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Abstract

In this paper, we prove the geometric expansion of a local twisted trace formula
for the Whittaker induction of any symmetric pairs that are coregular. This general-
izes the local (twisted) trace formula for reductive groups proved by Arthur [2] and
Waldspurger [28]. We also prove a formula for the regular germs of quasi-characters
associated to strongly cuspidal functions in terms of certain weighted orbital integrals.
As a consequence of our trace formula and the formula for regular germs of quasi-
characters, we prove a simple local trace formula of those models for strongly cuspidal
test functions which implies a multiplicity formula for these models. We also present
various applications of our trace formula and multiplicity formula, including a neces-
sary condition for a discrete L-packet to contain a representation with a unitary Shalika
model (resp. a Galois model for classical groups) in terms of the associated Langlands
parameter, and we also compute the summation of the corresponding multiplicities for
certain discrete L-packets.
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1 Introduction

Let F be a local non-Archimedean field of characteristic 0, G be a reductive group defined
over F, H C G be a unimodular subgroup and ¢ : H(F) — C* be a smooth unitary
character. Choosing Haar measures on G(F') and H(F') induces an invariant measure on
H(F)\G(F) and we let L*(H(F)\G(F),£) be the space of ¢ : G(F) — C* that transform
by left multiplication by H(F') according to the character £ (i.e. @(hg) = &(h)p(g) for
(h,g9) € H(F) x G(F)) and whose norm is square-integrable on H(F)\G(F). Then, the
natural action of G(F) on L*(H(F)\G(F),&) by right translation is a unitary representation
and for f € C°(G(F)), we define by integration an operator R(f) on L*(H(F)\G(F),¢).
This operator is associated to the following kernel function (for simplicity we assume the
center of G is trivial in the introduction)

Ky(x,y) = H(F)f(x‘lhy)é“(h)dh, z,y € G(F).

Formally, the trace of the operator R(f) should be given by the integral of K;(z,x) over
x € H(F)\G(F). However, neither of these two expressions are well-defined in general. The
goal of this paper is to define some canonical regularizations of the integral of K; over the
diagonal for certain triples (G, H,&) (essentially associated to symmetric varieties that we



name “coregular”’) and to express the resulting distribution on G(F') as a sum (or integral)
of contributions naturally generalizing the weighted orbital integrals of Arthur [2]. This can
be considered as the geometric side of a local trace formula for the corresponding unitary
representations L?(H(F)\G(F),¢). We plan to develop in a subsequent paper a general
spectral expansion for those trace formulas.

In the so-called group-case, corresponding to G = H x H with H embedded diagonally
in the product, we recover the geometric side of Arthur local trace formula [2]. We actually
also consider an enhancement of the previous setting where we fix an extra automorphism 6
of the triple (G, H, ) and we formally try to compute the trace of the composition R(f) o 6.
This can be more naturally formulated using the notion of twisted spaces due to Labesse.
In the group-case again, we recover the geometric side of the local twisted trace formula due
to Waldspurger [28].

Although not implied by our main results, the work of Waldspurger [34] on the local Gan-
Gross-Prasad conjecture, whose main innovation was the development of a certain simple
local trace formula, has been a main source of inspiration and motivation for this paper.

We also present few applications of our general trace formula. Namely, specializing our
geometric expression to a matrix coefficient of a supercuspidal or square-integrable repre-
sentation, we obtain explicit integral formulas for multiplicities of certain models which
generalize our previous results for Galois models [7] and the Shalika model [9]. This can
then be further applied to establish necessary conditions, in terms of the associated Lang-
lands parameters, for the distinction of discrete L-packets with respect to a unitary Shalika
model or a Galois model for classical groups and we moreover compute the corresponding
multiplicities of such packets under an extra assumption. In the case of Galois models, this
confirms some consequences of a general conjecture made by D. Prasad [29].

1.1 Main results

Whittaker induction of coregular symmetric varieties

Let ¢ be an involutive automorphism of G and assume that (G*)° C H C G* where G* stands
for the subgroup of fixed points and (G*)° for its neutral component. In this situation, the
quotient variety H\G is sometimes called a symmetric variety. In this paper, we impose an
important condition on the variety H\G that we decided to name coregularity:

Definition 1.1. Let X = H\G be a homogeneous G-variety with H reductive. We say that
X is coregular if there exists an non-empty open subset U C X x X such that for every
x € U, the stabilizer G, C G of x for the diagonal action contains regular elements.

In Section we give various alternative characterizations of coregular homogeneous
G-varieties (including the case where H is not reductive). Technically, the most important
for us is the following property (where G, C G denotes the open locus of regular semisimple
elements and D¢, D stand for the usual Weyl discriminants):

A homogeneous G-variety X = H\G is coregular if and only if H N G, is nonempty and

the function h € H(F) N G,s(F) — %Ié—(&); is locally bounded on H(F).
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Examples of coregular symmetric varieties are the group case (that is X = H%9\ H x H),
Galois symmetric varieties (i.e. homogeneous varieties of the form X = H\Resg,pHp where
E/F is a quadratic extension and Resg /r denotes Weil’s restriction of scalars) or Sp,,,\GLa;,.
However, many other natural examples of homogeneous varieties such as O,\GL,,, GL,, x
GL,\GLy, or SO%28\(S0,, x SO,,1) (the so-called Gross-Prasad variety, that is not sym-
metric but at least spherical) are not coregular.

In this paper, we will actually consider a slightly more general setting, essentially includ-
ing all triples (G, H, &) that are in a suitable sense “Whittaker induction” of a coregular
symmetric pair (M, Hy). More precisely, the most general triples (G, H, ) that we can con-
sider are constructed as follows. There exists an involution ¢ of G as well as a parabolic
subgroup P C G that is -split (recall that it means that P := ((P) is opposite to P) and a
semi-direct product decomposition H = Hy X N where:

e N is the unipotent radical of P and Hy is a subgroup of the Levi factor M := PN P;
e We have Hy = (M"*)" and the symmetric variety Hy\M is coregular;

e The restriction of the character £ to N(F') is non-degenerate i.e. its orbit under the
adjoint action of M (F') is open in the F-vector space of all smooth characters N(F') —
C*;

e In the case where P # G, Hy is precisely the neutral component of the stabilizer of £
in M.

Following [30), Sect. 2.6], we say that the pair (H\G,¢&) is the Whittaker induction of the
symmetric (and coregular) variety Ho\M. One example of such Whittaker induction is given
by the triple (GLg,, GLY% x Mat,,, v o Tr), where ¢ : F — C* is a nontrivial character,
which is related to so-called Shalika models of representations of GLa,(F). In this particular
case, our result on geometric expansions contains the main results of our previous work [9].
There is also a variant of this example for unitary groups that will be described in more
details below, related to what we call unitary Shalika models.

Truncation on symmetric varieties

Fix a triple (G, H, ) as in the previous paragraph. Our starting point will be to truncate in
a meaningful way the (usually non-convergent) integral

I(f) :/ Ky(z,z)dx.
H(F)\G(F)

For this we introduce a sequence of truncation functions (ky)y indexed by points Y in a
certain affine space [l

IFor the definition of our truncation functions, we do not need to assume (G, H) is coregular. It works
for all the symmetric varieties.



More precisely, we fix from now on a special maximal compact subgroup K C G(F) that
is in good position with respect to the Levi subgroup M as well as Py C P a minimal ¢-split
parabolic subgroupﬂ Let Ap,, be the subspace of the real vector space

Ap, == Hom(X"(F),R)

on which ¢ acts by —Id. Let AI;’O+ C Ap, be the usual Weyl chamber associated to the

parabolic subgroup Fy N M of M and Af;(’)t be its projection to Ap,,. We also let Ay be the
maximal central split torus in My = Py N () (a Levi factor of Fy) which is ¢-split (in the
sense that ¢(a) = a™! for every a € Ay) and denote by Hp,, : Py(F) — Ap,, the composition
of the usual Harish-Chandra morphism Py(F) — Ap, with the projection Ap, — Ap,,.
Then, by the weak Cartan decomposition of [16] and [10], we can find a compact subset
wp, C Py(F) as well as a point Y_ € Ap,, such that setting

SY_)={z=pak |p € wp,ke K,ac Ay(F),Hp,,(a) € T_ +A£(’)J;

we have the decomposition

G(F) = H(F)S(Y.).

Note the formal resemblance with the existence of Siegel domains in a global setting. Let
~Ap, C Ap, be the cone defined by the negative simple weights with respect to Py and ~Ap, ,
be its image in Ap,,. Then, for any ¥ € AIJSO’L that is “sufficiently positive”, we denote by
Ky the characteristic function of the image in H(F)\G(F)) of the set S(Y_,Y") defined by

SY_,Y):={zeS(Y.)| Hp, (v) €Y + Ap,.}

where we have denoted also by Hp, , the unique extension of Hp, , to G(F’) that is K-invariant
on the right.

Although the family of truncation functions (ky )y a priori depends on the auxiliary choice
of Y_, it can be shown that it doesn’t depend on such a choice asymptotically in the following
precise sense. For any pair of points Y_,Y’ € Ap , such that G(F) = H(F)S(Y-) =
H(F)S(Y”), we can define as above two families of truncation functions (ky )y and (k% )y.
Then, there exists Y, € Ap,, such that rky = 3 for every Y € Yy + Aj, . In particular, it
makes sense to study the asymptotic behavior of the expression

Iy(f) = / Ky¢(z,x)ky (x)dz
H(F)\G(F)

when ¥ 2% oo (where the latter notation means asymptotic along the filter generated by
translates Y, + A;SO’L of the positive Weyl chamber). Moreover, the functions ky are so
defined that the integrand in the above expression is compactly supported (see Lemma [6.3)).

2Here, by a minimal ¢t-split parabolic subgroup we mean a parabolic subgroup that is ¢-split and minimal
for this property.



Finally, we can also suppress the dependence of our truncation process on the choice of
Py (but not on that of K) as follows: for any other choice of a minimal ¢-split parabolic
subgroup P C P, there exists a natural affine isomorphism

(111) LPo,Pé,K : AP(),L = APé,L?

such that as Y € Ap,, Dy o we eventually have ky = ky: where Y’ = 1p pr (V). We
emphasize that ¢p, Pk 1S not the most obvious isomorphism Ap, , ~ Ap67L7 namely the one
induced by conjugation by an element p € P(F) such that pPyp~' = Pj, which is not only
affine but linear. Indeed, in general the map does not preserve the origins; a fact that
is related to the existence of more than one H(F') N K-conjugacy class of minimal ¢-split
parabolic subgroups Py C P.

Therefore, we can as well think of Y as living in the inverse limit

AX7K = I&H APQ,L
Py

where Py runs over the set of minimal ¢(-split parabolic subgroups of P and the transition
maps are given by the affine isomorphisms (1.1.1)).

The geometric expansion of a general local trace formula.

Let I'(Hy) (resp. T'en(Hp)) be the set of regular semisimple (resp. regular elliptic) conjugacy
classes in Ho(F'). These two sets can be naturally equipped with measures, see Sections
and [Z.1] for details.

For t € T'(Hyp), that we identify with a representative in H(F'), we denote by H;, G,
M,;, Ny and B; = M;N, the neutral components of the centralizers of t in H, G M, N and
P respectively. Then, for ¢ in general position B, is a Borel subgroup of G; and & |, () is
a non-degenerate character on its unipotent radical (see Lemma , here we need to use
the coregular assumption). For f € C°(G(F)) and Y € Axk, we define the following
expression

I (f) = / o DI 4 P

where Jy (¢, f) denotes some kind of “weighted orbital integral”. More precisely, Jy (t,.) is a
distribution of the form

Jy(t, f) = ; f(9)ve,v(g)dg

where O, denotes the union of the (finitely many) regular G(F')-conjugacy classes with
semisimple part ¢ and the function g — ve,y(g) is a certain weight function. When £ =1
(so that P = G and, by the coregular assumption, ¢ is already regular in G at least when
it is in general position), this weight is very similar to the one appearing in the definition
of Arthur’s weighted orbital integrals as ve,y (g~ 'tg) is given by the volume of the convex
hull of a certain family (—Hg,(g9) + Yq)q where Q runs over the minimal ¢-split parabolic
subgroups of G containing t, Hg , : G (F') — Ar, denotes the usual Harish-Chandra map for
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the parabolic subgroup Q = +(Q) = LNg (chosen to be K-invariant on the right) composed
with the projection Az — Ay, to the c-antifixed points in Ay and Y — Y, € Ag, = Ar,
is the composition of the canonical isomorphism Ax x ~ Ap,, with the natural projection
Ap,, = Ag, for any minimal (-split parabolic subgroup Py C @ (it can be shown that the
composition doesn’t depend on Fp). In general, the precise definition looks like

Jy(t, f) = / / [z tuz)vp, ¢, v (2, u)dudz
Be(F)\G(F) v N¢(F)

where we refer the reader to Section for the definition of the weight vp, ¢,y (2, u) when
& # 1. Another important point is that, after Harish-Chandra, it is known that near singular
point the typical order of growth of (weighted) orbital integrals is as the inverse of the square
root of the Weyl discriminant. Therefore, our assumption on coregularity of the pair (G, H)
is what guarantees the absolute convergence of the expression defining Jy (f) above. Then,
the aforementioned geometric expansion of the local trace formula for (G, H, &) is contained
in the following theorem.

Theorem 1.2. Let 0 < e <1 and fix f € CX(G(F)). Then, for any k > 0, we have
1Ly (f) = Iy (N < N(Y)™*

for every Y € Ax  with d(Y') > eN(Y). Moreover, the function Y € Axx — Jy(f) is
a polynomial-exponential function in a suitable sense (see Section and if the variety
X = H\G is tempered (see Section , then the same statement holds for functions f in
the Harish-Chandra Schwartz space C(G(F)).

In the above statement, N(Y') stands for any norm on the affine space Ax x whereas,
fixing a minimal ¢-split parabolic subgroup Py C P for convenience, the depth d(Y') of Y is
defined by

d(Y) = min(a, Y — ¥o)
where A stands for the set of simple roots with respect to Fy. Therefore, in some loose
sense, the above theorem describes the asymptotic behavior of Iy (f) as Y goes to infinity
in the direction of the positive Weyl chamber and “sufficiently far from the walls”.

As already mentioned, in the main body of the paper we actually prove a more general
theorem of the above form for suitable twisted triples (G, H,¢). In particular, in the group
case (i.e. when H is diagonally embedded in G = H x H) this recovers the geometric side
of the twisted local trace formula [28].

The case of strongly cuspidal functions and integral formulas for multiplicities

Most applications of our trace formula comes from a simple version obtained by specializing
it to the case of strongly cuspidal test functions. More precisely, we recall following [34]



that a function f € C°(G(F)) is said to be strongly cuspidal if for every proper parabolic
subgroup () = LV C G we have

/ f(lu)du =0, for every l € L(F).
V(F)

It is then shown in loc. cit. that the regular semisimple weighted orbital integrals (in the
sense of Arthur) of a strongly cuspidal function f don’t depend on any choice (except that
of a Haar measure on G(F')) and that, correctly normalized by certain signs, they define a

function
@f : GrS(F) —C

which is G(F)-invariant by conjugation and a quasi-character in the following sense: for
every semisimple element x € G(F'), there exists an expansion

Of(zexp(X)) = Z Cf,o(l‘)}(O;X), X € wNgers(F),
OeNil(gy)

where:
o w C g,(F) is a sufficiently small neighborhood of 0 in the Lie algebra of G, (F);
e Nil(g}) denotes the (finite) set of nilpotent coadjoint orbits in the dual g, (F')* of g, (F);

e for O € Nil(g2), (O, .) stands for the unique smooth function on g, .(F) that is locally
integrable on g, (F') and represents the Fourier transform of the orbital integral over
O i.e. for every ¢ € C(g,(F')) we have

L/ wxﬁoxwxzfawmy
9a (F) o

where dX is a Haar measure on g,(F), p(Y) = fgm(F) (X)X, Y))dX, Y € g.(F)*,
denotes the Fourier transform of ¢ (which depend in the auxiliary choice of a non-trivial
additive character ¢ : F' — C*) and dY is the canonical Kirillov-Kostant measure on
the coadjoint orbit O.

Then, for ¢ € Hy,s(F) in general position, the restriction & := & |n,r) is a generic
character of N,(F). We let O, € Nil(g;) be the orbit associated to &f] Then, for every
strongly cuspidal test function f € C°(G(F)) we set

zwmuwzjq D (t)e g0, (DEM)t.
Tenn(Ho)

Theorem 1.3. Let f € C°(G(F)) be a strongly cuspidal function. Then,

*

3More precisely, O; is the unique nilpotent coadjoint orbit in g;(F)* containing an element Y such that

&(exp(X)) =y ((Y, X)) for every X € ny(F), the Lie algebra of N, (F).

9



1. We have
l}am [Y(f) - ]geom(f)a
Y—O>oo
in particular the right limit exists.

2. If moreover f is a matriz coefficient of a supercuspidal representation m of G(F') and the
dimension mpg¢(m") of the space Hompy (7Y, &) of (H(F),§)-equivariant linear forms on
(the space of ) the contragredient representation " is finite, then the integral defining
I(f) is already convergent and we have

where d(m) stands for the formal degree of .

Furthermore, if the pair (G, H) is tempered then the same holds for strongly cuspidal test
functions f € C(G(F)) and matriz coefficients of square-integrable representations m respec-
tively.

As a corollary of the above theorem we can also obtain general integral formulas for
the multiplicities my (7). More precisely, for 7 an irreducible representation of G(F'), it is
known that the Harish-Chandra character ©, is also a quasi-character in the above sense.
Therefore, we can define an expression Mgeom, mr¢(7) similar to Jgeom(f) by formally replacing
© by O,. Then, we have the following. (see Theorem [7.4)).

Corollary 1.4. 1. Assume that 7 is supercuspidal and the multiplicity mpy ¢-1(m) is finite.
Then, we have

(1.1.2) M1 (T) = Megeom, ¢ (T).

2. If the pair (G, H) is tempered, 7 is square-integrable and the multiplicity mpy¢(m) is
finite, then the equality (1.1.2]) also holds.

In the case of Galois models or the Shalika model, the above corollary recovers one of
the main result in [7] and [9] respectively. Actually for Galois models associated to classical
groups, we can also deduce new results from the analog of the above corollary in certain
twisted situations as explained in more details below.

An integral formula for regular germs of quasi-characters

One important technical result that we prove along the way to Theorem [1.2] and that may
be of independent interest, is a certain explicit formula for some singular weighted orbital
integrals of strongly cuspidal functions. More precisely, we are able to write down a set
of measures on regular (but not necessarily semi-simple) conjugacy classes representing the
distributions f — c¢fo(x) for z € G(F) semisimple and O € Nil(g) a regular nilpotent
coadjoint orbit.

10



More precisely, let us fix a Borel subgroup B, of G, with a Levi decomposition B, = T, N,
as well as a generic character &, of N, (F), and we let O, € Nil(g%) be the corresponding
regular nilpotent coadjoint orbit (every regular nilpotent coadjoint orbit arises in this way).
In Section 4 we will define a weighted function vg, ¢, (g,u) for ¢ € G(F) and v € N,(F)
regular. The next theorem expresses the regular germ of the quasi-character O in terms of
certain weighted orbital integral (we refer the reader to Section 2-4 for various notation). It
will be proved in Section 4.

Theorem 1.5. For every strongly cuspidal function f € C(G(F)), we have

¢r0.(t) = / / Flg vug)vs, ¢, (u, g)dudg.
B (F)\G(F) J Nz (F)

The Galois model for classical groups

Let E/F be a quadratic extension, H be a reductive group defined over F', y be a character
of H(F) and G' = Resg/pHp. The model (G, H,X) is the so-called Galois model. In [29],
Prasad made a general conjectural regarding the multiplicity of Galois model. In this paper,
we will study the case when H is a classical group.

Let H be a quasi-split special orthogonal group or a symplectic group and G = Resg/rHE.
If H is the even special orthogonal group, let Hy be a quasi-split special orthogonal group
that is not a pure inner form of H and such that G = Resp/pHp = Resg/pHop (i.e. the
determinants of the quadratic forms defining H and H, belong to the same square class in
E*/(E*)? but belong to different square classes in F'*/(F*)?). If H = Sp,,, or SOy, let ¥
be the trivial character on H (and Hy if H = SOs,). If H = SOg,,41, let x € {1,7,} where
7n is the composition of the Spin norm character of SO, with the quadratic character
NE/F-

Our first result is a necessary condition for a discrete L-packet to be distinguished.

Theorem 1.6. Let H = Spy,,, SOy, 01 SOgy, 41, G = Resg/pH, x =1 if H = Spy,, or SOgy,
and x € {1,n,} if H = SOgp41. Let I14(G) be a discrete L-packet of G(F') and I1,(G") be the
endoscopic transfer of the L-packet to the general linear group G' = GL4(FE) (here a = 2n if
H = SO0y, 0r SOgy,+1 and a =2n+ 1 if H = Sp,, ). Then the packet 11,(G) is distinguished
(i.e. m(m,x) # 0 for some m € 11,(G)) only if I14(G') is (GL4(F), X')-distinguished. Here
X =1ifx=1and X' =n), :=ng/rodet if x =1n,.

Our second result is to compute the summation of the multiplicities over certain discrete
L-packets. Assume that II4(G’) is (GL.(F), x’)-distinguished. By Theorem 4.2 of [26],
I1,(G") is of the form

Hu(G) = (1 X -+ x 1) X (01 X T1) X+ X (O X Tp)
where

e 7; is a discrete series of GL,,(F) that is conjugate self-dual. Moreover, if (H,x) =
(SO2p41,Mn), Ti is self-dual of symplectic type; otherwise, 7; is self-dual of orthogonal

type.
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e 0, is a discrete series of GLy, (E) that is NOT conjugate self-dual. Moreover, if (H, x) =
(SO2n+1, M), 0; is self-dual of symplectic type; otherwise, o; is self-dual of orthogonal

type.

e 7;,0; are all distinct.

® Zé:l a; + QZT:I bj = a.

We will consider the special case when m = 0. The general case will be consider in our
future paper. When m = 0, I1,(G’) appears discretely in the L? space of the Galois model
(GL.(E),GL,(F), x).

Theorem 1.7. With the notation above, if H is the symplectic group or the odd special
orthogonal group, we have
Z m(m,x) = 271,

7TEH¢(G)

If H s the even special orthogonal group, we let Hy be another even special orthogonal group
as above. We use mo(m, x) to denote the multiplicity for the model (G, Hy, x). Then we have

> mlmx) +mo(m,x) =2,
WEH¢(G)

Remark 1.8. By Theorem 1 of [7], the above two theorems also hold if we replace H (and
Hy if we are in the even orthogonal group case) by the non quasi-split classical group.
The unitary Shalika model

Let Z be a E-vector space of finite dimension n > 1. Let Z*¢ be the conjugate-dual of Z
that is the space of c-linear forms on Z (a similar notation will be applied later to other
vector spaces). Set V =7 & Z*° and we equip with the nondegenerate Hermitian form

h(v+v*,w+w") = (v,w") + (w,w")", (v,0"),(w,w") € Z & Z*°.

Here (.,.) stands for the canonical pairing between Z and Z*¢. Let G = U(V,h) be the
unitary group associated to this Hermitian form. We define two maximal parabolic subgroups
Q and Q of G as the stabilizers of the maximal isotropic subspaces Z and Z*° respectively.
Then, L = Q N Q is a Levi component of @ and restriction to Z induces an isomorphism

Let N be the unipotent radical of (). Thus ¢ = LN and restriction to Z*¢ induces an
isomorphism

(1.1.4) N ~{X € Hom(Z**,2) | "X = - X}
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where T X denotes the transpose conjugate of X (seen as a linear endomorphism Z — Z*¢
through the canonical identification (Z*¢)*¢ = Z). We will actually identify the right hand
side above with the Lie algebra n of N in a way such that the above isomorphism becomes
the exponential map.

We henceforth choose two isomorphisms W, , W_ : Z — Z*¢ satisfying TW¢ = —W,
and such that the corresponding antihermitian forms on Z are not equivalent (there are
actually only two equivalence classes of antihermitian forms on Z). For ¢ € {£}, we let
Hy. C L ~ Resg/rGL(Z) be the unitary group associated to W, that is the stabilizer of W
for the obvious action. Then, Hy(F") coincides with the stabilizer in L(F') of the character

& N(F)— Cx,

exp(X) = $(Te(W.X)) (X € n(F)).

We will henceforth assume, as we may, that W, have been chosen so that Hy ; is quasi-split.
Set H. = Hy,. x N. We extend & to a character of H.(F) trivial on Hy (F). We also
fix a character x of E' = ker(Ng,p) that we will consider as a character of Hy (F') through
composition with the determinant det : Hy (F) — E' . The model (G, H.,x ® &) is an
analogue of the Shalika model for unitary groups and we will call it the unitary Shalika
model. For a smooth irreducible representation 7 of G(F'), we define the multiplicity

me(m, x) = dim(Hompy, p) (7, x ® &)).

Our first result for the unitary Shalika model is that the multiplicity for the two models
are equal to each other for all stable discrete series.

Theorem 1.9. 1. Let w be a finite length discrete series of G(F') with central character
X". If ©, is a stable distribution, then m, (m,x) =m_(7, x).

2. Let I14(G) be a discrete L-packet of G(F') with central character x™. Then we have

Zm+7rx ZMWX

welly (G welly(G)

Our second result for the unitary Shalika model is a necessary condition for a discrete
L-packet to be distinguished. The character x of E* induces a character Y’ of EX by x/(x) =
x(z/x¢). Let II,(G) be a discrete L-packet of G(F) and let II,(G") be its base change to
G'(F) = GLg,(E). Then II4(G’) is an irreducible tempered representation. Let H'(F) =
{(8 2) (16’ ;() | h € GL,(E), X € Mat,«,(E)} be the Shalika subgroup and we define
the character ¥’ ® £ on it to be

voe((y 1) (5 5)) = Vet

13



Theorem 1.10. With the notation above, the packet 114(G) is (Hy, x ® &4)-distinguished
(i.e. my(m, x) # 0 for some m € I14(G)) only if I1,(G") is distinguished by the Shalika model

(H/7 X/ ® 5/)
Remark 1.11. By Theorem we know that the packet I14(G) is (Hy, x®E&.)-distinguished
if and only if it is (H_, x ® &_)-distinguished.

Our next result for the unitary Shalika model is to compute the summation of the multi-
plicities over certain discrete L-packets. Assume that I14(G’) is distinguished by the Shalika
model (H', X' ® ¢'). By Corollary 1.1 of [25], II,(G’) is of the form (x” is a character of E*

with x' = (x")?)
(G @ (x"odet) ™ = (1 X -+ x 1) X (01 X 7)) X =+ X (0 X O,})
where

e 7, is a discrete series of GLa,, (F) that is conjugate self-dual, self-dual and of symplectic
type. In particular, a; is even.

e 0, is a discrete series of GLy,(E) that is conjugate self-dual, but NOT self-dual.

e 7;,0; are all distinct.

o S a4 +2 >y by =2n.

We will consider the special case when m = 0. The general case will be consider in our
future paper. When m = 0, I14(G’) appears discretely in the L?-space of the Shalika model.

Theorem 1.12. With the notation above, we have

Z m-i-(ﬂ—?X) = Z m_(T(,X) = 21_1'

7T€H¢(G) 7T€H¢(G)

The idea to prove our main theorems for the unitary Shalika model (resp. the Galois
model for classical groups) is by comparing the simple trace formula of the unitary Shalika
model (resp. the Galois model for classical groups) with the twisted simple trace formula
for the Shalika model (resp. Galois model for general linear groups), we refer the reader to
Section 8 (resp. Section 9) for details.

In our next paper, we will prove the spectral side of the trace formula in the general case
and we will use it to compute the multiplicity of all the discrete series for the Galois model
for classical groups and the unitary Shalika model.
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1.2 Organization of the paper

In Section 2, we introduce basic notations and conventions of this paper. This include some
extended discussions of twisted weighted orbital integrals, germ expansions and the twisted
local trace formula for strongly cuspidal functions.

In Section 3, we introduce the notion of coregular varieties and we will have an extended
discussion of symmetric varieties.

In Section 4, we will introduce certain (:-)weighted functions associated to singular
semisimple elements and we will prove an integral formula of the regular germs of quasi-
characters. We will also prove a descent formula for the (-weighted functions which will be
used in later section.

We prove a special case of the spectral expansion of the trace formula in Section 5 and
in Section 6 we will prove the geometric expansion.

In Section 7 we will discuss our first two applications of the trace formula, namely a
simple trace formula for strongly cuspidal functions and a multiplicity formula.

In Section 8 and 9 we will discuss another two applications of the trace formula. In
Section 8 we will prove our theorems for the unitary Shalika models and in Section 9 we will
prove our theorems for the Galois models of classical groups.

In Appendix A we will prove some results regarding finitely generated convex sets and in
Appendix B we will prove the Howe’s conjecture for twisted weighted orbital integrals. The
results in the two appendices will be used in Section 4 in our proof of the integral formula
of the regular germs of quasi-characters.
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2 Preliminaries

Throughout the paper, F' will be a non-Archimedean local field of characteristic zero with
normalized absolute value |.|. Unless otherwise specified, all the groups and varieties that we
will consider are implicitely supposed defined over F'. We fix a non-trivial additive character
¢ : F — C* and, whenever convenient, we will also fix an algebraic closure F of F.

For V' a real vector space, we write V* for its dual and we denote by Ve = V ®g C its
complexification. Moreover, iV C V¢ will stand for the real subspace of purely imaginary
vectors.
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For two complex valued functions f and g on a set X with g taking values in R, we
write that

fz) < g(x)

and say that f is essentially bounded by g, if there exists a constant ¢ > 0 such that for all
xr € X, we have

|f(2)] < cg().
We say f and g are equivalent, which is denoted by

fz) ~ g(x)

if f is essentially bounded by ¢ and g is essentially bounded by f.

2.1 Groups

In this section, we fix some notation relative to the datum of a linear algebraic group G
defined over F. First, we write rk(G) for the (absolute) rank of G, N¢ for the unipotent
radical of G and we will denote Lie algebras by the corresponding gothic letter such as g for
G. We will also write g* for the dual of g. The exponential map, which is well-defined on
some neighborhood of 0 in g(F') to G(F'), will be denoted by exp. For every g € G, we write
Ad, both for the adjoint action of g on G and g. We also denote by X*(G) the group of
algebraic characters G — G,,, defined over F' and by Ag the maximal central split torus in
G/Ng. We set
Ag = Hom(X*(G),R) = Hom(X*(A4g), R)

and we let as usual Hg : G(F) — Ag be the homomorphism defined by (Hg(g), x) =
log|x(g)| for every (g,x) € G(F) x X*(G). We denote by G,s and gys (resp. Gieg and
Oreg) the open subsets of regular semi-simple elements (resp. regular elements) in G and
g respectively. The notation dg will stand for the modular character of G(F') that is the
character dg : G(F) — R defined by d¢(g) = |det Ad, |4|. For every semi-simple element
X € g(F), we let

DE(X) = [detady lygy

be its Weyl discriminant, where ad x stands for the adjoint action of X on g and gx for the
centralizer of X. The Weyl discriminant D%(g) for g € G semi-simple is defined in a similar
way.

When G is connected and P C G is a parabolic subgroup, there is a natural splitting
Ap = Ag® AS and we can define as usual subsets AG c (AS)*, ASY ¢ A%, that we call by
abuse of terminology the sets of simple roots and coroots associated to the pair P C G, see
e.g. [23, §1.2]. When G is moreover reductive and clear from the context, we will sometimes
drop the superscript.
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2.2 Twisted spaces

In this paper, we will freely use the notion of twisted space due to Labesse as well as corre-
sponding terminology. The main references are [23] and [28] but for the reader’s convenience
we recall most of the definitions here. _

A twisted space is a pair (G,G) where G is a group and G is a set equipped with two
commuting left and right actions

(2.2.1) GxGxG—G, (9.7.9)~ 919

each making G into a principal G-torsor and such that G # (). Similarly, a twisted space
over F is a pair (G, é) where G is an algebraic group over F' and G is an algebraic variety
over F' equipped with two commuting regular actions as in both making G into a
principal G-torsor and such that G(F) # §. We moreover say that (G, G) is reductive (resp.
connected) if G is so.

Let (G, é) be a twisted space over F with G linear. For every v € G, we denote by Ad,
the unique automorphism of G such that

v9 = Ad,(g), for every g € G.

We will denote by 6 the outer automorphism of G over F' (i.e. the element of Autz(G)/Ad(G(F)))
associated to Ad, for any v € G(F) (it does not depend on this choice). We will also write ¢

for 6 when the twisted space G is clear from the context. When 0z, or Ad,, induces natural
automorphisms on related objects these will invariantly be denoted by the same letter. For
example, 5 induces an automorphism of Ag and Ag. We write Az for the connected com-
ponent of the subgroup of fixed points A%. The following condition on 5 will be assumed
throughout:

(2.2.2) the outer automorphism 6 is of finite order.

Note that if G is reductive, this is equivalent to the restriction 6 |z to the center of G
being of finite order. We set
Az = Hom(X*(A45), R).

Then, Az can naturally be identified with the subspace of fz-invariants in Ag and due
to condition ([2.2.2)) it admits a unique fz-stable complement so that we have a canonical
projection Az — Agz. We denote by

HéG(F)%.A@

the composite of Hg with that projection and by Ag » the lattice Hz(G(F)). We also set
Z’AéF = Hom(A@,F, 2im7Z), a subgroup of Z'A*va, and iA*é,F = z'A"va/iAVé’F. We also denote by

05 the “modular character” of G(F) that is the function 0 G(F) — R defined by

55(7) = ldet Ad, ]
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For a subset X C G, the normalizer of X in G is the subset of v € G such that
Ad,(X) = X. We denote by Normg(X) the normalizer of X in G and by Normg - (X) =
Normg(X) NG(F). Similarly, for a subset X C G we write Normg(X) (resp. Zg(X)) for the
normalizer (resp. the centralizer) of X in G that is the subset of z € G such that z7 !Xz = X
(resp. x~'yx = v for every v € X) and we set Normg(p)(X) = Normg(X) N G(F) (resp.
Zawr)(X) = Zg(X) N G(F)). When v € G, we simply write Zg(7y) for Zg({y}) and we
denote by G, the neutral component of Z; (7).

‘We henceforth assume that G'is connected and reductive. A twisted parabolic_subspace
of G is the normalizer P = Normg(P) of a parabolic subgroup P C G satisfying P(F) # 0
(or equivalently P( ) # (). Note that the parabolic subgroup P is entirely determined by
P and that (P, P) is a twisted space over F. If P is a twisted parabolic subspace of é, a
Levi component of P is the normalizer M = Normp(M) in P of a Levi component M of
P. Note that the condition P(F) # § implies M( F) # 0. A twisted Levi subspace of G is
a Levi component M of some twisted parabolic subspace P of G. Note that if P C G is a
parabolic subspace and M C Pis a Levi component of it, we have (canonically) Ay = Ag

and Az = Ap.
Let M C é be a twisted Levi subspace. We denote by P(M) (resp. F(M )) the set of

twisted parabolic subspaces with Levi component M (resp. containing M ) For Q € F (M )
we have a natural decomposition

_ Ao A2
Agp = Az & AL

We will also write Ag for A% for every P € P(M).
If M C G is a Levi subgroup (not necessarily corresponding to a twisted Levi subspace
of G), we set

WE(M) = Normgr)(M)/M(F) and WE(M) = Normgp, (M)/M(F).

Note that if W& (M) # 0 then (WS (M), WE(M)) is a twisted group.

Two twisted parabolic subspaces P and @ of G are called opposite if the corresponding
parabolic subgroups P and @ of G are so or, equivalently, if the intersection P N Q is a
common Levi component of P and Q. If M C G is a twisted Levi subspace and P € P(M )

there exists a unique Q e P(M ) which is opposite to P.

There is also a notion of twisted mazximal torus: it is a subvariety T C G defined over
F for which there exists a Borel pair (B,T), not necessarily defined over [, such that
T = Normg(B) N Normg(7') and T( )£ 0. If T C G is a twisted maximal torus, the torus
T C G is uniquely determined by T and is defined over F. Moreover, the pair (7 T) is a
twisted space over F'. We say that a twisted maximal torus TcCGis elliptic if Az = Ag.

An element v € G is semisimple if Ad, normalizes a Borel pair (B,7') (not necessarily
defined over F'). The subset of semisimple elements is denoted éss. Also, we say that v € G
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(resp v € CNJ(F )) is regular semisimple (resp. regular elliptic) if the neutral component G,
of its centralizer Zg(7) is a torus (resp. a torus anisotropic modulo A). We denote by Ghs
(resp. G(F)e) the open subset of regular semi-simple elements in G (resp. of regular elliptic
elements in G(F)). We write Dey(G) for the set of G(F)-conjugacy classes in G(F)q and for
v € CNJSS(F ) we define its Weyl discriminant by

D(v) = |det(1 — Ad,) |g/g, |

where g, stands for the Lie algebra of G,.

We henceforth fix a minimal parabolic subgroup P, of G' with a Levi decomposition
Poin = MpinUnin and we let Py, = NormG(Pmm) Myin = Normp (Mmm) Then, P, is a
minimal parabolic subspace of G and Mmln a Levi _component of it. We denote by L( mm)
the set of twisted Levi subspaces of G containing Mmm and for every M e L( mm) we set

WM = Normus(ry (Muin(F)) /Muin(F).

We also fix a special maximal compact subgroup K of G(F') in good position relative to
Mmin-

2.3 Log-norms and Harish-Chandra = function

In this paper we shall freely use the notion of log-norms on algebraic varieties over F' as
defined in [5, §1.2], which are simple variations of the norms introduced by Kottwitz in [22),
§18]. For every algebraic variety X over I, we will fix a log-norm ox on it and, for C' > 0,
we denote by 1,,<¢ the characteristic function of the set

{r € X(F)| ox(x) <C}.

In particular, we have log-norms og and oz on G and G respectively that for simplicity

we will both denote by . For any given base-point 7o € G(F) we have o(gvy) ~ o(g) for
g € G(F). Moreover, it will be convenient to assume, as we may, that ¢ is left and right
K-invariant for some chosen special maximal compact subgroup K C G(F).

Lemma 2.1. Let W, Z be two algebraic varieties over F and f : W — Z be a proper
morphism. Then, we have

(2.3.1) oz(f(z)) ~ ow(x), for v € W(F).

Proof. By Chow’s lemma [32) [Tag 0202], there exists for some n > 0 a closed subscheme
W' — Z x P with a surjective regular morphism 7 : W' — W such that the following
diagram commutes

W—W——7ZxP"

N A
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where pry : Z x P* — Z stands for the first projection. It is relatively easy to check that
opn(y) ~ 1, for y € P"(F)
and therefore
0 (2,y) ~ 05(2) + 0w (y) ~ 04(2), for (z,y) € Z(F) x P"(F).

As W' — Z x P" is a closed immersion, it follows that

oz(f(w(2)) < ow(m(z') < ow(2') ~ ozxen () ~ 02(pri(2')) = o2(f(x(2"))), 2" € W(F).

In particular, oz (f(n(2'))) ~ ow(n(2’)) for 2 € W'(F). As m is surjective, this implies
@31). 0

We also denote by 2%, or simply by =, the basic spherical function of Harish-Chandra i.e.
the normalized spherical matrix coefficient (with respect to some special compact subgroup
K C G(F)) of the unramified representation with trivial Satake parameter. Fixing a base-

point 7o € G(F), we also define a function Z¢ on G(F) by

=%(gn0) = =°(g), for g € G(F).

Standard properties of ¢ have obvious analogs for =6 e.g. we have (see [33 proposition
11.4.5]):

(2.3.2) Let P = MUp be a parabolic subspace of G. Then, for every d > 0, there exists
d’ > 0 such that

513(7%)1/2/ Eé(mu)a(ﬁzu)_d,du < EM(ﬁz)a(ffL)_d, for m € M(F).
Up(F)

From the ‘doubling principle’ [33, lemme I1.1.3] we also deduce:

(2.3.3) For every compact-open subset wg of G(F) we have

| @m0 @z=°0), tor 2y € G(P)

G

We let C(G(F)) be the Harish-Chandra Schwartz space of G(F) i.e. the space of functions

f : G(F) — C that are left and right invariant by some compact-open subgroup of G(F)
and such that, for every d > 0, we have

sup |f(7)|29(7) o (7)? < oco.
YEG(F)
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For every compact-open subgroup J C G(F), the subspace C(J\G(F)/.J) of J-biinvariant
functions is naturally a Fréchet space, the topology being associated to the seminorms defined
by the above supremum for every d > 0, and C(G(F)) = |J,C(J\G(F)/J) is a strict LF

space. Moreover, the subspace C°(G(F)) of locally constant compactly supported functions
is dense in C(G(F')). The Harish-Chandra Schwartz space C(G(F)) of G(F) is defined

similarly (it suffices to replace 2% and oz by Z¢ and o¢ in the definition). We denote
by °C(G(F)) the subspace of cusp forms i.e. of functions f € C(G(F)) such that for every
proper parabolic subgroup P = MUp C G,

/ f(zu)du =0, for every x € G(F).
Up(F)

2.4 Measures

Let T be a torus (over F'). We equip T'(F') with a Haar measure as follows: if 7" is split we
choose the unique Haar measure giving to the maximal compact subgroup 7'(F'). measure
one, in general we endow T'(F) with the measure such that its quotient by the one just
defined on Ar(F) gives T(F)/Ar(F) = (T/Ar)(F) a total mass of one.

Let T C G be a twisted maximal torus. The neutral connected component T%° of the
subgroup T? of O#-fixed points is a torus and therefore, T%9(F) is already equipped with a
measure. Let T(F)/(1 — )(T(F)) be the quotient of T(F) by the adjoint action of T'(F).
We endow T(F)/(1 — 6)(T(F)) with the unique left and right T'(F)-invariant measure such
that for every v € T(F ), the application

T%(F) = T(F)/(1 - 6)(T(F))

t— vt

is locally measure preserving. Set Treg(F) = T(F) N érs(F). Then, Treg(F)/(l —0)(T(F))
is an open subset of T(F)/(1 — 6)(T(F)). To simplify the notation, we will use f/g (resp.
T(F) j0, Trey(F) o) to denote T/ (1—O)T (resp. T(F)/(1—6)(T(F)), Teeg(F)/(1—0)(T(F))).

We endow the real vector spaces Ag and Az with the unique Haar measures for which
the lattices Hg(Ag(F)) and Hg(Ag(F')) are of covolume one. Through the exponential map,
iAg and i A% can be identified with the duals of Ag and Az. We equip them with the dual
measures. N

Let Tan(G) (resp. T(G)) be a set of representatives of the G(F')-conjugacy classes of
clliptic twisted maximal tori (resp. twisted maximal tori) in G. We equip the set Toy(G) of
regular elliptic conjugacy classes in G (F') with a measure which is characterized by:

e = S weDrme eyt [ st

- ~ Treg(F
TeTa(0) (s

for every “reasonable” function ¢ on it.
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These conventions also apply to the parabolic and Levi subgroups (resp. parabolic and
Levi subspaces) of G (resp. of G). In particular, the definition of the measure on Ton(G)
was chosen so that Weyl’s integration formula for G(F') (see [28, §4.1]) takes the following
form:

(2.4.1) /G L= S e /

_ D%(y) / flg~ vg)dgdy
en | P (31) (FN\G(F)

for every f € LY(G(F)) where in the above formula, we have chosen a Haar measure on
G(F) from which we deduce a measure on G(F) by translation by any element v € G(F).

For P C @ (resp. PcC Q) two parabolic subgroups of G (resp. two parabolic subspaces
of G) we equip B

AP = Ap/Aq (resp. AL = Ap/Ag)

with the quotient of the two Haar measures just defined.

All other groups considered will be equipped with Haar measures whose normalization
does not really matter. However, for some intermediate steps, it will be convenient to assume

that for P = MUp a parabolic subgroup of G, the Haar measures are chosen so that we have
the following integration formula:

/G(F)f (9)dg = /M(F) /U . /K f (muk)dkdudm.

Finally, for a Levi subspace M of G, we endow M (F) with the unique (biinvariant)
measure such that for every v € M (F') the bijection m € M(F') +— ym € M(F') is measure-
preserving.

2.5 Estimates

Let T C G be a twisted maximal torus. In this section, we denote by 6 = 07 the restriction

of Ad; to T for any t € T (it does not depend on t). As in the previous section, we write
Treg(F) o = Treg(F) /(1 = 0)(T'(F)) for the quotient of Ti.,(F') by the adjoint action of T'(F')
and we denote by Ty = T'/(1 —0)T the categorical quotient of 7" by the adjoint action of T'.

Lemma 2.2. We have

£ " log D¢
nf oa(tyg) < oglg™'vg) + llog DY(v)|

for (g,7v) € G(F) x T}eg(F).

Proof. Let Y = ﬁeg xT G be the quotient of T}eg x G by the free action of T given by
t-(v,9) = (tyt~1,tg). Then, the regular map

Y = G, [1,9] — g g
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is finite. Thus, by [22, Proposition 18.1(1)], we have

(2:5.1) ov(7,9) ~ 0g.(97'9) ~ o5(9~'vg) + log DY (y)|, for [,9] € Y(F).
On the other hand, the regular map Y — T\G, [v, g] — T'g, implies that

(2.5.2) ona(9) < oy(v,9), for [v,g] € Y(F).

Finally, by [22, Proposition 18.3], we have
(2.5.3) onal(g) ~ inf o(tg), for g € G(F).

teT(F)
The lemma readily follows from the combination of (2.5.1)), (2.5.2) and ({2.5.3]). O

For every positive function f on G(F) and v € ﬁeg(F ) we set
Ja(r. f) = DG(t)m/ Fg™vg)dg
F(FN\G(F)

whether the integral is convergent or not. Note that this expression only depends on the
image of v in Tieg(F') 0.
Proposition 2.3. For every d > 0 there exists d' > 0 such that the orbital integral J5(, Eéaé

is convergent for all v € ieg(F) and we have

sup O'T/e(’}/)dj (v,ZGaéd) < 00.
2eTees(F) g

Proof. Let M C G be the centralizer of Az. Then, M is a twisted Levi subspace. Choose
a parabolic subspace P = MUp € P(M). By the Iwasawa decomposition G(F) = P(F)K
and a standard Jacobian computation, up to a constant depending on measures, for every
positive function f on G(F') we have

Je(n ) =I5, [p)
where f5 is the function on M (F) defined by

fa(m) = 65(m)Y? F(k muk)dudk, m e M(F).
F U
P

Therefore, by ([2.3.2), up to replacing G by M we may assume that Az = Ag ie. that T

is elliptic in GG. The statement of the proposition can also be readily reduced to the case
where Az = 1 which we assume from now on. Then, as T is elliptic the quotient T'(F') ¢ is

compact and we just need to show the existence of dy > 0 such that
sup J@(v,Eéaédo) < 00.
v€Treg(F) /o

Assume for one moment the following claim:
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(2.5.4) There exists dy > 0 such that for almost all v € ﬁeg(F )0, the integral defining

(~ =G ;—do
Ja(v,E%0=%) converges.

Then, we can conclude as in [12, Corollary 2] using Howe’s conjecture for twisted groups
[28, Chap. 2, théoreme 2.1]. Indeed, let (£2,,),>1 be an increasing and exhaustiveﬁ sequence

of K-biinvariants compact subsets of G(F) and set f, = ]_QnEéO'édO. Then, (f,) is an
increasing sequence of functions in Co(K\G(F)/K) converging pointwise to Eéaédo hence
J&(7, fn) converges to J5(7, Eéaédo) for all v € ﬁeg(F)/g (whether the last integral is finite

or infinite). However, by [28, Chap. 1, 4.2 (1)], the functions v € ﬁeg(F)/g = Jz(7, fn) are
locally constant and bounded whereas by [28, Chap. 2, théoreme 2.1] (“Howe’s conjecture”
for the twisted group G) the vector space they span is finite dimensional. It follows that the

function v € ieg<F)/9 = Js(7, Eéaédo) has the same properties (i.e. it is locally constant

and bounded) and this proves the proposition.

It remains to show . Set T? for the subgroup of #-fixed points in 7' (recall that
6 = 0z). Let v € Treg(F) and let (T?) be the inverse image of érSbe the morphism
t € T? — ~t. Then, the map t € (T%)(F) — (1 — 0)(T(F))) € Tree(F)so is a local
homeomorphism. Therefore, by Fubini, we just need to check that for every compact-open
subset w C (T%)'(F), the integral

(2.5.5) [ [ = tgoats ate) dgde
w JG(F)

converges. First, we show that
(2.5.6) oc(9) < oz(g 'tg), for (g,t) € G(F) X w.
The morphism
(2.5.7) (T x T\G — Gy, (t,9) — g '2tg
is finite étale. Therefore, we have
crna(9) + ooy (1) < og_(97"tg) ~ o5(g ™ vtg) + [log DE (1))

for (g,t) € G(F) x (T?)'(F). On the other hand, since w is compact, we have o(poy (t) ~ 1
and |log D% (yt)| ~ 1 for t € w. Combining this with the previous inequality, gives

oraa(g) < U@(g_lvtg), for (g,t) € G(F) x w.
Moreover, by [22, Proposition 18.3] we have

orna(g) ~ teingl(cF) oa(tg) ~ oa(g), for g € G(F),

“Meaning that G(F) = U, Q.
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(Recall that the twisted torus 7 is elliptic and Ag =1 hence T(F) is compact.) and this

implies (2.5.6)).
We now consider the integral (2.5.5)). By (2.5.6) it is essentially bounded by

/ / G tg)oc(g) 0 dgdkdt

which can be rewritten as

/// Eé(g_lk_lvtkg)aé(g)_dodgdk;dt.
wJK Jar)

Since the map (T?%)(F) x T*(F)\G(F) > (t,g) — g 'ytg € G(F) is a local F-analytic
isomorphism, the last expression above is bounded up to a (multiplicative) constant by

/ / (g7 G9)o5(g) P dgdy

for some compact-open subset wg of G(F (F ) Furthermore, by (2.3.3]), we have f g 199)dg <
=%(g)? for g € G(F) and the integral (2.5.5)) is therefore bounded up to a constant by

/ =%(9)%0c(g)" " dg
G(F)
which is well-known to converge for dy sufficiently large, see [33, lemme I1.1.5]. ]

2.6 Quasi-characters

Following [36] §1.6], by a quasi-character on G(F) we mean a function © : G(F) — C such
that for every semisimple element x € G (F'), there is a local expansion

(2.6.1) O(zexp(X)) = Y coo(r)jy(0,X)

OeNil(g3)
valid for X € g, ,s(F) sufficiently close to 0 and where
e Nil(g}) stands for the set of nilpotent G, (F)-coadjoint orbits in gi(F);
e coo(z) € C for every O € Nil(g?);

e For O € Nil(g}), j ( .) is the unique locally integrable function on g,(F’) which is
locally constant on g, rs(F) and such that

gx(F
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for every ¢ € C°(g.(F)), where @ € C°(gi(F)) denotes the Fourier transform
VR o) = [ e0u(x v
gz (F

and dZ is the Kirillov-Kostant G, (F')-invariant measure on O deduced from the canon-
ical symplectic form on O and the self-dual measure on F' associated to ¢ (see [17]).

For 2 € G(F), we denote by Nil,e,(g%) C Nil(g?) the subset of regular nilpotent coadjoint
orbits.

Lemma 2.4. Let © be a quasi-character on G(F). The function

x € Gg(F) — Dé(x)l/2 Oel\rlr_llax(g*)|c@7o(a:)|
ireg (92

15 locally bounded.
Proof. Let x € éss(F ) be a semisimple element. By [I7, Lemma 3.2], we have
(0, 8X) = [t~ 4™ ©7%,(0, X)

for every O € Nil(g:), X € g..(F) and ¢ € F*2. Moreover, for X € g,,s(F) sufficiently
close to 0, we have

D%(z exp(X)) = DYz)D% (X) and D% (tX) = |t|*C=) D% (X)

for every t € F* where we have set 6(G,) = dim(G,) —rk(G;). As for every O € Nil(g}) we
have dim(O) < 6(G,) with equality if and only if O is regular, we deduce from the expansion

(2.6.1)) that for every X € g, .s(F) we have

lim Dz exp(tX))V20(zexp(tX)) = DE(2)2D%(X)? 3 co0(2)ju(0, X).
te %2 t—0 0Nl (g2)

Since the functions /j\w(O, .), O € Nil(g}), are linearly independent this implies

DY)?  max |coo(r)| < ¢(G,) limsup D(y)2|0(y)|
O€Nilyeg (g%) yGérS(F),y—m

where ¢(G,) > 0 is a constant that depends only on the isomorphism class of G,. By [17,
Corollary 6.3], the function (D%)/2@ is locally bounded and the lemma follows as there are
only finitely many isomorphism classes of centralizers G, for x € Gy (F). O
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2.7 Representations

In this paper, by a representation of G(F') we mean a pair (m, V) where V, is a complex
vector space and 7w : G(F) — GL(V;) is a smooth representation of G(F') on V,. Most
of the time we will omit the space V, and just write = for a representation of G(F'). For
A € Af ¢, we denote by 7+ my, where my(g) = MG (g), the twisting operation by A
on representations of G(F).

Let 7 be a representation of G(F). We denote by 7V the smooth contregredient of 7
realized in the usual way on the space V. of smooth functionals on V. We denote by (.,.)
the canonical pairing on V, x VY. We say that 7 is tempered if it is of finite length and for
every (v,v") € V; x V. there exists a constant C' > 0 such that

(7(g)v,v")| < CEC(g), for every g € G(F).

We write II(G) (resp. Temp(G)) for the set of isomorphism classes of unitary square-
integrable (resp. tempered) irreducible representations of G(F'). If P = MU is a parabolic
subgroup of G and ¢ is a representation of M(F), we let I§(co) be the smooth normalized
parabolic induction of o to G(F). When o € Temp(M), we write I$;(o) for the isomorphism
class of I§ (o) where P € P(M) (it does not depend on this choice). Define Temp,,,(G) as
the set of isomorphism classes of representations of G(F) of the form I{;(c) where M is a
Levi subgroup of G and ¢ € IIo(M). According to Harish-Chandra, every m € Temp(G) can
be embedded in I, (o) for such a pair (M, o) which is moreover unique up to conjugacy by
G(F). Thus, we get a map

prg : Temp(G) — Temp, 4(G).

We equip Temp,, 4(G) with a topology that can be described as follows. Let M be a Levi
subgroup of G and o € II,(M). Then, the set

O = {I{ (o)) | X € 143}

is a connected component of Temp, 4(G) and the topology on O is the quotient topology
inherited from 4.4}, via the surjection

(2.7.1) A€ iy — IS (o)) € 0.

We say that a function z : Temp, 4(G) — C is smooth if for every pair (M, o) as before, the
composition of z with the map gives a C'*° function on iA4j}, in the usual sense. We
denote by C°°(Temp,,4(G)) the vector space of smooth functions on Temp,,4(G). It is an
algebra for pointwise multiplication. Moreover, by the description of the image by Fourier
transform of the Harish-Chandra Schwartz space C(G(F')) [33], there exists an action

(2.7.2) C(Temp,,q(G)) x C(G(F)) — C(G(F)), (2, f)—z*f
of C*(Temp,,4(G)) on C(G(F')) which is characterized by
(2.7.3) w(zx f) = z(m)w(f)
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for every (m, z, f) € Temp;,4(G) x C(Temp,,4(G)) x C(G(F)). See also [31] for a different
approach where C'*°(Temp,,4(G)) is shown to coincide with the so-called tempered Bernstein
center of G(F).

The outer automorphism 6 of G(F') induces a bijection 6 : Temp,, 4(G) — Temp, 4(G).
We denote by Temp,,4(G)? the subset of fixed points.

2.8 Twisted representations

A (smooth) representation of the twisted space G(F) is a pair (m,T) where  is a represen-
tation of G(F) and 7 is a map G(F) — GL(V;) satisfying

T(gvg) = m(g)F()7(g), for every (g,7,¢') € G(F) x G(F) x G(F).

Most of the time, we will simply refer to a representation of é(F ) by the map 7, the
underlying representation (7, V) of G(F') being understood. Note that if 7 is a representation
of G(F) then so is & for every ¢ € C*. Moreover, a representation 7 of G(F) extends to a
representation (7, %) of G(F) (although not uniquely) if and only if its isomorphism class is
fixed by the outer automorphism 6.

Let 7 be a representation of G(F). We say that 7 is G-irreducible if 7 is irreducible in the
usual sense i.e. if there is no nontrivial G(F')-invariant subspace of V. We also say that 7 is
admissible (resp. tempered) if 7 is so. We denote by 7" the smooth contragredient of T that
is the representation of G (F) on the space V. of smooth functionals on V; characterized by

F)o, 7 ()Y) = (v,0Y), for (v,v,0Y) € G(F) x V, x V.".

Assume that 7 is of finite length. For every f € C*(G(F)), we define as usual an
operator 7(f) on V, characterized by

281)  GF(Hv,eY) = /@ J FOVER ), for (,0,0%) € G(F) x V, x V.

These operators are of finite rank and, according to [I1, Theorem 3], there exists a quasi-
character Oz on G(F) (in the sense of Section , called the Harish-Chandra character of
7, such that

(2.8.2) Te7(f) = | f(9)®x(g)dg, for every f € C(G(F)).
G(F)
For ease of notation, we will denote by
czo(x) = co. 0(x), for every x € Gy(F) and O € Nil(g,),

the various coefficients of the germ expansions of ©z. If moreover 7 is tempered, the definition
(2.8.1)) of the operator 7(f) still makes sense and the formula (2.8.2) is still valid for f €
C(G(F)).
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Let P = MU be a parabolic subspace of G and G be a representation of M(F) We

denote by Ig(&) the normalized parabolic induction of o i.e. the representation of é(F ) on
the space of smooth functions e : G(F) — V, satistying

e(mug) = 0p(m)"?a(m)e(g)
for (m,u,g) € M(F) x U(F) x G(F) the action of G(F) being given by
(I3(1,3)e)(9) = 65()5 (7 )els)

for (v,9) € G(F) x G(F) where gy = v'¢' is any decomposition with (7', ¢') € M(F) x G(F)

(the right hand side is readily seen to be independent of this decomposition). Note that the

underlying representation I§ (o) of G(F) is the usual normalized parabolic induction of o.
Let M C G be a Levi subgroup and o € II5(M). We set

Normg 1y (0) = {n € Normg ;- (M) | 0 0 Adj = o},

Normg gy (o) = {n € Normgp)(M) | 0 0 Ad,, ~ o}
and B
W (o) = Normgp (0)/M(F), W9(o) = Normgr)(o)/M(F).
Assume that WE(o) # . Then, Wé(a) is a torsor under W (o) both for left and right mul-

tiplication. Let P € P(M). Asin [28, Chap 1, §2.8], and making auxilliary choices (including
a regularization of standard intertwining operators), we can define for each w € W% (o) an

extension of 1€(0) to a representation IS(c)(w,.) of G(F). This extension depends on the
auxilliary choices only up to a nonzero scalar. Let W (o) be the distinguished subgroup

of elements w € W& (o) such that for each w € Wé(a) the representations I§(o)(w,.) and

IS (o) (ww,.) are the same up to a scalar. The twisted R-group of (M,o) is the quotient
Ré(a) = Wé(a)/WOG(U). We also denote by RY(c) = WY (o)/WE (o) the corresponding
R-group so that (RG(U)/,]\%E(J)) is a twisted group. To every r € Ré(a), we associate the
twisted representation I§(o)(r,.) = IS(0)(i,,.) where @, € WS(o) is some chosen lift of
r. This representation still depends, up to a scalar, on various choices but, henceforth, we
will always assume that all such choices have been made and we will denote its isomorphism

class by I§;(c)(r,.) (which actually do not depend on P, at least up to a scalar). Note,

however, that the isomorphism class of the twisted representation I§;(co)(r,.) @ I (o)(r,.)"

of G(F) x g (F) is completely canonical and independent of all the choices involved.
Let E(G) be the set of G(F')-conjugacy classes of triples (M, o,r) where (M,o) are

as above and r € Ré(a) is such that the character of I{/(o)(r,.) (which, again, is only

well-defined up to a scalar) is nonzero. For 7 € E(G) represented by a triple (M,o,r),

we will write 7, for the twisted representation I{,(o)(r,.). Actually, for 7,7/ € E(G) the
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representations 7, and 7. are isomorphic if and only if 7 = 7’ (this follows e.g. from
[28, Chap. 1, proposition 2.9]) and we will also sometimes identify E(G) with the set of

isomorphism classes {7, | 7 € E(G)}. Note that for every 7 € E(G) the isomorphism class

of the underlying representation 7 belongs to Temp;, 4(G)?.

Each w € Wé(a) induces an automorphism of A;; (induced from Ady for any lifting
n e G(F) of @). Let ng(a) be the subset of w € Wé(a) such that Ay, = Ag. Following
28, §2.11], we define Egiso(G) (resp. Een(G)) to be the subset of triples 7 = [M, o,r] € E(G)
such that W (o)r N wé (0) # 0 (resp. W§ (o) ={1} andr € wé (0)). We also introduce

reg reg

the further subset Fy(G) of triples 7 = [M,0,r] € E(G) such that Wé(a) = ng(a). By

[28, lemme 2.11], we have E>(G) C Eui(G) C Euise(G).

Remark 2.5. The set E(G), Eqisc(G) and Ee(G) do not exactly coincide with the ones
defined in [28, Chap. 1, §2.9] but correspond rather to the sets denoted by E(G)/conj,
FEaisc(G)/conj and Eq(G)/conyg in loc. cit.

There is a natural action of i A% on E (G) given by A-[M, 0, 7] = [M, 05, 7] . This action

factors through iA% .~ and preserves the subsets Euisc(G), Een(G) and E»(G). Let J C G(F)
be a compact-open subgroup. Then, we have:

(2.8.3) the subset Edisc(é)“] of triples 7 € Edisc(é) such that the representation 7, admits
nonzero J-invariant vectors is finite modulo the action of iA%;

(see [28, Chap. 2, Proposition 2.2] for the case of Eq(G) the proof being entirely similar for
Eise(G))- B -

We equip Egisc(G) with the unique measure such that for every 7 € Egis(G), the twisting
map \ € i.A*é — A - 7 is locally measure preserving. Thus, denoting by Egis.(G) /iAg
the set of orbits in Eyis.(G) under the action of iAg, for every sufficiently nice function

("2 Edisc(é> — We have
/ _p(r)dr = Z |Stab(iAz~;F77-)]—1/ o(\-T)d\
Eaqisc(G) reEgc(G)/i A AL L

where we have denoted by Stab(iA% ,, 7) the stabilizer of 7 in i A% .

For 7 = [M,0,7] € Egsc(G), we set
(2.8.4) D(7) = |R%(0),| t|det(1 — r)

|A§I’_1

5Identifying E(CNT') with a set of isomorphism classes of tempered representations of CNT'(F) as before, this
action is also sending 7 to its “twist” by A but this twist is only well-defined up to a scalar (it requires
the choice of an extension to é(F ) of the unramified character associated to A e.g. through the choice of a
base-point).

In practice, we will only consider functions ¢ that are supported in a finite number of iA*é—orbits and

such that for every 7 € Eaisc(G), A € iA% — ¢(A - 7) is continuous (even C).
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where A%, = Ay, JAg and R%(0), denotes the centralizer of  in R%().

Lemma 2.6. Let 7 € E(G). Then, © € Ex(G) if and only if {m\ | A € iA%} is a connected

component of Temp;,4(G)°.

Proof. Let M C G be a Levi subgroup and o € II,(M). Then, 7 = I{/(0) € Temp,,4(G)’

if and only if Wé(a) # (). Assume this is the case and set m\ = I{;(0y) for every A € iA%,.
Then, it suffices to show that

TR iIAL = {m | A €A%}

is a connected component of Temp;,4(G)? if and only if Wé(a) = Wf;’g(a). This, in turn, is
an easy consequence of the following claim:

(2.8.5) There exists a neighborhood U C iAj, of 0 such that for every A € U, my €
Temp,,4(G)? if and only if there exists w € W (o) such that w\ = .

To prove the claim, we first observe that, for A € iA%,, my € Temp,,4(G)? if and only if there

exists w € Wé(M ) such that o) o Adg ~ o). Moreover, we can find a sufficiently small
WY (o)-invariant neighborhood U C A%, of 0 such that:

e For every A, u € U, we have o) ~ g, if and only if A = 1;
o for every W € WE(M)\ WC(s) and A € U, we have 0 0 Adg ¢ 0 @ U.

It follows that, for A € U, we have m, € Temp;,,4(G)? if and only if there exists w € W@(a)
such that oy o Adg ~ o) or equivalently, since o) 0 Adg ~ og-1, WA = .
m

We can extend to an action of C*(Temp;,q(G)) on C(G(F)) as follows. Choose
7 € G(F) and set, for every f € C(G(F)), f,(g9) = f(97) (9 € G(F)). This function belongs
to C(G(F)) and for (z, f) € C*(Temp,,4(G)) x C(G(F)), we define zx f € C(G(F)) by

(zx f)(g7) = (zx f;)(g), for g € G(F).

As the endomorphism zx commutes with right translations, this definition is easily seen to
be independent on the choice of v. Moreover, we have

(2.8.6) (22)x [ = 2% (¢« f)
and
(2.8.7) T(zx f) = 2(m)7(f)

for every (z,2') € C*(Temp,,4(G)) x C®(Temp;,4(G)), f € C(G(F)) and 7 € E(G).
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2.9 Orthogonal sets

Let (G, G) be a twisted space. We briefly recall the notion of (G M)-families in [23)].

Let M be a Levi subspace of G. Two parabolic subspaces P Q € P(M ) are said to be
adjacent if the intersection AIVDO AY 5 is a singleton {a% S Q}' If this is the case, the hyperplane
{X €iA | (a ;Q, X) = 0} is called the wall separating P and Q.

By definition (G, M)-orthogonal set is a family Y = (Y, 5)pepar Of points in Az such

that for every adjacent parabolic subspaces P, Q eP(M ), we have
Yz -Y5¢€ Ra%’ 5
where AX N —Aé = {a%)@}. We further say that ) is positive if
Yp—Y5€ R>0a%7©

for every pair of adjacent parabolic subspaces ]5 @ € P(N)

For a (G, M)-orthogonal set X' = (X5) pep(an we set

P/pPeP(M

d(X)= _inf inf (o, Xp), N(X)= sup sup (o, Xp)
PeP(M) “€Ap Pep(il) o€Ap

that we shall call the depth and the norm of X respectively.

Let ¥ = (Y5)pepan be a (@G, M) orthogonal set. For Q = LU, € F(M ) we denote by
Yy the projection to AZ of Y5 for any Pe P(M ) such that P~C Q (this p~rojection does
not depend on the choice of P). To ) we associate functions F%(., Y) on A% and complex

numbers vg(y) € C for every L € E(M) and Q € F(L) as follows:
~ a@ ~ ~
I9(H,Y) = (1) 72(H —Yp), He A%
PeF(L),PcQ

and

A= [ 1
20 = [ 1o

Here ?}g denotes the characteristic function of the cone in A characterized by (here w, is
the weight associated to «)

PH) =1 6 w,(H) > 0, Ya € AL,

When @ = é, we will sometimes drop the superscript @ If Y is positive, vg(y) is simply
the volume of the convex hull of (Y3)popz) peg- Once again, we will sometimes drop the
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superscript when @ = G. We will also use Tg to denote the characteristic function of the
cone in A characterized by

r2(H) =1 a(H) > 0, Ya € AL

Let K be a special compact subgroup of G(F). Using the Iwasawa decomposition G(F') =
P(F)K, for every parabolic subspace P C G, we can extend the homomorphism H 5 toa
map G(F) — Ap. Then, for every Levi subspace M c G and g € G(F), the family
Hyi(9) = (—Hp(9) pepp 18 a positive (G, M)-orthogonal set and we define

v2(g) = v&(Hylg)), for @ € F(M).

Let A C Ay, = Xu(Aj) ®z Q be a Z-lattice. We say that a (G, M)-orthogonal
set Y = (Yp)pepan 18 A-rational if for every P e P(M), we have Y5 € A and we say
that it is rational if it is A-rational for some lattice A. We denote by Ca(G, M) (resp.
Col(G, M )) the set of all A-rational (resp. rational) (G, M )-orthogonal sets. Then, a function
Y e Co(G, M) — f(¥) € C is said to be a unitary polynomial-ezponential if for every lattice
A C Ag; o we can find a family of polynomial functions @, , 5 € C[Ag;] for P e P(M) and

peN:= Hom(A, S') that are almost all equal to 0 and such that

FO) = > D Quas(Ypu(¥p)

PeP(M) peh

for every YV = (Y5) pep(n) € CA(é, M ). Moreover, we say that a unitary polynomial-
exponential function f is of degree at most r if so are the polynomials @, , 5 for every

lattice A C Az, PeP(M)and p€A.

2.10 Weighted orbital integrals

Let M be a Levi subspace of G, v € AA/f(F) NG,s(F) and Q € F(M). For f € C(G(F)), we
define the twisted weighted orbital integral

2 (v, f) = “Lyge(g)d
) /G W(F)\G(F)f(g 79)vi(9)dg

as well as its normalized version
Q NG N25Q
J]T/j(% f)=D"(v) q)]\;;(% ).

The above integral is absolutely convergent. More precisely, for T ¢ M a maximal
twisted torus, we claim:
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(2.10.1) There exist p > 0 and, for every d > 0, a continuous semi-norm v4 on C(G(F)) such
that

T2, )| < vl £)(1+ Nog DE))og,, (1)
for every v € ﬁeg(F) and f € C(G(F)).

Indeed, there exists p > 0 such that W2 (g) < og(g)? for g € G(F). As v]% is left invariant

by T(F), by Lemma this implies v (g) < (1 + |log Dé(’y)])paé(g_lvg)p for (g,7) €
G(F) x Treg(F ). The claim is now a stralghtforward consequence of Proposition

Now consider the case where G = H x H where H is a connected twisted reductive
space over F (w1th underlying reductive > group H). Let M, g be a Levi subspace of H. Then

M = My x My is a Levi subspace of G. Let y € MH(F) N Hy(F) and fi, fo € C(H(F)).
We set (following [28, Chap. 1, §4.8])

JA%H(% fi, f2) = fi(z ™ y) foly™ 7y)v~ (z,y)dxdy

/ Hy(F)\H(F)xHy(F)\H(F)

where the “weight” ’UM (x,y) is the volume associated to the positive (H M H) orthogonal

set
PH c P(MH) — H%H(y) — H§H<:Ij').

(Here Py denotes the unique parabolic subspace opposite to ]5H such that Py N Py = M )
By the descent formulas of [28, Chap. 1, lemme 5.4], we have

(2.10.2) J%H(V,flaﬁ) = Z d%H(LlaL2)J%;(7,f1)J%Z(77 f2)
Zl,ZQGZZ(MH)
where Q1, Qs are certain parabolic subspaces in P(L), P(Lg) respectively and d (Ll, L) is

a certain real numbers which is zero unless A]\H; = AH @A , and moreover d~ (H M H) =1

2.11 Twisted weighted characters

Let M be a Levi subspace of G, R € .7-"(]\7) and 7 be a tempered representation of M (F).
First assume that 7 is in “general position” (more precisely, this means that 7 is in some
open-dense subset of the family {r | A € iA%_}). Then, we define as in [28, Chap.1, §2.7] a
weighted character

f €C(G(F)) = JEF, f) = Te(ME)IS(F, 1))

where P is any chosen parabolic subspace in P(]Téf ) (the distribution J]%('ﬁ, .) does not depend
on this choice) and M%(W) is the operator on (the space of) I¢(w) associated to the (G, M)-
family of operators (M(m; A, Q))er defined as in loc. cit.. Similarly, for fi, fo € C(G(F))
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we set ~ B o
S i, f2) = Tr (MG e MISSE @F [1@ 1)),

where this time the operator M%(WV ® 7) is associated to the (G, M)-family

Q € P(M) » M(r" @ A, Q) = M(x"; A, Q) @ M(m; A, Q)

of operators on I§XS(7V @ 7). The genericity assumption on 7 is necessary for the above

(G, M)—famﬂies to be well-defined. However, the definitions of JJ\%(%, f) and ‘]1\%(%’ f1, f2)

extend to every tempered representation 7 thanks to the following property (see [28, Chap.
1, proposition 2.7]):

(2.11.1) The operator valued functions A — M%(ﬂ'/\) and \ — M%(W}\/ ®my) , a priori only

well-defined on an dense open subset of z'A’J“Tj, extend to smooth functions on all of
1AL
M

Finally, by the descent formula of [28, Chap 1, lemme 5.4], for every fi, fo € C (é(F )) we
have

(2.11.2) G )= S de(Ln )2 G 1)L f)
Z17Z2€£(M)

where él, @2 and d%(zl, Zz) are as in ([2.10.2)).

2.12 Twisted strongly cuspidal functions

We say that a function f € C(G(F)) is strongly cuspidal, if for every parabolic subspace
P = MUp of G and z € G(F), the function defined by

(2.12.1) 5 (1) 1= 5,;(7%)1/2/ Fe " Fuz)du, for m e M(F),
Up(F)
is identically zero. By a change of variable, this last condition is equivalent to

(2.12.2) / fxz 'u ' mur)du = 0, for every m € M(F) N Gw(F) and z € G(F).
Up(F)

Let f € C(G(F)) be a strongly cuspidal function. Let M be a Levi subspace and 7 €

—~

M(F) N Gyy(F). For Q = LU, € F(M), the weight v% is left invariant by Ug(F). Hence,
by (2.12.2)), we have

(2.12.3) J2(y, f) =0 unless Q = G.

Then, by the same argument as for [34, lemme 5.2|, it follows that the weighted orbital
integral ®7(7, f) does not depend on the choice of K.
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Let f € C(G(F)) be a strongly cuspidal function. We define a function © §on G,s(F) by

O7(7) = (1) 6@, (1.f), 7€ Gu(F),

where M () stands for the centralizer of A in € (it is the minimal Levi subspace containing
7), ac, = dim(Ag ) and ag = dim(Ag). It is proved in [36, proposition 1.7] that if f is
compactly supported then Oy is a quasi-character on G(F (F) in the sense of Section. We
extend this result to every strongly cuspidal function f € C(G(F)) in Section [2.13
Corollary |2 - For ease of notation, for every x & Gss( ), we set

Cf,O(x) = C@ﬁo(w), O e Nll(gx)a

| (see

for the coefficients of the germ expansion of © near .
Let again f € C(G(F')) be a strongly cuspidal function. Let M C G be a twisted Levi

subspace, 7 be a tempered representation of M(F) and Q € F(M). By [36, lemme 1.13),
we have

(2.12.4) J]%(%, f) =0 unless Q = G.
Still by [36], lemme 1.13], we also have

(2.12.5) Jé (7, f) = 0if 7 is properly parabolically induced (e.g. if 7 € E(M ) \ Een(M ))

On the other hand, for T € Eg (M), we set
O4(7) = (~1)w %6 JC (T, f), for T € Eu(M).

Recall that in Section , we have defined an action of C°(Tempy,,(G)) on C(G(F)).
We denote by C>(Temp,,,(G))? the subspace of §-invariant functions in C°°(Temp,(G)).

Lemma 2.7. Let [ € C(é(F)) and z € C"O(Tempind(é))e. Then, if [ is strongly cuspidal
S0 is zx f.

Proof. Let P = MUp be a proper parabolic subspace of G. By (2.3.2)), for every x € G(F)
the function *f ) defined by the integral (2.12.1)) belongs to C(M(F’)). For ¢ a tempered

representation of M (F), we set
8GN = [ 5@ [ e Tu)dud i, or (2.9) € GEF) % G(F).
M(F) Up(F)
This operator-valued function is the kernel of the operator Ig (o, f) in the sense that
1ENN@) = [ 1@ ey
P(FO\G(F)
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for every e € I§(0) and z € G(F). Note that
(2.12.6) 85, f)(@,2) = 5(°f ), for x € G(F).

Let d > 1 be the order of the outer automorphism 6 = 63; of M(F) and set, for o €
Temp;,q(M),

ed—l

o) =c@o’ ... Do
It is clear that o(f) extends to a twisted representation of M (F) and we will denote by

o(0) one such extension. It is well-known, and this follows e.g. from the Harish-Chandra-
Plancherel formula [33], that a function " € C(M(F)) is zero if and only if o(f") = 0 for
every o € Temp, 4(M). This implies a similar equivalence for M: a function f' € C(M(F))

S

is zero if and only if o(6)(f") = 0 for every o € Temp,,q(M). Therefore, from ([2.12.6) and
the definition of a strongly cuspidal function, we see that f is strongly cuspidal if and only if

Ig(;{vﬁ, f)(z,x) = 0 for every proper parabolic subspace P = MUp, every o € Temp,, 4(M)
and every x € G(F). The lemma is a direct consequence of this characterization since for
z € 0°°(Temp;4(G))? and every P and o as before, since z(I§;(c?")) = 2z(I§; (o)) for all i
(by #-invariance of z), we have

IZ(0(0), 2 % f) = 2(I5(0)) I5 (0(0), ).

]

2.13 Twisted local trace formula for strongly cuspidal functions

The twisted local trace formula of [28, Chap. 1, théoreme 5.1] is an equality of distributions

(2131) Js%ec(flyf?) = Jgom(flan)

where fi, fo € C2°(G(F)) and

(2132) ‘]S?Jec(flafZ) = Z ’/WMHWG‘1<—1)‘1M‘1§/L;

Me[’(ﬁmin)

D(r)JE (R, 1, fo)dr,

disc(M)

(2.13.3) I f) = 3 (WMWY (—1)wma / ISy, i, o).
ME»C(an) Ten(M)

We refer the reader to Section [2.8) for the definition of D(7) as well as of the measure on

E4isc(M) and to Sections [2.10{ and [2.11| for the definitions of J]%(% f1, f2) and JA%(%T, f1, f2)
respectively.

Remark 2.8. Despite the notation, the distributions Jgec and Jgom depend on the choice of

the pair (M, K) (at least up to conjugacy). They also depend, incidentally, on the choice
of the Haar measure on G(F).
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Propositi0n~2.9. The expressions (|2 ) and m are both absolutely convergent for
(f1, f2) € C(G(F))? and they define contmuous bilinear forms on C(G( )) x C(G(F)). In

particular, the identity m ) extends by continuity to all fi, fo € C(G(F)).

Proof. The same argument as in the non-twisted case [3, p.189] applies here noticing that
(2.10.1)) gives the required twisted analog of the estimates (5.7) of loc. cit.. O

Let f1,fo €C (é(F )) and assume that f; is strongly cuspidal. By the descent formulas
(2.10.2), (2.11.2) as well as the vanishing (2.12.3), (2.12.4)), (2.12.5) we then have

TSy, fi fo) = (—1)*579a D (1) Y205, (7) J5 (7, fa)
and N N
i ()50, (FY)J5(7r, fo) if T € Ean(M);
J%(%T> fla f2) =

0 otherwise,

for every v € Tey(M) and 7 € Eqie(M). Thus, in this case the distributions Jgee and JgGeom
can be rewritten as

ulfiof) = Y0 WMITE [ D8RR £

MEE( mm) Eell(M)
and
T fif) = 3 WM [ DO0) 05 () a0 )
MeEL(Min) Feu ()
- [ entstn
G(F)

where the last equality follows from the Weyl integration formula - Moreover, by

definition of the Harish-Chandra characters ©%_, the spectral side Spec( f1, f2) can be further
rewritten as

Tulfi )= Z el / D)8, (7)0s, () fa()drvr.

E(M) JG(F)

The above expression | being absolutely convergent (note that, by (2.8.3] - the support of
e /(7)) in Eo(M) is contained in a finite union of orbits under the action of iA%),
from (2.13.1]) we get the identity

fr st = [ > e [ o POBAEO )it

mm)

for every f1, fo € C (é(F )) with f; strongly cuspidal. Fixing f; and varying f2, we deduce:
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Proposition 2.10. Let f € C(G(F)) be a strongly cuspidal function. Then, for every
v € Gs(F), we have

@14 o= X WMFOT [ D@ E)er ()dr
Vel (Mo Een(M)
e['(Mmln)
where the right hand side is absolutely convergent.
As a corollary, we can now show the following extension of [36, proposition 1.7].
Corollary 2.11. For f € C(G(F)) strongly cuspidal, the function Oy is a quasi-character.

Proof. This is a direct consequence of Proposition combined with the following facts
(valid for every M € L(Mpn)):

e For every 7 € E.y(M), Oz, is a quasi-character [II, Theorem 3];

e The function 7 € Een(]Tj ) — © #(7Y) is supported on a finite number of orbits under

the action of i A% (see (12.8.3));

e For every iA*-orbit Q C Eo(M) and compact subset K C G(F), the vector space
spanned by the restrictions

{©=,

where K, := KN érs(F ), is of finite dimension (this follows e.g. from the induction
formula [36, lemme 1.12]).

Kesl T € Q},

]

2.14 Spectral localization of strongly cuspidal functions

Let f € C(G(F)) and choose a base-point 7o € G(F). Put f,(9) = f(g7) for every
g € G(F). Note that f,, € C(G(F)). We define the spectral support of f, henceforth denoted
by Supp,.(f) to be the support of the operator-valued function

Temp;,4(G) 3 © — 7(f,,) € End(V;).

Note that Suppg,..(f) does not depend on the choice of 7o: changing the base-point replaces
[0 by one of its right translates which acts non trivially on the same tempered representations

as fy,-

Proposition 2.12. Let 7 € Ey(G) (see Sectionfor the definition of Fx(G)) and w be a
compact neighborhood of m. in Temp, 4(G) (see Sectim}v for the topology on Temp, 4(G)).
Then, there ezists a strongly cuspidal function f € C(G(F)) such that

(2.14.1) Suppgpe(f) C w
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whereas for every 7' € E(G) we have

0 if 7/ # X7 for every A € iAZ,
(2.14.2) Te 7 (f) =
lLifr' =1

Moreover, if f € C(é(F)) is such a strongly cuspidal function, we have

(2.14.3) O(7) = [Stab(iA% .. 7)| ' D(r) /A* Tr Frr (f)Ory_(7)dA

for every v € érs(F) and where Stab(iA*éF,T) stands for the stabilizer of T in iA*éF (for
the action by twisting).

Proof. For simplicity of notation, let us set 7 = 7., @ = 7, as well as T, = 7)., and
T = Tar = (7,)) for every A € i.A*é. By Lemma , up to shrinking w we may assume that
it is f-stable and that

(2.14.4) w N Temp;y(G)’ C {m\ | X € iAL}.

Let S be the finite set of 7/ € E(G) such that m,» = m,. By definition of F5(G), we have

S C Ey(G). Let Sy C S be a subset such that for every 7" € S there exists an unique 7 € Sy
as well as A € iA% (not necessarily unique) such that 7/ = X - 7). We may and will assume

that 7 € Sy. Moreover, by (2.14.4]), we have:

(2.14.5) for 7" € E(G) if v € w then there exist A € iA% and 75 € So such that
T =X-7.

Let G(F)! be the kernel of the homomorphism Hg : G(F) — Ag. By the orthogonality
relations [28] théoréme 7.3] between elliptic twisted characters, the restrictions of the twisted
characters Oz ,, for 7/ € S, to the elliptic locus G(F')en are linearly independent. More
precisely, fixing v € G(F) and since elements of Sy all have different orbits under iA*é,
the restrictions of the twisted characters ©% ,, for 7 € Sp, to é(F Jen N G(F)'y are linearly
independent. Thus, we can find a function f, € C°(G(F')) supported in G(F)en N G(F)'y
such that

0if 7/ # T,
(2.14.6) Tewr(fo) =

lifr' =71

for every 7/ € Sy. Note that, since f; is supported in G (F)en, it is a strongly cuspidal function.
Moreover, since f, is supported in a unique coset modulo G(F)!, for every 7 € E(G) and
A€ iA*é, Tr 7y (fo) is equal (up to a non-zero multiplicative constant which depends on

how we normalized 7y../) to Tr 7 (fo). In particular, by (2.14.6)), we also have
(2.14.7) T Fan (fo) = 0
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for every 7 € So \ {7} and A € iA%.

Let now 2z € C®(Temp,,4(G))? be a f-invariant C*° function on Temp, 4(G) which is
supported in w and such that z(m) = 1 (such a function certainly exists). Using the action
of C%(Tempy,4(G))? on C(G(F)) defined in Section m, we set f = z* fo € C(G(F)). By
Lemma 2.7, f is strongly cuspidal. On the other hand, by the spectral characterization of
the action of C°°(Temp,,4(G))? on C(G(F)), f clearly satisfies condition (2.14.1). Similarly,
2.14.2)) follows from the combination of (2.14.5)), (2.14.6) and (2.14.7)). Finally, the equality
2.14.3)) is an immediate consequence of Proposition [2.10, remembering that the restriction

of the measure on Eai(G) to the orbit {A-7 | A € i A%} is equal to [Stab(iA% . 7)[™" times

the pushforward of the measure on i.A*é » by the map

NEiAL AT

3 Spherical spaces

3.1 Coregular varieties

Let G be a connected reductive group over F' and H C G be a closed subgroup. We let
X = H\G be the corresponding homogenous variety. We let TX, T*X be the tangent and
cotangent bundles of X respectively. Both are naturally equipped with right actions of G.

Let B be the flag variety of G. Recall that the variety X is called spherical if H has an
open orbit in B or, equivalently, if G has an open orbit in X x B for the diagonal action.

In the proposition below, by the generic stabilizer of a G-variety Y we mean a conjugacy
class of closed subgroups S C G such that for some dense open subset U C Y7, the stabilizer
of every y € U is conjugated to S. Generic stabilizers do not always exist but they do in the
cases considered in the proposition below by the references cited in the proof, namely [20]
and [21].

Proposition 3.1. Assume that X = H\G is quasi-affine and that H is connected. Then,
the following assertions are equivalent:

(i) The generic stabilizer of T*X contains reqular elements;
(i’) The generic stabilizer of T*X contains reqular semisimple elements;
(i) The generic stabilizer of X x B contains regular elements;

(11’) The generic stabilizer of X x B contains reqular semisimple elements;

DI _(h)?

DE (7

(111)) We have H N Gy # 0 and the function h € H N Gy —

function on H.

extends to a reqular
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iii’) We have H NG # 0 and the function h € H(F)NG(F) — w 15 locally bounded
DG (h)
on H(F) (i.e. it is bounded on the intersection of Gw(F') with any compact subset of

H(F)).

Moreover, the above assertions imply that X is spherical. If furthermore H is reductive, then
the above conditions are also equivalent to:

(iv) The generic stabilizer of TX in G contains regular elements;
(v) The generic stabilizer of X x X in G for the diagonal action contains reqular elements;

Remark 3.2. The above proposition does not hold without the assumption that H s con-
nected as the example of X = O(2)\GLg shows. (Indeed, for X = O(2)\GLs, conditions (i),
(i°), (i1), (ii°) are satisfied but not (iii) and (i1i°).) We also believe that (i), (i), (ii’), (iii)
and (i11°) are still equivalent when X is not necessarily quasi-affine (but still assuming that
H is connected) but that (i’) is strictly stronger (e.g. take X = B).

We will say that the variety X is coregular, or that the pair (G, H) is coregular, if
the equivalent conditions (i)-(iii) (or, equivalently, (i)-(v) if H is reductive) of the above
proposition are satisfied.

Proof. Pick a Borel subgroup B C G with unipotent radical N and let P(X), U(X) be the
respective stabilizers of the generic B and N orbits in X. In other words, there exists an
open dense subset Y C X3 such that zp € zB (resp. zu € xN) for every (z,p) € U x P(X)
(resp. (z,u) € U x U(X)) and the subgroups P(X), U(X) are maximal for this property.

Let L(X) C P(X) be a Levi factor and set S(X) = L(X)NU(X). By [20, Korollar 2.9],
we know that U(X) is a normal subgroup of P(X) and the quotient Ax := P(X)/U(X) =
L(X)/S(X) is a torus. Moreover, by the local structure theorem of [2I, Theorem 2.3,
Proposition 2.4], there exists a locally closed subvariety ¥ C X3 which is L(X)-stable, on
which the L(X)-action factors through the quotient L(X) — Ax and on which the resulting
Ax-action is free, such that the P(X)-action induces an open embedding:

(3.1.1) ¥ < p(X) < X.

Since P(X) = L(X)B, it follows that the generic stabilizer of X x B exists and is given by
the conjugacy class of S(X) N B. On the other hand, by the construction of 21} §3] there
exists a L(X)-equivariant embedding

Exay = TX

whose image intersects every generic G-orbit in 7*X [21l Theorem 3.2, Lemma 3.1] and
whose composition with the moment map 7*X — g* is the second projection X x a% — a%.
As the centralizer of a generic element in a% is L(X) [2I, Lemma 2.1], this shows that the
generic stabilizer of 7*X exists and is the same as that of ¥ in L(X), i.e. S(X).

As every conjugacy class in L(X) meets L(X) N B and S(X) is normal in L(X), every
element of S(X) is G-conjugated to an element of S(X )N B and this shows (i) < (i7), (') <
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(27"). Moreover, if S(X) contains a regular element of G then it contains a regular semisimple
one. Indeed, if g € S(X) is G-regular and g = su is its Jordan decomposition, then u is a
regular unipotent element of the connected centralizer Zg(s)?. However, u belongs to the
Levi subgroup L(X)N Za(s)? of Zg(s)? and therefore Zg(s)? C L(X). If this is so, a regular
semisimple element ¢ of the derived subgroup Zg(s)Y., in general position will be regular
semisimple in G and this proves the claim as L(X)g., C S(X) implies Zg(s)9,, € S(X).

Thus, if (i) and (ii) are satisfied, S(X) contains a regular semisimple element and so does
S(X) N B. This proves the equivalence between (i), (i’), (ii) and (ii’).

Assume now that (i’) is satisfied i.e. that there exists h € S(X) which is regular semisim-
ple in G. Then, the subvariety of fixed points X" has only finitely many orbits under the
action of the maximal torus Tg = Zg(h)? C L(X). As ¥ is a connected subvariety of X" this
shows that ¥ is actually homogeneous under L(X) and it follows, by the open embedding
, that X is spherical. Up to conjugacy, we may assume that the canonical base point
xo = H1 of X belongs to ¥ i.e. that HB is open in G. Then by , choosing a splitting

of the surjection arx) — ax, we have a direct sum decomposition
g=bhdax ®n(X)

where n(X) denotes the nilradical of p(X). Note that this decomposition is stable under
the adjoint action of Ty = Zg(h)° as the latter is a maximal torus of H contained in L(X).
Therefore, for t € Ty N G, we have

DG

alg

(t)= DH

alg

(t) det(1 — Ad; [a(x))
from which it follows that

Dgg(t)2 _ D(?l’g(t) _ 5alg (t)_lDL(X) (t)
DG (t) det(l - Adt ’n(X))2 P(X) alg

alg

which implies (iii).

It is clear that (iii) implies (iii’).

Assume now that (G, H) satisfies (iii’). Up to conjugating our choice of B and L(X), we
mays assume that L(X)N B contains a maximal torus 7" that is defined over F' and xy € X.
Then, Ts = (T'NS(X)) is a maximal torus of S(X)N B (since L(X )4 C S(X)) that is also
defined over F' (as it is also the neutral component of the stabilizer of xy in T"). Consider the
subgroups G' = Z¢(Ts), H = Zu(Ts). Note that both are connected and G’ is reductive
(as it becomes a Levi subgroup of G over F'). We have:

(3.1.2) The pair (G, H') also satisfies condition (iii’) i.e. H' NG., # () and the function

he H'(F) N Gl(F) = 250 is Jocally bounded on H'(F)

Indeed, H' contains a maximal torus of H hence regular semisimple elements of G by assump-
tion but such elements are a fortiori also regular semisimple in G'. Moreover, for h € H'(F')
and t € Ts(F') we have

D (ht) = D (h)|det(1 — Adue [y)l, DE(ht) = D (h)|det(1 — Adas [g/)|

43



and for each hy € H'(F') we can find t € Ts(F') as well as an open neighborhood U C H'(F)
of hg such that h — |det(1 — Adp [5/6)| is bounded from below and A +— |det(1 — Adp [g/y )|
is bounded from above on U. By the assumption that (G, H) satisfies condition (iii’), this
DH/(h)Q

shows that the function h — D (h)

is bounded on U hence the function is locally bounded

everywhere.

Set X’ = H'\G'. The inclusion G’ C G induces an embedding X’ < X which identifies
X' with a connected component of the subvariety of fixed points X5, Set B’ = Z3(Ts), a
Borel subgroup of G’ containing the maximal torus 7', and let Ty C H' be a maximal torus.
Taking Tg-invariants of the embedding , we see that X’ contains an open subset
B’-equivariantly isomorphic to ¥ xT B’. Furthermore, in a neighborhood of 0 € ty(F),
the functions X — D' (e¥) and X — D% (eX) are products of dim(H’) — dim(7y) and
dim(G") — dim(7") absolute values of linear forms respectively. Thus, implies that

dim(G') — dim(T) < 2(dim(H') — dim(Ty))
or equivalently
o dim(G’) + dim(7)

(3.1.3) dim(X') < 5 —dim(Ty) = dim(B") — dim(Tg).
However, as ¥ xT B’ is open in X', we also have
(3.1.4) dim(X) = dim(X) 4+ dim(B’) — dim(T)).

Combining (3.1.3) with (3.1.4)), we obtain that
dim(¥) < dim(T") — dim(Ty).

However, as T'/Ts acts freely on ¥ and Ty contains T this last inequality is only possible
if Tg = Ty. But then, by the assumption that H N G,, # () and since H is connected,
this implies that Ts and hence also S(X) contains a regular semisimple element i.e. (i) is
verified. This proves that (iii’)=- (i’) and therefore that the conditions (i), (i’), (ii), (ii"), (iii)
and (iii") are all equivalent.

It remains to show that these are also equivalent to (iv) and (v) when H is reductive.
The equivalence (iv)< (v) follows from Luna’s slice theorem [24] applied to the diagonal
G-orbit in X x X and noting that the normal bundle to the diagonal in X x X is isomorphic
to T'X. On the other hand, we have

TX =g/bx" G, T"X =p+ x G

where ht stands for the orthogonal of h in g*. As both H and G are reductive, the adjoint
representation of H on b is isomorphic to the coadjoint action of H on h* and this shows
that (v)<(i). O

It is clear from the above discussion that if (G, H) is coregular then H,, C G,;. However,
the opposite direction is not ture in general. For example, when (G, H) = (GL3, SLy), we
have H,; C G,s but the pair is not coregular. The next lemma shows that in the case of
symmetric pairs, the coregular condition is equivalent to H,s C G,.
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Lemma 3.3. A symmetric pair (G, H) is coreqular if and only if H.s C G,s.

Proof. The “only if” direction is trivial, we will only prove the other direction. Assume that
H,s C G,s. The goal is to show that the function t € H(F) N G,s(F) %
bounded on H(F). This property is independent of the base field F' and hence by passing
to a finite extension of F' we may assume that G and H are split.

Let ¢ be the involution of G such that H = (G*)° and let B = T'N be a Borel subgroup
of GG such that T"and N are both t-stable. We use X to denote the set of positive roots of G
with respect to B = TN and for o € ¥ we use X, € n(F') to denote a nonzero element in the
root space of . Then we can decompose Y into a union of three subsets ¥ = ¥; U ¥y U X5
where

is locally

Yi=Ha el a)#a}l, Yo={aecX|ia)=0a, (X,)=X.},
={aeXia) =a, ((Xa) = —Xa}.

In order to show that the function t € H(F) N G,s(F) %tg?/g

H(F), it is enough to show that the set X3 is empty. We will prove this by contradiction.
Assume Y3 is non-empty and let a € ¥3. Since H,; C G, there exists § € 31 U3, and a
positive integer k > 0 such that a|rng = kB|ran. If € Lo then we have «(X,) = X, which
is a contradiction. Hence we must have 5 € ;. In this case, we have 2a = k(8 + «(f)).
Since the lenght of « is less than two times the lenght of 5, we know that & must be equal
to 1, i.e. 2a = B+ 1(B).

Now consider the root sg (here sg is the reflection associated to 3). We

have 2(a, 8) = (8, 8) + (L(5), ﬁ) Smce L( ) is not equal to 3, we have |(¢(8 ) B)| < (B, 5).

Combining with the fact that 0‘5)) 1+ (L(( ) )) is an integer, we know that 2 . ﬁ)) =1 and
«B)—B8 UB)=B

hence sga = a — 3 = == 5 But this is contradiction since 5— is not a root. This proves

the lemma. O

is locally bounded on

Definition 3.4. Assume now given twisted spaces (G,G) and (H,H) with an embedding

H < G that is compatible with the inclusion H C G. Following the above discussion, we
will say that the pair (G, H) is coreqular if the following condition is satisfied:

9.1.5) We have H N ém # () and the function h € H(F)N érs F) s 2202 locally
DG (h)
bounded on H(F).

Remark 3.5. It is not true that (G H) is coregular if and only if (G, H) is so. For example,
let H be connected reductive and take G = (H x H). where u(hy, hy) = (ho,hy) and H = H
with the embedding H<G given by h v+ (h, h)v. Then, the pair (G, H) is always coregular
whereas the pair (G H) is coreqular if and only if for every h € H(F), det(1 + Ad,) # 0.

3.2 Tempered varieties

We continue to consider the setting at the end of the last section: (G, é) is a connected
reductive twisted space over F' and (H, H) is a closed connected twisted subspace of it. We
also assume that H is unimodular (this implies that X = H\G is quasi-affine).
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Following [7, §2.7], we say that the pair (CNJ, ]TI) is tempered if it satisfies the following
condition:

(3.2.1) There exists d > 0 such that the integral

is convergent.
Note that the pair (G, H) is tempered if and only if (G, H) is so.
Lemma 3.6. Assume that the pair (CNJ ]:l) 15 coreqular and tempered. Then, the function

he H(F)NG,s(F) — DZ(;;/Q is globally bounded.

Proof. Let T C H be a maximal twisted torus. It is enough to show that the function

L D (¢)
t € T(F)NGrs(F) D)2

is globally bounded.
Set My = Zg(Ar) and MT = MTT Then, MT is the minimal Levi subspace of G

containing T and for every ¢ € T(F), there is a unique parabolic subspace P, € F(My) of G
such that
P,(F) = {p € G(F)| the sequence Ad;"(p) is bounded}.

For P € F(]T/[/T), set
Tf = {t e T(F)| P, = P}.
Then,
T = || 77

ﬁG}—(MT)
It is enough to show that for a fixed P € F(Mz), the function
~ DH(t
teTh — N—()
DG(t)1/2

is bounded.
Let M be the unique Levi factor of P containing MT and set

Py=PNH, My=MnH, A ={a € Ay(F) | |a(a)] > 1Va € Ap}.

Then, T3 is right (and left) invariant by translation by A} and the quotient T3 /A} is
compact. Moreover, for ¢t € T} we have

DE(t) = DM(1)35(t), D (t) = DM (t)s5, (t).
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Hence,

DA(t) _ DMu(t) 0p,(1) -
(3.2.2) DQQW__DM®U25ﬂwUTﬁHteﬂ,

Since (G, H) is coregular, this in particular entails that ¢ € T} — DM (£)DM (£)=1/2 is locally
bounded. As T} /AL is compact and DM# DM are both Ay, (F)-invariant, we deduce that
the function t € T3 +— DMu(t) DM (t)~1/2 is globally bounded. Therefore, by (3.2.2)) it only

remains to check that the function

05, (1)
0p(t)'?

teTd —

is bounded. Again because T /AL is compact, it is equivalent to work with the function

5PH (a)
5p(a)i/

a€ AL~

Let Jy C H(F) be a compact-open subgroup. Then, we have
(3.2.3) vol(JgaJy) ~ &p,(a), for a € Af.

Moreover, we can assume that Jy N Ay (F) = A§, the maximal compact subgroup of Ay (F)
and that the cosets JgaJy, a € A}/AS, are disjoint. As

op(a)™? < Z%a), for a € A},
and (G, H) is tempered, we can find d > 0 such that

5PH (a)
Sp(a)/?

ola) < Y E%a)o(a)*vol(Jyaly)

acA} /A5,

</ =2%h)o(h)"dh < oco.
H(F)

acA}/AS,

Since A} /AS, is a finitely generated monoid and dp,, dp are characters on it, the above
6PH (a)

Spa) 2 is bounded and the lemma is proved.

estimate implies that a € A} —
O

3.3 Symmetric pairs

In this paper, by a symmetric pair (over F') we will mean a pair (G, ¢) where G is a connected
linear group over F' and ¢ an involutive automorphism of G defined over F'. For a symmetric
pair (G,¢), we denote by G* the closed subgroup of (-fixed points, by X*(G), the subgroup
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of characters y € X*(G) that are trivial on G* and by Ag, the neutral component of the
subgroup {a € Ag | (a) = a~'}. We also set

.= X(Ag,) @R = X*(G), @R, Ag, = X.(Ag,) ® R = Hom(X*(G),, R).

Then, Ag, (resp. Ag,) can be identified with the subspace of t-antiinvariant vectors in Ag,
(resp. in Ag). We also denote by Hg, : G(F) — Ag, the composition of Hg and of the
natural projection Ag — Ag,.

Assume from now on that G is reductive. Recall that a parabolic subgroup P C G is
said to be ¢-split if +(P) is opposite to P and that a Levi subgroup M C G is said to be
t-split if there exists a -split parabolic subgroup P such that M = P N (P).

We will denote by P, and L, the sets of all ¢-split parabolic subgroups and ¢-split Levi
subgroups of G respectively. We will also write [P,] for the quotient P,/ ~ where, for
P,P' € P, P~ P'if P and P are G(F)-conjugated (or, equivalently, G(F)-conjugated).
For P € P,, we set Mp = PN w(P) € L, for its unique ¢-split Levi factor and we denote by
[P] its image in [P,].

By a minimal -split parabolic subgroup of GG, we mean a ¢-split parabolic subgroup that
is minimal for these properties. We denote by P™® C P, the subset of minimal ¢-split
parabolic subgroups. By [I8, Proposition 4.9], all minimal ¢-split parabolic subgroups are
conjugated under G(F) i.e. the image [P™"] of P™™ in [P,] is a singleton. For M € L,, we
set P,(M)=P(M)NP, F,(M)=FM)NP,and L,(M)=L(IM)NL,.

For every P € P,, we set Ap, = App ., Apy = Anip, and we denote by Hp, : P(F) —
Ap, the composition of the projection P(F) — Mp(F) with Hy,,. Then, for P,Q € P,
with P C ) we have the decomposition Ap, = Aj‘ib ® Ag, where -Ai% = Ap, N A% and we
denote by AzQzu A%LV the respective projections of A% and A% to A%L* and AjQD’L. When
Q = G, we will sometimes drop the superscript and when M = Mp we will sometimes write
A?@ for A%. For P € P,, we also set

A}, ={a € Ap(F) | {a,Hp,(a)) > 0Va € Ap,}.

Let Py € P™™ and set My = Mp, = Py N u(By), Ao, = An,, and AT, = AF, . Tt is
known that the set ¥, C Ag;* of nonzero weights for the adjoint action of Ay, on g is a root
system and that the subset of nonzero weights ESCL C Xy, appearing in p, forms a system of
positive roots with associated set of simple roots Ay, = Ap,, see [I8, §5]. We will denote
by Wy, the Weyl group of this root system. We also set

A;mb = {X € AP(),L | <O./,X> > 0Va e A(),L}, +-AP0,L = {X c AP(),L | (wa,X) > 0Va e AO,L}~

There is a bijection between F,(My) and the collection of parabolic subsets of ¥, ob-
tained by sending @) € F,(M)) to the set Xy g, of nonzero weights of Ay, in q. Furthermore,
for every t-split parabolic subgroup P D Fy, the subset Aéf = Aﬁw coincides with the set
of simple roots X p, N =3 p, N A, and elements of A(Ii ’LV are positively proportional to the
coroots associated to A(i.
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Let P,Q € P, with [P] = [Q] and choose v € G(F) such that yPy~! = Q and yMpy™! =
Myg. Then, Ad, induces isomorphisms

IP,Q . ‘AP,L >~ AQM IP7Q . AP,L ~ AQ7L

sending respectively Ap, to Ag,, A;S,L to AaL and which is independent on the choice of
7. Moreover, it is readily seen that the element ¢(7) still conjugates the pair (P, Mp) to
(Q, Mg) from which it follows that yi(v)™' € Mg(F). (This remark will be used repeatidly
throughout the next subsections.)

Let us further fix a special maximal compact subgroup K C G(F') that we use to extend
Hp, to a map G(F) — Ap, for every P € P, by mean of the Iwasawa decomposition
G(F) = P(F)K. Then, to every P,Q € P, with [P] = [Q] we associate a point Y» € Ag,
as follows. Pick v € G(F) such that yPy™' = @ and yMpy~' = Mg. Then, recalling that
yi(y)™t € Mg(F), we set

1

Yéfp = Hg,(v) — 2 MQ,L(’YL(’Y)A)-

Lemma 3.7. The element Yéfp € Ag., so constructed doesn’t depend on the choice of v (i.e.
it only depends on P, Q and K ).

Proof. Because the normalizer of the pair (), Mg) in G is equal to My, for any other element
v € G(F) satistying v P(v)™' = Q, ¥ Mp(y')~! = My, there exists m € Mg(F') such that
~v" = m~. Then, it follows that

HQ,L(,)/) = HMQ,L(m) + HQ,L(’Y) and HMQ,L(’}/L(’Y/)_:L) = ZHMQ7L(m) + HMQ,L(’YL(’Y)_l%

hence

Hou() = 5 Haiguo/ 7)) = Hau(2) — 3 Hau(n() ™).

3.4 Symmetric varieties

Let (G,t) be a reductive symmetric pair as in the previous section. We set H = G* and let
X = H\G be the corresponding symmetric variety.

For every M € L,, we set Hy = HN M and X, = Hy/\M. Note that X, is the
symmetric variety associated to the symmetric pair (M, ¢ |j) and that it is naturally a
closed subvariety of X. Any character x : X*(M), descends to a regular map Xy — G,
and therefore we can define a Harish-Chandra map

Hyr, : Xy (F) = Ay, = Hom(X*(M),, R)

by (x, Hu.(z)) = log|x(x)| for every z € Xy (F) and x € X*(M),. We also have a left
action of Ay on Xy defined by a-x = xa for (a,x) € Ay x Xy, which satisfies Hyy,(a-z) =
Hyr(a) + Hyp,(z) for every (a,x) € Ay (F) x X (F).
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For Py € P™" with My = Mp,, we set
XI—L_O = {ZL‘ < XMO(F) | <O{, HMO,L(I» >0 Vo € APO,L}'
If moreover P € P, is such that Py C P and C' > 0 we define
X} (> C P)={z € X}, | (o, Hypu(x)) = C Va € Ap,, \ A} ).

We set
.AX = l&n -AP(M
Pycpmin

where the transition maps are given by the isomorphisms Ip, p; : Ap,, AP&L for Py, P €
Pmin Then, Ay is a real vector space equipped with canonical isomorphisms Ax ~ Ap, , for
every Py € P™™. The images by this isomorphism of the cones A}, , and TAp,, don’t depend
on the choice of Py, we will denote them by A%, T Ax respectively. Moreover, for every P € P,
we can choose Py € P™" such that Py C P and we get an embedding Ap, — Ax given
by the composition of the natural inclusion Ap, C Ap,, with the isomorphism Ap, , ~ Ax.
This embedding actually does not depend on the choice of Fy as can readily be checked.

Let P,Q € P, with [P] = [Q] and choose vy € G(F) such that yPy~ = Q, yMpy~' = My,
Then, v € HMp from which it readily follows that Xy, = Xp/,7" and
(3.4.1) 1

HMQ&(:LVV_I) = AdW(HMpyb(‘r)) - % MQ,L(’YL(’)/)_I) = ]P,Q(HMP,L(J:)) + 5 MQ,L(7L<7)_1)

for every x € Xy, (F). (Recall that yi(y)™t € Mg(F).)

3.5 Neighborhoods of infinity

Recall the weak Cartan decomposition from [16] and [10]: for every Py € P™" we can find a
compact subset K C G(F') such that

(3.5.1) X(F) = X K.

Let P € P, and set M = Mp. Choose Py € P™" with Py C P and a compact subset K
satisfying the equality (3.5.1)). Then, following [I5] (Delorme), we define a neighborhood of

ocop in X (F) to be a subset of the latter containing
Xi(>C P)K

for some large enough constant C' > 0. This notion actually only depends on the class [P]
in [P,], and in particular not on the auxilliary choices of Py and K. Indeed, using
this readily reduces to showing the following: if X' D K is a bigger compact subset then for
every C' > 0 we can find C' > 0 with Xj;o(z C,P)K > X;O(Z C', P)K'. This, in turn, is a
consequence of the following lemma.

20



Lemma 3.8. Let Py € P™® K C G(F) be a compact subset and set My = Mp,. Then, there
exists d > 0 such that for every x,y € X7, if ek NyK # 0 then ||Hyg,,(x) — Hagoo(y)|| < d.

Proof. Set Ay, = Ap,, and recall from [I8, Proposition 4.7 (iii)] that X, (F)/Ao.(F) is
compact. It follows that we can find a compact subset Qg C Xy, (F') such that

(3.5.2) X7, C QAf ..

Let X*(My); be the subset of dominant weights x € X*(Mp), i.e. such that (a”,x) > 0
for every o € AY, . Then, for every x € X*(M,); there exists a nonzero regular function
f2y € F[X] such that fa,(xpo) = f(x)x(po)? for every (z,py) € X X P0|Z|. Moreover, up to
scaling fa, we may assume that fo, (2) = x(2)? for every x € Xy,. Let V,, C F[X] be the
G-submodule generated by fs, for the action by right translation R. Then the weights of
Ay, in Voare of the form 2y — ZaeApo noa where n, € N. From this and it follows

that for every compact subset L C V we can find ci > (0 such that
(3.5.3) /()] < ck|x(x)] for every (f',x) € L x X},

We will apply this to L = R(K') fa, where K’ = KK, setting ¢, = ¢¥ for simplicity. Indeed,
for x,y € X}, such that zK NyK # O we can find f’ € L such that fo,(z) = f'(y). Thus,
applying (3.5.3) we get

@) = [fax(@)] = 1 W)] < exlx(®)]*

ie. (X, Hump (7)) < (Xs Huy () +1og(cy). By symmetry, we also have the inequality with
x, y permuted. As this holds for every x € X*(My); and X*(My); generates A}, , this
gives the desired result. O

We shall denote by N (oop) the collection of all neighborhoods of cop in X (F'). The set
N (oop) is stable by finite intersections and translations by elements of G(F). By a basis of
N (oop) we mean a subset N/ C N (oop) such that every element Q € N (cop) contains at
least one ' € N,

We define similarly the notion of neighborhood of co¥ in X,;(F) as follows. By the weak
Cartan decomposition applied to the symmetric variety X,;, we can find a compact
subset Koy C M(F) such that Xp(F) = X7 1,/Kp. Then, by definition, a neighborhood
of ooyl in Xy (F) is a subset of the latter containing X7, (> C, P)Kyy for a suitable C' > 0.
Once again, using the above lemma, we can show that this notion is independent on the
choices of Py and ;. We will denote by N'(co¥) the collection of all neighborhoods of oo
in X/ (F). Note that A'(cop’) admits a basis consisting of (left) A} -invariant subsets (e.g.
the family of subsets X}, (> C, P)Ky; would do).

Let us now fixed a special maximal compact subgroup K C G(F). Then, every v € G(F)
admits an Iwasawa decomposition v = mp(y)up(y)kp(y) with mp(y) € M(F), up(y) €
Np(F) and kp(y) € K.

"Indeed, since Py = 1(Py) = MONQ is opposite to Py, there exists a nonzero regular function ¢, € F[G]
such that ¢, (up) = x(p) for (u,p) € No x Py and it suffices to set fo, () = ¢y (e(x) " 1z).
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Lemma 3.9. Let K C G(F) be a compact subset. Then, we can find QM € N(oco¥) such
that

yK = xmp(y)K
for every (z,v) € Q¥ x K.

Proof. For every neighborhood Q € N(co¥), we can find another one Q' € N (co¥) such
that Q'mp(vy) C Q for every v € K. It follows that we may assume that L C Np(F).

The lemma is then a variant of the wavefront Lemma [30, Corollary 5.3.2]. Indeed, let us
fix Py = MyNy € P™" with Py C P as well as representatives 1, . .., z,, for the My(F)-orbits
in Xy, (F). Set, for C' >0,

MJ(E C, P) = {mo € Mo(F) | <04,HM0(m0)> >0 Va € APO) <CY,HMD(m0)> > CVa € APO\AIQO}.
Then, there exists a compact Ky C M(F') such that the subsets

| |2:iMs (> C.P)Ku, C >0,

form a basis of neighborhoods of co¥ in Xj,(F). Fix 1 <i < n and set Ky := Adg,,(K),
K':= Adj, (K), two compact subsets of Np(F) and G(F) respectively. It suffices to show
that z;My (> C,P)Ky C x; My (> C,P)K’ for C large enough. Let Jp, C Py(F) be a
compact-open subgroup small enough so that mg*.Jp,me C K’ for every my € M. For every
compact-open subgroup Jy C Np(F), provided C is large enough we have moKymgy* C Jy
for every mg € My (C, P). Therefore, it only remains to check that Jy can be chosen such
that x;Jy C x;Jp, but this follows from the fact that x; Py, which is the image of HF, by
the natural projection G — X, is open in X (so that x;.Jp, contains a neighborhood of z; in
X(F)) since Py is t-split. O

A consequence of the previous lemma is that for every Q¥ € N(co¥) we have Qp :=
OM K € N(oop) and moreover that, if QY is sufficiently small, the natural surjection Q¥ —
Qp/K descends to a map Q¥ /Ky, — Qp/K where Kj; denotes the image of K N P(F) by
the natural surjection P(F') — M (F'). We recall the following result from [15, Theorem 2]:

(3.5.4) If Q¥ is sufficiently small, the map Q¥ /Ky — Qp/K is a bijection.

In particular, if QY is sufficiently small and A;L—invariant, there exists a map Hp, :
Qp/K — Ap, and a left action of A}QL on Qp/K characterized by

Hp,(¢K)=Hpy,(z) and a- (zK) = (a - 2)K

for every z € Q¥ and a € AIJSVL. For simplicity, we will henceforth assume that such a choice
of Q¥ has been made for every parabolic P € P, so that if Qp € N(cop) is sufficently small,
Hp,(x) and a - x are well-defined for every z € Qp/K and a € AIJS’L. These satisty

(3.5.5) Hp,(a-x)=Hpy,(a)+ Hp,(x)

for every (a,z) € A}, x Qp/K.
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Lemma 3.10. Let P,Q € P, with [P] = [Q]. Then, for Q € N(ocop) = N(ocog) sufficiently
small we have
Ho.(z) = Ipg(Hp,(x)) + Y, and Ipg(a) -z =a-x

for every (a,x) € Ap, x Q/K.
Proof. Let us choose v € G(F) such that yPy~' = Q, yMpy™' = Mg. Then, the map

QYP s QMPy~1 induces a bijection N (cop?) ~ /\/'(oogQ) and thus we may assume that
there exists a small enough Qp" € N(cop™) such that Q@ € QpPK and Q C QgQK where
we have set Qg"? = QYPy~1. Thus, an element x € Q/K can both be written as z = xpK

and z = 2o K for zp € QJI‘SIP, g € QgQ. Then, since zpy~! € QgQ, provided Q]]\fp has been
chosen sufficiently small, by Lemma |3.9] we have

x = (xpy VK = (zpy me(y) K.

Together with (3.5.4)) we get 2K, = (xpy~")mo(y) Ky, By (3-4.1) and Lemma 3.7 this
implies that

_ 1 _
Hq(x) = Hyg(xpy ™ ma(1)) = Ip@(Hurp, (2p)) 45 Hatg(ve(7) )+ Ha, (7) = Ip(Hp. () +Yrg

and this shows the first equality of the lemma. For the second one, we notice that if fop
has been chosen sufficiently small and Aﬁ}b—invariant, we have

a-r=xpaK = rpay 'yK = zpay 'mg(7)K
=xpy " 'mo(7)yay ' K = Ipg(a) - (xpy~'me(7)K) = Ipg(a) - =

for every a € A}, O

3.6 The map Hx

In this subsection, we continue to fix a special maximal compact subgroup K C G(F). Recall
that for every P,Q € P, with [P] = [Q], we have introduced an element Y/, € Ag,.. For two
minimal ¢-split parabolic subgroups Fy, P, we introduce the following affine isomorphism

III%,P(; : APQ,L ~ AP67L7 Ig),P(l)(H) = IPpré(H) + YFI’E,P[;'

. : : : /" min K _ JTK K
These isomorphisms compose well (i.e. for any third Fy € P we have I, po = Ipr prlp, Pé)
and we can introduce the real affine space

.AX,K = I.&HAPO,L
Py

where the transition maps are this time given by the (affine) isomorphisms [ g) P Note

that the space of translations of Ay x is Ax and for every F, € Pmin there is an affine
isomorphism Ax x ~ Ap,, compatible with the identification Ax ~ Ap, ,.
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Let P € P, be a t-split parabolic subgroup (not necessarily minimal) and choose Py €
Prin with By C P. Then, the composition of the isomorphism Ax x ~ Ap,, with the

projection Ap,, - Ap, is independent on the choice of P and will be denoted

projp : Ax x — Ap,

or simply Y — Yp.
In the following, we fix a norm ||.|| on the real vector space Ax that we transfer to Ax x
through the choice of (an arbitrary) base-point.

Proposition 3.11. There exists a K-invariant map Hx : X(F) — Axx satisfying the
following conditions: for every P € P,, there exists a small enough neighborhood Q)p of cop
in X(F) such that:

1. For every x € Qp, we have projp(Hx(x)) = Hp,();
For every (a,z) € Ap, x Qp/K, Hx(a-x) = Hy,,(a) + Hx ().

14+ ||Hx(2)|| ~ ox(z) for x € X(F).

For every Py € P™™, we can find Yy, , € Ap,, such that Hx(x)p, € Yy, , + A}, for
every x € X(F).

Proof. Let P, € P, be such that [P] = [Q]. Then, it readily follows from Lemma [3.10]
that a K-invariant map Hy : X (F) — Ax k satisfies conditions 1.-2. for P if and only if it
satisfies the same conditions for (. Similarly, for Py, B} € P™" condition 3. holds for P,
if and only if it holds for P. Therefore, fixing Py € P™", it suffices to show the existence
of a K-invariant map Hx : X(F) — Ax i satisfying conditions 1.-4. for every parabolic
subgroup P € P, with Py C P. We will call such parabolics standard and we will denote by
Pstd the subset of them. We will also use the identification Ax x = Ap,,.
For each P € P#! we can find a neighborhood Qp € N(ocop) such that:

e For each P € P Qp is A}, x K-stable and is small enough that the map Hp, :
Qp = Ap, as well as the action of A;L on Qp/K are well-defined;

e For each P, () € Pftd, QpN Qo C Qpng.

Then, for each P € P54 we set

wp ‘= QP\ U QQ.
QeP

From the second bullet point above, it follows that we have a partition in K-invariant subsets

(3.6.1) X(F)= |] wr

PeP,PyCP
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We define a map Hyx : X(F) — Axx by Hx(z) = Hp,(z) for x € wp. Clearly Hx is
K-invariant.

Let P € P, be standard and let us check that Hyx satisfies conditions 1. and 2. Let
x € Qp. By definition of the partition there exists a standard Q € P*** with Q C P
such that = € wg. Since, by definition of Hp, and Hg,, we have projpHg,(x) = Hp,(z),
condition 1. is immediate. Also, since, by our choice of neighborhoods (Qp)p, wo/K is
invariant by A&;L7 hence also by AJISVL, from (3.5.5)) we deduce that for every a € A;L we have

Hx(a-x) = Hg,(a-z) = Hy,,(a) + Hg, () = Hyp o (a) + Hx(z)

and this proves condition 2.
Let us now check condition 3. First, since ||Hp,(z)|| < ox(z) for every P € P54 and
x € Qp, it follows from the above definition of Hy that we have

|Hx(z)|| < ox(z), forz e X(F).

Thus, we just need to prove the converse inequality. By the weak Cartan decomposition
(3.5.1)), it suffices to check it for z € X} . Let C' > 0 that will be assumed large enough in
what follows. Let 2 € X}, and let P € P be such that

Ap \ AR, ={a € Ap, | {0 Hypu(2)) = C}.

Then, provided C' is large enough, we have x € (2p. Hence, by property 1. we have
projpHx(x) = Hp,(x). On the other hand, it is easy to see that ox(z) < 1+ ||Hp,(z)|.
Hence, ox(z) < 1+ ||Hx(z)|| and we are done.

It only remains to prove that Hx satisfies condition 4. Let us fix a weak Cartan decom-
position like (3.5.1). Then, by definition of neighborhoods of cop, there exists C' > 0 such
that X7 (> C,P)K C Qp for every P € P#? Then, for P C Q we have X}, (> C,P) C
X} (> C,Q) and the subsets

Xh=o P\ xh(=00)

Q&P

are relatively compact modulo A;L. It follows that we can find compact subsets wp C Qp
such that

X(F) = |J Ahwp.
Pepstd
By property 2., we have Hx (A} wp) = Hp (Af,) + Hx(wp) for each P € P Since, by
property 3., Hx(wp) C Ax k is relatively compact and Hp,(A},) C A, C A}, ,, property
4. follows. O

Proposition 3.12. Let Hx : X(F) — Ax k be the map as in the previous proposition. Let
P € P, and set M = Mp. Then, there exists c > 0 such that for every (a,x) € AL, x Xy (F),
we can find QQ € F,(P) such that

(3.6.2) projoHx(ax) = Hyy,,(ax),
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(3.6.3) |Hx(azx) — projoHx (ax)|| < cox(z),
and
(3.6.4) | Hary (@) — Hypp ()| < cox ().

Proof. We prove this by induction on dim(Ap). So we assume that the statement holds for
P replaced by any parabolic R € P, with P C R. Let Qp € N(oop) be a small enough AF, -
stable neighborhood of oo in X;(F) such that the first and second points of the previous
proposition are satisfied for Qp = Q¥ K and Hp,(x) = Hys,(x) for every z € QY. Then,
there exists a constant ¢; > 0 such that for every (a,z) € Ap, x Xy (F) satisfying

<Oé, HM,L<a)> 2 Cng(x)a for every o € AP,u

we have ax € QM. (This follows e.g. from using a weak Cartan decomposition for X (F).)
Moreover, there also exists a constant ¢ > ¢; such that for any such a and z we can find
o' € Af, with o(a) < dox(x), dz € Qpf and a € a’A},. From this and Proposition w,
we get

projpHx(ax) = Hp,(ax) = Hy,(ax) = Har(a) + Har,(2)

and
Hx(az) = Hx(a(d)'d'x) = Hy(a(a) ') + Hx(a'z) = Hyr,(a) — Hyr,(a') + Hx(a').

Hence,
|Hx (ax) — projpHx (ax)|| = |[Hx(d'z) — Har.(a) — Haro(2)].

Since ||Hyr, (o) < ox(x), ||[Hx(d'z)|| < ox(z) and ||Hy,(2)| < ox(x), we get that in
this case both and holds for () = P and a suitable constant ¢ > 0 (note that
is trivial when P = Q).

It remains to treat the case where there exists & € Ap, such that (o, Hys,(a)) < crox(x).
Let R € P, be the unique ¢-split parabolic subgroup such that R O P and AﬁL = {a}. Then,
for every (a,z) € A}, x Xy (F) with (o, Hy,(a)) < ciox(x) we can find ag € Af;, such
that o(aay') < ox(z). Then, writing az = agr(ay'az) where ap'ar € Xy (F) C Xy, (F),
by the induction hypothesis there exists a constant cg > 0 as well as Q € P,, Q D R such
that projoHx(ax) = Hyy,,(ax) and

| Hx (az) — projoHx(az)|| < crox(ag'ax), |[Hug(ax) — Hag(az)|| < crox(ag'ax).
Since ox(az'ar) < ox(z) and |Hy,,(ax) — Hyr,, (a7)||| < ox (), this again gives (3.6.2)),

(3.6.3) and (3.6.4)) for a suitable constant ¢ > 0 and the proposition is proved.
[
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3.7 Twisted symmetric pairs

We define a twisted symmetric pair (over F') to be a triple (G, G, t) where (G, é) is a linear
twisted space, (G, ¢) is a symmetric pair both defined over F' and we have extended ¢ to an
involutive automorphism of ¢ : G — G (still defined over F) with 1(gy7g2) = ¢(g1)¢(7)e(g2)
for every (v, g1,92) € G x G x G. We will usually refer to twisted symmetric pairs by (CNJ, L),
the underlying group G being implicit.
Let (é, t) be a twisted symmetric pair. We denote by Aé,L the neutral component of the
subgroup {a € A | t(a) = a™'} and we set
AL

G = X*(Aé,L) ® R’ Aé,b = X*(Aé,l,) ® R.

Then, A% (resp. Ag,) can be identified with the subspace of t-antiinvariant vectors in A%
(resp. in A &) We also denote by Hg, : G(F) — Ag, the composition of Hg with the
natural projection Az — Az,

We assume from now on that G is connected and reductive. Let H = G*, H = G* be the
subvarieties of (-fixed points in G and G respectively. Then, (H, H ) is a reductive twisted
space over ' and we will always assume that H(F) # 0.

A parabolic subspace P C Gis called (- -split if the underlying parabolic subgroup P C G
is ¢-split or equlvalently if L(P) is a parabolic subspace opposite to P. Similarly, a Levi

subspace M C G is said to be ¢-split if there exists a «-split parabolic_subspace P such
that M = P N u(P). For M a w-split Levi subspace, we denote by P,(M) (resp. F,(M),
resp. L, (M )) the set of (-split parabolic subspaces having M as a Levi component (resp.
containing M resp. the set of t-split Levi subspaces containing M )

We equip .A~ with the unique Haar measure for which the lattice Hy; (Ag(F)) is of

covolume one. We will also write Ap, for Az; for every P e P.(M ) and we denote by
Hg : P(F) — Ap, the composition of ‘the prOJectlon P(F) — M(F) with Hq; .
We will depote by PL and [,L the sets of all ¢-split parabolic subspaces and ¢-split Levi
subspaces of G respectively. B
Let M be a t-split Levi subspace of G, Q € F,(M) and set AA%L = Ay, /Ag,- We equip
this space with the quotient of the Haar measures on Az; and Ag . For Pe PL(M ) with
PC @, we denote by B - N -
Qv Q Q Q,*
Aﬁ’b C Am and Aﬁ’b C Am
the images of A%Lv and Ag’b by the natural projections
ARy, — AL and AF - AT

)

respectively. These form basis of A%L and AQM’*L respectively and we write ﬁg C A%*L for

N2

the basis dual to A%V. We denote by Tgb, ?IgL the characteristic functions of the cone in A

NA
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characterized by

2 (H)=1 < (a0, H)>0,Yaec AL 72 (H)=1 < (w,H) >0, Ywe A2

respectively. When @ = G we will sometimes drop the superscript @
Recall that P™" stands for the set of all minimal +-split parabolic subgroups of G. We
have

(3.7.1) For every Py € P™in, Py:=N ormg(Fy) is a t-split twisted parabolic subspace of €

Indeed, we just need to check the existence of an element v € G (F) such that the parabolic
subgroups Py and Ad,([%) are in the same conjugacy class. However, for v € H (F) the
parabolic subgroup Ad,(F) is also ¢-split minimal and by [I8, Proposition 4.9] all minimal
t-split parabolic subgroups are in the same conjugacy class.

Let P™n C P, be the subset of minimal elements of P, (for the inclusion relation). Then,
by the map Py — ﬁo gives a bijection P™in ~ ﬁmin.

Set My = Py N O'(ﬁo). It is easy to see that the automorphism 6 of A%;’L preserves the
root system Xy, as well as its subset of simple roots Ag,.

Let X = H\G be the homogeneous symmetric variety associated to (G, ¢). Then, there
exists a unique regular map X x G — X, (z,7) — a such that (Hg)y = HAd'(g) for

every (g,7) € G X H. Note that we have

((xg1)7)g2 = x(g1792), for every (z,91,92,7) € X x G X G X G.

We will usually write X to mean X equipped with this “twisted action” of G. This twisted
action naturally induces an automorphism 6 of the real vector space Ax and we set

Az = A%,

Then, for any Py € P™"  the canonical isomorphism Ay ~ Ap,, induces an isomorphism
Ag ~ Ap . We will also write A;%, * A for the respective images of A%, TAx by the
natural projection Ax — Ay and 7y for the characteristic function of *Ag.

Let K C G(F) be a special maximal compact subgroup and let Ax () be the kernel of
the natural projection Ax — Ag. We set

Az o = Axx [ Ax(6).

It is an affine space with direction Ay and for every By € P™" the (affine) isomorphism

Ax x =~ Ap,, induces an isomorphism Ag , ~ Ap . Moreover, for every P € P, there is a
natural affine projection

(3.7.2) A)?,K — Aﬁ,L
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that can be described as the composition of Ag ;- ~ Ap  with the projection Az  — Ap,

for any Py € P, with By C P. For every Y € Ax
projection (3.7.2)).

If Hy : X(F) — Axxk is a map as in Proposition , we will usually write Hg :
)Z'(F) — A;(’K for the composition of Hy with the natural projection Ax x — A)?’K.

T We will denote by Y3 its image by the

3.8 Orthogonal sets

Let (é, t) be a twisted symmetric pair. In [7, §2.8.2], we have introduced notions of (G, M, ¢)-
families extending in an obvious way Arthur’s definition of (G, M)-families in the context
of symmetric pairs. This actually exactly corresponds to Arthur’s theory applied to the
root system Y,,. There is a similar combinatorics for twisted groups as developed in [23]
which can be applied to any automorphism of a root system preserving a positive system.
In particular, starting from the pair (3¢, ) there is a corresponding notion of (G, M, t)-
orthogonal sets that we now briefly describe.

Let M be a t-split Levi subspace of G. Two parabolic subspaces P,Q € P, (M ) are said
to be t-adjacent if the intersection AIVDM Nn— Aéb is a singleton {O‘ﬁ,@}' If this is the case, the

hyperplane {X € iA* = 0} is called the wall separating P and Q.

\
A g X)
By definition (G, M,t)-orthogonal set is a family ) = (YPL)PGP of points in Az,

such that for every r-adjacent parabolic subspaces P, Q € P.(M ), we have

Vv
Yﬁ,L — YQ,L € Raﬁ,@

where A% N —Aé = {ayﬁ@}. We further say that ) is positive if

\
Yﬁ7b — Y@,L & R)()Olﬁ7©

for every pair of t-adjacent parabohc subspaces P Q € P(M )
Let Y = (Y5,)pep, ) Pe @ (G, M, t)-orthogonal set. For Q = LUg € F,(M), we denote

by Y5, the projection to Az, of Y5, for any Pe P.(M ) such that P - Q (this proj~ecti0n
does not depend on the choice of P). To ) we associate functions F%L(., Y) on A% and

complex numbers vg(y) € C for every L € £,(M) and Q € F,(L) as follows:

~ CLQ ~ ~
Y = Y (0 -V, HeA?

Per,(1),PcQ

and

2 )= [ 12 Y
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Q
L conves
again, we will sometimes drop the superscript when @ = G.

Let K be a special compact subgroup of G(F'). Using the Iwasawa decomposition G(F') =

P(F)K, for every t-split parabolic subspace P C G, we can extend the homomorphism H B
to a map G(F) — Ag,. Then, for every t-split Levi subspace McCGandge G(F), the
family M3z ,(9) = (=Hp ,(9)) pep, i1 Is @ positive (G, M, 1)-orthogonal set and we define

If Y is positive, v¥ ()) is simply the volume of the convex hull of <Yﬁ,b)ﬁeﬂ(i)ﬁcc§' Once

vd (9) =% (M (9). for Q & F(M),

M,

Moreover, for every Y € A ;- and M e L,, the set (Y3) i) 18 (é—’, M, t)-orthogonal.

ﬁGPb(

3.9 (~weighted orbital integrals

Let M be a t-split Levi subspace of G, v € M(F)NG,(F) and Q € F,(M). For f € C(G(F)),
we define the (-twisted weighted orbital integral

L (v, f) = / fla~ 9 (9)dg
’ G (PN\G(F) ’

as well as its normalized version

JE (. 1) = DE() 202 (4, f).

N2

By the same argument as in (2.10.1)), the above integral is absolutely convergent, and for
T C M a maximal twisted torus, we have:

(3.9.1) There exist p > 0 and, for every d > 0, a continuous semi-norm v, on C(G(F')) such
that

72 (. )| < val£)(1 + llog DE () Yoz, (1)

for every v € Thee(F) and f € C(G(F)).

4 Harmonic analysis for certain singular conjugacy classes

4.1 The function I'g (., X)

Let G be a connected reductive twisted space and fix a semisimple F-point x € CN;SS(F ) with
G, is quasi-split. We fix once and for all a Borel subgroup B, of G, with a Levi decomposition
B, =T, N, as well as a generic character  of N,(F') and we let O¢ € Nil,ee(g5) be the regular
nilpotent coadjoint orbit associated to & ﬂ

8the character ¢ is of the form &(exp(X)) = (X), X € n,(F) for some nilpotent element [ € g, (F), O¢
is the regular nilpotent coadjoint orbit containing [
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Let A, C T, be the maximal split subtorus, A, = X.(4;) ® R, M(z) = Zg(A,) and
M(z) = M(z)z, a Levi | subspace of G. We let Pp, (M(x)) (resp. Fp,(M(x))) be the set
of parabolic subspaces P € P(M(z)) (resp. Q € F(M(z))) such that PN G, = B, (resp.
Q@ D B,). Let also

W, = Norme, (7 (T3) /T

be the Weyl group of T}, in G,.

Lemma 4.1. (1) We have Ay, = Aq.

(ii) There is a natural embedding of W, into the Weyl group W (G, ]\A/[/(x)) = Normg(p)(ﬁ(x))/M(a:)(F)
and we have a partition

(4.1.1) P(M(2)) = | | wPs, (M()).

’LUGW:E

Proof. (i) Since A, centralizes with M (z) and z, it centralizes M () and therefore A, C
Ajfy- On the other hand, every element of Az, centralizes = (so that Az, C Ga)
and T It follows that A7) C Zg, (1) =T, and finally Az, C As.

(ii) Since every element of Normg, (1) centralizes x and normalizes A,, Normg, (I%) is
contained in the normalizer of Zg(A,)z = M(z) i.e. Normg, (T,) C Norme(M(z)).
Moreover, Normg, (T,) N M (x) is equal to T, because the centralizer of A, in G, is T,.
This explains the “natural” embedding W, — W (G, M (x)).

We have - B .
wPp,(M(z)) ={P € P(M(z)) | PNG, =wB,}

so that is just the partition corresponding to the fibers of the map ”P(]T/[/ (x)) —

PC=(T,), Pr—>PﬂG
O

By the above lemma, we have a containment of set of roots

N(As, Gy) € B(A,,G) = D(A=, . G).

M(z)
Thus, for every o € 3(A,, G,.) there are a priori two associated coroots oy, ay € A,. Namely,
we can either see v as a root of A, in G, and consider the corresponding coroot ay € X, (A;)
or we can view « as a root of AM(I) in G and consider the corresponding coroot a3 € A,.
It turns out that o and oy are always positively proportional. This can be seen as follows.
Take a maximal split torus A, C A, C G and fix an inner product on Ay, := A4, which
is invariant under the action of the Weyl group Wi, = Norme(r)(Amin(F))/Centary (Amin)-
By restriction to A, C Ay, this gives an inner product on A,, hence an identification
A, = A7 such that for every o € (A, G), a3 is positively proportional to . This inner

product is still W (G, M (x))-invariant, hence W -invariant by the second point of the above
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lemma. It follows that, for every o € ¥(A,, G,), the identification A, ~ A* also sends o to
a positive multiple of a. Since in what follows, the coroots will only matter up to a positive
scalar, we will not really have to distinguish between o and a3 . However, to fix ideas, when
there is an ambiguity we will always use a3 instead of «y .

Let X = (Xp)pep@iw) Pe a (G, M(x))—orthogonal set in A, = Agp,. For Q €
fBZ(M (x)) and H € a,, we set (the function ?g is defined in Section

)= Y ()R - Xp),

PeFp, (M(z)),PCQ
Lemma 4.2. For two (G, M(az))—orthogonal sets X and ), we have
TE (H,X+Y) = 3 S (H X)TE(H - X5,Yp).
Q€Fp, (M()).QCR

Proof. The proof follows from the same argument as Lemma 1.8.6 of [23]. O

Proposition 4.3. For every H € A, and R € Fp,(M(z)) , we have (the function Tg is
defined in Section

(4.1.2) > 5, (H,X)r8(H - Xg) = 1.
ROQeFp, (M(x))

Moreover, if X is positive the function H — U'g (H,X) is the characteristic function of the
set of H € A, such that
we(H — X]s) <0

for every P € Py, (M(z)) and o € As.

Proof. Let R € Fp,(M(z)). By definition of ng(., X), for H € A,, we have
> e (H, X)TE(H - X5)
ROQEFp, (M(zx))
@G R
— > (F)PTE(H - Xp)T5(H — Xg)
ROQEFp, (M(x)) Fp, (M(2))>PCQ
a:q 0 R
— > (-1 p?g(H—Xﬁ)Tg(H—X@).

PeFp, (M(2) F(M(2))3Q
PCQCR

Moreover, by [23, proposition 1.7.1, lemme 2.9.2] the inner sum
a@~Q R
Y ()WTE(H - Xp)TS(H — Xg)

F(M(2))3Q
PCQCR
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equals 1 if P = R and 0 otherwise. The identity (£.1.2) follows.
Assume now that & is positive. Fix P € Pp, (M (z)). For P’ € Pp,(M(x)), we denote
by ¢§, the characteristic function of the set of H € A, such that for every a € A, we have

wo(H)<0if a € E;g
and
wa(H) > 0if a € X7,

Then, we have

a8 ~
(4.1.3) Tp,(X)= Y (=1)%7s(. - Xp)
Q€Fp, (M(z))

- ¥ S (—1)%Rs( - Xg)

P'ePp, (M(z)) _ P'cQ

PnQ=PnP’

AzNEZ| P
= Y (CDPRG(-xp)
P'ePg, (M(x))

where the last identity follows from [23 lemme 1.7.4, lemme 2.9.2]. From the above we
deduce that for every H € A, satisfying I'p, (H, X) # 0 there exists P’ € Pp, (M (z)) such
that ¢§,(H — X3 ) = 1 which, since & is positive, further implies

@a(H) € @a(Xp) < wa(Xp)

for every a € Ap. Thus, as Pe PBw(M(x)) was arbitrary, we see that Supp(I'g, (., X)) is
included in the subset of those H € A, such that

(4.1.4) wo(H — X5) <0, VP € Py, (M(z)), Yo € As.

Conversely, assume that H € A, satisfies the inequalities (4.1.4). Then, for a chosen Pe
PBm(M(x))~7 we have ¢E(H — Xp) = 1 whereas for P # P' € Pp,(M(x)), as Ay NS5 # 0,
we have ¢f (H — Xp,) = 0. From identity (4.1.3) this readily implies that I'p, (H,X) = 1.

This gives the last part of the proposition.
m

To simplify the notation, we will use A, (resp. AY) to denote the set of roots Ap, C
X*(A;) (resp. of coroots Af, C X, (A,)).

Proposition 4.4. Assume that X is positive. Then, I'g (., X) is the characteristic function

of B .
Conv{Xp | P € Pp,(M(x))} + Ap, + Az

where Conv{X5 | P e ’PBI(M(Q?))} denotes the convex hull of the finite set { X5 | P e
Pp, (M (x))} whereas ~Ap, stands for the closed cone generated by —AY.
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Proof. Set _ -
Cp,(X) := Conv{Xp | P € Pg,(M(x))} +  Ap, + Az.

This is obviously a closed convex subset of a,. Moreover, its set of extreme points is contained
in {X5 | P € Pp,(M(x))}. Recall that for every closed convex subset C C A,, denoting
by Ext(C) its set of extreme points and, for X € FEzt(C), by Cx the cone centered at X
generated by C, that is Cx = {X +#(Y — X) | Y € C,t > 0}, we have

c= (] cx

XeExt(C)

According to the previous proposition I'g, (., X') is the characteristic function of
{H e A, | mwa(H — X3) <OVP € P, (M(z)), Vo € Aj}.
Therefore, it suffices to show that for every P € PBZ(M (z)) we have
Cp, (X)x, ={H € A; | wa(H — Xp) < 0Va € Aph(= X5+ A+ Ag).

As X is positive, and ~Ap, C ~Ap, the inclusion Cp, (X)x, € Xp+ " Ap + Az is clear. On
the other hand, for every a € Az we either have:

e o is positively proportional to an element of AY;

. félerevexists P e PBx(M(x)) such that Zg NXZ = {a} in which case Xp — Xp €
>0Q¢ .

This implies that, in both cases, Cp,(X)x is invariant by translation by R<pa”. As this
holds for all @ € Ap, this gives the reverse inclusion Xp + “Ap + Az C Cp,(X)x, and
therefore Cp, (X)x, = X+ ~Ap + Ag. O

4.2 The weight vp, ¢(u, g)

Let Nyreg = Ny N Gyreg be the open subset of regular elements in N, and T, . C T,(F)
be the maximal compact subgroup. We equip 7). with the Haar measure of total mass
1 and we also fix a log-norm 0, e : G reg(F) = Ry on Gy ey (F) (see Section . Set
r=dim(a,) — ag.

Lemma 4.5. For any u € Ny,ee(F) and any positive (é,M(x))—orthogonal set X, the
iterated integral

(4.2.1) (a= 't tuta) dtl'p, (Hr,(a), X) da

/Tz(F)/Aa(F) Tz
1s absolutely convergent in that order and will be denoted by

*

B, e, X) = / £(a~"ua)Ts, (H(a), X) da.
Tx(F)/Ag(F)
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Moreover, there exists a constant C > 0 such that for every u € Ny ,.4(F) and every positive
(G, M (x))-orthogonal set X, we have (where N(X') denotes the norm of X defined in Section

|0B,.¢(u, X)| < C(0g,reg (1) + N(X))".

Proof. The inner integral over T, . in is obviously convergent. Let N, 4, be the derived
subgroup of N, and let N, /Ny ger = @ aen, (No/Neder)a be the isotypic decomposition with
respect to the adjoint action of A,. We fix a norm ||.|| on the F-vector space N, (F)/Ny der(F')
and for every u € N, and o € A, let us we denote by u, the projection of u to (N, /Ny der)a-
Then, since ¢ is a generic character, there exists C; > 0 such that for all a € T,(F) and
U € Ny yeg(F) we have

E(a "t tuta)dt # 0 = (a, Hr,(a)) > log||ua|| — Cy for all a € A,

Tz,c

On the other hand, there exists Co > 0 such that log||us|| — C1 = —C0yeg(u) for all
(u, @) € Nyreg(F) x A,. Combining this with Proposition , we see that, for u € Ny ey (F)
and X a positive (G, M(z))-orthogonal set, the function

(4.2.2) a € T (F)/Ag(F)Ty e — (et uta)dtl g, (Hy, (a), X)

Tx,c

is supported in the compact subset (where we identify 7, (F')/T, . with a subset of a, via the
map Hr,)
(4.2.3)

(com{xﬁ | P e Py, (M(z)} + ~Ap, + A@>N{H € Ay | (o, H) > —Chopreg(t), Yo € AL}

of A,/ Ag. Since the function (4 is also obviously bounded by 1, the lemma follows up to
noticing the existence of C3 > 0 such that the subset (| is contalned in B(C5(0y reg(u) +

N(&X))) 4+ Ag for any u € Ny ,eq(F) and for any positive (é’, M (z))-orthogonal set X. Here
for R > 0, we use B(R) to denote the ball of radius R centered at 0 in A, for a given
norm. [

Lemma 4.6. There exists C' > 0 and, for every u € Ny req(F), a unique umtary polynomial-
exponential function vg, ¢(u,.) on Co(G, M( )) such that for every rational (G, M( ))-orthogonal
set X € Co(G, M (x)) with d(X) = Co(u) (we refer the reader to Sectzonfor various no-

tation), we have
UBxé(u? X) = UBx,ﬁ(Uﬁ X).

Moreover, asu varies, the set of those unitary polynomial-exponential functions {vp, ¢(u,.)| u €
Nyreg(F)} spans a finite dimensional vector space and there exists C' > 0 such that for every

U € Nyreg(F) and X € C@(é, M(as)) we have
0B, (1, X)| < C(0req(u) + N(X))".

65



Proof. Before proving the lemma, we need some preparation. For every u € N, ,,(F) and
Q € Fp,(M(z)) with Levi decomposition ) = LoUq (where M(z) C Lg), there is a unique
decomposition © = u?ug where u? € Lo(F), ug € Ug(F) and we set

§m0() = | €07t )t for t € Tu(F).
Tx,c

Then, these functions satisfy:

o For every u € N, ,.,(F) and Q € ]-"BZ(M(x)), ¢ew@ ig invariant by translation by
As(F);
Q )

e There exists C; > 0 such that for every u € N, ,¢,(F), Q € Fp, (M(z)), t € T,(F) and
(G, M(z))-orthogonal set X satisfying d(X’) > Cyo(u) the condition

9 (H(t), X)rg(H(t) — X5) #0

implies fc’“’é(t) = fc’“’é(t).

The first bullet point is obvious. Let’s prove the second bullet point. Pick C} > 0 and let
Q, u, t, X be as above satisfying

(4.2.4) d(X) = Cro(u),

(4.2.5) T3 (H(t),X)r5(H(t) — Xg5) # 0.

Then, we will show that provided C is large enough, we have

(4.2.6) EE(t) = €9 t).

By Proposition (applied to EQ instead of é), the condition (4.2.5)) is equivalent to

HO(t) € Conv{XF | B, C P C Q)+ AR, and Hy(t) € Xg+ A}

where H é(t), H(t) denote the respective projections of H(t) onto A]%(x), Ag and we have
set Ex = xB,. Hence, it implies that

(4.2.7) H(t) = H(t) + H(t) € Cono(Xp | B, € P C Q) + A5+~ A,
On the other hand, we have

gc,u,é (t) — / é}(tfltcflthct)f(tfltcfl’U,tht)dtc
T\L',C
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Thus, it suffices to show that, when C' is sufficiently large, we have
Et M ugtt) =1, Vi, € Ty
There exists C'y > 0 such that this last condition is implied by the inequalities

(a, H(t)) = Cyo(u), for every a € A, \ Ag.

where Ag = Ag?B “. However, as every a € A, \ A? takes non-negative values on _Agz and

on A%, (4.2.7) implies

(4.2.8) (a, H(t)) > min (o, Xp) > d(X), forevery a € A, \ Ag.
B CPCQ
Therefore, taking Cy > (5 gives the required identity.
Let us now prove the lemma. Fix a lattice A C A, g. Then, we can find a constant C, > 0
and for every u € N,(F), a A-rational orthogonal set X, = (X, 5)pepaiq)) € Ca(G, M(2))

such that d(X,) > Cyo(u) and N(&X,) < Cyo(u). Obviously, it suffices to show that for every
U € Ny reg(F'), the function

V€ Co(G, M(x)) = i, ¢(u, Xy + )

coincides, for ) positive, with a unitary polynomial-exponential function. Applying the
splitting formula of Lemma as well as the two bullet points above, we obtain

- Xu = cu,G FQ X~ (H(t X ,Y dt
e S Qefg:M(x /I(F )/Ag( § (BT5, (H(®), X)Tq(H(t) - X, g, Yg)dt
- e (1)@ _ B
QefBz: / F)/AG(F) EE S, (H(1), X)ToUH () = X, 5 Yo)dt
= gch FQ X, I's5(Hx(at —Xu~7Y~ddt
oz /. oy € OT 010, / o Tl = X Vg

for every positive (G, M (x))—orthogonal set V) and where the second equality is based on
the fact that since Y5z € .,45, gH — X,5,Y5) # 0 implies 75(H — X, 5) # 0. For

u Q’
Qe Fp, (M(x)), the function
t € To(F)/Ag(F) = Q0T (H (1), X,)

is compactly supported so that in the above expression the integral over T, (F') /A@(F ) can
be written as a finite sum. On the other hand for every fixed t € T,(F'), the function

Y@ S A@’Q — / FQ(HQ( ) XuQ’Y )d
F)/Ag(F)
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is a unitary polynomial-exponential function and the set of these functions, as t € T,(F)
and X wd € A vary, spans a finite dimensional vector space. This shows the lemma except
for the last estimate.

By the above computation, we have

v Xt V)= 3 /(F/A

QeFp, (M(z)

gc,u,é(t)rgx(H@),Xu)/ F@(HQ( at)— X3 Y3 Ydadt

5(F) Ag(F)/A5(F)

for every u € Ny ,ep(F) and Y € Co(G, M (z)). However, the integral

Tg(Hglat) = X, 5, Yg)|da
/ (FagE) “

is essentially bounded by (1 + N(X,) + N (y))“?z whereas by a similar reasoning as in the
proof of Lemma [£.5] the integral

/wa)/A@(F)

is essentially bounded by (N(X,) + 0ureq(u)) “G. Since N(X,) < o(u) this shows that
lvp,.e(u, Xy + )| K (04 reg(u) + N(X, + D))" and the lemma is proved. O

e QTR (H(t), X,)| dt

For g € G(F), applying the above definition to the (é,M(az))-orthogonal set Y(g) =
(Hﬁ(g))ﬁep(ﬁ(@), we define the weight

v, £(u, 9) = vp, £(u, Y(9)).

It satisfies the relation

(4.2.9) vp, (U, bg) = vp, (b 1ub, g) for every (u,b,g) € Ny eg(F) x Bo(F) x G(F).

4.3 A formula of regular germs for quasi-characters

Theorem 4.7. For every strongly cuspidal function f € C(é(F)), we hcweﬂ

cr-0.(7) :/ / f(g_lxug)sz,g(u, g)dudg.
B (F)\\G(F') v Ng(F)

Let us remark that thanks to (4.2.9)), the expression in the right-hand side of the above
theorem makes sense formally. We will check its absolute convergent in the next subsection.

9—Og is the same as O¢-1
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4.4 Some estimates

In this subsection we prove some estimates that in particular imply the convergence of the
right-hand side of Theorem [4.7] N N

Let S be the connected center of G, (a torus) and set S = Sz. Let S’ the open subset of
those s € S such that Gs = G,.

Recall that r = dim(A,) —dim(Ag) and 0, ;es denotes a log-norm on Ny reg = Ny NGy reg.
We fix log-norms o, and og on éreg(F ) and S'(F) respectively.

Lemma 4.8. We have inequalities

. -1 -1 ~
(4.4.1) beg}iﬂ(ameg(bub ) +0(bg)) < 0reg(g™ sug) +035(s),
and

. 1 —1 B
(4.4.2) begﬁﬂ(o(bub ) +o(bg)) < o(g sug) + oz /(s)

for (s,u,g) € S'(F) X Nyreg(F) x G(F).

Proof. Let N, C G, be the unipotent cone and N, x% G be the quotient of N, x G by the
free action of G, given by ¢, - (u,g) = (g-ug, ', g»g). Then, the regular map

N, xG G xS —Gx 8, (u,g,5)— (g sug,s)

is a closed embedding with image the subset of those (v, s) € G x 5" such that the semisimple
part of 7 is in the same geometric conjugacy class as s. Let Ny yee = N NG 1eq be the open
subset of regular unipotent elements. Then, the previous map restricts to a closed embedding
Niveg X7 G X 8§ = Greg ¥ S’. Furthermore, the natural map N, xB= G — N, x% G is
proper and N, (resp. Nyeg) is a closed subset of AV, (resp. Ny reg). It follows that the two
regular maps

N, xB G xS — G xS and Nyreg X5 G x S émg x S’
are proper (the second one being actually a closed embedding). By Lemma we have
on,xBe(U, g) < (g™ sug) + oz (s), O Ny g B (U, 9) K Oreg (97 sUg) + 05/(s)
for (u,s,g) € Nyreg(F) X S'(F) x G(F). It remains to check that

. —1 : -1
ON, x5 (U, g) be};}jﬂ(a(bub )+o(bg)) and o, ., 52 (U 9) beg}jF)(%,reg(bub )+0(bg))

for (u,g) € Nyreg(F) x G(F) i.e. that the two natural projections N, x G — N, x5 G and
Nyreg X G — Ny reg x B+ G have the norm descent property. Since both are pullbacks of the
projection G — B,\G, it suffices to check that the latter has the norm descent property.
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Choose P = M(z)U € Pg,(M(z)) a parabolic subgroup with Levi M (z) such that
PNG, = B,. As P\G is proper, we just need to check that P — B,\P has the norm
descent property. Let 7 : B,\P — T,\M(z) be the natural map. According to Kottwitz,
M(z) — T,\M(zx) already has the norm descent property. Thus, for every p € P(F'), we
can find m € M(z)(F) such that p € T,(F)U(F)m and

o(m) ~ or\m@) (T(Bwp)) < 0, \p(Bep).

Choose C' > 0 large enough such that for all p € P(F), there exists p’ = u'm’ € B,(F)p
with v’ € U(F') and m' € M (x)(F') such that

o(m') < Cop,\p(B.p).

Fix another constant C > 0 large enough (with respect to C). If on,\v(v') < Crop,\p(B2p),
then since U — N,\U has the norm descent property (this is because this quotient map
admits a regular section), there exists n € N, (F') such that

o(nu'm') < 2C10p,\p(B.p).

This implies that

inf bp) < 2C B,p).
begi(F)U( p) < 1UBI\P( )

If onv(u') > Ciop,\p(B.p), since N,\U — B,\P is a closed embedding and since
o(m’) < Cop,\p(Bgp), we have

1 1
op\p(p) = op\p(u'm') > 503,0\13(1/) = §O'N¢\U(ul>

and

. f b < . f 1! < 2 ! .
beJlBIglg(F)a( p) < neﬁ(F)J(num) < 2onaw ()

This implies that

inf bp) < 4 B.p).
begi(F)U( p) < UBZ\P( )

As a result we have proved that the map P — B,\P has the norm descent property and
this finishes the proof of the lemma. m

Corollary 4.9. We have
|05, ¢ (1, 9)| < (0reg(g™ " sug) + 05(5))"
for every uw € Ny ,eq(F), g € G(F) and s € S/(F).

Proof. According to Lemma [4.6] we have |vg, ¢(u, g)| < (04 reg(u) + 0(g))". Combining this
with the equation (4.2.9) and the previous lemma, we obtain

v, (U, )] < be}gn{F)(ax,reg(bub*) +0(bg))" < (Oreg(9™ " sug) + 05/(5))"
for u € Ny ,eg(F), g € G(F) and s € §'(F). O
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Proposition 4.10. Let o > 0. Then, for every f € C(CN;(F)) and every d > 0, we have
(4.4.3) Dé(s)l/z/ / £ (9" sug)|oveg (9 sug) dudg <sa 0(s) o5 (s)™
By (F)\G(F) J Nz (F)

for s € §’(F) In particular, the integral in Theorem 15 absolutely convergent.

Proof. Let K C G(F) be a compact-open subgroup. First, we show that

(4.4.4) vol(gKg™'n Nw(F))l/ Oreg (97 sukg)°dk < (0(g " sug) + og(s))"”

gKg—INNg(F)

for every (g,s,u) € G(F) x S'(F) x N,(F). Since the left-hand side of the inequality
is invariant by the transformation (g,s,u) — (bg,s,bub™!), by Lemma it suffices to
establish that

vol(gKg ' N N, (F))™* / Oreg (97 sUkG) 0 dk < (0(g) + o(u) + o5(s))™

gKg—INNy(F)

for (g,s,u) € G(F) x §'(F) x N,(F). Note that o,es(g " sug) < 0(g) + 0reg(su) < o(g) +
05/(8) + Oz reg(u). Therefore, we are reduced to show

(4.4.5) vol(gKglﬂNﬁ(F))l/ Oy reg(UK) 0 dk < (0(g)+o(u))™ for u € Ny(F).
gKg— 1NN (F)

Let A, be the set of simple roots of A, in B, and for & € A,, let n,, C n, be the
corresponding root subspace. Then, we have a natural projection n, — n,, and for u € N,
we denote by log(u), the image of log(u) in n, , where log : N, — n, denotes the logarithmic
map (a regular morphism). Fix an ultrametric norm ||.|| on n,(F) and set v(.) = —log||.||.
Then, we have

Oareg(W)™® ~ o(w)® + > max(1,v(log(w)a))™ for u € Ny eg(F).

acA,

Thus, to show (4.4.5)) it suffices to bound the integral

(4.4.6) vol(gKg ' NN, (F))™! / max(1, v(log(u), + log(k)a))dk

gKg™'NNz(F)

by a constant times (o(u) + o(g))™. For this, we remark that there exists C' > 0 such that
the image of gKg' N N,(F) in n, ,(F) contains the ball

B(Co(g)) :={X € no(F) | v(X) > Co(g)}

for every g € G(F'). Therefore, since o(uk) < o(u) + o(g) for every g € G(F), u € N, (F)
and k € gK g, the desired estimate for (4.4.6]) follows from the elementary inequality

vol(B(R))™* / max(1,v(X +Y))°dY < R™ for every R > 1, X € n, (F),
B(R)
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and this ends the proof of (4.4.4)).
From (4.4.4) applied to some compact-open subgroup K C G(F') leaving f invariant in
the right, we get that the left-hand side of (4.4.3)) is essentially bounded by

755D [

/ (g7 sug)|o(g sug)°dudyg.
By (F)\G(F') J No(F)

Note that the function 6™| f| belongs to the Harish-Chandra Schwartz space C(G(F)). There-
fore, up to replacing f by this function, it suffices to show that for every d > 0 we have

(4.4.7) DE(s)/? / / g~ sug)ldudg < o(s)™
By (F)\G(F) J N (F)

for s € S'(F).

Pick a parabolic subspace P = ]\7($)U € PBI(M(x)) with PN G, = B, as well as a
compact subgroup K C G(F') such that G(F) = P(F)K. Then, by the usual change of
variable the last integral above is equal to

D@ (5)1/255(s)1/2 / / / L smuk) | dudkdm.
T (F)\M(z

Thus, since the function m € M(x)(F) — 65(m)Y/? Jx fUF |f(k~'muk)|du is Harish-

Chandra Schwartz [33, Proposition 11.4.5], the estlmate is now a consequence of
[7, Lemma 2.9.2]. O

4.5 Definition of a sequence of test functions

As a preparation for the proof of Theorem we introduce a sequence of functions ¢, €
CX(G,(F)) as follows, the construction being inspired from [27].

First, we identify ¢ with the unique element of Ei (where B, = T,N, denotes the Borel
opposite to B,) whose restriction to n,(F') coincides with {oexp. Then, £ € O, (by definition
of the coadjoint orbit O¢) and, denoting by g, ¢ the centralizer of £ in g,,, we have n,Ng, ¢ = 0.
Moreover, the image of n,(F') in the quotient g, (F")/g, ¢(F') is maximal isotropic with respect
to the bicharacter

(4.5.1) (X,Y) € g2(F)/gae(F) = (& [X, Y]).
Let L C g.(F) be a lattice such that:

e The image L* of L in g,(F)/g.¢(F) is self-dual with respect to the bicharacter (4.5.1))
ie. L& ={X € go(F)/goc(F) | (& [X,Y]) = 1VY € L¢};

e The preimage of L¢ in n,(F) is n,(F) N L.

We then choose an integer ng > 0 large enough such that:
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(4.5.2) e The exponential map g,(F) — G,(F) is well-defined on @w™ L;

For every n > ng, m > ng, X € w"L and Y € @™L, we have eXe¥ € exp(X +
Y + @™t L)

[L,L] C w ™ L;

The restriction of £ to @™ L is trivial;

For every n > ng, me Z,Y € w"L, X € w™L, we have

Adyy (X)) — X —[Y, X] € w?tmnof,

That the last point above is satisfied for ngy large enough is a consequence of the series

k
expansion Adyy X =), adiEX)

For every integer n > ng, we set

e a, = (2p))(w)™ where p; denotes half the sum of the positive coroots of A, with
respect to B,,;

o L,=(Ad,,) 'w"L, K, = exp(L,) and K/, = exp(w"L);

e (K, — C* & : K — C* the locally constant functions defined by &, (exp(X)) =
£(X) and & (exp(Y)) = £(w2"Y) for every X € L, and Y € w"L respectively.

Note that, by the second condition on ng, K,, and K], are compact-open subgroups of G, (F).
Moreover, we have K/, = a,K,a,' and & (a,ka;') = &,(k) for every k € K,, which follows
from the fact that Ad; & = w2"¢. From the last condition on ng, we also deduce that the
function &, (resp. &,) is K,-invariant (resp. K/-invariant) by conjugation”]

We fix Haar measures on g, (F') and n,(F') compatibly with the measures on G, (F') and
N, (F) i.e. such that exponential maps are locally measure preserving. Identifying n- with
the Pontryagin dual to g,(F')/n.(F), we endow it with the dual of the quotient measure on
the latter. This is the only invariant measure on n} such that for every lattice A C g, (F)
we have vol(A+ Nnl) = vol(A Nn,(F)) vol(A)~1.

For n > ng, we set ¢, = vol(L,) '€ |, € C(g.(F)) and ¢,, = vol(K,,) 71, € C°(G.(F)).
Note that the Fourier transform @, is the characteristic function of the coset —& + L.

Lemma 4.11. For n large enough, the following hold.

(i) €+ (L Nni(F)) is invariant under the conjugation of K, N N,(F).

(i) Foru € N (F), if u='(é+(Ly i (F)uné+(Linni(F)) #0, thenu € K,NN,(F).
(111) For every f € C(g.(F)) we have

/ on(X)F(X)dX = vol(Kp) " vol (KpnN, (F)) ™! / / 1e, 1o (V) FURY K1) dY dk:
9z (F) n o Engd

10 Actually, for n large enough and if the residue characteristic is different from 2, it can be shown that &,
and &/, are characters of K, and K/ respectively. But we will not need this fact in the sequel.
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(iv) For every O € Nil(g,) we have

if O = —0,

R 1
Jo(n) = { 0 otherwise.

Proof. (i) We have

(iii)

4 (Ly Nug(F) =& +n (F)NE+ Ly

Furthermore, since £ is a character of n,(F), £ + nt(F) is N (F)-invariant whereas,
since the function &, is K,-invariant, £ + L is K,-invariant. The claim follows.

Let u € N,(F) and set X = log(u) € n,(F). After conjugating everything by a,, the
statement is equivalent to

uTNEH (@ LN Juné+ (@' L ng) £ 0= X € @' L.
By the theory of Kostant section, the map
N, x E4+nr —nf xnr: (n,X)— (X,n ' Xn)

is a closed embedding. Hence, for any m > 0 we can choose n large enough such that
if u™'(€+ (@"LENnp))uné + (w"Lt Nnt) # 0, then X € w™L. Now let k be the
largest integer such that X € w”L. We know that k& > m and we need to show k > n.
There exists some absolute constant C' € N such that

wtu € €+ [X, € + @ L, v ("L Nnbu € "L+ " TROLE

If n > k, once we choose m to be large enough (with respect to C'), the above relations
imply that
uM(E+ (@ L Nng))u C E+ (X, € + (@ L Ning).

Since the image of L in g,/g.¢ is self-dual, we know that [X,{] € @w"L* N n and
(X, €] ¢ @ LNk, This implies that w1 (§+ (@" L Nnl) ) uné+ (@ LEnnt) =0
which is a contradiction. Hence we must have k£ > n and this proves the lemma.

Let D be the distribution on g,(F') defined by

-~

D)= [ [ e FURYE YR f e CR(aF))
Kp J&+ng (F)

Then, it has the following properties:

(a) It is K,-invariant: D(¥f) = D(f) for every (k, f) € K, x C®(g.(F));
(b) It is supported in Ad(K,,)(L, + n,(F));
(c) Ttis (Ly, & )-equivariant: D(L(X)f) = £(X)D(f) for every (X, f) € L, xC(g.(F)).

We claim:
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(4.5.3) For n large enough, every distribution on g, (F') satisfying the properties (a),
(b) and (c) above is proportional to the distribution

feCeF) e [ eudX)fX)ax
gz (F)

Indeed, every distribution D verifying (a), (b), (¢) is represented by a function F' €
C>(g.(F)) which is K,-invariant, satisfies F(Y + X) = £(X)F(Y) for (X,Y) € L, x
g.(F') and is supported in Ad(K,,)(L, + n,(F)). It then suffices to show that such a
function is necessarily supported in L, which would be a consequence of the following
property: for every X € n,(F)\(L,Nn,(F)), we can find k € K,, such that Ad, X —X €
L, and £(Ad(k)X — X) # 1. Conjugating everything by a,, this property can be
restated as:

(4.5.4) Provided n is large enough, for every X € n,(F) \ (L Nn,(F)), we can find
k € K] such that Ad(k)X — X € L and {(w "(Adx X — X)) # 1.

Indeed, let X € n,(F)\(LMn,(F)) and set —k = valy(X) < 0. Set m = max(n, k+2ng).
Then, for every Y € @w™L, by the last and third points of (4.5.2)) respectively, we have
Ady(X) =X e[V, X]+w®™ L C[Y,X] + "L

and
Y, X] € w™ "™ C L.

Thus, Ad.v(X) — X € L and, by the fourth point of ([£.5.2), {(w " (Ad.y (X) — X)) =
E(w ™Y, X]) for every Y € w™L. Since exp(w™L) C K it therefore suffices to find
Y € @w™L such that {(w™"[Y, X]) # 1 (provided n is large enough). However, if
(@Y, X]) = 1 for all Y € @w™L then, since the lattice L& C g,(F)/g.¢(F) is self-
dual, the image of X in g,(F)/g.¢(F) belongs to w" ™L5. As the preimage of L¢ in
n,(F) is n,(F) N L, this would imply Y € @™ ™L hence n —m < —k or equivalently
n < m —k = max(n — k,2ny). This last inequality is obviously false for n > 2nq so

that the claim (4.5.4)) is satisfied for such a n.
This shows (4.5.3]). As a consequence, we can find a constant ¢ such that

~

/ son(X)f(X)dch/ / Le (V) f(KY K™ )dY dk
0. (F) n Jetnd (F)

for every f € C(g,(F)). Plugging in f = §,, we have f: 1¢, 1 and we obtain
vol(L,)™" = evol(K,) vol (L} Nn,(F)*Y).
By our choice of measures, we have
vol(L,) vol(L Ny (F)*) = vol(L, Nny(F)) = vol(K, N N,(F))
and therefore ¢ = vol(K,,) ™! vol(K,, N N,(F))™! as claimed.

(iv) follows from the computation in the middle of p.437 of [27].

75



4.6 Application of the local trace formula

We now start the proof of Theorem which will be finished in the next subsection. The
proof for general reductive twisted spaces is basically the same as in the untwisted case, i.e.
when G = G, the only difference is to replace the local trace formula in [2] (resp. Howe’s
conjecture for weighted orbital integrals in [3, Lemma 8.2] [4]) by the local twisted trace
formula in [28] (resp. Howe’s conjecture for twisted weighted orbital integrals in Appendix
B). Hence to simplify notation, we will only write the proof when G=3G.

We need to recall some material on the local trace formula from [2]. Fix a minimal Levi
subgroup M,,;, of G as well as Py,;, € P(M,,;,) and a special maximal compact subgroup
K C G(F) in good position relative to My,m,. We set W = Normegry(Mmin)/Mpmin(F). Let
T € Aping- For P € P(Myin), we set Tp = wpT where wp € W is the unique element such
that prmmw;l = P and, for g1, 9> € G(F), we define a (G, M,,;,)-orthogonal set by

yp(glvg27T) = TP + HP(gl) - Hﬁ(QQ)a P e P(Mmin>a

where P denotes the parabolic subgroup opposite to P (with respect to My,). For M €
L( M), we set
ol o) = [ Ta(H(@. V(o192 T))da
Ap (F)
We also denote by M, <7 the set those m € M,,;,(F) such that

0 < (v, Hyy,,,, (m)) and (g, Hay

min m

(M) < (wy, T), for every a € Apin,
and we let u(.,T) be the characteristic function of the subset KM, K of G(F).
For f € C(G(F)) and ¢ € C*(G(F)), we define

T, ) = / R / , ™ 0)ptedads

G

and
T (WM T
T'(fe) = > W I (7, frp)dy
MG‘C(Mmin) Fell(M)
where
Th(v. f) = DO() / F(gr 90095 Vg2 ont (91, 92, T)dgrdgs.
(An (F)\G(F))?

Proposition 4.12. (i) For every f € C(G(F)) and ¢ € C°(G(F)), the function
T € Aming = J7(f, )

15 a unitary polynomial-exponential. Moreover, for any compact-open subgroup J C
G(F) and subset Q C G(F) that is bounded modulo conjugation, the subspace of
C(J\G(F)/J)* spanned by

{f€CN\GF)/T) = TV (f,0) | ¢ € CZ(N), T € Aming}

is finite dimensional.
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(i) Let € > 0. Then, for every r > 0 there exists a constant C, > 0 such that
TT(f0) = T (f0)| < T

for every T € A;Smm@ satisfying (o, T) = €||T|| for every a € Apin.

(111) For every T € Awing, ¢ € CX(G(F)) and strongly cuspidal function f € Cseysp(G(F))
we have

JU(f.p) = /G(F) ©(9)e(g)dy.

Proof. (i) is a consequence of the splitting formulas [3, Equation (5.5)] and of Howe’s
conjecture for weighted orbital integrals [3, Lemma 8.2]. (see Appendix [B| for the
twisted case.)

(ii) follows directly from the proof of the geometric side of the local trace formula in [2].

(iii) follows from the splitting formula [3, Equation (5.5)] and the same argument as in
Section [2.13
O]

Let w, C g.(F) be a sufficiently small invariant neighborhood of 1 and define, for n
sufficiently large, ¢¢ € C*°(G(F)) by (here K, = K N G,)

otherwise.

4% (g) = { Jic, Onlay ko yhpan)dk,  if g = kayk™! for some (y, k) € exp(w,) x K
" 10

For every f € C(G(F)), we set

aen M= | o ) (0 V(0. T) + H{a))dudg
By (F)\G(F) J Ny (F)

where YV (g,T) denotes the (G, M (x))-family defined by
yP(gaT) = HP(g) + TP) Pe P(M(l’)),

and where we recall that for every (G, M (z))-family X and u € N,(F), we have set
g, ¢(u, X) = /;) E@t ut)p, (H(t), X)dt.
Proposition 4.13. (i) Let f € Cseusp(G(F')). Then, for n large enough we have
TH(f.05) = cr-0c(2)

for every T € Ap,, 0.
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(it) Let f € C*(G(F)). Then, there exists ng > 0 and C = Cy > 0 (both depend on the
support and the level of f) such that
for everyn =ng and T € AjSmm satisfying o(T) = C' for every a € Apin.-

Proof. (i) Applying Proposition m (iii) to ¢ = ¢¢ and by usual arguments of semisimple
descent and descent to the Lie algebra, together with the germ expansion of ©, for n
large enough we get

JU(f o) = /G(F) O1(9)dy (9)dg = /GI(F) O¢(zy)dn(y)dy
= > cro(@)Jo(@).

OeNil(gz)
The result then follows immediately from Lemma (iv).

(ii) We may assume that f is invariant under K-conjugation. For every g € G(F'), we
define a function 9f, . € C>(g.(F)) by

flglrexp(X)g) if X € w,,
g J—
fow, (X) = { 0 otherwise.

Then, by a standard descent argument to the Lie algebra and Lemma m (iil), we
have

JT(f,¢f)=/ w(g,T) [ 9 fow (X)pn(a, Xa,)dX dg
G(F) O

- / w(ang, T) / 9o (X)on(X)dX dg
G(F) O

— vol(K) vol (K, A No(F))~! /

w(ang, T) / / GF, o (V) 1es s (Y)Y dk
G(F) w Je4nt ’

where the first equality follows from the change of variables g — a,g and X — a,Xa, .
Since the function g — u(a,g,T) is left-invariant by K, for n large enough, this gives

JT(f, on) =V01(KnﬂNx)‘1/ U(ang,T)/ 9w (Y)dYdg
G(F) E+(Lbomt)

= vol(K, N N,)™* / / w(anbg, T) / 9 o, (7Y D)AY drbdg.
Bo(F\G(F) J B, (F) E+(Lirmd)

Thus, it suffices to show that, for every g € G(F'), we have

(4.6.2) vol(K,, N N,) ™" / w(anbg, T) / 9fp 0 (7Y D)V dLb

«(F) §+(LzMng)

:/’ F(g™ 2ug) 0, ¢(u, V(9. T) + H(ay))du,
N (F)
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Both sides of the above equation are (B,, dp, )-equivariant on the left. As f is compactly

supported, we may restrict to establish the identity for ¢ in a fixed compact subset
K C G(F). We need a lemma.

Lemma 4.14. There exists € > 0 such that for n large enough, the integrand of the
integral
/ u(anbg, T) / 9y, (7Y D)V dLb
= (F) E+(LyMng)

over B, (F') is supported on (N,(F)N K,)T,._(F) for all g € K. Here T, (F) = {t €
T.(F)| la(t)| 2 €, Yae A} and T, (F)={t|t7 € T, (F)}.

Proof. We write b as b = ut. Since f is compactly supported, there exists a compact
KL C g.(F) such that Supp(9f,,,. ) C K for every g € K. If the integrand is nonzero,
we must have (¢71¢t +nt(F)) N KL # (), this implies that ¢t~ € T, ((F) for some € > 0
(note that € only depends on K and it is independent of n). Now we have u=!(£+ (LN
n))u Nkl #£ 0. Since t7! € T, (F) and u (€ + (L Nny))u C €+ ny, once we
choose n large enough (with respect to €) we have w1 (é+(LEiNnt))uné+(Linnt) #£ 0.
Then the lemma follows from Lemma K11} O

By the lemma above and use the fact that € + (L;- N'nl) is invariant under the conju-
gation of N,(F)N K,, (Lemma [4.11]), we have (here we change ¢ to t~1)

(4.6.3) vol(K, N N,)~! / w(anbg, T) / 9f oo (b7YD)AY dpb
2 (F) e+(Limnd)

_ / w(ant—g, T) / 0o (Y E)AY 5 (1) dt.
w(F)

EH (L)

Once we choose n large enough, for ¢t € T, (F), we have tYt™' € KF =Y € £+ (LN
nl) for Y € £ +n:(F). Hence we can replace the above integral over £ + (L Nnl) by
the integral over £ +nt(F) since the integrand for the integral over T}, (F) is supported
ont €T, (F). Then by a simple change of variable, we get

(4.6.4) / w(ant g, T) / 9f oo, (Y)AYdL.
T (F) ’

tét—14nt

Next we show that

(4.6.5) For n sufficiently large and T sufficiently regular, we have
u(ant™g,T) = Tp, (H(t), Y(9,T) + H(an))

for every g € K and t € T, ((F)).
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Let t be as above. First, we note that

L, (H(t), Y(9,T) + H(an)) =T, (H(a, '), Y(9,T))

and
a(a, )] = ¢*"|a(t)] = ¢*"e

for all @ € A,. From this, we see that actually reduces to the following state-
ment:
(4.6.6) There exist C' > 0 such that
u(t™'g,T) =Tp,(H(t),Y(g.T))
for every g e K, t € T, (F) and T € aJISmm satisfying
(a, H(t)) 20, Va € A,

and

(o, T) =2 C, Ya € Apin-

Let t € T,(F) and T € a;mm be elements satisfying the above inequalities. Then,
provided C' is large enough, the (G, M (x))-orthogonal set Y(g,T) is positive for every
g € K and therefore by Proposition and the assumption on ¢ we have

Pp, (H(t),Y(9:T)) = Trw) (H(t), Y(9,T)).

Furthermore, by the identity at the bottom of p.38 of [2], provided C' is large enough,
we also have

for every g € IC. This shows (4.6.6)) and ends the proof of (4.6.5).
Now, from (4.6.5)) and (4.6.4), we deduce that, for n sufficiently large and T sufficiently

regular, we have

vol(K, N N,) ™" / w(anbg, T) / 9y, (7Y D)AY d

«(F) §+(LyMng)

_ / . g, (H(t),Y(g,T) + H(ay)) / 7 (v)ave

tét—14nt

N /T (F) L5, (H(1), Y(9,T) + H(an)) / f(g trug)é(t  ut)dudt

Nz (F)

:/ . f(g_1517UQ) /reg §<t_1Ut)FB”(H(t>’y(g>T)+H(an))dtdu

z(F)

- / flg~ wug)is, &(u, Y(g, T) + H(an))du
()

for every g € KC. This gives (4.6.2)) and therefore closes the proof of the proposition.
O
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4.7 End of the proof of Theorem

In this subsection we will prove the formula of regular germs in Theorem {4.7 4.7 Fix a strongly
cuspidal function f € C(G(F)), we need to show that

cf,,og(x) :/ / f(g’lxug)vgz,f(u, g)dudg.
Bo(F)\G(F) J No(F)

By Proposition [4.13]i), there exists ny > 0 such that for n > n; we have

TU(f,0) = eg-0 (@)
for every T € Ap

m.0- Let J be an open compact subgroup of G(F') such that f €
C(G(F))’*’. By Proposition 4.12((i), once we choose n; large enough, we can find a se-
quence of functions fx € C°(G(F))”*7 such that

o fnv— fas N — oo
o JT(f,¢%) = J(fn,¢C) for all N >0, T and n > ny.
In fact, by Proposition M( ), we know that the span of the linear forms

feCGE) = J(f,065)

for all 7" and n > ny is finite dimensional. Let Ji,-- -, Ji be a basis of this span. Since these
linear forms are continuous, by density we know that Ji, - - , J; are also linearly independent
when restricted to C°(G(F))’*/. Thus, we can find g; € C*®(G(F))’*’ (i =1,...,k) such
that J;(g;) = d;;. Choose now an arbitrary sequence fy € C®(G(F))”*/ Converging to
f € C(G(F))”*7. Then the modified sequence fy = fia + Sor (Ji(f) — Ji(fi))g: satisfies
the required conditions.

By Proposition [1.13]ii), for each N > 0, we have

T (fr69) = T () = / / Fnlg " wug)o, e(u, Y(g, T) + H(an))dudg
B (F)\G(F) J Nz(F)

for n sufficiently large and 7' sufficiently regular (both with respect to fy). Combining with
the local twisted trace formula, we know that

T—o00 T—o00

i (o) = Jim [ / I ) . Vg, T) + Hoo) iy

for n sufficiently large with respect to fy.

For n > ny, we know that J7(f, %) = JT(fn, ¢S) = cr0¢(x). In particular, JT(fn, ¢S)
is independent of n and 7. On the other hand, vp, ¢(u,Y(g,T) + H(a,)) is an exponential
polynomial on 7" and n whose constant term is vg, ¢(u, g). This implies that

lim JT(fN,gbG) / . )/ ( )fN(g_lxug)sz,g(u,g)dudg.
G(F F

T—o0
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Hence we have proved that

cr-0 () = / / In(g~ wug)vp, ¢(u, g)dudg.
By (F)\G(F) J Nz (F)

By taking the limit limy_,o, we get

Cf -0 () = / / f(g’lxug)sz,g(u, g)dudg.
Bz (F)\G(F) v Ne(F)

This proves the theorem.

4.8 A descent formula

In this subsection, we will prove a descent formula that will be used in later section. We
keep the notation as in the previous subsections. Moreover, we assume that «(z) = x, B, is
t-split and T C Zg,.

The action of ¢ naturally descends to a, and this induces a decomposition a, = a’, @© a,,
where a’, (resp. a,,) denotes the subspace consisting of elements H € a, satistying «(H) = H
(resp. «(H) = —H). For H € a, we will denote without further comment by H*, H, the
respective projections of X with respect to this decomposition. Similarly, if C' is a subset of
a, (typically the positive cone associated to a parabolic subspace) we will denote by C* the
image of its projection to a’.

Let X = (Xp) pep i) be a (G, M(m))—orthogonal set. For every Q € fBI’L(M(x)) (resp.
Q € Fg, (M (z)) such that at Na® = 0), we define a function F%w(" X) (resp. Fgf(., X)) on
a, by )

S (H,X)= (~1)""7 (H ~ X5,), Hea,
PeFg, . (M(z)),PcQ

~ Q (y@ ‘ - Q4 q . Q ¢ 49:
(resp. Fg;L(H7x):{ g, (Y9, X) ifHeX5+Y%+a; +ag for some Y € a*; . Hea)

otherwise.

Proposition 4.15. For every R € ]:BZ,L(]T/[/(:U)), we have the following identity of functions
on ay:

(4.8.1) Yoo TR (- xg) =1

ROQEFp, . (M(z))

Moreover, if X s positive, Fgw(.,){) s the characteristic function of either of the two
following subsets

(4.8.2) {H € a, | malH — Xp,) <0, VP € Py, ,(M(x)), Vo € ARL} :

(4.8.3) Conv {Xﬁ,L | Pe PBI,L(M(‘Z'))} + "ap,, +a, +az.
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Proof. The proof is the same as Proposition [4.3] and [£.4, We will skip it here. O

Proposition 4.16. Assume that X is positive and let ¢ € (agl)‘ that is in general position.
For every Q € Fp,(M(x)) such that € € (c%)b we define a number d.(Q) inductively by the
relation

(4.8.4) > d(R)=1.

QCReFp, (M(z))
se(ug)b

Then, we have the following equality of functions on a,

(4.8.5) ¢ .x)= Y dQre(. ).

QEFp, (M(z))
se(ag)b

Proof. For Q € Fg,(M(z)), we set
€2 (X) == Conv {Xﬁ | P e Py (M(z)), P C é} + a4
Then ng(., X') is the characteristic function of ng(/'\f ) + a5 (by Proposition and:
(4.8.6) If at N a? =0, Fgg(., X)) is the characteristic function of Cgﬁ(?ﬁ) @ (a, +ag).
(This follows from the definition of Fg;‘(., X)) and the previous point.) Furthermore, we claim

that:

(4.8.7) ng,b(" X') is the characteristic function of CgE(X) +al, +ag.

Indeed, by the previous proposition it suffices to check that for every P e P, (M(x)),
P’ € Pp,.(M(z)) and a € Ap, , we have

o (X Xp,) <0.

P
But this follows, after projection onto a,,, from the fact that X5z, — X5, is a linear com-

bination with negative coefficients of elements of Az, (by definition of a positive (G, M (x))-
family).
With the terminology and notation from Appendix [A] we also have:

(4.8.8) ng (X) is a finitely generated convex set with faces FQ := ng (X),Q € Fp, (M(x)),

and corresponding (open) cones a;:é = c%.
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Indeed, that Cgr(/lf' ) is a finitely generated convex set is clear from its definition. Let A € a,
and ¢ € R be such that (A, H) < ¢ for every H € ng(?(). Applying this inequality to
H € ~ap,, we see that A € aj; . As

+ +
aBI - - UN a@a
QEF B, (M(x))

we have \ € C%) for some Q € Fp, (M(x)). For H € ~ap,, we have

(\H) <O

with equality if and only if H € _agz. Furthermore, as X is positive, for every P €

Py, (M(z)) we have
(A, Xp) < (A Xg)

with equality if and only if Pc @ Therefore,

(A H) < (A Xg)
for H € ng()( ) with equality if and only if H € ng(/'\? ) and it follows that the intersection
CS (X)N{H € a, | (\H) =c}

is either empty or equal to ng (X). The claim (4.8.8)) follows.
From (4.8.8) and Proposition [A.3[i) (applied to b = a,,), we deduce that

(4.8.9) G +a+az= | QLX) +a+ag

QEFBI,E(M(J:))

where we have denoted by ]-"Bx,e(ﬁ(x)) the subset of Q € Fp, (M(z)) such that ¢ € (ag)b.
Thus, by (4.8.6) and (4.8.7)), to get the identity (4.8.5)) it only remains to check that

(4.8.10) > d.(Q) =1
QeFp, - (M())
Hecgz (X)+as+az

for every H € ng(/'\f') + a. 4+ ag. By Proposition |A.3(ii), there exists a minimal Q €
fBI,a(]/\\/[J(x)) such that H € ng (X)+ a4+ ag and, by the relation (4.8.4)), it suffices to show
that, for R € .7:39678(]\7@)), we have ng(‘)o C ng(?() if and only if Q C R but this follows

from (4.8.8)) (as this shows that both inclusions are equivalent to a% C a_g) O
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As in the previous subsection, let N, .., C N, be the subset of regular elements in IV, and
T, . C T,(F) be the maximal compact subgroup. We equip 7, . with the Haar measure of
total mass 1 and we also fix a log-norm ¢4 : Ny reg(F) = Ry on Ny ey (F). Set r = dim(ay).
The next two lemmas can be proved by the same argument as in Lemma We will skip
the proofs here.

Lemma 4.17. For any u € N, ,o(F) and any positive (é,M(x))—orthogonal set X, the
iterated integral

(4.8.11) (a 't uta)dtTp, ,(Hr,(a), X)da

/Tx(F)/AaF)T;(F) Tie

1s absolutely convergent in that order and will be denoted by

*

Up, e.(u, X) == / f(a_lua)FBZ,L(H(a),X)da.
To(F)/Ag(F)TL(F)

Moreover, there exists a constant C' > 0 such that for every u € Ny ,.o(F') and every positive
(G, M(x))-orthogonal set X, we have
|08, 6.(u, X)| < C0reg(u) + N(X))".

Lemma 4.18. For any u € N,,..o(F), Q € Fp, (M(z)) such that - Na® = 0 and any
positive (G, M (x))-orthogonal set X, the iterated integral

(4.8.12) (a "t uta)dtTY (Hy, (a), X)da

/Tm(F)/Ag;(F)T;é(F) Tac

15 absolutely convergent in that order and will be denoted by
@g;g(u, X) ::/ f(a_lua)Fg;L(H(a),X)da.
T (F)/Ag(F)T4(F)
Moreover, there exists a constant C' > 0 such that for every u € Ny ..o(F) and every positive
(G, M (x))-orthogonal set X, we have
731, X)| < Coreg (1) + N(X))'.

Lemma 4.19. There exists C' > 0 such that for every (é, M(x))—orthogonal set X satisfying
d(X) = Co(u), we have

e X) = 15w, X)

U e (u, U (U,
where u = u®@ug is the unique decomposition with u® € L5(F) and ug € Us(F).

Proof. The proof is the same as the proof of the second bullet point in the proof of Lemma
4.6| (we just need to use our assumption that T C Zg,). ]
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The next two lemmas can be proved by the same argument as in Lemma [£.6] We will
skip the proof here.

Lemma 4.20. There exists C > 0,7 > 0 and, for every u € Ny ¢4(F), a unique exponential
polynomial vp, gb( .) € Polg, whose exponents belong to a finite set independent of u such

that for every (G, M( ))-orthogonal set X satisfying d(X) > Co(u), we have
v, e.(u, X) =vp, ¢, (u, X).

Moreover, there exists C' > 0 and R > 0 such that for every u € Ny ,.,(F) and every
(G, M (x))-orthogonal set X we have

|08, ¢.(u, X)| < C'(0req (1) + N(X))™.
Lemma 4.21. For Q € Fp,(M(x)) such that o’ N a? = 0, there exists C > 0,7 > 0

and, for every u € Ny,eq(F), a unique exponential polynomial vgig(u,.) € Polg, whose

exponents belong to a finite set independent of u such that for every (é, M(m))—orthogonal
set X satisfying d(X) = Co(u), we have

Ug Lg(“» X) = ’1725’5(11, X)

Moreover, there exists C" > 0 and R > 0 such that for every u € Ny ,.o(F) and every
(G, M (x))-orthogonal set X we have

o (0, )| < C(oneglu) + ()",
Following the above two lemmas, we define

0B, 60(1.9) = V5, £0(w. V(9)), v8 (1, 9) = 03" (1, V(g))
The following corollary is a direct consequence of the two lemmas above.
Corollary 4.22. There exists d > 0 such that
vp..(1,9) € 06(9)'on, ., ()", v e(u,9) € oa(9) o, ., ()"
for all uw € Ny ,eo(F) and g € G(F).
Corollary 4.23. The function vg:{(u, g) is left N, NUg(F) on u and left Ug(F)-invariant
ong.

Proof. The left U@(F)—invariant on g is clear from the definition. The left N, NUgz(F) on u
follows from Lemma [£.19 O

Corollary 4.24. We have the decent formula
VB, .(U,g) = Z dg(@)vgs’:g(u, q9).

QeFp, (M(z))
eE(a%)L

Proof. This is a direct consequence of Proposition 4.16 O
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5 On the spectral expansion

Let (G, é) be a connected reductive twisted space over F'. Let H be a closed unimodular
subgroup of G defined over F' and (H, H ) be a twisted space over F' equipped with an
embedding H C G which is H x H- equivariant. Let (x,x) be a one-dimensional _unitary
representation of H(F) i.e. x : H(F) — C* is a (smooth) unitary character and ¥ : H(F) —
C* is a map satisfying Y(h1hhs) = x(hiha)X(R) for (h, hy, hy) € H(F) x H(F) x H(F). Let
w be a character of A5(F) which coincides with x on the intersection Ax(F) N H(F').

Denote by L*(H(F)Az(F)\G(F), x ® w) the Hilbert space of functions ¢ : G(F) — C
satisfying p(hag) = x(h)w(a)p(g) for (h,a,9) € H(F) x Az(F) x G(F) and such that
g — |¢(g)|? is integrable on H(F)Ag(F)\G(F). The representation by right translation of
G(F) on that space will be denoted by R. This extends to a twisted representation R of
G(F) defined by

(R(hg)e)(x) = X(h)p(Ad" (x)g)
for everyN(E,g,x) € H(F) x G(F) x G(F~) and ¢ € L*(H(F)Az(F)\G(F),x ® w). For
f € CX(G(F)/As(F),w™"), the operator R(f) is given by

(R(f)p)(x) = /@( D )f@)(ﬂ?)@)(@dg, p € LA(H(F)Az(F)\G(F), x @ w).
This operator is associated with the kernel function v(H) 'K 7(x,y) where

(5.0.1) Ki(z,y) = /ﬁ e Fahy)x()dh, oy € G(F)

and v(H) = |H(F) N Ag(F) : AZ(F)|. Here AL is the maximal split torus of Az N H. We
define

I(f) = Ki(w,x)dz, for f € CX(G(F)/Ag(F),w™")

/H(F)Ag;(F)\G(F)

provided the integral is absolutely convergent.

If the pair (G, H) is tempered (see Section [3.2) E 2| for the definition of tempered), we can
define in a similar way operators R(f) for f € C(G(F) JAs(F ), w) and these operators are
associated to kernel functions given by the same expression (which is absolutely
convergent) and we also define I(f) by the same formula provided the integral is abstolutely
convergent.

Let now f be in C*(G G(F )/A&(F),w™) or, if X is tempered, in C(G G(F )/ A&(F),w™)
and assume that it satisfies the following very strong condition:

(5.0.2) The operator R(f) is of finite rank.
This implies that the integral defining I(f) is convergent and equals V(ﬁ[ ) Tr R(f):
I(f) = v(H) T B(f).
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Let L3 (H(F)Asz(F)\G(F),x ® w) be the sum of all the irreducible unitary subrep-
resentations of L?(H(F)Ag(F)\G(F),x ® w) and L2 (H(F)Az(F)\G(F),x ® w) be its
orthogonal complement. The assumption (5.0.2)) also implies that R(f) acts by zero on

L2 (H(F)Az(F)\G(F), x ® w), therefore

I(f) = v(H) Tr Raise(f)

where Ry (f) stands for the restriction of R(f) to L2,.(H(F)Ag(F)\G(F), x ® w).
Let Ilaisc(H (F)Ag(F)\G(F), x ®w) be the set of isomorphism classes of irreducible sub-
representations of L?(H(F)Ag(F)\G(F), x @w). Then, we have the isotypic decomposition

Lo (H(F)Az(F\G(F), x ® w) = o, T ® Mra(m)

T€llgisc(H(F)Ag(F)\G(F),x@w)

where Mi2(m) := Homg(m, L*(H(F)Ag(F)\G(F), x ® w)) are multiplicity spaces. Let
aise (H(F)Ag(F)\G(F), x ®@w)? be the subset of isomorphism classes fixed by § and choose
for every m € g (H(F)Ag(F)\G(F),x ® w)? an extension T of 7 to a representation of
the twisted space G(F). Then, there is an unique endomorphism 6(7) of M2 (7) such that
the restriction of R(g) to the isotypic component m ® M2 (7) is equal to 7(§) ® O(%) for

g€ CNJ(F ). Using these notations, and under the assumption (5.0.2)), we have

Tr(Raise(f)) = > Tr(w(f)) x Te(B(m) | Mp2())
m€llgise(H(F)Ag (F)\G(F),xQw)
for f € Cfo(é(F)/A@(F),w_l) (or f € C(é(F)/Aé(F),ofl) if (G, H) is tempered). Note
that a priori we didn’t assume the multiplicity spaces M (m) to be of finite dimension but,
by the assumption (5.0.2), this is automatic whenever Tr(7(f)) # 0, so that the above
expression makes sense.
Summarizing the discussion so far, we have the following proposition:

Proposition 5.1. Let f be in C°(G(F)/Ag(F),w™) or, if X is tempered, in C(G(F)/Ag(F),w™)
and assume that it satisfies ((5.0.2)). Then, the integral defining I(f) converges and, with the
above notation, we have

I(f) = v(H) > Te(w(f)) x Te(6(T) [ M()).
m€lgsse (H(F) Ag (F)\G(F) x&w)

When X = H\G is wavefront spherical and G is split [30, Theorem 9.2.1] or when X is
symmetric [I5, Theorem 4], we havd'[}

(5.0.3) For every compact-open subgroup J C G(F'), the subspace
L (H(F)Az(F)\G(F),x ® w)”
(H(F)A&(F)\G(F),x ®w) is finite dimensional.

. . . 2
of J-invariants in L7,

' This property is of course expected to hold for all spherical varieties.
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This readily implies that for every f in C®(G(F)/As(F),w™") or, if X is tempered, in
C(G(F)/Az(F),w™1), the operator Raic(f) is of finite rank so that, in those cases, we have

(5.0.4) the assumption (5.0.2)) is equivalent to R(f) = Raisc(f)-
Two other situations where condition ((5.0.2)) is automatically satisfied are as follows:

(5.0.5) f € CgO(CNJ(F)/Aé(F),w) is a matrix coefficient of a supercuspidal representation
(m,m) of G(F) with
mpz(m) ;== dim M2 (7) < 0.

(5.0.6) The pair (G, H) is tempered and f € C(CNJ(F)/Aé(F),w) is a matrix coefficient of a
discrete series representation (m,7) of G(F') with

mpz(m) == dim Mpz(7) < oc.

By [14], the finite multiplicity assumption in [5.0.5[ and |5.0.6|is automatically satisfied when
H = Hy x N, with N the unipotent radical of some parabolic subgroup P = M N of G,
Hy a symmetric subgroup of a Levi factor M (i.e. there exists an involution ¢ of M such
that (M“)° C Hy C M"), and the restriction of the character y to N(F) is generic (in the
sense that its orbit under the adjoint action of M (F) is open in the group of all continuous
characters Homon (N (F'), C*)).

6 The geometric expansion

6.1 The setup

Let (CNJ, L) be a twisted symmetric pair (see , P = MN be a t-split parabolic subspace
with M = P N (P), and £ : N(F) — C* be a generic character of N(F) (i.e. the stabilizer
of £ in M under the adjoint action is of minimal dimension among all characters of N(F)).
Let Hy = (M")° and Hy be a connected component of (M)L Then (Hy, Hy) is a twisted
space. We make the following two assumptions.

e Hy = (M")° stabilizes the character £ under the adjoint action. Moreover, if £ is
nontrivial (i.e. if P is a proper parabolic subspace), we assume that Hy is the neutral
component of the stabilizer of the character & in M.

e The twisted symmetric pair (M, Hy) is coregular, i.c. (see §3.1) Ho(F) N M(F) # 0
and the function N
~ —~ DHo(¢
t € Ho(F) N My(F) — ~—()
DM (t)1/2

is locally bounded on Hy(F).
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Note that since D (h) = DHo(h)DE(h)Y/2DM (h)~V/2 for every h € Hy(F), the second
assumption implies that:

6.1.1) the function h € }NIO F)yn Mrs F =5 D7 (1) is locally bounded on Ho F).
( )1/2

We set L
H=Hyx N
and we denote again by & : H(F) — C* the twisted character that is trivial on Ho(F)
and coincides with the previous character on N(F'). We also fix a unitary twisted character

X : Hy(F) — C* as well as a character w : A&(F) — C* whose restriction to AgO(F)

coincides with y where Ago stands for the maximal split torus of Az N Hy.

Let t € ﬁoms(F ). By the coregular assumption, we have ¢ € ]T]TS(F ). This implies that
Gy is quasi-split over F' with P, = M;N; as a Borel subgroup. Here G; (resp. P, M;, Ny)
denotes the neutral component of the centralizer of ¢ in G (resp. P, M, N). Let & be the
restriction of £ to N;(F'). Similarly, if we let ' = Hy,; and T = Tt, G5 is quasi-split over
F, M#Nz is a Borel subgroup of G and we let {z be the restriction of £ to Nz(F'). Here
G5 (resp. Pz, Mz, Ng) is the centralizer of Tin G (resp. P,M,N). It is easy to see that
Gy = G for almost all ¢t € T(F) N Hy,s(F) and Mz N Hy = H, 7 belongs to the center of
G5.
Lemma 6.1. With the notation above, &5 is a generic character of Nx(F).

Proof. Set V = Homgy(N,G,) and Vz = Homg,y (N5, G,) and recall that & = 1 o A where
A € V(F). Let Az € V&(F) be the restriction of A. Then £ = 1 o A5 and, denoting by Ad
the natural adjoint action of M and Mz on V and Vs respectively, we need to show that
Ad(M, ))\T is open in V5 or, equlvalently, that Ad(mz)\z = V.

Let nT be the unique T-stable complement of nz in n. The pullback to n of £ is trivial
on n” as it is stabilized by T. It follows that an element of My stabilizes &7 if and only
if it stabilizes £. Thus, the neutral component of the stabilizer of {7 in Mz is the neutral
component of the intersection MM H,. Since the neutral component of MM H is contained
in the center of Gz, we know that &z is generic. O

6.2 Truncations

Let X, X, be the twisted symmetric spaces associated to (G, ), (]\7 L) respectively (see
Sectlon B-7). More precisely, the underlying varieties are X = G'\G, Xy = M"\M and
these are equipped with the natural twisted actions of G M respectively. We fix from
now on a special compact subgroup K C G(F') in good position relative to M and we set
Ky = KN M(F). In Section 3.7, we have defined real affine spaces Az ;- and Ag .
We claim that there is a natural identification Ag’ P Ag% Kk, - ndeed, for any minimal

t-split parabolic subspace ﬁo C ﬁ, we have by definition canonical isomorphisms of real
affine spaces

A)Z,K = Aﬁo,L = A]SOQM,L = A)}]\/[,KM
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and the resulting isomorphism .A;(’ P A)?M, K,, does not depend on the choice of ]30. We
fix a map Hx,, k,, XM(F)/KM — AXM,KM satisfying the requirements of Proposition [3.11]
and, as in Section we let Hg 4 @ Xu(F)/Ky — Az, g, be the composition of
Hx,, k,, with the natural prOJectlon AXM kv = Az

Recall also that the vector space associated to AX K18 the limit Ag = lim A Ap, . (where

Po runs over all minimal ¢-split parabolic subspaces P() C G and the transition maps are
given by conjugation by G(F’)). As explained in Section , there is a characteristic function
7x + Ag — {0,1} which, upon identifying Az with Ap , is given by 75  for any minimal
t-split parabolic subspace 130 cG.

Note that by the Iwasawa decomposition G(F') = P(F)K, we have a natural identifica-
tions of cosets

H(F\G(F)/K = Ho(F)\M(F)/ K.

Moreover, there is a natural map Ho(F)\M(F)/Ky — Xy (F)/ Ky given by the composi-
tion of the surjection Hy(F)\M (F) — M*(F)\M (F) with the natural inclusion M*(F)\M (F) C
Xy (F) = (MA\M)(F).

For Y € Ag ., we define a characteristic function xy : H(F)\G(F)/K — {0,1} by the
following diagram:

H(F\G(F)/K == Ho(F)\M(F)/ Ky — Xx(F)/Ku

LKY jH)?]M’KM

{07 1} Fe(Y—) ‘A)Z',K —A)Z—MJ(A{.

In other words, identifying elements in M (F) with their image in X (F), xy is characterized
by the following property: for every (m,u,k) € M(F) x N(F) x K we have ky(muk) =

(Y — Hg,, g, (m)).

Proposition 6.2. (1) For every i-split parabolic subspace @ C P, there is a constant €g >0
such that, setting L = Q N (Q), the following holds: for every Y € Az k = Az, k0
z € L[<ead(Y)] and a € A%L, we have

ky(ax) =75,(Yg, — Hg ,(az)).

(2) There exists a constant C' > 0, such that for every element Y € Az o = Az o

Supp(ﬁy) N XM(F> Q Ap7L(F)XM[§ CN(Y)]

(3) For any fized x € G(F), there exists Cy > 0 such that for every a € Ap,(F) satisfying
ky(az) =1 we have (wa, Hy(a)) < Cy for every a € Ag,
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Proof. For (1), by Proposition , there exists ¢ > 0 such that for allz € Xr[< egoa, (V)]
and a € A%L, there exists Q C Q' C P so that (E' =Q'n L(@’))

|Hg, (za) — HZ/,L@CL)H <c- EQO'AXK(Y% projsHx (xa) = HZ,’L(xa),

M
|Hz, (za) — Hy (za)|| < c- EQOA)N(’K(Y).

Then (1) follows from the definition of Ky y.

(2) follows from (1) and Proposition [3.11{3) and (4). For (3), by the Iwasawa decomposi-
tion we may assume that x € M(F). Then Hy(a) + Hy(2) = Hy(ax) = projp(Hx,, (ax)).
Then (3) just follows from the definition of Ky

[

6.3 The geometric expansion

For f € CX(G(F)/Ag(F),w ") and Y € Ag o = Az, g, define

= [ F(e~ ) €)X ()dhdn, © € G(F);
N(F) J Ho(F)/AZO (F)

Iy (f) = I(f,z)ky(z)dz.

/H(F)A@(F)\G(F)

If (M, Hy) is tempered, we can also define I(f,z) and Iy (f) for f € C(G(F)/Ag(F),w™).
It is clear that the integral defining I(f,x) is absolutely convergent.

Lemma 6.3. The integral defining Iy (f) is absolutely convegent.

Proof. 1t is enough to show that the integral

/ / I(f,ax)ky (ax)dp(a) 'dadx
H(F)Ap(F)\G(F) J(ApNHo)(F)Ag(F)\Ap(F)

is absolutely convergent. By Proposition [6.2(2) and the Iwasawa decomposition, the in-
tegrand of the outer integral [ H(E)Ap (FN\G(F) is compactly supported, hence it is enough to
show that for each x € H(F)Ap(F)\G(F), the inner integral is absolutely convergent, which
is equivalent to show that the integral

/ I(f7 ax)my(ax)ép(a)_lda :/ / ](f7 alan)Ry(a1a2x)§p(a2)_1da1da2
Az(F)\Ap,.(F) AGg(F)\Ap,(F) J Az (F)\Ag(F)

is absolutely convergent. Since ¢ is a generic character, there exists a constant Cy, > 0
depends on f and x such that

I(f,a1a27) # 0 = (o, Hy(ag)) > —Cj, for every a € Ap,.
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Combining with Proposition (3) we know that the integrand of the outer integral | Ag(FN\Ap, (F)
is compactly supported. Hence it is enough to show that the integral 7

/ I(f, a1asz)day
Az(F)\Ac(F)

is absolutely convergent for any = € H(F)Ap(F)\G(F) and ay € Ag(F)\Ap,(F). Up to
replacing f with the conjugation of f by asx, we may assume that ao = x = 1. Then

I(f.a1) = aflhnal n)x(h)dhdn
gar=f | oty I

:/ [ . f(hn(a10(ar)™"))é(n)x(h)dhdn.
N(F) J Ho(F) /a2 (F)
Since f is a Harish-Chandra Schwartz function, for any d > 0, we have

](f7 al) < JA@\AG (a’l)_d

for all a; € Agz(F)\Ag(F). This proves the lemma. O

Let F(ﬁo) be the set of regular semisimple twisted conjugacy classes of ]:vIO(F ) modulo
the AgO(F )-action, and the measure on it is given by

dt = W (Ho, Y IT(F) : 729 ]
/F(~ oyt = 3" (W (Hy, D) T(F) : T*(F) /T(F>/9/Ago¢<”’f

Ho) TeT(Ho)

for every “reasonable” function ¢ on it. B B
For t € (Hy),s(F), let S = Hyy, T'= M;, S = St and T' = T't. Let Nz be the centralizer

of S'in N, which is a maximal unipotent subgroup of G'z. By Lemma , we know that
f]Ng(F) is generic. Also Bz = SNz is a Borel subgroup of Gz.
Let M(t) be the centralizer of the maximal split torus of 7" in G and let M(t) = M(t)t.

Define Y (g) = (Y@(Q))@eﬂ(ﬁ(t» to be

Y5(9) =Yg, — Hg (9).

We then define

*

B, 0y (2.15) = / Do (g (£, Y (2)€(Eng(#1) 1) dt
Ag(F)S(F\T(F)

for z € G(F) and ng € Nz

S,reg

(F'). We refer the reader to Lemma for the definition
. By Lemma [4.20] there exists C' > 0,7 > 0 and,

of the normalized integral f;~ (
G

F)S(FN\T(F)
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for any (z,ns), a unique exponential polynomial vp_¢,.(¥,ns) € Polc, whose exponents
belongs to a finite set independent of (x,ng), such that

OB g0y (T, ng) = VB g0y (T, N5)
for all Y and (x,ny) such that Y is positive, 1qy)/c(®,ng) # 0, and d(Y) > C. Here
we say Y is positive if the (G, ¢)-orthogonal set (Y3 ,)p is positive, and we use d(Y') (resp.
N(Y)) to denote the depth (resp. norm) of this (G, 1)-orthogonal set (it is clear that N (V) ~
O'A)?’K(Y». Also for ¢ > 0, 1..(+,-) is the characteristic function of

{(z,ns) € Ag(F)\G(F) x Ng(F)| oag\a(),0n,  (ns) <c}.
The next lemma follows from Lemma .17
Lemma 6.4. There exists d > 0 such that
17B§,5,L,y(ac, ng) < N(Y)¢. 0G/A; (x)daNg,mg(nS)d
and
UB§,5’L’y(l‘, ng) < N(Y)¢. 0G/A; (x)daNg,mg(nS)d

forallY € Ag o= Az s T E G(F) and ns € N3 req
We define

W= [ D [ | s s ey (ons)dnsdads
T(Ho) Bs(F\G(F) J Ng(P) °

(F).

and
Jy(f) = / _ DHD)x() / / fa nsa)vp, g,y (x,ns)dnsdzdt.
I'(Ho) Bz(F)\G(F) J N3(F)

By Lemma 2.9.3 of [7], Proposition and the lemma above, we know that the above

two integrals are absolutely convergent for all f € CX(G(F)/Ag(F),w™ ) (resp. for all

f € C(G(F)/As(F),w™") if the model (M, Hy) is tempered). Note that since we have

assumed that (M, Hy) is coregular, the function ¢ € Hy(F) N MTS(F) > DDMH((;)(BQ = DD@Zﬁ)ﬂ

is locally bounded on Hy(F). If we further assume that (M, Hy) is tempered, that function
is globally bounded. The geometric expansion is the following theorem.

Theorem 6.5. Let 0 < e <1 and fir f € CX(G(F)/Ag(F),w™"). For k >0, we have
Iy (f) = v ()l < N(Y)™*
for everyY € Ag o = Az, ., withY positive and d(Y) > eN(Y). Moreover, if the model

(M, Hy) is tempered, then the estimates hold for all f € C(G(F)/Ag(F),w™).
It is clear that in order to prove the above theorem, we only need to prove
1y (f) = v ()] < N(Y) ™
and

[Ty (f) = Iy (f)] < N(Y)~.
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6.4 Some reduction

Recall that we have defined

= / / f(z ' hnx)é(n)x(h)dhdn, v € G(F);
N(F) J Ho(F)/AZ (F)

I (f) = / 1(f, )y (2)da.
H(F)Az(F)\G(F)

By the Weyl’s integration formula (applied to Hy), we have

Iy(f) = / Ky () / / F(@~ hnz)€(n) X (h)dhdndx
H(F)Ag(F)\G(F) N(F) J Ho(F)/AZ" (F)

= / / / D¢ / f( W thna)é(n) X (t)dhdtdnda
H(F)A&(F N(F) JT'(Ho) S(F)\Ho(F
:/ DHO(t))Z(t)/ / f(z ™ tnx)é(n)dndxdt
T'(Ho) Ag(F)S(F)N F)\G(F

- / _ D)) / / oy (M)
I'(Ho) T(F)N(F)\G(F) J Az (F)S(F)\T(F)

/ [z n2) (M (M) ™Y dndt™ dxdt.
N(F)

Here as in the previous subsection, for ¢ € (ﬁo)rs(F), we let S = Hy,, T = M,, S = St and
T =Tt. It is easy to see that the isomorphism

Ng(F) xNs) N(F) — N(F) : (ng,n) — (Ad,) ™ (n Hngn

has Jacobian Do (t)_ng (t), hence the above expression is equal to

[ phwue | / () |
T (o) T(F)N(F)\G(F) J Ag(F)S(F)\T(F) Ng(F)x "5 N (F)
fz7't(Ad) " (n YHngna)E(tM (Ady) " H(n ™ Hngn(tM) Y d(ng, n)dt™ dedt

- [_ o [ / o) [
T'(Ho) T(F)N(F)\G(F) J Ag(F)S(F)\T(F) N(F)x N5 N (F)

f(z7'n " ngna)E(tM ng(tM) ™ d(ng, n)dtM dedt

- [ _ D [
I'(Ho) T(F)N5(F\G(F)

/ Iiy(tMLL‘)/ ™ tngx)E(tMng(tY) "V dngdt™ dadt.
Ag(E)S(EO\T(F) Ng

a(P)S(F
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Definition 6.6. With the notation above, we define

*

iy selons) = | oy (P ()™
o Ag(F)S(F)\T(F)

/ / ry (M tx)E(tM tng(tM )~ dtdt™
AG(F)S(F\T(F) JT.

and

I, 5( ):/ Dﬁ(t)f((t)/ / f(x’ltnsx)/iygg(:c,ns)dnsdxdt.
’ S(F)/AL0 B5(F)\G(F) J Ng(F) ”
G S

S

We also define
s =[ o [ | 5 tnsa)ing g (o ns)dnsdud
S(F)/AZ° Bg(F)\G(F) J/Ng(F)

and

Jy 5(f) :/ Dﬁ(t)fg(t)/ / f(x’ltnsx)ngyg,L,y(:L‘,ng)dngdxdt.
’ S(F)/AHo Bz(F)\G(F) JN&(F)
G S S

Lemma 6.7. There exists d > 0 such that

Ky ge(,ns) < N(Y)?. ag/Aé(x)daNg’mg (ng)?
forallY € Ag o= Az g, v €G(F) and ng € Ng,. (F).
Proof. This follows from Proposition [6.2 O]

We fix t,5,T, S , T as above. In order to prove Theorem [6.5, we only need to prove the
following theorem.

Theorem 6.8. Let 0 < e <1 and fir f € C(G(F)/Ag(F),w™!). For k > 0, we have

Ly 5(f) = Jy (/) < N(Y)™*

and 3

[y5(f) = Jys(Hl < NY)™
for everyY € Ag o = Az, ., withY positive and d(Y') > eN(Y). Moreover, if the model
(M, Hy) is tempered, then the estimates hold for all f € C(G(F)/Aé(F),afl).
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6.5 Comparison of the weights

Recall that for ¢ > 0 we have defined the function 1_¢(-,+) to be the characteristic function
of

{(z,ns) € Ag(F)\G(F) x Ng(F)| oag\a(2), o (ns) < c}.

The goal of this subsection is to prove the following lemma.

Lemma 6.9. There exists C' > 0 such that

Ry Te (x,ng) = @Bf,g,L,Y (x,ng)

for all Y € A

= and (x,ng) such that 'Y is positive, 1ony)(x,ns) # 0,
dY)>eN(Y) a (

'A M Kum
) >

Let M(S) = M(t) be the centralizer of the maximal split torus of 7' in G and let
M(S) = M(t) = M(S)S. Let C' > 0 be a constant large enough (with respect to + and
all the 5 where €5 is defined in Proposition and let Yo = (Y 5, == YC, )5 be another
positive (G, ¢)- orthogonal set (recall that Y induces a positive (G, 1)-orthogonal set (Yz.,)5)-

By using the parabolic subgroup P = MN we can also view every (G t)-orthogonal set as a
(M, t)-orthogonal set. For Q € fM(M(S)) define

/s%i(x, ng) = / ry (M 2)E(t g (1Y) 7T)

Ag(F)S(EO\T(F)

P o (Higgg (), Yo) 78! (Hys) (81) = Yy 5 )™,

M(S),. ( M(S), OQL

@?%Y(I nS> / FBg,L(HM(g),L(tM>7Y(x))g(tMnS(tM)_l>
(F)S(F\T(F)

FQ~ (H]Tj(g) (t )YO) (H~(~) (tM) Y

M
M(S) 0.3.)dt™.

It is enough to compare /‘i?j’:i(l’,ng) and 6}%%%1,(%715) for all Q € }"B?L(M(g)). For all

Qe F;M(M(g)) (resp. Q € fgng(M(g))), let L be the Levi factor containing ]\7[/(§) and let
@ be the opposite parabolic subgroup of @ with respect to L. We first need a lemma.

Lemma 6.10. For all Q € FB@L(M(:S:)), we have Ug C P.
The above lemma is a direct consequence of the next lemma.

Lemma 6.11. Let Ap, be the maximal split v-split torus in T'(F'). Every root in A(Ar,, N)
can be written as a linear combination of roots in A(Ar,, Ng) with nonnegative coefficients.
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Proof. For a € Ay, and a character £ of N(F'), we say a shrinks &' if
lim ¢(a""'na’) = 1
1—00

for all n € N(F'). To prove the lemma, we only need to show that for a € Ar,, if a shrinks ¢,
then a shrinks all the characters of N(F). The characters of N(F') can be naturally identified
with the vector space n(F)/[n(F),n(F)] and we endow it with the natural topology coming
from the vector space. We only need to show that a shrinks an open subset of the characters.
There exists a ¢-split parabolic subgroup P,, of M = Gy such that lim; a~'pa’ exists for
all p € P, ,(F). Then we know that a shrinks all the characters & of N(F') of the form

¢(n) =&mnm), m € P,,(F)Hy(F).

Since ¢ is a generic character and P, H, is Zariski open in Gy = M, we know that a shrinks
an open subset of the characters. This proves the lemma. O

Fix Q € .7-"5\7 (M(S)). In order to prove Lemma , it is enough to prove the following
lemma.

Lemma 6.12. There exists C > 0 such that

Yy,Q ~Y,0
Ry (e ms) = 0, y (2, s)

for allY € Az, = Az, g, and (z,ng) such that Y is positive, 1oy (x,ns) # 0,
dlY)>eN(Y) and d(Y) > C.

Proof. We can rewrite the weighted functions as (7. is the maximal compact subgroup of
T(F))

kK100 (1, ng) = Ryt 2)E(tt s (t1) 71
Y,S
iS58 As(F)S(F\T(F) JT.

F%(§)7L<HM(§),L(tM)7 Y'O)TgL<HM(§)7L(tM) — %’@7L)dtdtM7

008, vz ns) = / / T (Hyzz, ("), Y (@)t  ns(t') 711
? Ag(F)S(ENT(F) J T

Q M M M M
FM(§)7L(HM(§)7L(t )7 %)TQ’L(HM(§)7L(IS ) - %,Q7L)dt .

Hence it is enough to show that the two functions

M TY o Higs), (). Y0) 75! (Hygz) () = Yy5.,) - / ry () (tt  np (E) T dt

_ Q M
M FBg,L(HM(§)7L(tM)7 Y(x))rﬁ(g)’L(HM(iﬁ),L(tM)> K))TgL(HM(E),L(tM) - Yo,@,b)

WM ng(M) Y dt
Te
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on Az(F)S(F)\T(F') are equal to each other. We denote these two functions by Fj ;. and

F2,:c,n5~

Let x = mnk be the Iwasawa decomposition of x with respect to P = M N. Since ky
is left N(F)-invariant and right K-invariant, the function F},,, only depends on m. By
Lemma [6.10, we know that Q C P for all Q € ng,L(M(g)). This implies that the function
Fy ;0 also only depends on m. So we may assume that x = m € M(F). Let z = luk
be the Iwasawa decomposition of x with respect to Q = LUg. We first prove the following
statement.

(1) With the assumption on Y and (z,ng), once we choose C' large enough the above two
functions Fi ;¢ and F5, ,, only depends on (.

For the function F} ,,, since Ky is right K-invariant, we know that it only depends on
lu. Tt is enough to show that for t" € A5(F)S(F)\T(F) with

F%(g)’L(HM(g),L(tM), }/(J)Tgb(HM(g),L(tM) - Yo,@,b) : / ’iY(ttM@g(ttMnT(tM)_lt_l)dt # 0,

c

we have
ry (tMlu) = ky (EY1).

For t" € Az(F)S(F)\T(F), we can always choose a representative of " in T'(F'), denoted
by t9, such that the projection of ng) (t2) € a5 to a§\7(§) belongs to a compact subset

that only depends on T. It is enough to show that
Ry (tolu) = Ky (tal).
The argument is the same as the proof of (5.3.14) of [7] and we will skip it here. This proves
(1) for the function Fj ;-
For the function F%; ¢, by Lemma [6.10, we know that there exists ¢; > 0 such that if

N2

F%(g),L(HM(ﬁ),L(tM)7%>Tg (HM(§),L(tM) - YO’Q’L)/T f(ttMnS(tM)_lt_l)dt # 0,

the projection of H V()

a(Hy g, (") < aN(Y), Ya € A(Az,, N).

M

to a%(gw is bounded by ¢; - N(Y;) and

This implies the following statement.
(2) If

F%(§)7L(HM(§),L(75M)> Y(J)TgL(HM@),L(tM) - YO,Q,L) /T f(ttMnS(tM)iltil)dt # 0,

the function I'p_, (Hy7 5, (tM), Y (z)) is nonzero if and only if

5.V, — Hg (v) — Hp (t")) = 1.

Here Q' = QN € Fp_,(M(S)) and Q' = QN € Fp_ (M(S)).
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In particular, we have proved statement (1) for the function Fb ;.
From now on assume that =1 € L(F'). We only need to prove the following statement.

(3) With the assumption on Y and (z,ng), for i = 1,2, once we choose C' large enough,
for t" € Az(F)S(F)\T(F) with Fj ., (t") # 0, the following holds.

~ 7.

- Fii,x,ﬂs (tM) - F%(g)’L(H]\A/f@),L(tM)a %)TgL(HM(g),L(tM>_}/O,Q,L)'ITC g(ttMnT(tM)_lt_l)dt

P Hﬂb(tMm)) =1.

When i = 2, (3) follows from (2). It remains to prove (3) when i = 1. We can choose a
representative of t" in T'(F) of the form t't;a where ¢’ belongs to a compact set, a € Az ,(F)
and ¢; € T,(F) with Hg (t1) = 0. Here 7, is the maximal ¢-split torus of 7.

Since F%@M(ng)%(t]‘/[), Yy) # 0, we know that once we choose C' > 0 large enough, we

have (the constant Cs, was defined in Proposition [6.2))

d(Y)

(651) Ug/Aé(t/tl) < CQ .

Combining with the fact that [, £(tt"ng(t")~'t71)dt # 0 and Lemma we know that
once we choose C' > 0 large enough, we can write a as a = a,ay such that a; € AL, . and

ay

(6.5.2) 0G/ag(ttaxT) < %
Combining (6.5.2)) with Proposition we know that

ky (ttM x) = Ky (tt't asway)

is equal to 1 if and only if 75, (Y5, , — HZ,L(th’”)) = 1. This proves (3) and finishes the proof
of the proposition.
[

6.6 The proof of Theorem

We have

L= Jsnl< [ b [ /
§(r)/ato Bs(F\G(F) JNg(F)

|f(z"ngx)| - Ky 5¢(T,n5) — Upg ey (2, ns)|dnsdzdt.
By Lemma and [6.9] for any N > 0, there exists d’ > 0 such that

U

|y g (2, m5) — D ey (z,ns)| < NY) Noga, (@) on,  (ng)?

S,reg
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forall Y € Ag o = Az, k@ € G(F),ns € Ng, . (F) with Y positive and d(Y) > eN(Y).

Since the left hand side is invariant under the transform (z,n,) — (bz,bnb™') for all b €
Bg(F), by Lemma [4.§, we know that

Ky 5.e(@ns) — Upg ey (z,ns)| < N(Y)_N(aémg/Aé (z 7 sngw) + Ug,/Aé(s))d

for all Y € Ag, = Ag, g, € G(F),ng € N3, (F),t € §'(F) with Y positive and

d(Y) > eN(Y). Combining with Proposition 4.10| we know that there exists d > 0 such that
the integral

DA (1) / / (& tns2)| - w5 (,15) — D5, 0 (@ 05) | dnsda
Bs(P\G(F) J Ng(F)

is essentially bounded by
N(Y)™. ‘7§I/Aé(t)d ' Ué/Aé(t)fdo

for all z € G(F), t € S(F), dy > 0 and Y € Az = Az, k,, With Y positive and
d(Y) > eN(Y). Then the geometric expansion just follows from the fact that for any d > 0,
there exists dy > 0 such that the integral

oz, () Pos,,, (t)%dt
/§(F)/9/Ago /g g

is absolutely convergent (see Lemma 2.9.3 of [7], note that UE//AG,(t) ~ a@/Aé(t) + log(2 +

Dé(t)_l)). This proves the first inequality of Theorem . The second inequality follows
from the same argument except that we replace Lemma [6.9] by Lemma [£.20, This finishes
the proof of Theorem and [6.8]

7 Application of the geometric expansion

In this section, we will discuss the application of the geometric expansion in Theorem [6.8|
The first application is a simple local twisted trace formula for strongly cuspidal functions in
the coregular case. The second application is a multiplicity formula for Whittaker induction
of coregular symmetric pairs. We use the same notation as in the previous section.

7.1 A simple local trace formula

Recall that we have defined

I(f,z) = / / f(z " hnz)é(n)X(h)dhdn, x € G(F);
N(F) J Ho(F)/AZ" (F)
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/ I(f,z)ky (z)dx.
H(F)Ag(F)\G(F)

We also define

I(f) = I(f, x)dx

/H<F>A@(F>\G(F)
whenever this integral is convergent. The next proposition has been proved in Proposition
6.1l

Proposition 7.1. The integrals defining I(f,z) and I(f) are absolutely convergent for all
f € Oy (G(F) JAG(F),w™") satisfies (5.0.2). If (M, Hy) is tempered, then both integrals
are absolutely convergent for all f € Copusp(G(F)/Az(F),w™") satisfies (5.0.2)).

Remark 7.2. In fact we can even prove the convergence without the assumption on R(f)

But since we will not use it here, we will postpone the proof of the general convergence to
our next paper.

For t € Frs(ﬁo), let S,T,S,T be the same as in the previous section and we let O, =
O3 € Nilyey(g%) be the orbit associated to {z. For a quasi-character © on G(F’) with central
character w™!, we define

Moon(0) = [ I

Here Iuy(Hy) is set of elliptic regular twisted conjugacy classes of Hy(F) modulo the Ago (F)-
action, and the measure on it is given by

dt = W (Hy, T)| T (F) : TO°(F)]~! d
/re”u?o)w(t) P IRLL ) (F)] /T(F)/Q/Ago plt)dt

T€Ten(Ho)

for every “reasonable” function ¢ on it. By Lemma and coregular assumption, we know
that the integral defining M yeom 7(0©) is absolutely convergent.

For f € Coeusp(G(F)/A5(F),w), we define

Tyeom(f) = V(Ho)m p 5(O)s v(Ho) = |Ho(F) N Ag(F) : AL (F)].

geom,H

The next theorem is the geometric side of a simple local twisted trace formula in the coregular
case.

Theorem 7.3. 1. We have I(f) = Leom([f) for all f € C’g‘;cusp(@(F)/A@(F),w_l) such
that the integral defining I(f) is absolutely convergent.

2. If the symmetric pair (M, Hy) is tempered, then I(f) = Lyeom(f) forall f € Cscusp(é(F)/Aé(F), w™h
such that the integral defining I(f) is absolutely convergent.
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Proof. 1t is enough to show that the limit of Iy (f) is equal to Ieom (f) as N(Y') goes to infinity
where Y runs over all the elements in Ag , = Ag , ~with Y positive, d(Y) > eN(Y). In
the previous section we have also defined

Jy(f) = / _ DI / / fla"Hngx)vp, e,y (€, ng)dngddt
I( Bg(F)\G(F) J N5(F)

and we proved that

(7.1.1) Iy (f) = Jr (Dl < N(Y)™*

for every YV € Az ;o = Az, ,, With Y positive and d(Y) > eN(Y'). This implies that the
limit of Iy (f) is equal to the limit of Jy (f) as N(Y) goes to infinity. Since the function

Y — UB§7§,L7Y (.I', ns)

is an exponential polynomial with bounded degree and with exponents in a fixed finite set
(both independent of z and ng), we know that the limit of Jy-(f) is equal to

J(f) = /~ Dﬁ(t)f((t)/ / f(ZL’_ltTLSZL’)UBg’&L(l’,ns)dngdl’dt.
['(Ho) Bg(F)\G(F) J N5(F)

Here vp_¢.(x,ng) is defined in Section .
Fix t € Fr5<ﬁ[g> and let S,T,S,T be as in the previous section. Define

J3(f) :/~ . Dﬁ(t)i(t)/ / f(m_ltnsx)ng,g,L(x,ng)dngdxdt.
S(F)/AZ° Bz (F)\G(F) J N5(F)

Fix e € (a;g)‘ in general position. By Corollary [4.24] we have the descent formula

vpea(zms) = > de(Q) Bl ns).

This implies that

where

JO(f) = / DAM)R(1) / / f @ tnse) vt o (x, ng)dngdad.
S(F)/AZ° Bg(P)\G(F) J N5(F) s

By Corollary|4.23|and the assumption that f is strongly cuspidal, we know that J g (f)=0

if @ =+ G. If Cj = G, then € € (ag)". Since ¢ € (agg)L is in general position, we must have
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(agg)L = (ag,)" = (ag)". This implies that S is elliptic. If this is the case, the function Fg’sf

in the definition of vg’; ¢ 1s just the function I'p.. Hence we have

vg;g(:ﬁ, ns) = v(Ho)vp, ¢(z, ns).

Here v(Hy) = |Ho(F) N Az(F) : AgO(F)| comes from the volume of S(F)A5(F) : Az(F)
which is equal to the volume of S(F)/AgO(F) (which is equal to 1) times |S(F) N Az(F) :
AgO(E)\ = [Ho(F) N Ag(F) : AZ°(F)| = v(Ho). This implies that J5(f) is equal to 0 if S is
not elliptic, and is equal to

v(Hy) /~ DE(#)x(t) / / f(a:_ltngas)v3§7f(x, ng)dngdxdt
S(F)/AZ° (F\G(F) J/ Ng(F)
if S is elliptic. Then the theorem follows from Theorem . O

7.2 The multiplicity formula

We use the same notation as the previous subsection and we assume that the twisted space
G is just G (i.e. the automorphism 6 is the identity map). Let 7w be an irreducible smooth
representation of G with central character w™!. Define

m(m) = Hompy(p (m, x " @ &), Myeom () 3:/ ~ D"(t)x(t)co,—o,(t)dt.
Leyi(Ho)
By [14], we know that the multiplicity m(m) is finite. The goal of this subsection is to

prove the following multiplicity formula.

Theorem 7.4. The multiplicity formula m(m) = Mgeom () holds for all supercuspidal repre-
sentations of G(F) with central character w='. If (M, Hy) is tempered, then the multiplicity
formula holds for all discrete series of G(F) with central character w™".

Proof. For f € 0250, (G(F)/Ac(F),w™) (or f € Cocusp(G(F)[Ac(F),w™") if (M, Hy) is
tempered), we have defined

I(f, x) / / v hnz)é(n)x(h)dhdn, I1(f) :/ I(f,z)dz
Ho(F)/AL0 (F H(F)Ag(F)\G(F)
in the previous subsection. Proposition 5.1} (5.0.5), (5.0.6) and Theorem implies that

I(f) = V<H0)mgeom,H(®f)

for all f € *C(G(F)/Ag(F),w™) N C=(G(F)/Aa(F),w™) (or f € *C(G(F)/Aq(F),w™)
if (M, Hy) is tempered). Here °C(G(F)/Aq(F),w™!) is the span of matrix coefficients of
discrete series of G(F) with central character w™'. For f € °C(G(F)/Aq(F),w™1), define

Ispec(f) = V(EO) Z tr(ﬂ-(f_‘))m(ﬂ-)

7Tel—[dis«c(Gvﬁ"171)
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By Theorem 4.1.1 of 7], we have the spectral expansion

(7.2.1) v(Ho)Mgeom, 1 (Of) = I(f) = Lspec(f)

for all f € °C(G(F)/Ag(F),w ) NCX(G(F)/Aq(F),w™) (or f € °C(G(F)/Ag(F),w™ 1) if
(M, Hy) is tempered). Then the multiplicity formula follows from (7.2.1]). All we need to do
is to let f be the matrix coefficient of a supercuspidal representation (or a discrete series if
(M, Hy) is tempered). This finishes the proof of the multiplicity formula. ]

Remark 7.5. Some special cases of the multiplicity formula proved in the above theorem are
the multiplicity formulas for the Galois models and the generalized Shalika models proved in
[7] and [9] .

8 The unitary Shalika model

In this section we will prove our main theorems for the unitary Shalika model (i.e. Theorem
[1.9] [[.10] and [1.12). In Section 8.1 we will recall the defintion of the models and prove a
comparison between the unitary Shalika model and the twisted Shalika model (for general
linear groups). Then in Section 8.2 we will prove Theorem 11.10, and [1.12]

8.1 Some comparison

Let Z be a E-vector space of finite dimension n > 1. Let Z*°¢ be the conjugate-dual of Z
that is the space of c-linear forms on Z (a similar notation will be applied later to other
vector spaces). Set V =7 & Z*° and we equip with the nondegenerate Hermitian form

B+ v' w0+ w') = (v,w7) + (w,w'), (0,07, (w0, w) € Z @ 27

Here (.,.) stands for the canonical pairing between Z and Z*¢. Let G = U(V,h) be the
unitary group associated to this Hermitian form. We define two maximal parabolic subgroups
Q and Q of G as the stabilizers of the maximal isotropic subspaces Z and Z*° respectively.
Then, L = QN Q is a Levi component of Q and restriction to Z induces an isomorphism

(8.1.1) L ~ Resg/rGL(Z).

Let N be the unipotent radical of (). Thus () = LN and restriction to Z*¢ induces an
isomorphism

(8.1.2) N ~{X € Hom(Z**,Z2) | "X = - X}

where 7 X ¢ denotes the transpose conjugate of X (seen as a linear endomorphism Z — Z*¢
through the canonical identification (Z*¢)*¢ = Z). We will actually identify the right hand
side above with the Lie algebra n of N in a way such that the above isomorphism becomes
the exponential map.
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We henceforth choose two isomorphisms W, , W_ : Z — Z*¢ satisfying TW§ = —W,
and such that the corresponding antihermitian forms on Z are not equivalent (there are
actually only two equivalence classes of antihermitian forms on Z). For € € {£}, we let
Hy. C L ~ Resg/rGL(Z) be the unitary group associated to W, that is the stabilizer of W,
for the obvious action. Then, Hy (F') coincides with the stabilizer in L(F) of the character

& N(F)— Cx,

exp(X) — Y(Tr(W.X)) (X € n(F)).

We will henceforth assume, as we may, that W, have been chosen so that H ; is quasi-split.

Set Ho = Hp. x N. We extend & to a character of H.(F) trivial on Hy.(F). We
also fix a character y of E' = ker(Ng/r) that we will consider as a character of Hy(F)
through composition with the determinant det : Hy.(F) — E* . For a smooth irreducible
representation 7 of G(F'), we define the multiplicity

ms(ﬂ-a X) = dlm(HomHe(F) (7T7 X ® SE))

For x € Hy(F)en, the centralizer G, = Zg(x) is quasi-split and the intersection N, :=
G, N N is a maximal unipotent subgroup of it. Moreover, by restriction & induces a non-
degenerate character of N, (F). We let O, be the regular coadjoint nilpotent orbit in g}
associated to it. For any quasi-character © on G(F'), we set

Je,x,geom(@) = /F (H )DG(ZE)I/QCGK%: (JZ)X(I’)_ld{E, Jx,geom(@) - J+,x,geom(@)+J—,X,geom(@)'
ell 0,€

By Theorem [7.4] the multiplicity formula

me(ﬂ-v X) = Je,x,geom(@w)

holds for all discrete series.

Recall that two semisimple regular elements z,y € G,s(F') are said to be stably conjugated
if they are conjugated in G(F) and that a quasi-character © on G(F) is called stable if it
is constant on stable conjugacy classes (that is if z,y € Gs(F) are stably conjugated then
O(x) = O(y)). If O is stable it is clear that we have cgp,(x) = co(z). The following
comparison between the geometric sides will be used in our applications.

Proposition 8.1. Assume that © is a stable quasi-character on G(F'). Then

Sy.geom,+(©) = Jy geom,—(O)-
Proof. This follows from the following two facts

e there is a natural measure-preserving bijection x, <+ x_ between the regular elliptic
stable conjugacy classes of Hy 4 (F') and the regular elliptic stable conjugacy classes of
Ho(F);
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e under the above bijection x, <> x_, the number of rational conjugacy classes in a
regular elliptic stable conjugation class x4 of Hy 1 (F') is equal to the number of rational
conjugacy classes in a regular elliptic stable conjugation class x_ of Hy_(F) and we

have cg(z4) = co(z_).
[

Set G’ = Resp/pGL(V) and let @', @/ be the maximal parabolic subgroups of G’ stabi-

lizing the subspaces Z and Z*¢ respectively. Then, L' := Q' N @/ is a Levi component of @’
and we have an isomorphism (given by restriction)

(8.1.3) L ~ Resp,r(GL(Z) x GL(Z")).

We fix an isomorphism W : Z ~ Z*¢ satisfying TW¢ = —W and we let H, C L' be the
subgroup {(h, WhW 1) | h € Resg,rGL(Z)}.

Let N’ be the unipotent radical of @’ (so that Q' = L' N"). We will identify its Lie algebra
n’ with Resp/pHom(Z*¢, Z) and we define a character of N'(F") by

¢ exp(X) € N'(F) v ¥(trg p(Tr(WX))), X €n'(F).

We let H' = H} x N’ be the Shalika subgroup. The character y of E' induces a character
X' of EX by x'(x) = x(z/z°) and we will identify X’ with the character of H{(F') given by
(h, WhWW=1) = x/(det h)).

For every g € G, let us denote by g* the adjoint linear map with respect to the Hermitian
form h on V. We define 6 to be the automorphism g + (g*)~! of G and we let G = G0
be the nonneutral component of the nonconnected group G x {1,0}. It is a twisted space
in the sense of _ We also set Q) = @Q'0, L' = L'0. These are respectively a twisted
parabolic subspace of G’ and a Levi component of it. The automorphism 6 preserves H{ and
H’ and we let f[{) = H/#, H' = H'6 be the corresponding twisted spaces. The character y’
of H{(F') being conjugate self-dual, it can be extended to the twisted space fl(’) We fix such
an extension whose value at 6 is equal to 1 and we still denote by x".

For every quasi-character © on G'(F), we define

Iy geom (©) :/ (ﬁ)DG/(x)l/zcé(x)x'(x)_lda:.

Let -
Nr:G'(F) = G'(F), g0+ gb(g)

be the norm map. Recall that an element € G (F) is said to be G-regular if Nr(z) is
regular and that if z € G/ (F) is G-regular, an element y € Gy(F) is called a norm of z if it
is conjugated to Nr(z) inside G'(F') (note that G(F) C G'(F)). Remark that if y € G5(F)
is a norm of x and y' € G(F) is stably conjugated to y then 3/ is also a norm of x (this
is because in G'(F) there is no difference between conjugation and stable conjugatlon) Let
© be a stable quasi-character on G(F). We also recall that a quasi-character © on G'(F) is
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said to be a transfer of © if for every G-regular element = € G/ (F) and every y € Gy(F)
that is a norm of x, we have

DS (x)26(x) = D%(y)*6(y).

Here Dg;'(x) = Dé'(x)dé, (z)~! where dg () is defined in Section 1.6 of [35] (it is 1 unless the
residue characteristic is 2). To end this subsection, we prove a comparison between .J, geom
and Jy/ geom- This will be used in our application.

Proposition 8.2. Let O be a stable quasi-character on G(F') and O be a quasi-character on
G'(F). If © is a transfer of ©, we have

Jx,geom(@) - Jx,geom,—i— (9) + Jx,geom,—<@) - jx’,geom<@)-

Proof. Recall that (note that since © is stable we have cg o, () = co(x))

Teaan(©) = [ DS(2)2co () x () " de,

Len(Ho,+)Ulen(Ho,+)
Togan(®) = [ D¥(@) (o) (0) do.
l_‘ell(I{(/))

There is a natural bijection (denoted by ¢ <+ ') given by the norm map described above
between the regular stable elliptic conjugacy classes of Hy i (F) U Hy_(F) and the regular
stable elliptic twisted conjugacy classes of f[{)(F ). For each t «<» ¢/, the number of conjugacy
classes in t is equal to the number of twisted conjugacy classes in t’. By the definition of the
character x’ we know that x(t) = x/(t') for t <» t’. Moreover, by Section 2.2 of [6], we know
that under this bijection we have dt’' = d i (t")~'dt where d i (') is defined in Section 1.6 of
[35] (it is equal to 1 unless the residue characteristic of F'is 2). Hence it is enough to show
that for all t <+ t/, we have

DY) Peo(t) = dpgy ()7 DY () ea (t).

We fix a representative of ¢ (resp. t') and by abusing of language we still denoted it by
t (resp. t'). Let a be the natural isomorphism between E* and Zp(F'). Also let W be the
Weyl group of G;(F') (which is also equal to the Weyl group of (G')y(F')). By Proposition
4.5.1 of [5], we have

Glta 1/2 a
DO ()¢ (t) :AelzigilD (t <A)|)W’@(t (\)

)

- D (t'a(N)20('a()N))
G (112, (4 — ;
D) es(t) Aelzfﬂgi1 |W| '

Hence it is enough to show that

(8.1.4) D%(ta(N) 6 (ta(N)) = dg ()" DY (Fa(N) 2O (Y a(N))
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for 1 # A € F* that is close to 1. For A # 1 that is close to 1, we know that ta()\) (resp.
t'a())) is a regular semisimple element of G (resp. G). Since t > ', we know that the stable
conjugacy class of ta(\) corresponds to the stable conjugacy class of t’a(\). Then
follows from the fact that © and © are the transfer of each other (note that by the definition
of the constant d(-) we have dp, (#)* = dg(t'a(N))). This proves the proposition. O

8.2 The proof of the main results for the unitary Shalika model
In this section, we will prove Theorem 1.10] and We start with Theorem [1.9]

Theorem 8.3. 1. Let w be a finite length discrete series of G(F') with central character
X". If © is a stable distribution, then m,(m, x) = m_(m, X).

2. Let I14(G) be a discrete L-packet of G(F') with central character x™. Then we have

Z TR+(7T,X): Z m—(ﬂ-7X)'

WEH¢(G) 7T€H¢(G)

Proof. The first part is a direct consequence of the multiplicity formula and Proposition
B.1] The second part follows from the first part together with the fact that the distribution
character O, q) = ZW€H¢(G) O, is stable. O

Next we will prove a necessary condition for a discrete L-packet to be distinguished and
compute the summation of the multiplicity for some special cases. Let (G, H, x ® &) be the
unitary Shalika model defined in the previous subsection. Let I14(G) be a discrete L-packet

of G and let II,(G") be its base change to G'(F) = GLy,(£). Then I14(G’) is an irreducible
tempered representation and we can extend it to a unitary twisted representation on G'(F')

——~—

denoted by I14(G")) so that ©_——is a transfer of O, (). Our goal is to prove the following
¢ T, (C") (@)

theorem.

Theorem 8.4. With the notation above, the packet I1,(G) is (Hy, x ® &4 )-distinguished
(i.e. my(m) # 0 for some m € I14(G)) only if I14(G') is distinguished by the Shalika model

(H' X' ®¢).

Remark 8.5. By Theorem|[8.5, we know that the packet I14(G) is (H, x ® &) -distinguished
if and only if it is (H_, x ® &_)-distinguished.

Proof. Assume that I14(G’) is not distinguished by the Shalika model, we need to show that
the packet I14(G) is not (Hy, x ® &4 )-distinguished. It is enough to show that

nyeom(@%(G)) =0

where O, ) = Zwem(e) O,. By Proposition , we only need to show that

JX’vgeom(@H/d)TG/f/)> = 0
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Since I1,(G") is not distinguished by the Shalika model, by Corollary 1.1 of [25], we can
choose a small neighborhood w of I1,(G’) in Temp;,q(GLa,(E)) such that every element in
w is not distinguished by the Shalika model. By Proposition [2.12, we can find a strongly
cuspidal function f on G’ (F) such that f is supported on w and ©; = © —— .. Hence it is

- Iy (G")
enough to show that nggeom(@f) = 0.

By our assumption on the support of f and Plancherel formula of Shalika model in [13] we
known that R(f) = 0 and hence f satisfies ((5.0.2). Applying Proposition and Theorem
to the twisted Shalika model, we have

' geom(07) = f(z~ hna)€' (n) "'\ (h)~'dhdndx = v(H")tr(Rase(f)) = 0.
Team®D= [ oo o T R 00 ) e = o Rae ) =

This finishes the proof of the theorem. O

Remark 8.6. The Plancherel decomposition proved in [13] is for the case when X' = 1.
However, by our definition of X' we know that x'(—1) = 1 which implies that the character
X' 18 a square of another character X" of E*. Then we just need to twist the Plancherel
decomposition in [13] by the character x" o det.

Now assume that IT,(G") is distinguished by the Shalika model (H’, x'®¢’). By Corollary
1.1 of [25], II4(G') is of the form (note that x” is a character of E* with x’ = (x")?)

(G @ (" odet) ™ = (1 x -+ x 1) X (01 X 7)) X -+ X (00 X 0)))
where

e 7; is a discrete series of GLag,, (E) that is conjugate self-dual, self-dual and of symplectic
type. In particular, a; is even.

e 0; is a discrete series of GLy,(£) that is conjugate self-dual, but NOT self-dual.
e 7;,0; are all distinct.
o Y ai+23" b =2n.

We will consider the special case when m = 0. The general case will be consider in our
future paper. When m = 0, by the Plancherel decomposition proved in [13], IL;(G’) appears
discretely in the L?-space of the Shalika model. Our goal is to prove the following theorem.

Theorem 8.7. With the notation above, we have

Z m+(7T7X) = Z m—(ﬂ-7X) = 2l_1'

WEH¢(G) W€H¢(G)
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Proof. Tt is enough to show that J, geom(On,q)) = 2! where On, ) = Zﬂeﬂqs(G) ©,. Since
Tx.geom(O11,(6) = Pren, ) M+(T,X) + m—(7,X) is a non-negative integer, we only need
to show that |J,, geom(@n¢(g )| = 2. By our assumption of II4(G’) and the Plancherel
formula of Shalika model [13], it appears discretely in the L? space of the Shalika model
and hence we can choose a small neighborhood w of II4(G’) in Tempinq(GLa,(E)) such
that H¢(G’ ) is the only element in w distinguished by the Shalika model. By Proposition
we can find a strongly cuspidal function f on G/'(F (F') such that f is supported on w,

07 = @ and tr(H¢(G’)(f)) = 2. Note that the number ]Stab(z.AéF, 7)|7'D(7) in
Proposmon 2.12|is equal to 27 for m) By Proposition , we only need to show that
7 _ 9l
|Jx’7geom(@nz(‘§/))| =2 )
By our assumption on the support of f and Plancherel formula of Shalika model in [13]
we known that R(f) satisfies (5.0.2)). By Proposition and Theorem it is enough to
show that

/

—_—~ .~ e/~

(8.2.1) [tr(ILs (G7) () - t2(O(ILs(G1))[ M (L (G1)))| = 2.

—_~——

Since I14(G’) is unitary, so is 0(@((1/’)>|M (m)) As the multiplicity space M (m))
is one dimensional, this implies that |tr(0<m))|M (Tﬂ(\G/’))ﬂ = 1. Then (8.2.1)) follows
from the facts that tr(lﬂ(\a)( f)) = 2. This proves the theorem. O

9 Galois model for classical groups

In this section we will prove our main theorems for the Galois models (i.e. Theorem and
. In Section 9.1 we will prove a comparison between the Galois model for classical groups
and the twisted Galois model for general linear groups. Then in Section 9.2 we will prove

Theorem [1.6] and [I.7

9.1 Some comparison

Let H be a quasi-split special orthogonal group or a symplectic group defined over F' and
G = RESE/FHE. Let G, = ResE/pH}; where H' = GLQn if H = SOQn or SOQn+1 and

= GLag,11 if H = Sp,,,. Let 6 be the involution of G given by 6(g) = w(g") 'w™! where
w is the longest Weyl element. Let G’ be the non-neutral component of G/ x {1,0} and let
H' = H'§. Then G’ (resp. H') is a twisted space of G’ (resp. H'). Finally, if H is the even
special orthogonal group, let Hy be a quasi-split special orthogonal group that is not a pure
inner form of H and such that G = Resp/pHr = Resp/rHo g (i.e. the determinanats of the
quadratic forms defining H and H, belong to the same square class in E*/(E*)? but belong
to different square classes in F'*/(F*)?). If H = Sp,,, or SOs,, let x be the trivial character
on H (and Hy if H = SOs,) and let X’ be the trivial character on H'. If H = SOg,41,
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let x € {1,n,} where n, is the composition of the Spin norm character of SOy, 1 with the
quadratic character g p. In this case, we let X’ = 1if x = 1 and x’ = 7, := ng/r o det if
X = 7, In both cases, we can extend the character x’ to the twisted space H’ by making it
equal to 1 on 6.

For a quasi-character © (resp. twisted quasi-character ©) on G(F) (resp. G'(F)), define

Tyeom(©) = /F . DEH)20(t)x (t)Adt, it H = SOans1, Spy,
ell

han(®) = | DE(0)20(0) (1) dt, if H =50,
Loy (H)UT i (Ho)

Ty (©) = / DO (1) 2O()x (1)Lt
Tey(H')

Proposition 9.1. Let © be a stable quasi-character on G(F') and O be a twisted quasi-
character on G(F) If H is the even orthogonal group, we fix a Whittaker datum in the
definition of the transfer factor so that the element n in Section 1.6 of [37] is equal to 1.
Assume that © and © are the transfer of each other (in the sense of Section 1.6 of [33]).
Then we have 5 3

2 Jyeom(©) = Jgeom (0).

Proof. When H is the odd orthogonal group, the proposition is a direct consequence of the
following four facts

e There is a natural bijection (denoted by t < t) between the stable regular elliptic
conjugacy classes of H(F) and of H'(F). Under this bijection, we have df = dg (t)~'dt
(Section 1.4 of [35]).

e We have
DE()20(t) = DE(i)Y2dg (£)"/26(1) = DC(1)2dg (1)1 0(7)

for all t <+  (note that the transfer factor between ¢ and any rational twisted conjugacy
class in t is trivial by Section 1.10 of [37]).

e For t «+ t, the number of H(F)-conjugacy classes in ¢ is half of the number of ﬁ’(F)—
conjugacy classes in ¢ (the other half belongs to the pure inner form of the odd special
orthogonal group).

e For all t <+, we have x(t) = }/(1).

The first three facts are straightforward. For the last one, it is trivial when y = 1. It
remains to consider the case when x = n, and x’ = 7,,. In this case, the stable conjugacy

class t (resp. t) corresponds to (see Section 1.3 of [37])
(Fy, Fai, ti)1<i<n

where
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e [;/F is a finite extension of degree d; with Z?Zl d; = n;
e [ is a quadratic extension of Fl;;
® tl € k‘@?"(NFi/Fii).

It is easy to see from the definition that

X(8) = X' (1) = ng/p (2, Nrr(e:)

where e; is any element in F;* such that =1 (€; is the conjugation of e; under the nontrivial
element of Gal(F;/Fy,)). This proves the last fact.

For the rest two cases, the characters x and x’ are trivial. When H is the symplectic
group, the proposition is a direct consequence of the following three facts (all of them are
straightforward)

e There is a natural bijection (denoted by ¢ ¢+ f) between the stable regular elliptic
conjugacy classes of H(F) and of H'(F). Under this bijection, we have df = s 120p
dg,/(t)~1dt (Section 1.6 of [35], note that in this case |T(F)? : Ty(F)| = 2 for any
maximal elliptic twisted torus T of H'(F)).

e We have
DE(t)20(t) = DE(i)Y2dg (£)"/26(1) = DC(1)2dg (1)1 O(7)

for all t <+  (note that the transfer factor between ¢ and any rational twisted conjugacy
class in t is trivial by Section 1.10 of [37]).

e Fort + £, the number of H(F)-conjugacy classes in t is equal to the number of H'(F)-
conjugacy classes in ¢ divided by |F*/(F*)?|. Moreover, |F*/(F*)?| =4 - |i|p.

When H is the even special orthogonal group, the proposition is a direct consequence of
the following three facts

e There is a natural map s o (H U Hp) — Fst,e”(ﬁ]’) (denoted by ¢t — £) from the stable
regular elliptic conjugacy classes of H(F) and Hy(F') to the stable regular elliptic
conjugacy classes of H'(F). The fiber of each element in the image of this map has
exactly two elements (differed by the outer automorphism of the even special orthgonal
group). Under this map, we have df = d 3, (f)~*dt (Section 1.6 of [37]).

e We have
DE(#)20(t) + D ()20 (') = DE(i)2dg (£)7/26(1) = DC(1)2dg (D)1 0()

for all t — ¢ where ¢’ is another element in the fiber of t. On the other hand, if ¢ is a
stable regular elliptic conjugacy class of H' (F) that does not belong to the image of
Pst,ell(H U Ho) — Fst’e”(H,), then @(t) =0.
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e For t — ¢, the number of H(F)-conjugacy classes (or Hy(F)-conjugacy classes) in ¢ is
half of the number of H'(F)-conjugacy classes in ¢ (the other half belongs to the pure
inner form of the even special orthogonal group).

The first and third facts are straightforward. For the second one, we need to show that
the trasnfer factor between ¢ and any rational twisted conjugacy class in # is trivial for all
t € Tyon(HU Hp) — t € Fst’ell(f:l’). We follow the notation in [37]. Under the notation in
Section 1.3 of [37], the stable conjugacy class ¢ is of the form

(Fiy Fyiyti)i<i<n
where
e [;/F is a finite extension of degree d; with Z?:l d; = n;
e [} is a quadratic extension of Fl;;
o t; € ker(Np,/p.,)-

A rational twisted conjugacy class in ¢ is of the form
(F, Fyi, ti, ¢i)1<i<h

where ¢; € F/Im(Ng,/r,). Next we need to describe how does (F;, Fly;, t;, ¢;)1<i<n behave
under base change. There are three types:

Type 1 If E is not contained in E;, then (F;/Fy;t; ¢;) becomes (E;, B, t;,1) where E; =
F,®r F and Ey; = Fy;, ¢ E. Here we view t; as an element of k:er(NEi/Eii) via the
canonical embedding from ker(Ng,/p.,) to ker(Ng, /5., )-

Type 2 If E is not contained in Fly; and E C Fj, then (F;/Fy;, t;, ¢;) becomes (F;@F;, Fy, (t;,t;1),1).

7

Type 3 If E C Fuy, let Fi; = Efz]/f(x) and we define the field F/; to be F; = E[x]/f(z)
where f + f is the conjugation map on E[z] induced by the non-trivial element
of Gal(E/F). Similarly we can also define the field F} which will be a quadratic
extension of F',. Moreover, we have a natural isomorphism (denoted by x — )
between ker(Ng,/r,,) and ker(Np:/py,). Then (F;/Fyi,ti, ¢;) becomes (F;/Fyy,ti, ¢;) U
(E//F:Liv Ei) Ei)'

We decompose the set [ into I; U Iy U I3 where [; consists of those ¢ € I such that (F}, Fy;)
belongs to Type j above.
Then if we view t as a stable conjugacy class of G(F'), it is of the form

(Ei, Exiyti)ien, U (B ® Fiy Fy, (ti,t7"))ien, U (Fi/ Fagy ti) U (B FLi 6) )it

Similarly, if we view a rational twisted conjugacy class in t as a rational twisted conjugacy
class of G'(F), it is of the form

(Eiy Eyiti, Vier, U (Fy @ Fy Fyy (t,t7), Dier, U (B3 Py tiy e0) U (B FL 6,8 )iers -
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For i € I, the quadratic character ng,/p,, is trivial on F;. For ¢ € I, the quadratic
character ng,qr,/p, is the trivial character. For ¢ € I3, the natural isomorphism from F7; to
(F2;)* maps the quadratic character 1p,/r,, to the quadratic character ng/p . Combining
these three facts with the definition of transfer factor in Section 1.10 [37] (note that we have
choosen the Whittaker datum so that the number 7 in loc. cit. is equal to 1), we know that
the transfer factor between t and any rational twisted conjugacy class in ¢ is trivial. This
finishes the proof of the proposition.

O

9.2 The proof of the main theorem for (zalois model

We start with a necessary condition for a discrete L-packet to be distinguished (i.e. Theorem

139).

Theorem 9.2. Let H = Sp,,,,SOq,, 01 SO2,11, G = Resg/pHg, x = 1 if H = Spy,, or SOy,
and x € {1,n,} if H = SOgp41. Let I14(G) be a discrete L-packet of G(F') and I1,(G") be the
endoscopic transfer of the L-packet to the general linear group G' = GL4(E) (here a = 2n if

H = S0y, 0r SOg,41 and a =2n+ 1 if H = Sp,,,). Then the packet 114(G) is distinguished
(i.e. m(m,x) # 0 for some m € II4(G)) only if 1,(G") is (GL.(F), x')-distinguished. Here
X' =1ifx=1and x' = n, :=ng/rodet if x =,

For the summation of the multiplicities (i.e. Theorem|[1.7), assume that ITsqr) is (GLo(F), x')-

distinguished. By Theorem 4.2 of [26], I1;(G’) is of the form

Hu(G) = (1 X -+ x 1) X (01 XT1) X+ X (O X )
where

e 7, is a discrete series of GL,,(F) that is conjugate self-dual. Moreover, if (H,x) =
(SO2p41,Mmn), 7i is self-dual of symplectic type; otherwise, 7; is self-dual of orthogonal

type.

e 0; is a discrete series of GLy, (E) that is NOT conjugate self-dual. Moreover, if (H, x) =
(SO2n41, M), 0; is self-dual of symplectic type; otherwise, o; is self-dual of orthogonal

type.
e 7;,0; are all distinct.
. 22:1 a; +23 7 by =a.

We will consider the special case when m = 0. The general case will be consider in our
future paper. When m = 0, by the Plancheral formula for the Galois model proved in [§],
I14(G") appears discretely in the L? space of the Galois model (GL,(E), GL4(F), x').
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Theorem 9.3. With the notation above, if H 1is the symplectic group or the odd special
orthogonal group, we have
Z m(m,x) =271

7T€H¢(G)

If H is the even special orthogonal group, we let Hy be another even special orthogonal group
as in the previous subsection. We use mqo(m,x) to denote the multiplicity for the model

(G, Hy, x). Then we have
> mlm,x) +mo(m,x) =27
7T€H¢(G)

The proof of the above two theorem is almost the same as the unitary Shalika model
case. The only differences is to replace Proposition by Proposition [0.1] and to replace
the Plancherel formula for Shalika model in [I3] by the Plancheral formula for the Galois
model in [§]. We will skip the details here.

A Projections of finitely generated convex sets

In this appendix, we state and prove a decomposition result for orthogonal projections of
finitely generated convex sets that is directly inspired from [I, Appendix].

Let a be a real Euclidean space with scalar product denoted by (.,.). A subset C C a is
a finitely generated convex set if it satisfies one of the following equivalent properties:

e (C is a finite intersection of half-spaces (by which we mean subsets of the form {X € a |
(Y, X) < ¢} for some Y € a and ¢ € R);

e There exists finite subsets {X; | i € I} and {v, | j € J} of a such that

C =Conv{X;|eI}+ ZR+vj;
jeJ
e C x {1} is the intersection of a x {1} with a finitely generated cone in a & R.

Remark that any finitely generated convex set is automatically closed.
Let C C a be a finitely generated set. We let

C={Xeca|C+R, X =C}
be its asymptotic cone and denote by
CV:={Yeal|(V,;X)<0VX €C}

be the corresponding dual cone.
For H € C, we define its tangent cone and normal cone respectively by

Te(H) =R (C— H), Ne(H):=Tc(H)" ={Y €a|(Y,X)<0VX € Te(H)}.
Note that both are finitely generated cones.
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Lemma A.1. Let C1,Co C a be two finitely generated convex sets. Then, for H € C; NCy we

have
TClﬂC2<H) = TC1(H) N TCQ(H) and NClﬂCQ<H) = NCI(H> + NCQ<H)'

Proof. The first equality is obvious by definition. The second follows from the first one and
the relation (C1NCy)Y = CY+Cy that holds for every finitely generated cones Cy,Cy C a. [

A face of C is its nonempty intersection with a supporting (affine) hyperplane i.e. a subset
of C of the form
F={HeC|(\NH)=c}

where A € a and ¢ € R are such that (A, H) < ¢ for every H € C with equality for at least
one such H. Note that we allow A = 0 so that C is a face of itself. We let F(C) be the set
of faces of C.

To every face F' € F(C), we associate the subspace a’" that is the span of F — Xy for
any Xr € F. Moreover, the normal cone N¢(Xp) is independent of Xz when the latter is
chosen in the relative interior £ of F (that is its interior relative to F' + a!’) and we shall
denote by a}. the relative interior of this normal cone. For any X € F we have

ap={Yea|(Y,H-Xp)<0VH e€C - F}.

Lemma A.2. We have a partition

CY = |_| ajt.

FeF(C)
Proof. We lemma reduces to the three following claims:
(A.0.1) the cones af, F € F(C), are mutually disjoint.

Indeed, let F, F' € F(C) be distinct faces and choose Xp € F', X € F’. Without loss of
generality we may assume that F' ¢ F so that X ¢ F. Then, for H € aj. N aj, we have

(H,Xr — Xp) <0 and (H, Xp — Xp) < 0.
As these two inequalities are incompatible this shows that af N a}, = 0.
(A.0.2) For every F € F(C) we have aj. C CV.
Indeed, for Xy € F we have C' C Te(Xp) hence af. € Ne(Xp) € CV.
(A.0.3) For every X € CV, there exists F' € F(C) such that X € a}.

Indeed, the function Y — (X,Y) attains a maximum on C (as follows from the fact that C
can be written as the sum of a convex hull of finitely many points and C) say ¢ € R. Then,

F={HeC|(X,H)=c)

is a face of C and X € af. O
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Let b be a vector subspace of a and b+ be its orthogonal complement. Denote by p: a — b
and p* : a — bt the two orthogonal projections. For £ € b we set

F(C,6) ={F € F(C) | ¢ € p(ap)}-

Proposition A.3. Assume that dim(C"V +b) = dim(a) and & € p(af) is in general position.
(More precisely, we require that for every face F € F(C) with dim p*(a}) < dim bt we have
¢ ¢ pt(a})). Then, we have:

(i) p induces a bijection between

U F and p(C).

FeF(C)

(i) For Fy,Fy € F(C,§) we have

p(Fy) Np(Fz) = p(FL N F).

Proof. Let H € C and consider the intersection
Cup = (H+b5)NC.

It is a finitely generated set with asymptotic cone Cy, := b+ N C and dual cone CY = b+ CV.
As £ € CY, by the decomposition of Lemma [A.2] there exists a unique face Fyp € F(Crrp)
such that & € aJISHb. Take X € Fyp. Then, by Lemma |A.1| we have

aJ]“CH,b = NCH,b<X)O = NC(X)O +b= Cl;; +b

where F' € F(C) is the unique face such that X € F. In particular, we see that F' € F(C,¢).
This already shows that p induces a surjection

U F — p(C).

FeF(CE)

To prove that this map is also injective, it only remains to check that for the face [y is a
singleton. But, by the assumption that ¢ is in general position, & € b+ af = a}Hyb implies
that dim(a}H’b) = dim(a) i.e. that Fpp is reduced to one extreme point of Cpp. This proves
(i). Note that (ii) is a direct consequence of (i). O

B Howe’s conjecture for twisted weighted orbital inte-
grals

The purpose of this appendix is to establish an analog of Howe’s conjecture [19] for weighted
orbital integrals on a p-adic twisted space. This result is needed for the proof of Theorem [4.7]
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A similar extension of Howe’s conjecture to weighted orbital integrals was established for
honest reductive groups by Arthur [3] based on his local trace formula but to the best of our
knowledge Arthur’s argument hasn’t been extended to twisted spaces. The proof presented
here is a direct adaptation of the work of Barbasch and Moy [4] which has the advantage of
allowing non-Archimedean local fields of arbitrary characteristics. Actually, the reasoning
in [4] extends without much effort to twisted spaces but for the comfort of the reader, as
well as for the authors own edification, we reproduce below with some details Barbasch and
Moy’s beautiful argument.

The first section of this appendix contains the precise statement of the “Howe conjecture
for twisted weighted orbital integrals” as well as a reduction to a certain property of twisted
Hecke modules (Proposition . The proof of this proposition will be given in Section
following very closely the paper [4]. The intermediate Section aims to collect necessary
material on Bruhat-Tits buldings and the Moy-Prasad filtrations.

B.1 The statement

We will freely use the basic notations introduced in Chapter [2] for twisted spaces and their
subgroups. The main objects under consideration will a priori depend on the choices of Haar
measures. However, the precise normalization of those are completely irrelevant for the main
result of this appendix and we will therefore assume that Haar measures have been fixed
every time they appear in a formula.

Let (G,G) be a twisted reductive space defined over F. Let K be a special maximal
compact subgroup of G(F) so that for every parabolic subgroup P C G we have an [wasawa
decomposition G(F) = P(F)K. Let M C G be a Levi subspace. For every parabolic sub-
space P € P(M) and g € G(F) we set Hp(g) := Hys(mp(g)) where g = mp(g)up(g)kp(g)
is an arbitrarily chosen decomposition with mp(g) € M(F), up(g) € Np(F) and kp(g) € K.
Note that for g € G(F), the convex hull Conv{H3(g) | P € P(M)} is contained in a trans-
late of the subspace a%. We let v3;(g) be the volume of that convex hull with respect to a

given Haar measure on a%.
For v € M(F)N G,y(F) and f € C2(G(F)), we can form the weighted orbital integral
WO, £) =WOS(n = [ f(g vg)usglo)ds
Gy (F\G(F)
for some choice of invariant measure on G, (F)\G(F).
For any subset 2 C M(F), we denote by WOz(€2) the span of the linear functionals

f e CEG(F)) — WOg(v, f) for v € QN Grs(F). Also, for J C G(F) a compact open
subgroup we set -

Hy=HG = CAG(F)]J]).
Howe’s conjecture for twisted weighted orbital integrals can now be stated as follows:

Theorem B.1. Assume that ) C M(F) is compact modulo conjugation and let J C G(F)
be a compact-open subgroup. Then, the restriction of WO(2) to Hy is finite dimensional.

119



We will now reduce the above theorem to a statement about twisted Hecke modules. The
space H = HC = C’é’o(é(F)) is a bimodule over the Hecke algebra H := C°(G(F)) for the
action by left and right convolution (after fixing a Haar measure on G(F)). For J € CO(G),
we denote by [H, 7:2]] the span of the commutators [¢, f] = ¢ * f — fx ¢ for (¢, f) € H X H.
Equivalently, [, H,] is the span of the differences ?f — f for (g, f) € G(F) x H; where we

have set 9 f(7) := f(g7'7g), v € G(F).

For any subset 2 C G(F), we define let ﬁJ(Q)C be the subspace of functions f €
that are supported in G(F') \ 2J. We will establish the theorem through the following more
technical statement.

Proposition B.2. Let Q C é(F) be a subset that is compact modulo conjugation and
J C G(F) be a compact-open subgroup. Then, there exists an open subgroup J' C J such
that the quotient space B B B B

Hy/(H, Hol O Hy + H(Q2))

1s of finite dimension.

To end this section, we now explain why Proposition implies Theorem [B.1] Let
Tq = Tg CH — C®(QN G F))
be the linear map sending f € H to the function
v € QNG (F) = WOH(7, f).

We need to show that 7 (H.) is finite dimensional. The proof is by induction on the semisim-
ple rank of G and thus we assume that the result already holds for all the proper Levi
subspaces of G. B . B

For g € G(F), f € H and v € M(F) N G,s(F) we have the splitting formula [23]
Proposition 2.9.4 (4)]

DS (y)2

—DM(W)WWOM(%QJ‘)Z > WO%(%fg,@)

QEF (M)

(B.1.1)

where ZQ stands for the unique Levi factor of @ containing @, f,6 € CSO(EQ(F)) is the
function given by

1, 5() = 65() 2 / Fk Tukyug (kg™ )dudk, € Lo(F)

KxNg(F)

and
ug(h) == / P (H, —Hg(h)dH, for h € G(F).
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Let Q¢ C G(F) be the union of all G(F)-conjugates of . As Q is compact modulo
M (F)-conjugation, Q¢ is similarly compact modulo G(F)-conjugation. Let J' C J be as in

Proposition with Q¢ instead of Q. Then, for every ) € F(M) we can find a compact-
open subgroup Jg C Lg(F') such that

(B.1.2) f,0 € 7:253, for every f € Hy and g € G(F).
From (B.1.1)) and (B.1.2) we deduce that
~ Lo,k
(AN S Y 7 (Hyg)
G#QEeF(M)
By the induction hypothesis, this implies that TQ([’H,’}:ZJ/]) has finite dimension. Further-
more, since the distribution WOg;(v,.) for v € QN G,4(F) is supported in the G(F)-

conjugacy class of 7, the image of ﬁJ(QG)C by 7q is zero. By Proposition , it follows that
Ta(H ) is also of finite dimension Q.E.D.

B.2 Bruhat-Tits building and the Moy-Prasad filtrations

Let B be the restricted Bruhat-Tits building of G. It is a polysimplicial complex carrying
polysimplicial actions of G(F') and G(F') that are compatible in the sense that

(gvd) -z =g-(v- (¢ - x)), for every (g,7,¢') € G(F) x G(F) x G(F) and z € B.

Moreover, these actions factor through G(F)/Zg(F) and G(F)/Zg(F) respectively and the

resulting actions are proper. Picking, for some minimal Levi subgroup My, C G, a scalar

product on aﬁ,o that is invariant under Normg F)(MO) yields a distance function

dist: Bx B — R,

on B that is uniquely geodesic and invariant under é(F ). For x,y € B we shall denote by
[z, y] the unique geodesic joining = and y and we set |z, y[= [z,y] \ {z,y}.

By a chamber of B, we shall mean the closure of a facet of maximal dimension.

For v € G(F), the displacement function d, : B — R, is defined by

dy(x) = dist(z,v-z), z € B.
For any chamber C' C B and v € G(F) we set
do(v) = inf d, ().

We also set B
d(vy) := ingdv(x), for v € G(F).
TE

Note that, as the set of all chambers cover B, we have
(B.2.1) d(v) = jnf do(v)

where the infimum is taken over the set of all chambers in B.
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Lemma B.3. (i) For any chamber C C B, the value set dc(G(F)) is a closed discrete
subset of Ry and can thus be linearly ordered

de(GF) ={0=rg<r <ro<...}.

(ii) Let x € B and v € G(F) be such that dy(x) > d(z). Then, for every y €|z, - x| we
have

d,(y) < d,(x).

(iii) Let x € B and v € G(F). Then, if d, attains a local minimum at x we have d(z) =
d(x).

(iv) The function d : G(F) — R, is invariant by G(F)-conjugation and locally constant.

Proof. (i) The statement is equivalent to do(G(F)) N[0, R] being finite for every R > 0. The
set

B(C,R) :={x € B| iggdist(:t,y) < R}
Yy
is compact. Thus, by the properness of the action of G(F)/Zq(F), the set

{y € G(F) | de(v) < R}

is compact modulo Zg(F'). However, d¢ is also right invariant by the pointwise stabilizer
G¢ of C which is an open subgroup of G(F') containing Z(F'). The claim follows.
(ii) By the triangular inequality, and since y €|z, yz[, we have

dy(y) = dist(y,vy) < dist(y,vz) + dist(yz,vy)
= dist(y,yx) + dist(x,y) = dist(z,vx) = d, ().

Moreover, as B is uniquely geodesic, equality holds if and only if yx €|y, yy[ or equivalently
vyx € [x,7%z]. Assume by way of contradiction that d,(y) = d,(z). Then, we have y"x €
[y~ Lz, v 2] for every n > 1 from which if follows that the geodesics [z, vx], ..., [y" 'z, y"z]
piece together to form the geodesic [x,~"x] and so

dist(z,y"x) = nd,(x), for every n > 0.

On the other hand, as d,(z) > d(v), we can find z € B such that d,(z) < d,(z). By the
triangular inequality again, we have
nd,(x) = dist(z,y"x) < dist(x, z) + dist(z,7"z) + dist(y"z,7"x)
< 2dist(x, z) + ndy(2)
for each n > 0. Letting n goes to infinity leads to a contradiction. Therefore, d,(y) < d,(z)

and we are done.
(iii) This follows from (ii), noting that if yz # x every neighborhood of = meets |z, v/
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(iv) It is clear that d is invariant by G(F')-conjugation. Let us show that it is also locally
constant. Let v € G(F). Then, by (i) and there exists a chamber C' C B such that
d(y) = dc(vy). As Cis compact and € C' +— d,(z) is continuous, d, attains its infimum on C'
and therefore d(y) = d,(x) for some € C. Let J C G(F') be a compact-open subgroup that
fixes pointwise some neighborhood of = in B. Then, for each k € J the function d.; attains
a local minimum at = from which we deduce, by (iii), that d(vk) = d(z) = d,(x) = d(7)
i.e. d is constant on the coset v.J. O

Let x € B. For every real number r > 0, Moy and Prasad have defined an open-compact
subgroup K, , C G(F') with the following properties:

(B.2.2) For every s > r > 0 and x € B, we have K, ; C K, ,;

(B.2.3) For each z € B, (5o Kar = {1};

(B.2.4) For any z € B, r > 0 and v € G(F'), we have K., , = Ad,(K,,);

(B.2.5) There exists A > 0 such that for each integer n > 0 and = € B, K, ,;, only depends
on the facet I’ containing x;

(B.2.6) For r > 0 and x,y, 2 € B such that y € [z, z] we have

K,, C Ky, K.,

By (B.2.5)), for any chamber C C B we may define K¢, as K, ., for any point z in the
relative interior of C'.

B.3 Proof of Proposition

Fix a chamber C' C B. It suffices to prove Proposition for J = J' = K¢, and n large
enough. In particular, we will assume that n is sufficiently large that J fixes pointwise all
the chambers C" C B with C N C" # .

By Lemma [B.3[i), we can write

do(GF) ={0=rog<r <r<..}

and for each i > 0 we let H J.<r; be the subspace of f € H,; which are supported in the
set of v € G(F) with de(y) < r;. Then, i — H;<,, is an increasing and exhaustive
filtration of H; and since the action of G(F')/Zg(F) on the building is proper, the quotients

Hi<r /ﬁj’gri N H;(Q)¢ are finite dimensional. Therefore, it suffices to check that for i
sufficiently large we have

(Bgl) ﬁ],gri g ﬁj,g’l‘i,1 + [H7ﬁ=]] + ﬁJ(Q)C
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We will actually show that the above inclusion holds as soon as

(B.3.2) r; > supd(7).

YEQ
We thus assume that the above inequality is satisfied. The quotient H J<r; /7-7, J<ri_, 1S
spanned by the images of the functions 1,; for v € G(F) with de(y) = r; and it suf-

fices to show that for such y, 1., € Hycr,_, +[H, Hs]+H(Q)°. For this we distinguish two
cases:

First we assume that do(v) = d(v). Let x € C be such that do(y) = d,(z). Then, as J
fixes pointwise a neighborhood of z, for every k£ € J the displacement function d.,; attains a
local minimum at x and therefore, by Lemma [B.3{(iii), we have

d(vk) = dy(z) = dy(2) = do(r) =

By (B.3.2)), this implies v.J C G(F)\ Q and therefore 1,; € H;(Q)°.

Assume now that de(y) > d(7y). Let again x € C be such that d¢(v) = d,(x). Then by
Lemma [B.3[ii), we have [z,y2] N C' = {z}. Let y €]z, yx[ be sufficiently close to z so that
it I denotes the facet containing y we have x € F (where F denotes the closure of F). We
can find a chamber D Contalnlng y and i eC (Where C denotes the interior of C') such that

[x,fya:]ﬂD#@. By (B.2.4) and (B.2.6), for any y' € [2/,v2/] N D, we have
KD,n = Ly nh C Kx’,nhK'ym/,nh = JAd’y<J)
Let ky,..., ke € Ad,(J) be such that

l
JKpn = Tk

Then, since k; 'v.J = ~.J for any i, we have

¢

kit
'YJKDn Z]‘k Ly Jk; _Z ! ]-’yJ'

=1

This shows that
(ng) g_l]-'yJKDyn - 1’y] € [HaﬁJ]

Furthermore, as J fixes D pointwise (since DN C' contains x and is therefore nonempty) and
y € DNz, vz[, by Lemma [B.3[ii) we have

dp(vk) = dp(v) < dy(y) < d,(z) = do(x) =

for every k € J. Let g € G(F) be such that C'= gD. Then, we have gKp ,g ' = K¢, = J
and, by the above,

de(gvkg™) = dp(vk) <7

124



for every k € J. This shows that the function

g _ _
L/JKD,n = lgw'KD,ng*1 = 197Jg*1J

belongs to Hj<,,_,. Combining this with (B:3.3), we deduce that 1,; € Hj<p,_, + [H, H,]
and the claim follows.
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