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Abstract. In this paper, we give a list of strongly tempered BZSV quadruples. This gives
a conceptual explanation of many existing Rankin-Selberg integrals and period integrals. It
also proposes many new interesting period integrals to study.

1. Introduction

1.1. BZSV Duality. In [1], Ben-Zvi, Sakellaridis, and Venkatesh proposed a beautiful rela-
tive Langlands duality for spherical varieties (in this paper, we will call it BZSV duality). We
briefly recall the datum in the duality. Throughout this paper, k is a global field, A = Ak,
F is a local field, and ψ is a non-trivial additive character of A/k (resp. F ) if we are in the

global (resp. local) setting. The BZSV duality concerns a pair of dual data (∆, ∆̂) where

each side contains 4 datum: ∆ = (G,H, ρH , ι) and ∆̂ = (Ĝ, Ĥ ′, ρĤ′ , ι̂′). Here G is a split
reductive group; H is a split reductive subgroup of G; ρH is a symplectic representation of
H; and ι is a homomorphism from SL2 into G whose image commutes with H. The map ι
induces a homomorphism H × SL2 → G, which will still be denoted by ι. This map induces
an adjoint action of H × SL2 on the Lie algebra g of G and we can decompose it as

⊕k∈Iρk ⊗ Symk

where ρk is some representation of H and I is a finite subset of Z≥0. We let Iodd be the subset
of I containing all the odd numbers. There are two main requirements for the quadruple
(G,H, ρH , ι).

(1) The representation ρH,ι = ρH⊕(⊕i∈Ioddρi) is a symplectic anomaly-free representation
(see Section 5 of [1]) of H.

(2) The Hamiltonian space associated to the quadruple (G,H, ρH , ι) (defined in Section
3 of [1]) is hyperspherical ([1, Section 3.5]). In particular, its generic stabilizer is
connected.

We refer the reader to [1] for more details. Note that under BZSV duality, the group Ĝ

is the Langlands dual group of G and Ĥ ′ = Ĝ∆ can be viewed as the “dual group” of the
quadruple ∆ (note that the groups H and Ĥ ′ are not dual to each other in general, and the
nilpotent orbits ι and ι̂′ are also not dual to each other in general). We recall the conjecture
about period integrals in the BZSV duality.

Let ∆ = (G,H, ρH , ι) and ∆̂ = (Ĝ, Ĥ ′, ρĤ′ , ι̂′) be two quadruples that are dual to each
other under the BZSV duality. We use ρH,ι and ρĤ′,ι̂′ to denote the symplectic anomaly-free
representations associated to these quadruples. As we explained above, the maps ι and ι̂′

induce adjoint actions of H×SL2 (resp. Ĥ
′×SL2) on g (resp. ĝ) and they can be decomposed
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as

g = ⊕k∈Iρk ⊗ Symk, ĝ = ⊕k∈Î ρ̂k ⊗ Symk

where ρk (resp. ρ̂k) are representations of H (resp. Ĥ ′). It is clear that the adjoint repre-

sentation of H (resp. Ĥ ′) is a subrepresentation of ρ0 (resp. ρ̂0).

For an automorphic form ϕ of G(A) (resp. Ĝ(A)), we can define the period integral
PH,ι,ρH (ϕ) (resp. PĤ′,ι̂′,ρĤ′

(ϕ)) of it associated to the quadruple. Let’s briefly recall the

definition. We have a symplectic representation ρH,ι : H → Sp(V ). Let Y be a maximal

isotropic subspace of V and Ωψ be the Weil representation of S̃p(V ) on the Schwartz space

S(Y (A)). The anomaly free condition on ρH,ι ensures S̃p(V ) splits over Im(ρH,ι) and Ωψ

restricts to a representation of H(A) on S(Y (A)). We define the theta series

Θφ
ψ(h) =

∑
X∈Y (k)

Ωψ(h)φ(X), h ∈ H(A), φ ∈ S(Y (A)),

and we can define the period integral to be

PH,ι,ρH (ϕ, φ) =
∫
H(k)\H(A)

Pι(ϕ)(h)Θφ
ψ(h)dh.

Here Pι is the degenerate Whittaker period associated to ι (we refer the reader to Section
1.2 of [27] for its definition). To simplify the notation, we will omit the Schwartz function in
the notion of the period and simply write it as PH,ι,ρH (ϕ, φ) 1. Similarly we can also define
the period integral PĤ′,ι̂′,ρĤ′

(ϕ). The following conjecture is the main conjecture regarding

global periods in BZSV duality.

Conjecture 1.1. (Ben-Zvi–Sakellaridis–Venkatesh, [1])

(1) Let π be an irreducible discrete automorphic representation of G(A) and let ν : π →
L2(G(k)\G(A))π be an embedding. Then the period integral

PH,ι,ρH (ϕ), ϕ ∈ Im(ν)

is nonzero only if the Arthur parameter of π factors through ι̂′ : Ĥ ′(C) × SL2(C) →
Ĝ(C). If this is the case, π is a lifting of a global tempered Arthur packet Π of H ′(A)
(the Langlands dual group of Ĥ ′). Then we can choose the embedding ν so that

|PH,ι,ρH (ϕ)|2

⟨ϕ, ϕ⟩
“ = ”

L(1/2,Π, ρĤ′) · Πk∈ÎL(k/2 + 1,Π, ρ̂k)

L(1,Π, Ad)2
, ϕ ∈ Im(ν).

Here ⟨,⟩ is the L2-norm, and “ = ” means the equation holds up to some Dedekind
zeta functions, some global constant determined by the component group of the global
L-packet associated to π, and some finite product over the ramified places (including
all the archimedean places).

(2) Let π be an irreducible discrete automorphic representation of Ĝ(A) and let ν : π →
L2(Ĝ(k)\Ĝ(A))π be an embedding. Then the period integral

PĤ′,ι̂′,ρĤ′
(ϕ), ϕ ∈ Im(ν)

1when the nilpotent orbit associated to ι is not even, the degenerate Whittaker period Pι is a Fourier-
Jacobi coefficient and one also need to include an extra Schwartz function in its definition



STRONGLY TEMPERED BZSV QUADRUPLES 3

is nonzero only if the Arthur parameter of π factors through ι : H(C) × SL2(C) →
G(C). If this is the case, π is a lifting of a global tempered Arthur packet Π of Ĥ(A)
(the Langlands dual of H). Then we can choose the embedding ν so that

|PĤ′,ι̂′,ρĤ′
(ϕ)|2

⟨ϕ, ϕ⟩
“ = ”

L(1/2,Π, ρH) · Πk∈IL(k/2 + 1,Π, ρk)

L(1,Π, Ad)2
, ϕ ∈ Im(ν).

Remark 1.2. The above conjecture is usually called the Ichino-Ikeda type conjecture. To
state an explicit identity instead of “ = ”, one needs to make two adjustments on the right-
hand side of the equation.

• In the ramified places, instead of using the local L-function, one needs to use the so-
called local relative character defined by the (conjectural) Plancherel decomposition
(see Section 17 of [32] and Section 9 of [1]).

• One also needs to add some Dedekind zeta functions on the right-hand side determined
by the groups G and H (in all the known examples, those zeta functions are the L-
function of the dual M∨ to the motive M associated to G,H introduced by Gross in
[17]), as well as some global constant determined by component group of the global
L-packet associated to π (see Section 14.6.4 of [1]) for these two quadruples.

Remark 1.3. In [1], they also formulated many other conjectures for the duality (i.e., lo-
cal/global geometric conjecture, local conjecture for Plancherel decomposition). The expecta-
tion is that those conjectures would uniquely determine the duality. In this paper we will only
focus on their conjecture for period integrals. We also want to point out that given a general
BZSV quadruple ∆ = (G,H, ρH , ι), at this moment there is no algorithm to compute the

dual quadruple ∆̂. The only exception is for the so-called polarized case (i.e., when ρH = 0)
where the algorithm is given in Section 4 of [1] (most quadruples considered in this paper

are not polarized). As a result, given two BZSV quadruples ∆ and ∆̂, at this moment one
can only provide evidence for the duality between them by studying the various conjectures
(i.e., local/global geometric conjecture, local conjecture for Plancherel decomposition, global
conjecture for period integrals) in [1].

1.2. Strongly tempered BZSV quadruples.

Definition 1.4. We say the quadruple ∆ = (G,H, ρH , ι) is strongly tempered if Ĝ = Ĥ ′ZĜ,
i.e. the “dual group” of ∆ is equal to the dual group of G up to center. We say the quadruple
is reductive if ι is trivial.

If the quadruple ∆ = (G,H, ρH , ι) is strongly tempered, then Conjecture 1.1(1) states that
for all global tempered L-packet Π ofG(A) 2, there exists π ∈ Π and ν : π → L2(G(k)\G(A))π
such that

(1.1)
|PH,ι,ρH (ϕ)|2

⟨ϕ, ϕ⟩
“ = ”

L(1/2,Π, ρĤ′)

L(1,Π, Ad)
, ϕ ∈ Im(ν).

In other words, it means that the period integral PH,ι,ρH (ϕ) is essentially equal to the central
value of an automorphic L-function on every tempered global L-packet.

2when Ĝ ̸= Ĥ ′, we need to make some assumptions on the central character of Π so that its Langlands
parameter factors through Ĥ ′
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The most well-known example of strongly tempered quadruple is the Gross-Prasad model
(G,H, ρH , ι) = (SO2n+1 × SO2n, SO2n, 0, 1). In this case the dual quadruple is given by

(Ĝ, Ĝ, ρ̂, 1) = (Sp2n × SO2n, Sp2n × SO2n, stdSp2n ⊗ stdSO2n , 1).

In this case, Conjecture 1.1(1) is just the Ichino-Ikeda conjecture in [19] and Conjecture
1.1(2) is just the Rallis inner product formula for the theta correspondence between Sp2n

and SO2n.

Remark 1.5. Conjecturally the quadruple is strongly tempered if and only if the integral

(1.2)

∫
H(F )

Pι(ϕ)(h)φ(h)dh

is absolutely convergent for all tempered matrix coefficient ϕ of G(F ). Here F = kv is a
local field for some v ∈ |k|, Pι is the local analogue of the global degenerate Whittaker period,
and φ(h) is a matrix coefficient of the local Weil representation of H(F ) associated to the
symplectic representation ρH (although the unipotent integral Pι is not necessarily convergent
and it needs to be regularized, see examples in [2, 25, 34, 35, 36]). It is easy to check for
all cases in Table 21 – 26, the above integral is absolutely convergent. In these cases, the
local relative character in Remark 1.2 is given by the integral (1.2) where ϕ is the matrix
coefficient of πv; and πv is the local component of π at v which is a tempered representation
of G(F ).

In [27], we proposed a relative trace formula comparison that relates the periods PH,ι,ρH (ϕ)
on G for a BZSV quadruple (G,H, ρH , ι) to the periods PH0,ι0,ρH0

(ϕ0) on G0 for a strongly
tempered BZSV quadruple (G0, H0, ρH0 , ι0). Thus it is natural to consider Conjecture 1.1
first for the strongly tempered BZSV quadruples. The goal of this paper is to provide and
study a list of strongly tempered BZSV quadruples.

By duality, in order to classify the strongly tempered quadruple ∆, it is enough to classify
its dual quadruple

∆̂ = (Ĝ, Ĥ ′, ρ̂, 1).

Since Ĥ ′ZĜ = Ĝ, it is enough to classify all the BZSV quadruples of the form

(Ĝ, Ĝ, ρ̂, 1).

By [1], a quadruple ∆̂ = (Ĝ, Ĝ, ρ̂, 1) is a BZSV quadruple if it satisfies the following three
conditions.

(1) The symplectic representation ρ̂ is anomaly-free (see [1, Section 5]).
(2) The symplectic representation ρ̂ is multiplicity free.

(3) The generic stabilizer of the representation ρ̂ of Ĝ is connected.

In [22], Knop gave a classification of multiplicity-free symplectic representations. By [22,
Theorem 2.3], the classification is reduced to that of symplectic representations that are
saturated and multiplicity free, which are listed in Table 1, 2, 11, 12, 22, S of [22]. In this
paper we write down the strongly tempered quadruples that are (up to isogeny) the duals of

(Ĝ, Ĝ, ρ̂, 1) when ρ̂ is the symplectic representations listed in Knop’s tables except for Table
S. Currently we use an ad hoc method to determine the data ρH , which is why we can not
handle the infinite family of representations given by Table S, although the choice of H and
ι is systematic and applies to Table S as well (see Property 2.11).
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Remark 1.6. Condition (3) above is related to the Type N spherical root. Whenever this
condition fails, we should expect some covering group to appear in the dual quadruple ∆ =
(G,H, ρH , ι). This is not covered in BZSV’s framework at this moment. Nonetheless, for
the cases in [22] that do not satisfy (3), we are still able to write down a candidate for the

dual of the quadruple ∆̂ and we can provide evidence for the conclusions in Conjecture 1.1
under the duality. 3.

1.3. Statement of main results. We consider all quadruples ∆̂ = (Ĝ, Ĝ, ρ̂, 1) satisfy the
following two conditions:

(1) The symplectic representation ρ̂ is anomaly-free.
(2) The symplectic representation ρ̂ appears in Table 1, 2, 11, 12, 22 of [22].

For each of them, we will write down a quadruple ∆ = (G,H, ρH , ι) and claim it is dual

to ∆̂ up to isogeny, or more precisely it is dual to (Ĝ, Ĝ/Z∆, ρ̂, 1) where Z∆ = ZG ∩ ker(ρH)
and ZG is the center of G. To support the claim we provide evidence through the three main
theorems below. Our results are summarized in the 6 tables at the end of this paper (Table
21, 22, 23, 24, 25 and 26, the first two tables are for reductive cases while the last four tables
are for non-reductive cases).

Theorem 1.7. For all the reductive cases (Table 21 and 22) except the quadruple (GL6 ×
GL2,GL2×S(GL4×GL2),∧2⊗ stdGL2), and for all quadruples in Table 23 and 24, the local
relative character of the period integral PH,ρH ,ι is equal to the L−value in Conjecture 1.1(1)

at unramified places, namely equals L(1/2,Π,ρ̂)
L(1,Π,Ad)

for the unramified representation Π.

Recall that the local relative character at unramified places is defined in (1.2) with ϕ and φ
being unramified matrix coefficients normalized to be 1 at identity, and with suitably chosen
Haar measures.

Remark 1.8. For the quadruple (GL6×GL2,GL2×S(GL4×GL2),∧2⊗ stdGL2) and for all
quadruples in Table 25 and 26, as far as we know, their local relative characters have not
been computed at unramified places. Although we believe they can be computed by the same
method as in [19] and [36].

Theorem 1.9. For the quadruples in Table 21, 23 and 25, Conjecture 1.1(2) holds, if we
assume (when applicable) the global period integral conjectures in [7, 8, 19] for Gan-Gross-
Prasad models.

Remark 1.10. In most cases for Theorem 1.9 and some cases for Theorem 1.7 we utilize
the theta correspondence. We summarize the results needed for theta correspondence in
Section 2.2.

Remark 1.11. In [8], the authors only formulated a global conjecture regarding the non-
vanishing of the period integrals for non-tempered Arthur L-packets (Conjecture 9.11 of [8]).
An Ichino-Ikeda type conjecture for the period is not available in [8] because of the difficulty
in the definition of local relative character in the non-tempered case (see the last paragraph of
Section 9 of [8]). Thus strictly speaking, for some cases in Theorem 1.9 we can only claim the

3There are two of such cases in Knop’s table: one relates to the symmetric cube representation of SL2

and the other one relates to the two copies of the symmetric square representation of SLn, we refer the
reader to Section 3.1 and 4.1 for details. In this paper, we will not check the connectedness condition for
representations in [22], we will leave it as an exercise for the reader.
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nonvanishing part of Conjecture 1.1(2). However the identity in Conjecture 1.1(2) disregards
the local factors at bad places, thus to prove it we only need an Ichino-Ikeda type conjecture
without specifying the local factors at bad places. The formulation of such a conjecture is
well known and we assume this version of the conjecture in Theorem 1.9.

We say duality holds for a quadruple in the tables 21–26, if it is the dual of a quadruple

(Ĝ, Ĝ/Z∆, ρ̂, 1) coming from the corresponding entry in Knop’s tables. Beside the above two
theorems, we provide one further evidence for the duality for all the non-reductive quadruples.
In the next section, we will introduce a notion of Whittaker induction and we will show that
any non-reductive quadruple is the Whittaker induction of a reductive quadruple. We will
also make a conjecture about the BZSV duality under Whittaker induction (i.e. Conjecture
2.10) which generalizes the conjecture in Section 3.4 of [1].

Theorem 1.12. Any quadruple (G,H, ρH , ι) in Table 23, 24, 25 and 26 is a Whittaker
induction of a reductive quadruple (G0, H, ρ

′
H , 1) in Table 21 and 22.

Assume the duality holds for the reductive quadruple (G0, H, ρ
′
H , 1), then Conjecture 2.10

holds for the quadruple ∆ = (G,H, ρH , ι) if and only if the duality holds for ∆.

Remark 1.13. Most of the quadruples in Table 21 and 22 come from Tables 1, 11, 2, 12,
22 of [22]. There are some exceptions; the quadruples given in (5.5), (6.3), (6.4), (7.7) and
(7.8) are strongly tempered and dual to ρ̂ from Table S in [22].

Remark 1.14. For quadruples in Table 23, 24 and 25, Theorem 1.7 and 1.9 already provide
strong evidence for the duality of (G,H, ρH , ι). Combining with Theorem 1.12, we get strong
evidence of Conjecture 2.10 for quadruples in these three tables.

Remark 1.15. Historically Whittaker induction plays an important role in the study of
period integrals. Many interesting L-function can be obtained by studying the period integral
of the Whittaker induction of some spherical varieties (e.g. the Shalika model, and the
models in [36]). Most prior examples of the Whittaker inductions are of Bessel type, but
in this paper we would also need the Whittaker induction of Fourier-Jacobi type (see next
section for definition of Whittaker induction).

In this paper, we provide the evidence of duality mainly through the period integral aspect,
i.e., Conjecture 1.1. As we mentioned in Remark 1.3, there are other ways to justify the
duality, for example from the geometric conjectures and local Plancherel conjectures. We
will not consider those conjectures in this paper. We just want to remark that Theorem 1.7
provides numerical evidence for the local Plancherel conjecture in Proposition 9.2.1 of [1],
but we will not digress in these directions here.

1.4. Rankin-Selberg integrals and special values of period integrals. To end this
introduction, we would like to point out that the list of strongly tempered quadruples we
found in this paper recovers many existing integrals such as the Rankin-Selberg integrals in
[3], [4], [5], [6], [9], [10], [11], [12], [20], [21], [28], [29] and the period integrals in [7], [16],
[36]. It also produces many new interesting period integrals for studying.

A simple example that leads to a Rankin-Selberg integral is the quadruple (4.1):

(GLn ×GLn,GLn, T (stdGLn), 1)

which is dual to
(GLn ×GLn,GLn ×GLn, T (stdGLn ⊗ stdGLn), 1).
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The attached period integral is∫
GLn(k)\GLn(A)

ϕ1(g)ϕ2(g)Θ
Φ(g) dg

where ϕ1 ∈ π1, ϕ2 ∈ π2 are cusp forms in irreducible unitary cuspidal automorphic represen-
tations π1 and π2 on GLn and ΘΦ(g) is a theta series on GLn explicitly given by

ΘΦ(g) = | det g|−
1
2

∑
ξ∈kn

Φ(ξg).

Let ξ0 = (0, 0, . . . , 0, 1), then we can identify Φ(g) with the sum of | det g|− 1
2Φ(0) and a

mirabolic Eisenstein series

EΦ(g) = | det g|−
1
2

∑
γ∈P0(k)\GLn(k)

Φ(γg)

where P0 is the mirabolic subgroup that fixes ξ0. This period integral is just the specialization
of the well-known Rankin-Selberg integral for tensor product L−function [20] evaluated at
a specified value.

The theory of Rankin-Selberg integrals is a very successful theory, producing many integral
representations to study L-functions. A noted drawback of this theory is that the integrals
are mostly developed in an ad hoc way. The list provided in this paper can actually fit many
of the Rankin-Selberg integrals into the framework of BZSV duality. To be precise, those
Rankin-Selberg integrals (evaluated at certain value) are simply the period integrals attached
to some strongly tempered BZSV quadruples whose dual is closely related to the L-functions
associated to the Rankin-Selberg integrals. The following is a list of such Rankin-Selberg
integrals.

• Integrals for exterior square L−functions by Bump-Friedberg [3].
• Integrals for Spin L−function by Bump-Ginzburg [4], [5] and [11].
• Integrals for symmetric square L−functiosn by Bump-Ginzburg [6] (preceded by
Gelbart-Jacquet [13] and Patterson-Piatetski-Shapiro [28], and complemented by
Takeda’s work [33]).

• Integrals for standard L−functions of exceptional groups E6 and G2 by Ginzburg [9]
and [10].

• Multivariable Rankin-Selberg integrals by Ginzburg-Hundley [12] and Pollack-Shah
[29].

• Rankin-Selberg convolution by Jacquet-Piatetski-Shapiro-Shalika [20].
• Integrals for exterior square L−functions by Jacquet-Shalika [21].

The above list exhausts all currently known Rankin-Selberg integrals utilizing the mirobolic
Eisenstein series. There are also examples above that use the Eisenstein series of other types
(e.g., the ones in [12] and [29]).

Our list provides more candidates for Rankin-Selberg integrals. For example, Model 13
of Table 26 suggests considering the following Rankin-Selberg integral of G = GSO8, which
should produce the standard L-function and the Half-Spin L-function. Let π be a generic
cuspidal automorphic representation of GSO8(A), ϕ ∈ π and P = MN be a maximal
parabolic subgroup GSO8 with its Levi subgroupM = GL2×GSO4. LetH = S(GL2×GSO4)
be a subgroup of M and let E(h, s1, s2) be an automorphic function on H induced from the
trivial function on GL2 and the Borel Eisenstein series of GSO4 (s1, s2 are the parameter
of the Eisenstein series). It is easy to see that one can take a Fourier-Jacobi coefficient of
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ϕ along the unipotent subgroup N that produces an automorphic function on H. We will
denote it by PN(ϕ). Then, the integral associated to Model 13 of Table 26 is just∫

H(k)\H(A)/ZG(A)
PN(ϕ)(h)E(h, s1, s2)dh.

In the spirit of Conjecture 1.1, we expect this to be the integral representation of the L-
function L(s1, π, ρ1)L(s2, π, ρ2) where ρ1 (resp. ρ2) is the standard representation (resp.
Half-Spin representation) of Spin8(C).

Meanwhile the majority of the quadruples in our list have period integrals that cannot
be considered as specializations of Rankin-Selberg integrals. In some cases, the identities
between the periods and the L−values in Conjecture 1.1 are consequences of Gan-Gross-
Prasad conjectures [7, 8, 19]) and the Conjectures in [36]. There is also one case where
the integral is predicted by the work of Ginzburg-Jiang-Rallis [16] on the central value of
symmetric cube L−functions. Of more interest are the many cases where the conjectured
identity in Conjecture 1.1 is new and unrelated to the conjectures mentioned above. For
example each of the quadruple in tables 25 and 26 gives such a new conjecture.

We now list one example from Table 22 that not only provides a new Ichino-Ikeda type
conjecture for a strongly tempered quadruple but also can be used to explain the Rankin-
Selberg in [12]. The example is Model 4 of Table 22. The quadruple is reductive and is given
by

∆ = (G,H, ρH) = (GSp4×GSpin8×GL2, S(GSpin8×G(Sp4×SL2)), stdSp4⊗stdSpin8⊕HSpin8⊗stdSL2).

Let π be a cuspidal generic automorphic representation of G(A), ϕ ∈ π and ΘρH be the theta
series associated to the symplectic representation ρH . Then the period integral is given by

P∆(ϕ) =

∫
H(k)\H(A)/Z∆(A)

ϕ(h)ΘρH (h)dh.

In the spirit of Conjecture 1.1, we expect the square of this period integral to be equal to

L(1/2,Π, ρ̂)

L(1,Π, Ad)

where ρ̂ is the representation stdSp4 ⊗ stdSpin8 ⊕HSpin8 ⊗ stdSL2 of Ĝ/Z∆(C). This is a new
period integral that has not been considered before. If we replace the cusp form on GSp4

and GL2 by Borel Eisenstein series, then the period integral P∆ becomes the Rankin-Selberg
integral in [12].

1.5. Organization of the paper. In Section 2, we will explain our strategy for writing
down the dual quadruple. In Sections 3-7, we will consider Tables 1, 2, 11, 12, and 22 of
[22]. In Section 8 we summarize our findings in six tables.

1.6. Acknowledgement. We thank Yiannis Sakellaridis and Akshay Venkatesh for many
helpful discussions. We thank Friedrich Knop for answering our question for some cases
in [22]. The work of the first author is partially supported by the Simons Collaboration
Grant. The second author’s work is partially supported by the NSF grant DMS-2000192
and DMS-2103720. The work of the third author is partially supported by AcRF Tier 1
grants A-0004274-00-00 and A-0004279-00-00 of the National University of Singapore.



STRONGLY TEMPERED BZSV QUADRUPLES 9

2. Our strategy

2.1. Notation and convention. In this paper, for a group G of Type An (resp. Bn,
Cn, Dn, G2, E6, E7), we use stdG to denote the n-dimensional (resp. 2n + 1-dimensional,
2n-dimensional, 2n-dimensional, 7-dimensional, 27-dimensional, 56-dimensional) standard
representation of G. We use Spin2n (resp. Spin2n+1) to denote the Spin representation of
the reductive group of Type Dn (resp. Bn) and we use HSpin2n to denote the Half-Spin
representation of reductive group with Type Dn. We use Symn (resp. ∧n) to denote the
n-th symmetric power (resp. exterior power) of a reductive group of Type A. We use ∧3

0

to denote the third fundamental representation of a reductive group of Type C3. Lastly, for
a representation ρ of G, we use ρ∨ to denote the dual representation and T (ρ) to denote
ρ⊕ ρ∨.

In this paper, we always use l to denote the similitude character of a similitude group. If
we have two similitude group GH1 and GH2, we let

G(H1 ×H2) = {(h1, h2) ∈ GH1 ×GH2| l(h1) = l(h2)},
S(GH1 ×GH2) = {(h1, h2) ∈ GH1 ×GH2| l(h1)l(h2) = 1}.

Similarly we can also define G(H1 × · · · ×Hn) and S(GH1 × · · · ×GHn). For example,

S(GL3
2) = S(GL2 ×GL2 ×GL2) = {(h1, h2, h3) ∈ GL3

2| det(h1h2h3) = 1}.
All the nilpotent orbits considered in this paper are principal in a Levi subgroup (this is

also the case in [1]). As a result, we will use the Levi subgroup or just the root type of the
Levi subgroup to denote the nilpotent orbit (the zero nilpotent orbit is denoted by 1). For
a split reductive group G, we will use TG to denote a maximal split torus of G (a minimal
Levi subgroup).

For a BZSV quadruple ∆̂ = (Ĝ, Ĝ, ρ̂, 1), there are many other quadruples that is essentially

equal to ∆̂ up to some central isogeny. To be specific, one can take any group Ĥ of the same
root Type as Ĝ such that the representation ρ̂ can also be defined on Ĥ. Then one can
choose any group Ĝ′ containing Ĥ such that Ĝ′ = ĤZĜ′ . The quadruple (Ĝ′, Ĥ, ρ̂, 1) is

essentially equal to ∆̂ up to some central isogeny. For example, both (PGL3
2,PGL2, 0, 1)

and (GL3
2,GL2, 0, 1) can be viewed as trilinear GL2-model. The dual quadruple of them are

(SL3
2, SL

3
2, ρ̂, 1) and (GL3

2, S(GL3
2), ρ̂, 1) where ρ̂ is the tensor product of SL3

2 and S(GL3
2)

respectively, and they are equal to each other up to some central isogeny. While there are
various choices of dual quadruples pairs (∆, ∆̂) associated to ρ̂ due to the isogeny issue,
in this paper, for each representation ρ̂ in [22], we will only write down one quadruple

∆ = (G,H, ρH , ι) whose dual quadruple ∆̂ is (Ĝ, Ĝ/Z∆, ρ̂, 1) where Z∆ = ZG ∩ ker(ρH).
Remark 2.1. In our proof of Theorem 1.7, we frequently quote the unramified computation
in [19] and [36]. The settings in [19] and [36] may actually differ from ours through finite
isogeny or central isogeny. It is clear that the computation can be adapted and the results
there still apply. For example, in [19], they computed the local relative character for the
Gross-Prasad model (SOn+1 × SOn, SOn) at unramified places. Their results can be also
applied to models like (GL4 × GSp4,GSp4) (which is essentially the Gross-Prasad model
(SO6 × SO5, SO5) up to some central isogeny).

2.2. Theta correspondence for classical groups. In this paper we will frequently use
theta correspondence for classical groups. We will briefly review it in this subsection. We
start with the theta correspondence for the general linear group. Let n ≥ m ≥ 1 and
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G = H1 × H2 = GLn × GLm. We use V to denote the underlying vector space of the
representation ρ = stdGLn ⊗ stdGLm of G. For φ ∈ S(V (A)), we define the theta function

Θφ
ψ(g) =

∑
X∈V (k)

ρ(g)φ(X), g ∈ G(A)

which is an automorphic function on G(A) = H1 ×H2(A). Let π be a cuspidal automorphic
representation of H2(A). For ϕ ∈ L2(H2(k)\H2(A))π, the integral∫

H2(k)\H2(A)
Θφ
ψ(h1, h2)ϕ(h2)dh2

gives an automorphic function on H1(A) which will be denoted by Θ(ϕ).

Theorem 2.2. ([26]) We have

{Θ(ϕ)| ϕ ∈ L2(H2(k)\H2(A))π} = {E(ϕ′, 1)| ϕ′ ∈ L2(H2(k)\H2(A))π}

where E(ϕ′, 1) is the Eisenstein series on H1(A) = GLn(A) induced from ϕ′ and the identity
function on GLn−m(A). Moreover, for ϕ1, ϕ2 ∈ L2(H2(k)\H2(A))π, we have the Rallis inner
product formula∫
H2(k)\H2(A)/ZH2

(A)

∫
H1(k)\H1(A)

∫
H1(k)\H1(A)

Θφ
ψ(h1, h2)Θ

φ
ψ(h

′
1, h2)E(ϕ1, 1)(h1)E(ϕ2, 1)(h

′
1)dh1dh

′
1dh2

“ = ”Ress=n−m
2
L(s+

1

2
, π) ·

∫
H2(k)\H2(A)/ZH2

(A)
ϕ1(h2)ϕ2(h2)dh2.

Remark 2.3. When m = 1, the above theorem implies that if we integrate the theta series on
GLn associated to the symplectic representation T (stdn) over the center of GLn we will get
the mirabolic Eisenstein series of GLn. We will frequently use this fact in later discussions.

For the unramified computation, we also need the local theta correspondence for unrami-
fied representation. Let F be a p-adic local field that is a local place of k. We use ϕρ(h1, h2)
to denote the local spherical matrix coefficient of the Weil representation with ϕρ(1, 1) = 1.
Let π be a tempered unramified representation of H2(F ), ϕπ (resp. ϕπ,1) be the unramified
matrix coefficient of π (resp. IndGLn

GLm×GLn−m
(π ⊗ 1)) with ϕπ(1) = ϕπ,1(1) = 1.

Theorem 2.4. ([26]) With the notation above, we have∫
H2(F )

ϕρ(h1, h2)ϕπ(h2)dh2 = L(
n−m+ 1

2
, π) · ϕπ,1(h1).

Next we study the theta correspondence between SO2n and Sp2m with n ≥ m ≥ 1. Let
G = H1 × H2 = SO2n × Sp2m and we use V to denote the underlying vector space of the
representation ρ = stdSO2n ⊗ stdSp2m of G. Let Y be a maximal isotropic subspace of V , we
can define Θφ

ψ(g) an automorphic function on G(A) as in the introduction, for any Schwartz
function φ on Y .

Let Π be a cuspidal tempered global Arthur packet of H2(A) = Sp2m(A) and let Π′ be its
lifting toH1(A) = SO2n(A) under the map SO2m+1(C)×SL2(C) → SO2n(A) whose restrict to
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SL2 is the principal embedding from SL2 to SO2n−2m−1 (if n > m then Π′ is a non-tempered
Arthur L-packet) 4. For ϕ ∈ L2(H2(k)\H2(A))π, the integral∫

H2(k)\H2(A)
Θφ
ψ(h1, h2)ϕ(h2)dh2

gives an automorphic function on H1(A) = SO2n(A) which will be denoted by Θ(ϕ). Then
the following theorem holds.

Theorem 2.5. ([24, 37, 14]) With the notation above, the representation

{Θ(ϕ)| ϕ ∈ L2(Sp2m(k)\Sp2m(A))Π}
of SO2n(A) is a direct sum of some distinct irreducible representations belonging to the Arthur
L-packet Π′ of H1(A) = SO2n(A). Moreover, for ϕ1, ϕ2 ∈ Π′, we have the Rallis inner product
formula∫

H2(k)\H2(A)

∫
H1(k)\H1(A)

∫
H1(k)\H1(A)

Θφ
ψ(h1, h2)Θ

φ
ψ(h

′
1, h2)ϕ1(h1)ϕ2(h

′
1)dh1dh

′
1dh2

“ = ”Ress= 2n−2m−1
2

L(s+
1

2
,Π′) ·

∫
H1(k)\H1(A)

ϕ1(h1)ϕ2(h1)dh1.

For the unramified computation, we also need the local theta correspondence for unrami-
fied representation. Let F be a p-adic local field that is a local place of k. We use ϕρ(h1, h2)
to denote the local spherical matrix coefficient of the Weil representation with ϕρ(1, 1) = 1.
Let π be a tempered unramified representation of H2(F ) and π

′ be its lifting to H1(F ) (which
is also unramified). Let ϕπ (resp. ϕπ′) be the unramified matrix coefficient of π (resp. π′)
with ϕπ(1) = ϕπ′(1) = 1.

Theorem 2.6. ([26]) With the notation above, we have∫
H2(F )

ϕρ(h1, h2)ϕπ(h2)dh2 = L(n−m,π′) · ϕπ′(h1).

The theta correspondence between SO2m and Sp2n (resp. GSO2n and GSp2m, GSO2m and
GSp2n) is similar and we will skip it here.

2.3. Whittaker induction. Let ι be a map from SL2 into a split reductive group G and
let Oι be the nilpotent orbit of g associated to it. Let

N = {g ∈ G| lim
t→0

ι(diag(t, t−1))gι(diag(t, t−1))−1 = 1}

and let M be the centralizer of Im(ι(diag(t, t−1))). Then P =MN is a parabolic subgroup
of G.

We start with the Bessel case (namely Oι is even) which is easier. In this case, ι induces
a generic character ξ of N (see Section 2 of [13]) and let Mξ be the stabilizer of ξ under
the adjoint action of M . Let (M,H, ρ, 1) be a quadruple with H ⊂ Mξ. Then we say the
quadruple (G,H, ρ, ι) is the Whittaker induction of (M,H, ρ, 1). A simple example would
be the Shalika model (GL2n,GLn, 0, ι) which is the Whittaker induction of the group case
(GLn ×GLn,GLn, 0, 1) where ι is the nilpotent orbit of gl2n with partition 2n.

4in fact here Π′ should be an Arthur packet of O2n(A) which is the union of two Arthur packets of SO2n(A)
differed by the outer automorphism
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Next we discuss the Fourier-Jacobi case (namely Oι is not even) which is slightly more

complicated. In this case, let Mι be the centralizer of ι(

(
1 1
0 1

)
) in M . By Section 2.3 of

[13], we get a symplectic representation ρι of Mι (when ι is even, Mι is just Mξ above and
ρι is trivial). Let (M,H, ρ, 1) be a quadruple with H ⊂ Mι and ρ = ρι|H ⊕ ρ′. Then we
say the quadruple (G,H, ρ′, ι) is the Whittaker induction of (M,H, ρ, 1). An easy example
would be the Gan-Gross-Prasad model for Un×Un+2k being the Whittaker induction of the
Gan-Gross-Prasad model for Un × Un.

Remark 2.7. Here for the notion of Whittaker induction we do not need the quadruple to
be a BZSV quadruple. We just need H to commute with Im(ι) and ρH to be a symplectic
representation of H.

Proposition 2.8. Any quadruple ∆ = (G,H, ρH , ι) is the Whittaker induction of a reductive
quadruple.

Proof. If ι is trivial then ∆ is already reductive. If ι is not trivial, by our discussion above,
it induces a parabolic subgroup P = MN of G and a symplectic representation ρι|H of
H (which is nontrivial only when Oι is not even). Then ∆ is the Whittaker induction of
(M,H, ρH ⊕ ρι|H , 1). This proves the proposition. □

With the notion of Whittaker induction, it is natural to ask what happens to the dual
quadruple under the Whittaker induction. In Section 3.4 of [1], Ben-Zvi–Sakellaridis–
Venkatesh made a conjecture for this in the Bessel case. Motivated by their conjecture,
we make a conjecture here for strongly tempered models in both Bessel and Fourier-Jacobi
cases. We first need a definition.

Definition 2.9. Let M be a Levi subgroup of G and ρ be an irreducible representation of
M with the highest weight ϖM . There exists a Weyl element w of G such that wϖM is a
dominant weight of G 5. We define (ρ)GM to be the irreducible representation of G whose
highest weight is wϖM . In general, if ρ = ⊕iρi is a finite-dimensional representation of M
with ρi irreducible, we define

(ρ)GM = ⊕i(ρi)
G
M .

Now we are ready to make the conjecture about the BZSV dual of the Whittaker induction
of strongly tempered quadruples.

Conjecture 2.10. Let ∆ be a quadruple that is the Whittaker induction of a strongly tem-
pered BZSV quadruple ∆M , then ∆ is a strongly tempered BZSV quadruple. Moreover if
∆̂M = (M̂, M̂ ′, ρ̂M̂ , 1) be the dual of ∆M with M̂ = M̂ ′ZM̂ , then the dual of ∆ is given by

∆̂ = (Ĝ, Ĝ′, (ρ̂M̂)Ĝ
M̂
, 1)

where Ĝ′ is generated by M̂ ′ and {Im(ια)| α ∈ ∆Ĝ −∆M̂}. Here ∆Ĝ (resp. ∆M̂) is the set

of simple roots of Ĝ (resp. M̂) and ια : SL2 → Ĝ is the embedding associated to α.

5the choice of w is not unique but wϖM is uniquely determined by ϖM
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2.4. General strategy. Let ∆̂ = (Ĝ, Ĝ, ρ̂, 1) be a quadruple such that ρ̂ is an anomaly-free

symplectic representation of Ĝ, and it appears in Table 1, 2, 11, 22 of [22]. Our goal is to
write down a dual quadruple (up to isogeny) ∆ = (G,H, ρH , ι).

The data in Knop’s tables of [22], besides (Ĝ, ρ̂), also contains the following two items: a

Levi subgroup L̂ of Ĝ and a Weyl group ŴV written in the form of WĤ where Ĥ is the root

type (e.g. An, Bn, Cn, etc). (In [22] the notations are L,G,WV in place of L̂, Ĝ, ŴV respec-
tively.) Our key observation is that two data (H, ι) of the dual quadruple ∆ = (G,H, ρH , ι)
are given by the following properties.

Property 2.11. (1) The root type of H is dual to the root type of ŴV in the tables of
[22].

(2) The nilpotent orbit Oι associated to ι is the principal nilpotent orbit of L where L is

the dual Levi of L̂.

Remark 2.12. Basically, the Weyl group ŴV can be viewed as the “little Weyl group” of
the quadruple ∆̂ = (Ĝ, Ĝ, ρ̂, 1), and l̂ in tables of [22] is an analogue of l̂X in Table 3 of [23].

As a result, it remains to find out what is ρH . We do not have a systematic way to write
down ρH . Instead we propose a ρH in an ad hoc way and then provide evidence for the

duality between ∆ = (G,H, ρH , ι) and (Ĝ, Ĝ/Z∆, ρ̂, 1).
We provide two strong evidences for the duality. The first one is evidence for Conjecture

1.1, i.e., Theorem 1.7 and 1.9. The second evidence is for non-reductive models. For those
models, we can explain the duality in terms of Whittaker induction (Theorem 1.12).

In the sections that follow, we will go through Knop’s list of representations ρ̂. For each
ρ we write down a quadruple (G,H, ρH , ι). When the quadruple is not reductive, we show
it is a Whittaker induction of a reductive quadruple that is dual to another representation
(M̂, ρ̂M) in Knop’s list and verify that Theorem 1.12 holds. For cases in Table 21, 22, 23 and
24, we give references where the local relative character is calculated in the unramified places,
thus verifying Theorem 1.7. We also verify Theorem 1.9 for the global periods associated to
the dual side ∆̂ for cases in Table 21, 23 and 25.

3. Models in Table 1 of [22]

In this section we will consider Table 1 of [22], this is for the case when ρ̂ is an irreducible

representation of Ĝ. It is easy to check that the representations in (1.2), (1.8), (1.9) and
(1.10) of [22] are not anomaly free and the representation in (1.1) of [22] is only anomaly free
when p = 2n is even. Hence it remains to consider the following cases. Note that we only
write the root type of l̂ and we write 0 if it is abelian. Also we separate the cases when l̂ is
abelian and when l̂ is not abelian. These are precisely the cases where the dual quadruple is
reductive/non-reductive (see Property 2.11).
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Number in [22] (Ĝ, ρ̂) ŴV l̂
(1.1), p=2m (Sp2m × SO2m, stdSp2m ⊗ stdSO2m) Dm 0

(1.1), p=2m+2 (Sp2m × SO2m+2, stdSp2m ⊗ stdSO2m+2) Cm 0
(1.3), m=2 (Spin5 ⊗ Spin7, Spin5 ⊗ Spin7) C2 × A1 0
(1.3), m=3 (Sp6 ⊗ Spin7, stdSp6 ⊗ Spin7) C3 ×B3 0
(1.3), m=4 (Sp8 ⊗ Spin7, stdSp8 ⊗ Spin7) D4 ×B3 0

(1.6) (SL2, Sym
3) A1 0

Table 1. Reductive models in Table 1 of [22]

Number in [22] (Ĝ, ρ̂) ŴV l̂
(1.1), p = 2n < 2m (Sp2m × SO2n, stdSp2m ⊗ stdSO2n) Dn Cm−n

(1.1), p = 2n > 2m+ 2 (Sp2m × SO2n, stdSp2m ⊗ stdSO2n) Cm Dn−m
(1.3), m=1 (SL2 × Spin7, stdSL2 ⊗ Spin7) A1 A2

(1.3), m > 4 (Sp2m ⊗ Spin7, stdSp2m ⊗ Spin7) D4 ×B3 Cm−4

(1.4) (SL2 × Spin9, stdSL2 ⊗ Spin9) A1 × A1 A2

(1.5), n=11 (Spin11, Spin11) A1 A4

(1.5), n=12 (Spin12,HSpin12) A1 A5

(1.5), n=13 (Spin13, Spin13) B2 A2 × A2

(1.7) (SL6,∧3) A1 A2 × A2

(1.11) (E7, stdE7) A1 E6

Table 2. Non-reductive models in Table 1 of [22]

3.1. The reductive case. In this subsection we consider the reductive cases, i.e., the ones
in Table 1. The nilpotent orbit ι is trivial for all these cases so we will ignore it.

For (1.1) with p = 2m (resp. p = 2m+ 2), the associated quadruple ∆ is

(3.1) (G,H, ρH) = (SO2m+1 × SO2m, SO2m, 0)

(3.2) (resp.(G,H, ρH) = (SO2m+1 × SO2m+2, SO2m+1, 0))

which is just the reductive Gross-Prasad model. The unramified computations in [19] prove
Theorem 1.7 in these two cases. For the dual side, Theorem 2.5 applied to the theta corre-
spondence between SO2m × Sp2m (resp. SO2m+2 × Sp2m) implies Conjecture 1.1(2) and this
proves Theorem 1.9.

For (1.3) with m = 2, the associated quadruple ∆ is

(G,H, ρH) = (GSp6 ×GSp4, G(Sp4 × Sp2), 0)

which is the model (GSp6×GSp4, G(Sp4×Sp2)) studied in [36]. The unramified computations
in [36] prove Theorem 1.7 in this case.

For (1.3) with m = 3, the associated quadruple ∆ is

(G,H, ρH) = (GSp6 ×GSpin7, S(GSp6 ×GSpin7), stdSp6 ⊗ Spin7).

For (1.3) with m = 4, the associated quadruple ∆ is

(3.3) (G,H, ρH) = (GSp6 ×GSpin9, S(GSp6 ×GSpin8), stdSp6 ⊗ HSpin8).
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Theorem 1.7 and 1.9 for two cases can be established by the same argument as Model (11.11)
of [22] (see (5.4) and (5.3) of Section 5.1) together with the triality of D4.

For (1.6), it is clear that the generic stabilizer of ρ̂ in Ĝ is not connected, hence it does
not belong to the current framework of BZSV duality. However, for this specific case, by the
work of [16], we expect there is an associated quadruple of the form (GL2,GL2, ρH , 1) where
ρH is no longer an anomaly free symplectic representation, but rather we understand that
ρH corresponds to the theta series on H = GL2 defined via the cubic covering of GL2 as in
[16]. There is a covering group involved in the theta series since the generic stabilizer is not
connected. In [16] it is established that the nonvanishing of PH,ι,ρH (ϕ) is equivalent to the
nonvanishing of L(1/2,Π, ρ̂). We expect further that Conjecture 1.1(1) holds in this case.
By the discussion above, the strongly tempered quadruple associated to Table 1 (without

the row corresponding to (1.6)) is given as follows. Note that ι is trivial for all these cases.

(G, H, ρH) ρ̂
(SO2m+1 × SO2m, SO2m, 0) stdSp2m ⊗ stdSO2m

(SO2m+2 × SO2m+1, SO2m+1, 0) stdSp2m ⊗ stdSO2m+2

(GSp6 ×GSp4, G(Sp4 × Sp2),0) Spin5 ⊗ Spin7

(GSp6 ×GSpin7, S(GSp6 ×GSpin7), stdSp6 ⊗ Spin7) stdSp6 ⊗ Spin7

(GSp6 ×GSpin9, S(GSp6 ×GSpin8), stdSp6 ⊗ HSpin8) stdSp8 ⊗ Spin7

Table 3. Dual quadruples of Table 1

3.2. The non-reductive case. In this subsection we consider the non-reductive cases, i.e.,
the ones in Table 2.

For (1.1) with p = 2n < 2m, the associated quadruple ∆ is

(SO2m+1 × SO2n, SO2n, 0, (GL1)
n × SO2m−2n+1 × TSO2n)

and it is the Gross-Prasad period for SO2m+1 × SO2n. For (1.1) with p = 2n > 2m+ 2, the
associated quadruple ∆ is

(SO2m+1 × SO2n, SO2m+1, 0, TSO2m+1 × (GL1)
m × SO2n−2m)

and it is still the Gross-Prasad period for SO2m+1×SO2n. These two cases are the Whittaker
induction of the quadruples (3.1), (3.2). It is clear that Theorem 1.12 holds in these two cases.
The unramified computation in [19] proves Theorem 1.7 for these two cases. Theorem 2.5
applied to the theta correspondence between SO2n × Sp2m implies Conjecture 1.1(2) and
proves Theorem 1.9 for these two cases.

For (1.3) when m = 1, the associated quadruple ∆ is

(3.4) (GSp6 ×GL2,GL2, 0, (GL3 ×GL1)× TGL2)

and it is the model (GSp6 ×GL2,GL2 ⋉U) studied in [36]. This quadruple is the Whittaker
induction of the triple product quadruple ((GL2)

3,GL2, 0, 1) (which a special case of (3.2)
withm = 1). It is clear that Theorem 1.12 holds in this case and the unramified computation
in [36] proves Theorem 1.7 in this case.

For (1.3) when m > 4, the associated quadruple ∆ is

(GSpin2m+1 ×GSp6, S(GSpin8 ×GSp6), stdSp6 ⊗ HSpin8, L)
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where L is the Levi subgroup whose projection to GSpin2m+1 (resp. GSp6) is of the form
(GL1)

4 ×GSpin2m−7 (resp. the maximal torus). The nilpotent orbit induces a Bessel period
for the unipotent radical of the parabolic subgroup P =MU withM = (GL1)

m−4×GSpin9×
GSp6 whose stabilizer is GSpin8 ×GSp6 and we can naturally embed H into the stabilizer.
It is the Whittaker induction of the quadruple (3.3). Theorem 1.7 and 1.9 for this model
can be established by the same argument as (5.8) in Section 5.2 together with the triality of
D4.

For (1.4), the associated quadruple ∆ is

(3.5) (GSp8 ×GL2, G(SL2 × SL2), 0,GL3 ×GL1 ×GL1 × TGL2).

The nilpotent orbit induces a Bessel period for the unipotent radical of the parabolic sub-
group P =MU with M = GL2 ×GSp4 ×GL2 whose stabilizer is G(SL2 × SL2)×GL2. We
embeds H into the stabilizer so that the induced embedding from H into M is given by the
natural embeddings of H into GSp4 and into GL2 × GL2. This quadruple is the Whittaker
induction of the quadruple (GSp4 ×GL2 ×GL2, G(SL2 × SL2), 0, 1) which is essentially the
Gross-Prasad model for SO5 × SO4. If we replace the cusp form on GL2 by an Eisenstein
series, we recover the Rankin-Selberg integrals in [5]. It is clear that Theorem 1.12 holds in
this case and the unramfied computation in [5] proves Theorem 1.7 in this case.

For (1.5) when n = 11, the associated quadruple ∆ is

(3.6) (GSp10,GL2, 0,GL5 ×GL1)

and it is the model (GSp10,GL2 ⋉ U) studied in [36]. This quadruple is the Whittaker
induction of the triple product quadruple ((GL2)

3,GL2, 0, 1). It is clear that Theorem 1.12
holds in this case and the unramified computation in [36] proves Theorem 1.7 in this case.

For (1.5) when n = 12, the associated quadruple ∆ is

(GSO12,GL2, 0,GL6 ×GL1)

and it is the model (GSO12,GL2 ⋉ U) studied in [36]. This quadruple is the Whittaker
induction of the triple product quadruple ((GL2)

3,GL2, 0, 1). It is clear that Theorem 1.12
holds in this case and the unramified computation in [36] proves Theorem 1.7 in this case.

For (1.5) when n = 13, the associated quadruple ∆ is

(GSp12,GSp4, 0,GL3 ×GL3 ×GL1).

The nilpotent orbit induces a Bessel period for the unipotent radical of the parabolic sub-
group P = MU with M = GL4 × GSp4 whose stabilizer is H = GSp4. The quadruple is
the Whittaker induction of the quadruple (GSp4 × GL4,GSp4, 0, 1) which is essentially the
Gross-Prasad model for SO6 × SO5. It is clear that Theorem 1.12 holds in this case. In
this case the unramified computation can be done in a similar way as [36], which will give
Theorem 1.7.

For (1.7), the associated quadruple ∆ is

(GL6,GL2, 0,GL3 ×GL3)

and it is the Ginzburg-Rallis model (GL6,GL2 ⋉ U) studied in [36]. This quadruple is the
Whittaker induction of the triple product quadruple ((GL2)

3,GL2, 0, 1). It is clear that
Theorem 1.12 holds in this case and the unramified computation in [36] proves Theorem 1.7
in this case.
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For (1.11), the associated quadruple ∆ is

(E7,PGL2, 0, GE6)

and it is the model (E7,PGL2⋉U) studied in [36]. This quadruple is the Whittaker induction
of the triple product quadruple ((PGL2)

3,PGL2, 0, 1). It is clear that Theorem 1.12 holds in
this case and the unramified computation in [36] proves Theorem 1.7 in this case.

By the discussion above, the strongly tempered quadruple associated to Table 2 is given
as follows. Here for ι, we only list the root type of the Levi subgroup L of G such that ι is
principal in L.

(G,H, ρH) ι ρ̂
(SO2m+1 × SO2n, SO2n, 0) Bm−n stdSp2m ⊗ stdSO2n

(SO2m+1 × SO2n, SO2m+1, 0) Dn−m stdSp2m ⊗ stdSO2n

(GSp6 ×GL2,GL2, 0) A2 stdGL2 ⊗ Spin7

(GSpin2m+1 ×GSp6, S(GSpin8 ×GSp6), stdSp6 ⊗ HSpin8) Bm−4 stdSp2m ⊗ Spin7

(GSp8 ×GL2, G(SL2 × SL2), 0) A2 stdGL2 ⊗ Spin9

(GSp10,GL2, 0) A4 Spin11

(GSO12,GL2, 0) A5 HSpin12

(GSp12,GSp4, 0) A2 × A2 Spin13

(GL6,GL2, 0) A2 × A2 ∧3

(E7,PGL2, 0) E6 stdE7

Table 4. Dual quadruples of Table 2

4. Models in Table 2

In this section we will consider Table 2 of [22], this is for the case when ρ̂ = T (τ̂) is

the direct sum of two irreducible representations of Ĝ that are dual to each other. All the
representations in Table 2 of [22] are anomaly free, so we need to consider all of them. We

still separate the cases based on whether l̂ is abelian or not.

Number in [22] (Ĝ, ρ̂) ŴV l̂
(2.1), m=n (GLn ×GLn, T (stdGLn ⊗ stdGLn)) An−1 0

(2.1), m=n+1 and (2.4), n=2 (GLn+1 ×GLn, T (stdGLn+1 ⊗ stdGLn)) An−1 0
(2.3) (GLn, T (Sym

2)) An−1 0
(2.6), m=n=2 (Sp4 ×GL2, T (StdSp4 ⊗ StdGL2)) A1 × A1 0

(2.6), m=2, n=3 (Sp4 ×GL3, T (StdSp4 ⊗ StdGL3)) C2 × A2 0
(2.6), m=2, n=4 (Sp4 ×GL4, T (StdSp4 ⊗ StdGL4)) C2 × A3 0
(2.6), m=2, n=5 (Sp4 ×GL5, T (StdSp4 ⊗ StdSL5)) C2 × A3 0
(2.6), m=n=3 (Sp6 ×GL3), T (StdSp6 ⊗ StdGL3)) A3 × A2 0

Table 5. Reductive models in Table 2 of [22]
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Number in [22] (Ĝ, ρ̂) ŴV l̂
(2.1), m > n+ 1, and (2.4), n > 2 (GLm ×GLn, T (stdGLm ⊗ stdGLn)) An−1 Am−n−1

(2.2), n=2m (GL2m, T (∧2)) Am−1 (A1)
m

(2.2),n=2m+1 (GL2m+1, T (∧2)) Am−1 (A1)
m

(2.5) (Sp2n, T (stdSp2n) 0 Cm−1

(2.6), m > 2, n=2 (Sp2m × SL2, T (StdSp2m ⊗ StdSL2)) A1 × A1 Cm−2

(2.6), m=2, n > 5 (Sp4 × SLm, T (StdSp4 ⊗ StdSLm)) C2 × A3 Am−5

(2.6), m > 3, n=3 (Sp2m × SL3, T (StdSp2m ⊗ StdSL3)) A3 × A2 Cm−3

(2.7), m=2k (SO2k, T (stdSO2k
)) A1 Dk−1

(2.7), m=2k+1 (SO2k+1, T (stdSO2k+1
)) A1 Bk−1

(2.8), n=7 (Spin7, T (Spin7)) A1 A2

(2.8), n=9 (Spin9, T (Spin9)) A1 × A1 A2

(2.8), n=10 (Spin10, T (HSpin10)) A1 A3

(2.9) (G2, T (stdG2)) A1 A1

(2.10) (E6, T (stdE6)) A2 D4

Table 6. Non-reductive models in Table 2 of [22]

4.1. The reductive case. In this subsection we consider the reductive cases, i.e., the ones
in Table 5.

For (2.1) with m = n, the associated quadruple ∆ is given by

(4.1) (G,H, ρH , ι) = (GLn ×GLn,GLn, T (stdGLn), 1).

For (2.1) with m = n+ 1 and (2.4) with n = 2, the associated quadruple ∆ is given by

(4.2) (G,H, ρH , ι) = (GLn+1 ×GLn,GLn, 0, 1).

The period integrals in these two cases are exactly the Rankin-Selberg integral for GLn×GLn
and GLn+1 ×GLn in [20]. The result in loc. cit. proves Conjecture 1.1(1) and Theorem 1.7.
For the dual side, Theorem 2.2 applied to the theta correspondence for GLn × GLn+1 and
GLn ×GLn imply Conjecture 1.1(2) and this proves Theorem 1.9.

For (2.3), if n = 2, the associated quadruple ∆ is

(4.3) (GL2, SL2, T (stdSL2), 1).

The period integral associated to it is just the Rankin-Selberg integral for symmetric square
L-function in [15]. The result in [15] proves Conjecture 1.1(1) and Theorem 1.7.

For (2.3) when n > 2, the generic stabilizer of ρ̂ in Ĝ is not connected, hence it does not
belong to the current framework of the BZSV duality. However, for this specific case, by the
Rankin-Selberg integral in [6, 28, 33], we know that the dual quadruple (G,H, ρH , ι) should
be given by (GLn,GLn, ρH , 1) where ρH is chosen so that the theta series on H = GLn is
defined via the double covering of GLn. As the generic stabilizer is not connected, there are
covering groups involved in the theta series.

For (2.6) with m = n = 2, the associated quadruple ∆ is given by

(4.4) (G,H, ρH , ι) = (GSp4 ×GL2, G(SL2 × SL2), T (stdGL2,2, ), 1)

where the embedding of H into G is given by the canonical embedding from GSpin4 =
G(SL2×SL2) into GSpin5 = GSp4 and the projection of G(SL2×SL2) into GL2 via the first
GL2-copy. The representation ρH is the standard representation of the second GL2-copy of
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H. This integral is essentially the Gross-Prasad model for SO5 × SO4 except we replace the
cusp form on one GL2-copy by the theta series. The unramified computation in [19] proves
Theorem 1.7 in this case. For the dual side, Conjecture 1.1(2) follows from Theorem 2.2
applied to the theta correspondence of GL2 ×GL4 and Gan-Gross-Prasad conjecture (Con-
jecture 9.11 of [8]) for non-tempered Arthur packet for the pair (GL4 × GSp4,GSp4) which
is essentially the Gross-Prasad period for SO6 × SO5. This proves Theorem 1.9.
For (2.6) with m = 2, n = 3, the associated quadruple ∆ is given by

(G,H, ρH , ι) = (GSp4 ×GL3,GSp4 ×GL3, T (stdGSp4 ⊗ stdGL3), 1).

By the theta correspondence for GL3 ×GL4 (note that the theta function constructed from
T (stdGSp4 ⊗ stdGL3) is the restriction of the theta function from T (stdGL4 ⊗ stdGL3)), the
integral over GL3 of a cusp form on GL3 with the theta series associated to ρH produces
an Eisenstein series of GL4 induced from the cusp form on GL3 and the trivial character of
GL1. Then the integral over GSp4 is just the period integral for the pair (GL4×GSp4,GSp4)
which is essentially the Gross-Prasad period for SO6 × SO5. The unramified computation in
[19] and Theorem 2.4 applied to theta correspondence for GL3 × GL4 proves Theorem 1.7
in this case. For the dual side, Conjecture 1.1(2) follows from Theorem 2.2 applied to the
theta correspondence of GL4 × GL3 and the global period integral conjecture for the pair
(GL4×GSp4,GSp4) (which is essentially the Gross-Prasad period for SO6×SO5) in [7]. This
proves Theorem 1.9.

For (2.6) with m = 2, n = 4, the associated quadruple ∆ is

(4.5) (GSp4 ×GL4, S(GSp4 ×GL4), stdSp4 ⊗ ∧2 ⊕ T (stdGL4)).

By the theta correspondence for GSp4 × GSO6, the integral over Sp4 of a cusp form on
GSp4 with the theta series associated to ρH produces an automorphic form of GL4. Then
the integral over GL4 is just the Rankin-Selberg integral of GL4 × GL4 as in [20]. The
Rankin-Selberg integral in [20] and Theorems 2.2 and 2.4 applied to theta correspondence
for GSp4 × GSO6 proves Conjecture 1.1(1) and Theorem 1.7 in this case. For the dual
side, Conjecture 1.1(2) follows from Theorem 2.2 applied to the theta correspondence of
GL4×GL4 and the global period integral conjecture for the pair (GL4×GSp4,GSp4) (which
is essentially the Gross-Prasad period for SO6 × SO5) in [7]. This proves Theorem 1.9. This

is a very interesting case because both ∆ and ∆̂ are strongly tempered and they are not
equal to each other.

For (2.6) with m = 2, n = 5, the associated quadruple ∆ is

(4.6) (GSp4 ×GL5, S(GSp4 ×GL4), stdSp4 ⊗ ∧2).

By the theta correspondence for GSp4×GSO6, the integral over Sp4 of a cusp form on GSp4

with the theta series associated to ρH produces an automorphic form of GL4. Then the
integral over GL4 is just the Rankin-Selberg integral of GL5 × GL4. The Rankin-Selberg
integral in [20] and Theorems 2.5 and 2.6 applied to theta correspondence GSp4 × GSO6

proves Conjecture 1.1(1) and Theorem 1.7 in this case. For the dual side, Conjecture 1.1(2)
follows from Theorem 2.2 applied to the theta correspondence of GL4 ×GL5 and the global
period integral conjecture for the pair (GL4 × GSp4,GSp4) (which is essentially the Gross-
Prasad period for SO6 × SO5) in [7]. This proves Theorem 1.9.

For (2.6) with m = n = 3, the associated quadruple ∆ is given by

(4.7) (GSpin7 ×GL3,GSpin6 ×GL3, T (HSpin6 ⊗ stdGL3)).
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By the theta correspondence for GL3×GL4 (note that GSpin6 is essentially GL4 up to some
central isogeny which won’t affect the unramified computation) the integral over GL3 of a
cusp form on GL3 with the theta series associated to ρH produces an Eisenstein series of
GSpin6 induced from the cusp form on GL3 and the trivial character of GL1. Then the inte-
gral over GSpin6 is just the period integral for the Gross-Prasad model of GSpin7 ×GSpin6.
The unramified computation in [19] and Theorem 2.4 applied to theta correspondence for
GL3×GL4 proves Theorem 1.7 in this case. For the dual side, Conjecture 1.1(2) follows from
Theorem 2.5 applied to the theta correspondence of GSp6 × GSO6 and the Rankin-Selberg
integral of GL4 ×GL3. This proves Theorem 1.9.

By the discussion above, the strongly tempered quadruple associated to Table 5 is given
as follows. Note that ι is trivial for all these cases.

(G,H, ρH) ρ̂
(GLn ×GLn,GLn, T (stdGLn)) T (stdGLn ⊗ stdGLn)

(GLn+1 ×GLn,GLn, 0) T (stdGLn+1 ⊗ stdGLn)
(GL2, SL2, T (stdSL2)) T (Sym2)

(GSp4 ×GL2, G(SL2 × SL2), T (stdGL2,2)) T (StdGSp4 ⊗ StdGL2)
(GSp4 ×GL3, H = G, T (stdGSp4 ⊗ stdGL3)) T (StdGSp4 ⊗ StdGL3)

(GSp4 ×GL4, S(GSp4 ×GL4), stdSp4 ⊗ ∧2 ⊕ T (stdGL4)) T (StdGSp4 ⊗ StdGL4)
(GSp4 ×GL5, S(GSp4 ×GL4), stdSp4 ⊗ ∧2) T (StdGSp4 ⊗ StdGL5)

(GSpin7 ×GL3,GSpin6 ×GL3, T (HSpin6 ⊗ stdGL3)) T (StdGSp6 ⊗ StdGL3)

Table 7. Dual quadruples of Table 5

4.2. The non-reductive case. For (2.1) with m > n + 1 and (2.4) with n > 2, the
associated quadruple ∆ is given by

(G,H, ρH , ι) = (GLm ×GLn,GLn, 0, (GLn1 ×GLm−n × TGLn).

When m− n is odd (resp. even), the nilpotent orbit induces a Bessel period (resp. Fourier-
Jacobi period) for the unipotent radical of the parabolic subgroup P = MU with M =
(GL1)

m−n−1 ×GLn+1 ×GLn (resp. M = (GL1)
m−n ×GLn ×GLn) whose stabilizer in M is

GLn × GLn. We can diagonally embed H into the stabilizer. This model is the Whittaker
induction of the quadruple (4.2) (resp. (4.1)). It is clear that Theorem 1.12 holds in this
case. The period integral in this case is closely related to the Rankin-Selberg integral in
[20]. However the difference is not negligible and we do not claim Theorem 1.7 for this
case. For the dual side, Conjecture 1.1(2) follows from Theorem 2.2 applied to the theta
correspondence for GLn ×GLm. This proves Theorem 1.9.

For (2.2) with n = 2m, the associated quadruple ∆ is given by

(GL2m,GLm, T (stdGLm), (GL2)
m).

The nilpotent orbit induces a Bessel period for the unipotent radical of the parabolic sub-
group P = MU with M = GLm × GLm whose stabilizer in M is H = GLm. It is the
Whittaker induction of (4.1). It is clear that Theorem 1.12 holds in this case. The period
integral in this case is exactly the Rankin-Selberg integral in [21]. The result in loc. cit.
proves Conjecture 1.1(1) and Theorem 1.7.

For (2.2) with n = 2m+ 1, the associated quadruple ∆ is given by

(GL2m+1,GLm, 0, (GL2)
m ×GL1).
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The nilpotent orbit induces a Fourier-Jacobi period for the unipotent radical of the parabolic
subgroup P =MU with M = GLm ×GL1 ×GLm whose stabilizer in M is GLn ×GL1. We
can naturally embed H into the stabilizer. It is the Whittaker induction of (4.1). It is
clear that Theorem 1.12 holds in this case. The period integral in this case is exactly the
Rankin-Selberg integral in [21]. The result in loc. cit. proves Conjecture 1.1(1) and Theorem
1.7.

For (2.5), the associated quadruple ∆ is given by

(SO2m+1, SO2, 0, SO2m−1 ×GL1).

It is the Gross-Prasad model of SO2m+1 × SO2 and it is Whittaker induction of the quadru-
ple (3.1) when m = 1. It is clear that Theorem 1.12 holds in this case. The unramified
computation in [19] proves Theorem 1.7. For the dual side, Conjecture 1.1(2) follows from
Theorem 2.5 applied to the theta correspondence for Sp2m × SO2 and this proves Theorem
1.9.

For (2.6) with m > 2, n = 2, the associated quadruple ∆ is given by

(G,H, ρH , ι) = (GSpin2m+1 ×GL2, G(SL2 × SL2), T (stdGL2), (GL1)
2 ×GSpin2m−3 × TGL2,2).

The nilpotent orbit ι induces a Bessel period on the unipotent radical of the parabolic
subgroup P =MU with M = GSpin5 × (GL1)

m−2 ×GL2 whose stabilizer in M is GSpin4 ×
GL2. We then embeds H = G(SL2×SL2) into GSpin4×GL2 via the identity map on GSpin4

and the projection of G(SL2 × SL2) into GL2 via the first GL2-copy. The representation
ρH is the standard representation of the second GL2-copy of H. This integral is essentially
the Gross-Prasad model for GSpin2m+1 × GSpin4 except we replace the cusp form on one
GL2-copy by theta series. The quadruple is the Whittaker induction of the quadruple (4.4).
It is clear that Theorem 1.12 holds in this case. The unramified computation in [19] proves
Theorem 1.7. For the dual side, Conjecture 1.1(2) follows from Theorem 2.5 applied to the
theta correspondence for GSp2n×GSO4 and the Rankin-Selberg integral of GL2×GL1. This
proves Theorem 1.9.

For (2.6) with m = 2, n > 5, the associated quadruple ∆ is

(GSp4 ×GLn, S(GSp4 ×GL4), stdSp4 ⊗ ∧2, TGSp4 × (GL1)
4 ×GLn−4).

When n is odd (resp. even), the nilpotent orbit induces a Bessel period (resp. Fourier-
Jacobi period) for the unipotent radical of the parabolic subgroup P = MU with M =
GSp4×GL5×(GL1)

5 (resp. M = GSp4×GL4×(GL1)
4) whose stabilizer inM is GSp4×GL4.

We can naturally embed H into the stabilizer. This model is the Whittaker induction of
the quadruple (4.6) (resp. (4.5)). It is clear that Theorem 1.12 holds in this case. For the
dual side, Conjecture 1.1(2) follows from Theorem 2.2 applied to the theta correspondence
of GLn × GL4 and the global period integral conjecture for the pair (GL4 × GSp4,GSp4)
(which is essentially the Gross-Prasad period for SO6 × SO5) in [7]. This proves Theorem
1.9.

For (2.6) with m > 3, n = 3, the associated quadruple ∆ is given by

(GSpin2m+1 ×GL3,GSpin6 ×GL3, T (HSpin6 ⊗ stdGL3), (GL1)
3 ×GSpin2m−5 × TGL3).

The nilpotent orbit ι induces a Bessel period on the unipotent radical of the parabolic
subgroup P = MU with M = GSpin7 × (GL1)

m−3 × GL3 whose stabilizer in M is H =
GSpin6 × GL3. This is the Whittaker induction of the quadruple (4.7). It is clear that
Theorem 1.12 holds in this case. The unramified computation in [19] and Theorem 2.4
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applied to theta correspondence for GL4 × GL3 proves Theorem 1.7. For the dual side,
Conjecture 1.1(2) follows from Theorem 2.5 applied to the theta correspondence of GSp2n×
GSO6 and the Rankin-Selberg period for GL4 ×GL3. This proves Theorem 1.9.

For (2.7) with m = 2k, the associated quadruple ∆ is

(GSpin2k,GSpin3, T (Spin3),GL1 ×GSpin2k−2).

This is essentially the Gross-Prasad model for GSpin2k ×GSpin3 except we replace the cusp
form on GSpin3 by a theta series. It is the Whittaker induction of the quadruple (4.1) when
n = 2. It is clear that Theorem 1.12 holds in this case. The unramified computation in [19]
proves Theorem 1.7.

For (2.7) with m = 2k + 1, the associated quadruple ∆ is

(GSp2k, SL2 ×GL1, stdSL2 ,GL1 ×GSp2n−2).

The nilpotent orbit ι induces a Fourier-Jacobi period on the unipotent radical of the parabolic
subgroup P = MU with M = GSp2 × (GL1)

k−1 whose stabilizer in M is H = SL2 × GL1.
It is the Whittaker induction of the quadruple (4.3). It is clear that Theorem 1.12 holds in
this case.

For (2.8) with n = 7, the associated quadruple ∆ is given by

(GSp6,GL2, T (stdGL2),GL3 ×GL1).

This is essentially the same as the quadruple (3.4) except we replace the cusp form on GL2

by theta series. The period integral in this case is exactly the Rankin-Selberg integral in [4]
and the quadruple is the Whittaker induction of (4.1) when m = 2. It is clear that Theorem
1.12 holds in this case. The unramfied computation in [4] and [36] proves Theorem 1.7.

For (2.8) with n = 9, the associated quadruple ∆ is

(4.8) (GSp8, G(SL2 × SL2), T (stdGL2,2),GL3 ×GL1 ×GL1).

where stdGL2,2 is the standard representation of the second GL2-copy. This is essentially
the same as the quadruple (3.5) except we replace the cusp form on GL2 by theta series
and the period integral in this case is exactly the Rankin-Selberg integral in [5]. This is the
Whittaker induction of (4.4). It is clear that Theorem 1.12 holds in this case. The unramfied
computation in [5] proves Theorem 1.7.

For (2.8) with n = 10, the associated quadruple ∆ is

(PGSO10,GL2, 0,GL4 ×GL1).

The nilpotent orbit ι induces a Fourier-Jacobi period on the unipotent radical of the parabolic
subgroup P = MU with M = GL2 × GL2 × SO2 whose stabilizer in M is H = GL2 (here
the embedding is given by h 7→ (h, h, diag(det(h), 1))). It is the Whittaker induction of the
quadruple (4.1) when n = 2. It is clear that Theorem 1.12 holds in this case. This integral is
very close to the Rankin-Selberg integral in [11], though we again do not claim Theorem 1.7
in this case.

For (2.9), the associated quadruple ∆ is

(G2, SL2, stdSL2 ,GL2).

It is the Whittaker induction of the quadruple (4.3). The period integral associated to it is
exactly the Rankin-Selberg integral in [10]. It is clear that Theorem 1.12 holds in this case.
The unramified compuation in [10] proves Theorem 1.7.
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For (2.10), the associated quadruple ∆ is

(GE6,GL3, T (stdGL3), D4).

It is the Whittaker induction of the quadruple (4.1) when n = 3. The period integral
associated to it is exactly the Rankin-Selberg integral in [9]. It is clear that Theorem 1.12
holds in this case. The unramified compuation in [9] proves Theorem 1.7.

By the discussion above, the strongly tempered quadruple associated to Table 6 is given
as follows. Here for ι, we only list the root type of the Levi subgroup L of G such that ι is
principal in L.

(G,H, ρH) ι ρ̂
(GLm ×GLn,GLn, 0) Am−n−1 T (stdGLm ⊗ stdGLn)

(GL2m,GLm, T (stdGLm)) (A1)
m T (∧2)

(GL2m+1,GLm, 0) (A1)
m T (∧2)

(SO2m+1, SO2, 0) Bm−1 T (stdSp2n)
(GSpin2m+1 ×GL2, G(SL2 × SL2), T (stdGL2)) Bm−2 T (StdGSp2m ⊗ StdGL2)

(GSp4 ×GLn, S(GSp4 ×GL4), stdSp4 ⊗ ∧2, (GL1)
5) An−5 T (StdSp4 ⊗ StdSLn)

(GSpin2m+1 ×GL3,GSpin6 ×GL3, T (HSpin6 ⊗ stdGL3)) Bm−3 T (StdSp2m ⊗ StdSL3)
(GSpin2k,GSpin3, T (Spin3)) Dk−1 T (stdSO2k

)
(GSp2k, SL2 ×GL1, stdSL2) Ck−1 T (stdSO2k+1

)
(GSp6,GL2, T (stdGL2)) A2 T (Spin7)

(GSp8, G(SL2 × SL2), T (stdGL2)) A2 T (Spin9)
(PGSO10,GL2, 0) A3 T (HSpin10)
(G2, SL2, stdSL2) A1 T (stdG2)

(GE6,GL3, T (stdGL3)) D4 T (stdE6)

Table 8. Dual quadruples of Table 6

5. Models in Table 11

In this section we will consider Table 11 of [22], this is for the case when ρ̂ is the direct

sum of two distinct irreducible symplectic representations of Ĝ. It is easy to check that the
representations in (11.5), (11.8), (11.13), (11.14), (11.15) of [22] are not anomaly free and
the representation in (11.1) (resp. (11.11)) of [22] is only anomaly free when n is even (resp.
p odd). Hence it remains to consider the following cases. We still separate the cases based

on whether l̂ is abelian or not.

Number in [22] (Ĝ, ρ̂) ŴV l̂
(11.7) (Sp4 × Spin8 × SL2, stdSp4 ⊗ stdSpin8 ⊕ HSpin8 ⊗ stdSL2) C2 ×D4 × A1 0
(11.9) (SL2 × Spin7 × SL2, stdSL2 ⊗ Spin7 ⊕ Spin7 ⊗ stdSL2) (A1)

3 ×B2 0
(11.10) (SL2 × SO6 × SL2, stdSL2 ⊗ stdSO6 ⊕ stdSO6 ⊗ stdSL2) A1 × A1 ×B2 0

(11.11), p=2m+1 (SO2m+1 × Sp2m, stdSO2m+1 ⊗ stdSp2m ⊕ stdSp2m) Bm × Cm 0
(11.11), p=2m-1 (SO2m−1 × Sp2m, stdSO2m−1 ⊗ stdSp2m ⊕ stdSp2m) Bm−1 ×Dm 0

Table 9. Reductive models in Table 11 of [22]
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Number in [22] (Ĝ, ρ̂) ŴV l̂
(11.1), n=2k (SL2 × SO2k × SL2, stdSL2 ⊗ stdSO2k

⊕ stdSO2k
⊗ stdSL2) A1 × A1 ×B2 Dk−2

(11.2) (Spin12,HSpin
+
12 ⊕ HSpin−

12) (A1)
2 ×B2 A1 × A1

(11.3) (SL2 × Spin12, stdSL2 ⊗ stdSpin12 ⊕ HSpin12) (A1)
3 A3

(11.4) (Sp4 × Spin12, stdSp4 ⊗ stdSpin12 ⊕ HSpin12) C2 × A1 ×D4 A1

(11.6) (SL2 × Spin8 × SL2, stdSL2 ⊗ stdSpin8 ⊕ HSpin8 ⊗ stdSL2) (A1)
3 A1

(11.11), p = 2k + 1 > 2m+ 1 (SO2k+1 × Sp2m, stdSO2k+1
⊗ stdSp2m ⊕ stdSp2m) Bm × Cm Bk−m

(11.11), p = 2n− 1 < 2m− 1 (SO2n−1 × Sp2m, stdSO2n−1 ⊗ stdSp2m ⊕ stdSp2m) Bn−1 ×Dn Cm−n
(11.12) (Sp6,∧3

0 ⊕ stdSp6) A1 × A1 A1

Table 10. Non-reductive models in Table 11 of [22]

5.1. The reductive case. For (11.7), the associated quadruple ∆ is

(5.1) (GSp4×GSpin8×GL2, S(GSpin8×G(Sp4×SL2)), stdSp4⊗stdSpin8⊕HSpin8⊗stdSL2).

Note that when we take principal series on GSp4 and GL2, this period integral recovers the
Rankin-Selberg integral in [12]. The unramified computation in loc. cit. proves Theorem
1.7 in this case. This quadruple is self-dual.

For (11.9), the associated quadruple ∆ is given by

(GSp6 ×GSO4, S(GSO4 ×G(Sp4 × SL2)), stdSO4 × stdSp4).

By the theta correspondence for GSO4×GSp4, the integral over SO4 of a cusp form on GSO4

with the theta series associated to ρH produces an automorphic form on GSp4. Then the
integral over G(Sp4×SL2) is just the period integral for the pair (GSp6×GSp4, G(Sp4×Sp2))
in [36]. The unramified computation in [36] and Theorem 2.6 applied to theta correspondence
for GSO4 ×GSp4 proves Theorem 1.7 in this case.

For (11.10), the associated quadruple ∆ is given by

(5.2) (GL4 ×GSO4, S(GSp4 ×GSO4), stdSO4 × stdSp4).

By the theta correspondence for GSO4 × GSp4, the integral over SO4 of a cusp form on
GSO4 with the theta series associated to ρH produces an automorphic form on GSp4. Then
the integral over GSp4 is just the period integral for the pair (GL4 × GSp4,GSp4) which is
essentially the Gross-Prasad model for SO6 × SO5. The unramified computation in [19] and
Theorem 2.6 applied to theta correspondence for GSO4 × GSp4 proves Theorem 1.7 in this
case. For the dual side, Conjecture 1.1 follows from the theta correspondence for SO6 × Sp4

(here we view SL2 × SL2 as a subgroup of Sp4) and the global period integral conjecture for
the Gross-Prasad model SO5 × SO4 in [7]. This proves Theorem 1.9.

For (11.11) when p = 2m+ 1, the associated quadruple ∆ is given by

(5.3) (SO2m+1 × Sp2m, H = G, stdSO2m+1 ⊗ stdSp2m ⊕ stdSp2m).

By the theta correspondence for SO2m+2 × Sp2m, the integral over Sp2m of a cusp form
on Sp2m with the theta series associated to ρH produces an automorphic form on SO2m+2.
Then the integral over SO2m+1 is just the period integral for the Gross-Prasad period for
SO2m+2 × SO2m+1. The unramified computation in [19] and Theorem 2.6 applied to theta
correspondence for SO2m+2 × Sp2m proves Theorem 1.7 in this case. This quadruple is self-
dual and it is clear that Conjecture 1.1 follows from the theta correspondence for SO2m+2 ×
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Sp2m and the global period integral conjecture for the Gross-Prasad model of SO2m+2 ×
SO2m+1 in [7]. This proves Theorem 1.9.

For (11.11) when p = 2m− 1, the associated quadruple ∆ is given by

(5.4) (SO2m+1 × Sp2m−2, SO2m × Sp2m−2, stdSO2m ⊗ stdSp2m−2
).

By the theta correspondence for SO2m× Sp2m−2, the integral over Sp2m−2 of a cusp form on
Sp2m with the theta series associated to ρH produces an automorphic form on SO2m. Then
the integral over SO2m is just the Gross-Prasad period for SO2m+1 × SO2m. The unramified
computation in [19] and Theorem 2.6 applied to theta correspondence for SO2m × Sp2m−2

proves Theorem 1.7 in this case. For the dual side, Conjecture 1.1 follows from the theta
correspondence for SO2m × Sp2m−2 and the global period integral conjecture for the Gross-
Prasad model SO2m × SO2m+1 in [7]. This proves Theorem 1.9.
By the discussion above, the strongly tempered quadruple associated to Table 9 is given

as follows (note that ι is trivial for all these cases) where

∗ = (GSp4 ×GSpin8 ×GL2, S(GSpin8 ×G(Sp4 × SL2)), stdSp4 ⊗ stdSpin8 ⊕HSpin8 ⊗ stdSL2)

(G,H, ρH) ρ̂
∗ stdSp4 ⊗ stdSpin8 ⊕ HSpin8 ⊗ stdSL2

(GSp6 ×GSO4, S(GSO4 ×G(Sp4 × SL2)), stdSO4 × stdSp4) stdSL2 ⊗ Spin7 ⊕ Spin7 ⊗ stdSL2

(GL4 ×GSO4, S(GSp4 ×GSO4), stdSO4 × stdSp4) stdSL2 ⊗ stdSO6 ⊕ stdSO6 ⊗ stdSL2

(SO2m+1 × Sp2m, H = G, stdSO2m+1 ⊗ stdSp2m ⊕ stdSp2m) stdSO2m+1 ⊗ stdSp2m ⊕ stdSp2m
(SO2m+1 × Sp2m−2, SO2m × Sp2m−2, stdSO2m ⊗ stdSp2m−2

) stdSO2m−1 ⊗ stdSp2m ⊕ stdSp2m

Table 11. Dual quadruples of Table 9

5.2. The non-reductive case. For (11.1) when n = 2k, the associated quadruple ∆ is

(GSpin2k ×GSO4, S(GSp4 ×GSO4), stdSO4 × stdSp4 ,GSpin2k−4 × (GL1)
2 × TGSO4).

The nilpotent orbit ι induces a Bessel period on the unipotent radical of the parabolic sub-
group P =MU withM = GSpin6×(GL1)

k−3×GSO4 whose stabilizer inM is GSpin5×GSO4.
We can embed H into the stabilizer as in (5.2) and this quadruple is the Whittaker induction
of (5.2). It is clear that Theorem 1.12 holds in this case. The unramified computation in
[19] and Theorem 2.6 applied to theta correspondence for GSO4 × GSp4 proves Theorem
1.7 in this case. For the dual side, Conjecture 1.1 follows from the theta correspondence for
SO2k × Sp4 (here we view SL2 × SL2 as a subgroup of Sp4) and the global period integral
conjecture for the Gross-Prasad model SO5 × SO4 in [7]. This proves Theorem 1.9.

For (11.2), the associated quadruple ∆ is

(GSO12, S(GSp4 ×GSO4), 0,GL2 ×GL2 × (GL1)
3).

The nilpotent orbit ι induces a Fourier-Jacobi period on the unipotent radical of the parabolic
subgroup P =MU with M = GL4 ×GSO4 whose stabilizer in M is H. It is the Whittaker
induction of (5.2). It is clear that Theorem 1.12 holds in this case.

For (11.3), we first introduce a reductive quadruple which belongs to Table S of [22]. Let
G = (GL2)

5 and H = S(GL2 × GL2 × GL2) where the embedding H → G is given by
mapping the first GL2-copy into the first GL2-copy, and mapping the second (resp. third)
GL2-copy diagonally into the second and third (resp. fourth and fifth) GL2-copy. Let
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ρH = stdGL2 ⊗ stdGL2 ⊗ stdGL2 be the triple product representation and ι be trivial. The
quadruple

(5.5) ∆0 = (G,H, ρH , ι) = ((GL2)
5, S(GL2 ×GL2 ×GL2), stdGL2 ⊗ stdGL2 ⊗ stdGL2 , 1)

will be used to explain several models in this paper. This quadruple comes from Table S of
[22], it is obtained by combining two copies of Model (S.3) with n = 4. We claim the dual
quadruple is given by

∆̂0 = (Ĝ, Ĝ/Z∆, ρ̂, 1), ρ̂ = stdGL2,1 ⊗ stdGL2,2 ⊗ stdGL2,3 ⊕ stdGL2,1 ⊗ stdGL2,4 ⊗ stdGL2,5

where stdGL2,i represents the standard representation of the i-th GL2-copy. To justify the
duality, we will prove Theorem 1.7 and Theorem 1.9 for this case.

We start with Theorem 1.7. By the theta correspondence for GSp2 × GSO4, the integral
of a cusp form on the first GL2-copy with the theta series produces cusp forms on the other
two GL2-copies of H. Then the period integral over the remaining two copies of GL2 are just
the period for two trilinear GL2-models (i.e., the first, second, third GL2-copies and the first,
fourth, fifth GL2-copies ). Then Theorem 1.7 follows from the unramified computation in
[19]. In fact, in this case, Conjecture 1.1(1) follows from the result in [18] and Theorem 2.6
applied to theta correspondence for GSp2 × GSO4. For the dual side, Conjecture 1.1(2) in
this case is also a direct consequence of the result in [18] and Theorem 2.5 applied to theta
correspondence for GSp2 ×GSO4. This proves Theorem 1.9.
For (11.3) the associated quadruple ∆ is

(5.6) (GSO12 × PGL2, S(GL2 ×GSO4), 0,GL4 × (GL1)
3 × TPGL2).

The nilpotent orbit ι induces a Fourier-Jacobi period on the unipotent radical of the parabolic
subgroup P =MU with M = GL2×GL2×GSO4×PGL2 whose stabilizer in M is S(GL2×
GSO4)×GL2. We can embed H into the stabilizer by mapping the GL2-copy of H into the

GL2-copy of the stabilizer and by mapping GSO4 = GL2 × GL2/GLdiag1 into GSO4 × PGL2

via the idenity map on GSO4 and the projection map GSO4 = GL2 ×GL2/GLdiag1 → PGL2

via the firts GL2-copy of GSO4. It is clear that the induced embedding from H intoM is the
same as (5.5). This quadruple is the Whittaker induction of (5.5). It is clear that Theorem
1.12 holds in this case.

For (11.4), the associated quadruple ∆ is

(GSp4 ×GSpin12, S(GSpin8 ×G(Sp4 × SL2)), stdSp4 ⊗ stdSpin8 , TGSp4 ×GL2 × (GL1)
5).

The nilpotent orbit ι induces a Fourier-Jacobi period on the unipotent radical of the parabolic
subgroup P = MU with M = GSp4 × GL2 × GSpin8 whose stabilizer in M is GSpin4 ×
S(GL2 × GSpin8) and we can naturally embed H into the stabilizer. This quadruple is the
Whittaker induction of (5.1). It is clear that Theorem 1.12 holds in this case.

For (11.6), the associated quadruple ∆ is

(5.7) (GSO8 ×GSO4, S(GL2 ×GSO4), 0,GL2 × (GL1)
3 × TGSO4).

The nilpotent orbit ι induces a Fourier-Jacobi period on the unipotent radical of the parabolic
subgroup P = MU with M = GSO4 × GL2 × GSO4 whose stabilizer in M is S(GSO4 ×
GL2) × GSO4. We can embed H into the stabilizer by making the GL2-copy of H into the
GL2-copy of the stabilizer and by mapping the GSO4-copy of H diagonally into the two
GSO4-copies of the stabilizer. It is clear that the induced embedding from H into M is the
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same as (5.5). This quadruple is the Whittaker induction of (5.5). It is clear that Theorem
1.12 holds in this case.

For (11.11) when p = 2k + 1 > 2m+ 1, the associated quadruple ∆ is

(SO2m+1 × Sp2k, SO2m+1 × Sp2m, stdSO2m+1 ⊗ stdSp2m , TSO2m+1 × Sp2k−2m × (GL1)
m).

The nilpotent orbit ι induces a Fourier-Jacobi period on the unipotent radical of the parabolic
subgroup P =MU with M = Sp2m× (GL1)

k−m× SO2m+1 whose stabilizer in M is H. This
is the Whittaker induction of (5.3). It is clear that Theorem 1.12 holds in this case. For the
dual side, Conjecture 1.1(2) follows from Theorem 2.5 applied to the theta correspondence
for Sp2m × SO2k+2 and the Gan-Gross-Prasad conjecture (Conjecture 9.11 of [8]) for non-
tempered Arthur packet of the Gross-Prasad model of SO2k+2×SO2k+1. This proves Theorem
1.9.

For (11.11) when p = 2n− 1 < 2m− 1, the associated quadruple ∆ is

(5.8) (SO2m+1 × Sp2n−2, SO2n× Sp2n−2, stdSO2n ⊗ stdSp2n−2
, SO2m−2n+1 × (GL1)

n×TSp2n−2
).

This is the Whittaker induction of (5.4). It is clear that Theorem 1.12 holds in this case.
By the theta correspondence for SO2n × Sp2n−2, the integral over Sp2n−2 of a cusp form on
Sp2n with the theta series associated to ρH produces an automorphic form on SO2n. Then
the integral over SO2n is just the Gross-Prasad period for SO2m+1 × SO2n. The unramified
computation in [19] and Theorem 2.6 applied to theta correspondence for SO2n × Sp2n−2

proves Theorem 1.7 in this case. For the dual side, Conjecture 1.1(2) follows from the theta
correspondence for Sp2m × SO2n and the global period integral conjecture for the Gross-
Prasad period of SO2n × SO2n−1 in [7]. This proves Theorem 1.9.
For (11.12), the associated quadruple ∆ is

(GSpin7,GL2, S(GL2 ×GL2), stdGL2 ,GL2 × (GL1)
2).

The nilpotent orbit ι induces a Fourier-Jacobi period on the unipotent radical of the parabolic
subgroup P =MU with M = GSpin3×GL2 whose stabilizer in M is H. The representation
ρH is the standard representation on the first GL2-copy. This quadruple is the Whittaker
induction of (5.3) when m = 1. It is clear that Theorem 1.12 holds in this case.
By the discussion above, the strongly tempered quadruple associated to Table 10 is given

as follows. Here for ι, we only list the root type of the Levi subgroup L of G such that ι is
principal in L and

∗ = (GSpin4 ×GSpin12, S(GSpin8 ×G(Sp4 × SL2)), stdSp4 ⊗ stdSpin8).

(G,H, ρH) ι ρ̂
(GSpin2k ×GSO4, S(GSp4 ×GSO4), stdSO4 × stdSp4) Dk−2 stdSL2 ⊗ stdSO2k

⊕ stdSO2k
⊗ stdSL2

(GSO12, S(GSp4 ×GSO4), 0) A1 × A1 HSpin+
12 ⊕ HSpin−

12

(GSO12 × PGL2, S(GL2 ×GSO4), 0) A3 stdSL2 ⊗ stdSpin12 ⊕ HSpin12

∗ A1 stdSp4 ⊗ stdSpin12 ⊕ HSpin12

(GSO8 ×GSO4, S(GL2 ×GSO4), 0) A1 stdSL2 ⊗ stdSpin8 ⊕ HSpin8 ⊗ stdSL2

(SO2m+1 × Sp2k, SO2m+1 × Sp2m, stdSO2m+1 ⊗ stdSp2m) Ck−m stdSO2k+1
⊗ stdSp2m ⊕ stdSp2m

(SO2m+1 × Sp2n−2, SO2n × Sp2n−2, stdSO2n ⊗ stdSp2n−2
) Bm−n stdSO2n−1 ⊗ stdSp2m ⊕ stdSp2m

(GSpin7, S(GL2 ×GL2), stdGL2) A1 ∧3 ⊕ stdSp6

Table 12. Dual quadruples of Table 10
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6. Models in Table 12

In this section we will consider Table 12 of [22], this is for the case when ρ̂ is the direct

sum of three irreducible representations of Ĝ with two of them dual to each other (i.e.
ρ̂ = ρ̂0⊕T (τ̂)). It is easy to check that the representations in (12.4), (12.9), (12.10), (12.11),
(12.11) of [22] are not anomaly free. Hence it remains to consider the following cases. We

still separate the cases based on whether l̂ is abelian or not.

Number in [22] (Ĝ, ρ̂) ŴV l̂
(12.5) (SL6 × SL2,∧3 ⊕ T (stdSL6 ⊗ stdSL2)) A1 × A1 × A3 0

(12.7), m=1 (SL2 × SL4, stdSL2 ⊗ ∧2 ⊕ T (stdSL4)) A1 × A1 0
(12.7), m=2 (Sp4 × SL4, stdSp4 ⊗ ∧2 ⊕ T (stdSL4)) C2 × A3 0
(12.7), m=3 (Sp6 × Spin6, stdSp6 ⊗ stdSpin6 ⊕ T (HSpin6)) A3 × A3 0

(12.8) (SL2 × SL4 × SL2, stdSL2 ⊗ ∧2 ⊕ T (stdSL4 ⊗ stdSL2)) A1 × A1 × A3 0

Table 13. Reductive models in Table 12 of [22]

Number in [22] (Ĝ, ρ̂) ŴV l̂
(12.1) (Spin12,HSpin12 ⊕ T (stdSpin12)) A1 × A1 × A1 A3

(12.2) (SL2 × Spin10, stdSL2 ⊗ stdSpin10 ⊕ T (stdSpin10)) A1 × A1 × A3 A1

(12.3) (SL2 × Spin8, stdSL2 ⊗ stdSpin8 ⊕ T (stdSpin8)) A1 × A1 × A1 A1

(12.6) (SL6,∧3 ⊕ T (stdSL6)) A1 × A1 A1 × A1

(12.7), m > 3 (Sp2m × SO6, stdSp2m ⊗ stdSO6 ⊕ T (HSpin6)) A3 × A3 Cm−3

Table 14. Non-reductive models in Table 12 of [22]

6.1. The reductive case. For (12.5), the associated quadruple ∆ is

(GL6 ×GL2,GL2 × S(GL4 ×GL2),∧2 ⊗ stdGL2).

At this moment we do not have much evidence that the above is the dual quadruple other
than the fact that ∧2 ⊗ stdGL2 is the only feasible choice of symplectic representation. We
believe an unramified computation similar to [19] and [36] can confirm the duality in this
case.

For (12.7) with m = 1, the associated quadruple ∆ is

(GL4 ×GL2,GL2 ×GL2, 0).

This is the model (GL4 ×GL2,GL2 ×GL2) studied in [36] and the unramified computation
in [36] proves Theorem 1.7 in this case. For the dual side, Conjecture 1.1(2) follows from
Theorem 2.5 applied to the theta correspondence of GSp2 × GSO6 and Gan-Gross-Prasad
conjecture (Conjecture 9.11 of [8]) for non-tempered Arthur packet of the Rankin-Selberg
integral of GL4 ×GL4. This proves Theorem 1.9.

For (12.7) with m = 2, the associated quadruple ∆ is

(GL4 ×GSp4,GL4 ×GSp4, T (stdGL4 ⊗ stdGSp4)).

Observe that this is the dual to the quadruple in (4.5), thus both Theorems 1.7 and 1.9 have
been proved there.
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For (12.7) with m = 3, the associated quadruple ∆ is

(6.1) (GSpin7 ×GSpin6,GSpin6 ×GSpin6, T (HSpin6 ⊗ HSpin6)).

By the theta correspondence for GL4 × GL4, the integral over the second GSpin6-copy of
a cusp form on GSpin6 with the theta series associated to ρH produces the same cusp
form with an extra central value of the Spin L-function. Then the integral over the other
copy of GSpin6 is just the period integral for the Gross-Prasad model GSpin7 × GSpin6.
The unramified computation in [19] and Theorem 2.4 applied to theta correspondence for
GL4×GL4 proves Theorem 1.7 in this case. For the dual side, Conjecture 1.1(2) follows from
the theta correspondence for GSp6 ×GSO6 and the Rankin-Selberg integral of GL4 ×GL4.
This proves Theorem 1.9.

For (12.8), the associated quadruple ∆ is

(6.2) (GL2 ×GL4 ×GL2, S(GL2 ×GL4)×GL2, stdGL2 ⊗ ∧2 ⊕ T (stdGL4 × stdGL2)).

Note that when we put principal series on both GL2 copies, this period integral recovers the
Rankin-Selberg integral in [29]. The unramified computation in [29] proves Theorem 1.7 in
this case. This quadruple is self-dual.

By the discussion above, the strongly tempered quadruple associated to Table 13 is given
as follows (ι is trivial for all these cases) where

∗ = (GL2 ×GL4 ×GL2, S(GL2 ×GL4)×GL2, stdGL2 ⊗ ∧2 ⊕ T (stdGL4 × stdGL2)).

(G,H, ρH) ρ̂
(GL6 ×GL2,GL2 × S(GL4 ×GL2),∧2 ⊗ stdGL2) ∧3 ⊕ T (stdSL6 ⊗ stdSL2)

(GL4 ×GL2,GL2 ×GL2, 0) stdSL2 ⊗ ∧2 ⊕ T (stdSL4)
(GL4 ×GSp4,GL4 ×GSp4, T (stdGL4 ⊗ stdGSp4)) stdSp4 ⊗ ∧2 ⊕ T (stdSL4)

(GSpin7 ×GSpin6,GSpin6 ×GSpin6, T (HSpin6 ⊗ HSpin6)) stdSp6 ⊗ stdSpin6 ⊕ T (HSpin6)
∗ stdSL2 ⊗ ∧2 ⊕ T (stdSL4 ⊗ stdSL2)

Table 15. Dual quadruples of Table 13

6.2. The non-reductive case. For (12.1), we first introduce a reductive quadruple which
belongs to Table S of [22]. Let G = (GL2)

4 and H = S(GL2 × GL2 × GL2) where the
embedding H → G is given by mapping the first two GL2-copies into the first two GL2-copy,
and mapping the last GL2-copy diagonally into the third and fourth GL2-copy. Let ρH =
stdGL2 ⊗ stdGL2 ⊗ stdGL2 ⊕T (stdGL2,2) where stdGL2,i represents the standard representation
of the i-th GL2-copy and ι be trivial. This quadruple
(6.3)
∆0 = (G,H, ρH , ι) = ((GL2)

4, S(GL2×GL2×GL2), stdGL2 ⊗stdGL2 ⊗stdGL2 ⊕T (stdGL2,2), 1)

is almost the same as (5.5) except we replace the cusp form on one GL2-copy by theta series.
It is obtained by combining Model (S.3) and (S.11) in Table S of [22] with n = 4 and m = 2.
We claim the dual quadruple is given by

∆̂0 = (Ĝ, Ĝ/Z∆, ρ̂, 1), ρ̂ = T (stdGL2,1 ⊗ stdGL2,2)⊕ stdGL2,1 ⊗ stdGL2,3 ⊗ stdGL2,4.

We can use the same argument as in (5.5) to prove Theorem 1.7 and Theorem 1.9 for this
case.
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For (12.1), the associated quadruple ∆ is

(GSO12, S(GL2 ×GSO4), T (stdGL2),GL4 × (GL1)
3).

The attached period integral is the same as model in (5.6) except we replace the cusp form
on GL2 by theta series. This is the Whittaker induction of (6.3) and it is clear that Theorem
1.12 holds in this case.

For (12.2), the associated quadruple ∆ is

(GSpin10 ×GL2, S(GL2 ×GSpin6)×GL2, T (HSpin6 ⊗ stdGL2),GL2 × (GL1)
4 × TGL2)

The nilpotent orbit ι induces a Fourier-Jacobi period on the unipotent radical of the parabolic
subgroup P = MU with M = GL2 × GSpin6 × GL2 whose stabilizer in M is H. This
quadruple is the Whittaker induction of (6.2). It is clear that Theorem 1.12 holds in this
case.

For (12.3), the associated quadruple ∆ is

(GSO8 ×GL2, S(GL2 ×GSO4), T (stdGL2),GL2 × (GL1)
3 × TGL2).

The attached period integral is the same as the model (5.7) except we replace the cusp form
on one GL2-copy by theta series. This is the Whittaker induction of (6.3) and it is clear that
Theorem 1.12 holds in this case.

For (12.6), we first introduce a reductive quadruple from Table S of [22] (it is obtained by
combining Model (S.10) and Model (S.3) with n = 4)

(6.4) (G,H, ρH , ι) = (GL2 ×GL2 ×GL2,GL2 ×GL2, T (stdGL2 ⊗ stdGL2), 1)

where H embeds into G by mapping the first GL2-copy into the first GL2-copy and mapping
the second GL2-copy diagonally into the second and third GL2-copy. We claim the dual
quadruple is given by

(Ĝ, Ĝ/Z∆, ρ̂, 1), ρ̂ = T (stdGL2,1)⊕ stdGL2,1 ⊗ stdGL2,2 ⊗ stdGL2,3

where stdGL2,i is the standard representation of the i-th GL2-copy. To justify the duality, we
will prove Theorem 1.7 and Theorem 1.9 for this case.

We start with Theorem 1.7. By the theta correspondence for GL2×GL2, the integral over
the first GL2-copy of a cusp form in π with the theta series gives a cusp form on GL2 (in
the same space π, note though Theorem 2.2 applied to the correspondence does introduce
the central value of the standard L-function). Then the integral over the other GL2-copy
is just the period integral for the trilinear GL2-model. As a result, Conjecture 1.1(1) and
Theorem 1.7 follow from the theta correspondence for GL2×GL2 and the result in [18]. For
the dual side, Conjecture 1.1(2) follows from the theta correspondence for GSp2×GSO4 and
the Rankin-Selberg integral of GL2 ×GL2. This proves Theorem 1.9 in this case.
Now we can write down the associated quadruple ∆ of (12.6). It is given by

(GL6,GL2 ×GL2, 0,GL2 ×GL2 ×GL1 ×GL1).

The nilpotent orbit ι induces a Fourier-Jacobi period on the unipotent radical of the parabolic
subgroup P =MU with M = GL2×GL2×GL2 whose stabilizer in M is H. This quadruple
is the Whittaker induction of (6.4). It is clear that Theorem 1.12 holds in this case.

For (12.7) when m > 3, the associated quadruple ∆ is

(GSpin2m+1×GSpin6,GSpin6×GSpin6, T (HSpin6⊗HSpin6),GSpin2m−5×(GL1)
3×(GL1)

4).
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The nilpotent orbit ι induces a Bessel period on the unipotent radical of the parabolic
subgroup P = MU with M = GLm−3

1 × GSpin7 × GSpin6 whose stabilizer in M is H.
It is the Whittaker induction of (6.1). It is clear that Theorem 1.12 holds in this case.
The unramified computation in [19] and Theorem 2.4 applied to theta correspondence for
GL4×GL4 proves Theorem 1.7 in this case. For the dual side, Conjecture 1.1(2) follows from
the theta correspondence for GSp2m×GSO6 and the Rankin-Selberg integral of GL4×GL4.
This proves Theorem 1.9.

By the discussion above, the strongly tempered quadruple associated to Table 14 is given
as follows. Here for ι, we only list the root type of the Levi subgroup L of G such that ι is
principal in L and

∗ = (GSpin10 ×GL2, S(GL2 ×GSpin6)×GL2, T (HSpin6 ⊗ stdGL2)).

(G,H, ρH) ι ρ̂
(GSO12, S(GL2 ×GSO4), T (stdGL2)) A3 HSpin12 ⊕ T (stdSpin12)

∗ A1 stdSL2 ⊗ stdSpin10 ⊕ T (stdSpin10)
(GSO8 ×GL2, S(GL2 ×GSO4), T (stdGL2)) A1 stdSL2 ⊗ stdSpin8 ⊕ T (stdSpin8)

(GL6,GL2 ×GL2, 0) A1 × A1 ∧3 ⊕ T (stdSL6)
(GSpin2m+1 ×GSpin6,GSpin6 ×GSpin6, T (HSpin6 ⊗ HSpin6)) Bm−3 stdSp2m ⊗ stdSO6 ⊕ T (HSpin6)

Table 16. Dual quadruples of Table 14

7. Models in Table 22

In this section we will consider Table 22 of [22], this is for the case when ρ̂ is the direct sum

of four irreducible representations of Ĝ of the form T (ρ1) ⊕ T (ρ2). All the representations
in Table 22 of [22] are anomaly free, so we need to consider all of them. We still separate

the cases based on whether l̂ is abelian or not.

Number in [22] (Ĝ, ρ̂) ŴV l̂
(22.2), n=2m (SLn, T (∧2)⊕ T (stdSLn)) Am−1 × Am−1 0

(22.2), n=2m+1 (SLn, T (∧2)⊕ T (stdSLn)) Am × Am−1 0
(22.3), m=n (SLm × SLn, T (stdSLm ⊗ stdSLn)⊕ T (stdSLn)) An−1 × An−1 0

(22.3), m=n+1 (SLm × SLn, T (stdSLm ⊗ stdSLn)⊕ T (stdSLn)) An−1 × An−1 0
(22.3), m=n-1 (SLm × SLn, T (stdSLm ⊗ stdSLn)⊕ T (stdSLn)) Am × Am−1 0
(22.3), m=n-2 (SLm × SLn, T (stdSLm ⊗ stdSLn)⊕ T (stdSLn)) Am × Am−1 0
(22.4), n=3 (SL3, T (stdSL3)⊕ T (stdSL3)) A1 0
(22.5), m=2 (Sp4, T (stdSp4)⊕ T (stdSp4)) A1 × A1 0

Table 17. Reductive models in Table 22 of [22]
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Number in [22] (Ĝ, ρ̂) ŴV l̂
(22.1) (Spin8, T (stdSpin8)⊕ T (HSpin8)) A1 × A1 × A1 A1

(22.3), m > n+ 1 (SLm × SLn, T (stdSLm ⊗ stdSLn)⊕ T (stdSLn)) An−1 × An−1 Am−n+1

(22.3), m < n− 2 (SLm × SLn, T (stdSLm ⊗ stdSLn)⊕ T (stdSLn)) Am × Am−1 An−m−2

(22.4), n > 3 (SLn, T (stdSLn)⊕ T (stdSLn)) A1 An−3

(22.5), m > 2 (Sp2m, T (stdSp2m)⊕ T (stdSp2m)) A1 × A1 Cm−2

Table 18. Non-reductive models in Table 22 of [22]

7.1. The reductive case. For (22.2) with n = 2m, the associated quadruple ∆ is

(GL2m,GLm ×GLm, T (stdGLm)).

The period integral in this case is exactly the Rankin-Selberg integral in [3]. The result in
loc. cit. proves Conjecture 1.1(1) and Theorem 1.7 in this case.

For (22.2) with n = 2m+ 1, the associated quadruple ∆ is

(GL2m+1,GLm+1 ×GLm, T (stdGLm+1)).

The period integral in this case is exactly the Rankin-Selberg integral in [3]. The unramified
computation in loc. cit. proves Conjecture 1.1(1) and Theorem 1.7 in this case.

For (22.3) with m = n, the associated quadruple ∆ is

(7.1) (GLn ×GLn,GLn ×GLn, T (stdGLn ⊗ stdGLn ⊕ stdGLn)).

By the theta correspondence for GLn × GLn, the integral over GLn of a cusp form on GLn
with the theta series associated to T (stdGLn ⊗ stdGLn) produces a cusp form on GLn. Then
the integral over the other GLn-copy is just the Rankin-Selberg integral of GLn×GLn. This
quadruple is self-dual. The Rankin-Selberg integral of GLn × GLn and Theorems 2.2 and
2.4 applied to the theta correspondence for GLn ×GLn proves Conjecture 1.1, Theorem 1.7
and Theorem 1.9. Notice that the theta correspondence introduces an extra central value of
the standard L-function in this case.
For (22.3) with m = n+ 1, the associated quadruple ∆ is

(7.2) (GLn+1 ×GLn,GLn ×GLn, T (stdGLn ⊗ stdGLn)).

By the theta correspondence for GLn×GLn, the integral over GLn of a cusp form on GLn with
the theta series associated to ρH produces another cusp form on GLn. Then the integral over
the other GLn-copy is just the Rankin-Selberg integral of GLn+1×GLn. The Rankin-Selberg
integral of GLn+1×GLn in [20] and Theorems 2.2 and 2.4 applied to the theta correspondence
for GLn × GLn proves Conjecture 1.1(1) and Theorem 1.7 in this case. Again notice that
the theta correspondence introduces an extra central value of the standard L-function. For
the dual side, Conjecture 1.1(2) follows from the theta correspondence of GLn+1×GLn with
the Rankin-Selberg integral of GLn ×GLn. This proves Theorem 1.9.
For (22.3) with m = n− 1, the associated quadruple ∆ is

(7.3) (GLn ×GLn−1,GLn ×GLn−1, T (stdGLn ⊗ stdGLn−1 ⊕ stdGLn)).

By the theta correspondence for GLn × GLn, the integral over GLn of a cusp form on GLn
with the theta series associated to ρH produces another cusp form on GLn. Then the integral
over GLn−1 is just the Rankin-Selberg integral of GLn×GLn−1. This quadruple is self-dual.
The Rankin-Selberg integral of GLn×GLn−1 and Theorems 2.2 and 2.4 applied to the theta
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correspondence for GLn×GLn proves Conjecture 1.1, Theorem 1.7 and Theorem 1.9 in this
case. As before, the theta correspondence introduces an extra central value of the standard
L-function.
For (22.3) with m = n− 2, the associated quadruple ∆ is

(7.4) (GLn ×GLn−2,GLn−1 ×GLn−2, T (stdGLn−1 ⊗ stdGLn−2)).

By the theta correspondence for GLn−1 × GLn−2, the integral over GLn−2 of a cusp form
on GLn−2 with the theta series associated to ρH produces an Eisenstein series on GLn−1

which is induced from the cuspidal automorphic representation on GLn−2 and the trivial
character. Then the integral over GLn−1 is just the Rankin-Selberg integral of GLn×GLn−1.
The Rankin-Selberg integral of GLn−1 × GLn in [20] and Theorems 2.2 and 2.4 applied to
the theta correspondence for GLn−1 × GLn−2 proves Conjecture 1.1(1) and Theorem 1.7 in
this case. For the dual side, Conjecture 1.1(2) follows from the theta correspondence of
GLn−1×GLn with the Rankin-Selberg integral of GLn−1×GLn−2. This proves Theorem 1.9.
For (22.4) with n = 3, the associated quadruple ∆ is

(7.5) (GL3,GL2 ×GL1, T (stdGL2)).

The period integral is essentially the Rankin-Selberg integral of GL3 × GL2 except that we
replace the cusp form on GL2 by theta series. The result in [20] proves Conjecture 1.1(1)
and Theorem 1.7 in this case.

For (22.5) with m = 2, the associated quadruple ∆ is

(7.6) (GSpin5 ×GL1,GSpin4 ×GL1, T (HSpin
+
4 ⊕ HSpin−

4 ⊗ stdGL1)).

The period integral is essentially the Gross-Prasad period for GSpin5 ×GSpin4 except that
we replace the cusp form on GSpin4 by theta series. The unramified computation in [19]
proves Theorem 1.7 in this case.

By the discussion above, the strongly tempered quadruple associated to Table 13 is given
as follows (ι is trivial for all these cases).

(G,H, ρH) ρ̂
(GL2m,GLm ×GLm, T (stdGLm)) T (∧2)⊕ T (stdGL2m)

(GL2m+1,GLm+1 ×GLm, T (stdGLm+1)) T (∧2)⊕ T (stdGL2m+1)
(GLn ×GLn,GLn ×GLn, T (stdGLn ⊗ stdGLn ⊕ stdGLn)) T (stdGLn ⊗ stdGLn)⊕ T (stdGLn)

(GLn+1 ×GLn,GLn ×GLn, T (stdGLn ⊗ stdGLn)) T (stdGLn+1 ⊗ stdGLn)⊕ T (stdGLn)
(GLn ×GLn−1,GLn ×GLn−1, T (stdGLn ⊗ stdGLn−1 ⊕ stdGLn)) T (stdGLn ⊗ stdGLn−1)⊕ T (stdGLn)

(GLn ×GLn−2,GLn−1 ×GLn−2, T (stdGLn−1 ⊗ stdGLn−2)) T (stdGLn ⊗ stdGLn−2)⊕ T (stdGLn)
(GL3,GL2 ×GL1, T (stdGL2)) T (stdSL3)⊕ T (stdSL3)

(GSpin5 ×GL1,GSpin4 ×GL1, T (HSpin
+
4 ⊕ HSpin−

4 ⊗ stdGL1)) T (stdSp4)⊕ T (stdSp4)

Table 19. Dual quadruples of Table 17

7.2. The non-reductive case. For (22.1), we first introduce a reductive quadruple which
belongs to Table S of [22]. Let G = (GL2)

3, H = S(GL2 × GL2 × GL2) and ρH =
stdGL2 ⊗ stdGL2 ⊗ stdGL2 ⊕ T (stdGL2,2)⊕ T (stdGL2,3) where stdGL2,i represents the standard
representation of the i-th GL2-copy and ι be trivial. This quadruple
(7.7)
∆0 = (G,H, ρH , ι) = ((GL2)

3, S(GL2×GL2×GL2), stdGL2⊗stdGL2⊗stdGL2⊕T (stdGL2,2⊕T (stdGL2,3), 1)
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is almost the same as (5.5) except we replace the cusp form on two GL2-copies by theta
series. It is obtained by combining two copies of Model (S.11) in Table S of [22] with m = 2.
We claim the dual quadruple is given by

∆̂0 = (Ĝ, Ĝ/Z∆, ρ̂, 1), ρ̂ = T (stdGL2,1 ⊗ stdGL2,2)⊕ T (stdGL2,1 ⊗ stdGL2,3).

We can use the same argument as in (5.5) to prove Theorem 1.7 and Theorem 1.9 for this
case.

For (22.1), the associated quadruple ∆ is

(GSO8, S(GL2 ×GSO4), T (stdGL2 ⊕ stdGL2),GL2 × (GL1)
3).

The period integral is the same as (5.7) except we replace the cusp form on both GL2-copies
by theta series. This is the Whittaker induction of (7.7) and it is clear that Theorem 1.12
holds in this case.

For (22.3) when m > n+ 1, the associated quadruple ∆ is

(GLm ×GLn,GLn ×GLn, T (stdGLn ⊗ stdGLn), (GL1)
n ×GLm−n × TGLn).

When n−m is odd (resp. even), the nilpotent orbit ι induces a Bessel period (resp. Fourier-
Jacobi period) on the unipotent radical of the parabolic subgroup P = MU with M =
GLm−n−1

1 × GLn+1 × GLn (resp. M = GLm−n
1 × GLn × GLn) whose stabilizer in M is H.

It is the Whittaker induction of (7.2) (resp. (7.1)). It is clear that Theorem 1.12 holds
in this case. For the dual side, Conjecture 1.1(2) follows from Theorem 2.2 applied to the
theta correspondence of GLn×GLm+1 and Gan-Gross-Prasad conjecture (Conjecture 9.11 of
[8]) for non-tempered Arthur packet of the Rankin-Selberg integral of GLm+1 ×GLm. This
proves Theorem 1.9.

For (22.3) when m < n− 2, the associated quadruple ∆ is

(GLm ×GLn,GLm ×GLm+1, T (stdGLm ⊗ stdGLm+1), TGLm × (GL1)
m−1 ×GLn−m−1).

When n − m − 1 is odd (resp. even), the nilpotent orbit ι induces a Bessel period (resp.
Fourier-Jacobi period) on the unipotent radical of the parabolic subgroup P = MU with
M = GLn−m−2

1 ×GLm+2 ×GLm (resp. M = GLn−m−1
1 ×GLm+1 ×GLm) whose stabilizer in

M is H. It is the Whittaker induction of (7.4) (resp. (7.3)). It is clear that Theorem 1.12
holds in this case. For the dual side, Conjecture 1.1(2) follows from Theorem 2.2 applied to
the theta correspondence of GLn×GLm+1 and the Rankin-Selberg integral of GLm+1×GLm.
This proves Theorem 1.9.

For (22.4) when n > 3, we need to introduce another reductive quadruple from Table S of
[22] (it is obtained by combining two copies of Model (S.10))

(7.8) (G,H, ρH , ι) = (GL2 ×GL1,GL2 ×GL1, T (stdGL2 ⊕ stdGL2 ⊗ stdGL1), 1).

We claim that the dual quadruple is given by

(Ĝ, Ĝ, ρ̂, 1), ρ̂ = T (stdGL2 ⊕ stdGL2 ⊗ stdGL1),

i.e., it is self-dual. It is easy to see that Conjecture 1.1, Theorem 1.7 and Theorem 1.9 hold
in this case.

The associated quadruple ∆ for (22.4) with n > 3 is given by

(GLn,GL2, T (stdGL2),GLn−2 ×GL1 ×GL1).

When n− 2 is odd (resp. even), the nilpotent orbit ι induces a Bessel period (resp. Fourier-
Jacobi period) on the unipotent radical of the parabolic subgroup P = MU with M =
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GLn−3
1 × GL3 (resp. M = GLn−2

1 × GL2) whose stabilizer in M is H. It is the Whittaker
induction of (7.5) (resp. (7.8)). It is clear that Theorem 1.12 holds in this case.

For (22.5) when m > 2, the associated quadruple ∆ is

(GSpin2m+1 ×GL1,GSpin4 ×GL1, T (HSpin
+
4 ⊕HSpin−

4 ⊗ stdGL1),GL1 ×GL1 ×GSpin2m−3).

The nilpotent orbit ι induces a Bessel period on the unipotent radical of the parabolic
subgroup P = MU with M = GLm−2

1 × GSpin5 whose stabilizer in M is H. It is the
Whittaker induction of (7.6). It is clear that Theorem 1.12 holds in this case. The period
integral is essentially the Gross-Prasad period for GSpin2m+1×GSpin4 except that we replace
the cusp form on GSpin4 by theta series. The unramified computation in [19] proves Theorem
1.7.

By the discussion above, the strongly tempered quadruple associated to Table 18 is given
as follows. Here for ι, we only list the root type of the Levi subgroup L of G such that ι is
principal in L and

∗ = (GSpin2m+1 ×GL1,GSpin4 ×GL1, T (HSpin
+
4 ⊕ HSpin−

4 ⊗ stdGL1)).

(G,H, ρH) ι ρ̂
(GSO8, S(GL2 ×GSO4), T (stdGL2 ⊕ stdGL2)) A1 T (stdSpin8)⊕ T (HSpin8)
(GLm ×GLn,GLn ×GLn, T (stdGLn ⊗ stdGLn)) Am−n+1 T (stdSLm ⊗ stdSLn)⊕ T (stdSLn)

(GLm ×GLn,GLm ×GLm+1, T (stdGLm ⊗ stdGLm+1)) An−m−2 T (stdSLm ⊗ stdSLn)⊕ T (stdSLn)
(GLn,GL2, T (stdGL2) An−3 T (stdSLn)⊕ T (stdSLn)

∗ Bm−2 T (stdSp2m)⊕ T (stdSp2m)

Table 20. Dual quadruples of Table 18

8. Summary

We summarize our findings in this paper into the following 6 tables.

• Table 21 contains reductive strongly tempered quadruples for which we have provided
evidence for Conjecture 1.1(1) and (2) (i.e., Theorem 1.7 and 1.9).

• Table 22 contains the remaining reductive strongly tempered quadruples. For all
of them except (GL6 × GL2,GL2 × S(GL4 × GL2),∧2 ⊗ stdGL2), we have provided
evidence for Conjecture 1.1(1) (i.e. Theorem 1.7).

• Table 23 contains non-reductive strongly tempered quadruples for which we have
provided evidence for Conjecture 1.1(1) and (2) (i.e., Theorem 1.7, 1.9 and 1.12).

• Table 24 contains non-reductive strongly tempered quadruples for which we have
provided evidence only for Conjecture 1.1(1) (i.e., Theorem 1.7 and 1.12).

• Table 25 contains non-reductive strongly tempered quadruples for which we have
provided evidence for Conjecture 1.1(1) by assuming Conjecture 2.10 and we have
provided evidence for Conjecture 1.1 (2) (i.e. Theorem 1.9 and 1.12).

• Table 26 contains the remaining non-reductive strongly tempered quadruples. For
each of them, we have only provided evidence for Conjecture 1.1(1) by assuming
Conjecture 2.10 (i.e., Theorem 1.12).

For quadruples (G,H, ρH , ι) in Table 21 and 22, the nilpotent orbit ι is trivial. For all the

quadruples ∆ = (G,H, ρH , , ι) in Table 21–26, the dual quadruple is given by (Ĝ, Ĝ/Z∆, ρ̂, 1)
where ρ̂ is given in the tables and Z∆ = ZG ∩ ker(ρH).
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№ (G, H, ρH) ρ̂
1 (SO2m+1 × SO2m, SO2m, 0) stdSp2m ⊗ stdSO2m

2 (SO2m+2 × SO2m+1, SO2m+1, 0) stdSp2m ⊗ stdSO2m+2

3 (GSp6 ×GSpin7, S(GSp6 ×GSpin7), stdSp6 ⊗ Spin7) stdSp6 ⊗ Spin7

4 (GSp6 ×GSpin9, S(GSp6 ×GSpin8), stdSp6 ⊗ HSpin8) stdSp8 ⊗ Spin7

5 (GLn ×GLn,GLn, T (stdGLn)) T (stdGLn ⊗ stdGLn)
6 (GLn+1 ×GLn,GLn, 0) T (stdGLn+1 ⊗ stdGLn)
7 (GSp4 ×GL2, G(SL2 × SL2), T (stdGL2,2)) T (StdGSp4 ⊗ StdGL2)
8 (GSp4 ×GL3, H = G, T (stdGSp4 ⊗ stdGL3)) T (StdGSp4 ⊗ StdGL3)
9 (GSp4 ×GL4, S(GSp4 ×GL4), stdSp4 ⊗ ∧2 ⊕ T (stdGL4)) T (StdGSp4 ⊗ StdGL4)
10 (GSp4 ×GL5, S(GSp4 ×GL4), stdSp4 ⊗ ∧2) T (StdGSp4 ⊗ StdGL5)
11 (GSpin7 ×GL3,GSpin6 ×GL3, T (HSpin6 ⊗ stdGL3)) T (StdGSp6 ⊗ StdGL3)
12 (SO2m+1 × Sp2m, H = G, stdSO2m+1 ⊗ stdSp2m ⊕ stdSp2m) stdSO2m+1 ⊗ stdSp2m ⊕ stdSp2m
13 (SO2m+1 × Sp2m−2, SO2m × Sp2m−2, stdSO2m ⊗ stdSp2m−2

) stdSO2m−1 ⊗ stdSp2m ⊕ stdSp2m
14 (GL4 ×GSO4, S(GSp4 ×GSO4), stdSO4 × stdSp4) stdSL2 ⊗ stdSO6 ⊕ stdSO6 ⊗ stdSL2

15 (GL4 ×GL2,GL2 ×GL2, 0) stdSL2 ⊗ ∧2 ⊕ T (stdSL4)
16 (GL4 ×GSp4,GL4 ×GSp4, T (stdGL4 ⊗ stdGSp4)) stdSp4 ⊗ ∧2 ⊕ T (stdSL4)
17 (GSpin7 ×GSpin6,GSpin6 ×GSpin6, T (HSpin6 ⊗ HSpin6)) stdSp6 ⊗ stdSpin6 ⊕ T (HSpin6)
18 (GLn ×GLn,GLn ×GLn, T (stdGLn ⊗ stdGLn ⊕ stdGLn)) T (stdGLn ⊗ stdGLn)⊕ T (stdGLn)
19 (GLn+1 ×GLn,GLn ×GLn, T (stdGLn ⊗ stdGLn)) T (stdGLn+1 ⊗ stdGLn)⊕ T (stdGLn)
20 (GLn ×GLn−1,GLn ×GLn−1, T (stdGLn ⊗ stdGLn−1 ⊕ stdGLn)) T (stdGLn−1 ⊗ stdGLn)⊕ T (stdGLn)
21 (GLn ×GLn−2,GLn−1 ×GLn−2, T (stdGLn−1 ⊗ stdGLn−2)) T (stdGLn ⊗ stdGLn−2)⊕ T (stdGLn)
22 ((GL2)

5, S(GL2 ×GL2 ×GL2), stdGL2 ⊗ stdGL2 ⊗ stdGL2) ∗
23 ♯ ∗∗
24 (GL2 ×GL2 ×GL2,GL2 ×GL2, T (stdGL2 ⊗ stdGL2)) ∗ ∗ ∗
25 ♯♯ ∗ ∗ ∗∗
26 (GL2 ×GL1,GL2 ×GL1, T (stdGL2 ⊕ stdGL2 ⊗ stdGL1)) T (stdGL2 ⊕ stdGL2 ⊗ stdGL1)

Table 21. Reductive strongly tempered quadruples 1

♯ = ((GL2)
4, S(GL2 ×GL2 ×GL2), stdGL2 ⊗ stdGL2 ⊗ stdGL2 ⊕ T (stdGL2,2)).

♯♯ = ((GL2)
3, S(GL2 ×GL2 ×GL2), stdGL2 ⊗ stdGL2 ⊗ stdGL2 ⊕ T (stdGL2,2 ⊕ T (stdGL2,3)).

∗ = stdGL2,1 ⊗ stdGL2,2 ⊗ stdGL2,3 ⊕ stdGL2,1 ⊗ stdGL2,4 ⊗ stdGL2,5.

∗∗ = T (stdGL2,1 ⊗ stdGL2,2)⊕ stdGL2,1 ⊗ stdGL2,3 ⊗ stdGL2,4.

∗ ∗ ∗ = T (stdGL2,1)⊕ stdGL2,1 ⊗ stdGL2,2 ⊗ stdGL2,3.

∗ ∗ ∗∗ = T (stdGL2,1 ⊗ stdGL2,2)⊕ T (stdGL2,1 ⊗ stdGL2,3).
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№ (G, H, ρH) ρ̂
1 (GSp6 ×GSp4, G(Sp4 × Sp2),0) Spin5 ⊗ Spin7

2 (GL2, SL2, T (stdGL2)) T (Sym2)
3 (GSp6 ×GSO4, S(GSO4 ×G(Sp4 × SL2)), stdSO4 × stdSp4) stdSL2 ⊗ Spin7 ⊕ Spin7 ⊗ stdSL2

4 ∗ stdSp4 ⊗ stdSpin8 ⊕ HSpin8 ⊗ stdSL2

5 (GL6 ×GL2,GL2 × S(GL4 ×GL2),∧2 ⊗ stdGL2) ∧3 ⊕ T (stdSL6 ⊗ stdSL2)
6 ∗∗ stdSL2 ⊗ ∧2 ⊕ T (stdSL4 ⊗ stdSL2)
7 (GL2m,GLm ×GLm, T (stdGLm)) T (∧2)⊕ T (stdGL2m)
8 (GL2m+1,GLm+1 ×GLm, T (stdGLm+1)) T (∧2)⊕ T (stdGL2m+1)
9 (GL3,GL2 ×GL1, T (stdGL2)) T (stdSL3)⊕ T (stdSL3)
10 (GSpin5 ×GL1,GSpin4 ×GL1, T (HSpin

+
4 ⊕ HSpin−

4 ⊗ stdGL1)) T (stdSp4)⊕ T (stdSp4)

Table 22. Reductive strongly tempered quadruples 2

∗ = (GSp4 ×GSpin8 ×GL2, S(GSpin8 ×G(Sp4 × SL2)), stdSp4 ⊗ stdSpin8 ⊕HSpin8 ⊗ stdSL2).

∗∗ = (GL2 ×GL4 ×GL2, S(GL2 ×GL4)×GL2, stdGL2 ⊗ ∧2 ⊕ T (stdGL4 × stdGL2)).

№ (G,H, ρH) ι ρ̂
1 (SO2m+1 × SO2n, SO2n, 0) Bm−n stdSp2m ⊗ stdSO2n

2 (SO2m+1 × SO2n, SO2m+1, 0) Dn−m stdSp2m ⊗ stdSO2n

3 (GSpin2m+1 ×GSp6, S(GSpin8 ×GSp6), stdSp6 ⊗ HSpin8) Bm−4 stdSp2m ⊗ Spin7

4 (SO2m+1, SO2, 0) Bm−1 T (stdSp2n)
5 (GSpin2m+1 ×GL2, G(SL2 × SL2), T (stdGL2)) Bm−2 T (StdGSp2m ⊗ StdGL2)
6 (GSpin2m+1 ×GL3,GSpin6 ×GL3, T (HSpin6 ⊗ stdGL3)) Bm−3 T (StdSp2m ⊗ StdSL3)
7 (SO2m+1 × Sp2n−2, SO2n × Sp2n−2, stdSO2n ⊗ stdSp2n−2

) Bm−n stdSO2n−1 ⊗ stdSp2m ⊕ stdSp2m
8 (GSpin2k ×GSO4, S(GSp4 ×GSO4), stdSO4 × stdSp4) Dk−2 stdSL2 ⊗ stdSO2k

⊕ stdSO2k
⊗ stdSL2

9 (GSpin2m+1 ×GSpin6,GSpin6 ×GSpin6, T (HSpin6 ⊗ HSpin6)) Bm−3 stdSp2m ⊗ stdSO6 ⊕ T (HSpin6)

Table 23. Non-reductive strongly tempered quadruples 1
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№ (G,H, ρH) ι ρ̂
1 (GSp6 ×GL2,GL2, 0) A2 stdGL2 ⊗ Spin7

2 (GSp8 ×GL2, G(SL2 × SL2), 0) A2 stdGL2 ⊗ Spin9

3 (GSp10,GL2, 0) A4 Spin11

4 (GSO12,GL2, 0) A5 HSpin12

5 (GL6,GL2, 0) A2 × A2 ∧3

6 (E7,PGL2, 0) E6 stdE7

7 (GL2m,GLm, T (stdGLm)) (A1)
m T (∧2)

8 (GL2m+1,GLm, 0) (A1)
m T (∧2)

9 (GSpin2k,GSpin3, T (Spin3)) Dk−1 T (stdSO2k
)

10 (GSp6,GL2, T (stdGL2)) A2 T (Spin7)
11 (GSp8, G(SL2 × SL2), T (stdGL2)) A2 T (Spin9)
12 (G2, SL2, stdSL2) A1 T (stdG2)
13 (GE6,GL3, T (stdGL3)) D4 T (stdE6)
14 ∗ Bm−2 T (stdSp2m)⊕ T (stdSp2m)

Table 24. Non-reductive strongly tempered quadruples 2

∗ = (GSpin2m+1 ×GL1,GSpin4 ×GL1, T (HSpin
+
4 ⊕ HSpin−

4 ⊗ stdGL1)).

№ (G,H, ρH) ι ρ̂
1 (GLm ×GLn,GLn, 0) Am−n−1 T (stdGLm ⊗ stdGLn)
2 (GSp4 ×GLn, S(GSp4 ×GL4), stdSp4 ⊗ ∧2) An−5 T (StdSp4 ⊗ StdSLm)
3 (SO2m+1 × Sp2k, SO2m+1 × Sp2m, stdSO2m+1 ⊗ stdSp2m) Ck−m stdSO2k+1

⊗ stdSp2m ⊕ stdSp2m
4 (GLm ×GLn,GLn ×GLn, T (stdGLn ⊗ stdGLn)) Am−n+1 T (stdSLm ⊗ stdSLn)⊕ T (stdSLn)
5 (GLm ×GLn,GLm ×GLm+1, T (stdGLm ⊗ stdGLm+1)) An−m−2 T (stdSLm ⊗ stdSLn)⊕ T (stdSLn)

Table 25. Non-reductive strongly tempered quadruples 3
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№ (G,H, ρH) ι ρ̂
1 (GSp12,GSp4, 0) A2 × A2 Spin13

2 (GSp2k, SL2 ×GL1, stdSL2) Ck−1 T (stdSO2k+1
)

3 (PGSO10,GL2, 0) A3 T (HSpin10)
4 (GSO12, S(GSp4 ×GSO4), 0) A1 × A1 HSpin+

12 ⊕ HSpin−
12

5 (GSO12 × PGL2, S(GL2 ×GSO4), 0) A3 stdSL2 ⊗ stdSpin12 ⊕ HSpin12

6 ∗ A1 stdSp4 ⊗ stdSpin12 ⊕ HSpin12

7 (GSO8 ×GSO4, S(GL2 ×GSO4), 0) A1 stdSL2 ⊗ stdSpin8 ⊕ HSpin8 ⊗ stdSL2

8 (GSpin7, S(GL2 ×GL2), stdGL2) A1 ∧3 ⊕ stdSp6
9 (GSO12, S(GL2 ×GSO4), T (stdGL2)) A3 HSpin12 ⊕ T (stdSpin12)
10 ∗∗ A1 stdSL2 ⊗ stdSpin10 ⊕ T (stdSpin10)
11 (GSO8 ×GL2, S(GL2 ×GSO4), T (stdGL2)) A1 stdSL2 ⊗ stdSpin8 ⊕ T (stdSpin8)
12 (GL6,GL2 ×GL2, 0) A1 × A1 ∧3 ⊕ T (stdSL6)
13 (GSO8, S(GL2 ×GSO4), T (stdGL2 ⊕ stdGL2)) A1 T (stdSpin8)⊕ T (HSpin8)
14 (GLn,GL2, T (stdGL2) An−3 T (stdSLn)⊕ T (stdSLn)

Table 26. Non-reductive strongly tempered quadruples 4

∗ = (GSpin4 ×GSpin12, S(GSpin8 ×G(Sp4 × SL2)), stdSp4 ⊗ stdSpin8).

∗∗ = (GSpin10 ×GL2, S(GL2 ×GSpin6)×GL2, T (HSpin6 ⊗ stdGL2)).
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