
ag 9 ,053_ ag 2 )
v _ —eitetes—este v _ei—e—eztestes
as 2 ) 5 az 2

By a similar argument as in the Ginzburg-Rallis model case in Section
5, we can also verify (2.23)) for the roots ay and ay4. Next, we compute
the set ©F.

Proposition 8.1. ©F is consisting of the following 16 elements:
e1t+eytestestes eg—estegtestes e —ey—es3+e4+e;
2 ’ 2 ’ 2 ’
—e;testes+estes —ep+eg+e3—eq+ 65
2 ’ 2 '
Proof. By the computation of the colors, we know that ©% is the small-

est subset of O satisfying the following 5 conditions:
e1—ez—e3+este e1—extes—eqg—e —e1+estes—este +
(1) 1—€e2— 23 41€5 1—€2 23 4— 5 1+e2 23 41es @

Y

(2) ot — (@+ﬂwa1@+) _ {61 eQ 623+64+657 e1— 62+63 €4—€s

(3) @+ (@+ ﬂwa @+) _ {el 82+e3 e4— e5 —61+62+63 64+€5}

(4) @+ (@+ N w, @+) _ {e1 eg— 63+6‘4+€5 —61+€2+63 €4+65}
5

(5) ©7 is stable under w,, and wa4

It is clear that the set in the statement satisfies these conditions. So
we just need to show that the set is the unique subset of © satisfying
these conditions. The argument is exactly the same as the case (GSpg x
GSpy, (GSp, x GSp,)°) in Proposition 3.7 We will skip it here. O

It is clear that O* satisfies (2.3). The last thing remains is to prove
Lemma [2.32] for the current case. For ¢ = 1,2, we decompose O as
O U O3 with ©F consisting of the following 10 elements:

€1+62+€3:i:€4:|:€5 61+€2+€3+€4:|:65—26i
2 ’ 2

,1<i<3
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and ©F consisting of the remaining 6 elements. Then ©F corresponds
to the weights in Lemma (here we view GL4 X GLgy ~ GL4 x GSp,
as a standard Levi subgroup of GSp,,). Decompose the set of positive
roots @ as @ U &5 where &5 = {e; — €;,2¢5 | 1 <1i < j < 4} is the
set of the positive roots contained in GL; x GSp, and ®] contains the
remaining positive roots. We also embed the Weyl group S; x S5 of
GL4 X GL2 into W.

Lemma 8.2. With the notation above, we have

1 1 _2
2 ewslwd) = g T~ )

Proof. By the identity in Lemma 5.3 we have

Z CWS(UJQ) _ Z nyVeG)Jr 1— q_ie'Y (we)

_ paV
weW weW Haec1>+1 €

=(1-¢7)-

_1 Vv
5 M=o

wEW/S4xS2
Hence it is enough to show that

—~—(wd) = 1.
wWEW /Sy xS ooy 1 =€

It is easy to see that the constant coefficient of the above summation
is equal to 1, so it is enough to show that all the ¢~/?-coefficients are
equal to 0 for 1 < ¢ < 10. Like in the previous cases, we can replace
the summation on W/S; x Sy by the summation on W. We also need
vae(—)f 1—q_%eWV

to rewrite the function inside the summation i —
s
ozEtI)l

(wh) as
(here 0, are arbitrary variables):

w((l —q V% \/0,0,050,405) - T12_ (1 — ¢ V/%- —v91926339495)
<icjes(1 = 0:0;) - T (1 — 0)ITL, (1 — 6;/05)

-1/2 Vv 9102Q39485))

Tlyeien(1 —
1< §4( q 0295
w0 (1—q Y% \/6,0,050,05) - 112_, (1 — ¢ /% —019296.30495)
= W K

H1§i<j§5(0i_1 —0; — Hj_l + 9]‘) ) H?:l(ei_l/z - 93/2)

V010,050,05

Tieioa(l — a2
1§z§4( q 0,05 ))
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where

= 0772052200 (0717 — 65%)  Thcicyca (67 — 677,

Then the denominator becomes (W), sgn)-invariant, so it is enough to
show that the (W, sgn)-summation of the ¢~*/2-coefficient of

(81) %+ (1—q 2 \/0:03050305) - T0_, (1 — g2 . YP1020abbs,

0;
o YOOI,
0;05
is equal to 0 for 1 < ¢ < 10. The product * consists of terms of the
form

I2_,0%, {a1,as,as,a4} = {—9/2,-7/2,-5/2,-3/2}, a5 = +1/2.
Then the ¢~°-coefficients consisting of terms of the form
1,607, {by, by, bs, by} = {—3/2,-1/2,1/2,3/2}, bs = +1/2.

The (W, sgn)-summation of these terms is equal to 0 since b; = £b; for
some i # j.
For the ¢~ /2-coefficient, any term II°_ 0% appearing in it must sat-
isfy one of the following two conditions
e b =b; for some 1 <1i<j <4
° {bl, bs, bs, b4} = {—5, -3, -2, —]_} or {—4, -3, -2, —]_} and b5 €
{-1,1,0}.
In either case, we have b; = =+b; for some 7 # j or bs = 0. This
implies that the (W, sgn)-summation of the g /2-coefficient is equal
to 0. Similarly, we can also show that the (W, sgn)-summation of the
q9?-coefficient is equal to 0.
For the ¢~ !-coefficient, any term H?:lﬁf “ appearing in it must satisfy
one of the following two conditions
e b =b; for some 1 <1i < j <4
o {by,by,b3,b4} is equal to {—11/2,—-5/2,-3/2,—1/2},
{=9/2,-7/2,-3/2,—-1/2}, {-9/2,-5/2, =3/2,—1/2}
or {—7/2,—5/2,—3/2,—1/2}, and bs € {£3/2,£1/2}.
In either case, we have b; = +b; for some ¢ # j. This implies that
the (W, sgn)-summation of the ¢ !-coefficient is equal to 0. Similarly,
we can also show that the (W, sgn)-summation of the ¢~*-coefficient is
equal to 0.
For the ¢~3/-coefficient, any term II°_ 0% appearing in it must sat-
isfy one of the following two conditions
o by =0b; for some 1 <i < j <4

Th<i<a(1—¢q
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e b; =0 for some 1 <3 <4,

This implies that the (W,sgn)-summation of the g~%/2-coefficient is
equal to 0. Similarly, we can also show that the (W, sgn)-summation
of the ¢~ 7/?-coefficient is equal to 0.

For the ¢~2-coefficient, any term H?:lﬁf" appearing in it must satisfy
one of the following two conditions

o b; = =+b; for some 1 <i < j <4
o {by,b9,b3,b4} is equal to {—7/2,-5/2,-3/2,—1/2},
{—9/2,-5/2,-3/2,1/2}, or {—7/2,-5/2, —3/2,1/2}, and bs €
{£5/2,43/2,£1/2}.
In either case, we have b; = +£b; for some ¢ # j. This implies that
the (W, sgn)-summation of the g~ 2-coefficient is equal to 0. Similarly,
we can also show that the (W, sgn)-summation of the ¢~3-coefficient is
equal to 0.
For the ¢=5/?-coefficient, any term IT7_, 6% appearing in it must sat-
isfy one of the following two conditions
o b; = =+b; for some 1 <i < j <4
e b; =0 for some 1 <34 <4,

This implies that the (W,sgn)-summation of the g~*/2-coefficient is
equal to 0. This finishes the proof of the lemma. O

To sum up, we have proved that the local relative character is equal

to
§<1>c<4><<6>c<8><<1o>L“L/(?l’7;Sﬂ)m)

where 7 is an unramified representation of GSp,,(F).

8.2. The model (GSpg X GLg, GLy x U). In this subsection, we com-
pute the local relative character for the model (GSpg X GLg, GLy x U).
Let G = GSpg x GLo, H = Hy x U with

Hy = {diag(h, h,h) x h | h € GLy}

and U be the unipotent radical of the standard parabolic subgroup
P = LU of GSp, embedded into G via the map u — (u, Iy) where

L= {(hl, hQ,det(hg)hTN hz € GLQ}
We define a generic character £ on U(F) to be £(u) = ¥(A(u)) where
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The model (G, H) is the Whittaker induction of the trilinear GLo-
model (L x GLg, Hy,&). As in the previous case, we can also define the
quaternion version of this model.

0 0 I
Let wo = | 0 Iy 0 | be the Weyl element that sends U to its
I, 0 O

opposite. It is clear that the wy-conjugation map stabilizes L and fixes
H,. We define the map a : GL; — Z}, to be

a(t) = d@ag(tlg, Ig,t_112> X _[2.
This clearly satisfies the equation (2.15)). For the open Borel orbit, let

) 01 01 1 1
no = diag(Is, (1 O> LY <1 0> <0 1>

be the representative of the open Borel orbit for the model (LxGLy, Hy)

as in Section [2.3.2] and n = nowy. The relation (2.20) has already been
verified in Section [2.3.2] This finishes the first three steps in Section

2511

Let © be the weights of the 16-dimensional representation Spin, x
stdy of GSpin;(C) x GLy(C). We can write it as
:l:@l + €9 + €3

2

Let a; = ¢; —€j31, 1 < i < 2 and a3 = 2e3 be the simple roots of
GSpg and o = €| — &}, be the simple root of GLy. By the computation
of the trilinear GLy,-model in Section and the discussion in Section
2.5 (in particular, Remark [2.28), we have

0= +e|1<i<2).

e — ey — €3 €1 — ey + €3

Vo _ / Vv \VA /

a1 2 +€17 &1_ [ 2 627

v _ —etetes , v v _ €1 —extes /

S €1, O3 = Doy = - 9 €9,
—€1 + €2+ e3 €1 — ey — €3

Vo ! v Vo /

ﬁa/—#—l—el,a _/Ba/—T+€1-

By a similar argument as in the Ginzburg—Rallis model case in Section
5, we can also verify for the root ay. The proof of the following
proposition follows from a similar but easier argument as the model
(GSpyg, GLg x U) in the previous subsection. The only difference is to
replace the identity in Lemma [5.3] by the identity in Section for
the trilinear GLy-model. We will skip it here.

Proposition 8.3. O©F is consisting of the following 8 elements:

e1 + ey + e3 y e1 —ex + e3 y +(e; —eg — e3)
2 v 2 v 2

+e), 1<i<2,
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The set O satisfies (2.3)). Moreover, we have

1 1 i
wezwcws(we) - Atio/zen (1) - @) =(1-q7).

To sum up, we have proved that the local relative character is equal
to

C(l)C(2)C(4)C(6)L(1/2,L7z,1871:inA7d>>< stdy)

where 7 is an unramified representation of GSpg(F) x GLy(F).

8.3. The model (GSO3, GLy x U). In this subsection, we compute
the local relative character for the model (GSO;9, GLy x U). There
are two models in this case (corresponding to the two Siegel para-
bolic subgroups) and they are differed by the outer automorphism of
GSO;2. Each of them corresponds to one of the Half-Spin L-function
of GSpin;,(C). We will only compute the local relative character of

one of the models, the other one can be computed just by applying
0 —1

the outer automorphism to the first one. Let J, = 1 0 ) Set
0 0 0 J;
Ly,= (—J’ 02) and Ly, = 0 Lyp—a 0 ]. Define
2 —-J; 0 0

GSO4n = {g € GL4n ‘ gtL4ng = l(g)L4n}
Let G = GSOlg, H = HQ x U with
Ho = diag(h, h,h,h,h,h) | h € GLy}

and U be the unipotent radical of the standard parabolic subgroup
P = LU of G with (h* = Jth=1(J)™1)

L= {dzag(hl, hQ, hg, th;,th;,th;) | hz € GLQ,t S GLl}
We define a generic character £ on U(F) to be {(u) = ¥ (A(u)) where

Ih X x *x x x
0 ILb Y x x «x
Au) = tr(X) +tr(Y) +tr(Z), u = 0 0 0 I, * =
0 0 0 0 I, =
0O 0 0 0 0 I

It is easy to see that Hj is the stabilizer of this character and (G, H)
is the Whittaker induction of the trilinear GLy-model (L, Hy, §).
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We can also define the quaternion version of this model. Let D/F
be a quaternion algebra, and let

GSO24(D) = {g € GLon(D) | 'gJ2wrg = 1(9) T3, }-
Let GD(F) = GSOG(D), HD = H07D X UD with
Hop(F) = {diag(h, b, h.h. b, h) | h € GLy(D)}

and Up be the unipotent radical of the standard parabolic subgroup
Pp = LpUp of Gp where (h* = hil)

Lp(F) = {(h1, he, hs, th}, thi, thi)| h; € GLi(D),t € GLy(F)}.

Here x — Z is the conjugation map on the quaternion algebra. Like
the split case, we can define the character £p on Up(F) by replacing
the trace map of Matsys by the trace map of D.

0O 0 0 0 0 I
0 0 0 L O
0 0 I, 0 O
0 Ib 0 0 O
I, 0 0 0 O

I, 0 0 0 0 O
U to its opposite. It is clear that the wy-conjugation map stabilizes L
and fixes Hy. We define the map a : GL; — Z}, to be

a(t) = diag(t312, t2]2, t]g, ]2, t_IIQ, t_QIQ),

This clearly satisfies the second identity of the equation (2.15)). Al-
though it does not satisfy the first equation of (2.15)), but the differ-
ence between a(t)™! and w; 'a(t)wy belongs to the center so all the
arguments in Section still work (because all the characters are un-
ramified). For the open Borel orbit, let

=t (3 3) (09 1) (% D) (0 )

be the representative of the open Borel orbit for the model (L, Hy) as

in Section [2.3.2) and 1 = nowy. The relation (2.20) has already been
verified in Section [2.3.2] This finishes the first three steps in Section

2511
Now we compute the set of colors and also the set ©F. Let © be
the weights of the 32-dimensional Half-Spin representation HSpin,, of
GSpin4(C) given by
:t61:|:62:|:€3:|:64:|:€5:t€6
0=/{ 5
Let a; = ¢, — €541, 1 <1 <5 and ag = €5 + €6 be the simple roots
of GSO12. By the computation of the trilinear GLso-model in Section

Let wy = be the Weyl element that sends

o O OO

| — appears odd times}.
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and the discussion in Section [2.5| (in particular, Remark , We

have
v _€l—ey—eztestes— e

(51 2 )

v v €1 —exyt+eg—eg—e5+ €6
Oél— C!1: 2 )
v_—61+€2+63—64+€5—66
a3 2 )

V v €1 — €y +e3—e4 —e5+ €4
Of3_ (13: 2 bl
v_—€1+€2+€3—€4+€5—€6
as 2 I
v V_€1—€2—€3+€4+€5—66
Ol s — 5 .

By a similar argument as in the Ginzburg-Rallis model case in Sec-
tion 5, we can also verify (12.23)) for the roots s, ay and ag. Next, we
compute the set ©F,

Proposition 8.4. ©F is consisting of the following 16 elements:
e1+es+es+es+es+eg— 2¢
2 )
—61—62—63—64—65—€6+26i+2€j+26k
2
with 1 <1 <6 and (1,7, k) belongs to the set

{(123), (124), (125), (126), (134), (135), (136), (145), (234), (235)}.

Proof. By the computation of the colors, we know that ©% is the small-

est subset of O satisfying the following 5 conditions:
(1) e1—62—€3;€4+65—66

—ei1testes—estes—esg ei1—eztez—es—estep c @-‘r

’ 2 ’ 2 :
+ + +) _ fei—ezx—estestes—es €1—eates3—es—es+tee

(2) ©F = (0" Nwe,67) ={ 5 : 5 ).
+ + +) _ fei—eatez—es—es+es —eiteates—estes—ep

(3) ©F — (6T Nw,,01) =1 5 , s }.
+ + +) — fei1—ea—e3testes—es —eitestes—estes—es

(4) S _(@ ﬂths@ )_{ 2 ) 2 }
+ .

(5) ©F is stable under wq,, wa, and we,.

It is clear that the set in the proposition satisfies these conditions. So
we just need to show that the set is the unique subset of © satisfying
these conditions. The argument is exactly the same as the case (GSpg x

GSpy, (GSpy x GSp,)°) in Proposition [3.7 We will skip it here. O

It is clear that ©T satisfies (2.3)). The last thing remains to prove
Lemma for the current case. Let ©F (resp. ©F) be the subset of
OT consisting of elements of the form

61+€2+€3+€4+€5+66—2€l
2
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and let ©F be the subset of ©F consisting of elements of the form

el+62+€3+64+65+e6_26i_2€j_2ek
5 .
Then ©F corresponds to the weights of the Ginzburg-Rallis model

discussed in Section [f], We also decompose the set of positive roots &+
as @ U ®F where

is the set of the roots contained in GLg and ®; contains the remaining
positive roots. We also embed the Weyl group S of GLg into the Weyl
group W.

Lemma 8.5. With the notation above, we have

1 B 1 2
2 awslwd) = gy = 7y~

Proof. By the identity for the Ginzburg—Rallis model case proved in
Lemma [5.2 we have

0 v€®+ qiéewv 9
> cwstun) = 3 e Lo g

weWw weWw

_1 v
V€®+ 1 - q 26’y

(1-— ! .
- Z 1_[ae<1>1+ 1—e ()

wEW/SG

Hence it is enough to show that

v 11— q_%ewv
> e () =

1 — e
weW/ S Haeq’f

It is easy to see that the constant coefficient of the above summation
is equal to 1, so it is enough to show that all the ¢~*/?-coefficients are
equal to 0 for 1 < < 6. Like in the previous cases, we can replace the
summation on W/Sg by the summation on W. We also need to rewrite
the function inside the summation (6; are arbitrary variables):

A | 1 s )
wl) =
) H1<7,<_7<6( (0 0, ))
Mciyeqw(f; ' = 07") - T (1 — g 1/ - (V020 )
M<icjzew(®; " —0; — 07" +0;)
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Then the denominator becomes (W, sgn)-invariant, so it is enough to
show that the (W, sgn)-summation of the ¢~*/2-coefficient of

e 000500505
—q . 9—)
is equal to 0 for 1 < i < 6. The product Ili<;cj<¢(6; ' — 0;") consists
of terms of the form
H?:ﬂg?i; {ab G2, Az, 4, G5, aﬁ} - {_57 _4-7 _37 _27 _]-7 0}
Then any term IT¢_ 6% appearing in the ¢~'/?-coefficient of (8.2)

(2
must satisfy one of the following two conditions

(82) Micicj<e(0; ' —60;1) - 119, (1

e b; = b; for some 7 # j.
b {blu b27 b37 b47 b57 bﬁ} = {_11/27 _7/27 _5/27 _3/27 _1/27 1/2}
In either case, we have b, = £b; for some ¢ # j. This implies that the
(W, sgn)-summation of the ¢g~'/?-coefficient is equal to 0.
For the ¢~ !-coefficient, any term H?Zlef © appearing in it must satisfy
one of the following two conditions
e b; = b, for some 7 # j.
L {bla b27 b3> b47 b57 b6} = {_57 _47 _27 _17 07 1}
In either case, we have b, = £b; for some ¢ # j. This implies that the
(W, sgn)-summation of the ¢~ !-coefficient is equal to 0.
For the ¢=3/?-coefficient, any term ITS_, 6% appearing in it must sat-
isfy one of the following two conditions
e b; = b, for some 7 # j.
L {bla b27 b37 b47 bSa bG} = {_9/27 _7/27 _5/27 _1/2a 1/2a 3/2}
In either case, we have b; = £b; for some ¢ # j. This implies that the
(W, sgn)-summation of the ¢~%/?-coefficient is equal to 0.
For the ¢~ 2-coefficient, any term H?zlefi appearing in it must satisfy
one of the following two conditions
e b; = b; for some 7 # j.
hd {bla b2a b37 b47 b57 bﬁ} = {_47 _37 _27 _17 ]-a 2}
In either case, we have b, = £b; for some 7 # j. This implies that the
(W, sgn)-summation of the ¢~ %-coefficient is equal to 0.
For the ¢~%/?-coefficient, any term H?Zlﬁfi appearing in it must sat-
isfy one of the following two conditions
e b; = b; for some 7 # j.
[ ] {bl, bg, bg, b4, b5, b6} - {—7/2, —5/2, —3/2, —1/2, 1/2, 5/2}
In either case, we have b, = £b; for some ¢ # j. This implies that the
(W, sgn)-summation of the ¢g~%/?-coefficient is equal to 0.
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Finally, the ¢—3-coefficients consisting of terms of the form
H?:10$i7 {bh b27 b37 b4) b57 bﬁ} = {_37 _27 _17 07 ]-7 2}

The (W, sgn)-summation of these terms is equal to 0. This finishes the
proof of the lemma. O

To sum up, we have proved that the local relative character is equal

to
C(ec(67 e o) EI T I

where 7 is an unramified representation of GSO15(F).

8.4. The model (GSOg x GLg, GLy x U). In this subsection, we com-
pute the local relative character for the model (GSOg x GLy, GLy X U).
Like the previous case, there are two models in this case and they are
differed by the outer automorphism of GSOg. Each of them corre-
sponds to one of the Half-Spin L-function of GSping(C). We will only
compute the local relative character of one of the models, the other one
can be computed just by applying the outer automorphism to the first
one.

Let G = GSOg X GLQ, H = H() x U with
Ho = {diag(h,h,h,h) x h | h € GL}

and U be the unipotent radical of the standard parabolic subgroup
P = LU of GSOg (we embed U into G via the map u +— u X I) where

L = {diag(hy, ha, th},thy)| h; € GLa,t € GL;}.
We define a generic character £ on U(F) to be £(u) = 1(A(u)) where

[2 X x *

B |0 L Y «x
AMu) =tr(X) +tr(Y), u= 0 0 I, x
0 0 0 I

The model (G, H) is the Whittaker induction of the trilinear GLo-
model (L x GLs, Hy,&). Similarly we can also define the quaternion
algebra version of this model.

0 0 0 I
0 0 I, 0

Let wy = 0 I, 0 0 x Iy be the Weyl element that sends U
I, 0 0 O

to its opposite. It is clear that the wy-conjugation map stabilizes L and
fixes Hy. We define the map a : GL; — Zp, as

a(t) = diag(t2]2, t]g, 127t_112) X Is.
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This clearly satisfies the second identity of the equation (2.15)). Al-
though it does not satisfy the first equation of ({2.15)), but the differ-
ence between a(t)~! and w; 'a(t)wy belongs to the center so all the
arguments in Section still work. For the open Borel orbit, let

. 0 1 0 1 0 1\ (1 1
o ::d2“9(12’<1 0) a (1 o) f2) (1 0) (0 1)

be the representative of the open Borel orbit for the model (L, Hy) as
in Section [2.3.2) and 1 = nywy. The relation has already been
verified in Section [2.3.2] This finishes the first three steps in Section
251

Now we compute the set of colors and also the set ©F. Let © be
the weights of the 16-dimensional Half-Spin representation HSpin,, of
GSpin,4(C) given by
:|:61:|:62:|:63:t64

2

Let oy = ¢; — €441, 1 < i <3 and a4 = €3+ &4 be the simple roots of
GSOg and o = €| — &), be the simple root of GL,. By the computation
of the trilinear GL,-model in Section and the discussion in Section

2.5 (in particular, Remark , we have
V v €] — €zt 63— ey

=1

+ € | — appears even times, i € {1,2}}.

v _61—62—63+€4

/ _ /
o T 9 te, ap — Py, = 5 + €,
V_—€1+€2—|—€3—€4 , v V_€1—62+€3—64 ’
az = 9 €1, O3 = Pay = 9 + €y,
V_—€1—|—62+63—64 , N V_€1_€2_€3+64 /

By = 5 +ey, o =B = 5 + €.

By a similar argument as in the Ginzburg-Rallis model case in Section
5, we can also verify ([2.23)) for the roots as and ay. The next propo-
sition computes the set ©1 and proves Lemma for the current
case.

Proposition 8.6. ©F is consisting of the following 8 elements:
€1+€2:|:(€3+€4) 6/ 61—€2+€3—€4 6,
2 79 2 7
+(eg —eg — €3+ €e4)
2

te,1<i<.

Moreover, we have

1 1 .
2 cwslwd) = g T~ )
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Proof. The proof follows from a similar but easier argument as the
(GSO12,GLy x U) model case in the previous subsection. The only
difference is that we need to use Lemma [5.3] instead of Lemma[5.2l We
will skip the details here. 0]

To sum up, we have proved that the local relative character is equal

to
C(1)2<(2)C(4)2C(6)L(l/Q,Zi{iplzz)x stdy)

where 7 is an unramified representation of GSOg(F) x GLy(F).

9. LOCAL MULTIPLICITY

In this section we will study the multiplicity for the models in Table[]
Let F be a local field of characteristic 0, (G, H) be one of the models in
Table[1] and ¢ be the character of H(F) defined in the previous sections
(note that ¢ is trivial in the reductive case). Let m be an irreducible
admissible representation of G(F') whose central character is trivial on
Za u(F). Recall that the multiplicity is defined by

m(m) = dim Homg(p (7, §).

Similarly, if F' # C, let D/F be the unique quaternion algebra (or
D € HY(F,H/Zg ) if we are in the case of Model 2 of Table [1)), and
let (Gp, Hp,&p) be the pure inner form of the model (G, H, ) defined
in the previous sections. Let mp be an irreducible representation of
Gp(F) whose central character is trivial on Zg,, g, (F). We can also
define the multiplicity m(7p) = dim(Homp, ) (7p,Ep)).

In this section, we will prove a geometric multiplicity formula of
m(7m) and m(wp) in terms of the Harish-Chandra character. Then by
using the geometric multiplicity formula, together with the character
identity in the local Langlands correspondence, we will show that for
all the tempered L-packets, the summation of the multiplicities is equal
to 1 and the unique distinguished element in the packet corresponds to
a character of the component group. The proof of all the results in this
section is very similar to the Gan—Gross—Prasad model case ([W10],
[W12], [B15]) and the Ginzburg-Rallis model case ([Wanl5|, [Wanl6],
[Wanl17], [WZ]) since similar to the Gan—Gross—Prasad model and the
Ginzburg—Rallis model, all the models in Table[l|are strongly tempered
without Type N root and has a unique open Borel orbit.

In Section [9.1] we will recall the local Langlands conjecture. In
Section 9.2 we will study the reductive models in Table[l|and in Section
[9.3] we will study the non-reductive models.



96 CHEN WAN AND LEI ZHANG

9.1. The local Langlands conjecture. In this subsection we recall
the local Langlands conjecture in Conjecture E of [K]. Let G be a quasi-
split reductive group defined over F' and let {G,| a € H*(F,G)} be the
set of pure inner forms of G. Let Il temp(Ga) be the set of irreducible
tempered representations of G (F'). The local Langlands conjecture
states that Une 1 (5,G)irr temp(Ga) is a disjoint union of finite sets (i.e.
the local tempered Vogan L-packets)

Uslly
where ¢ runs over all the tempered L-parameters of G and Il =
UaeHl(F7G')H¢(Ga) consists of a finite number of tempered represen-

tations with I1,(Ga) C iy temp(Ga) such that the following conditions
hold.

e There is a unique generic element in I14(G) with respect to any
Whittaker datum of G. )

e For given Whittaker datum, there is a bijection between Sy, the
set of irreducible representations of the component group Sy =
Z|Zy (Zy is the centralizer of I'm(¢) in () of the Langlands
parameter ¢, and II, (denoted by m <+ x) such that

— the trivial character of S, corresponds to the unique generic
element of II,(G) with respect to the given Whittaker da-
tum.

—for a € H'(F,G), the distribution character 6, c,) =
Zwen¢(ca) dim(x )0 is stable. Moreover, ¢(Ga)01,(c.) i
the transfer of r,(q) where 1(G,) is the Kottwitz sign.

— endoscopic identity.

We will not discuss the endoscopic identity of the local Langlands
conjecture here since we don’t need to use it in this paper, we refer
the reader to [K| for more details. In order to prove the multiplicity
one of the L-packet for the models in Table [I| we need to assume that
the local Langlands conjecture holds for the groups associated to the
models. Note that for the group G in Model 3 and Model 6-10 of Table
, the component group Sy is not necessarily abelian.

9.2. The reductive case. In this subsection we assume that H is
reductive. The model (GLy x GLg, GLy x GLj) has already been con-
sidered in the previous paper [PWZ19], so we will focus on the mod-
els (G,H) = (GSpg x GSp,, (GSp, x GSp,)?) and (G, H) = (GUy x
GUQ, (GU2 X GU2)0>

Let m be an irreducible representation of G(F) with trivial central
character and 6, be its Harish-Chandra character. For a semisimple
element z € G(F), we let ¢, (x) be the average of the regular germs of
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6, at x. We refer the reader to Section 4.5 of [B15] for the definition of
regular germs. We want to emphasize that ¢, () is zero if the centralizer
G is not quasi-split. We also let T;(G) be a set of representatives of
maximal elliptic tori of G(F).

9.2.1. The model (GSpg x GSpy, (GSp, x GSp,)?). We first consider the
case (G, H) = (GSpg x GSp,, (GSp, x GSp,)?). For T' € T (GSp,), let

T = {(t1, -+ ,t,) € T"| det(t;) = det(t;) for all 1 < i,j < n}.

We use ¢, to denote the diagonal embedding from T' to T™°. We can
view T™Y as a maximal elliptic torus of GSp,,,. Moreover, up to GSp,,,-
conjugation, there are 2" '-many different embeddings from 7™ to
GSpZn

When n = 2, there are two embeddings vs, v/ from T*° to GSp, and
the centralizer of the image of vy 015 (resp. v4o1y) in GSp, is the quasi-
split (resp. non quasi-split) unitary similitude group of 3 variables.
Meanwhile, there are four embeddings from T3° to (GSp, x GSp,)°
and there are two of them whose projection to GSp, coincide with vs.
Compose with the embedding from (GSp,x GSp,)° to GSpg, we get two
embeddings v3, vz from T%° to GSps. The centralizers of the image
of v3; 013 (i = 1,2) in GSpy are the two unitary similitude groups of 3
variables (both of them are quasi-split). We use vy; = (v3;0t3) X (15012)
to denote the two embeddings from 7" to G (both factor through H). It
is easy to see that these two embeddings are conjugated to each other
in H and we will use v to denote one of it.

Meanwhile, let ¢1 o be the embedding from T2%° to T3° given by

(tla t?) — (tla t27 t2)

Among the four embeddings from 73° to GSpg, there are two of them
(denoted by vg,14) such that the centralizers in GSpy of the image of
v3 0119 and V4 o 115 are quasi-split (the centralizer is the quasi-split
unitary similitude group of 2 variables times an abelian group). Up to
conjugation we may assume that v, v4 factor through (GSp, x GSp,)°
and the projection to GSp, of v3 0115 (resp. v} 0 119) is equal to v
(resp. vh). We use

Vr2,01 = (I/g o LLQ) X Vg, V12,09 = (I/é o L1,2) X I/é

to denote the two embeddings from T%*° to G. Both of them factor
through H.

Finally, for 71, Ty € Te;(GSp,) with T # T5 (this will not happen in
the archimedean case), let

(Ty x T)? = {(t1,t2) € Ty x Ty| det(t;) = det(t)}.
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Similarly, we can define (T} x Ty x T3)°. Up to conjugation, there
is only one embedding from (77 x T3)° to GSp, and there are two
embeddings from (T} x Ty x T5)° to GSpg. The two embeddings induce
two embeddings from (7} x T3)° to GSpg (we first map T, diagonally
into (Ty x Ty)Y). We let v be the embedding such that the centralizer
of its image is quasi-split (the centralizer of the other embedding is not
quasi-split). Up to conjugation we may assume that v factors through
(GSp, x GSp,)? and its projection to GSp, is equal to the embedding
from (7T; x T3)° to GSp,. This gives us an embedding vr, 7, from
(Ty x T3)° to G that factors through H.

Define the geometric multiplicity to be (D(-) is the Weyl determi-
nant)

*

Mgeom (1) = ex(1)+ Y |W(H,T)\1/ D ()6, (t) dt

TEeTou(H) T(F)/Za,u(F)

TP NN B L O O

TeTe11(GSpy) (F)/ZGL2 (F)

+ Z / DH(VTM,z‘(t))CN(VTz,o,i(t)) dt)

T29(F)/ZaL, (F)

1 *
o>
T1,T2€7'6”(GSp2),T17£T2 (Tl XTQ)O(F)/ZGL2 (F)diag
DH<VT17T2 (t))CW(VTl,T2 (t)) dt.

Here 1 always stands for the identity element of G(F'), W(H,T) is the
Weyl group, all the Haar measures are chosen so that the total vol-
ume is equal to 1 (note that all the integral domains are compact),
and the factors %,;11 come from the cardinality of the Weyl groups
W (GSp,, T), W(GSp,, T;). Note that if F© = C, then T (H) and
Teu(GLsy) are empty. Hence we have mgeom(m) = ¢x(1). When F' = R,
Te(GSp,) only contains one element and the term associated to

T, Ty € Teau(GSpy), Th # T

will not appear. We leave it as an excise for the reader to check that
our definition of Mgyem () matches the definition in [Wan| for general
spherical varieties. We refer the reader to [Wan| for a detailed discus-
sion of the geometric multiplicity for general spherical varieties.
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Remark 9.1. Like the unitary Gan—Gross—Prasad model case (Propo-
sition 11.2.1 of [B15]), the integrals defining the geometric multiplic-
ity are not necessarily absolutely convergent and they need to be reg-
ularized (this is why we write the integral as [ *).  The regulariza-
tion is the same as the unitary Gan—Gross—Prasad model case. To
be specific, one replace the Weyl determinant DY in the integrand by
H\2
(D)2 . ((%—G))S*l/z. By a very similar argument as in Proposition
11.2.1 of [B15], we know that the integral is absolutely convergent when
s > 0 and has a limit as s — 07. Then we can define the reqular-
1zed integral to be this limit. This remark also applies to the model

(GUy x GUy, (GUy x GU)) in the neat subsection.

Similarly, if I’ # C, for the quaternion version of the model, we can
also define the embeddings VIpi, V120 s VIy . To for Tp, TV p,Top €

Teu(GSpy (D)) = Teu(GSp,) with Ty p # T p. We can define the geo-
metric multiplicity mgeom(7p) to be

*

> Wi o) DA (1), (1)

Tp€Teu(Hp) Tp(F)/Zcp,ap (F)
1
5 X
Tp€Ten(GSpy (D
" Z / DHD(VT2‘0i(t))CWD(VT2‘Oi(t))dt)
ie{1,2} T3 (F)/ 2L, (p)(F) b b
1 *
1 > / |
T1,p,T2,p€Tet(GSp1 (D)), T1,p#T2,p (T1,pxTs,p)°(F)/ZavL, () (F) %9
DHD (VTl,D7T2,D (t))Cﬂ'D (VTI,DyTZ,D (t)) dt.

The only difference between 1m geon, (7) and mgeom (mp) is that mgeom (7)
contains the germ at 1 (since G(F') is quasi-split) while mgeon (7p) dose
not. The following theorem gives a geometric multiplicity formula for
the model.

(f D0 (i, (1)) (v, (1)
) Tp(F)/Zar, (py(F)

Theorem 9.2. For all tempered representations m of G(F') (resp. mp of
Gp(F)) whose central character is trivial on Zg y(F) (resp. Za, m,(F)),
we have

m(T) = Mgeom (), M(TD) = Mgeom (D).
Proof. This follows from a similar but easier argument as in the Gan—
Gross—Prasad model case ([W10], [W12], [B15]) and the Ginzburg-

Rallis model case ([Wanl5], [Wanl6], [Wanl7]). The argument is easier
for this model because it is reductive and hence there is no need to
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regularize the integral over H. The only difference is that the proofs in
the above papers used the Gelfand pair condition (i.e. m(7) < 1 for all
irreducible representation 7 of G(F)) which is not known for this model.
But this can be solved by the same argument as the unitary Ginzburg—
Rallis model case in our previous paper (Section 6 and Appendix A of
[WZ]). We will skip the proof. O

If F' = C, then any tempered representation of G(F') is generic and
we have Mgeom(m) = ¢z(1) = 1 by the result for Whittaker model in
[Mat]. Hence the above theorem implies that m(m) = 1 for all tempered
representations 7 of G(F') with trivial central character (note that the
L-packet only contains one element in the complex case).

If FF#C,let Il = II,(G) UIl4(Gp) be a tempered local L-packet
of G whose central character is trivial on Zg g(F'). Assume that the
local Langlands conjecture holds for G(F). Let

ey = > dm(xo)br, Onyep) = Y. dim(xey)0s,
WEH¢(G) WD€H¢(GD)

be the corresponding stable characters (note that G(F') has a unique
Whittaker datum). The Kottwitz sign between G and Gp is —1. Hence
we have

9H¢(G)(g> = _6H¢(GD)(9D)7 VQ < Greg(F)agD S GD<F)7g < gp-

Combining with Proposition 4.5.1 of [B15], we have
Con ) V1 (1)) = —Coy, oy, (V1 (ED)), VI € T(F) <> tp € Tp(F);
Co ey (V20,4(1)) = ~Co ) (V20 (D)), Yt € T*(F) ¢ tp € T (F);
Co ) V1.1 (1) = —Coy, oy (VD p 125 (ED)),
Vt € (Ty x Ty)°(F) <> tp € (Ti.p x To.p)°(F).

Here g <+ gp (resp. t <> tp) means that they have the same character-
istic polynomial. Together with the multiplicity formula, we have

S dim()m(m) + Y dim(xa,)m(m)

melly (@) mp€lly(Gp)

- mgeom<9H¢(G)> + mgeom(eﬂ(b(GD)) - CGH¢(G)(1> =1
where the last equality follows from the results for Whittaker model in
[Rod81]], [Mat] and the fact that there is a unique generic element in
the L-packet. In particular, we have proved that the summation of the
multiplicities is equal to 1 over every tempered local Vogan L-packet
and the unique distinguished element corresponds to a character of the
component group.
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9.2.2. The model (GU4 X GUQ, (GUQ X GUQ)O) Let (G, H) = (GUQQ X
GU1,17 (GUl,l X GULl)O), and

(G1, Hy) = (GUgs x GUygy, (GUyg x GUgs)?),

(Go, Hy) = (GUsz; x GUy 1, (GUp; x GUygy)?),

(G3, Hs) = (GUs 1 x GUsy, (GUag x GU1 1)),

(G4, Hy) = (GUyp x GUs, (GUs x GUyy)?)
be the pure inner forms (the pair (G4, Hy) only appears in the archimedean
case).

Let Ty be the unique element in 7.;(GUy ) = Teu(GUsyp) that is
isomorphic to

E*" :={(a,b) € E* x EX| aa = bb} C E* x E*.
For T € 7;”(GU1’1> = ﬁll(GUQ}O) with T 75 To, let
(T xT)° = {(t1,t2) €T x T| \(t1) = A\(t2)}.

Up to conjugation, there is a unique embedding from (7 x T)° to
(GUy1xGUy1)° (resp. (GUguxGUp2)?). Combining with the diagonal
embedding from T to (T x T)°, we get an embedding (denoted by v7)
from T to G (resp. G1(F')) that factors through H (resp. H;), and we
will denote this embedding by vy (resp. vy 7).

For Tj, in the p-adic case up to conjugation there are two embeddings
from (Tp x Tp)" to (GUypy x GUy4)° (vesp. (GUgg x GUg2)?). Com-
bining with the diagonal embedding from Ty to (Ty x Tp)°, we get two
embeddings from T to G (resp. Gy). The centralizer of the image of
one of the embedding is quasi-split (it is isomorphic to (GU; 1 x GUy ;1)°
times a torus), we will denote this embedding by vy, (resp. vy 1), while
the centralizer of the image of the other embedding is not quasi-split.
In the archimedean case, we can define the embedding v, in the same
way as in the p-adic case. On the other hand, up to conjugation there
is only one embedding from (Ty x Tp)° to (GUgg x GUg2)? and this
defines the embedding v, 1,. Note that in this case the centralizer of
the image of 14 7, is still quasi-split.

Remark 9.3. For T € T.u(GUy 1), we can also define the embeddings
to Gy and G5 (also Gy in the archimedean case), but the centralizer of
the images will not be quasi-split.

Meanwhile, consider the following two subgroups of (Ty x Tp)° (we
identify Ty with E%° = {(a,b) € E* x E*| aa = bb}):

Ty ={(1,1) x (1,a) € (Ty x Ty)"| a € E'},
Ty = {(1,a) x (1,b) € (Ty x Tp)"| a,b € E'}.
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The two embeddings from (T, x Tp)° to (GU1 1 xGU; 1)° (resp. (GUy 1%
GUy0)?) induce two embeddings from T} to G (resp. Gs) that are
conjugated to each other. Let vry (resp. Z/Q,Té) be one of the embedding.
Note that the projection of these embeddings to the GU; ;-factor is the
trivial map. The centralizers of the image of these embeddings are
quasi-split (they are isomorphic to GUz x GUy 1 x Uy).

Remark 9.4. We can also define embeddings from T} to Gy and Gs
(also Gy in the archimedean case), but the centralizer of the images will
not be quasi-split.

On the other hand, the two embeddings from (T, x Ty)? to (GUy; X
GUM)O induce two embeddings from T to G. The centralizer of the
image of one of the embedding is quasi-split (isomorphic to GUy ; times
some torus, we will denote this embedding by vzy) and the centralizer
of the image of the other embedding is not quasi-split. Similarly, we
can also define the embeddings v; v from Ty to G for 1 <4 < 3.

Remark 9.5. We can also define the embedding from T{ to G4 in the
archimedean case but the centralizer of the images will not be quasi-
split.

Now we are ready to define the geometric multiplicity. Let 7 (resp.
m;) be an irreducible representation of G(F') (resp. G;(F')) with trivial
central character. For T € T (GUy 1) = Teu(GUsp), we use T*(F') to
denote T'(F)/Zqu,,(F) = T(F)/Zgu,,(F). Define

*

M) = U+ Y WED [ DY ()05 (1) dt

TETou(H) T(F)/Zg,u(F)

1 *
+s Y / D (vr(t))ex (vr(t)) dt
T€Ten(GU1,1) r=(F)

i T)(F) DM (vgy()ex(vry (t)) dt

+/* DH(VTél(t))CW(VTél(t))dt,

o (F)
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*

Mgeom(m) = §j|wunTw4/ D™ (£)6,, (1) d

TeTe(Hr) T(F)/ZGy,m, (F)

1 *
+5 > / D" (i (t) )ery (r(1) dt
TETn(GUs ) ¥ T (F)

+/ D (11 (1)) e (01,1 () I,
TY (F)

Maon() = 3 WD DH(0)f, (1)
TGE”(HQ) T(F)/ZG2,H2(F)

*

+ DH2 (V27T6 (t))CWQ (VZT(S (t)) dt
Ty (F)

+ / D2 (g s (£)) ey (Vo (1)) d,
Ty (F)

*

Myeom(ms) = 3 mw%ﬂwl/ D (8)6, (1) dt

TeTu(Hs) T(F)/ZGg,u5(F)

w [ Dy @)en, (g () .
T3 (F)
If we are in the archimedean case, we also define

Mynlm) = S0 WHLT| D5 (1)6,, (1) dt.

TeTeu(Ha) T(F)/Zg,,m,(F)

Like in the previous case, we always choose the Haar measure so
that the total volume is equal to 1 and the extra % factor comes from
the cardinality of the Weyl group of GU,. Also the integrals in the
geometric multiplicity may not be absolutely convergent and they need
to be regularized (see Remark [9.1). We leave it as an excise for the
reader to check that our definition of Mmgyeen (7) matches the definition
in [Wan| for general spherical varieties. Like the previous case, by a
similar but easier argument as in the Gan-Gross—Prasad model case
([W10], [W12], [B15]) and the Ginzburg-Rallis model case ([Wanl5],
[Wan16], [Wanl7], [WZ]), we can prove the following theorem.

Theorem 9.6. For all tempered representations m of G(F') (resp. m; of
Gi(F)) whose central character is trivial on Zg u(F') (resp. Zg, u,(F)),
we have

m(T) = Mgeom (), M(T) = Mygeom ().
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Now let I1; = I14(G) U I14(G;) be a tempered local L-packet whose
central character is trivial on Zg g (F) (1 < i < 3 in the p-adic case
and 1 < i < 4 in the archimedean case). We can also define the
character 0r1,(c) and 01, (g,) as before (note that the component group
is always abelian in this case). The summation 3. .y ) m(m) +

Zlgigkmeﬂd)(Gi) m(m;) is equal to
k
mgeom(9H¢(G)) + Z mgeom(9H¢(Gi)) = 69n¢(c) (1) =1
i=1
where k£ = 3 in the p-adic case and k = 4 in the archimedean case.
Here the last equality follows from the results for Whittaker model in

[Mat], [MW] and the fact that there is a unique generic element in the
L-packet. For the identity

k
mgeom(en¢(G)) + Z mgeom<eﬂ¢(Gi)> = CGH¢(G) (1)7
i=1
we just need to apply the following cancellations (the Kottwitz sign
between G and G3 is equal to 1, the Kottwitz sign between G and G,
is equal to -1 for i = 1,2,4)

e The term > rcr () I Mgeom (0, (c)) Plus the term > pc .y
in Mygeom (011, (cs)) can be cancelled with the term ZTEF,;”(HI) in
Mgeom (O11,(c1)) Plus the term ZTG%U(HQ) i Mgeom (O11,(c)) (and
also plus the term > rc- 7,y I Mgeom (0, (cy)) if we are in the
archimedean case).

e The term 1 D TeTu(GU.y) 10 Mgeom (B11,(G)) can be cancelled with

the term %ZTGE”(GUM) i Mygeom (O11,(G1))-

e The term associated to T in Mgeom (0, (@)) can be cancelled
with the term associated to Tj in mgeom (01, ()

e The terms associated to Ty in M geom (011, (c)) and Mgeom (011, ()
can be cancelled with the terms associated to 7" in mgeom (011, (1))
and mgeom(0H¢(G2))-

In particular, we have proved that the summation of the multiplici-
ties is equal to 1 over every tempered local Vogan L-packet.

9.3. The non-reductive case. In this subsection we consider the
non-reductive cases. Let (G,H) = (G, Hy x U) be one of the non-
reductive models in Table For all the cases, Hy(F') is essentially
GL3(F) (up to the center). If F' # C, we let (Gp, Hyp X Up) be the

quaternion version of the model.
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Let Teu(Ho) (resp. Teu(Hop)) be a set of representatives of maximal
elliptic tori of Ho(F') (resp. Ho p(F')). Define

Myeon(®) = o)+ 32 Wt T [ D (1) (1)t

TeTeu(Ho) TE)/Ze.n(F)
mgeom(ﬂ—D> = Z ’W(HO,DvTD)lil
Tp€Tenu(Ho,p)
. / DHP (1)e, () dt
Tp(F)/Zcp,up (F)

where 7 (resp. 7p) is an irreducible admissible representation of G(F)
(resp. Gp(F')) with trivial central character, W (Hy, T') (resp. W (Ho,p,Tp)
is the Weyl group, and all the Haar measure are chosen so that the total
volume is equal to 1. Again we leave it as an excise for the reader to
check that our definition of Mmgeen (7) matches the definition in [Wan]
for general spherical varieties.

Theorem 9.7. Assume that F' # R, and (G, H) is not the last model
(E7,PGLyx U) in Table[d] For all tempered representations © of G(F)
(resp. mp of Gp(F)) whose central character is trivial on Zg g(F)
(resp. Za,, ., (F)), we have

m(m) = Mgeom (), M(TD) = Mgeom (TD)-

Proof. The multiplicity formula for Model 4 in Table 1| has been proved
in the previous papers of the first author ([Wanl5|, [Wanl6], [Wan17]),
and the multiplicity formula for the Model 5 has been proved in our
previous paper [WZ|. The argument for the remaining 4 models is
very similar to the Ginzburg-Rallis model case ([Wanl5|, [Wanl6l,
[Wanl17]), we will skip it here. Like the reductive case, the Gelfand
pair condition is not known for these models, but it can be solved by
the same argument as the unitary Ginzburg-—Rallis model case in our
previous paper (Section 6 and Appendix A of [WZ]).

The reason we need to assume that F' # R is that in the case when
F = R, we don’t know how to prove the nonvanishing property of
certain explicit intertwining operator is invariant under the parabolic
induction because the operator is defined by a normalized integral in
the non-reductive case and it is not clear how to study it under the
parabolic induction in the real case. In Gan—Gross—Prasad case (Sec-
tion 7.4 of [B15]), this can be solved by passing to a reductive model
of a larger group (e.g. instead of studying (U, ox11 X Up, U, X N) one
can just study (U,iopi1, Unsor)). But for all the cases in Table , we
cannot pass it to a reductive model of a larger group simply because
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such a module does not exist. For Model 4 in Table [T, we solved this
issue by using a special property that all the tempered representations
of GLg(R) are the parabolic induction of some tempered representa-
tions of GLy(R) x GLg(R) x GLy(R), see Section 5.4 of [Wanl@] for
details. But this is not true for Models 5-10 of Table [1] (although it is
still true in the complex case which is why we can prove the multiplic-
ity formula in the complex case). In general if one can prove that the
nonvanishing property of the explicit intertwining operator is invariant
under the parabolic induction, then we can also prove the multiplicity
formula in the real case.

On the other hand, the reason we exclude the model (E;, PGLy x U)
is that in the proof of the geometric side of the trace formula, we need
to study the slice representation, i.e. the conjugation action of H(F)
on the tangent space. We need to show that the regular orbits coincide
with the stable conjugacy classes of G(F'). For all the other cases,
this can be down by computing the characteristic polynomials as in
the Gan—Gross—Prasad model case (Section 9 of [W10] and Section 10
of [B15]) and the Ginzburg-Rallis model case (Section 8 of [Wanl5]).
But this is not possible for the E7; case since the matrix presentation
of F; is very complicated. If one can prove this result for the model
(E7,PGLy x U), then we can also prove the multiplicity formula in this
case.

O

As in the reductive cases, combining the multiplicity formulas and
the local Langlands conjecture, we can show that for any tempered
L-packet 11y = II4(G) U II4(Gp) of G(F) whose central character is
trivial on Zg g (F), the summation

> dimumn)+ Y dim(e,)mio)
melly(G) np€lly(Gp)

is equal to
mgeom(‘gﬂ(;/)(G)) + mgeom(0H¢(GD)) = CQH¢(G)(1) =1

In other words, the summation of the multiplicities is equal to 1 over
every tempered local Vogan L-packet and the unique distinguished el-
ement corresponds to a character of the component group.
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