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Abstract

In this paper, we prove the geometric expansion of a local twisted trace formula
for the Whittaker induction of any symmetric pairs that are coregular. This general-
izes the local (twisted) trace formula for reductive groups proved by Arthur [2] and
Waldspurger [28]. We also prove a formula for the regular germs of quasi-characters
associated to strongly cuspidal functions in terms of certain weighted orbital integrals.
As a consequence of our trace formula and the formula for regular germs of quasi-
characters, we prove a simple local trace formula of those models for strongly cuspidal
test functions which implies a multiplicity formula for these models. We also present
various applications of our trace formula and multiplicity formula, including a neces-
sary condition for a discrete L-packet to contain a representation with a unitary Shalika
model (resp. a Galois model for classical groups) in terms of the associated Langlands
parameter, and we also compute the summation of the corresponding multiplicities for
certain discrete L-packets.
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1 Introduction

Let F be a local non-Archimedean field of characteristic 0, G be a reductive group defined
over F , H ⊂ G be a unimodular subgroup and ξ : H(F ) → C× be a smooth unitary
character. Choosing Haar measures on G(F ) and H(F ) induces an invariant measure on
H(F )\G(F ) and we let L2(H(F )\G(F ), ξ) be the space of ϕ : G(F ) → C× that transform
by left multiplication by H(F ) according to the character ξ (i.e. ϕ(hg) = ξ(h)ϕ(g) for
(h, g) ∈ H(F ) × G(F )) and whose norm is square-integrable on H(F )\G(F ). Then, the
natural action of G(F ) on L2(H(F )\G(F ), ξ) by right translation is a unitary representation
and for f ∈ C∞c (G(F )), we define by integration an operator R(f) on L2(H(F )\G(F ), ξ).
This operator is associated to the following kernel function (for simplicity we assume the
center of G is trivial in the introduction)

Kf (x, y) =

∫
H(F )

f(x−1hy)ξ(h)dh, x, y ∈ G(F ).

Formally, the trace of the operator R(f) should be given by the integral of Kf (x, x) over
x ∈ H(F )\G(F ). However, neither of these two expressions are well-defined in general. The
goal of this paper is to define some canonical regularizations of the integral of Kf over the
diagonal for certain triples (G,H, ξ) (essentially associated to symmetric varieties that we
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name “coregular”) and to express the resulting distribution on G(F ) as a sum (or integral)
of contributions naturally generalizing the weighted orbital integrals of Arthur [2]. This can
be considered as the geometric side of a local trace formula for the corresponding unitary
representations L2(H(F )\G(F ), ξ). We plan to develop in a subsequent paper a general
spectral expansion for those trace formulas.

In the so-called group-case, corresponding to G = H ×H with H embedded diagonally
in the product, we recover the geometric side of Arthur local trace formula [2]. We actually
also consider an enhancement of the previous setting where we fix an extra automorphism θ
of the triple (G,H, ξ) and we formally try to compute the trace of the composition R(f) ◦ θ.
This can be more naturally formulated using the notion of twisted spaces due to Labesse.
In the group-case again, we recover the geometric side of the local twisted trace formula due
to Waldspurger [28].

Although not implied by our main results, the work of Waldspurger [34] on the local Gan-
Gross-Prasad conjecture, whose main innovation was the development of a certain simple
local trace formula, has been a main source of inspiration and motivation for this paper.

We also present few applications of our general trace formula. Namely, specializing our
geometric expression to a matrix coefficient of a supercuspidal or square-integrable repre-
sentation, we obtain explicit integral formulas for multiplicities of certain models which
generalize our previous results for Galois models [7] and the Shalika model [9]. This can
then be further applied to establish necessary conditions, in terms of the associated Lang-
lands parameters, for the distinction of discrete L-packets with respect to a unitary Shalika
model or a Galois model for classical groups and we moreover compute the corresponding
multiplicities of such packets under an extra assumption. In the case of Galois models, this
confirms some consequences of a general conjecture made by D. Prasad [29].

1.1 Main results

Whittaker induction of coregular symmetric varieties

Let ι be an involutive automorphism of G and assume that (Gι)0 ⊂ H ⊂ Gι where Gι stands
for the subgroup of fixed points and (Gι)0 for its neutral component. In this situation, the
quotient variety H\G is sometimes called a symmetric variety. In this paper, we impose an
important condition on the variety H\G that we decided to name coregularity:

Definition 1.1. Let X = H\G be a homogeneous G-variety with H reductive. We say that
X is coregular if there exists an non-empty open subset U ⊂ X × X such that for every
x ∈ U , the stabilizer Gx ⊂ G of x for the diagonal action contains regular elements.

In Section 3.1 we give various alternative characterizations of coregular homogeneous
G-varieties (including the case where H is not reductive). Technically, the most important
for us is the following property (where Grs ⊂ G denotes the open locus of regular semisimple
elements and DG, DH stand for the usual Weyl discriminants):

A homogeneous G-variety X = H\G is coregular if and only if H ∩Grs is nonempty and

the function h ∈ H(F ) ∩Grs(F ) 7→ DH(h)2

DG(h)
is locally bounded on H(F ).
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Examples of coregular symmetric varieties are the group case (that is X = Hdiag\H×H),
Galois symmetric varieties (i.e. homogeneous varieties of the form X = H\ResE/FHE where
E/F is a quadratic extension and ResE/F denotes Weil’s restriction of scalars) or Sp2n\GL2n.
However, many other natural examples of homogeneous varieties such as On\GLn, GLn ×
GLn\GL2n or SOdiag

n \(SOn × SOn+1) (the so-called Gross-Prasad variety, that is not sym-
metric but at least spherical) are not coregular.

In this paper, we will actually consider a slightly more general setting, essentially includ-
ing all triples (G,H, ξ) that are in a suitable sense “Whittaker induction” of a coregular
symmetric pair (M,H0). More precisely, the most general triples (G,H, ξ) that we can con-
sider are constructed as follows. There exists an involution ι of G as well as a parabolic
subgroup P ⊂ G that is ι-split (recall that it means that P := ι(P ) is opposite to P ) and a
semi-direct product decomposition H = H0 nN where:

� N is the unipotent radical of P and H0 is a subgroup of the Levi factor M := P ∩ P ;

� We have H0 = (M ι)0 and the symmetric variety H0\M is coregular;

� The restriction of the character ξ to N(F ) is non-degenerate i.e. its orbit under the
adjoint action of M(F ) is open in the F -vector space of all smooth characters N(F )→
C×;

� In the case where P 6= G, H0 is precisely the neutral component of the stabilizer of ξ
in M .

Following [30, Sect. 2.6], we say that the pair (H\G, ξ) is the Whittaker induction of the
symmetric (and coregular) variety H0\M . One example of such Whittaker induction is given
by the triple (GL2n,GLdiag

n n Matn, ψ ◦ Tr), where ψ : F → C× is a nontrivial character,
which is related to so-called Shalika models of representations of GL2n(F ). In this particular
case, our result on geometric expansions contains the main results of our previous work [9].
There is also a variant of this example for unitary groups that will be described in more
details below, related to what we call unitary Shalika models.

Truncation on symmetric varieties

Fix a triple (G,H, ξ) as in the previous paragraph. Our starting point will be to truncate in
a meaningful way the (usually non-convergent) integral

I(f) =

∫
H(F )\G(F )

Kf (x, x)dx.

For this we introduce a sequence of truncation functions (κY )Y indexed by points Y in a
certain affine space 1.

1For the definition of our truncation functions, we do not need to assume (G,H) is coregular. It works
for all the symmetric varieties.
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More precisely, we fix from now on a special maximal compact subgroup K ⊂ G(F ) that
is in good position with respect to the Levi subgroup M as well as a minimal ι-split parabolic
subgroup P0 ⊂ P 2. We assume for simplicity that there is only one H0(F )-conjugacy class
of minimal ι-split parabolic subgroups in P . (Otherwise we need to replace P0 by a set of
representatives of those conjugacy classes, there are always finitely many, or, even better, we
should replace P0 in the discussion that follows by the union of finitely many P0(F )-orbits
in (P0 ∩H\P0)(F )). Let AP0,ι be the subspace of the real vector space

AP0 := Hom(X∗(P0),R)

on which ι acts by −Id. Let AP,+P0
⊂ AP0 be the usual Weyl chamber associated to the

parabolic subgroup P0 ∩M of M and AP,+P0,ι
be its projection to AP0,ι. We also let A0 be the

maximal central split torus in M0 = P0 ∩ ι(P0) (a Levi factor of P0) which is ι-split (in the
sense that ι(a) = a−1 for every a ∈ A0) and denote by HP0,ι : P0(F )→ AP0,ι the composition
of the usual Harish-Chandra morphism P0(F ) → AP0 with the projection AP0 → AP0,ι.
Then, by the weak Cartan decomposition of [16] and [10], we can find a compact subset
ωP0 ⊂ P0(F ) such that setting

S(ωP0) = {x = pak | p ∈ ωP0 , k ∈ K, a ∈ A0(F ), HP0,ι(a) ∈ AP,+P0,ι
}

we have the decomposition
G(F ) = H(F )S(ωP0).

Note the formal resemblance with the existence of Siegel domains in a global setting. Let
−AP0 ⊂ AP0 be the cone defined by the negative simple weights with respect to P0 and −AP0,ι

be its image in AP0,ι. Then, for any Y ∈ A+
P0,ι

that is “sufficiently positive”, we denote by
κY the characteristic function of the image in H(F )\G(F ) of the set S(ωP0 , Y ) defined by

S(ωP0 , Y ) := {x ∈ S(ωP0) | HP0,ι(x) ∈ Y + −AP0,ι}

where we have denoted also by HP0,ι the unique extension of HP0,ι to G(F ) that is K-invariant
on the right.

Although the family of truncation functions (κY )Y a priori depends on the auxiliary
choice of the compact subset ωP0 , it can be shown that it doesn’t asymptotically in the
following precise sense. For any pair of compact subsets ωP0 , ω

′
P0
⊂ P0(F ) such that G(F ) =

H(F )S(ωP0) = H(F )S(ω′P0
), we can define as above two families of truncation functions

(κY )Y and (κ′Y )Y . Then, there exists Y+ ∈ AP0,ι such that κY = κ′Y for every Y ∈ Y+ +A+
P0,ι

.
In particular, it makes sense to study the asymptotic behavior of the expression

IY (f) :=

∫
H(F )\G(F )

Kf (x, x)κY (x)dx

2Here, by a minimal ι-split parabolic subgroup we mean a parabolic subgroup that is ι-split and minimal
for this property.
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when Y
P0−→ ∞ (where the latter notation means asymptotic along the filter generated by

translates Y+ + A+
P0,ι

of the positive Weyl chamber). Moreover, the functions κY are so
defined that the integrand in the above expression is compactly supported (see Lemma 6.3).

Finally, we can also suppress the dependence of our truncation process on the choice of
P0 (but not on that of K) as follows: for any other choice of a minimal ι-split parabolic
subgroup P ′0 ⊂ P , there exists a natural affine isomorphism

(1.1.1) ιP0,P ′0,K
: AP0,ι ' AP ′0,ι,

such that as Y ∈ AP0,ι
P0−→ ∞ we eventually have κY = κY ′ where Y ′ = ιP0,P ′0,K

(Y ). We
emphasize that ιP0,P ′0,K

is not the most obvious isomorphism AP0,ι ' AP ′0,ι, namely the one
induced by conjugation by an element p ∈ P (F ) such that pP0p

−1 = P ′0, which is not only
affine but linear. Indeed, in general the map (1.1.1) does not preserve the origins; a fact that
is related to the existence of more than one H(F ) ∩ K-conjugacy class of minimal ι-split
parabolic subgroups P0 ⊂ P .

Therefore, we can as well think of Y as living in the inverse limit

AX,K = lim←−
P0

AP0,ι

where P0 runs over the set of minimal ι-split parabolic subgroups of P and the transition
maps are given by the affine isomorphisms (1.1.1). This is the point of view that we will
adopt in the body of the paper.

The geometric expansion of a general local trace formula.

Let Γ(H0) (resp. Γell(H0)) be the set of regular semisimple (resp. regular elliptic) conjugacy
classes in H0(F ). These two sets can be naturally equipped with measures, see Sections 6.3
and 7.1 for details.

For t ∈ Γ(H0), that we identify with a representative in H(F ), we denote by Ht, Gt,
Mt, Nt and Bt = MtNt the neutral components of the centralizers of t in H, G M , N and
P respectively. Then, for t in general position Bt is a Borel subgroup of Gt and ξ |Nt(F ) is
a non-degenerate character on its unipotent radical (see Lemma 6.1, here we need to use
the coregular assumption). For f ∈ C∞c (G(F )) and Y ∈ AX,K , we define the following
expression

JY (f) =

∫
Γ(H0)

DH(t)ξ(t)JY (t, f)dt

where JY (t, f) denotes some kind of “weighted orbital integral”. More precisely, JY (t, .) is a
distribution of the form

JY (t, f) =

∫
Ot
f(g)vξ,ι,Y (g)dg

where Ot denotes the union of the (finitely many) regular G(F )-conjugacy classes with
semisimple part t and the function g 7→ vξ,ι,Y (g) is a certain weight function. When ξ = 1
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(so that P = G and, by the coregular assumption, t is already regular in G at least when
it is in general position), this weight is very similar to the one appearing in the definition
of Arthur’s weighted orbital integrals as vξ,ι,Y (g−1tg) is given by the volume of the convex
hull of a certain family (−HQ,ι(g) + YQ)Q where Q runs over the minimal ι-split parabolic
subgroups of G containing t, HQ,ι : G(F )→ AL,ι denotes the usual Harish-Chandra map for

the parabolic subgroup Q = ι(Q) = LNQ (chosen to be K-invariant on the right) composed
with the projection AQ → AL,ι to the ι-antifixed points in AL and Y 7→ YQ ∈ AQ,ι = AL,ι
is the composition of the canonical isomorphism AX,K ' AP0,ι with the natural projection
AP0,ι → AQ,ι for any minimal ι-split parabolic subgroup P0 ⊂ Q (it can be shown that the
composition doesn’t depend on P0). In general, the precise definition looks like

JY (t, f) =

∫
Bt(F )\G(F )

∫
Nt(F )

f(x−1tux)vBt,ξ,ι,Y (x, u)dudx

where we refer the reader to Section 6.3 for the definition of the weight vBt,ξ,ι,Y (x, u) when
ξ 6= 1. Another important point is that, after Harish-Chandra, it is known that near singular
point the typical order of growth of (weighted) orbital integrals is as the inverse of the square
root of the Weyl discriminant. Therefore, our assumption on coregularity of the pair (G,H)
is what guarantees the absolute convergence of the expression defining JY (f) above. Then,
the aforementioned geometric expansion of the local trace formula for (G,H, ξ) is contained
in the following theorem.

Theorem 1.2. Let 0 < ε < 1 and fix f ∈ C∞c (G(F )). Then, for any k > 0, we have

|IY (f)− JY (f)| � N(Y )−k

for every Y ∈ AX,K with d(Y ) > εN(Y ). Moreover, the function Y ∈ AX,K 7→ JY (f) is
a polynomial-exponential function in a suitable sense (see Section 2.9) and if the variety
X = H\G is tempered (see Section 3.2), then the same statement holds for functions f in
the Harish-Chandra Schwartz space C(G(F )).

In the above statement, N(Y ) stands for any norm on the affine space AX,K whereas,
fixing a minimal ι-split parabolic subgroup P0 ⊂ P for convenience, the depth d(Y ) of Y is
defined by

d(Y ) = min
α∈∆0

〈α, Y − Y0〉

where ∆0 stands for the set of simple roots with respect to P0. Therefore, in some loose
sense, the above theorem describes the asymptotic behavior of IY (f) as Y goes to infinity
in the direction of the positive Weyl chamber and “sufficiently far from the walls”.

As already mentioned, in the main body of the paper we actually prove a more general
theorem of the above form for suitable twisted triples (G̃, H̃, ξ). In particular, in the group
case (i.e. when H is diagonally embedded in G = H ×H) this recovers the geometric side
of the twisted local trace formula [28].
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The case of strongly cuspidal functions and integral formulas for multiplicities

Most applications of our trace formula comes from a simple version obtained by specializing
it to the case of strongly cuspidal test functions. More precisely, we recall following [34]
that a function f ∈ C∞c (G(F )) is said to be strongly cuspidal if for every proper parabolic
subgroup Q = LV ⊂ G we have∫

V (F )

f(lu)du = 0, for every l ∈ L(F ).

It is then shown in loc. cit. that the regular semisimple weighted orbital integrals (in the
sense of Arthur) of a strongly cuspidal function f don’t depend on any choice (except that
of a Haar measure on G(F )) and that, correctly normalized by certain signs, they define a
function

Θf : Grs(F )→ C
which is G(F )-invariant by conjugation and a quasi-character in the following sense: for
every semisimple element x ∈ G(F ), there exists an expansion

Θf (x exp(X)) =
∑

O∈Nil(g∗x)

cf,O(x)ĵ(O, X), X ∈ ω ∩ gx,rs(F ),

where:

� ω ⊂ gx(F ) is a sufficiently small neighborhood of 0 in the Lie algebra of Gx(F );

� Nil(g∗x) denotes the (finite) set of nilpotent coadjoint orbits in the dual gx(F )∗ of gx(F );

� for O ∈ Nil(g∗x), ĵ(O, .) stands for the unique smooth function on gx,rs(F ) that is locally
integrable on gx(F ) and represents the Fourier transform of the orbital integral over
O i.e. for every ϕ ∈ C∞c (gx(F )) we have∫

gx(F )

ϕ(X)ĵ(O, X)dX =

∫
O
ϕ̂(Y )dY

where dX is a Haar measure on gx(F ), ϕ̂(Y ) =
∫
gx(F )

ϕ(X)ψ(〈X, Y 〉)dX, Y ∈ gx(F )∗,

denotes the Fourier transform of ϕ (which depend in the auxiliary choice of a non-trivial
additive character ψ : F → C×) and dY is the canonical Kirillov-Kostant measure on
the coadjoint orbit O.

For t ∈ H0,rs(F ) in general position, the restriction ξt := ξ |Nt(F ) is a generic character of
Nt(F ). We let Ot ∈ Nil(g∗t ) be the orbit associated to ξt

3. Then, for every strongly cuspidal
test function f ∈ C∞c (G(F )) we set

Igeom(f) :=

∫
Γell(H0)

DH(t)cf,Ot(t)ξ(t)dt.

3More precisely, Ot is the unique nilpotent coadjoint orbit in gt(F )∗ containing an element Y such that
ξ(exp(X)) = ψ(〈Y,X〉) for every X ∈ nt(F ), the Lie algebra of Nt(F ).
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Theorem 1.3. Let f ∈ C∞c (G(F )) be a strongly cuspidal function. Then,

1. We have
lim

Y
P0−→∞

IY (f) = Igeom(f),

in particular the limit exists.

2. If moreover f is a matrix coefficient of a supercuspidal representation π of G(F ) and the
dimension mH,ξ(π

∨) of the space HomH(π∨, ξ) of (H(F ), ξ)-equivariant linear forms on
(the space of) the contragredient representation π∨ is finite, then the integral defining
I(f) is already convergent and we have

I(f) =
f(1)

d(π)
mH,ξ(π

∨)

where d(π) stands for the formal degree of π.

Furthermore, if the pair (G,H) is tempered then the same holds for strongly cuspidal test
functions f ∈ C(G(F )) and matrix coefficients of square-integrable representations π respec-
tively.

As a corollary of the above theorem we can also obtain general integral formulas for
the multiplicities mH,ξ(π). More precisely, for π an irreducible representation of G(F ), it is
known that the Harish-Chandra character Θπ is also a quasi-character in the above sense.
Therefore, we can define an expression mgeom,H,ξ(π) similar to Igeom(f) by formally replacing
Θf by Θπ. Then, we have the following. (see Theorem 7.4).

Corollary 1.4. 1. Assume that π is supercuspidal and the multiplicity mH,ξ−1(π) is finite.
Then, we have

(1.1.2) mH,ξ−1(π) = mgeom,H,ξ(π).

2. If the pair (G,H) is tempered, π is square-integrable and the multiplicity mH,ξ(π) is
finite, then the equality (1.1.2) also holds.

In the case of Galois models or the Shalika model, the above corollary recovers one of
the main result in [7] and [9] respectively. Actually for Galois models associated to classical
groups, we can also deduce new results from the analog of the above corollary in certain
twisted situations as explained in more details below.

An integral formula for regular germs of quasi-characters

One important technical result that we prove along the way to Theorem 1.2, and that may
be of independent interest, is a certain explicit formula for some singular weighted orbital
integrals of strongly cuspidal functions. More precisely, we are able to write down a set
of measures on regular (but not necessarily semi-simple) conjugacy classes representing the
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distributions f 7→ cf,O(x) for x ∈ G(F ) semisimple and O ∈ Nil(g∗x) a regular nilpotent
coadjoint orbit.

More precisely, let us fix a Borel subgroup Bx of Gx with a Levi decomposition Bx = TxNx

as well as a generic character ξx of Nx(F ), and we let Ox ∈ Nil(g∗x) be the corresponding
regular nilpotent coadjoint orbit (every regular nilpotent coadjoint orbit arises in this way).
In Section 4 we will define a weighted function vBx,ξx(g, u) for g ∈ G(F ) and u ∈ Nx(F )
regular. The next theorem expresses the regular germ of the quasi-character Θf in terms of
certain weighted orbital integral (we refer the reader to Section 2-4 for various notation). It
will be proved in Section 4.

Theorem 1.5. For every strongly cuspidal function f ∈ C(G(F )), we have

cf,−Ox(x) =

∫
Bx(F )\G(F )

∫
Nx(F )

f(g−1xug)vBx,ξx(u, g)dudg.

The Galois model for classical groups

Let E/F be a quadratic extension, H be a reductive group defined over F , χ be a character
of H(F ) and G = ResE/FHE. The model (G,H, χ) is the so-called Galois model. In [29],
Prasad made a general conjectural regarding the multiplicity of Galois model. In this paper,
we will study the case when H is a classical group.

LetH be a quasi-split special orthogonal group or a symplectic group andG = ResE/FHE.
If H is the even special orthogonal group, let H0 be a quasi-split special orthogonal group
that is not a pure inner form of H and such that G = ResE/FHE = ResE/FH0,E (i.e. the
determinants of the quadratic forms defining H and H0 belong to the same square class in
E×/(E×)2 but belong to different square classes in F×/(F×)2). If H = Sp2n or SO2n, let χ
be the trivial character on H (and H0 if H = SO2n). If H = SO2n+1, let χ ∈ {1, ηn} where
ηn is the composition of the Spin norm character of SO2n+1 with the quadratic character
ηE/F .

Our first result is a necessary condition for a discrete L-packet to be distinguished.

Theorem 1.6. Let H = Sp2n, SO2n or SO2n+1, G = ResE/FH, χ = 1 if H = Sp2n or SO2n,
and χ ∈ {1, ηn} if H = SO2n+1. Let Πφ(G) be a discrete L-packet of G(F ) and Πφ(G′) be the
endoscopic transfer of the L-packet to the general linear group G′ = GLa(E) (here a = 2n if
H = SO2n or SO2n+1 and a = 2n+ 1 if H = Sp2n). Then the packet Πφ(G) is distinguished
(i.e. m(π, χ) 6= 0 for some π ∈ Πφ(G)) only if Πφ(G′) is (GLa(F ), χ′)-distinguished. Here
χ′ = 1 if χ = 1 and χ′ = η′n := ηE/F ◦ det if χ = ηn.

Our second result is to compute the summation of the multiplicities over certain discrete
L-packets. Assume that Πφ(G′) is (GLa(F ), χ′)-distinguished. By Theorem 4.2 of [26],
Πφ(G′) is of the form

Πφ(G′) = (τ1 × · · · × τl)× (σ1 × σ̄1)× · · · × (σm × σ̄m)

where
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� τi is a discrete series of GLai(E) that is conjugate self-dual. Moreover, if (H,χ) =
(SO2n+1, ηn), τi is self-dual of symplectic type; otherwise, τi is self-dual of orthogonal
type.

� σj is a discrete series of GLbi(E) that is NOT conjugate self-dual. Moreover, if (H,χ) =
(SO2n+1, ηn), σj is self-dual of symplectic type; otherwise, σj is self-dual of orthogonal
type.

� τi, σj are all distinct.

�
∑l

i=1 ai + 2
∑m

j=1 bj = a.

We will consider the special case when m = 0. The general case will be consider in our
future paper. When m = 0, Πφ(G′) appears discretely in the L2 space of the Galois model
(GLa(E),GLa(F ), χ′).

Theorem 1.7. With the notation above, if H is the symplectic group or the odd special
orthogonal group, we have ∑

π∈Πφ(G)

m(π, χ) = 2l−1.

If H is the even special orthogonal group, we let H0 be another even special orthogonal group
as above. We use m0(π, χ) to denote the multiplicity for the model (G,H0, χ). Then we have∑

π∈Πφ(G)

m(π, χ) +m0(π, χ) = 2l−1.

Remark 1.8. By Theorem 1 of [7], the above two theorems also hold if we replace H (and
H0 if we are in the even orthogonal group case) by the non quasi-split classical group.

The unitary Shalika model

Let Z be a E-vector space of finite dimension n > 1. Let Z∗,c be the conjugate-dual of Z
that is the space of c-linear forms on Z (a similar notation will be applied later to other
vector spaces). Set V = Z ⊕ Z∗,c and we equip with the nondegenerate Hermitian form

h(v + v∗, w + w∗) = 〈v, w∗〉+ 〈w,w∗〉c, (v, v∗), (w,w∗) ∈ Z ⊕ Z∗,c.

Here 〈., .〉 stands for the canonical pairing between Z and Z∗,c. Let G = U(V, h) be the
unitary group associated to this Hermitian form. We define two maximal parabolic subgroups
Q and Q of G as the stabilizers of the maximal isotropic subspaces Z and Z∗,c respectively.
Then, L = Q ∩Q is a Levi component of Q and restriction to Z induces an isomorphism

(1.1.3) L ' ResE/FGL(Z).

Let N be the unipotent radical of Q. Thus Q = LN and restriction to Z∗,c induces an
isomorphism

(1.1.4) N '
{
X ∈ Hom(Zc,∗, Z) | TXc = −X

}
12



where TXc denotes the transpose conjugate of X (seen as a linear endomorphism Z → Z∗,c

through the canonical identification (Z∗,c)∗,c = Z). We will actually identify the right hand
side above with the Lie algebra n of N in a way such that the above isomorphism becomes
the exponential map.

We henceforth choose two isomorphisms W+,W− : Z → Z∗,c satisfying TW c
± = −W±

and such that the corresponding antihermitian forms on Z are not equivalent (there are
actually only two equivalence classes of antihermitian forms on Z). For ε ∈ {±}, we let
H0,ε ⊂ L ' ResE/FGL(Z) be the unitary group associated to Wε, that is the stabilizer of Wε

for the obvious action. Then, H0,ε(F ) coincides with the stabilizer in L(F ) of the character

ξε : N(F )→ C×,

exp(X) 7→ ψ(Tr(WεX)) (X ∈ n(F )).

We will henceforth assume, as we may, that W± have been chosen so that H0,+ is quasi-split.
Set Hε = H0,ε n N . We extend ξε to a character of Hε(F ) trivial on H0,ε(F ). We also

fix a character χ of E1 = ker(NE/F ) that we will consider as a character of H0,ε(F ) through
composition with the determinant det : H0,ε(F ) → E1 . The model (G,Hε, χ ⊗ ξε) is an
analogue of the Shalika model for unitary groups and we will call it the unitary Shalika
model. For a smooth irreducible representation π of G(F ), we define the multiplicity

mε(π, χ) := dim(HomHε(F )(π, χ⊗ ξε)).

Our first result for the unitary Shalika model is that the multiplicity for the two models
are equal to each other for all stable discrete series.

Theorem 1.9. 1. Let π be a finite length discrete series of G(F ) with central character
χn. If Θπ is a stable distribution, then m+(π, χ) = m−(π, χ).

2. Let Πφ(G) be a discrete L-packet of G(F ) with central character χn. Then we have∑
π∈Πφ(G)

m+(π, χ) =
∑

π∈Πφ(G)

m−(π, χ).

Our second result for the unitary Shalika model is a necessary condition for a discrete
L-packet to be distinguished. The character χ of E1 induces a character χ′ of E× by χ′(x) =
χ(x/xc). Let Πφ(G) be a discrete L-packet of G(F ) and let Πφ(G′) be its base change to
G′(F ) = GL2n(E). Then Πφ(G′) is an irreducible tempered representation. Let H ′(F ) =

{
(
h 0
0 h

)(
In X
0 In

)
| h ∈ GLn(E), X ∈ Matn×n(E)} be the Shalika subgroup and we define

the character χ′ ⊗ ξ′ on it to be

χ′ ⊗ ξ′(
(
h 0
0 h

)(
In X
0 In

)
) = χ′(det(h))ψ(trE/F (tr(X))).
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Theorem 1.10. With the notation above, the packet Πφ(G) is (H+, χ ⊗ ξ+)-distinguished
(i.e. m+(π, χ) 6= 0 for some π ∈ Πφ(G)) only if Πφ(G′) is distinguished by the Shalika model
(H ′, χ′ ⊗ ξ′).

Remark 1.11. By Theorem 1.9, we know that the packet Πφ(G) is (H+, χ⊗ξ+)-distinguished
if and only if it is (H−, χ⊗ ξ−)-distinguished.

Our next result for the unitary Shalika model is to compute the summation of the multi-
plicities over certain discrete L-packets. Assume that Πφ(G′) is distinguished by the Shalika
model (H ′, χ′ ⊗ ξ′). By Corollary 1.1 of [25], Πφ(G′) is of the form (χ′′ is a character of E×

with χ′ = (χ′′)2)

Πφ(G′)⊗ (χ′′ ◦ det)−1 = (τ1 × · · · × τl)× (σ1 × σ∨1 )× · · · × (σm × σ∨m)

where

� τi is a discrete series of GL2ai(E) that is conjugate self-dual, self-dual and of symplectic
type. In particular, ai is even.

� σj is a discrete series of GLbi(E) that is conjugate self-dual, but NOT self-dual.

� τi, σj are all distinct.

�
∑l

i=1 ai + 2
∑m

j=1 bj = 2n.

We will consider the special case when m = 0. The general case will be consider in our
future paper. When m = 0, Πφ(G′) appears discretely in the L2-space of the Shalika model.

Theorem 1.12. With the notation above, we have∑
π∈Πφ(G)

m+(π, χ) =
∑

π∈Πφ(G)

m−(π, χ) = 2l−1.

The idea to prove our main theorems for the unitary Shalika model (resp. the Galois
model for classical groups) is by comparing the simple trace formula of the unitary Shalika
model (resp. the Galois model for classical groups) with the twisted simple trace formula
for the Shalika model (resp. Galois model for general linear groups), we refer the reader to
Section 8 (resp. Section 9) for details.

In our next paper, we will prove the spectral side of the trace formula in the general case
and we will use it to compute the multiplicity of all the discrete series for the Galois model
for classical groups and the unitary Shalika model.
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1.2 Organization of the paper

In Section 2, we introduce basic notations and conventions of this paper. This include some
extended discussions of twisted weighted orbital integrals, germ expansions and the twisted
local trace formula for strongly cuspidal functions.

In Section 3, we introduce the notion of coregular varieties and we will have an extended
discussion of symmetric varieties.

In Section 4, we will introduce certain (ι-)weighted functions associated to singular
semisimple elements and we will prove an integral formula of the regular germs of quasi-
characters. We will also prove a descent formula for the ι-weighted functions which will be
used in later section.

We prove a special case of the spectral expansion of the trace formula in Section 5 and
in Section 6 we will prove the geometric expansion.

In Section 7 we will discuss our first two applications of the trace formula, namely a
simple trace formula for strongly cuspidal functions and a multiplicity formula.

In Section 8 and 9 we will discuss another two applications of the trace formula. In
Section 8 we will prove our theorems for the unitary Shalika models and in Section 9 we will
prove our theorems for the Galois models of classical groups.

In Appendix A we will prove some results regarding finitely generated convex sets and in
Appendix B we will prove the Howe’s conjecture for twisted weighted orbital integrals. The
results in the two appendices will be used in Section 4 in our proof of the integral formula
of the regular germs of quasi-characters.
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2 Groups and twisted spaces

Throughout the paper, F will be a non-Archimedean local field of characteristic zero with
normalized absolute value |.|. Unless otherwise specified, all the groups and varieties that we
will consider are implicitely supposed defined over F . We fix a non-trivial additive character
ψ : F → C× and, whenever convenient, we will also fix an algebraic closure F of F .
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For V a real vector space, we write V ∗ for its dual and we denote by VC = V ⊗R C its
complexification. Moreover, iV ⊂ VC will stand for the real subspace of purely imaginary
vectors.

For two complex valued functions f and g on a set X with g taking values in R≥0, we
write that

f(x)� g(x), x ∈ X,
and say that f is essentially bounded by g, if there exists a constant c > 0 such that for all
x ∈ X, we have

|f(x)| ≤ cg(x).

We say f and g are equivalent, which is denoted by

f(x) ∼ g(x)

if f is essentially bounded by g and g is essentially bounded by f .

2.1 Groups

In this section, we fix some notation relative to the datum of a linear algebraic group G
defined over F . First, we write rk(G) for the (absolute) rank of G, that is dim(T ) for any
maximal torus T ⊂ G, UG for the unipotent radical of G and we will denote Lie algebras
by the corresponding gothic letter such as g for G. The adjoint representations G→ GL(g)
and g → End(g) will be denoted by g 7→ Adg and X 7→ adX respectively. We also write g∗

for the dual of g. The exponential map, which is well-defined on some neighborhood of 0 in
g(F ) to G(F ), will be denoted by exp. For every g ∈ G, we write Adg both for the adjoint
action of g on G and g. We also denote by X∗(G) the group of algebraic characters G→ Gm

defined over F and by AG the maximal central split torus in G/UG. We set

AG = Hom(X∗(G),R) = Hom(X∗(AG),R)

and we let as usual HG : G(F ) → AG be the homomorphism defined by 〈HG(g), χ〉 =
log|χ(g)| for every (g, χ) ∈ G(F ) × X∗(G). We denote by Grs and grs (resp. Greg and
greg) the open subsets of regular semi-simple elements (resp. regular elements) in G and
g respectively. The notation δG will stand for the modular character of G(F ) that is the
character δG : G(F ) → R∗+ defined by δG(g) = |det Adg |g|. For every semi-simple element
X ∈ g(F ), we let

DG(X) = |det adX |g/gX |
be its Weyl discriminant, where gX stands for the centralizer of X. The Weyl discriminant
DG(g) for g ∈ G semi-simple is defined in a similar way. We also define algebraic variants
of the Weyl discriminant by

DG
alg(X) = det adX |g/gX , DG

alg(x) = det 1− Adx |g/gx

for X ∈ grs and x ∈ Grs regular semi-simple elements. Note that these extend to regular
functions on g and G respectively.

16



When G is connected and P ⊂ G is a parabolic subgroup, there is a natural splitting
AP = AG⊕AGP and we can define as usual subsets ∆G

P ⊂ (AGP )∗, ∆G,∨
P ⊂ AGP , that we call by

abuse of terminology the sets of simple roots and coroots associated to the pair P ⊂ G, see
e.g. [23, §1.2]. When G is moreover reductive and clear from the context, we will sometimes
drop the superscript.

2.2 Twisted spaces

In this paper, we will freely use the notion of twisted space due to Labesse as well as corre-
sponding terminology. The main references are [23] and [28] but for the reader’s convenience
we recall most of the definitions here.

A twisted space is a pair (G, G̃) where G is a group and G̃ is a set equipped with two
commuting left and right actions

(2.2.1) G× G̃×G→ G̃, (g, γ, g′) 7→ gγg′

each making G̃ into a principal G-homogeneous space and such that G̃ 6= ∅. Similarly, a
twisted space over F is a pair (G, G̃) where G is an algebraic group over F and G̃ is an
algebraic variety over F equipped with two commuting regular actions as in (2.2.1) both

making G̃ into a principal G-torsor and such that G̃(F ) 6= ∅. We moreover say that (G, G̃)
is reductive (resp. connected) if G is so.

Let (G, G̃) be a twisted space over F with G linear. For every γ ∈ G̃, we denote by Adγ
the unique automorphism of G such that

γg = Adγ(g)γ, for every g ∈ G.

We will denote by θG̃ the outer automorphism ofG over F (i.e. an element of AutF (G)/Ad(G(F )))

associated to Adγ for any γ ∈ G̃(F ) (it is independent of γ). We will also write θ for θG̃
when the twisted space G̃ is clear from the context. When θG̃, or Adγ, induces natural
automorphisms on related objects these will invariantly be denoted by the same symbol. For
example, θG̃ induces an automorphism of AG and AG. We write AG̃ for the connected com-
ponent of the subgroup of fixed points AθG. The following condition on θG̃ will be assumed
throughout:

(2.2.2) the outer automorphism θG̃ is of finite order.

Note that if G is reductive, this is equivalent to the restriction θ |Z(G) to the center of G
being of finite order. We set

AG̃ = Hom(X∗(AG̃),R).

Then, AG̃ can naturally be identified with the subspace of θG̃-invariants in AG and due
to condition (2.2.2) it admits a unique θG̃-stable complement so that we have a canonical
projection AG → AG̃. We denote by

HG̃ : G(F )→ AG̃
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the composite of HG with that projection and by AG̃,F the lattice HG̃(G(F )). We also set
iA∨

G̃,F
= Hom(AG̃,F , 2iπZ), a subgroup of iA∗

G̃
, and iA∗

G̃,F
= iA∗

G̃
/iA∨

G̃,F
. We also denote by

δG̃ the “modular character” of G̃(F ) that is the function δG̃ : G̃(F )→ R+ defined by

δG̃(γ) = |det Adγ |g|.

For a subset X ⊂ G, the normalizer of X in G̃ is the subset of γ ∈ G̃ such that
Adγ(X) = X. We denote by NormG̃(X) the normalizer of X in G̃ and by NormG̃(F )(X) =

NormG̃(X)∩G̃(F ). Similarly, for a subset X ⊂ G̃ we write NormG(X) (resp. ZG(X)) for the
normalizer (resp. the centralizer) of X in G that is the subset of x ∈ G such that x−1Xx = X
(resp. x−1γx = γ for every γ ∈ X) and we set NormG(F )(X) = NormG(X) ∩ G(F ) (resp.

ZG(F )(X) = ZG(X) ∩ G(F )). When γ ∈ G̃, we simply write ZG(γ) for ZG({γ}) and we
denote by Gγ the neutral component of ZG(γ).

We henceforth assume that G is connected and reductive. A twisted parabolic subspace
of G̃ is the normalizer P̃ = NormG̃(P ) of a parabolic subgroup P ⊂ G satisfying P̃ (F ) 6= ∅
(or equivalently P̃ (F ) 6= ∅). Note that the parabolic subgroup P is entirely determined by

P̃ and that (P, P̃ ) is a twisted space over F . If P̃ is a twisted parabolic subspace of G̃, a

Levi component of P̃ is the normalizer M̃ = NormP̃ (M) in P̃ of a Levi component M of

P . Note that the condition P̃ (F ) 6= ∅ implies M̃(F ) 6= ∅. A twisted Levi subspace of G̃ is

a Levi component M̃ of some twisted parabolic subspace P̃ of G̃. Note that if P̃ ⊂ G̃ is a
parabolic subspace and M̃ ⊂ P̃ is a Levi component of it, we have (canonically) AM̃ = AP̃
and AM̃ = AP̃ .

Let M̃ ⊂ G̃ be a twisted Levi subspace. We denote by P(M̃) (resp. F(M̃)) the set of

twisted parabolic subspaces with Levi component M̃ (resp. containing M̃). For Q̃ ∈ F(M̃),
we have a natural decomposition

AM̃ = AQ̃ ⊕A
Q̃

M̃
.

We will also write AQ̃
P̃

for AQ̃
M̃

for every P̃ ∈ P(M̃).

For two parabolic subspaces P̃ ⊂ Q̃, we denote by ∆Q̃,∨
P̃

and ∆Q̃

P̃
the respective images of

∆Q,∨
P and ∆Q

P by the natural projections AQP → A
Q̃

P̃
and (AQP )∗ → (AQ̃

P̃
)∗.

If M ⊂ G is a Levi subgroup (not necessarily corresponding to any twisted Levi subspace

of G̃), we set

WG(M) = NormG(F )(M)/M(F ) and W G̃(M) = NormG̃(F )(M)/M(F ).

Note that if W G̃(M) 6= ∅ then (WG(M),W G̃(M)) is a twisted group.

Two twisted parabolic subspaces P̃ and Q̃ of G̃ are called opposite if the corresponding
parabolic subgroups P and Q of G are so or, equivalently, if the intersection P̃ ∩ Q̃ is a
common Levi component of P̃ and Q̃. If M̃ ⊂ G̃ is a twisted Levi subspace and P̃ ∈ P(M̃),

there exists a unique Q̃ ∈ P(M̃) which is opposite to P̃ .
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There is also a notion of twisted maximal torus: it is a subvariety T̃ ⊂ G̃ defined over
F for which there exists a Borel pair (B, T ), not necessarily defined over F , such that

T̃ = NormG̃(B) ∩NormG̃(T ) and T̃ (F ) 6= ∅. If T̃ ⊂ G̃ is a twisted maximal torus, the torus

T ⊂ G is uniquely determined by T̃ and is defined over F . Moreover, the pair (T, T̃ ) is a

twisted space over F . We say that a twisted maximal torus T̃ ⊂ G̃ is elliptic if AT̃ = AG̃.

For any twisted maximal torus T̃ ⊂ G̃ we set

W (G, T̃ ) = NormG(F )(T̃ )/T (F ).

An element γ ∈ G̃ is semisimple if Adγ normalizes a Borel pair (B, T ) (not necessarily

defined over F ). The subset of semisimple elements is denoted G̃ss. Also, we say that γ ∈ G̃
(resp γ ∈ G̃(F )) is regular semisimple (resp. regular elliptic) if the neutral component Gγ

of its centralizer ZG(γ) is a torus (resp. a torus anisotropic modulo AG̃). We denote by G̃rs

(resp. G̃(F )ell) the open subset of regular semi-simple elements in G̃ (resp. of regular elliptic

elements in G̃(F )). We write Γell(G̃) for the set of G(F )-conjugacy classes in G̃(F )ell and for

γ ∈ G̃ss(F ) we define its Weyl discriminant by

DG̃(γ) = |det(1− Adγ) |g/gγ |

where gγ stands for the Lie algebra of Gγ.
We henceforth fix a minimal parabolic subgroup Pmin of G with a Levi decomposition

Pmin = MminUmin and we let P̃min = NormG̃(Pmin), M̃min = NormP̃min
(Mmin). Then, P̃min is a

minimal parabolic subspace of G̃ and M̃min a Levi component of it. We denote by L(M̃min)

the set of twisted Levi subspaces of G̃ containing M̃min and for every M̃ ∈ L(M̃min) we set

W̃M = NormM(F )(M̃min(F ))/Mmin(F ).

We also fix a special maximal compact subgroup K of G(F ) in good position relative to
Mmin.

2.3 Log-norms and Harish-Chandra Ξ function

In this paper we shall freely use the notion of log-norms on algebraic varieties over F as
defined in [5, §1.2], which are simple variants of the norms introduced by Kottwitz in [22,
§18]. For every algebraic variety X over F , we will fix a log-norm σX on it and, for C > 0,
we denote by 1σX≤C the characteristic function of the set

{x ∈ X(F )| σX(x) ≤ C}.

In particular, we have log-norms σG and σG̃ on G and G̃ respectively that for simplicity

we will both denote by σ. For any given base-point γ0 ∈ G̃(F ) we have σ(gγ0) ∼ σ(g) for
g ∈ G(F ). Moreover, it will be convenient to assume, as we may, that σ is left and right
K-invariant for some chosen special maximal compact subgroup K ⊂ G(F ).

19



Lemma 2.1. Let W,Z be two algebraic varieties over F and f : W → Z be a proper
morphism. Then, we have

(2.3.1) σZ(f(x)) ∼ σW (x), for x ∈ W (F ).

Proof. By Chow’s lemma [32, Tag 02O2], there exists for some n > 0 a closed subscheme
W ′ ↪→ Z × Pn with a surjective regular morphism π : W ′ → W such that the following
diagram commutes

W
f

!!

W ′
π

oo � � // Z × Pn

pr1
zz

Z

where pr1 : Z × Pn → Z stands for the first projection. It is readily seen that

σPn(y) ∼ 1, for y ∈ Pn(F )

and therefore

σZ×Pn(z, y) ∼ σZ(z) + σPn(y) ∼ σZ(z), for (z, y) ∈ Z(F )× Pn(F ).

As W ′ ↪→ Z × Pn is a closed immersion, it follows that

σZ(f(π(x′)))� σW (π(x′))� σW ′(x
′) ∼ σZ×Pn(x′) ∼ σZ(pr1(x′)) = σZ(f(π(x′))), x′ ∈ W ′(F ).

Hence, σZ(f(π(x′))) ∼ σW (π(x′)) for x′ ∈ W ′(F ). As π is surjective, this implies (2.3.1).

We also denote by ΞG, or simply by Ξ, the basic spherical function of Harish-Chandra i.e.
the normalized spherical matrix coefficient (with respect to some choice of special compact
subgroup K ⊂ G(F )) of the unramified representation with trivial Satake parameter. Fixing

a base-point γ0 ∈ G̃(F ), we also define a function ΞG̃ on G̃(F ) by

ΞG̃(gγ0) = ΞG(g), for g ∈ G(F ).

Standard properties of ΞG have obvious analogs for ΞG̃ e.g. we have (see [33, proposition
II.4.5]):

(2.3.2) Let P̃ = M̃UP be a parabolic subspace of G̃. Then, for every d > 0, there exists
d′ > 0 such that

δP̃ (m̃)1/2

∫
UP (F )

ΞG̃(m̃u)σ(m̃u)−d
′
du� ΞM̃(m̃)σ(m̃)−d, for m̃ ∈ M̃(F ).

From the ‘doubling principle’ [33, lemme II.1.3] we also deduce:

(2.3.3) For every compact-open subset ωG̃ of G̃(F ) we have∫
ω
G̃

ΞG̃(xγy)dγ � ΞG(x)ΞG(y), for x, y ∈ G(F ).
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We let C(G̃(F )) be the Harish-Chandra Schwartz space of G̃(F ) i.e. the space of functions

f : G̃(F ) → C that are left and right invariant by some compact-open subgroup of G(F )
and such that, for every d > 0, we have

sup
γ∈G̃(F )

|f(γ)|ΞG̃(γ)−1σ(γ)d <∞.

For every compact-open subgroup J ⊂ G(F ), the subspace C(J\G̃(F )/J) of J-biinvariant
functions is naturally a Fréchet space, the topology being associated to the seminorms defined
by the above supremum for every d > 0, and C(G̃(F )) =

⋃
J C(J\G̃(F )/J) is a strict LF

space. Moreover, the subspace C∞c (G̃(F )) of locally constant compactly supported functions

is dense in C(G̃(F )). The Harish-Chandra Schwartz space C(G(F )) of G(F ) is defined

similarly (it suffices to replace ΞG̃ and σG̃ by ΞG and σG in the definition). We denote
by 0C(G(F )) the subspace of cusp forms i.e. of functions f ∈ C(G(F )) such that for every
proper parabolic subgroup P = MUP ( G,∫

UP (F )

f(xu)du = 0, for every x ∈ G(F ).

2.4 Measures

Let T be a torus (over F ). We equip T (F ) with a Haar measure as follows: if T is split we
choose the unique Haar measure giving to the maximal compact subgroup T (F )c measure
one, in general we endow T (F ) with the measure such that its quotient by the measure just
defined on AT (F ) gives T (F )/AT (F ) = (T/AT )(F ) a total mass of one.

Let T̃ ⊂ G̃ be a twisted maximal torus. The neutral connected component T θ,0 of the
subgroup T θ of θT̃ -fixed points is a torus and therefore, T θ,0(F ) is already equipped with a

measure as in the above discussion. Let T̃ (F )/(1 − θ)(T (F )) be the quotient of T̃ (F ) by

the adjoint action of T (F ). We endow T̃ (F )/(1 − θ)(T (F )) with the unique left and right

T (F )-invariant measure such that, for every γ ∈ T̃ (F ), the application

T θ,0(F )→ T̃ (F )/(1− θ)(T (F ))

t 7→ γt

is locally measure preserving. Set T̃reg(F ) := T̃ (F )∩ G̃rs(F ). Then, T̃reg(F )/(1− θ)(T (F )) is

an open subset of T̃ (F )/(1− θ)(T (F )) (for the quotient topology). To simplify notation, we

will write T̃ (F )/θ (resp. T̃reg(F )/θ) for T̃ (F )/(1 − θ)(T (F )) (resp. T̃reg(F )/(1 − θ)(T (F ))).

Similarly, we write T̃/θ for the GIT quotient of T̃ by the adjoint action of T .
We endow the real vector spaces AG and AG̃ with the unique Haar measures for which

the lattices HG(AG(F )) and HG̃(AG̃(F )) are of covolume one. Through the exponential map,
iA∗G and iA∗

G̃
can be identified with the Pontryagin duals of AG and AG̃. We equip them

with the dual measures.
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Let Tell(G̃) (resp. T (G̃)) be a set of representatives of the G(F )-conjugacy classes of

elliptic twisted maximal tori (resp. twisted maximal tori) in G̃. We equip the set Γell(G̃)

(resp. Γ(G̃)) of regular elliptic conjugacy classes in G̃(F ) (resp. regular semisimple conjugacy

classes in G̃(F )) with a measure which is characterized by:∫
Γell(G̃)

ϕ(γ)dγ =
∑

T̃∈Tell(G̃)

|W (G, T̃ )|−1[T θ(F ) : T θ,0(F )]−1

∫
T̃reg(F )/θ

ϕ(t)dt

resp.

∫
Γ(G̃)

ϕ(γ)dγ =
∑

T̃∈T (G̃)

|W (G, T̃ )|−1[T θ(F ) : T θ,0(F )]−1

∫
T̃reg(F )/θ

ϕ(t)dt

 .

for every “reasonable” function ϕ on Γell(G̃) (resp. on Γ(G̃)).
These conventions also apply to the parabolic and Levi subgroups (resp. parabolic and

Levi subspaces) of G (resp. of G̃). In particular, the definition of the measures on Γell(G̃)

and Γ(G̃) was chosen so that Weyl’s integration formula for G̃(F ) (see [28, §4.1]) takes the
following forms:∫

G̃(F )

f(γ)dγ =

∫
Γ(G̃)

DG̃(γ)

∫
Gγ(F )\G(F )

f(g−1γg)dgdγ(2.4.1)

=
∑

M̃∈L(M̃min)

|W̃M ||W̃G|−1

∫
Γell(M̃)

DG̃(γ)

∫
Gγ(F )\G(F )

f(g−1γg)dgdγ

for every f ∈ L1(G̃(F )) where in the above formula, we have chosen a Haar measure on

G(F ) from which we deduce a measure on G̃(F ) by translation by any element γ ∈ G̃(F )
and we put on the F -points of the torus Gγ the canonical measure defined above.

There is yet another description of the measure on Γ(G̃) that will be useful to us. More

precisely, for every γ ∈ G̃rs(F ) set G̃γ = γGγ. Then, the pair (Gγ, G̃γ) is a twisted torus of a

very special form, namely every element of Gγ commutes with every element of G̃γ, which is

however rarely a maximal twisted torus of G̃ (unless the outer automorphism θG̃ is trivial).

Let S(G̃) be a set of representatives of twisted torus of the form (Gγ, G̃γ), γ ∈ G̃rs(F ), for
the natural action by conjugation of G(F ). Then, there exist constants (cS̃)S̃∈S(G̃) such that

the measure on Γ(G̃) takes the form:

(2.4.2)

∫
Γ(G̃)

ϕ(γ)dγ =
∑

S̃∈S(G̃)

cS̃

∫
S̃reg(F )

ϕ(s)ds

where, as before, we have set S̃reg = S̃ ∩ G̃rs and the measure on S̃reg(F ) is the restriction

of the translation of the natural Haar measure on S(F ) introduced above to S̃(F ). More

precisely, we can take for S(G̃) the set of twisted tori (T θ,0, T θ,0t) where T̃ runs over the set

of representatives T (G̃) fixed above and t describes a set of representatives of the T θ,0(F )
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orbits in T̃ (F )/θ. Then, the above integration formula follows readily from the definition of

the measure on Γ(G̃) with constants

cS̃ = |W (G, T̃ )|−1[T θ(F ) : T θ,0(F )]−1|T θ,0(F ) ∩ (1− θ)(T (F ))|−1.

For P ⊂ Q (resp. P̃ ⊂ Q̃) two parabolic subgroups of G (resp. two parabolic subspaces

of G̃) we equip

AQP = AP/AQ (resp. AQ̃
P̃

= AP̃/AQ̃)

with the quotient of the two Haar measures just defined.
All other groups considered will be equipped with Haar measures whose normalization

does not really matter. However, for some intermediate steps, it will be convenient to assume
that for P = MUP a parabolic subgroup of G, the Haar measures are chosen so that we have
the following integration formula:∫

G(F )

f(g)dg =

∫
M(F )

∫
UP (F )

∫
K

f(muk)dkdudm.

Finally, for a Levi subspace M̃ of G̃, we endow M̃(F ) with the unique (biinvariant)

measure such that for every γ ∈ M̃(F ) the bijection m ∈M(F ) 7→ γm ∈ M̃(F ) is measure-
preserving.

2.5 Estimates

Let T̃ ⊂ G̃ be a twisted maximal torus. In this section, we denote by θ = θT̃ the restriction

of Adt to T for any t ∈ T̃ (it does not depend on t). As in the previous section, we write

T̃reg(F )/θ = T̃reg(F )/(1− θ)(T (F )) for the quotient of T̃reg(F ) by the adjoint action of T (F )

and we denote by T̃/θ = T̃ /(1− θ)T the categorical quotient of T̃ by the adjoint action of T .

Lemma 2.2. We have

inf
t∈T (F )

σG(tg)� σG̃(g−1γg) + |logDG̃(γ)|

for (g, γ) ∈ G(F )× T̃reg(F ).

Proof. Let Y = T̃reg ×T G be the quotient of T̃reg × G by the free action of T given by
t · (γ, g) = (tγt−1, tg). Then, the regular map

Y → G̃rs, [γ, g] 7→ g−1γg

is finite. Thus, by [22, Proposition 18.1(1)], we have

(2.5.1) σY (γ, g) ∼ σG̃rs
(g−1γg) ∼ σG̃(g−1γg) + |logDG̃(γ)|, for [γ, g] ∈ Y (F ).
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On the other hand, the regular map Y → T\G, [γ, g] 7→ Tg, implies that

(2.5.2) σT\G(g)� σY (γ, g), for [γ, g] ∈ Y (F ).

Finally, by [22, Proposition 18.3], we have

(2.5.3) σT\G(g) ∼ inf
t∈T (F )

σ(tg), for g ∈ G(F ).

The lemma readily follows from the combination of (2.5.1), (2.5.2) and (2.5.3).

For every positive function f on G̃(F ) and γ ∈ T̃reg(F ) we set

JG̃(γ, f) = DG̃(t)1/2

∫
A
T̃

(F )\G(F )

f(g−1γg)dg

whether the integral is convergent or not. Note that this expression only depends on the
image of γ in T̃reg(F )/θ.

Proposition 2.3. For every d > 0 there exists d′ > 0 such that the orbital integral JG̃(γ,ΞG̃σ−d
′

G̃
)

is convergent for all γ ∈ T̃reg(F ) and we have

sup
γ∈T̃reg(F )/θ

σT̃/θ(γ)dJG̃(γ,ΞG̃σ−d
′

G̃
) <∞.

Proof. Let M̃ ⊂ G̃ be the centralizer of AT̃ . Then, M̃ is a twisted Levi subspace. Choose

a parabolic subspace P̃ = M̃UP ∈ P(M̃). By the Iwasawa decomposition G(F ) = P (F )K
and a standard Jacobian computation, up to a constant depending on measures, for every
positive function f on G̃(F ) we have

JG̃(γ, f) = JM̃(γ, fP̃ )

where fP̃ is the function on M̃(F ) defined by

fP̃ (m̃) = δP̃ (m̃)1/2

∫
K

∫
UP (F )

f(k−1m̃uk)dudk, m̃ ∈ M̃(F ).

Therefore, by (2.3.2), up to replacing G̃ by M̃ we may assume that AT̃ = AG̃ i.e. that T̃

is elliptic in G̃. The statement of the proposition can also be readily reduced to the case
where AG̃ = 1 which we assume from now on. Then, as T̃ is elliptic the quotient T̃ (F )/θ is
compact and we just need to show the existence of d0 > 0 such that

sup
γ∈T̃reg(F )/θ

JG̃(γ,ΞG̃σ−d0
G̃

) <∞.

Assume for one moment the following claim:
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(2.5.4) There exists d0 > 0 such that for almost all γ ∈ T̃reg(F )/θ, the integral defining

JG̃(γ,ΞG̃σ−d0
G̃

) converges.

Then, we can conclude as in [12, Corollary 2] using Howe’s conjecture for twisted groups
[28, Chap. 2, théorème 2.1]. Indeed, let (Ωn)n>1 be an increasing and exhaustive4 sequence

of K-biinvariants compact subsets of G̃(F ) and set fn = 1ΩnΞG̃σ−d0
G̃

. Then, (fn) is an

increasing sequence of functions in Cc(K\G̃(F )/K) converging pointwise to ΞG̃σ−d0
G̃

hence

JG̃(γ, fn) converges to JG̃(γ,ΞG̃σ−d0
G̃

) for all γ ∈ T̃reg(F )/θ (whether the last integral is finite

or infinite). However, by [28, Chap. 1, 4.2 (1)], the functions γ ∈ T̃reg(F )/θ 7→ JG̃(γ, fn) are
locally constant and bounded whereas by [28, Chap. 2, théorème 2.1] (“Howe’s conjecture”

for the twisted group G̃) the vector space they span is finite dimensional. It follows that the

function γ ∈ T̃reg(F )/θ 7→ JG̃(γ,ΞG̃σ−d0
G̃

) has the same properties (i.e. it is locally constant

and bounded) and this proves the proposition.
It remains to show (2.5.4). Set T θ for the subgroup of θ-fixed points in T (recall that

θ = θT̃ ). Let γ ∈ T̃reg(F ) and let (T θ)′ be the inverse image of G̃rs by the morphism

t ∈ T θ 7→ γt. Then, the map t ∈ (T θ)′(F ) 7→ γt((1 − θ)(T (F ))) ∈ T̃reg(F )/θ is a local
homeomorphism. Therefore, by Fubini, we just need to check that for every compact-open
subset ω ⊂ (T θ)′(F ), the integral

(2.5.5)

∫
ω

∫
G(F )

ΞG̃(g−1γtg)σG̃(g−1γtg)−d0dgdt

converges. First, we show that

(2.5.6) σG(g)� σG̃(g−1γtg), for (g, t) ∈ G(F )× ω.

The morphism

(2.5.7) (T θ)′ × T θ\G→ G̃rs, (t, g) 7→ g−1γtg

is finite étale. Therefore, we have

σT θ\G(g) + σ(T θ)′(t)� σG̃rs
(g−1γtg) ∼ σG̃(g−1γtg) + |logDG̃(γt)|

for (g, t) ∈ G(F ) × (T θ)′(F ). On the other hand, since ω is compact, we have σ(T θ)′(t) ∼ 1

and |logDG̃(γt)| ∼ 1 for t ∈ ω. Combining this with the previous inequality, gives

σT θ\G(g)� σG̃(g−1γtg), for (g, t) ∈ G(F )× ω.

Moreover, by [22, Proposition 18.3] we have

σT θ\G(g) ∼ inf
t∈T θ(F )

σG(tg) ∼ σG(g), for g ∈ G(F ),

4Meaning that G̃(F ) =
⋃
n Ωn.
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(Recall that the twisted torus T̃ is elliptic and AG̃ = 1 hence T θ(F ) is compact.) and this
implies (2.5.6).

We now consider the integral (2.5.5). By (2.5.6) it is essentially bounded by∫
ω

∫
G(F )

ΞG̃(g−1γtg)σG(g)−d0dgdkdt

which can be rewritten as∫
ω

∫
K

∫
G(F )

ΞG̃(g−1k−1γtkg)σG̃(g)−d0dgdkdt.

Since the map (T θ)′(F ) × T θ(F )\G(F ) 3 (t, g) 7→ g−1γtg ∈ G̃(F ) is a local F -analytic
isomorphism, the last expression above is bounded up to a (multiplicative) constant by∫

ω
G̃

∫
G(F )

ΞG̃(g−1g̃g)σG̃(g)−d0dgdg̃

for some compact-open subset ωG̃ of G̃(F ). Furthermore, by (2.3.3), we have
∫
ω
G̃

ΞG̃(g−1g̃g)dg̃ �
ΞG(g)2 for g ∈ G(F ) and the integral (2.5.5) is therefore bounded up to a constant by∫

G(F )

ΞG(g)2σG(g)−d0dg

which is well-known to converge for d0 sufficiently large, see [33, lemme II.1.5].

2.6 Quasi-characters

Following [36, §1.6], by a quasi-character on G̃(F ) we mean a function Θ : G̃rs(F )→ C such

that for every semisimple element x ∈ G̃ss(F ), there is a local expansion

(2.6.1) Θ(x exp(X)) =
∑

O∈Nil(g∗x)

cΘ,O(x)ĵψ(O, X)

valid for X ∈ gx,rs(F ) sufficiently close to 0 and where

� Nil(g∗x) stands for the set of nilpotent Gx(F )-coadjoint orbits in g∗x(F );

� cΘ,O(x) ∈ C for every O ∈ Nil(g∗x);

� For O ∈ Nil(g∗x), ĵψ(O, .) is the unique locally integrable function on gx(F ) which is
locally constant on gx,rs(F ) and such that∫

gx(F )

ϕ(X)ĵψ(O, X)dX =

∫
O
ϕ̂(Z)dZ
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for every ϕ ∈ C∞c (gx(F )), where ϕ̂ ∈ C∞c (g∗x(F )) denotes the Fourier transform

Y ∈ g∗x(F ) 7→ ϕ̂(Y ) =

∫
gx(F )

ϕ(X)ψ(〈X, Y 〉)dX

and dZ is the Kirillov-Kostant Gx(F )-invariant measure on O deduced from the canon-
ical symplectic form on O and the self-dual measure on F associated to ψ (see [17]).

For x ∈ G̃ss(F ), we denote by Nilreg(g∗x) ⊂ Nil(g∗x) the subset of regular nilpotent coadjoint
orbits.

Lemma 2.4. Let Θ be a quasi-character on G̃(F ). The function

x ∈ G̃ss(F ) 7→ DG̃(x)1/2 max
O∈Nilreg(g∗x)

|cΘ,O(x)|

is locally bounded.

Proof. Let x ∈ G̃ss(F ) be a semisimple element. By [17, Lemma 3.2], we have

ĵψ(O, tX) = |t|− dim(O)/2ĵψ(O, X)

for every O ∈ Nil(g∗x), X ∈ gx,rs(F ) and t ∈ F×,2. Moreover, for X ∈ gx,rs(F ) sufficiently
close to 0, we have

DG̃(x exp(X)) = DG̃(x)DGx(X) and DGx(tX) = |t|δ(Gx)DGx(X)

for every t ∈ F× where we have set δ(Gx) = dim(Gx)− rk(Gx). As for every O ∈ Nil(g∗x) we
have dim(O) 6 δ(Gx) with equality if and only if O is regular, we deduce from the expansion
(2.6.1) that for every X ∈ gx,rs(F ) we have

lim
t∈F×,2,t→0

DG̃(x exp(tX))1/2Θ(x exp(tX)) = DG̃(x)1/2DGx(X)1/2
∑

O∈Nilreg(g∗x)

cΘ,O(x)ĵψ(O, X).

Since the functions ĵψ(O, .), O ∈ Nil(g∗x), are linearly independent this implies

DG̃(x)1/2 max
O∈Nilreg(g∗x)

|cΘ,O(x)| 6 c(Gx) lim sup
y∈G̃rs(F ),y→x

DG̃(y)1/2|Θ(y)|

where c(Gx) > 0 is a constant that depends only on the isomorphism class of Gx. By [17,

Corollary 6.3], the function (DG̃)1/2Θ is locally bounded and the lemma follows as there are

only finitely many isomorphism classes of centralizers Gx for x ∈ G̃ss(F ).
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2.7 Representations

In this paper, by a representation of G(F ) we mean a pair (π, Vπ) where Vπ is a complex
vector space and π : G(F ) → GL(Vπ) is a smooth representation of G(F ) on Vπ. Most
of the time we will omit the space Vπ and just write π for a representation of G(F ). For
λ ∈ A∗G,C, we denote by π 7→ πλ, where πλ(g) = e〈λ,HG(g)〉π(g), the twisting operation by λ
on representations of G(F ).

Let π be a representation of G(F ). We denote by π∨ the smooth contregredient of π
realized in the usual way on the space V ∨π of smooth functionals on Vπ. We denote by 〈., .〉
the canonical pairing on Vπ × V ∨π . We say that π is tempered if it is of finite length and for
every (v, v∨) ∈ Vπ × V ∨π there exists a constant C > 0 such that

|〈π(g)v, v∨〉| 6 CΞG(g), for every g ∈ G(F ).

We write Π2(G) (resp. Temp(G)) for the set of isomorphism classes of unitary square-
integrable (resp. tempered) irreducible representations of G(F ). If P = MU is a parabolic
subgroup of G and σ is a representation of M(F ), we let IGP (σ) be the smooth normalized
parabolic induction of σ to G(F ). When σ ∈ Temp(M), we write IGM(σ) for the isomorphism
class of IGP (σ) where P ∈ P(M) (it does not depend on this choice). Define Tempind(G) as
the set of isomorphism classes of representations of G(F ) of the form IGM(σ) where M is a
Levi subgroup of G and σ ∈ Π2(M). According to Harish-Chandra, every π ∈ Temp(G) can
be embedded in IGM(σ) for such a pair (M,σ) which is moreover unique up to conjugacy by
G(F ). Thus, we get a map

prG : Temp(G)→ Tempind(G).

We equip Tempind(G) with a topology that can be described as follows. Let M be a Levi
subgroup of G and σ ∈ Π2(M). Then, the set

O = {IGM(σλ) | λ ∈ iA∗M}

is a connected component of Tempind(G) and the topology on O is the quotient topology
inherited from iA∗M via the surjection

(2.7.1) λ ∈ iA∗M 7→ IGM(σλ) ∈ O.

We say that a function z : Tempind(G)→ C is smooth if for every pair (M,σ) as before, the
composition of z with the map (2.7.1) gives a C∞ function on iA∗M in the usual sense. We
denote by C∞(Tempind(G)) the vector space of smooth functions on Tempind(G). It is an
algebra for pointwise multiplication. Moreover, by the description of the image by Fourier
transform of the Harish-Chandra Schwartz space C(G(F )) [33], there exists an action

(2.7.2) C∞(Tempind(G))× C(G(F ))→ C(G(F )), (z, f) 7→ z ? f

of C∞(Tempind(G)) on C(G(F )) which is characterized by

(2.7.3) π(z ? f) = z(π)π(f)
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for every (π, z, f) ∈ Tempind(G)× C∞(Tempind(G))× C(G(F )). See also [31] for a different
approach where C∞(Tempind(G)) is shown to coincide with the so-called tempered Bernstein
center of G(F ).

The outer automorphism θ of G(F ) induces a bijection θ : Tempind(G) → Tempind(G).
We denote by Tempind(G)θ the subset of fixed points.

2.8 Twisted representations

A (smooth) representation of the twisted space G̃(F ) is a pair (π, π̃) where π is a represen-

tation of G(F ) and π̃ is a map G̃(F )→ GL(Vπ) satisfying

π̃(gγg′) = π(g)π̃(γ)π(g′), for every (g, γ, g′) ∈ G(F )× G̃(F )×G(F ).

Most of the time, we will simply refer to a representation of G̃(F ) by the map π̃, the
underlying representation (π, Vπ) ofG(F ) being understood. Note that if π̃ is a representation

of G̃(F ) then so is cπ̃ for every c ∈ C×. Moreover, a representation π of G(F ) extends to a

representation (π, π̃) of G̃(F ) (although not uniquely) if and only if its isomorphism class is
fixed by the outer automorphism θ.

Let π̃ be a representation of G̃(F ). We say that π̃ is G-irreducible if π is irreducible in the
usual sense i.e. if there is no nontrivial G(F )-invariant subspace of Vπ. We also say that π̃ is
admissible (resp. tempered) if π is so. We denote by π̃∨ the smooth contragredient of π̃ that

is the representation of G̃(F ) on the space V ∨π of smooth functionals on Vπ characterized by

〈π̃(γ)v, π̃∨(γ)v∨〉 = 〈v, v∨〉, for (γ, v, v∨) ∈ G̃(F )× Vπ × V ∨π .

Assume that π is of finite length. For every f ∈ C∞c (G̃(F )), we define as usual an
operator π̃(f) on Vπ characterized by

(2.8.1) 〈π̃(f)v, v∨〉 =

∫
G̃(F )

f(γ)〈π̃(γ)v, v∨〉dγ, for (v, v∨) ∈ Vπ × V ∨π .

These operators are of finite rank and, according to [11, Theorem 3], there exists a quasi-

character Θπ̃ on G̃(F ) (in the sense of Section 2.6), called the Harish-Chandra character of
π̃, such that

(2.8.2) Tr π̃(f) =

∫
G̃(F )

f(g)Θπ̃(g)dg, for every f ∈ C∞c (G̃(F )).

For ease of notation, we will denote by

cπ̃,O(x) = cΘπ̃ ,O(x), for every x ∈ G̃ss(F ) and O ∈ Nil(gx),

the various coefficients of the germs expansions of Θπ̃. If moreover π̃ is tempered, the
definition (2.8.1) of the operator π̃(f) still makes sense and the formula (2.8.2) is still valid

for f ∈ C(G̃(F )) (the integral being absolutely convergent).
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Let P̃ = M̃U be a parabolic subspace of G̃ and σ̃ be a representation of M̃(F ). We

denote by IG̃
P̃

(σ̃) the normalized parabolic induction of σ̃ i.e. the representation of G̃(F ) on
the space of smooth functions e : G(F )→ Vσ satisfying

e(mug) = δP (m)1/2σ(m)e(g)

for every (m,u, g) ∈M(F )× U(F )×G(F ) the action of G̃(F ) being given by

(IG̃
P̃

(γ, σ̃)e)(g) = δP̃ (γ′)1/2σ̃(γ′)e(g′)

for (γ, g) ∈ G̃(F )×G(F ) where gγ = γ′g′ is any decomposition with (γ′, g′) ∈ M̃(F )×G(F )
(the right hand side is readily seen to be independent of this decomposition). Note that the
underlying representation IGP (σ) of G(F ) is the usual normalized parabolic induction of σ.

Let M ⊂ G be a Levi subgroup and σ ∈ Π2(M). We set

NormG̃(F )(σ) = {ñ ∈ NormG̃(F )(M) | σ ◦ Adñ ' σ},

NormG(F )(σ) = {n ∈ NormG(F )(M) | σ ◦ Adn ' σ}

and
W G̃(σ) = NormG̃(F )(σ)/M(F ), WG(σ) = NormG(F )(σ)/M(F ).

Assume that W G̃(σ) 6= ∅. Then, W G̃(σ) is a torsor under WG(σ) both for left and right

multiplication i.e. the pair (WG(σ),W G̃(σ)) is a twisted space. Let P ∈ P(M). As in
[28, Chap 1, §2.8], and making auxilliary choices (including a regularization of standard

intertwining operators), we can define for each w̃ ∈ W G̃(σ) an extension of IGP (σ) to a

representation ĨGP (σ)(w̃, .) of G̃(F ). This extension depends on the auxilliary choices only
up to multiplication by a nonzero scalar. Let WG

0 (σ) be the distinguished subgroup of

elements w ∈ WG
0 (σ) such that for each w̃ ∈ W G̃(σ) the representations ĨGP (σ)(w̃, .) and

ĨGP (σ)(w̃w, .) are the same up to a scalar. The twisted R-group of (M,σ) is the quotient

RG̃(σ) = W G̃(σ)/WG
0 (σ). We also denote by RG(σ) = WG(σ)/WG

0 (σ) the corresponding

R-group so that (RG(σ), RG̃(σ)) is again a twisted space. To every r ∈ RG̃(σ), we associate

the twisted representation ĨGP (σ)(r, .) = ĨGP (σ)(w̃r, .) where w̃r ∈ W G̃(σ) is some chosen lift
of r. This representation still depends, up to a scalar, on various choices but, henceforth, we
will always assume that all such choices have been made and we will denote its isomorphism

class by ĨGM(σ)(r, .) (which, as the notation suggests, does not depend on P , at least up to a

scalar). Note, however, that the isomorphism class of the twisted representation ĨGM(σ)(r, .)⊗
ĨGM(σ)(r, .)∨ of G̃(F ) × G̃(F ) is completely canonical and independent of all the choices
involved.

Let E(G̃) be the set of G(F )-conjugacy classes of triples (M,σ, r) where (M,σ) is as above

and r ∈ RG̃(σ) is such that the character of ĨGM(σ)(r, .) (which, again, is only well-defined up
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to a scalar) is nonzero. For τ ∈ E(G̃) represented by a triple (M,σ, r), we will write π̃τ for the

twisted representation ĨGM(σ)(r, .). Actually, for τ, τ ′ ∈ E(G̃) the representations π̃τ and π̃τ ′
are isomorphic if and only if τ = τ ′ (this follows e.g. from [28, Chap. 1, proposition 2.9]) and

we will also sometimes identify E(G̃) with the set of isomorphism classes {π̃τ | τ ∈ E(G̃)}.
Note that for every π̃ ∈ E(G̃) the isomorphism class of the underlying representation π
belongs to Tempind(G)θ.

Each w̃ ∈ W G̃(σ) induces an automorphism of AM (induced from Adñ for any lifting

ñ ∈ G̃(F ) of w̃). Let W G̃
reg(σ) be the subset of w̃ ∈ W G̃(σ) such that Aw̃M = AG̃. Following

[28, §2.11], we define Edisc(G̃) (resp. Eell(G̃)) to be the subset of triples τ = [M,σ, r] ∈ E(G̃)

such that WG
0 (σ)r ∩W G̃

reg(σ) 6= ∅ (resp. WG
0 (σ) = {1} and r ∈ W G̃

reg(σ)). We also introduce

the further subset E2(G̃) of triples τ = [M,σ, r] ∈ E(G̃) such that W G̃(σ) = W G̃
reg(σ). By

[28, lemme 2.11], we have E2(G̃) ⊂ Eell(G̃) ⊂ Edisc(G̃).

Remark 2.5. The set E(G̃), Edisc(G̃) and Eell(G̃) do not exactly coincide with the ones

defined in [28, Chap. 1, §2.9] but correspond rather to the sets denoted by E(G̃)/conj,

Edisc(G̃)/conj and Eell(G̃)/conj in loc. cit.

There is a natural action of iA∗
G̃

on E(G̃) given by λ · [M,σ, r] = [M,σλ, r]
5. This action

factors through iA∗
G̃,F

and preserves the subsets Edisc(G̃), Eell(G̃) and E2(G̃). Let J ⊂ G(F )

be a compact-open subgroup. Then, we have:

(2.8.3) the subset Edisc(G̃)J of triples τ ∈ Edisc(G̃) such that the representation πτ admits
nonzero J-invariant vectors is finite modulo the action of iA∗

G̃
;

(see [28, Chap. 2, Proposition 2.2] for the case of Eell(G̃) the proof being entirely similar for

Edisc(G̃)).

We equip Edisc(G̃) with the unique measure such that for every τ ∈ Edisc(G̃), the twisting

map λ ∈ iA∗
G̃
7→ λ · τ is locally measure preserving. Thus, denoting by Edisc(G̃)/iA∗

G̃

the set of orbits in Edisc(G̃) under the action of iA∗
G̃

, for every sufficiently nice function

ϕ : Edisc(G̃)→ C6 we have∫
Edisc(G̃)

ϕ(τ)dτ =
∑

τ∈Edisc(G̃)/iA∗
G̃

|Stab(iA∗
G̃,F

, τ)|−1

∫
iA∗
G̃,F

ϕ(λ · τ)dλ

where we have denoted by Stab(iA∗
G̃,F

, τ) the stabilizer of τ in iA∗
G̃,F

.

5Identifying E(G̃) with a set of isomorphism classes of tempered representations of G̃(F ) as before, this
action is also sending π̃ to its “twist” by λ but this twist is only well-defined up to a scalar (it requires

the choice of an extension to G̃(F ) of the unramified character associated to λ e.g. through the choice of a
base-point).

6In practice, we will only consider functions ϕ that are supported in a finite number of iA∗
G̃

-orbits and

such that for every τ ∈ Edisc(G̃), λ ∈ iA∗
G̃
7→ ϕ(λ · τ) is continuous (even C∞).
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For τ = [M,σ, r] ∈ Edisc(G̃), we set (following [28, Sect. 2.11])

(2.8.4) ι(τ) = |RG(σ)r|−1|WG
0 (σ)|−1

∑
w̃∈WG

0 (σ)r∩W G̃
reg(σ)

εσ(w̃)|det(1− w̃) |AG̃M |
−1

where AG̃M = AM/AG̃, RG(σ)r denotes the centralizer of r in RG(σ) and the εσ(w̃) are certain

signs defined in loc. cit. In the particular case where τ ∈ Eell(G̃) this simplifies to

ι(τ) = D(τ) := |RG(σ)r|−1|det(1− r) |AG̃M |
−1.

Lemma 2.6. Let π̃ ∈ E(G̃). Then, π̃ ∈ E2(G̃) if and only if {πλ | λ ∈ iA∗G̃} is a connected

component of Tempind(G)θ.

Proof. Let M ⊂ G be a Levi subgroup and σ ∈ Π2(M). Then, π = IGM(σ) ∈ Tempind(G)θ

if and only if W G̃(σ) 6= ∅. Assume this is the case and set πλ = IGM(σλ) for every λ ∈ iA∗M .
Then, it suffices to show that

π ⊗ iA∗
G̃

:= {πλ | λ ∈ iA∗G̃}

is a connected component of Tempind(G)θ if and only if W G̃(σ) = W G̃
reg(σ). This, in turn, is

an easy consequence of the following claim:

(2.8.5) There exists a neighborhood U ⊂ iA∗M of 0 such that for every λ ∈ U , πλ ∈
Tempind(G)θ if and only if there exists w̃ ∈ W G̃(σ) such that w̃λ = λ.

To prove the claim, we first observe that, for λ ∈ iA∗M , πλ ∈ Tempind(G)θ if and only if there

exists w̃ ∈ W G̃(M) such that σλ ◦ Adw̃ ' σλ. Moreover, we can find a sufficiently small
WG(σ)-invariant neighborhood U ⊂ iA∗M of 0 such that:

� For every λ, µ ∈ U , we have σλ ' σµ if and only if λ = µ;

� for every w̃ ∈ W G̃(M) \W G̃(σ) and λ ∈ U , we have σλ ◦ Adw̃ /∈ σ ⊗ U .

It follows that, for λ ∈ U , we have πλ ∈ Tempind(G)θ if and only if there exists w̃ ∈ W G̃(σ)
such that σλ ◦ Adw̃ ' σλ or equivalently, since σλ ◦ Adw̃ ' σw̃−1λ, w̃λ = λ.

We can extend (2.7.2) to an action of C∞(Tempind(G)) on C(G̃(F )) as follows. Choose

γ ∈ G̃(F ) and set, for every f ∈ C(G̃(F )), fγ(g) = f(gγ) (g ∈ G(F )). This function belongs

to C(G(F )) and for (z, f) ∈ C∞(Tempind(G))× C(G̃(F )), we define z ? f ∈ C(G̃(F )) by

(z ? f)(gγ) := (z ? fγ)(g), for g ∈ G(F ).

As the endomorphism z? commutes with right translations, this definition is easily seen to
be independent on the choice of γ. Moreover, we have

(2.8.6) (zz′) ? f = z ? (z′ ? f)

and

(2.8.7) π̃(z ? f) = z(π)π̃(f)

for every (z, z′) ∈ C∞(Tempind(G))× C∞(Tempind(G)), f ∈ C(G̃(F )) and π̃ ∈ E(G̃).
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2.9 Orthogonal sets

Let (G, G̃) be a twisted space. We briefly recall the notion of (G̃, M̃)-families from [23].

Let M̃ be a Levi subspace of G̃. Two parabolic subspaces P̃ , Q̃ ∈ P(M̃) are said to be
adjacent if the intersection ∆∨

P̃
∩−∆∨

Q̃
is a singleton {α∨

P̃ ,Q̃
}. If this is the case, the hyperplane

{X ∈ iA∗
M̃
| 〈α∨

P̃ ,Q̃
, X〉 = 0} is called the wall separating P̃ and Q̃.

By definition (G̃, M̃)-orthogonal set is a family Y = (YP̃ )P̃∈P(M̃) of points in AM̃ such

that for every adjacent parabolic subspaces P̃ , Q̃ ∈ P(M̃), we have

YP̃ − YQ̃ ∈ Rα∨
P̃ ,Q̃

where ∆∨
P̃
∩ −∆∨

Q̃
= {α∨

P̃ ,Q̃
}. We further say that Y is positive if

YP̃ − YQ̃ ∈ R>0α
∨
P̃ ,Q̃

for every pair of adjacent parabolic subspaces P̃ , Q̃ ∈ P(M̃).

For any (G̃, M̃)-orthogonal set X = (XP̃ )P̃∈P(M̃), we set

d(X ) = min
P̃∈P(M̃)

min
α∈∆

P̃

α(XP̃ ), N(X ) = max
P̃∈P(M̃)

max
α∈∆

P̃

|α(XP̃ )|

that we shall call the depth and the norm of X respectively.
Let Y = (YP̃ )P̃∈P(M̃) be a (G̃, M̃)-orthogonal set. For Q̃ = L̃UQ ∈ F(M̃), we denote by

YQ̃ the projection to AL̃ of YP̃ for any P̃ ∈ P(M̃) such that P̃ ⊂ Q̃ (this projection does

not depend on the choice of P̃ ). To Y we associate functions ΓQ̃
L̃

(.,Y) on AQ̃
L̃

and complex

numbers vQ̃
L̃

(Y) ∈ C for every L̃ ∈ L(M̃) and Q̃ ∈ F(L̃) as follows:

ΓQ̃
L̃

(H,Y) =
∑

P̃∈F(L̃),P̃⊂Q̃

(−1)a
Q̃

P̃ τ̂ Q̃
P̃

(H − YP̃ ), H ∈ AQ̃
L̃
,

and

vQ̃
L̃

(Y) =

∫
AQ̃
L̃

ΓQ̃
L̃

(H,Y)dH.

Here τ̂ Q̃
P̃

denotes the characteristic function of the cone in A characterized by (where $α is

the fundamental weight associated to α)

τ̂ Q̃
P̃

(H) = 1⇔ $α(H) > 0, ∀α ∈ ∆Q̃

P̃
.

When Q̃ = G̃, we will sometimes drop the superscript Q̃. If Y is positive, vQ̃
L̃

(Y) is simply

the volume of the convex hull of (YP̃ )P̃∈P(L̃),P̃⊂Q̃. Once again, we will sometimes drop the
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superscript when Q̃ = G̃. We will also use τ Q̃
P̃

to denote the characteristic function of the
cone in A characterized by

τ Q̃
P̃

(H) = 1⇔ α(H) > 0, ∀α ∈ ∆Q̃

P̃
.

Let K be a special compact subgroup of G(F ). Using the Iwasawa decomposition G(F ) =

P (F )K, for every parabolic subspace P̃ ⊂ G̃, we can extend the homomorphism HP̃ to a

map G(F ) → AP̃ . Then, for every Levi subspace M̃ ⊂ G̃ and g ∈ G(F ), the family

HM̃(g) = (−HP̃ (g))P̃∈P(M̃) is a positive (G̃, M̃)-orthogonal set and we define

vQ̃
M̃

(g) = vQ̃
M̃

(HM̃(g)), for Q̃ ∈ F(M̃).

Let Λ ⊂ AM̃,Q := X∗(AM̃) ⊗Z Q be a Z-lattice. We say that a (G̃, M̃)-orthogonal

set Y = (YP̃ )P̃∈P(M̃) is Λ-rational if for every P̃ ∈ P(M̃), we have YP̃ ∈ Λ and we say

that it is rational if it is Λ-rational for some lattice Λ. We denote by CΛ(G̃, M̃) (resp.

CQ(G̃, M̃)) the set of all Λ-rational (resp. rational) (G̃, M̃)-orthogonal sets. Then, a function

Y ∈ CQ(G̃, M̃) 7→ f(Y) ∈ C is said to be a unitary polynomial-exponential if for every lattice

Λ ⊂ AM̃,Q we can find a family of polynomial functions Qµ,Λ,P̃ ∈ C[AM̃ ] for P̃ ∈ P(M̃) and

µ ∈ Λ̂ := Hom(Λ,S1) that are almost all equal to 0 and such that

f(Y) =
∑

P̃∈P(M̃)

∑
µ∈Λ̂

Qµ,Λ,P̃ (YP̃ )µ(YP̃ )

for every Y = (YP̃ )P̃∈P(M̃) ∈ CΛ(G̃, M̃). Moreover, we say that a unitary polynomial-
exponential function f is of degree at most r if the polynomials Qµ,Λ,P̃ are of degree at

most r for every lattice Λ ⊂ AM̃,Q, P̃ ∈ P(M̃) and µ ∈ Λ̂.

2.10 Weighted orbital integrals

Let M̃ be a Levi subspace of G̃, γ ∈ M̃(F ) ∩ G̃rs(F ) and Q̃ ∈ F(M̃). For f ∈ C(G̃(F )), we
define the twisted weighted orbital integral

ΦQ̃

M̃
(γ, f) =

∫
Gγ(F )\G(F )

f(g−1γg)vQ̃
M̃

(g)dg

as well as its normalized version

J Q̃
M̃

(γ, f) = DG̃(γ)1/2ΦQ̃

M̃
(γ, f).

The above integral is absolutely convergent. More precisely, for T̃ ⊂ M̃ a maximal
twisted torus, we claim:

34



(2.10.1) There exist p > 0 and, for every d > 0, a continuous semi-norm νd on C(G̃(F )) such
that ∣∣∣J Q̃

M̃
(γ, f)

∣∣∣ 6 νd(f)(1 + |logDG̃(γ)|)pσT̃/θ(γ)−d

for every γ ∈ T̃reg(F ) and f ∈ C(G̃(F )).

Indeed, there exists p > 0 such that vQ̃
M̃

(g) � σG(g)p for g ∈ G(F ). As vQ̃
M̃

is left invariant

by T (F ), by Lemma 2.2 this implies vQ̃
M̃

(g) � (1 + |logDG̃(γ)|)pσG̃(g−1γg)p for (g, γ) ∈
G(F )× T̃reg(F ). The claim is now a straightforward consequence of Proposition 2.3.

Now consider the case where G̃ = H̃ × H̃ where H̃ is a connected twisted reductive
space over F (with underlying reductive group H). Let M̃H be a Levi subspace of H̃. Then,

M̃ = M̃H × M̃H is a Levi subspace of G̃. Let γ ∈ M̃H(F ) ∩ H̃rs(F ) and f1, f2 ∈ C(H̃(F )).
We set (following [28, Chap. 1, §4.8])

J H̃
M̃H

(γ, f1, f2) =

∫
Hγ(F )\H(F )×Hγ(F )\H(F )

f1(x−1γx)f2(y−1γy)vH̃
M̃H

(x, y)dxdy

where the “weight” vH̃
M̃H

(x, y) is the volume associated to the positive (H̃, M̃H)-orthogonal
set

P̃H ∈ P(M̃H) 7→ H
P̃H

(y)−HP̃H
(x).

(Here P̃H denotes the unique parabolic subspace opposite to P̃H such that P̃H ∩ P̃H = M̃ .)
By the descent formulas of [28, Chap. 1, lemme 5.4], we have

(2.10.2) J H̃
M̃H

(γ, f1, f2) =
∑

L̃1,L̃2∈L(M̃H)

dH̃
M̃H

(L̃1, L̃2)J
Q̃1

M̃H
(γ, f1)J Q̃2

M̃H
(γ, f2)

where Q̃1, Q̃2 are certain parabolic subspaces in P(L̃1), P(L̃2) respectively and dH̃
M̃H

(L̃1, L̃2) is

a certain real numbers which is zero unlessAH̃
M̃H

= AH̃
L̃1
⊕AH̃

L̃2
and moreover dH̃

M̃H
(H̃, M̃H) = 1.

2.11 Twisted weighted characters

Let M̃ be a Levi subspace of G̃, R̃ ∈ F(M̃) and π̃ be a tempered representation of M̃(F ).
First assume that π̃ is in “general position” (more precisely, this means that π is in some
open-dense subset of the family {πλ | λ ∈ iA∗M̃}). Then, we define as in [28, Chap.1, §2.7] a
weighted character

f ∈ C(G̃(F )) 7→ J R̃
M̃

(π̃, f) := Tr(MR̃
M̃

(π)IG̃
P̃

(π̃, f))

where P̃ is any chosen parabolic subspace in P(M̃) (the distribution J R̃
M̃

(π̃, .) does not depend

on this choice) andMR̃
M̃

(π) is the operator on (the space of) IGP (π) associated to the (G̃, M̃)-

family of operators (M(π; Λ, Q̃))Q̃∈P(M̃) defined as in loc. cit.. Similarly, for f1, f2 ∈ C(G(F ))
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we set
J G̃
M̃

(π̃, f1, f2) = Tr
(
MG̃

M̃
(π∨ ⊗ π)IG̃×G̃

P̃×P̃
(π̃∨ ⊗ π̃, f1 ⊗ f2)

)
,

where this time the operator MG̃
M̃

(π∨ ⊗ π) is associated to the (G̃, M̃)-family

Q̃ ∈ P(M̃) 7→ M(π∨ ⊗ π; Λ, Q̃) =M(π∨; Λ, Q̃)⊗M(π; Λ, Q̃)

of operators on IG×GP×P (π∨ ⊗ π). The genericity assumption on π̃ is necessary for the above

(G̃, M̃)-families to be well-defined. However, the definitions of J R̃
M̃

(π̃, f) and J G̃
M̃

(π̃, f1, f2)

extend to every tempered representation π̃ thanks to the following property (see [28, Chap.
1, proposition 2.7]):

(2.11.1) The operator valued functions λ 7→ MR̃
M̃

(πλ) and λ 7→ MG̃
M̃

(π∨λ ⊗πλ) , a priori only
well-defined on an dense open subset of iA∗

M̃
, extend to smooth functions on all of

iA∗
M̃

.

Finally, by the descent formula of [28, Chap 1, lemme 5.4], for every f1, f2 ∈ C(G̃(F )) we
have

(2.11.2) J G̃
M̃

(π̃, f1, f2) =
∑

L̃1,L̃2∈L(M̃)

dG̃
M̃

(L̃1, L̃2)J
Q̃1

M̃
(π̃, f1)J Q̃2

M̃
(π̃, f2)

where Q̃1, Q̃2 and dG̃
M̃

(L̃1, L̃2) are as in (2.10.2).

2.12 Twisted strongly cuspidal functions

We say that a function f ∈ C(G̃(F )) is strongly cuspidal, if for every parabolic subspace

P̃ = M̃UP of G̃ and x ∈ G(F ), the function defined by

(2.12.1) xf(P̃ )(m̃) := δP̃ (m̃)1/2

∫
UP (F )

f(x−1m̃ux)du, for m̃ ∈ M̃(F ),

is identically zero. By a change of variable, this last condition is equivalent to

(2.12.2)

∫
UP (F )

f(x−1u−1m̃ux)du = 0, for every m̃ ∈ M̃(F ) ∩ G̃rs(F ) and x ∈ G(F ).

We denote by Cscusp(G̃(F )) ⊆ C(G̃(F )) the subspace of strongly cuspidal functions.

Let f ∈ Cscusp(G̃(F )). Let M̃ be a Levi subspace and γ ∈ M̃(F ) ∩ G̃rs(F ). For Q̃ =

L̃UQ ∈ F(M̃), the weight vQ̃
M̃

is left invariant by UQ(F ). Hence, by (2.12.2), we have

(2.12.3) J Q̃
M̃

(γ, f) = 0 unless Q̃ = G̃.
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Then, by the same argument as for [34, lemme 5.2], it follows that the weighted orbital
integral ΦM̃(γ, f) does not depend on the choice of K.

We define a function Θf on G̃rs(F ) by

Θf (γ) = (−1)aGγ−aG̃ΦG̃
M̃(γ)

(γ, f), γ ∈ G̃rs(F ),

where M̃(γ) stands for the centralizer of AGγ in G̃ (it is the minimal Levi subspace containing
γ), aGγ = dim(AGγ ) and aG̃ = dim(AG̃). It is proved in [36, proposition 1.7] that if f is

compactly supported then Θf is a quasi-character on G̃(F ) in the sense of Section 2.6. We

extend this result to every strongly cuspidal function f ∈ Cscusp(G̃(F )) in Section 2.13 (see

Corollary 2.11). For ease of notation, for every x ∈ G̃ss(F ), we set

cf,O(x) = cΘf ,O(x), O ∈ Nil(gx),

for the coefficients of the germ expansion of Θf near x.

Let again f ∈ Cscusp(G̃(F )). Let M̃ ⊂ G̃ be a twisted Levi subspace, π̃ be a tempered

representation of M̃(F ) and Q̃ ∈ F(M̃). By [36, lemme 1.13], we have

(2.12.4) J Q̃
M̃

(π̃, f) = 0 unless Q̃ = G̃.

Still by [36, lemme 1.13], we also have

(2.12.5) J G̃
M̃

(π̃, f) = 0 if π̃ is properly parabolically induced (e.g. if π̃ ∈ E(M̃) \ Eell(M̃)).

On the other hand, for π̃ ∈ Eell(M̃), we set

Θ̂f (π̃) = (−1)aM̃−aG̃J G̃
M̃

(π̃, f), for π̃ ∈ Eell(M̃).

Recall that in Section 2.8, we have defined an action of C∞(Tempind(G)) on C(G̃(F )).
We denote by C∞(Tempind(G))θ the subspace of θ-invariant functions in C∞(Tempind(G)).

Lemma 2.7. Let f ∈ C(G̃(F )) and z ∈ C∞(Tempind(G̃))θ. Then, if f is strongly cuspidal
so is z ? f .

Proof. Let P̃ = M̃UP be a proper parabolic subspace of G̃. By (2.3.2), for every x ∈ G(F )

the function xf(P̃ ) defined by the integral (2.12.1) belongs to C(M̃(F )). For σ̃ a tempered

representation of M̃(F ), we set

IG̃
P̃

(σ̃, f)(x, y) =

∫
M̃(F )

δP̃ (m̃)1/2

∫
UP (F )

f(x−1m̃uy)du σ̃(m̃)dm̃, for (x, y) ∈ G(F )×G(F ).

This operator-valued function is the kernel of the operator IG̃
P̃

(σ̃, f) in the sense that

(IG̃
P̃

(σ̃, f)e)(x) =

∫
P (F )\G(F )

IG̃
P̃

(σ̃, f)(x, y)e(y)dy

37



for every e ∈ IGP (σ) and x ∈ G(F ). Note that

(2.12.6) IG̃
P̃

(σ̃, f)(x, x) = σ̃(xf(P̃ )), for x ∈ G(F ).

Let d > 1 be the order of the outer automorphism θ = θM̃ of M(F ) and set, for σ ∈
Tempind(M),

σ〈θ〉 := σ ⊕ σθ ⊕ . . .⊕ σθd−1

.

It is clear that σ〈θ〉 extends to a twisted representation of M̃(F ) and we will denote by

σ̃〈θ〉 one such extension. It is well-known, and this follows e.g. from the Harish-Chandra-
Plancherel formula [33], that a function f ′ ∈ C(M(F )) is zero if and only if σ(f ′) = 0 for

every σ ∈ Tempind(M). This implies a similar equivalence for M̃ : a function f ′ ∈ C(M̃(F ))

is zero if and only if σ̃〈θ〉(f ′) = 0 for every σ ∈ Tempind(M). Therefore, from (2.12.6) and
the definition of a strongly cuspidal function, we see that f is strongly cuspidal if and only if

IG̃
P̃

(σ̃〈θ〉, f)(x, x) = 0 for every proper parabolic subspace P̃ = M̃UP , every σ ∈ Tempind(M)
and every x ∈ G(F ). The lemma is a direct consequence of this characterization since for

z ∈ C∞(Tempind(G̃))θ and every P̃ and σ as before, since z(IGM(σθ
i
)) = z(IGM(σ)) for all i

(by θ-invariance of z), we have

IG̃
P̃

(σ̃〈θ〉, z ? f) = z(IGM(σ))IG̃
P̃

(σ̃〈θ〉, f).

2.13 Twisted local trace formula for strongly cuspidal functions

The twisted local trace formula of [28, Chap. 1, théorème 5.1] is an equality of distributions

(2.13.1) J G̃spec(f1, f2) = J G̃geom(f1, f2)

where f1, f2 ∈ C∞c (G̃(F )) and

(2.13.2) J G̃spec(f1, f2) =
∑

M̃∈L(M̃min)

|W̃M ||W̃G|−1(−1)aM̃−aG̃
∫
Edisc(M̃)

ι(τ)J G̃
M̃

(π̃τ , f1, f2)dτ,

(2.13.3) J G̃geom(f1, f2) =
∑

M̃∈L(M̃min)

|W̃M ||W̃G|−1(−1)aM̃−aG̃
∫

Γell(M̃)

J G̃
M̃

(γ, f1, f2)dγ.

We refer the reader to Section 2.8 for the definition of ι(τ) as well as of the measure on

Edisc(M̃) and to Sections 2.10 and 2.11 for the definitions of J G̃
M̃

(γ, f1, f2) and J G̃
M̃

(π̃τ , f1, f2)
respectively.

Remark 2.8. Despite the notation, the distributions J G̃spec and J G̃geom depend on the choice of
the pair (Mmin, K) (at least up to conjugacy). They also depend, incidentally, on the choice
of the Haar measure on G(F ).
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Proposition 2.9. The expressions (2.13.2) and (2.13.3) are both absolutely convergent for

(f1, f2) ∈ C(G̃(F ))2 and they define continuous bilinear forms on C(G̃(F )) × C(G̃(F )). In

particular, the identity (2.13.1) extends by continuity to all f1, f2 ∈ C(G̃(F )).

Proof. The same argument as in the non-twisted case [3, p.189] applies here noticing that
(2.10.1) gives the required twisted analog of the estimates (5.7) of loc. cit..

Let f1, f2 ∈ C(G̃(F )) and assume that f1 is strongly cuspidal. By the descent formulas
(2.10.2), (2.11.2) as well as the vanishing (2.12.3), (2.12.4), (2.12.5) we then have

J G̃
M̃

(γ, f1, f2) = (−1)aM̃−aG̃DG̃(γ)1/2Θf1(γ)JG̃(γ, f2)

and

J G̃
M̃

(π̃τ , f1, f2) =

 (−1)aM̃−aG̃Θ̂f1(π̃
∨
τ )JG̃(π̃τ , f2) if τ ∈ Eell(M̃);

0 otherwise,

for every γ ∈ Γell(M̃) and τ ∈ Edisc(M̃). Thus, in this case the distributions J G̃spec and J G̃geom

can be rewritten as

J G̃spec(f1, f2) =
∑

M̃∈L(M̃min)

|W̃M ||W̃G|−1

∫
Eell(M̃)

D(τ)Θ̂f1(π̃
∨
τ )JG̃(π̃τ , f2)dτ

and

J G̃geom(f1, f2) =
∑

M̃∈L(M̃min)

|W̃M ||W̃G|−1

∫
Γell(M̃)

DG̃(γ)1/2Θf1(γ)JG̃(γ, f2)dγ

=

∫
G̃(F )

Θf1(γ)f2(γ)dγ

where the last equality follows from the Weyl integration formula (2.4.1). Moreover, by

definition of the Harish-Chandra characters Θπ̃τ , the spectral side J G̃spec(f1, f2) can be further
rewritten as

J G̃spec(f1, f2) =
∑

M̃∈L(M̃min)

|W̃M ||W̃G|−1

∫
Eell(M̃)

∫
G̃(F )

D(τ)Θ̂f1(π̃
∨
τ )Θπ̃τ (γ)f2(γ)dγdτ.

The above expression being absolutely convergent (note that, by (2.8.3), the support of

τ 7→ Θ̂f1(π̃
∨
τ ) in Eell(M̃) is contained in a finite union of orbits under the action of iA∗

M̃
),

from (2.13.1) we get the identity∫
G̃(F )

Θf1(γ)f2(γ)dγ =

∫
G̃(F )

∑
M̃∈L(M̃min)

|W̃M ||W̃G|−1

∫
Eell(M̃)

D(τ)Θ̂f1(π̃
∨
τ )Θπ̃τ (γ)dτf2(γ)dγ

for every f1, f2 ∈ C(G̃(F )) with f1 strongly cuspidal. Fixing f1 and varying f2, we deduce:

39



Proposition 2.10. Let f ∈ C(G̃(F )) be a strongly cuspidal function. Then, for every

γ ∈ G̃rs(F ), we have

(2.13.4) Θf (γ) =
∑

M̃∈L(M̃min)

|W̃M ||W̃G|−1

∫
Eell(M̃)

D(τ)Θ̂f (π̃
∨
τ )Θπ̃τ (γ)dτ

where the right hand side is absolutely convergent.

As a corollary, we can now show the following extension of [36, proposition 1.7].

Corollary 2.11. For f ∈ C(G̃(F )) strongly cuspidal, the function Θf is a quasi-character.

Proof. This is a direct consequence of Proposition 2.10 combined with the following facts
(valid for every M̃ ∈ L(M̃min)):

• For every τ ∈ Eell(M̃), Θπ̃τ is a quasi-character [11, Theorem 3];

• The function τ ∈ Eell(M̃) 7→ Θ̂f (π̃
∨
τ ) is supported on a finite number of orbits under

the action of iA∗
M̃

(see (2.8.3));

• For every iA∗
M̃

-orbit Ω ⊂ Eell(M̃) and compact subset K ⊂ G̃(F ), the vector space
spanned by the restrictions

{Θπ̃τ |Krs| τ ∈ Ω},

where Krs := K ∩ G̃rs(F ), is of finite dimension (this follows e.g. from the induction
formula [36, lemme 1.12]).

2.14 Spectral localization of strongly cuspidal functions

Let f ∈ C(G̃(F )) and choose a base-point γ0 ∈ G̃(F ). Put fγ0(g) = f(gγ0) for every
g ∈ G(F ). Note that fγ0 ∈ C(G(F )). We define the spectral support of f , henceforth denoted
by Suppspec(f) to be the support of the operator-valued function

Tempind(G) 3 π 7→ π(fγ0) ∈ End(Vπ).

Note that Suppspec(f) does not depend on the choice of γ0: changing the base-point replaces
fγ0 by one of its right translates which acts non trivially on the same tempered representations
as fγ0 .

Proposition 2.12. Let τ ∈ E2(G̃) (see Section 2.8 for the definition of E2(G̃)) and ω be a
compact neighborhood of πτ in Tempind(G) (see Section 2.7 for the topology on Tempind(G)).

Then, there exists a strongly cuspidal function f ∈ C(G̃(F )) such that

(2.14.1) Suppspec(f) ⊂ ω
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and for every τ ′ ∈ E(G̃) we have

(2.14.2) Tr π̃τ ′(f) =


0 if τ ′ 6= λ · τ for every λ ∈ iA∗

G̃
,

1 if τ ′ = τ.

Moreover, if f ∈ C(G̃(F )) is such a strongly cuspidal function, we have

(2.14.3) Θf (γ) = |Stab(iA∗
G̃,F

, τ)|−1D(τ)

∫
iA∗
G̃,F

Tr π̃λ·τ (f)Θπ̃∨λ·τ
(γ)dλ

for every γ ∈ G̃rs(F ) where Stab(iA∗
G̃,F

, τ) stands for the stabilizer of τ in iA∗
G̃,F

(for the

action by twisting).

Proof. For simplicity of notation, let us set π̃ = π̃τ , π = πτ as well as π̃λ = π̃λ·τ and
πλ = πλ·τ = (πτ )λ for every λ ∈ iA∗

G̃
. By Lemma 2.6, up to shrinking ω we may assume that

it is θ-stable and that

(2.14.4) ω ∩ Tempind(G)θ ⊂ {πλ | λ ∈ iA∗G̃}.

Let S be the finite set of τ ′ ∈ E(G̃) such that πτ ′ = πτ . By definition of E2(G̃), we have

S ⊂ E2(G̃). Let S0 ⊂ S be a subset such that for every τ ′ ∈ S there exists an unique τ ′0 ∈ S0

as well as λ ∈ iA∗
G̃

(not necessarily unique) such that τ ′ = λ · τ ′0. We may and will assume
that τ ∈ S0. Moreover, by (2.14.4), we have:

(2.14.5) for τ ′ ∈ E(G̃) if πτ ′ ∈ ω then there exist λ ∈ iA∗
G̃

and τ ′0 ∈ S0 such that
τ ′ = λ · τ ′0.

Let G(F )1 be the kernel of the homomorphism HG : G(F )→ AG. By the orthogonality
relations [28, théorème 7.3] between elliptic twisted characters, the restrictions of the twisted

characters Θπ̃τ ′
, for τ ′ ∈ S, to the elliptic locus G̃(F )ell are linearly independent. More

precisely, fixing γ ∈ G̃(F )ell and since elements of S0 all have different orbits under iA∗
G̃

,

the restrictions of the twisted characters Θπ̃τ ′
, for τ ′ ∈ S0, to G̃(F )ell ∩ G(F )1γ are linearly

independent. Thus, we can find a function f0 ∈ C∞c (G̃(F )) supported in G̃(F )ell ∩ G(F )1γ
such that

(2.14.6) Tr π̃τ ′(f0) =


0 if τ ′ 6= τ,

1 if τ ′ = τ

for every τ ′ ∈ S0. Note that, since f0 is supported in G̃(F )ell, it is a strongly cuspidal function.

Moreover, since f0 is supported in a unique coset modulo G(F )1, for every τ ′ ∈ E(G̃) and
λ ∈ iA∗

G̃
, Tr π̃λ·τ ′(f0) is equal (up to a non-zero multiplicative constant which depends on

how we normalized π̃λ·τ ′) to Tr π̃τ ′(f0). In particular, by (2.14.6), we also have

(2.14.7) Tr π̃λ·τ ′(f0) = 0
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for every τ ′ ∈ S0 \ {τ} and λ ∈ iA∗
G̃

.

Let now z ∈ C∞(Tempind(G))θ be a θ-invariant C∞ function on Tempind(G) which is
supported in ω and such that z(π) = 1 (such a function certainly exists). Using the action

of C∞(Tempind(G))θ on C(G̃(F )) defined in Section 2.8, we set f = z ? f0 ∈ C(G̃(F )). By
Lemma 2.7, f is strongly cuspidal. On the other hand, by the spectral characterization of
the action of C∞(Tempind(G))θ on C(G̃(F )), f clearly satisfies condition (2.14.1). Similarly,
(2.14.2) follows from the combination of (2.14.5), (2.14.6) and (2.14.7). Finally, the equality
(2.14.3) is an immediate consequence of Proposition 2.10, remembering that the restriction

of the measure on Eell(G̃) to the orbit {λ · τ | λ ∈ iA∗
G̃
} is equal to |Stab(iA∗

G̃,F
, τ)|−1 times

the pushforward of the measure on iA∗
G̃,F

by the map

λ ∈ iA∗
G̃,F
7→ λ · τ.

3 Spherical spaces

3.1 Coregular varieties

Let G be a connected reductive group over F and H ⊂ G be a closed subgroup. We let
X = H\G be the corresponding homogenous variety. We let TX, T ∗X be the tangent and
cotangent bundles of X respectively. Both are naturally equipped with a right action of G.

Let B be the flag variety of G. Recall that the variety X is called spherical if H has an
open orbit in B or, equivalently, if G has an open orbit in X × B for the diagonal action.

In the proposition below, by the generic stabilizer of a G-variety Y we mean a conjugacy
class of closed subgroups S ⊂ G such that for some dense open subset U ⊂ Y , the stabilizer
of every y ∈ U is conjugated to S. Generic stabilizers do not always exist but they do in the
cases considered in the proposition below by the references cited in the proof, namely [20]
and [21].

Proposition 3.1. Assume that X = H\G is quasi-affine and that H is connected. Then,
the following assertions are equivalent:

(i) The generic stabilizer of T ∗X contains regular elements;

(i’) The generic stabilizer of T ∗X contains regular semisimple elements;

(ii) The generic stabilizer of X × B contains regular elements;

(ii’) The generic stabilizer of X × B contains regular semisimple elements;

(iii) We have H ∩ Grs 6= ∅ and the function h ∈ H ∩ Grs 7→
DHalg(h)2

DGalg(h)
extends to a regular

function on H.
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(iii’) We have H ∩Grs 6= ∅ and the function h ∈ H(F )∩Grs(F ) 7→ DH(h)2

DG(h)
is locally bounded

on H(F ) (i.e. it is bounded on the intersection of Grs(F ) with any compact subset of
H(F )).

Moreover, the above assertions imply that X is spherical. If furthermore H is reductive, then
the above conditions are also equivalent to:

(iv) The generic stabilizer of TX in G contains regular elements;

(v) The generic stabilizer of X×X in G for the diagonal action contains regular elements.

Remark 3.2. The above proposition does not hold without the assumption that H is con-
nected as the example of X = O(2)\GL2 shows. Indeed, for X = O(2)\GL2, conditions (i),
(i’), (ii), (ii’) are satisfied but not (iii) and (iii’). We also believe that (i), (ii), (ii’), (iii)
and (iii’) are still equivalent when X is not necessarily quasi-affine (but still assuming that
H is connected) but that (i’) is strictly stronger (e.g. take X = B).

We will say that the variety X is coregular, or that the pair (G,H) is coregular, if
the equivalent conditions (i)-(iii) (or (i)-(v) if H is reductive) of the above proposition are
satisfied.

Proof. Pick a Borel subgroup B ⊂ GF with unipotent radical N and let P (X), U(X) be the
respective stabilizers of the generic B and N orbits in X. In other words, there exists an
open dense subset U ⊂ XF such that xp ∈ xB (resp. xu ∈ xN) for every (x, p) ∈ U × P (X)
(resp. (x, u) ∈ U ×U(X)) and the subgroups P (X), U(X) are maximal for these properties.

Let L(X) ⊂ P (X) be a Levi factor and set S(X) = L(X)∩U(X). By [20, Korollar 2.9],
we know that U(X) is a normal subgroup of P (X) and the quotient AX := P (X)/U(X) =
L(X)/S(X) is a torus. Moreover, by the local structure theorem of [21, Theorem 2.3,
Proposition 2.4], there exists a locally closed subvariety Σ ⊂ XF which is L(X)-stable, on
which the L(X)-action factors through the quotient L(X)→ AX and on which the resulting
AX-action is free, such that the P (X)-action induces an open embedding:

(3.1.1) Σ×L(X) P (X) ↪→ X.

Since P (X) = L(X)B, it follows that the generic stabilizer of X × B exists and is given by
the conjugacy class of S(X) ∩ B. On the other hand, by the construction of [21, §3] there
exists a L(X)-equivariant embedding

Σ× a∗X ↪→ T ∗X

whose image intersects every generic G-orbit in T ∗X [21, Theorem 3.2, Lemma 3.1] and
whose composition with the moment map T ∗X → g∗ is the second projection Σ× a∗X → a∗X
(followed by the natural inclusions a∗X ⊂ l(X)∗ ⊂ g∗). As the centralizer of a generic element
in a∗X is L(X) [21, Lemma 2.1], this shows that the generic stabilizer of T ∗X exists and is
the same as that of Σ in L(X), i.e. S(X).
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As every conjugacy class, over F , in L(X) meets L(X)∩B and S(X) is normal in L(X),
every element of S(X) is G-conjugated to an element of S(X)∩B and this shows (i)⇔ (ii),
(i′) ⇔ (ii′). Moreover, if S(X) contains a regular element of G then it contains a regular
semisimple one. Indeed, if g ∈ S(X) is G-regular and g = su is its Jordan decomposition,
then u is a regular unipotent element of the connected centralizer ZG(s)0. However, u belongs
to the Levi subgroup L(X) ∩ ZG(s)0 of ZG(s)0 and therefore ZG(s)0 ⊂ L(X). If this is so,
an element of the form st for t ∈ ZG(s)0

der in general position will be regular semisimple in
G and this proves the claim as L(X)der ⊂ S(X) implies ZG(s)0

der ⊂ S(X).
Thus, if (i) and (ii) are satisfied, S(X) contains a regular semisimple element and so does

S(X) ∩B. This proves the equivalence between (i), (i’), (ii) and (ii’).
Assume now that (i’) is satisfied i.e. that there exists h ∈ S(X) which is regular semisim-

ple in G. Then, TG = ZG(h)0 ⊂ L(X) acts transitively on all the connected components
of the subvariety of fixed points Xh. As Σ is a connected subvariety of Xh this shows that
Σ is actually homogeneous under L(X) and it follows, by the open embedding (3.1.1), that
X is spherical. Up to conjugacy, we may assume that the canonical base point x0 = H1
of X belongs to Σ i.e. that HB is open in G. Then by (3.1.1), choosing a splitting of the
surjection aL(X) � aX , we have a direct sum decomposition

g = h⊕ aX ⊕ n(X)

where n(X) denotes the nilradical of p(X). Note that this decomposition is stable under
the adjoint action of TH = ZH(h)0 as the latter is a maximal torus of H contained in L(X).
Therefore, for t ∈ TH ∩Grs we have

DG
alg(t) = DH

alg(t) det(1− Adt |n(X))

from which it follows that

DH
alg(t)

2

DG
alg(t)

=
DG
alg(t)

det(1− Adt |n(X))2
= δalgP (X)(t)

−1D
L(X)
alg (t)

which implies (iii).
It is clear that (iii) implies (iii’).
Assume now that (G,H) satisfies (iii’) and let us show that (i’) is also satisfied. First, we

make a reduction to the case where the generic stabilizer S(X) of T ∗X is a torus. Indeed,
since (T ∗X)(F ) is Zariski dense in T ∗X, up to conjugating we may assume that S(X) is the
stabilizer of a point p = (x, ξ) ∈ (T ∗X)(F ), hence is defined over F , and even that x = x0 is
the canonical base-point of X = H\G (so that, in particular, S(X) ⊂ H). Let TS ⊂ S(X)
be a maximal torus and let H ′ = ZH(TS), G′ = ZG(TS) be the centralizers of TS in H and G
respectively. We need to show that G′ is a torus (i.e. that TS contains regular semi-simple
elements of G). Let X ′ = H ′\G′ be the connected component of the subvariety of fixed
points XTS containing x. Then, X ′ is a homogeneous G′-variety and T ∗(X ′) is a connected
component of the subvariety of fixed points (T ∗X)TS in the cotangent bundle. We claim
that:
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(3.1.2) The pair (G′, H ′) also satisfies condition (iii’) i.e. H ′ ∩G′rs 6= ∅ and the function

h ∈ H ′(F ) ∩G′rs(F ) 7→ DH
′
(h)2

DG′ (h)
is locally bounded on H ′(F ).

Indeed, H ′ contains a maximal torus of H hence regular semisimple elements of G by assump-
tion but such elements are a fortiori also regular semisimple in G′. Moreover, for h ∈ H ′(F )
and t ∈ TS(F ) we have

DH(ht) = DH′(h)|det(1− Adht |h/h′)|, DG(ht) = DG′(h)|det(1− Adht |g/g′)|

and for each h0 ∈ H ′(F ) we can find t ∈ TS(F ) as well as an open neighborhood U ⊂ H ′(F )
of h0 such that h 7→ |det(1−Adht |h/h′)| is bounded from below and h 7→ |det(1−Adht |g/g′)|
is bounded from above on U . By the assumption that (G,H) satisfies condition (iii’), this

shows that the function h 7→ DH
′
(h)2

DG
′ (h)

is bounded on U hence the function is locally bounded

everywhere.
Let B ⊂ G be a Borel subgroup containing TS (not necessarily defined over F ) and

set B′ = ZB(TS), a Borel subgroup of G′ containing a maximal torus T of G, and let
TH ⊂ H ′ be a maximal torus. Taking TS-invariants of the embedding (3.1.1), we see that
X ′ contains an open subset B′-equivariantly isomorphic to Σ ×T B′. Furthermore, in a
neighborhood of 0 ∈ tH(F ), the functions X 7→ DH′(eX) and X 7→ DG′(eX) are products
of dim(H ′) − dim(TH) and dim(G′) − dim(T ) absolute values of linear forms respectively.
Thus, (3.1.2) implies that

dim(G′)− dim(T ) 6 2(dim(H ′)− dim(TH))

or equivalently

(3.1.3) dim(X ′) 6
dim(G′) + dim(T )

2
− dim(TH) = dim(B′)− dim(TH).

However, as Σ×T B′ is open in X ′, we also have

(3.1.4) dim(X ′) = dim(Σ) + dim(B′)− dim(T ).

Combining (3.1.3) with (3.1.4), we obtain that

dim(Σ) 6 dim(T )− dim(TH).

However, as T/TS acts freely on Σ and TH contains TS this last inequality is only possible
if TS = TH . But then, by the assumption that H ∩ Grs 6= ∅ and since H is connected,
this implies that TS and hence also S(X) contains a regular semisimple element i.e. (i’) is
verified. This proves that (iii’)⇒ (i’) and therefore that the conditions (i), (i’), (ii), (ii’), (iii)
and (iii’) are all equivalent.

It remains to show that these are also equivalent to (iv) and (v) when H is reductive.
The equivalence (iv)⇔ (v) follows from Luna’s slice theorem [24] applied to the diagonal
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G-orbit in X×X and noting that the normal bundle to the diagonal in X×X is isomorphic
to TX. On the other hand, we have

TX = g/h×H G, T ∗X = h⊥ ×H G

where h⊥ stands for the orthogonal of h in g∗. As both H and G are reductive, the adjoint
representation of H on h is isomorphic to the coadjoint action of H on h⊥ and this shows
that (v)⇔(i).

It is clear from the above discussion that if (G,H) is coregular then Hrs ⊂ Grs. However,
the opposite direction is not true in general. For example, when (G,H) = (GL3, SL2), we
have Hrs ⊂ Grs but the pair is not coregular. The next lemma shows that in the case of
symmetric pairs, the coregular condition is equivalent to Hrs ⊂ Grs.

Lemma 3.3. A symmetric pair (G,H) is coregular if and only if Hrs ⊂ Grs.

Proof. The “only if” direction is obvious, we will only prove the other direction. So assume
that Hrs ⊂ Grs. Let TH ⊂ H be a maximal torus and let T = ZG(TH) be its centralizer in G
(a maximal torus of G by the assumption that Hrs ⊂ Grs). Pick a cocharacter λ ∈ X∗(TH)
that is G-regular and let B ⊂ G be the Borel subgroup consisting of elements binG such
that λ(t)bλ(t)−1 has a limit when t→ 0. Let ι be the involution of G such that H = (Gι)◦.
Obviously, B is ι-stable and contains T . Moreover, BH := B ∩H is a Borel subgroup of H
containing the maximal torus TH .

Let Σ+ to denote the set of positive roots of T with respect to B = TN and for each
α ∈ Σ, let Xα ∈ n(F ) denote a nonzero element in the root subspace corresponding to α.
Then we can decompose Σ into a union of three subsets Σ = Σ1 ∪ Σ2 ∪ Σ3 where

Σ1 = {α ∈ Σ| ι(α) 6= α}, Σ2 = {α ∈ Σ| ι(α) = α, ι(Xα) = Xα},

Σ3 = {α ∈ Σ| ι(α) = α, ι(Xα) = −Xα}.
Note that ι induces an involution without fixed points of Σ1 and that, denoting by Σ1/ι

the set of ι-orbits in Σ1, the set of positive roots Σ+
H of TH with respect to BH is in bijection

with the set Σ1/ι ∪ Σ2 by the map

α ∈ Σ1/ι ∪ Σ2 7→ α ∈ Σ+
H .

In particular, we have

DG
alg(t) =

∏
α∈Σ+

(1− α(t))(1− α(t)−1), DH
alg(t) =

∏
α∈Σ1/ι∪Σ2

(1− α(t))(1− α(t)−1) for t ∈ TH .

From these identities, we see that it suffices to show that Σ3 = ∅.
We will prove this by contradiction. Assume Σ3 is non-empty and let α ∈ Σ3. The

complements of TH ∩Hrs in TH can be described as a union of divisors as follows

TH \ (TH ∩Grs) =
⋃

β∈Σ1/ι∪Σ+
2

Dβ
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where Dβ := {t ∈ TH | β(t) = 1}. Note that each of these divisors Dβ is actually a finite
disjoint union of translates by the subtorus Tβ = Ker(β |TH )0 and that the subtori (Tβ)β
are two by two distinct (as Σ+

H is reduced). Since TH \ (TH ∩ Grs) also contains the divisor
Dα = {t ∈ TH | α(t) = 1} and TH ∩ Grs = TH ∩ Hrs by assumption, there must exist a
β ∈ Σ1∪Σ2 such that Tβ = Ker(α |TH )0 and so Dα ⊂ Dβ i.e. β |TH= kα |TH for some integer
k ∈ Z. Note that this last equality is equivalent to

β + ι(β) = k(α + ι(α)) = 2kα.

We now distinguish two cases. First, if β ∈ Σ2 then ι(β) = β and the above identity
becomes β = kα hence α = β ∈ Σ2 (as the system of positive roots Σ+ is reduced) which is
a contradiction. On the other hand, if β ∈ Σ1, denoting by α∨ the coroot associated to α,
we have

2〈α∨, β〉 = 〈α∨, β + ι(β)〉 = 2k〈α∨, α〉 = 4k.

Hence, 〈α∨, β〉 = 2k and therefore k = 1. Thus, we have 2α = β + ι(β) and 〈α∨, β〉 = 2.
Since β 6= ι(β) this also implies that the length of β is twice the length of α and thus
〈β∨, α〉 = 〈α∨, β〉/2 = 1. Finally, denoting by sβ the simple reflection corresponding to β,
we deduce that sβα = α− β = (ι(β)− β)/2 is a root of T in G. But that is a contradiction
since this root would be ι-antiinvariant and there is no such root.

Definition 3.4. Assume now given twisted spaces (G, G̃) and (H, H̃) with an embedding

H̃ ↪→ G̃ that is compatible with the inclusion H ⊂ G. Following the above discussion, we
will say that the pair (G̃, H̃) is coregular if the following condition is satisfied:

(3.1.5) We have H̃ ∩ G̃rs 6= ∅ and the function h ∈ H̃(F ) ∩ G̃rs(F ) 7→ DH̃(h)2

DG̃(h)
is locally

bounded on H̃(F ).

Remark 3.5. � There is yet another characterization of the coregular spherical varieties
which reads as follows: if X = H\G is a quasi-affine homogeneous spherical variety
then X is coregular if and only if rk(X) = rk(G)− rk(H) where rk(G), rk(H), rk(X)
denote the (absolute) ranks of G, H and X respectively. (We recall that the rank of a
G-variety is, by definition, the rank of the torus TX = B/BxU where B = TU ⊂ G is
a Borel subgroup and x ∈ X a point in general position e.g., in the case of a spherical
variety, a point in the open B-orbit.)

Indeed, if rk(X) = rk(G)−rk(H) and B ⊂ G is a Borel subgroup with HB open, B∩H
contains a maximal torus TH of H and we have an isomorphism of TH-representations
g/b ' h/b∩h. However, as a TH-representation, g/b is isomorphic to the dual of u (the
nilradical of b) and h/tH does not contain the trivial representation of TH . Therefore,
all restrictions of the roots of G to TH are non-trivial which implies that TH contains
regular semi-simple element. As TH is contained in the generic stabilizer of X×B this
proves point (ii’) of the above proposition.

Conversely, assume that X is coregular. Let again B be a Borel subgroup with HB
open, then H∩B contains a G-regular semi-simple element h (again by characterization
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(ii’)), hence the maximal torus T = Gh of G is included in B and therefore also the
maximal torus TH = Hh of H and this shows that the universal Cartan TX of X is a
finite quotient of T/TH hence rk(X) = rk(G)− rk(H).

� It is not true that (G̃, H̃) is coregular if and only if (G,H) is so. For example, let H be

connected reductive and take G̃ = (H×H)ι where ι(h1, h2) = (h2, h1) and H̃ = H with

the embedding H̃ ↪→ G̃ given by h 7→ (h, h)ι. Then, the pair (G,H) is always coregular

whereas the pair (G̃, H̃) is coregular if and only if for every h ∈ H(F ), det(1+Adh) 6= 0.

3.2 Tempered varieties

We continue to consider the setting at the end of the last section: (G, G̃) is a connected

reductive twisted space over F and (H, H̃) is a closed connected twisted subspace of it. We
also assume that H is unimodular (this implies that X = H\G is quasi-affine).

Following [7, §2.7], we say that the pair (G̃, H̃) is tempered if it satisfies the following
condition:

(3.2.1) There exists d > 0 such that the integral∫
H̃(F )

ΞG̃(h)σG̃(h)−ddh

is convergent.

Note that the pair (G̃, H̃) is tempered if and only if (G,H) is so. Moreover, by loc. cit., a
pair (G,H) is tempered in the above sense if and only if L2(H(F )\G(F )) is tempered as a
unitary representation of G(F ). (But we will not need this fact.)

Lemma 3.6. Assume that the pair (G̃, H̃) is coregular and tempered. Then, the function

h ∈ H̃(F ) ∩ G̃rs(F ) 7→ DH̃(h)

DG̃(h)1/2

is globally bounded.

Proof. Let T̃ ⊂ H̃ be a maximal twisted torus. It is enough to show that the function

t ∈ T̃ (F ) ∩ G̃rs(F ) 7→ DH̃(t)

DG̃(t)1/2

is globally bounded.
Set M = ZG(AT̃ ) and M̃ = ZG̃(AT̃ ) = MT̃ . Then, M̃ is the minimal Levi subspace of G̃

containing T̃ . For each P̃ ∈ F(M̃), we let T̃+
P be the subset of those t ∈ T̃ (F ) such that all
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the eigenvalues of the restriction of Adt to p(F ) are of absolute value ≥ 1. Then, we have a
partition

T̃ (F ) =
⊔

P̃∈F(M̃)

T̃+
P

and it is enough to show that, for any fixed P̃ ∈ F(M̃T ), the function

t ∈ T̃+
P 7→

DH̃(t)

DG̃(t)1/2

is bounded.
Let P̃ ∈ F(M̃) and assume that T̃+

P 6= ∅. Let L̃ be the unique Levi factor of P̃ containing

M̃ and set

PH = P∩H, LH = L∩H, A+
P = {a ∈ AL(F ) | |α(a)| > 1 ∀α ∈ ∆P} and A+

P,H = A+
P∩H(F ).

Then, T̃+
P is right invariant by the monoid A+

P,H and the quotient T̃+
P /A

+
P,H is compact.

Moreover, for t ∈ T̃+
P , the Lie algebras p(F ) and pH(F ) (resp. l(F ) and lH(F )) are the

maximal subspaces of g(F ) and h(F ) where all the eigenvalues of Adt are of absolute value

≥ 1 (resp. = 1). Setting P̃H = P̃ ∩ H̃ and L̃H = L̃ ∩ H̃, it follows that

DG̃(t) = DL̃(t)δP̃ (t), DH̃(t) = DL̃H (t)δP̃H (t)

for every t ∈ T̃+
P . Therefore,

(3.2.2)
DH̃(t)

DG̃(t)1/2
=

DL̃H (t)

DL̃(t)1/2
·
δP̃H (t)

δP̃ (t)1/2
, for t ∈ T̃+

P .

Since (G̃, H̃) is coregular, this in particular entails that the function

t ∈ T̃+
P 7→ DL̃H (t)DL̃(t)−1/2

is locally bounded. Because T̃+
P /A

+
P,H is compact and DL̃H , DL̃ are both AL(F )-invariant,

we deduce that the function t ∈ T̃+
P 7→ DL̃H (t)DL̃(t)−1/2 is globally bounded. Therefore, by

(3.2.2) it only remains to check that the function

t ∈ T̃+
P 7→

δP̃H (t)

δP̃ (t)1/2

is bounded. Again because T̃+
P /A

+
P,H is compact, it is equivalent to work with the function

a ∈ A+
P,H 7→

δPH (a)

δP (a)1/2
.
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Let JH ⊂ H(F ) be a compact-open subgroup. Then, we have

(3.2.3) vol(JHaJH) ∼ δPH (a), for a ∈ A+
P,H .

Moreover, we can assume that JH ∩ ALH (F ) = AcLH is the maximal compact subgroup of
ALH (F ) and that the cosets JHaJH , a ∈ A+

P,H/A
c
LH

are disjoint. As (see [33, lemme II.1.1])

δP (a)−1/2 � ΞG(a), for a ∈ A+
P ,

and (G,H) is tempered, we can find d > 0 such that∑
a∈A+

P,H/A
c
LH

δPH (a)

δP (a)1/2
σ(a)−d �

∑
a∈A+

P,H/A
c
LH

ΞG(a)σ(a)−d vol(JHaJH)

6
∫
H(F )

ΞG(h)σ(h)−ddh <∞.

Since A+
P,H/A

c
LH

is a finitely generated monoid and δPH , δP are characters on it, the above

estimate implies that a ∈ A+
P,H 7→

δPH (a)

δP (a)1/2
is bounded and the lemma is proved.

3.3 Symmetric pairs

In this paper, by a symmetric pair (over F ) we will mean a pair (G, ι) where G is a connected
linear group over F and ι an involutive automorphism of G defined over F . Let (G, ι) be
a symmetric pair. We denote by Gι the closed subgroup of ι-fixed points, by X∗(G)ι the
subgroup of characters χ ∈ X∗(G) that are trivial on Gι and by AG,ι the neutral component
of the subgroup {a ∈ AG | ι(a) = a−1}. We also set

A∗G,ι = X∗(AG,ι)⊗ R = X∗(G)ι ⊗ R, AG,ι = X∗(AG,ι)⊗ R = Hom(X∗(G)ι,R).

Then, A∗G,ι (resp. AG,ι) can be identified with the subspace of ι-antiinvariant vectors in A∗G
(resp. in AG). We also denote by HG,ι : G(F ) → AG,ι the composition of HG and of the
natural projection AG → AG,ι.

Assume from now on that G is reductive and connected. Recall that a parabolic subgroup
P ⊂ G is said to be ι-split if ι(P ) is opposite to P and that a Levi subgroup M ⊂ G is said
to be ι-split if there exists a ι-split parabolic subgroup P such that M = P ∩ ι(P ).

We will denote by Pι and Lι the sets of all ι-split parabolic subgroups and ι-split Levi
subgroups of G respectively. We will also write [Pι] = Pι/ ∼ where, for P, P ′ ∈ Pι, P ∼ P ′

if P and P ′ are G(F )-conjugate (or, equivalently, G(F )-conjugate). For P ∈ Pι, we set
P = ι(P ) for the unique ι-split parabolic subgroup opposite to P , MP = P ∩ ι(P ) ∈ Lι for
its unique ι-split Levi factor and we denote by [P ] its image in [Pι].

By a minimal ι-split parabolic subgroup of G, we mean a parabolic subgroup that is ι-split,
defined over F and minimal for these properties. We denote by Pmin

ι ⊆ Pι the subset of
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minimal ι-split parabolic subgroups. By [18, Proposition 4.9], all minimal ι-split parabolic
subgroups are conjugated under G(F ) i.e. the image [Pmin

ι ] of Pmin
ι in [Pι] is a singleton.

For M ∈ Lι, we set Pι(M) = P(M) ∩ Pι, Fι(M) = F(M) ∩ Pι and Lι(M) = L(M) ∩ Lι.
For every P ∈ Pι, we set AP,ι = AMP ,ι, AP,ι = AMP ,ι and we denote by HP,ι : P (F ) →

AP,ι the composition of the projection P (F ) → MP (F ) with HMP ,ι. Then, for P,Q ∈ Pι
with P ⊂ Q we have the decomposition AP,ι = AQP,ι ⊕AQ,ι where AQP,ι = AP,ι ∩ AQP and we

denote by ∆Q
P,ι, ∆Q,∨

P,ι the respective projections of ∆Q
P and ∆Q,∨

P to AQ,∗P,ι and AQP,ι. When
Q = G, we will sometimes drop the superscript and when M = MP we will sometimes write
AQM,ι for AQP,ι. For P ∈ Pι, we also set

A+
P,ι = {a ∈ AP (F ) | 〈α,HP,ι(a)〉 ≥ 0 ∀α ∈ ∆P,ι}.

Let P0 ∈ Pmin
ι and set M0 = MP0 = P0 ∩ ι(P0), A0,ι = AM0,ι and AG0,ι = AGM0,ι

. It is

known that the set Σ0,ι ⊆ AG,∗0,ι of nonzero weights for the adjoint action of A0,ι on g is a
root system and that the subset of weights Σ+

0,ι ⊂ Σ0,ι appearing in p0 forms a system of
positive roots with associated set of simple roots ∆0,ι = ∆P0,ι see [18, §5]. We will denote
by W0,ι the Weyl group of this root system. We also set

A+
P0,ι

= {X ∈ AP0,ι | 〈α,X〉 ≥ 0 ∀α ∈ ∆0,ι}, −AP0,ι = {X ∈ AP0,ι | 〈$α, X〉 ≤ 0 ∀α ∈ ∆0,ι}.

There is a bijection between Fι(M0) and the collection of parabolic subsets of Σ0,ι ob-
tained by sending Q ∈ Fι(M0) to the set Σ0,Q,ι of nonzero weights of A0,ι in q. Furthermore,
for every ι-split parabolic subgroup P ⊃ P0, the subset ∆P

0,ι := ∆P
P0,ι

coincides with the set

of simple roots Σ0,P,ι ∩−Σ0,P,ι ∩∆0,ι and elements of ∆P,∨
0,ι are positively proportional to the

coroots associated to ∆P
0,ι.

Let P,Q ∈ Pι with [P ] = [Q] and choose γ ∈ G(F ) such that γPγ−1 = Q and γMPγ
−1 =

MQ. Then, Adγ induces isomorphisms

IP,Q : AP,ι ' AQ,ι, IP,Q : AP,ι ' AQ,ι

sending respectively ∆P,ι to ∆Q,ι, A
+
P,ι to A+

Q,ι and which is independent of the choice of γ.
Moreover, it is readily seen that the element ι(γ) still conjugates the pair (P,MP ) to (Q,MQ)
from which it follows that γι(γ)−1 ∈MQ(F ).

Let us further fix a special maximal compact subgroup K ⊂ G(F ) that we use to extend
HP,ι to a right K-invariant map G(F ) → AP,ι for every P ∈ Pι by mean of the Iwasawa
decomposition G(F ) = P (F )K. Then, to every P,Q ∈ Pι with [P ] = [Q] we associate a
point Y K

Q,P ∈ AQ,ι as follows. Pick γ ∈ G(F ) such that γPγ−1 = Q and γMPγ
−1 = MQ.

Then, recalling that γι(γ)−1 ∈MQ(F ), we set

Y K
Q,P := HQ,ι(γ)− 1

2
HMQ,ι(γι(γ)−1)

where Q = ι(Q) is the ι-split parabolic subgroup opposite to Q.

Lemma 3.7. The element Y K
Q,P ∈ AQ,ι so constructed doesn’t depend on the choice of γ (i.e.

it only depends on P , Q and K).
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Proof. Because the normalizer of the pair (Q,MQ) in G is equal to MQ, for any other element
γ′ ∈ G(F ) satisfying γ′P (γ′)−1 = Q, γ′MP (γ′)−1 = MQ, there exists m ∈ MQ(F ) such that
γ′ = mγ. Then, it follows that

HQ,ι(γ
′) = HMQ,ι(m) +HQ,ι(γ) and HMQ,ι(γ

′ι(γ′)−1) = 2HMQ,ι(m) +HMQ,ι(γι(γ)−1),

hence

HQ,ι(γ
′)− 1

2
HMQ,ι(γ

′ι(γ′)−1) = HQ,ι(γ)− 1

2
HMQ,ι(γι(γ)−1).

3.4 Symmetric varieties

Let (G, ι) be a symmetric pair with G reductive and connected as in the previous section.
We set H = Gι and let X = H\G be the corresponding symmetric variety.

For every M ∈ Lι, we set HM = H ∩ M and XM = HM\M . Note that XM is the
symmetric variety associated to the symmetric pair (M, ι |M) and that it is naturally a
closed subvariety of X. Any character χ ∈ X∗(M)ι is by definition trivial on H and therefore
descends to a regular map XM → Gm that we shall denote by the same letter. We define a
Harish-Chandra map

HM,ι : XM(F )→ AM,ι = Hom(X∗(M)ι,R)

by 〈χ,HM,ι(x)〉 = log|χ(x)| for every x ∈ XM(F ) and χ ∈ X∗(M)ι. We also have a left action
of AM on XM given by a · x = xa for (a, x) ∈ AM ×XM which commutes with the (right)
M -action and satisfies HM,ι(a · x) = HM,ι(a) +HM,ι(x) for every (a, x) ∈ AM(F )×XM(F ).

For P0 ∈ Pmin
ι with M0 = MP0 , we set

X+
P0

= {x ∈ XM0(F ) | 〈α,HM0,ι(x)〉 > 0 ∀α ∈ ∆P0,ι}.

If moreover P ∈ Pι is such that P0 ⊂ P and C ≥ 0 we define

X+
P0

(≥ C,P ) = {x ∈ X+
P0
| 〈α,HM0,ι(x)〉 > C ∀α ∈ ∆P0,ι \∆P

P0,ι
}.

Set
AX := lim←−

P0∈Pmin
ι

AP0,ι

where the transition maps are given by the isomorphisms IP0,P ′0
: AP0,ι ' AP ′0,ι for P0, P

′
0 ∈

Pmin
ι . Then, AX is a real vector space equipped with canonical isomorphisms AX ' AP0,ι for

every P0 ∈ Pmin
ι . The images by this isomorphism of the cones A+

P0,ι
and −AP0,ι don’t depend

on the choice of P0, we will denote them byA+
X , −AX respectively. Moreover, for every P ∈ Pι

we can choose P0 ∈ Pmin
ι such that P0 ⊂ P and we get an embedding AP,ι ↪→ AX given

by the composition of the natural inclusion AP,ι ⊂ AP0,ι with the isomorphism AP0,ι ' AX .
This embedding actually does not depend on the choice of P0 as can readily be checked.
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Let P,Q ∈ Pι with [P ] = [Q] and choose γ ∈ G(F ) such that γPγ−1 = Q, γMPγ
−1 = MQ.

Then, we have γ ∈ HMP : indeed, as already argued ι(γ)−1γ ∈ MP but this element is also
in the neutral component of the subvariety of ι-antiinvariant elements in MP hence there
exists m ∈MP such that ι(γ)−1γ = ι(m)−1m or equivalently γ ∈ Hm. It now readily follows
that XMQ

= XMP
γ−1 and

(3.4.1)

HMQ,ι(xγ
−1) = Adγ(HMP ,ι(x))− 1

2
HMQ,ι(γι(γ)−1) = IP,Q(HMP ,ι(x)) +

1

2
HMQ,ι(γι(γ)−1)

for every x ∈ XMP
(F ). (Recall that γι(γ)−1 ∈MQ(F ).)

3.5 Neighborhoods of infinity

Recall the following weak Cartan decomposition from [16] and [10]: for every P0 ∈ Pmin
ι we

can find a compact subset K ⊂ G(F ) such that

(3.5.1) X(F ) = X+
P0
K.

Let P ∈ Pι and set M = MP . Choose P0 ∈ Pmin
ι with P0 ⊂ P and a compact subset

K satisfying the equality (3.5.1). Then, following [15], we define a neighborhood of ∞P in
X(F ) to be a subset of the latter containing

X+
P0

(≥ C,P )K

for some large enough constant C > 0. This notion actually only depends on the class [P ]
in [Pι], and in particular not on the auxilliary choices of P0 and K. Indeed, using (3.4.1)
this readily reduces to showing the following: if K′ ⊃ K is a bigger compact subset then for
every C ≥ 0 we can find C ′ ≥ 0 with X+

P0
(≥ C,P )K ⊃ X+

P0
(≥ C ′, P )K′. This, in turn, is a

consequence of the following lemma.

Lemma 3.8. Let P0 ∈ Pmin
ι , K ⊂ G(F ) be a compact subset and set M0 = MP0. Then, there

exists d > 0 such that for every x, y ∈ X+
P0

, xK∩ yK 6= ∅ implies ‖HM0,ι(x)−HM0,ι(y)‖ ≤ d.

Proof. Set A0,ι = AM0,ι and recall from [18, Proposition 4.7 (iii)] that XM0(F )/A0,ι(F ) is
compact. It follows that we can find a compact subset Ω0 ⊂ XM0(F ) such that

(3.5.2) X+
P0
⊂ Ω0A

+
P0,ι

.

Let X∗(M0)+
ι be the subset of dominant weights χ ∈ X∗(M0)ι i.e. such that 〈α∨, χ〉 ≥ 0

for every α∨ ∈ ∆∨P0
. Then, for every χ ∈ X∗(M0)+

ι there exists a nonzero regular function
f2χ ∈ F [X] such that f2χ(xp0) = f(x)χ(p0)2 for every (x, p0) ∈ X × P0

7. Moreover, up to
scaling f2χ we may assume that f2χ(x) = χ(x)2 for every x ∈ XM0 . Let Vχ ⊂ F [X] be the
G-submodule generated by f2χ for the action by right translation R. Then the weights of

7Indeed, since P 0 = ι(P0) = M0N0 is opposite to P0, there exists a nonzero regular function ϕχ ∈ F [G]
such that ϕχ(up) = χ(p) for (u, p) ∈ N0 × P0 and it suffices to take f2χ(x) = ϕχ(ι(x)−1x).
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AM0 in V are of the form 2χ−
∑

α∈∆P0
nαα where nα ∈ N. From this and (3.5.2) it follows

that for every compact subset L ⊂ V we can find cLχ > 0 such that

(3.5.3) |f ′(x)| ≤ cLχ |χ(x)|2 for every (f ′, x) ∈ L×X+
P0
.

We will apply this to L = R(K′)f2χ where K′ = KK−1, setting cχ = cLχ for simplicity. Indeed,
for x, y ∈ X+

P0
such that xK ∩ yK 6= ∅ we can find f ′ ∈ L such that f2χ(x) = f ′(y). Thus,

applying (3.5.3) we get

|χ(x)|2 = |f2χ(x)| = |f ′(y)| ≤ cχ|χ(y)|2

i.e. 〈χ,HM0,ι(x)〉 ≤ 〈χ,HM0,ι(y)〉+ 1
2

log(cχ). By symmetry, we also have the inequality with
x, y permuted. As this holds for every χ ∈ X∗(M0)+

ι and X∗(M0)+
ι generates A∗M0,ι

this
gives the desired result.

We shall denote by N (∞P ) the collection of all neighborhoods of ∞P in X(F ). The set
N (∞P ) is stable by finite intersections and translations by elements of G(F ). By a basis of
N (∞P ) we mean a subset N ′ ⊂ N (∞P ) such that every element Ω ∈ N (∞P ) contains at
least one Ω′ ∈ N ′.

We define similarly the notion of neighborhood of ∞M
P in XM(F ) as follows. By the weak

Cartan decomposition (3.5.1) applied to the symmetric variety XM , we can find a compact
subset KM ⊆ M(F ) such that XM(F ) = X+

P0∩MKM . Then, by definition, a neighborhood
of ∞M

P in XM(F ) is a subset of the latter containing X+
P0

(≥ C,P )KM for a suitable C > 0.
Once again, using the above lemma, we can show that this notion is independent on the
choices of P0 and KM . We will denote by N (∞M

P ) the collection of all neighborhoods of∞M
P

in XM(F ). Note that N (∞M
P ) admits a basis consisting of (left) A+

P,ι-invariant subsets (e.g.

the family of subsets X+
P0

(≥ C,P )KM would do).

Let us now fixed a special maximal compact subgroup K ⊆ G(F ). Let P = MUP ∈ P ι
be the parabolic subgroup opposite to P with respect to M . Then, every γ ∈ G(F ) admits
an Iwasawa decomposition γ = mP (γ)uP (γ)kP (γ) with mP (γ) ∈M(F ), uP (γ) ∈ UP (F ) and
kP (γ) ∈ K.

Lemma 3.9. Let K ⊂ G(F ) be a compact subset. Then, we can find ΩM
P ∈ N (∞M

P ) such
that

xγK = xmP (γ)K

for every (x, γ) ∈ ΩM
P ×K.

Proof. For every neighborhood Ω ∈ N (∞M
P ), we can find another one Ω′ ∈ N (∞M

P ) such
that Ω′mP̄ (γ) ⊂ Ω for every γ ∈ K. It follows that we may assume that K ⊂ UP̄ (F ) and
mP (γ) = 1 for every γ ∈ K.

The lemma is then a variant of the wavefront Lemma [30, Corollary 5.3.2]. Indeed, let us
fix P0 = M0U0 ∈ Pmin

ι with P0 ⊂ P as well as representatives x1, . . . , xn for the M0(F )-orbits
in XM0(F ). Set, for C ≥ 0,

M+
0 (≥ C,P ) = {m0 ∈M0(F ) | 〈α,HM0(m0)〉 ≥ 0 ∀α ∈ ∆P0 , 〈α,HM0(m0)〉 ≥ C ∀α ∈ ∆P0\∆P

P0
}.
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Then, there exists a compact KM ⊂M(F ) such that the subsets⊔
i

xiM
+
0 (≥ C,P )KM , C > 0,

form a basis of neighborhoods of ∞M
P in XM(F ). Fix 1 ≤ i ≤ n and set

KU :=
⋂

k∈KM

kKk−1 ∩ UP (F ), K′ :=
⋃

k∈KM

k−1Kk,

two compact subsets of UP̄ (F ) and G(F ) respectively. It suffices to show that

xiM
+
0 (≥ C,P )KU ⊂ xiM

+
0 (≥ C,P )K′

for C large enough. Let JP0 ⊂ P0(F ) be a compact-open subgroup small enough so that
m−1

0 JP0m0 ⊂ K′ for every m0 ∈ M+
0 . For every compact-open subgroup JU ⊂ UP̄ (F ),

provided C is large enough we have m0KUm−1
0 ⊂ JU for every m0 ∈M+

0 (≥ C,P ). Therefore,
it only remains to check that JU can be chosen such that xiJU ⊂ xiJP0 but this follows from
the fact that xiP0, which is the image of HP0 by the natural projection G→ X, is open in
X (so that xiJP0 contains a neighborhood of xi in X(F )) since P0 is ι-split.

A consequence of the previous lemma is that for every ΩM
P ∈ N (∞M

P ) we have ΩP :=
ΩM
P K ∈ N (∞P ) and moreover that, if ΩM

P is sufficiently small, the natural surjection ΩM
P →

ΩP/K descends to a map ΩM
P /KM → ΩP/K where KM denotes the image of K ∩ P (F ) by

the natural surjection P (F )→M(F ). We recall the following result from [15, Theorem 2]:

(3.5.4) If ΩM
P is sufficiently small, the map ΩM

P /KM → ΩP/K is a bijection.

In particular, if ΩM
P is sufficiently small and A+

P,ι-invariant, there exists a map HP ,ι :

ΩP/K → AM,ι and a left action of A+
P,ι on ΩP/K characterized by

HP ,ι(xK) = HM,ι(x) and a · (xK) = (a · x)K

for every x ∈ ΩM
P and a ∈ A+

P,ι. For simplicity, we will henceforth assume that such a choice

of ΩM
P has been made for every parabolic P ∈ Pι so that if ΩP ∈ N (∞P ) is sufficently small,

HP ,ι(x) and a · x are well-defined for every x ∈ ΩP/K and a ∈ A+
P,ι. These satisfy

(3.5.5) HP ,ι(a · x) = HM,ι(a) +HP ,ι(x)

for every (a, x) ∈ A+
P,ι × ΩP/K.

Lemma 3.10. Let P,Q ∈ Pι with [P ] = [Q]. Then, for Ω ∈ N (∞P ) = N (∞Q) sufficiently
small we have

HQ,ι(x) = IP,Q(HP ,ι(x)) + Y K
P,Q and IP,Q(a) · x = a · x

for every (a, x) ∈ A+
P,ι × Ω/K.
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Proof. Let us choose γ ∈ G(F ) such that γPγ−1 = Q, γMPγ
−1 = MQ. Then, the map

ΩMP
P 7→ ΩMP

P γ−1 induces a bijection N (∞MP
P ) ' N (∞MQ

Q ) and thus we may assume that

there exists a small enough ΩMP
P ∈ N (∞MP

P ) such that Ω ⊂ ΩMP
P K and Ω ⊂ Ω

MQ

Q K where

we have set Ω
MQ

Q := ΩMP
P γ−1. Thus, an element x ∈ Ω/K can both be written as x = xPK

and x = xQK for xP ∈ ΩMP
P , xQ ∈ Ω

MQ

Q . Then, since xPγ
−1 ∈ Ω

MQ

Q , provided ΩMP
P has been

chosen sufficiently small, by Lemma 3.9 we have

x = (xPγ
−1)γK = (xPγ

−1)mQ(γ)K.

Together with (3.5.4) we get xQKMQ
= (xPγ

−1)mQ(γ)KMQ
. By (3.4.1) and Lemma 3.7 this

implies that

HQ,ι(x) = HMQ,ι(xPγ
−1mQ(γ)) = IP,Q(HMP ,ι(xP ))+

1

2
HMQ,ι(γι(γ)−1)+HQ,ι(γ) = IP,Q(HP,ι(x))+Y K

P,Q

and this shows the first equality of the lemma. For the second one, we notice that if ΩMP
P

has been chosen sufficiently small and A+
P,ι-invariant, we have

a · x = xPaK = xPaγ
−1γK = xPaγ

−1mQ(γ)K

= xPγ
−1mQ(γ)γaγ−1K = IP,Q(a) · (xPγ−1mQ(γ)K) = IP,Q(a) · x

for every a ∈ A+
P,ι.

3.6 The map HX

In this subsection, we continue to fix a special maximal compact subgroup K ⊂ G(F ). Recall
that for every P,Q ∈ Pι with [P ] = [Q], we have introduced an element Y K

P,Q ∈ AQ,ι. For two
minimal ι-split parabolic subgroups P0, P

′
0, we introduce the following affine isomorphism

IKP0,P ′0
: AP0,ι ' AP ′0,ι, IKP0,P ′0

(H) = IP0,P ′0
(H) + Y K

P0,P ′0
.

These isomorphisms compose well (i.e. for any third P ′′0 ∈ Pmin
ι we have IKP0,P ′′0

= IKP ′0,P ′′0
IKP0,P ′0

)

and we can introduce the real affine space

AX,K := lim←−
P0

AP0,ι

where the transition maps are this time given by the (affine) isomorphisms IKP0,P ′0
. Note

that the space of translations of AX,K is AX and for every P0 ∈ Pmin
ι there is an affine

isomorphism AX,K ' AP0,ι compatible with the identification AX ' AP0,ι.
Let P ∈ Pι be a ι-split parabolic subgroup (not necessarily minimal) and choose P0 ∈

Pmin
ι with P0 ⊂ P . Then, the composition of the isomorphism AX,K ' AP0,ι with the

projection AP0,ι � AP,ι is independent on the choice of P0 and will be denoted

projP : AX,K → AP,ι
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or simply Y 7→ YP .
In the following, we fix a norm ‖.‖ on the real vector space AX that we transfer to AX,K

through the choice of (an arbitrary) base-point.

Proposition 3.11. There exists a K-invariant map HX : X(F ) → AX,K satisfying the
following conditions: for every P ∈ Pι, there exists a small enough neighborhood ΩP of ∞P

in X(F ) such that:

1. For every x ∈ ΩP , we have projP (HX(x)) = HP ,ι(x);

2. For every (a, x) ∈ A+
P,ι × ΩP/K, HX(a · x) = HMP ,ι(a) +HX(x).

3. 1 + ‖HX(x)‖ ∼ σX(x) for x ∈ X(F ).

4. For every P0 ∈ Pmin
ι , we can find Y −P0,ι

∈ AP0,ι such that HX(x)P0 ∈ Y −P0,ι
+ A+

P0,ι
for

every x ∈ X(F ).

Proof. Let P,Q ∈ Pι be such that [P ] = [Q]. Then, it readily follows from Lemma 3.10 that
a K-invariant map HX : X(F ) → AX,K satisfies conditions 1 and 2 for P if and only if it
satisfies the same conditions for Q. Similarly, for P0, P

′
0 ∈ Pmin

ι , condition 4 holds for P0

if and only if it holds for P ′0. Therefore, fixing P0 ∈ Pmin
ι , it suffices to show the existence

of a K-invariant map HX : X(F ) → AX,K satisfying conditions 1.-4. for every parabolic
subgroup P ∈ Pι with P0 ⊂ P . We will call such parabolics standard and we will denote by
Pstdι the subset of them. We will also use the identification AX,K = AP0,ι.

For each P ∈ Pstdι we can find a neighborhood ΩP ∈ N (∞P ) such that:

� For each P ∈ Pstdι , ΩP is A+
P,ι × K-stable and is small enough that the map HP ,ι :

ΩP → AP,ι as well as the action of A+
P,ι on ΩP/K are well-defined;

� For each P,Q ∈ Pstdι , ΩP ∩ ΩQ ⊆ ΩP∩Q.

Then, for each P ∈ Pstdι , we set

ωP := ΩP \
⋃
Q(P

ΩQ.

From the second bullet point above, it follows that we have a partition in K-invariant subsets

(3.6.1) X(F ) =
⊔

P∈PιP0⊂P

ωP .

We define a map HX : X(F ) → AX,K by HX(x) = HP ,ι(x) for x ∈ ωP . Clearly HX is
K-invariant.

Let P ∈ Pι be standard and let us check that HX satisfies conditions 1. and 2. Let
x ∈ ΩP . By definition of the partition (3.6.1) there exists a standard Q ∈ Pstdι with Q ⊂ P
such that x ∈ ωQ. Since, by definition of HP ,ι and HQ,ι, we have projPHQ,ι(x) = HP ,ι(x),
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condition 1. is immediate. Also, since, by our choice of neighborhoods (ΩP )P , ωQ/K is
invariant by A+

Q,ι, hence also by A+
P,ι, from (3.5.5) we deduce that for every a ∈ A+

P,ι we have

HX(a · x) = HQ,ι(a · x) = HMQ,ι(a) +HQ,ι(x) = HMP ,ι(a) +HX(x)

and this proves condition 2.
Let us now check condition 3. First, since ‖HP ,ι(x)‖ � σX(x) for every P ∈ Pstdι and

x ∈ ΩP , it follows from the above definition of HX that we have

‖HX(x)‖ � σX(x), for x ∈ X(F ).

Thus, we just need to prove the converse inequality. By the weak Cartan decomposition
(3.5.1), it suffices to check it for x ∈ X+

P0
. Let C > 0 that will be assumed large enough in

what follows. Let x ∈ X+
P0

and let P ∈ Pstdι be such that

∆P0,ι \∆P
P0,ι

= {α ∈ ∆P0,ι | 〈α,HM0,ι(x)〉 ≥ C}.

Then, provided C is large enough, we have x ∈ ΩP . Hence, by property 1. we have
projPHX(x) = HP ,ι(x). On the other hand, it is easy to see that σX(x) � 1 + ‖HP ,ι(x)‖.
Hence, σX(x)� 1 + ‖HX(x)‖ and we are done.

It only remains to prove that HX satisfies condition 4. Let us fix a weak Cartan decom-
position like (3.5.1). Then, by definition of neighborhoods of ∞P , there exists C > 0 such
that X+

P0
(≥ C,P )K ⊂ ΩP for every P ∈ Pstdι . Then, for P ⊂ Q we have X+

P0
(≥ C,P ) ⊆

X+
P0

(≥ C,Q) and the subsets

X+
P0

(≥ C,P ) \
⋃
Q(P

X+
P0

(≥ C,Q)

are relatively compact modulo A+
P,ι. It follows that we can find compact subsets ω′P ⊂ ΩP

such that
X(F ) =

⋃
P∈Pstdι

A+
P,ιω

′
P .

By property 2., we have HX(A+
P,ιω

′
P ) = HP,ι(A

+
P,ι) + HX(ω′P ) for each P ∈ Pstdι . Since, by

property 3., HX(ω′P ) ⊂ AX,K is relatively compact and HP,ι(A
+
P,ι) ⊂ A

+
P,ι ⊂ A

+
P0,ι

, property
4. follows.

Proposition 3.12. Let HX : X(F )→ AX,K be the map as in the previous proposition. Let
P ∈ Pι and set M = MP . Then, there exists c > 0 such that for every (a, x) ∈ A+

P,ι×XM(F ),
we can find Q ∈ Fι(P ) such that

(3.6.2) projQHX(ax) = HMQ,ι(ax),

(3.6.3) ‖HX(ax)− projQHX(ax)‖ 6 cσX(x),

and

(3.6.4) ‖HMQ,ι(ax)−HMP ,ι(ax)‖ 6 cσX(x).
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Proof. We prove this by induction on dim(AP ). So we assume that the statement holds for
P replaced by any parabolic R ∈ Pι with P ( R. Let ΩM

P ∈ N (∞M
P ) be a small enough A+

P,ι-

stable neighborhood of ∞M
P in XM(F ) such that the first and second points of the previous

proposition are satisfied for ΩP = ΩM
P K and HP ,ι(x) = HM,ι(x) for every x ∈ ΩM

P . Then,
there exists a constant c1 > 0 such that for every (a, x) ∈ A+

P,ι ×XM(F ) satisfying

〈α,HM,ι(a)〉 ≥ c1σX(x), for every α ∈ ∆P,ι,

we have ax ∈ ΩM
P . (This follows e.g. from using a weak Cartan decomposition for XM(F ).)

Moreover, there also exists a constant c′ > c1 such that for any such a and x we can find
a′ ∈ A+

P,ι with σ(a′) ≤ c′σX(x), a′x ∈ ΩM
P and a ∈ a′A+

P,ι. From this and Proposition 3.11,
we get

projPHX(ax) = HP ,ι(ax) = HM,ι(ax) = HM,ι(a) +HM,ι(x)

and

HX(ax) = HX(a(a′)−1a′x) = HM,ι(a(a′)−1) +HX(a′x) = HM,ι(a)−HM,ι(a
′) +HX(a′x).

Hence,
‖HX(ax)− projPHX(ax)‖ = ‖HX(a′x)−HM,ι(a

′)−HM,ι(x)‖.

Since ‖HM,ι(a
′)‖ � σX(x), ‖HX(a′x)‖ � σX(x) and ‖HM,ι(x)‖ � σX(x), we get that in

this case both (3.6.2) and (3.6.3) holds for Q = P and a suitable constant c > 0 (note that
(3.6.4) is trivial when P = Q).

It remains to treat the case where there exists α ∈ ∆P,ι such that 〈α,HM,ι(a)〉 < c1σX(x).
Let R ∈ Pι be the unique ι-split parabolic subgroup such that R ⊃ P and ∆R

P,ι = {α}. Then,
for every (a, x) ∈ A+

P,ι × XM(F ) with 〈α,HM,ι(a)〉 < c1σX(x) we can find aR ∈ A+
R,ι such

that σ(aa−1
R ) � σX(x). Then, writing ax = aR(a−1

R ax) where a−1
R ax ∈ XM(F ) ⊂ XMR

(F ),
by the induction hypothesis there exists a constant cR > 0 as well as Q ∈ Pι, Q ⊃ R such
that projQHX(ax) = HMQ,ι(ax) and

‖HX(ax)− projQHX(ax)‖ ≤ cRσX(a−1
R ax), ‖HMQ,ι(ax)−HMR,ι(ax)‖ ≤ cRσX(a−1

R ax).

Since σX(a−1
R ax)� σX(x) and ‖HMR,ι(ax)−HMP ,ι(ax)|‖ � σX(x), this again gives (3.6.2),

(3.6.3) and (3.6.4) for a suitable constant c > 0 and the proposition is proved.

3.7 Twisted symmetric pairs

We define a twisted symmetric pair (over F ) to be a triple (G, G̃, ι) where (G, G̃) is a linear
twisted space, (G, ι) is a symmetric pair both defined over F and we have extended ι to an

involutive automorphism of ι : G̃ → G̃ (still defined over F ) with ι(g1γg2) = ι(g1)ι(γ)ι(g2)

for every (γ, g1, g2) ∈ G̃×G×G. We will usually refer to twisted symmetric pairs by (G̃, ι),
the underlying group G being implicit.
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Let (G̃, ι) be a twisted symmetric pair. We denote by AG̃,ι the neutral component of the

subgroup {a ∈ AG̃ | ι(a) = a−1} and we set

A∗
G̃,ι

= X∗(AG̃,ι)⊗ R, AG̃,ι = X∗(AG̃,ι)⊗ R.

Then, A∗
G̃,ι

(resp. AG̃,ι) can be identified with the subspace of ι-antiinvariant vectors in A∗
G̃

(resp. in AG̃). We also denote by HG̃,ι : G(F ) → AG̃,ι the composition of HG̃ with the
natural projection AG̃ → AG̃,ι.

We assume from now on that G is connected and reductive. Let H = Gι, H̃ = G̃ι be the
subvarieties of ι-fixed points in G and G̃ respectively. Then, (H, H̃) is a reductive twisted

space over F and we will always assume that H̃(F ) 6= ∅.
A parabolic subspace P̃ ⊂ G̃ is called ι-split if the underlying parabolic subgroup P ⊂ G

is ι-split or equivalently if ι(P̃ ) is a parabolic subspace opposite to P̃ . Similarly, a Levi

subspace M̃ ⊂ G̃ is said to be ι-split if there exists a ι-split parabolic subspace P̃ such
that M̃ = P̃ ∩ ι(P̃ ). For M̃ a ι-split Levi subspace, we denote by Pι(M̃) (resp. Fι(M̃),

resp. Lι(M̃)) the set of ι-split parabolic subspaces having M̃ as a Levi component (resp.

containing M̃ , resp. the set of ι-split Levi subspaces containing M̃).
We equip AM̃,ι with the unique Haar measure for which the lattice HM̃,ι(AM̃(F )) is of

covolume one. We will also write AP̃ ,ι for AM̃,ι for every P̃ ∈ Pι(M̃) and we denote by
HP̃ ,ι : P (F )→ AP̃ ,ι the composition of the projection P (F )→M(F ) with HM̃,ι.

We will denote by P̃ι and L̃ι the sets of all ι-split parabolic subspaces and ι-split Levi
subspaces of G̃ respectively.

Let M̃ be a ι-split Levi subspace of G̃, Q̃ ∈ Fι(M̃) and set AQ̃
M̃,ι

= AM̃,ι/AQ̃,ι. We equip

this space with the quotient of the Haar measures on AM̃,ι and AQ̃,ι. For P̃ ∈ Pι(M̃) with

P̃ ⊂ Q̃, we denote by

∆Q̃,∨
P̃ ,ι
⊂ AQ̃

M̃,ι
and ∆Q̃

P̃ ,ι
⊂ AQ̃,∗

M̃,ι

the images of ∆Q,∨
P,ι and ∆Q

P,ι by the natural projections

AQM,ι � A
Q̃

M̃,ι
and AQ,∗M,ι � A

Q̃,∗
M̃,ι

respectively. These form basis of AQ̃
M̃,ι

and AQ̃,∗
M̃,ι

respectively and we write ∆̂Q̃

P̃ ,ι
⊆ AQ̃,∗

M̃,ι
for

the basis dual to ∆Q̃,∨
P̃ ,ι

. We denote by τ Q̃
P̃ ,ι

, τ̂ Q̃
P̃ ,ι

the characteristic functions of the cone in A
characterized by

τ Q̃
P̃ ,ι

(H) = 1 ⇐⇒ 〈α,H〉 > 0, ∀α ∈ ∆Q̃

P̃ ,ι
, τ̂ Q̃

P̃ ,ι
(H) = 1 ⇐⇒ 〈$,H〉 > 0, ∀$ ∈ ∆̂Q̃

P̃ ,ι

respectively. When Q̃ = G̃ we will sometimes drop the superscript Q̃.
Recall that Pmin

ι stands for the set of all minimal ι-split parabolic subgroups of G. We
have
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(3.7.1) For every P0 ∈ Pmin
ι , P̃0 := NormG̃(P0) is a ι-split parabolic subspace of G̃ i.e.

P̃0(F ) 6= ∅.

Indeed, we just need to check the existence of an element γ ∈ G̃(F ) such that the parabolic

subgroups P0 and Adγ(P0) are in the same conjugacy class. However, for γ ∈ H̃(F ) the
parabolic subgroup Adγ(P0) is also ι-split minimal and by [18, Proposition 4.9] all minimal
ι-split parabolic subgroups are in the same conjugacy class.

Let P̃min
ι ⊂ P̃ι be the subset of minimal elements of P̃ι (for the inclusion relation). Then,

by (3.7.1), the map P0 7→ P̃0 gives a bijection Pmin
ι ' P̃min

ι .

Set M̃0 = P̃0 ∩ σ(P̃0). It is easy to see that the automorphism θ of AG,∗M0,ι
preserves the

root system Σ0,ι as well as its subset of simple roots ∆0,ι.
Let X = H\G be the homogeneous symmetric variety associated to (G, ι). Then, there

exists a unique regular map X × G̃ → X, (x, γ) 7→ xγ such that (Hg)γ = HAd−1
γ (g) for

every (g, γ) ∈ G× H̃. Note that we have

((xg1)γ)g2 = x(g1γg2), for every (x, g1, g2, γ) ∈ X ×G×G× G̃.

We will usually write X̃ to mean X equipped with this “twisted action” of G̃. This twisted
action naturally induces an automorphism θ of the real vector space AX and we set

AX̃ := AθX .

Then, for any P0 ∈ Pmin
ι , the canonical isomorphism AX ' AP0,ι induces an isomorphism

AX̃ ' AP̃0,ι
. We will also write A+

X̃
, −AX̃ for the respective images of A+

X , −AX by the

natural projection AX → AX̃ and φX̃ for the characteristic function of the cone −AX̃ .
Let K ⊂ G(F ) be a special maximal compact subgroup and let AX(1− θ) be the kernel

of the natural projection AX → AX̃ . We set

AX̃,K := AX,K/AX(1− θ).

It is an affine space with direction AX̃ and for every P0 ∈ Pmin
ι the (affine) isomorphism

AX,K ' AP0,ι induces an isomorphism AX̃,K ' AP̃0,ι
. Moreover, for every P̃ ∈ P̃ι there is a

natural affine projection

(3.7.2) AX̃,K → AP̃ ,ι

that can be described as the composition of AX̃,K ' AP̃0,ι
with the projection AP̃0,ι

→ AP̃ ,ι
for any P̃0 ∈ P̃ι with P̃0 ⊂ P̃ . For every Y ∈ AX̃,K , we will denote by YP̃ its image by the
projection (3.7.2).

If HX : X(F ) → AX,K is a map as in Proposition 3.11, we will usually write HX̃ :

X̃(F )→ AX̃,K for the composition of HX with the natural projection AX,K → AX̃,K .
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3.8 Orthogonal sets

Let (G̃, ι) be a twisted symmetric pair. In [7, §2.8.2], we have introduced notions of (G,M, ι)-
families extending in an obvious way Arthur’s definition of (G,M)-families in the context
of symmetric pairs. This actually exactly corresponds to Arthur’s theory applied to the
root system Σ0,ι. There is a similar combinatorics for twisted groups as developed in [23]
which can be applied to any automorphism of a root system preserving a positive system.
In particular, starting from the pair (Σ0,ι, θ) there is a corresponding notion of (G̃, M̃ , ι)-
orthogonal sets that we now briefly describe.

Let M̃ be a ι-split Levi subspace of G̃. Two parabolic subspaces P̃ , Q̃ ∈ Pι(M̃) are said
to be ι-adjacent if the intersection ∆∨

P̃ ,ι
∩−∆∨

Q̃,ι
is a singleton {α∨

P̃ ,Q̃
}. If this is the case, the

hyperplane {X ∈ iA∗
M̃,ι
| 〈α∨

P̃ ,Q̃
, X〉 = 0} is called the wall separating P̃ and Q̃.

By definition (G̃, M̃ , ι)-orthogonal set is a family X = (XP̃ ,ι)P̃∈Pι(M̃) of points in AM̃,ι

such that for every ι-adjacent parabolic subspaces P̃ , Q̃ ∈ Pι(M̃), we have

XP̃ ,ι −XQ̃,ι ∈ Rα∨
P̃ ,Q̃

where ∆∨
P̃ ,ι
∩ −∆∨

Q̃,ι
= {α∨

P̃ ,Q̃
}. We further say that X is positive if

XP̃ ,ι −XQ̃,ι ∈ R>0α
∨
P̃ ,Q̃

for every pair of ι-adjacent parabolic subspaces P̃ , Q̃ ∈ Pι(M̃).

As in Subsection 2.9, we define the depth and the norm of a (G̃, M̃ , ι)-orthogonal set
X = (XP̃ )P̃∈P(M̃) by

d(X ) = min
P̃∈P(M̃)

min
α∈∆

P̃

α(XP̃ ) and N(X ) = max
P̃∈P(M̃)

max
α∈∆

P̃

|α(XP̃ )|

respectively. Note that X is positive if and only if d(X ) ≥ 0.

Let X = (XP̃ ,ι)P̃∈Pι(M̃) be a (G̃, M̃ , ι)-orthogonal set. For Q̃ = L̃UQ ∈ Fι(M̃), we denote

by XQ̃,ι the projection to AL̃,ι of XP̃ ,ι for any P̃ ∈ Pι(M̃) such that P̃ ⊂ Q̃ (this projection

does not depend on the choice of P̃ ). To X we associate functions ΓQ̃
L̃,ι

(.,X ) on AQ̃
L̃,ι

and

complex numbers vQ̃
L̃,ι

(X ) ∈ C for every L̃ ∈ Lι(M̃) and Q̃ ∈ Fι(L̃) as follows:

ΓQ̃
L̃,ι

(H,X ) =
∑

P̃∈Fι(L̃),P̃⊂Q̃

(−1)
aQ̃
P̃ ,ι τ̂ Q̃

P̃ ,ι
(H −XP̃ ,ι), H ∈ AQ̃

L̃,ι

and

vQ̃
L̃,ι

(X ) =

∫
AQ̃
L̃,ι

ΓQ̃
L̃,ι

(H,X )dH.

If X is positive, vQ̃
L̃,ι

(X ) is simply the volume of the convex hull of the family (XP̃ ,ι)P̃∈Pι(L̃),P̃⊂Q̃.

Once again, we will sometimes drop the superscript when Q̃ = G̃.
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Let K be a special compact subgroup of G(F ). Using the Iwasawa decomposition G(F ) =

P (F )K, for every ι-split parabolic subspace P̃ ⊂ G̃, we can extend the homomorphism HP̃ ,ι

to a map G(F ) → AP̃ ,ι. Then, for every ι-split Levi subspace M̃ ⊂ G̃ and g ∈ G(F ), the

family HM̃,ι(g) = (−HP̃ ,ι(g))P̃∈Pι(M̃) is a positive (G̃, M̃ , ι)-orthogonal set and we define

vQ̃
M̃,ι

(g) = vQ̃
M̃,ι

(HM̃,ι(g)), for Q̃ ∈ Fι(M̃).

Let Y ∈ AX̃,K and M̃ ∈ L̃ι. Then, the family YM̃ := (YP̃ )P̃∈Pι(M̃) is (G̃, M̃ , ι)-orthogonal

set. Indeed, this follows from the fact that if P̃ , Q̃ ∈ Pι(M̃) are ι-adjacent then Y K
Q,P ∈ Rα∨

P̃ ,Q̃

as can be directly checked on the definition.
Whenever convenient, we will also fix a minimal ι-split parabolic subspace P̃0 ⊂ G̃ to

define the depth and norm of an element Y ∈ AX̃,K by

d(Y ) = min
α∈∆

P̃0,ι

α(YP̃0,ι
) and N(Y ) = max

α∈∆
P̃0,ι

|α(YP̃0,ι
)|

respectively. We note that for every ι-split Levi subspace M̃ ⊂ G̃, there exist constants
c1, c2 > 0 such that

d(Y )− c1 ≤ d
(
YM̃
)

and N
(
YM̃
)
≤ N(Y ) + c2

for every Y ∈ AX̃,K .

3.9 ι-weighted orbital integrals

Let M̃ be a ι-split Levi subspace of G̃, γ ∈ M̃(F )∩G̃rs(F ) and Q̃ ∈ Fι(M̃). For f ∈ C(G̃(F )),
we define the ι-twisted weighted orbital integral

ΦQ̃

M̃,ι
(γ, f) =

∫
Gγ(F )\G(F )

f(g−1γg)vQ̃
M̃,ι

(g)dg

as well as its normalized version

J Q̃
M̃,ι

(γ, f) = DG̃(γ)1/2ΦQ̃

M̃,ι
(γ, f).

By the same argument as in (2.10.1), the above integral is absolutely convergent, and for

T̃ ⊂ M̃ a maximal twisted torus, we have:

(3.9.1) There exist p > 0 and, for every d > 0, a continuous semi-norm νd on C(G̃(F )) such
that ∣∣∣J Q̃

M̃,ι
(γ, f)

∣∣∣ 6 νd(f)(1 + |logDG̃(γ)|)pσT̃/θ(γ)−d

for every γ ∈ T̃reg(F ) and f ∈ C(G̃(F )).
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4 Harmonic analysis for certain singular conjugacy classes

In this section, we fix a connected reductive twisted space G̃ as well as a semisimple element
x ∈ G̃ss(F ) and a regular nilpotent coadjoint orbit O ∈ Nilreg(g∗x). Our goal is to establish
an alternative description of the distribution

f ∈ Cscusp(G̃(F )) 7→ cf,O(x)

that was defined in Subsection 2.12.
Note that since Gx admits a regular coadjoint orbit, it is quasi-split. We fix once and

for all a Borel subgroup Bx of Gx with a Levi decomposition Bx = TxNx. Let Y ∈ O whose
stabilizer in Nx is trivial. It defines a generic character ξ of Nx(F ) by the formula

(4.0.1) ξ(exp(X)) = ψ(〈X, Y 〉), X ∈ nx(F ).

We then say that the generic character ξ is associated to the nilpotent coadjoint orbit O.
The formula we will give for the distribution f 7→ cf,O(x) will be in term of this character
ξ. Note that there are more than one generic characters of Nx(F ) associated to O but they
form a unique Tx(F )-orbit and the resulting description of cf,O(x) will be easily seen to be
independent of the choice of ξ. Conversely, given a generic character ξ : Nx(F ) → C×, we
can always find a regular nilpotent element Y ∈ g∗x(F ) such that ξ is given by formula (4.0.1)
and moreover such Y is unique up to Nx(F )-conjugacy. We will then say that the (nilpotent)
coadjoint orbit of Y is associated to the generic character ξ and we will dentoe it by Oξ.

4.1 The function ΓBx(.,X )

Let Ax ⊂ Tx be the maximal split subtorus, Ax = X∗(Ax) ⊗ R, M(x) = ZG(Ax) and

M̃(x) = M(x)x, a Levi subspace of G̃. We let PBx(M̃(x)) (resp. FBx(M̃(x))) be the set

of parabolic subspaces P̃ ∈ P(M̃(x)) (resp. Q̃ ∈ F(M̃(x))) such that P ∩ Gx = Bx (resp.
Q ⊃ Bx). Let also

Wx = NormGx(F )(Tx)/Tx

be the Weyl group of Tx in Gx.

Lemma 4.1. (i) We have AM̃(x) = Ax.

(ii) There is a natural embedding of Wx into the Weyl group W (G, M̃(x)) = NormG(F )(M̃(x))/M(x)(F )
and we have a partition

(4.1.1) P(M̃(x)) =
⊔

w∈Wx

wPBx(M̃(x)).

Proof. (i) Since Ax centralizes with M(x) and x, it centralizes M̃(x) and therefore Ax ⊂
AM̃(x). On the other hand, every element of AM̃(x) centralizes x (so that AM̃(x) ⊂ Gx)

and Tx. It follows that AM̃(x) ⊂ ZGx(Tx) = Tx and finally AM̃(x) ⊂ Ax.
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(ii) Since every element of NormGx(Tx) centralizes x and normalizes Ax, NormGx(Tx) is

contained in the normalizer of ZG(Ax)x = M̃(x) i.e. NormGx(Tx) ⊂ NormG(M̃(x)).
Moreover, NormGx(Tx)∩M(x) is equal to Tx because the centralizer of Ax in Gx is Tx.

This explains the “natural” embedding Wx ↪→ W (G, M̃(x)).

We have
wPBx(M̃(x)) = {P̃ ∈ P(M̃(x)) | P ∩Gx = wBx}

so that (4.1.1) is just the partition corresponding to the fibers of the map P(M̃(x))→
PGx(Tx), P̃ 7→ P ∩Gx.

By the above lemma, we have a containment of set of roots

Σ(Ax, Gx) ⊂ Σ(Ax, G) = Σ(AM̃(x), G).

Thus, for every α ∈ Σ(Ax, Gx) there are a priori two associated coroots α∨1 , α
∨
2 ∈ Ax. Namely,

we can either see α as a root of Ax in Gx and consider the corresponding coroot α∨1 ∈ X∗(Ax)
or we can view α as a root of AM̃(x) in G and consider the corresponding coroot α∨2 ∈ Ax.
It turns out that α∨1 and α∨2 are always positively proportional. This can be seen as follows.
Take a maximal split torus Ax ⊂ Amin ⊂ G and fix an inner product on Amin := AAmin

which
is invariant under the action of the Weyl group Wmin = NormG(F )(Amin(F ))/CentG(F )(Amin).
By restriction to Ax ⊂ Amin, this gives an inner product on Ax, hence an identification
Ax ' A∗x such that for every α ∈ Σ(AM̃(x), G), α∨2 is positively proportional to α. This inner

product is still W (G, M̃(x))-invariant, hence Wx-invariant by the second point of the above
lemma. It follows that, for every α ∈ Σ(Ax, Gx), the identification Ax ' A∗x also sends α∨1 to
a positive multiple of α. Since in what follows, the coroots will only matter up to a positive
scalar, we will not really have to distinguish between α∨1 and α∨2 . However, to fix ideas, when
there is an ambiguity we will always use α∨2 instead of α∨1 .

Let X = (XP̃ )P̃∈P(M̃(x)) be a (G̃, M̃(x))-orthogonal set in Ax = AM̃(x). For Q̃ ∈
FBx(M̃(x)) and H ∈ Ax, we set (the function τ̂ Q̃

P̃
is defined in Section 2.9)

ΓQ̃Bx(H,X ) =
∑

P̃∈FBx (M̃(x)),P̃⊂Q̃

(−1)a
Q̃

P̃ τ̂ Q̃
P̃

(H −XP̃ ).

For the next lemma, we recall, for two parabolic subspaces Q̃, R̃ ∈ F(M̃(x)) with Q̃ ⊂ R̃,
the function

ΓR̃
Q̃

: AQ̃ ×AQ̃ → R

that can be defined by

ΓR̃
Q̃

(H,X) =
∑

Q̃⊂P̃⊂R̃

(−1)a
R̃
P̃ τ P̃

Q̃
(H)τ̂ R̃

P̃
(H −X).
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Then, provided X ∈ A+

Q̃
, we have [23, lemme 1.8.3]

(4.1.2) ΓR̃
Q̃

(H,X) = τ R̃
Q̃

(H)φR̃
Q̃

(H −X)

where φR̃
Q̃

is the characteristic function of those Y ∈ AQ̃ such that 〈$, Y 〉 ≤ 0 for every

$ ∈ ∆̂R̃
Q̃

(in other words it is the characteristic function with support the closure of the

support of the function X 7→ τ̂ R̃
Q̃

(−X)).

Lemma 4.2. For two (G̃, M̃(x))-orthogonal sets X and Y, we have

ΓR̃Bx(H,X + Y) =
∑

Q̃∈FBx (M̃(x)),Q̃⊂R̃

ΓQ̃Bx(H,X )ΓR̃
Q̃

(H −XQ̃, YQ̃).

Proof. The proof follows from the same argument as Lemma 1.8.6 of [23].

Proposition 4.3. For every H ∈ Ax and R̃ ∈ FBx(M̃(x)) , we have (the function τ R̃
Q̃

is

defined in Section 2.9)

(4.1.3)
∑

R̃⊃Q̃∈FBx (M̃(x))

ΓQ̃Bx(H,X )τ R̃
Q̃

(H −XQ̃) = 1.

Moreover, if X is positive the function H 7→ ΓBx(H,X ) is the characteristic function of the
set of H ∈ Ax such that

$α(H −XP̃ ) 6 0

for every P̃ ∈ PBx(M̃(x)) and α ∈ ∆P̃ .

Proof. Let R̃ ∈ FBx(M̃(x)). By definition of ΓQ̃Bx(.,X ), for H ∈ Ax, we have∑
R̃⊃Q̃∈FBx (M̃(x))

ΓQ̃Bx(H,X )τ R̃
Q̃

(H −XQ̃)

=
∑

R̃⊃Q̃∈FBx (M̃(x))

∑
FBx (M̃(x))3P̃⊂Q̃

(−1)a
Q̃

P̃ τ̂ Q̃
P̃

(H −XP̃ )τ R̃
Q̃

(H −XQ̃)

=
∑

P̃∈FBx (M̃(x))

∑
F(M̃(x))3Q̃
P̃⊂Q̃⊂R̃

(−1)a
Q̃

P̃ τ̂ Q̃
P̃

(H −XP̃ )τ R̃
Q̃

(H −XQ̃).

Moreover, by [23, proposition 1.7.1, lemme 2.9.2] the inner sum∑
F(M̃(x))3Q̃
P̃⊂Q̃⊂R̃

(−1)a
Q̃

P̃ τ̂ Q̃
P̃

(H −XP̃ )τ R̃
Q̃

(H −XQ̃)
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equals 1 if P̃ = R̃ and 0 otherwise. The identity (4.1.3) follows.

Assume now that X is positive. Fix P̃ ∈ PBx(M̃(x)). For P̃ ′ ∈ PBx(M̃(x)), we denote
by φP̃ ′,P̃ the characteristic function of the set of H ∈ Ax such that for every α ∈ ∆P̃ ′ we
have

$α(H) 6 0 if α ∈ Σ+

P̃

and
$α(H) > 0 if α ∈ Σ−

P̃
.

Then, we have

ΓBx(.,X ) =
∑

Q̃∈FBx (M̃(x))

(−1)
aG̃
Q̃ τ̂Q̃(.−XQ̃)(4.1.4)

=
∑

P̃ ′∈PBx (M̃(x))

∑
P̃ ′⊂Q̃

P̃∩Q̃=P̃∩P̃ ′

(−1)
aG̃
Q̃ τ̂Q̃(.−XQ̃)

=
∑

P̃ ′∈PBx (M̃(x))

(−1)|∆P̃ ′∩Σ−
P̃
|φP̃ ′,P̃ (.−XP̃ ′)

where the last identity follows from [23, lemme 1.7.4, lemme 2.9.2]. From the above we

deduce that for every H ∈ Ax satisfying ΓBx(H,X ) 6= 0 there exists P̃ ′ ∈ PBx(M̃(x)) such
that φP̃ ′,P̃ (H −XP̃ ′) = 1 which, since X is positive, further implies

$α(H) 6 $α(XP̃ ′) 6 $α(XP̃ )

for every α ∈ ∆P̃ . Thus, as P̃ ∈ PBx(M̃(x)) was arbitrary, we see that Supp(ΓBx(.,X )) is
included in the subset of those H ∈ Ax such that

(4.1.5) $α(H −XP̃ ) 6 0, ∀P̃ ∈ PBx(M̃(x)), ∀α ∈ ∆P̃ .

Conversely, assume that H ∈ Ax satisfies the inequalities (4.1.5). Then, for a chosen P̃ ∈
PBx(M̃(x)), we have φP̃ ,P̃ (H −XP̃ ) = 1 whereas for P̃ 6= P̃ ′ ∈ PBx(M̃(x)), as ∆P̃ ′ ∩Σ−

P̃
6= ∅,

we have φP̃ ′,P̃ (H −XP̃ ′) = 0. From identity (4.1.4) this readily implies that ΓBx(H,X ) = 1.
This gives the last part of the proposition.

Corollary 4.4. Let X ,Y be two positive (G̃, M̃(x))-orthogonal sets. Then, for every Q̃, R̃ ∈
FBx(M̃(x)) and Y ∈ Ax we have

ΓQ̃Bx(H,X )τ R̃
Q̃

(H −XQ̃)ΓR̃Bx(H,X + Y) = ΓQ̃Bx(H,X )τ R̃
Q̃

(H −XQ̃)φR̃
Q̃

(H −XQ̃ − YQ̃).

In other words, on the support of the function ΓQ̃Bx(.,X )τ R̃
Q̃

(. −XQ̃), ΓR̃Bx(.,X + Y) is equal

to φR̃
Q̃

(.−XQ̃ − YQ̃).
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Proof. This follows from the combination of Lemma 4.2 with the identities (4.1.3) and (4.1.2),

noting that each of the functions ΓQ̃Bx(.,X )τ R̃
Q̃

(.−XQ̃), Q̃, R̃ ∈ FBx(M̃(x)), are characteristic

functions by Proposition 4.3.

To simplify the notation, we will use ∆x (resp. ∆∨x ) to denote the set of roots ∆Bx ⊂
X∗(Ax) (resp. of coroots ∆∨Bx ⊂ X∗(Ax)).

Proposition 4.5. Assume that X is positive. Then, ΓBx(.,X ) is the characteristic function
of

Conv{XP̃ | P̃ ∈ PBx(M̃(x))}+ −ABx +AG̃
where Conv{XP̃ | P̃ ∈ PBx(M̃(x))} denotes the convex hull of the finite set {XP̃ | P̃ ∈
PBx(M̃(x))} whereas −ABx stands for the closed cone generated by −∆∨x .

Proof. Set
CBx(X ) := Conv{XP̃ | P̃ ∈ PBx(M̃(x))}+ −ABx +AG̃.

This is obviously a closed convex subset of Ax. Moreover, its set of extreme points is
contained in {XP̃ | P̃ ∈ PBx(M̃(x))}. Recall that for every closed convex subset C ⊂ Ax,
denoting by Ext(C) its set of extreme points and, for X ∈ Ext(C), by CX the cone centered
at X generated by C, that is CX = {X + t(Y −X) | Y ∈ C, t ≥ 0}, we have

C =
⋂

X∈Ext(C)

CX .

According to the previous proposition ΓBx(.,X ) is the characteristic function of

{H ∈ Ax | $α(H −XP̃ ) 6 0 ∀P̃ ∈ PBx(M̃(x)), ∀α ∈ ∆P̃}.

Therefore, it suffices to show that for every P̃ ∈ PBx(M̃(x)) we have

CBx(X )X
P̃

= {H ∈ Ax | $α(H −XP̃ ) 6 0 ∀α ∈ ∆P̃}(= XP̃ + −AP̃ +AG̃).

As X is positive, and −ABx ⊂ −AP̃ , the inclusion CBx(X )X
P̃
⊆ XP̃ + −AP̃ +AG̃ is clear. On

the other hand, for every α ∈ ∆P̃ we either have:

� α∨ is positively proportional to an element of ∆∨x ;

� there exists P̃ ′ ∈ PBx(M̃(x)) such that Σ+

P̃
∩ Σ−

P̃ ′
= {α} in which case XP̃ ′ − XP̃ ∈

R>0α
∨.

This implies that, in both cases, CBx(X )X
P̃

is invariant by translation by R≤0α
∨. As this

holds for all α ∈ ∆P̃ , this gives the reverse inclusion XP̃ + −AP̃ + AG̃ ⊆ CBx(X )X
P̃

and
therefore CBx(X )X

P̃
= XP̃ + −AP̃ +AG̃.
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4.2 The weight vBx,ξ(u, g)

Let Nx,reg = Nx ∩ Gx,reg be the open subset of regular elements in Nx and Tx,c ⊂ Tx(F )
be the maximal compact subgroup. We equip Tx,c with the Haar measure of total mass
1 and we also fix a log-norm σx,reg : Gx,reg(F ) → R>1 on Gx,reg(F ) (see Section 2.3). Set
r = dim(Ax)− aG̃.

Lemma 4.6. For any u ∈ Nx,reg(F ) and any positive (G̃, M̃(x))-orthogonal set X , the
iterated integral

(4.2.1)

∫
Tx(F )/A

G̃
(F )

∫
Tx,c

ξ(a−1t−1uta) dt ΓBx(HTx(a),X ) da

is absolutely convergent in that order and will be denoted by

ṽBx,ξ(u,X ) :=

∫ ∗
Tx(F )/A

G̃
(F )

ξ(a−1ua)ΓBx(H(a),X ) da.

Moreover, there exists a constant C > 0 such that for every u ∈ Nx,reg(F ) and every positive

(G̃, M̃(x))-orthogonal set X , we have (where N(X ) denotes the norm of X defined in Section
2.9)

|ṽBx,ξ(u,X )| 6 C(σx,reg(u) +N(X ))r.

Proof. The inner integral over Tx,c in (4.2.1) is obviously convergent. LetNx,der be the derived
subgroup of Nx and let Nx/Nx,der =

⊕
α∈∆x

(Nx/Nx,der)α be the isotypic decomposition with
respect to the adjoint action of Ax. We fix a norm ‖.‖ on the F -vector space Nx(F )/Nx,der(F )
and for every u ∈ Nx and α ∈ ∆x, let us we denote by uα the projection of u to (Nx/Nx,der)α.
Then, since ξ is a generic character, there exists C1 > 0 such that for all a ∈ Tx(F ) and
u ∈ Nx,reg(F ) we have∫

Tx,c

ξ(a−1t−1uta)dt 6= 0⇒ 〈α,HTx(a)〉 > log‖uα‖ − C1 for all α ∈ ∆x.

On the other hand, there exists C2 > 0 such that log‖uα‖ − C1 > −C2σx,reg(u) for all
(u, α) ∈ Nx,reg(F )×∆x. Combining this with Proposition 4.5, we see that, for u ∈ Nx,reg(F )

and X a positive (G̃, M̃(x))-orthogonal set, the function

(4.2.2) a ∈ Tx(F )/AG̃(F )Tx,c 7→ ΓBx(HTx(a),X )

∫
Tx,c

ξ(a−1t−1uta) dt

is supported in the compact subset (where we identify Tx(F )/Tx,c with a subset of Ax via
the map HTx)
(4.2.3)(
Conv{XP̃ | P̃ ∈ PBx(M̃(x))}+ −ABx +AG̃

)
∩{H ∈ Ax | 〈α,H〉 > −C2σx,reg(u), ∀α ∈ ∆x}
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of Ax/AG̃. Since the function (4.2.2) is also obviously bounded by 1, the lemma follows up to
noticing the existence of C3 > 0 such that the subset (4.2.3) is contained in B(C3(σx,reg(u) +

N(X ))) +AG̃ for any u ∈ Nx,reg(F ) and for any positive (G̃, M̃(x))-orthogonal set X . Here
for R > 0, we use B(R) to denote the ball of radius R centered at 0 in Ax for a given
norm.

Lemma 4.7. There exists C > 0 and, for every u ∈ Nx,reg(F ), a unique unitary polynomial-

exponential function vBx,ξ(u, .) on CQ(G̃, M̃(x)) such that for every rational (G̃, M̃(x))-orthogonal

set X ∈ CQ(G̃, M̃(x)) with d(X ) > Cσ(u) (we refer the reader to Section 2.9 for various no-
tation), we have

vBx,ξ(u,X ) = ṽBx,ξ(u,X ).

Moreover, as u varies, the set of those unitary polynomial-exponential functions {vBx,ξ(u, .)| u ∈
Nx,reg(F )} spans a finite dimensional vector space and there exists C ′ > 0 such that for every

u ∈ Nx,reg(F ) and X ∈ CQ(G̃, M̃(x)) we have

|vBx,ξ(u,X )| 6 C ′(σx,reg(u) +N(X ))r.

Proof. Before proving the lemma, we need some preparation. For every u ∈ Nx,reg(F ) and

Q̃ ∈ FBx(M̃(x)) with Levi decomposition Q = LQUQ (where M(x) ⊂ LQ), there is a unique
decomposition u = uQuQ where uQ ∈ LQ(F ), uQ ∈ UQ(F ) and we set

ξc,u,Q̃x (t) :=

∫
Tx,c

ξ(t−1t−1
c uQtct)dtc, for t ∈ Tx(F ).

Then, these functions satisfy:

� For every u ∈ Nx,reg(F ) and Q̃ ∈ FBx(M̃(x)), ξc,u,Q̃ is invariant by translation by
AQ̃(F );

� There exists C1 > 0 such that for every u ∈ Nx,reg(F ), Q̃ ∈ FBx(M̃(x)), t ∈ Tx(F ) and

(G̃, M̃(x))-orthogonal set X satisfying d(X ) > C1σ(u) the condition

ΓQ̃Bx(H(t),X )τQ̃(H(t)−XQ̃) 6= 0

implies ξc,u,G̃(t) = ξc,u,Q̃(t).

The first bullet point is obvious. Let’s prove the second bullet point. Pick C1 > 0 and let
Q̃, u, t, X be as above satisfying

(4.2.4) d(X ) > C1σ(u),

(4.2.5) ΓQ̃Bx(H(t),X )τQ̃(H(t)−XQ̃) 6= 0.
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Then, we will show that provided C1 is large enough, we have

(4.2.6) ξc,u,G̃(t) = ξc,u,Q̃(t).

By Proposition 4.5 (applied to L̃Q instead of G̃), the condition (4.2.5) is equivalent to

HQ̃(t) ∈ Conv{XQ̃

P̃
| B̃x ⊂ P̃ ⊂ Q̃}+ −AQ̃Bx and HQ̃(t) ∈ XQ̃ +A+

Q̃

where HQ̃(t), HQ̃(t) denote the respective projections of H(t) onto AQ̃
M̃(x)

, AQ̃ and we have

set B̃x = xBx. Hence, it implies that

(4.2.7) H(t) = HQ̃(t) +HQ̃(t) ∈ Conv(XP̃ | B̃x ⊂ P̃ ⊂ Q̃) +A+

Q̃
+ −AQ̃Bx .

On the other hand, we have

ξc,u,G̃(t) =

∫
Tx,c

ξ(t−1t−1
c uQtct)ξ(t

−1t−1
c uQtct)dtc.

Thus, it suffices to show that, when C1 is sufficiently large, we have

ξ(t−1t−1
c uQtct) = 1, ∀tc ∈ Tx,c.

There exists C2 > 0 such that this last condition is implied by the inequalities

〈α,H(t)〉 > C2σ(u), for every α ∈ ∆x \∆Q̃
x .

where ∆Q̃
x = ∆Q∩Bx

Bx
. However, as every α ∈ ∆x \∆Q̃

x takes non-negative values on −AQ̃Bx and
on A+

Q̃
, (4.2.7) implies

(4.2.8) 〈α,H(t)〉 > min
B̃x⊂P̃⊂Q̃

〈α,XP̃ 〉 > d(X ), for every α ∈ ∆x \∆Q̃
x .

Therefore, taking C1 > C2 gives the required identity.
Let us now prove the lemma. Fix a lattice Λ ⊂ Ax,Q. Then, we can find a constant C2 > 0

and for every u ∈ Nx(F ), a Λ-rational orthogonal set Xu = (Xu,P̃ )P̃∈P(M̃(x)) ∈ CΛ(G̃, M̃(x))

such that d(Xu) ≥ C1σ(u) and N(Xu) ≤ C2σ(u). Obviously, it suffices to show that for every
u ∈ Nx,reg(F ), the function

Y ∈ CQ(G̃, M̃(x)) 7→ ṽBx,ξ(u,Xu + Y)

coincides, for Y positive, with a unitary polynomial-exponential function. Applying the
splitting formula of Lemma 4.2 as well as the two bullet points above, we obtain

ṽBx,ξ(u,Xu + Y) =
∑

Q̃∈FBx (M̃(x))

∫
Tx(F )/A

G̃
(F )

ξc,u,G̃(t)ΓQ̃Bx(H(t),Xu)ΓQ̃(H(t)−Xu,Q̃, YQ̃)dt

=
∑

Q̃∈FBx (M̃(x))

∫
Tx(F )/A

G̃
(F )

ξc,u,Q̃(t)ΓQ̃Bx(H(t),Xu)ΓQ̃(H(t)−Xu,Q̃, YQ̃)dt

=
∑

Q̃∈FBx (M̃(x))

∫
Tx(F )/A

Q̃
(F )

ξc,u,Q̃(t)ΓQ̃Bx(H(t),Xu)
∫
A
Q̃

(F )/A
G̃

(F )

ΓQ̃(HQ̃(at)−Xu,Q̃, YQ̃)dadt
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for every positive (G̃, M̃(x))-orthogonal set Y and where the second equality is based on
the fact that since YQ̃ ∈ A

+

Q̃
, ΓQ̃(H − Xu,Q̃, YQ̃) 6= 0 implies τQ̃(H − Xu,Q̃) 6= 0. For

Q̃ ∈ FBx(M̃(x)), the function

t ∈ Tx(F )/AQ̃(F ) 7→ ξc,u,Q̃(t)ΓQ̃Bx(H(t),Xu)

is compactly supported so that in the above expression the integral over Tx(F )/AQ̃(F ) can
be written as a finite sum. On the other hand for every fixed t ∈ Tx(F ), the function

YQ̃ ∈ AQ̃,Q 7→
∫
A
Q̃

(F )/A
G̃

(F )

ΓQ̃(HQ̃(at)−Xu,Q̃, YQ̃)da

is a unitary polynomial-exponential function and the set of these functions, as t ∈ Tx(F )
and Xu,Q̃ ∈ Λ vary, spans a finite dimensional vector space. This shows the lemma except
for the last estimate.

By the above computation, we have

vBx,ξ(u,Xu+Y) =
∑

Q̃∈FBx (M̃(x))

∫
Tx(F )/A

Q̃
(F )

ξc,u,Q̃(t)ΓQ̃Bx(H(t),Xu)
∫
A
Q̃

(F )/A
G̃

(F )

ΓQ̃(HQ̃(at)−Xu,Q̃, YQ̃)dadt

for every u ∈ Nx,reg(F ) and Y ∈ CQ(G̃, M̃(x)). However, the integral∫
A
Q̃

(F )/A
G̃

(F )

|ΓQ̃(HQ̃(at)−Xu,Q̃, YQ̃)|da

is essentially bounded by (1 + N(Xu) + N(Y))
aG̃
Q̃ whereas by a similar reasoning as in the

proof of Lemma 4.6, the integral∫
Tx(F )/A

Q̃
(F )

∣∣∣ξc,u,Q̃(t)ΓQ̃Bx(H(t),Xu)
∣∣∣ dt

is essentially bounded by (N(Xu) + σx,reg(u))
r−aG̃

Q̃ . Since N(Xu) � σ(u) this shows that
|vBx,ξ(u,Xu + Y)| � (σx,reg(u) +N(Xu + Y))r and the lemma is proved.

For g ∈ G(F ), applying the above definition to the (G̃, M̃(x))-orthogonal set Y(g) =
(HP̃ (g))P̃∈P(M̃(x)), we define the weight

vBx,ξ(u, g) = vBx,ξ(u,Y(g)).

It satisfies the relation

(4.2.9) vBx,ξ(u, bg) = vBx,ξ(b
−1ub, g) for every (u, b, g) ∈ Nx,reg(F )×Bx(F )×G(F ).
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4.3 A formula of regular germs for quasi-characters

Theorem 4.8. For every strongly cuspidal function f ∈ C(G̃(F )), we have 8

cf,−Oξ(x) =

∫
Bx(F )\G(F )

∫
Nx(F )

f(g−1xug)vBx,ξ(u, g)dudg.

Let us remark that thanks to (4.2.9), the expression in the right-hand side of the above
theorem makes sense formally. We will check its absolute convergent in the next subsection.

4.4 Some estimates

In this subsection we prove some estimates that in particular imply the convergence of the
right-hand side of Theorem 4.8.

Let S be the connected center of Gx (a torus) and set S̃ = Sx. Let S̃ ′ the open subset of

those s ∈ S̃ such that Gs = Gx.
Recall that r = dim(Ax)−dim(AG̃) and σx,reg denotes a log-norm on Nx,reg = Nx∩Gx,reg.

We fix log-norms σreg and σS̃′ on G̃reg(F ) and S̃ ′(F ) respectively.

Lemma 4.9. We have inequalities

(4.4.1) inf
b∈Bx(F )

(σx,reg(bub−1) + σ(bg))� σreg(g−1sug) + σS̃′(s),

and

(4.4.2) inf
b∈Bx(F )

(σ(bub−1) + σ(bg))� σ(g−1sug) + σS̃′(s)

for (s, u, g) ∈ S̃ ′(F )×Nx,reg(F )×G(F ).

Proof. Let Nx ⊂ Gx be the unipotent cone and Nx ×Gx G be the quotient of Nx ×G by the
free action of Gx given by gx · (u, g) = (gxug

−1
x , gxg). Then, the regular map

Nx ×Gx G× S̃ ′ → G̃× S̃ ′, (u, g, s) 7→ (g−1sug, s)

is a closed embedding with image the subset of those (γ, s) ∈ G̃×S̃ ′ such that the semisimple
part of γ is in the same geometric conjugacy class as s. Let Nx,reg = Nx ∩Gx,reg be the open
subset of regular unipotent elements. Then, the previous map restricts to a closed embedding
Nx,reg ×Gx G × S̃ ′ → G̃reg × S̃ ′. Furthermore, the natural map Nx ×Bx G → Nx ×Gx G is
proper and Nx (resp. Nx,reg) is a closed subset of Nx (resp. Nx,reg). It follows that the two
regular maps

Nx ×Bx G× S̃ ′ → G̃× S̃ ′ and Nx,reg ×Bx G× S̃ ′ → G̃reg × S̃ ′

8−Oξ is the same as Oξ−1
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are proper (the second one being actually a closed embedding). By Lemma 2.1, we have

σNx×BxG(u, g)� σ(g−1sug) + σS̃′(s), σNx,reg×BxG(u, g)� σreg(g−1sug) + σS̃′(s)

for (u, s, g) ∈ Nx,reg(F )× S̃ ′(F )×G(F ). It remains to check that

σNx×BxG(u, g) ∼ inf
b∈Bx(F )

(σ(bub−1)+σ(bg)) and σNx,reg×BxG(u, g) ∼ inf
b∈Bx(F )

(σx,reg(bub−1)+σ(bg))

for (u, g) ∈ Nx,reg(F )×G(F ) i.e. that the two natural projections Nx ×G→ Nx ×Bx G and
Nx,reg ×G→ Nx,reg ×Bx G have the norm descent property. Since both are pullbacks of the
projection G→ Bx\G, it suffices to check that the latter has the norm descent property.

Choose P = M(x)U ∈ PBx(M(x)) a parabolic subgroup with Levi M(x) such that
P ∩ Gx = Bx. As P\G is proper, we just need to check that P → Bx\P has the norm
descent property. Let π : Bx\P → Tx\M(x) be the natural map. According to Kottwitz,
M(x) → Tx\M(x) already has the norm descent property. Thus, for every p ∈ P (F ), we
can find m ∈M(x)(F ) such that p ∈ Tx(F )U(F )m and

σ(m) ∼ σTx\M(x)(π(Bxp))� σBx\P (Bxp).

Choose C > 0 large enough such that for all p ∈ P (F ), there exists p′ = u′m′ ∈ Bx(F )p
with u′ ∈ U(F ) and m′ ∈M(x)(F ) such that

σ(m′) ≤ CσBx\P (Bxp).

Fix another constant C1 > 0 large enough (with respect to C). If σNx\U(u′) ≤ C1σBx\P (Bxp),
then since U → Nx\U has the norm descent property (this is because this quotient map
admits a regular section), there exists n ∈ Nx(F ) such that

σ(nu′m′) ≤ 2C1σBx\P (Bxp).

This implies that
inf

b∈Bx(F )
σ(bp) ≤ 2C1σBx\P (Bxp).

If σNx\U(u′) > C1σBx\P (Bxp), since Nx\U → Bx\P is a closed embedding and since
σ(m′) ≤ CσBx\P (Bxp), we have

σBx\P (p) = σBx\P (u′m′) ≥ 1

2
σBx\P (u′) =

1

2
σNx\U(u′)

and
inf

b∈Bx(F )
σ(bp) ≤ inf

n∈Nx(F )
σ(nu′m′) ≤ 2σNx\U(u′).

This implies that
inf

b∈Bx(F )
σ(bp) ≤ 4σBx\P (Bxp).

As a result we have proved that the map P → Bx\P has the norm descent property and
this finishes the proof of the lemma.
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Corollary 4.10. We have

|vBx,ξ(u, g)| � (σreg(g−1sug) + σS̃′(s))
r

for every u ∈ Nx,reg(F ), g ∈ G(F ) and s ∈ S̃ ′(F ).

Proof. According to Lemma 4.7, we have |vBx,ξ(u, g)| � (σx,reg(u) + σ(g))r. Combining this
with the equation (4.2.9) and the previous lemma, we obtain

|vBx,ξ(u, g)| � inf
b∈Bx(F )

(σx,reg(bub−1) + σ(bg))r � (σreg(g−1sug) + σS̃′(s))
r

for u ∈ Nx,reg(F ), g ∈ G(F ) and s ∈ S̃ ′(F ).

Proposition 4.11. Let r0 > 0. Then, for every f ∈ C(G̃(F )) and every d > 0, we have

(4.4.3) DG̃(s)1/2

∫
Bx(F )\G(F )

∫
Nx(F )

|f(g−1sug)|σreg(g−1sug)r0dudg �f,d σ(s)−dσS̃′(s)
r0

for s ∈ S̃ ′(F ). In particular, the integral in Theorem 4.8 is absolutely convergent.

Proof. Let K ⊂ G(F ) be a compact-open subgroup. First, we show that

(4.4.4) vol(gKg−1 ∩Nx(F ))−1

∫
gKg−1∩Nx(F )

σreg(g−1sukg)r0dk � (σ(g−1sug) + σS̃′(s))
r0

for every (g, s, u) ∈ G(F ) × S̃ ′(F ) × Nx(F ). Since the left-hand side of the inequality
is invariant by the transformation (g, s, u) 7→ (bg, s, bub−1), by Lemma 4.9 it suffices to
establish that

vol(gKg−1 ∩Nx(F ))−1

∫
gKg−1∩Nx(F )

σreg(g−1sukg)r0dk � (σ(g) + σ(u) + σS̃′(s))
r0

for (g, s, u) ∈ G(F ) × S̃ ′(F ) × Nx(F ). Note that σreg(g−1sug) � σ(g) + σreg(su) � σ(g) +
σS̃′(s) + σx,reg(u). Therefore, we are reduced to show

(4.4.5) vol(gKg−1∩Nx(F ))−1

∫
gKg−1∩Nx(F )

σx,reg(uk)r0dk � (σ(g)+σ(u))r0 for u ∈ Nx(F ).

Let ∆x be the set of simple roots of Ax in Bx and for α ∈ ∆x, let nx,α ⊂ nx be the
corresponding root subspace. Then, we have a natural projection nx → nx,α and for u ∈ Nx,
we denote by log(u)α the image of log(u) in nx,α where log : Nx → nx denotes the logarithmic
map (a regular morphism). Fix an ultrametric norm ‖.‖ on nx(F ) and set v(.) = − log‖.‖.
Then, we have

σx,reg(u)r0 ∼ σ(u)r0 +
∑
α∈∆x

max(1, v(log(u)α))r0 for u ∈ Nx,reg(F ).
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Thus, to show (4.4.5) it suffices to bound the integral

(4.4.6) vol(gKg−1 ∩Nx(F ))−1

∫
gKg−1∩Nx(F )

max(1, v(log(u)α + log(k)α))r0dk

by a constant times (σ(u) + σ(g))r0 . For this, we remark that there exists C > 0 such that
the image of gKg−1 ∩Nx(F ) in nx,α(F ) contains the ball

B(Cσ(g)) := {X ∈ nx,α(F ) | v(X) ≥ Cσ(g)}

for every g ∈ G(F ). Therefore, since σ(uk) � σ(u) + σ(g) for every g ∈ G(F ), u ∈ Nx(F )
and k ∈ gKg−1, the desired estimate for (4.4.6) follows from the elementary inequality

vol(B(R))−1

∫
B(R)

max(1, v(X + Y ))r0dY � Rr0 for every R ≥ 1, X ∈ nx,α(F ),

and this ends the proof of (4.4.4).
From (4.4.4) applied to some compact-open subgroup K ⊂ G(F ) leaving f invariant in

the right, we get that the left-hand side of (4.4.3) is essentially bounded by

σS̃′(s)
r0DG̃(s)1/2

∫
Bx(F )\G(F )

∫
Nx(F )

|f(g−1sug)|σ(g−1sug)r0dudg.

Note that the function σr0|f | belongs to the Harish-Chandra Schwartz space C(G(F )). There-
fore, up to replacing f by this function, it suffices to show that for every d > 0 we have

(4.4.7) DG̃(s)1/2

∫
Bx(F )\G(F )

∫
Nx(F )

|f(g−1sug)|dudg �d σ(s)−d

for s ∈ S̃ ′(F ).

Pick a parabolic subspace P̃ = M̃(x)U ∈ PBx(M̃(x)) with P ∩ Gx = Bx as well as a
compact subgroup K ⊂ G(F ) such that G(F ) = P (F )K. Then, by the usual change of
variable the last integral above is equal to

DM̃(x)(s)1/2δP̃ (s)1/2

∫
Tx(F )\M(x)(F )

∫
K

∫
U(F )

|f(k−1m−1smuk)|dudkdm.

Thus, since the function m ∈ M̃(x)(F ) 7→ δP̃ (m)1/2
∫
K

∫
U(F )
|f(k−1muk)|du is Harish-

Chandra Schwartz [33, Proposition II.4.5], the estimate (4.4.7) is now a consequence of
[7, Lemma 2.9.2].

4.5 Definition of a sequence of test functions

As a preparation for the proof of Theorem 4.8 we introduce a sequence of functions φn ∈
C∞c (Gx(F )) as follows, the construction being inspired from [27].
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First, let Ξ be the unique element of b
⊥
x (F ) ⊂ g∗(F ) (where Bx = TxNx denotes the

Borel opposite to Bx) such that for every X ∈ nx(F ) we have ξ(exp(X)) = ψ(〈Ξ, X〉). Then,
Ξ ∈ O (by definition of the generic character ξ) and, denoting by gx,Ξ the centralizer of Ξ
in gx, we have nx ∩ gx,Ξ = 0. Moreover, the image of nx(F ) in the quotient gx(F )/gx,Ξ(F ) is
maximal isotropic with respect to the bicharacter

(4.5.1) (X, Y ) ∈ gx(F )/gx,Ξ(F ) 7→ ψ(〈Ξ, [X, Y ]〉).

Let L ⊂ gx(F ) be a lattice such that:

� The image Lξ of L in gx(F )/gx,Ξ(F ) is self-dual with respect to the bicharacter (4.5.1)
i.e. Lξ = {X ∈ gx(F )/gx,Ξ(F ) | ψ(〈Ξ, [X, Y ]〉) = 1 ∀Y ∈ Lξ};

� The preimage of Lξ in nx(F ) is nx(F ) ∩ L.

We then choose an integer n0 > 0 large enough such that:

(4.5.2) � The exponential map exp : gx(F )→ Gx(F ) is well-defined on $n0L;

� For every n ≥ n0, m ≥ n0, X ∈ $nL and Y ∈ $mL, we have eXeY ∈ exp(X +
Y +$m+n−n0L);

� [L,L] ⊂ $−n0L;

� The restriction of ξ to $n0L is trivial;

� For every n ≥ n0, m ∈ Z, Y ∈ $nL, X ∈ $mL, we have

AdeY (X)−X − [Y,X] ∈ $2n+m−n0L.

That the last point above is satisfied for n0 large enough is a consequence of the series

expansion AdeYX =
∑

k≥0
adkY (X)

k!
(valid for Y small enough).

For every integer n > n0, we set

� an = (2ρ∨x )($)n where ρ∨x denotes half the sum of the positive coroots of Ax with
respect to Bx,;

� Ln = (Adan)−1$nL, Kn = exp(Ln) and K ′n = exp($nL);

� ξn : Kn → C×, ξ′n : K ′n → C× the locally constant functions defined by ξn(exp(X)) =
ψ(〈Ξ, X〉) and ξ′n(exp(Y )) = ψ(〈Ξ, $−2nY 〉) for every X ∈ Ln and Y ∈ $nL respec-
tively.

Note that, by the second condition on n0, Kn and K ′n are compact-open subgroups of Gx(F ).
Moreover, we have K ′n = anKna

−1
n and ξ′n(anka

−1
n ) = ξn(k) for every k ∈ Kn which follows

from the fact that Ad∗anΞ = $−2nΞ. From the last condition on n0, we also deduce that the
function ξn (resp. ξ′n) is Kn-invariant (resp. K ′n-invariant) by conjugation9

9Actually, for n large enough and if the residue characteristic is different from 2, it can be shown that ξn
and ξ′n are characters of Kn and K ′n respectively. But we will not need this fact in the sequel.
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We fix Haar measures on gx(F ) and nx(F ) compatibly with the measures on Gx(F )
and Nx(F ) i.e. such that exponential maps are locally measure preserving. Using the
additive character ψ, we can identify n⊥x (F ) with the Pontryagin dual of gx(F )/nx(F ), and
we endow n⊥x (F ) with the dual of the quotient measure on the latter. This is the only
invariant measure on n⊥x (F ) such that for every lattice Λ ⊂ gx(F ) we have vol(Λ⊥∩n⊥x (F )) =
vol(Λ ∩ nx(F )) vol(Λ)−1.

For n ≥ n0, we let ϕn ∈ C∞c (gx(F )) be the function that is equal toX 7→ vol(Ln)−1ψ(〈Ξ, X〉)
on Ln and is equal to zero outside. We define similarly φn ∈ C∞c (Gx(F )) as the func-
tion that coincides with vol(Kn)−1ξn on Kn and is equal to zero outside. Note that,
φn(exp(X)) = ϕn(X) for every X ∈ Ln and that the Fourier transform ϕ̂n is the char-
acteristic function of the coset −ξ + L⊥n . Here the Fourier transform is normalized as in
Subsection 2.6 and for any OF -lattice L ⊂ g(F ), we denote by L⊥ the dual lattice in g∗(F )
with respect to ψ, that is

L⊥ = {Y ∈ g∗(F ) | ψ(〈Y,X〉) = 1, ∀X ∈ L}.

Lemma 4.12. For n large enough, the following hold.

(i) Ξ + (L⊥n ∩ n⊥x (F )) is invariant under the conjugation of Kn ∩Nx(F ).

(ii) For u ∈ Nx(F ), if u−1(Ξ+(L⊥n ∩n⊥x (F )))u∩Ξ+(L⊥n ∩n⊥x (F )) 6= ∅, then u ∈ Kn∩Nx(F ).

(iii) For every f ∈ C∞c (gx(F )), we have∫
gx(F )

ϕn(X)f(X)dX = vol(Kn)−1 vol(Kn∩Nx(F ))−1

∫
Kn

∫
Ξ+n⊥x (F )

1Ξ+L⊥n
(Y )f̂(kY k−1)dY dk.

(iv) For every O′ ∈ Nil(ĝx), the coadjoint orbital integral of ϕ̂n on O′ (normalized using the
Kirillov-Kostant measure as in Subsection 2.6) is given by∫

O′
ϕ̂n(Y )dY =

{
1 if O′ = −O,
0 otherwise.

Proof. (i) We have

Ξ + (L⊥n ∩ n⊥x (F )) =
(
Ξ + n⊥x (F )

)
∩
(
Ξ + L⊥n

)
.

Furthermore, since Ξ restricts to a Nx(F )-invariant character on nx(F ), Ξ + n⊥x (F ) is
Nx(F )-invariant whereas, since the function ξn is Kn-invariant, Ξ+L⊥n is Kn-invariant.
The claim follows.

(ii) Let u ∈ Nx(F ) and set X = log(u) ∈ nx(F ). After conjugating everything by an, the
statement is equivalent to

u−1(Ξ + ($nL⊥ ∩ n⊥x ))u ∩ Ξ + ($nL⊥ ∩ n⊥x ) 6= ∅ ⇒ X ∈ $nL.
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By the theory of Kostant section, the map

Nx × Ξ + n⊥x →
(
Ξ + n⊥x

)
×
(
Ξ + n⊥x

)
, (n,X) 7→ (X,n−1Xn)

is a closed embedding. Hence, for any m > 0 we can choose n large enough such that
if

u−1(Ξ + ($nL⊥ ∩ n⊥x ))u ∩ Ξ + ($nL⊥ ∩ n⊥x ) 6= ∅,

then X ∈ $mL. Now let k be the largest integer such that X ∈ $kL. We know that
k ≥ m and we need to show k ≥ n. There exists some absolute constant C ∈ N such
that

u−1Ξu ∈ Ξ− [X,Ξ] +$2k−CL⊥, u−1($nL⊥)u ⊂ $nL⊥ +$n+k−CL⊥.

If n > k, once we choose m to be large enough (with respect to C), the above relations
imply that

u−1(Ξ + ($nL⊥ ∩ n⊥x (F )))u ⊂ Ξ + [X,Ξ] + ($k+1L⊥ ∩ n⊥x (F )).

Since the image of L in gx/gx,Ξ is self-dual, we know that [X,Ξ] ∈ $kL⊥ ∩ n⊥x (F ) and
[X,Ξ] /∈ $k+1L⊥ ∩ n⊥x (F ). This implies that

u−1(Ξ + ($nL⊥ ∩ n⊥x (F )))u ∩ Ξ + ($k+1L⊥ ∩ n⊥x (F )) = ∅

which is a contradiction. Hence we must have k ≥ n and this proves the lemma.

(iii) Let D be the distribution on gx(F ) defined by

D(f) =

∫
Kn

∫
Ξ+n⊥x (F )

1Ξ+L⊥n
(Y )f̂(kY k−1)dY dk, f ∈ C∞c (gx(F )).

Then, it has the following properties:

(a) It is Kn-invariant: D(kf) = D(f) for every (k, f) ∈ Kn × C∞c (gx(F ));

(b) It is supported in Ad(Kn)(Ln + nx(F )): this follows from the Fourier inversion
formula∫

Ξ+n⊥x (F )

1Ξ+L⊥n
(Y )f̂(kY k−1)dY =

∫
Ln+nx(F )

f(k−1Xk)ψ(〈Ξ, X〉)dX;

(c) It is (Ln, ξn)-equivariant: D(L(X)f) = ψ(〈Ξ, X〉)D(f) for every (X, f) ∈ Ln ×
C∞c (gx(F )) (this is a consequence of the same Fourier inversion formula and the
fact that the restriction of ψ(〈Ξ, .〉) to Ln is Kn-invariant).

We claim:
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(4.5.3) For n large enough, every distribution on gx(F ) satisfying the properties (a),
(b) and (c) above is proportional to the distribution

f ∈ C∞c (gx(F )) 7→
∫
gx(F )

ϕn(X)f(X)dX.

Indeed, every distribution D verifying (a), (b), (c) is represented by a function F ∈
C∞(gx(F )) which is Kn-invariant, satisfies F (Y + X) = ψ(〈Ξ, X〉)F (Y ) for (X, Y ) ∈
Ln × gx(F ) and is supported in Ad(Kn)(Ln + nx(F )). It then suffices to show that
such a function is necessarily supported in Ln which would be a consequence of the
following property: for every X ∈ nx(F ) \ (Ln ∩ nx(F )), we can find k ∈ Kn such that
AdkX − X ∈ Ln and ψ(〈Ξ,Ad(k)X − X〉) 6= 1. Conjugating everything by an, this
property can be restated as:

(4.5.4) Provided n is large enough, for every X ∈ nx(F ) \ (L ∩ nx(F )), we can find
k ∈ K ′n such that Ad(k)X −X ∈ L and ψ($−n〈Ξ,AdkX −X〉) 6= 1.

Indeed, letX ∈ nx(F )\(L∩nx(F )) and set−k = valL(X) < 0. Setm = max(n, k+2n0).
Then, for every Y ∈ $mL, by the last and third points of (4.5.2) respectively, we have

AdeY (X)−X ∈ [Y,X] +$2m−k−n0L ⊂ [Y,X] +$n+n0L

and
[Y,X] ∈ $m−k−n0L ⊂ $n0L.

Thus, AdeY (X)−X ∈ L and, by the fourth point of (4.5.2),

ψ($−n〈Ξ,AdeY (X)−X〉) = ψ($−n〈Ξ, [Y,X]〉)

for every Y ∈ $mL. Since exp($mL) ⊂ K ′n it therefore suffices to find Y ∈ $mL such
that ψ($−n〈Ξ, [Y,X]〉) 6= 1 (provided n is large enough). However, if ψ($−n〈Ξ, [Y,X]〉) =
1 for all Y ∈ $mL then, since the lattice Lξ ⊂ gx(F )/gx,Ξ(F ) is self-dual, the im-
age of X in gx(F )/gx,Ξ(F ) belongs to $n−mLξ. As the preimage of Lξ in nx(F )
is nx(F ) ∩ L, this would imply Y ∈ $n−mL hence n − m ≤ −k or equivalently
n ≤ m − k = max(n − k, 2n0). This last inequality is obviously false for n > 2n0

so that the claim (4.5.4) is satisfied for such a n.

This shows (4.5.3). As a consequence, we can find a constant c such that∫
gx(F )

ϕn(X)f(X)dX = c

∫
Kn

∫
Ξ+n⊥x (F )

1Ξ+L⊥n
(Y )f̂(kY k−1)dY dk

for every f ∈ C∞c (gx(F )). Plugging in f = ϕn, we have f̂ = 1Ξ+L⊥n
and we obtain

vol(Ln)−1 = c vol(Kn) vol(L⊥n ∩ nx(F )⊥).

By our choice of measures, we have

vol(Ln) vol(L⊥n ∩ nx(F )⊥) = vol(Ln ∩ nx(F )) = vol(Kn ∩Nx(F ))

and therefore c = vol(Kn)−1 vol(Kn ∩Nx(F ))−1 as claimed.
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(iv) This follows from the computation in the middle of p.437 of [27].

4.6 Application of the local trace formula

We now start the proof of Theorem 4.8 which will be finished in the next subsection. The
proof for general reductive twisted spaces is basically the same as in the untwisted case, i.e.
when G̃ = G, the only difference is to replace the local trace formula in [2] (resp. Howe’s
conjecture for weighted orbital integrals in [3, Lemma 8.2] [4]) by the local twisted trace
formula in [28] (resp. Howe’s conjecture for twisted weighted orbital integrals in Appendix

B). Hence to simplify notation, we will only write the proof when G̃ = G. For further
simplification of notation, we will also assume that the split center AG is trivial.

We need to recall some material on the local trace formula from [2]. Fix a minimal Levi
subgroup Mmin of G as well as Pmin ∈ P(Mmin) and a special maximal compact subgroup
K ⊂ G(F ) in good position relative to Mmin. We set W = NormG(F )(Mmin)/Mmin(F ). Let
T ∈ Amin,Q. For P ∈ P(Mmin), we set TP = wPT where wP ∈ W is the unique element such
that wPPminw

−1
P = P and, for g1, g2 ∈ G(F ), we define a (G,Mmin)-orthogonal set by

YP (g1, g2, T ) = TP +HP (g1)−HP (g2), P ∈ P(Mmin),

where P denotes the parabolic subgroup opposite to P (with respect to Mmin). For M ∈
L(Mmin), we set

vM(g1, g2, T ) =

∫
AM (F )

ΓM(H(a),Y(g1, g2, T ))da.

We also denote by Mmin,6T the set those m ∈Mmin(F ) such that

0 6 〈α,HMmin
(m)〉 and 〈$α, HMmin

(m)〉 6 〈$α, T 〉, for every α ∈ ∆min,

and we let u(., T ) be the characteristic function of the subset KM+
min,6TK of G(F ).

For f ∈ C(G(F )) and ϕ ∈ C∞c (G(F )), we define

J̃T (f, ϕ) =

∫
G(F )

u(g, T )

∫
G(F )

f(g−1xg)ϕ(x)dxdg.

and

JT (f, ϕ) :=
∑

M∈L(Mmin)

|WM |
|W |

∫
Γell(M)

JTM(γ, f, ϕ)dγ

where

JTM(γ, f, ϕ) = DG(γ)

∫
(AM (F )\G(F ))2

f(g−1
1 γg1)ϕ(g−1

2 γg2)vM(g1, g2, T )dg1dg2.
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Proposition 4.13. (i) For every f ∈ C(G(F )) and ϕ ∈ C∞c (G(F )), the function

T ∈ Amin,Q 7→ JT (f, ϕ)

is a unitary polynomial-exponential. Moreover, for any compact-open subgroup J ⊂
G(F ) and subset Ω ⊂ G(F ) that is bounded modulo conjugation, the subspace of
C(J\G(F )/J)∗ spanned by{

f ∈ C(J\G(F )/J) 7→ JT (f, ϕ) | ϕ ∈ C∞c (Ω), T ∈ Amin,Q
}

is finite dimensional.

(ii) Let ε > 0. Then, for every r > 0 there exists a constant Cr > 0 such that∣∣∣JT (f, ϕ)− J̃T (f, ϕ)
∣∣∣ 6 Cr‖T‖−r

for every T ∈ A+
Pmin,Q satisfying 〈α, T 〉 > ε‖T‖ for every α ∈ ∆min.

(iii) For every T ∈ Amin,Q, ϕ ∈ C∞c (G(F )) and strongly cuspidal function f ∈ Cscusp(G(F ))
we have

JT (f, ϕ) =

∫
G(F )

Θf (g)ϕ(g)dg.

Proof. (i) is a consequence of the splitting formulas [3, Equation (5.5)] and of Howe’s
conjecture for weighted orbital integrals [3, Lemma 8.2]. (see Appendix B for the
twisted case.)

(ii) follows directly from the proof of the geometric side of the local trace formula in [2].

(iii) follows from the splitting formula [3, Equation (5.5)] and the same argument as in
Section 2.13.

Let ωx ⊂ gx(F ) be a sufficiently small invariant neighborhood of 1 and define, for n
sufficiently large, φGn ∈ C∞c (G(F )) by (here Kx = K ∩Gx)

φGn (g) =

{ ∫
Kx
φn(a−1

n k−1
x ykxan)dkx if g = kxyk−1 for some (y, k) ∈ exp(ωx)×K

0 otherwise.

For every f ∈ C(G(F )), we set

(4.6.1) J̃Tx,ξ,n(f) =

∫
Bx(F )\G(F )

∫
Nx(F )

f(g−1xug)ṽBx,ξ(u,Y(g, T ) +H(an))dudg

where Y(g, T ) denotes the (G,M(x))-family defined by

YP (g, T ) = HP (g) + TP , P ∈ P(M(x)),

and where we recall that for every (G,M(x))-family X and u ∈ Nx(F ), we have set

ṽBx,ξ(u,X ) :=

∫ reg

Tx(F )

ξ(t−1ut)ΓBx(H(t),X )dt.
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Proposition 4.14. (i) Let f ∈ Cscusp(G(F )). Then, for n large enough we have

JT (f, φGn ) = cf,−O(x)

for every T ∈ APmin,Q.

(ii) Let f ∈ C∞c (G(F )). Then, there exists nf > 0 and C = Cf > 0 (both depend on the
support and the level of f) such that

J̃T (f, φGn ) = J̃Tx,ξ,n(f)

for every n > nf and T ∈ A+
Pmin

satisfying α(T ) > C for every α ∈ ∆min.

Proof. (i) Applying Proposition 4.13 (iii) to ϕ = φGn and by usual arguments of semisimple
descent and descent to the Lie algebra, together with the germ expansion of Θf , for n
large enough we get

JT (f, ϕ) =

∫
G(F )

Θf (g)φGn (g)dg =

∫
Gx(F )

Θf (xy)φn(y)dy

=
∑

O′∈Nil(ĝx)

cf,O′(x)

∫
O′
ϕ̂n(Y )dY.

The result then follows immediately from Lemma 4.12 (iv).

(ii) We may assume that f is invariant under K-conjugation. For every g ∈ G(F ), we
define a function gfx,ωx ∈ C∞c (gx(F )) by

gfx,ωx(X) =

{
f(g−1x exp(X)g) if X ∈ ωx,
0 otherwise.

Then, by a standard descent argument to the Lie algebra and Lemma 4.12 (iii), we
have

J̃T (f, φGn ) =

∫
G(F )

u(g, T )

∫
gx

gfx,ωx(X)ϕn(a−1
n Xan)dXdg

=

∫
G(F )

u(ang, T )

∫
gx

gfx,ωx(X)ϕn(X)dXdg

= vol(Kn)−1 vol(Kn ∩Nx(F ))−1

∫
G(F )

u(ang, T )

∫
Kn

∫
Ξ+n⊥x

k̂gfx,ωx(Y )1Ξ+L⊥n
(Y )dY dk

where the first equality follows from the change of variables g 7→ ang and X 7→ anXa
−1
n .

Since the function g 7→ u(ang, T ) is left-invariant by Kn for n large enough, this gives

JT (f, ϕn) = vol(Kn ∩Nx)
−1

∫
G(F )

u(ang, T )

∫
Ξ+(L⊥n∩n⊥x )

ĝfx,ωx(Y )dY dg

= vol(Kn ∩Nx)
−1

∫
Bx(F )\G(F )

∫
Bx(F )

u(anbg, T )

∫
Ξ+(L⊥n∩n⊥x )

ĝfx,ωx(b
−1Y b)dY dLbdg.
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Thus, it suffices to show that, for every g ∈ G(F ), we have

vol(Kn ∩Nx)
−1

∫
Bx(F )

u(anbg, T )

∫
Ξ+(L⊥n∩n⊥x )

ĝfx,ωx(b
−1Y b)dY dLb(4.6.2)

=

∫
Nx(F )

f(g−1xug)ṽBx,ξ(u,Y(g, T ) +H(an))du.

Note that both sides of the above equation are (Bx, δBx)-equivariant on the left. More-
over, since f is compactly supported and x is semisimple, for g outside of a set that
is compact modulo Gx(F ), the function gf is zero. As Bx(F ) is cocompact in Gx(F ),
we may restrict to establish the above identity for g in some fixed compact subset
K ⊂ G(F ). We need a lemma.

Lemma 4.15. Let us set T+
x [≥ −C] := {t ∈ Tx(F ) | 〈α,HTx(t)〉 ≤ −C} for every

C > 0. Then, there exist two large enough constants C > 0 and n1 > 0 such that:

(i) For every g ∈ K, the function

Tx(F )× (Ξ + n⊥x (F )) 3 (t, Y ) 7→ ĝfx,ωx(tY t
−1)

is supported on T+
x [≥ −C]× (Ξ + n⊥x (F )).

(ii) For every g ∈ K and n ≥ n1, the function

Bx(F )× (Ξ + L⊥n ∩ n⊥x (F )) 3 (b, Y ) 7→ ĝfx,ωx(bY b
−1)

is supported on T+
x [≥ −C](Nx(F ) ∩Kn)× (Ξ + n⊥x (F )).

Proof. (i) There exists a compact KL ⊂ gx(F ) such that Supp(ĝfx,ωx) ⊂ KL for every
g ∈ K. Thus, it suffices to see that (tΞt−1 + n⊥x (F )) ∩ KL 6= ∅ implies t ∈ T+

x [≥ −C]
for C > 0 large enough but this is clear as decomposing Ξ along eigenspaces for Ax(F ),
it has nonzero components in all the root subspaces corresponding the simple negative
roots with respect to Bx.

(ii) Let b ∈ Bx(F ) and Y ∈ Ξ + L⊥n ∩ n⊥x (F ) be such that ĝfx,ωx(bY b
−1) 6= 0 and

write b as b = tu where t ∈ Tx(F ) and u ∈ Nx(F ). Since uY u−1 ∈ Ξ + n⊥x (F ), by
point (i) we have t ∈ T+

x [≥ −C] for some C > 0 large enough. Moreover, we have
u(Ξ + (L⊥n ∩ n⊥x (F )))u−1 ∩ t−1KLt 6= ∅. As

u(Ξ + (L⊥n ∩ n⊥x (F )))u−1 ⊂ Ξ + n⊥x (F ),

and there exists a compact subset K′ ⊂ Ξ+n⊥x (F ) such that t−1KLt∩(Ξ+n⊥x (F )) ⊂ K′
for every t ∈ T+

x [≥ −C], this implies

u(Ξ + (L⊥n ∩ n⊥x (F )))u−1 ∩ K′ 6= ∅.
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Using that (L⊥n ∩ n⊥x (F ))n is an increasing and exhausting family of compact subsets
of n⊥x (F ), for n large enough it follows that

u(Ξ + (L⊥n ∩ n⊥x ))u−1 ∩ Ξ + (L⊥n ∩ n⊥x ) 6= ∅

which implies, by Lemma 4.12, that u ∈ Nx(F ) ∩Kn.

Let g ∈ K. By the lemma above and since Ξ + (L⊥n ∩ n⊥x ) is invariant under the
conjugation of Nx(F ) ∩Kn (Lemma 4.12), we have

vol(Kn ∩Nx)
−1

∫
Bx(F )

u(anbg, T )

∫
Ξ+(L⊥n∩n⊥x )

ĝfx,ωx(b
−1Y b)dY dLb(4.6.3)

=

∫
Tx(F )

u(ant
−1g, T )

∫
Ξ+(L⊥n∩n⊥x (F ))

ĝfx,ωx(tY t
−1)dY δBx(t)

−1dt.

and moreover the integrand is supported in T+
x [≥ −C] for some large enough C > 0

(independent of n). For n large enough, as seen in the proof of the last lemma, for
every t ∈ T+

x [≥ −C] the function

Y ∈ Ξ + n⊥x (F ) 7→ ĝfx,ωx(tY t
−1)

is supported in Ξ + (L⊥n ∩ n⊥x (F )). Hence we can replace the above integral over
Ξ + (L⊥n ∩ n⊥x (F )) by an integral over Ξ + n⊥x (F ) (since the integrand stays supported
in T+

x [≥ −C] by the lemma). Then by a simple change of variable, we obtain that the
above expression is equal to

(4.6.4)

∫
Tx(F )

u(ant
−1g, T )

∫
tΞt−1+n⊥x (F )

ĝfx,ωx(Y )dY dt.

Next we show that

(4.6.5) For n sufficiently large and T sufficiently regular, we have

u(ant
−1g, T ) = ΓBx(H(t),Y(g, T ) +H(an))

for every g ∈ K and t ∈ T+
x [≥ −C].

Let t be as above. First, we note that

ΓBx(H(t),Y(g, T ) +H(an)) = ΓBx(H(a−1
n t),Y(g, T ))

and
〈α,HTx(a

−1
n t)〉 = 2n log(q) + 〈α,HTx(t)〉 > 2n log(q)− C

for all α ∈ ∆x. From this, we see that (4.6.5) actually reduces to the following state-
ment:
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(4.6.6) There exist C ′ > 0 such that

u(t−1g, T ) = ΓBx(H(t),Y(g, T ))

for every g ∈ K, t ∈ Tx(F ) and T ∈ A+
Pmin

satisfying

〈α,H(t)〉 > 0, ∀α ∈ ∆x,

and
〈α, T 〉 > C ′, ∀α ∈ ∆min.

Let t ∈ Tx(F ) and T ∈ A+
Pmin

be elements satisfying the above inequalities. Then,
provided C ′ is large enough, the (G,M(x))-orthogonal set Y(g, T ) is positive for every
g ∈ K and therefore by Proposition 4.3 and the assumption on t we have

ΓBx(H(t),Y(g, T )) = ΓM(x)(H(t),Y(g, T )).

Furthermore, by the identity at the bottom of p.38 of [2], provided again that C ′ is
large enough, we also have

ΓM(x)(H(t),Y(g, T )) = u(t−1g, T )

for every g ∈ K. This shows (4.6.6) and ends the proof of (4.6.5).

Now, from (4.6.5) and (4.6.4), we deduce that, for n sufficiently large and T sufficiently
regular, we have

vol(Kn ∩Nx)
−1

∫
Bx(F )

u(anbg, T )

∫
Ξ+(L⊥n∩nx)

ĝfx,ωx(b
−1Y b)dY dLb

=

∫
Tx(F )

ΓBx(H(t),Y(g, T ) +H(an))

∫
tΞt−1+n⊥x

ĝfx,ωx(Y )dY dt

=

∫
Tx(F )

ΓBx(H(t),Y(g, T ) +H(an))

∫
Nx(F )

f(g−1xug)ξ(t−1ut)dudt

=

∫
Nx(F )

f(g−1xug)

∫ reg

Tx(F )

ξ(t−1ut)ΓBx(H(t),Y(g, T ) +H(an))dtdu

=

∫
Nx(F )

f(g−1xug)ṽBx,ξ(u,Y(g, T ) +H(an))du

for every g ∈ K. This gives (4.6.2) and therefore closes the proof of the proposition.
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4.7 End of the proof of Theorem 4.8

In this subsection we will prove the formula of regular germs in Theorem 4.8. Fix a strongly
cuspidal function f ∈ C(G(F )), we need to show that

cf,−Oξ(x) =

∫
Bx(F )\G(F )

∫
Nx(F )

f(g−1xug)vBx,ξ(u, g)dudg.

By Proposition 4.14(i), there exists nf > 0 such that for n > nf we have

JT (f, φGn ) = cf,−Oξ(x)

for every T ∈ APmin,Q. Let J be an open compact subgroup of G(F ) by which f is biinvariant.
By Proposition 4.13(i), once we choose nf large enough, we can find a sequence of functions
fN ∈ C∞c (G(F ))J×J such that

� fN → f (in C(G(F ))) as N →∞;

� JT (f, φGn ) = JT (fN , φ
G
n ) for all N > 0, T and n > nf .

Indeed, by Proposition 4.13(i), we know that the span of the linear forms

f ∈ C(G(F ))J×J 7→ JT (f, φGn )

for all T and n > nf is finite dimensional. Let J1, · · · , Jk be a basis of this span. Since these
linear forms are continuous, by density we know that J1, · · · , Jk are also linearly independent
when restricted to C∞c (G(F ))J×J . Thus, we can find gi ∈ C∞c (G(F ))J×J (i = 1, . . . , k) such
that Ji(gj) = δi,j. Choose now an arbitrary sequence f ′N ∈ C∞c (G(F ))J×J converging to

f ∈ C(G(F ))J×J . Then the modified sequence fN = f ′N +
∑k

i=1(Ji(f) − Ji(f ′N))gi satisfies
the required conditions.

Let N > 0 be fixed for the moment. By Proposition 4.14(ii), we have
(4.7.1)

J̃T (fN , φ
G
n ) = J̃Tx,ξ,n(fN) =

∫
Bx(F )\G(F )

∫
Nx(F )

fN(g−1xug)ṽBx,ξ(u,Y(g, T ) +H(an))dudg

for n sufficiently large and T sufficiently regular (both with respect to fN). Let ε > 0 be
sufficiently small. Then, by the local trace formula (Proposition 4.13 (ii)), as T ∈ A+

Pmin,Q
goes to ∞ in the cone

C = {〈α, T 〉 ≥ ε‖T‖, ∀ α ∈ ∆min},
J̃T (fN , φ

G
n ) is asymptotic to the polynomial-exponential (with unitary exponents) T 7→

JT (fN , φ
G
n ) = JT (f, φGn ). On the other hand, by Lemma 4.7, there exists a constant C > 0

such that the equality of weights

ṽBx,ξ(u,Y(g, T ) +H(an)) = vBx,ξ(u,Y(g, T ) +H(an))

holds whenever the depth of the (G,M(x))-orthogonal set Y(g, T ) + H(an) is bigger than
Cσ(u). Thus, as fN is compactly supported, this holds for T large enough in the cone C and
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for every (g, u) ∈ K × Nx(F ) such that fN(g−1xug) 6= 0. Thus, as T → ∞ in C, the right
hand side of (4.7.1) is also asymptotic to the polynomial-exponential

T 7→
∫
Bx(F )\G(F )

∫
Nx(F )

fN(g−1xug)vBx,ξ(u,Y(g, T ) +H(an))dudg.

From this, we deduce the equality of polynomial-exponentials

JT (f, φGn ) =

∫
Bx(F )\G(F )

∫
Nx(F )

fN(g−1xug)vBx,ξ(u,Y(g, T ) +H(an))dudg

for every T ∈ APmin,Q and n large enough. However, we know that the left hand side is
identically equal to cf,−Oξ(x) whereas the right-hand side is a polynomial-exponential in
both T and H(an). This polynomial-exponential is therefore constant and the same identity
holds for T = 0 and H(an) = 0 which gives the equality of Theorem 4.8 except with fN
instead of f in the right-hand side. Thus, letting N →∞, we obtain the desired identity.

4.8 A descent formula

In this subsection, we will prove a descent formula that will be used in later section. We
keep the notation as in the previous subsections. Moreover, we assume that ι(x) = x, Bx is
ι-split and T ιx ⊂ ZGx .

The action of ι naturally descends to Ax and this induces a decomposition Ax = Aιx⊕Ax,ι
where Aιx (resp. Ax,ι) denotes the subspace consisting of elements H ∈ Ax satisfying ι(H) =
H (resp. ι(H) = −H). For H ∈ Ax we will denote without further comment by H ι, Hι the
respective projections of X with respect to this decomposition. Similarly, if C is a subset of
Ax (typically the positive cone associated to a parabolic subspace) we will denote by Cι the
image of its projection to Aιx.

Let X = (XP̃ )P̃∈P(M̃(x)) be a (G̃, M̃(x))-orthogonal set. For every Q̃ ∈ FBx,ι(M̃(x)) (resp.

Q̃ ∈ FBx(M̃(x)) such that Aιx ∩ AQ̃ = 0), we define a function ΓQ̃Bx,ι(.,X ) (resp. ΓQ̃,ιBx
(.,X ))

on Ax by

ΓQ̃Bx,ι(H,X ) =
∑

P̃∈FBx,ι(M̃(x)),P̃⊂Q̃

(−1)
aQ̃
P̃ ,ι τ̂ Q̃

P̃ ,ι
(H −XP̃ ,ι), H ∈ ax,

(resp. ΓQ̃,ιBx
(H,X ) =

{
ΓQ̃Bx(Y

Q̃,X ) if H ∈ XQ̃ + Y Q̃ +Aιx +AG̃ for some Y Q̃ ∈ AQ̃;

0 otherwise.
, H ∈ Ax.)

Proposition 4.16. For every R̃ ∈ FBx,ι(M̃(x)), we have the following identity of functions
on Ax:

(4.8.1)
∑

R̃⊃Q̃∈FBx,ι(M̃(x))

ΓQ̃Bx,ι(.,X )τ R̃
Q̃,ι

(.−XQ̃) = 1.
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If X is positive, ΓG̃Bx,ι(.,X ) is the characteristic function of either of the two following subsets

(4.8.2)
{
H ∈ Ax | $α(H −XP̃ ,ι) 6 0, ∀P̃ ∈ PBx,ι(M̃(x)),∀α ∈ ∆P̃ ,ι

}
,

(4.8.3) Conv
{
XP̃ ,ι | P̃ ∈ PBx,ι(M̃(x))

}
+ −ABx,ι +Aιx +AG̃.

Moreover, if X is positive and Y = (YP̃ )P̃∈P(M̃(x)) is another positive (G̃, M̃(x))-orthogonal

sets, then, for every Q̃, R̃ ∈ FBx,ι(M̃(x)) and Y ∈ Ax we have
(4.8.4)

ΓQ̃Bx,ι(H,X )τ R̃
Q̃,ι

(H −XQ̃)ΓR̃Bx,ι(H,X + Y) = ΓQ̃Bx,ι(H,X )τ R̃
Q̃,ι

(H −XQ̃)φR̃
Q̃,ι

(H −XQ̃ − YQ̃)

where φR̃
Q̃,ι

denotes the characteristic function of the set of those Z ∈ AQ̃,ι such that 〈$,Z〉 ≤
0 for every $ ∈ ∆̂R̃

Q̃,ι
.

Proof. The proof is basically the same as for Proposition 4.3, Proposition 4.5 and Corollary
4.4 adding some ι’s in indices along the way. We skip the details.

Proposition 4.17. Assume that X is positive and let ε ∈ (A+
Bx

)ι that is in general position.

For every Q̃ ∈ FBx(M̃(x)) such that ε ∈ (A+

Q̃
)ι we define a number dε(Q̃) inductively by the

relation

(4.8.5)
∑

Q̃⊂R̃∈FBx (M̃(x))

ε∈(A+

R̃
)ι

dε(R̃) = 1.

Then, we have the following equality of functions on Ax

(4.8.6) ΓG̃Bx,ι(.,X ) =
∑

Q̃∈FBx (M̃(x))

ε∈(A+

Q̃
)ι

dε(Q̃)ΓQ̃,ιBx
(.,X ).

Proof. For Q̃ ∈ FBx(M̃(x)), we set

CQ̃Bx(X ) := Conv
{
XP̃ | P̃ ∈ PBx(M̃(x)), P̃ ⊂ Q̃

}
+ −AQ̃Bx .

Then ΓQ̃Bx(.,X ) is the characteristic function of CQ̃Bx(X ) +AQ̃ (by Proposition 4.5) and:

(4.8.7) If Aιx ∩AQ̃ = 0, ΓQ̃,ιBx
(.,X ) is the characteristic function of CQ̃Bx(X )⊕ (Aιx +AG̃).

(This follows from the definition of ΓQ̃,ιBx
(.,X ) and the previous point.) Furthermore, we claim

that:
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(4.8.8) ΓG̃Bx,ι(.,X ) is the characteristic function of CG̃Bx(X ) +Aιx +AG̃.

Indeed, by the previous proposition it suffices to check that for every P̃ ∈ PBx(M̃(x)),

P̃ ′ ∈ PBx,ι(M̃(x)) and α ∈ ∆P̃ ′,ι we have

$α(XP̃ ,ι −XP̃ ′,ι) 6 0.

But this follows, after projection onto Ax,ι, from the fact that XP̃ ,ι −XP̃ ′,ι is a linear com-

bination with negative coefficients of elements of ∆P̃ ′ (by definition of a positive (G̃, M̃(x))-
family).

With the terminology and notation from Appendix A, we also have:

(4.8.9) CG̃Bx(X ) is a finitely generated convex set with faces F Q̃ := CQ̃Bx(X ), Q̃ ∈ FBx(M̃(x)),
and corresponding (open) cones A+

F Q̃
= A+

Q̃
.

Indeed, that CG̃Bx(X ) is a finitely generated convex set is clear from its definition. Let λ ∈ Ax
and c ∈ R be such that 〈λ,H〉 6 c for every H ∈ CG̃Bx(X ). Applying this inequality to

H ∈ −ABx , we see that λ ∈ A+
Bx

. As

A+
Bx

=
⋃

Q̃∈FBx (M̃(x))

A+

Q̃
,

we have λ ∈ A+

Q̃
for some Q̃ ∈ FBx(M̃(x)). For H ∈ −ABx , we have

〈λ,H〉 6 0

with equality if and only if H ∈ −AQ̃Bx . Furthermore, as X is positive, for every P̃ ∈
PBx(M̃(x)) we have

〈λ,XP̃ 〉 6 〈λ,XQ̃〉

with equality if and only if P̃ ⊂ Q̃. Therefore,

〈λ,H〉 6 〈λ,XQ̃〉

for H ∈ CG̃Bx(X ) with equality if and only if H ∈ CQ̃Bx(X ) and it follows that the intersection

CG̃Bx(X ) ∩ {H ∈ Ax | 〈λ,H〉 = c}

is either empty or equal to CQ̃Bx(X ). The claim (4.8.9) follows.
From (4.8.9) and Proposition A.3(i) (applied to b = Ax,ι), we deduce that

(4.8.10) CG̃Bx(X ) +Aιx +AG̃ =
⋃

Q̃∈FBx,ε(M̃(x))

CQ̃Bx(X ) +Aιx +AG̃
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where we have denoted by FBx,ε(M̃(x)) the subset of Q̃ ∈ FBx(M̃(x)) such that ε ∈ (A+

Q̃
)ι.

Thus, by (4.8.7) and (4.8.8), to get the identity (4.8.6) it only remains to check that

(4.8.11)
∑

Q̃∈FBx,ε(M̃(x))

H∈CQ̃Bx (X )+Aιx+A
G̃

dε(Q̃) = 1

for every H ∈ CG̃Bx(X ) + Aιx + AG̃. By Proposition A.3(ii), there exists a minimal Q̃ ∈
FBx,ε(M̃(x)) such that H ∈ CQ̃Bx(X ) + Aιx + AG̃ and, by the relation (4.8.5), it suffices to

show that, for R̃ ∈ FBx,ε(M̃(x)), we have CQ̃Bx(X ) ⊂ CR̃Bx(X ) if and only if Q̃ ⊂ R̃ but this

follows from (4.8.9) (as this shows that both inclusions are equivalent to A+

R̃
⊂ A+

Q̃
).

As in the previous subsection, let Nx,reg ⊂ Nx be the subset of regular elements in Nx and
Tx,c ⊂ Tx(F ) be the maximal compact subgroup. We equip Tx,c with the Haar measure of
total mass 1 and we also fix a log-norm σreg : Nx,reg(F )→ R>1 on Nx,reg(F ). Set r = dim(ax).
The next two lemmas can be proved by the same argument as in Lemma 4.6. We will skip
the proofs here.

Lemma 4.18. For any u ∈ Nx,reg(F ) and any positive (G̃, M̃(x))-orthogonal set X , the
iterated integral

(4.8.12)

∫
Tx(F )/A

G̃
(F )T ιx(F )

∫
Tx,c

ξ(a−1t−1uta)dtΓBx,ι(HTx(a),X )da

is absolutely convergent in that order and will be denoted by

ṽBx,ξ,ι(u,X ) :=

∫ ∗
Tx(F )/A

G̃
(F )T ιx(F )

ξ(a−1ua)ΓBx,ι(H(a),X )da.

Moreover, there exists a constant C > 0 such that for every u ∈ Nx,reg(F ) and every positive

(G̃, M̃(x))-orthogonal set X , we have

|ṽBx,ξ,ι(u,X )| 6 C(σreg(u) +N(X ))r.

Lemma 4.19. For any u ∈ Nx,reg(F ), Q̃ ∈ FBx(M̃(x)) such that Aιx ∩ AQ̃ = 0 and any

positive (G̃, M̃(x))-orthogonal set X , the iterated integral

(4.8.13)

∫
Tx(F )/A

G̃
(F )T ιx(F )

∫
Tx,c

ξ(a−1t−1uta)dtΓQ̃,ιBx
(HTx(a),X )da

is absolutely convergent in that order and will be denoted by

ṽQ̃,ιBx,ξ
(u,X ) :=

∫ ∗
Tx(F )/A

G̃
(F )T ιx(F )

ξ(a−1ua)ΓQ̃,ιBx
(H(a),X )da.
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Moreover, there exists a constant C > 0 such that for every u ∈ Nx,reg(F ) and every positive

(G̃, M̃(x))-orthogonal set X , we have∣∣∣ṽQ̃,ιBx,ξ
(u,X )

∣∣∣ 6 C(σreg(u) +N(X ))r.

Lemma 4.20. There exists C > 0 such that for every (G̃, M̃(x))-orthogonal set X satisfying
d(X ) > Cσ(u), we have

ṽQ̃,ιBx,ξ
(u,X ) = ṽQ̃,ιBx,ξ

(uQ,X )

where u = uQuQ is the unique decomposition with uQ ∈ LQ̃(F ) and uQ ∈ UQ̃(F ).

Proof. The proof is the same as the proof of the second bullet point in the proof of Lemma
4.7 (we just need to use our assumption that T ιx ⊂ ZGx).

The next two lemmas can be proved by the same argument as in Lemma 4.7. We will
skip the proof here.

Lemma 4.21. There exists C > 0, r > 0 and, for every u ∈ Nx,reg(F ), a unique exponential
polynomial vBx,ξ,ι(u, .) ∈ Pol6r whose exponents belong to a finite set independent of u such

that for every (G̃, M̃(x))-orthogonal set X satisfying d(X ) > Cσ(u), we have

vBx,ξ,ι(u,X ) = ṽBx,ξ,ι(u,X ).

Moreover, there exists C ′ > 0 and R > 0 such that for every u ∈ Nx,reg(F ) and every

(G̃, M̃(x))-orthogonal set X we have

|vBx,ξ,ι(u,X )| 6 C ′(σreg(u) +N(X ))R.

Lemma 4.22. For Q̃ ∈ FBx(M̃(x)) such that Aιx ∩ AQ̃ = 0, there exists C > 0, r > 0

and, for every u ∈ Nx,reg(F ), a unique exponential polynomial vQ̃,ιBx,ξ
(u, .) ∈ Pol6r whose

exponents belong to a finite set independent of u such that for every (G̃, M̃(x))-orthogonal
set X satisfying d(X ) > Cσ(u), we have

vQ̃,ιBx,ξ
(u,X ) = ṽQ̃,ιBx,ξ

(u,X ).

Moreover, there exists C ′ > 0 and R > 0 such that for every u ∈ Nx,reg(F ) and every

(G̃, M̃(x))-orthogonal set X we have∣∣∣vQ̃,ιBx,ξ
(u,X )

∣∣∣ 6 C ′(σreg(u) +N(X ))R.

Following the above two lemmas, we define

vBx,ξ,ι(u, g) = vBx,ξ,ι(u,Y(g)), vQ̃,ιBx,ξ
(u, g) = vQ̃,ιBx,ξ

(u,Y(g))

The following corollary is a direct consequence of the two lemmas above.
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Corollary 4.23. There exists d > 0 such that

vBx,ξ,ι(u, g)� σG(g)dσNx,reg(u)d, vQ̃,ιBx,ξ
(u, g)� σG(g)dσNx,reg(u)d

for all u ∈ Nx,reg(F ) and g ∈ G(F ).

Corollary 4.24. The function vQ̃,ιBx,ξ
(u, g) is left Nx ∩ UQ̃(F ) on u and left UQ̃(F )-invariant

on g.

Proof. The left UQ̃(F )-invariant on g is clear from the definition. The left Nx ∩UQ̃(F ) on u
follows from Lemma 4.20.

Corollary 4.25. We have the decent formula

vBx,ξ,ι(u, g) =
∑

Q̃∈FBx (M̃(x))

ε∈(A+

Q̃
)ι

dε(Q̃)vQ̃,ιBx,ξ
(u, g).

Proof. This is a direct consequence of Proposition 4.17.

5 On the spectral expansion

Let (G, G̃) be a connected reductive twisted space over F . Let H be a closed unimodular

subgroup of G defined over F and (H, H̃) be a twisted space over F equipped with an

embedding H̃ ⊂ G̃ which is H × H-equivariant. Let (χ, χ̃) be a one-dimensional unitary

representation of H̃(F ) i.e. χ : H(F )→ C× is a (smooth) unitary character and χ̃ : H̃(F )→
C× is a map satisfying χ̃(h1h̃h2) = χ(h1h2)χ̃(h̃) for (h̃, h1, h2) ∈ H̃(F )×H(F )×H(F ). Let
ω be a character of AG̃(F ) which coincides with χ on the intersection AG̃(F ) ∩H(F ).

Denote by L2(H(F )AG̃(F )\G(F ), χ ⊗ ω) the Hilbert space of functions ϕ : G(F ) → C
satisfying ϕ(hag) = χ(h)ω(a)ϕ(g) for (h, a, g) ∈ H(F ) × AG̃(F ) × G(F ) and such that
g 7→ |ϕ(g)|2 is integrable on H(F )AG̃(F )\G(F ). The representation by right translation of

G(F ) on that space will be denoted by R. This extends to a twisted representation R̃ of

G̃(F ) defined by

(R̃(h̃g)ϕ)(x) = χ̃(h̃)ϕ(Ad−1

h̃
(x)g)

for every (h̃, g, x) ∈ H̃(F ) × G(F ) × G(F ) and ϕ ∈ L2(H(F )AG̃(F )\G(F ), χ ⊗ ω). For

f ∈ C∞c (G̃(F )/AG̃(F ), ω−1), the operator R̃(f) is given by

(R̃(f)ϕ)(x) =

∫
G̃(F )/A

G̃
(F )

f(g̃)(R̃(g̃)ϕ)(x)dg̃, ϕ ∈ L2(H(F )AG̃(F )\G(F ), χ⊗ ω).

This operator is associated with the kernel function ν(H̃)−1Kf (x, y) where

(5.0.1) Kf (x, y) =

∫
H̃(F )/AH

G̃
(F )

f(x−1h̃y)χ̃(h̃)dh̃, x, y ∈ G(F )
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and ν(H̃) = |H(F ) ∩ AG̃(F ) : AH
G̃

(F )|. Here AH
G̃

is the maximal split torus of AG̃ ∩H. We
define

I(f) =

∫
H(F )A

G̃
(F )\G(F )

Kf (x, x)dx, for f ∈ C∞c (G̃(F )/AG̃(F ), ω−1)

provided the integral is absolutely convergent.
If the pair (G,H) is tempered (see Section 3.2 for the definition of tempered), we can

define in a similar way operators R̃(f) for f ∈ C(G̃(F )/AG̃(F ), ω) and these operators are
associated to kernel functions given by the same expression (5.0.1) (which is absolutely
convergent) and we also define I(f) by the same formula provided the integral is abstolutely
convergent.

Let now f be in C∞c (G̃(F )/AG̃(F ), ω−1) or, if X is tempered, in C(G̃(F )/AG̃(F ), ω−1)
and assume that it satisfies the following very strong condition:

(5.0.2) The operator R̃(f) is of finite rank.

This implies that the integral defining I(f) is convergent and equals ν(H̃) Tr R̃(f):

I(f) = ν(H̃) Tr R̃(f).

Let L2
disc(H(F )AG̃(F )\G(F ), χ ⊗ ω) be the sum of all the irreducible unitary subrep-

resentations of L2(H(F )AG̃(F )\G(F ), χ ⊗ ω) and L2
cont(H(F )AG̃(F )\G(F ), χ ⊗ ω) be its

orthogonal complement. The assumption (5.0.2) also implies that R̃(f) acts by zero on
L2

cont(H(F )AG̃(F )\G(F ), χ⊗ ω), therefore

I(f) = ν(H̃) Tr R̃disc(f)

where R̃disc(f) stands for the restriction of R̃(f) to L2
disc(H(F )AG̃(F )\G(F ), χ⊗ ω).

Let Πdisc(H(F )AG̃(F )\G(F ), χ⊗ω) be the set of isomorphism classes of irreducible sub-
representations of L2(H(F )AG̃(F )\G(F ), χ⊗ω). Then, we have the isotypic decomposition

L2
disc(H(F )AG̃(F )\G(F ), χ⊗ ω) =

⊕
π∈Πdisc(H(F )A

G̃
(F )\G(F ),χ⊗ω)

π ⊗ML2(π)

where ML2(π) := HomG(π, L2(H(F )AG̃(F )\G(F ), χ ⊗ ω)) are multiplicity spaces. Let
Πdisc(H(F )AG̃(F )\G(F ), χ⊗ω)θ be the subset of isomorphism classes fixed by θ and choose
for every π ∈ Πdisc(H(F )AG̃(F )\G(F ), χ ⊗ ω)θ an extension π̃ of π to a representation of

the twisted space G̃(F ). Then, there is an unique endomorphism θ〈π̃〉 of ML2(π) such that
the restriction of R̃(g̃) to the isotypic component π ⊗ML2(π) is equal to π̃(g̃) ⊗ θ〈π̃〉 for

g̃ ∈ G̃(F ). Using these notations, and under the assumption (5.0.2), we have

Tr(R̃disc(f)) =
∑

π∈Πdisc(H(F )A
G̃

(F )\G(F ),χ⊗ω)

Tr(π̃(f))× Tr(θ〈π̃〉 |ML2(π))

for f ∈ C∞c (G̃(F )/AG̃(F ), ω−1) (or f ∈ C(G̃(F )/AG̃(F ), ω−1) if (G,H) is tempered). Note
that a priori we didn’t assume the multiplicity spaces M(π) to be of finite dimension but,
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by the assumption (5.0.2), this is automatic whenever Tr(π̃(f)) 6= 0, so that the above
expression makes sense.

Summarizing the discussion so far, we have the following proposition:

Proposition 5.1. Let f be in C∞c (G̃(F )/AG̃(F ), ω−1) or, if X is tempered, in C(G̃(F )/AG̃(F ), ω−1)
and assume that it satisfies (5.0.2). Then, the integral defining I(f) converges and, with the
above notation, we have

I(f) = ν(H̃)
∑

π∈Πdisc(H(F )A
G̃

(F )\G(F ),χ⊗ω)

Tr(π̃(f))× Tr(θ〈π̃〉 |M(π)).

When X = H\G is wavefront spherical and G is split [30, Theorem 9.2.1] or when X is
symmetric [15, Theorem 4], we have10:

(5.0.3) For every compact-open subgroup J ⊂ G(F ), the subspace

L2
disc(H(F )AG̃(F )\G(F ), χ⊗ ω)J

of J-invariants in L2
disc(H(F )AG̃(F )\G(F ), χ⊗ ω) is finite dimensional.

This readily implies that for every f in C∞c (G̃(F )/AG̃(F ), ω−1) or, if X is tempered, in

C(G̃(F )/AG̃(F ), ω−1), the operator R̃disc(f) is of finite rank so that, in those cases, we have

(5.0.4) the assumption (5.0.2) is equivalent to R̃(f) = R̃disc(f).

Two other situations where condition (5.0.2) is automatically satisfied are as follows:

(5.0.5) f̄ ∈ C∞c (G̃(F )/AG̃(F ), ω) is a matrix coefficient of a supercuspidal representation

(π, π̃) of G̃(F ) with
mL2(π) := dimML2(π) <∞.

(5.0.6) The pair (G,H) is tempered and f̄ ∈ C(G̃(F )/AG̃(F ), ω) is a matrix coefficient of a

discrete series representation (π, π̃) of G̃(F ) with

mL2(π) := dimML2(π) <∞.

By [14], the finite multiplicity assumption in 5.0.5 and 5.0.6 is automatically satisfied when
H = H0 n N , with N the unipotent radical of some parabolic subgroup P = MN of G,
H0 a symmetric subgroup of a Levi factor M (i.e. there exists an involution ι of M such
that (M ι)0 ⊂ H0 ⊂ M ι), and the restriction of the character χ to N(F ) is generic (in the
sense that its orbit under the adjoint action of M(F ) is open in the group of all continuous
characters Homcont(N(F ),C×)).

10This property is of course expected to hold for all spherical varieties.
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6 The geometric expansion

6.1 The setup

Let (G̃, ι) be a twisted symmetric pair (see §3.7) with G connected and reductive, P̃ = M̃N

be a ι-split parabolic subspace with M̃ = P̃ ∩ ι(P̃ ), and ξ : N(F ) → C× be a generic
character of N(F ) i.e. a character whose the stabilizer in M under the adjoint action is of

minimal dimension. Let H0 = (M ι)◦ and H̃0 be a connected component of the subvariety of

ι-fixed points M̃ ι so that (H0, H̃0) is a twisted reductive space. We make the following two
assumptions:

� H̃0 stabilizes the character ξ under the adjoint action. Moreover, if ξ is nontrivial (i.e.

if P̃ is a proper parabolic subspace), we assume that H0 is the neutral component of
the stabilizer of the character ξ in M .

� The twisted symmetric pair (M̃, H̃0) is coregular in the sense of Subsection 3.1, i.e.

H̃0(F ) ∩ M̃rs(F ) 6= ∅ and the function

t ∈ H̃0(F ) ∩ M̃rs(F ) 7→ DH̃0(t)

DM̃(t)1/2

is locally bounded on H̃0(F ).

For every h ∈ H̃0,ss(F ), we have

DH̃(h) = DH̃0(h)DG̃(h)1/2DM̃(h)−1/2δP̃ (h)−1/2

and δP̃ (h) = δP̃ (ι(h))−1 = δP̃ (h)−1, since P̃ is ι-split, hence δP̃ (h) = 1. Therefore, the second
assumption implies that:

(6.1.1) the function h ∈ H̃0(F ) ∩ M̃rs(F ) 7→ DH̃(h)

DG̃(h)1/2
is locally bounded on H̃0(F ).

We set
H̃ = H̃0 nN

and we denote again by ξ : H̃(F ) → C× the twisted character that is trivial on H̃0(F )
and coincides with the previous character on N(F ). We also fix a unitary twisted character

χ : H̃0(F )→ C× and we denote by ξ ⊗ χ the twisted character of H̃(F ) given by

ξ ⊗ χ : h0u ∈ H̃(F ) = H̃0(F ) nN(F ) 7→ χ(h0)ξ(u).

Let t ∈ H̃0,rs(F ). By the coregular assumption, t is also regular in M̃ and this implies
that Gt is quasi-split over F with Pt = MtNt as a Borel subgroup where Gt (resp. Pt, Mt

and Nt) denotes the neutral component of the centralizer of t in G (resp. in P , M and N).
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Let ξt be the restriction of ξ to Nt(F ). Similarly, if we let S = H0,t and T̃ = St, GS̃ is
quasi-split over F , MS̃NS̃ is a Borel subgroup of GS̃ and we let ξS̃ be the restriction of ξ to

NS̃(F ) where GS̃ (resp. PS̃, MS̃ and NS̃) is the centralizer of S̃ in G (resp. P , M and N).

Note that Gt = GS̃ for almost all t ∈ S̃(F ) and MS̃ ∩H0 = S belongs to the center of GS̃.

Lemma 6.1. With the notation above, ξS̃ is a generic character of NS̃(F ).

Proof. We denote by the same letter the pullbacks of ξ and ξS̃ to n(F ) and nS̃(F ) (via the

exponential maps). Let nS̃ be the unique Ad(S̃)-stable complement of nS̃ in n. Then, since

S̃ stabilizes ξ, ξ is trivial on nS̃(F ) and it follows that an element of MS̃ stabilizes ξS̃ if
and only if it stabilizes ξ. However, by our first assumption, S = MS̃ ∩ H0 is the neutral
component of the stabilizer of ξ in MS̃. As S is included in the center of GS̃, this implies
that ξS̃ is generic.

6.2 Truncations

Let X̃, X̃M be the twisted symmetric spaces associated to (G̃, ι), (M̃, ι) respectively (see
Section 3.7). More precisely, the underlying varieties are X = Gι\G, XM = M ι\M and

these are equipped with the natural twisted actions of G̃, M̃ respectively. We fix from
now on a special compact subgroup K ⊂ G(F ) in good position relative to M and we set
KM = K ∩M(F ). In Section 3.7, we have defined real affine spaces AX̃,K and AX̃M ,KM .
We claim that there is a natural identification AX̃,K ' AX̃M ,KM . Indeed, for any minimal

ι-split parabolic subspace P̃0 ⊂ P̃ , we have by definition canonical isomorphisms of real
affine spaces

AX̃,K ' AP̃0,ι
' AP̃0∩M̃,ι ' AX̃M ,KM

and the resulting isomorphism AX̃,K ' AX̃M ,KM does not depend on the choice of P̃0. We fix
a map HXM : XM(F )/KM → AXM ,KM satisfying the requirements of Proposition 3.11 and,
as in Section 3.7, we let HX̃M

: XM(F )/KM → AX̃M ,KM be the composition of HXM with
the natural projection AXM ,KM → AX̃M ,KM .

Recall also that the vector space associated to AX̃,K is the limit AX̃ = lim←−P̃0
AP̃0,ι

where

P̃0 runs over all minimal ι-split parabolic subspaces P̃0 ⊂ G̃ and the transition maps are given
by conjugation by elements of G(F ). As explained in Section 3.7, there is a characteristic
function φX̃ : AX̃ → {0, 1} which, upon identifying AX̃ with AP̃0,ι

, is given by φP̃0,ι
for any

minimal ι-split parabolic subspace P̃0 ⊂ G̃.
Note that by the Iwasawa decomposition G(F ) = P (F )K, we have a natural identifica-

tions of cosets
H(F )\G(F )/K = H0(F )\M(F )/KM .

Moreover, there is a natural map H0(F )\M(F )/KM → XM(F )/KM given by the composi-
tion of the surjectionH0(F )\M(F )�M ι(F )\M(F ) with the natural inclusionM ι(F )\M(F ) ⊂
XM(F ) = (M ι\M)(F ).
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For Y ∈ AX̃,K , we define a characteristic function κY : H(F )\G(F )/K → {0, 1} by the
following (commutative) diagram:

H(F )\G(F )/K

κY

��

H0(F )\M(F )/KM
// XM(F )/KM

H
X̃M

��
{0, 1} AX̃,Kφ

X̃
(.−Y )

oo AX̃M ,KM .

In other words, identifying elements in M(F ) with their image in X̃M(F ), κY is characterized
by the following property: for every (m,u, k) ∈ M(F ) × N(F ) × K we have κY (muk) =
φX̃(HX̃M

(m)− Y ).

Proposition 6.2. (1) For every ι-split parabolic subspace Q̃ ⊂ P̃ , there is a constant ε > 0

such that, setting L̃ = Q̃ ∩ ι(Q̃), the following holds: for every Y ∈ AX̃,K = AX̃M ,KM ,

x ∈ L[≤ εd(Y )] and a ∈ A+

Q̃,ι
, we have

κY (ax) = φQ̃,ι(HL̃,ι(ax)− YQ̃,ι).

(2) There exists a constant C > 0, such that for every Y ∈ AX̃,K = AX̃M ,KM , we have

Supp(κY ) ∩XM(F ) ⊆ AP,ι(F )XM [≤ CN(Y )].

(3) For any fixed x ∈ G(F ), there exists C2 > 0 such that for every a ∈ AP,ι(F ) satisfying

κY (ax) = 1 we have 〈$,HM̃,ι(a)〉 ≤ C2 for every $ ∈ ∆̂P̃ ,ι.

Proof. Let us fix a minimal ι-split parabolic subspace P̃0 ⊂ P̃ and identify both AX̃ and
AX̃,K with AP̃0,ι

via the natural isomorphisms. Thus, for every x ∈ XM(F ) we have κY (x) =
φP̃0,ι

(HX̃M
(x)− Y ) where we recall that

φP̃0,ι
(HX̃M

(x)− Y ) = 1⇔ $(HX̃M
(x)− Y ) ≤ 0 ∀$ ∈ ∆̂P̃0,ι

.

Let Q̃ ⊂ P̃ be a ι-split parabolic subspace Y ∈ AX̃,K and ε > 0. We are going to prove
that point (1) is satisfied provided ε is sufficiently small. Of course, we may and will assume

that P̃0 ⊂ Q̃. Let x ∈ XL[6 εd(Y )] and a ∈ A+

Q̃,ι
. By Proposition 3.12, there exists an

absolute constant c > 0 (depending only on Q̃) and a ι-split parabolic subspace Q̃ ⊂ Q̃′ ⊂ ˜̄P

satisfying (where we have set L̃′ = Q̃′ ∩ ι(Q̃′))

||HX̃M
(xa)−HL̃′,ι(xa)|| < cεd(Y ), projQ̃′HX̃M

(xa) = HL̃′,ι(xa),

and
||HL̃′,ι(xa)−HL̃,ι(xa)|| < cεd(Y ).

98



Furthermore, there exists an (absolute) constant c0 > 0 such that $(Y ) > c0d(Y ) for every

$ ∈ ∆̂Q̃′

P̃0,ι
. This implies, by the above, that for $ ∈ ∆̂Q̃′

P̃0,ι
, provided ε is small enough, we

have

$(HX̃M
(xa)− Y ) = $(HX̃M

(xa)− Y −HL̃′,ι(xa)) ≤ $(HX̃M
(xa)−HL̃′,ι(xa))− c0d(Y ) ≤ 0.

Similarly, for $ ∈ ∆̂Q̃′

Q̃,ι
and provided ε is small enough, we have

$(HL̃,ι(xa)− YQ̃,ι) = $(HL̃,ι(xa)− Y −HL̃′,ι(xa)) ≤ 0.

That is we have
φQ̃
′

P̃0,ι
(HX̃M

(xa)− Y ) = φQ̃
′

Q̃,ι
(HL̃,ι(xa)− YQ̃,ι) = 1.

Now, as is well-known, for H ∈ AP̃0,ι
with φQ̃

′

P̃0,ι
(H) = 1, we have φP̃0,ι

(H) = φQ̃′,ι(H).

Therefore,

φP̃0,ι
(HX̃M

(xa)− Y ) = φQ̃′,ι(HX̃M
(xa)− Y ) = φQ̃′,ι(HL̃′,ι(xa)− YQ̃′,ι)

and
φQ̃,ι(HL̃,ι(xa)− YQ̃,ι) = φQ̃′,ι(HL̃′,ι(xa)− YQ̃′,ι)

where we have used that the projections of HL̃,ι(xa) − YQ̃,ι and HX̃M
(xa) − Y to AQ̃′,ι are

HL̃′,ι(xa)− YQ̃′,ι and HL̃′,ι(xa)− YQ̃′,ι respectively. This proves point (1).
(2) follows from Proposition 3.11(3) and (4). Indeed, let Y − ∈ AP0,ι be such that HXM

has image in Y − + A+
PM0 ,ι

where we have set PM
0 = P0 ∩ M (a minimal ι-split parabolic

subgroup of M). Then, the restriction of the projection map APP0,ι
→ AP̃

P̃0,ι
to the image of

Y − +A+
PM0 ,ι

is proper and this implies that the intersection of the support of φP̃0,ι
(.− YP̃0,ι

)

(seen as a characteristic function on AP0,ι by the previous projection) with Y − + A+
PM0 ,ι

is

contained in the sum of AP,ι with a ball centered at 0 of radius C ′N(Y ) for a certain C ′ > 0.
For (3), by the Iwasawa decomposition we may assume that x ∈M(F ). Then HX̃M

(ax) =
HM̃,ι(a) +HX̃M

(x). Then (3) just follows from the definition of κY .

6.3 The geometric expansion

For f ∈ C∞c (G̃(F )) and Y ∈ AX̃,K = AX̃M ,KM , define

I(f, x) =

∫
H̃(F )

f(x−1hx)(ξ ⊗ χ)(h)dh, x ∈ G(F );

IY (f) =

∫
H(F )A

G̃
(F )\G(F )

I(f, x)κY (x)dx.

If the (G,H) is tempered (see Subsection 3.2), we can also define I(f, x) and IY (f) for

f ∈ C(G̃(F )). It is then clear that the integral defining I(f, x) is absolutely convergent.
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Lemma 6.3. The integral defining IY (f) is absolutely convergent.

Proof. It is enough to show that the integral∫
H(F )AP (F )\G(F )

∫
(AP∩H)(F )A

G̃
(F )\AP (F )

I(f, ax)κY (ax)δP (a)−1dadx

is absolutely convergent. By Proposition 6.2(2) and the Iwasawa decomposition, the in-
tegrand of the outer integral over H(F )AP (F )\G(F ) is compactly supported, hence it is
enough to show that, for each x ∈ H(F )AP (F )\G(F ), the inner integral is absolutely con-
vergent, which (since (AP ∩H0)(F )AP,ι(F ) is of finite index in AP (F )) is equivalent to show
that the absolute convergence of the expression∫

A
G̃,ι

(F )\AP,ι(F )

I(f, ax)κY (ax)δP (a)−1da =∫
AG,ι(F )\AP,ι(F )

∫
A
G̃,ι

(F )\AG,ι(F )

I(f, a1a2x)da1κY (a2x)δP (a2)−1da2.

Since ξ is a generic character and the function γ ∈ G̃(F ) 7→ f(x−1γx) is right-invariant by a
compact-open subgroup, there exists a constant Cf,x > 0 (depending on f and x) such that,
for a ∈ AP,ι(F ),

(6.3.1) I(f, ax) 6= 0⇒ 〈α,HM,ι(a)〉 ≥ −Cf,x for every α ∈ ∆P,ι.

Combining this with Proposition 6.2(3), it follows that the integrand of the outer integral
over AG,ι(F )\AP,ι(F ) is compactly supported. Indeed, the above inequality together with

Proposition 6.2(3) imply that when I(f, ax)κY (ax) 6= 0 the image of HM̃,ι(a) in AG̃
P̃ ,ι

belongs

to a fixed compact subset (depending only on x and f). However, since the automorphism

θ of AP,ι induced from the twisted space (P, P̃ ) preserves the set of simple roots ∆P,ι, the

restriction of the natural projection AGP,ι → AG̃P̃ ,ι to any translate of the chamber AG,+P,ι is

proper which implies (using again the inequality (6.3.1)) that the support of the function
a ∈ AP,ι(F ) 7→ I(f, ax)κY (ax) is compact modulo AG,ι(F ).

Finally, we are reduced to show the convergence of

(6.3.2)

∫
AG,ι(F )/A

G̃,ι
(F )

I(f, ax)da

for any given x ∈ G(F ). Up to replacing f by its conjugate by x, we may assume that x = 1.
Then

I(f, a) =

∫
H̃(F )

f(a−1ha)(ξ ⊗ χ)(h)dh =

∫
H̃(F )

f(hθ(a)−1a)(ξ ⊗ χ)(h)dh.

where we have denoted by θ the automorphism of AG,ι induced from the twisted space G̃.
Consider the regular map

H × AG,ι/AG̃,ι → G
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(h, a) 7→ hθ(a)−1a.

It is a morphism of linear groups with finite kernel and image HAG, in particular it is finite.
This implies that

(6.3.3) σ(hθ(a)−1a)� σ(h) + σAG,ι/AG̃,ι(a) for (h, a) ∈ H̃(F )× AG,ι(F )/AG̃,ι(F ).

In particular, if f is compactly supported, the function a ∈ AG,ι(F )/AG̃,ι(F ) 7→ I(f, a) is
also compactly supported which of course implies the convergence of (6.3.2).

Assume now that the pair (G,H) is tempered and that f is a Harish-Chandra Schwartz

function. Then, by (6.3.3) and since the function ΞG̃ is invariant by AG(F ), for every d > 0
the integral (6.3.2) is essentially bounded by∫

H̃(F )

ΞG̃(h)σ(h)−ddh×
∫
AG,ι(F )/A

G̃,ι
(F )

σAG,ι/AG̃,ι(a)−dda.

However, as (G,H) is tempered the first integral converges for d large enough and similarly
for the second integral. This proves the lemma.

For t ∈ (H̃0)rs(F ), let S = H0,t, T = Mt, S̃ = St and T̃ = Tt. Let NS̃ be the centralizer

of S̃ in N , which is a maximal unipotent subgroup of GS̃, the centralizer of S̃ in G. By
Lemma 6.1, we know that ξ|N

S̃
(F ) is generic. Also BS̃ = SNS̃ is a Borel subgroup of GS̃.

Let M(t) be the centralizer of the maximal split torus of T in G and let M̃(t) = M(t)t.
Define Y (g) = (YQ̃(g))Q̃∈Fι(M̃(t)) to be

YQ̃(g) = YQ̃,ι −H ˜̄Q,ι
(g).

We then define

ṽB
S̃
,ξ,ι,Y (x, nS) =

∫ ∗
A
G̃

(F )S(F )\T (F )

ΓB̄
S̃
,ι(HM̃(t),ι(t

M), Y (x))ξ(tMnS(tM)−1)dtM

for x ∈ G(F ) and nS ∈ NS̃,reg(F ). We refer the reader to Lemma 4.18 for the definition

of the normalized integral
∫ ∗
A
G̃

(F )S(F )\T (F )
. By Lemma 4.21, there exists C > 0, r > 0 and,

for any (x, nS), a unique exponential polynomial vB
S̃
,ξ,ι,·(x, nS) ∈ Pol6r whose exponents

belongs to a finite set independent of (x, nS), such that

ṽB
S̃
,ξ,ι,Y (x, nS) = vB

S̃
,ξ,ι,Y (x, nS)

for all Y and (x, nS) such that 1<d(Y )/C(x, nS) 6= 0. Here, we recall that d(Y ) denotes the
depth Y defined in Subsection 3.8 (we also refer the reader to this subsection for the norm
N(Y ) that appears in the lemma below). Also for c > 0, 1<c(·, ·) stands for the characteristic
function of the subset

{(x, nS) ∈ AG̃(F )\G(F )×NS̃(F )| σA
G̃
\G(x), σN

S̃,reg
(nS) < c}.

From Lemma 4.18, we have:
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Lemma 6.4. There exists d > 0 such that

ṽB
S̃
,ξ,ι,Y (x, nS)� N(Y )d · σG/A

G̃
(x)dσN

S̃,reg
(nS)d

and
vB

S̃
,ξ,ι,Y (x, nS)� N(Y )d · σG/A

G̃
(x)dσN

S̃,reg
(nS)d

for all Y ∈ AX̃,K = AX̃M ,KM , x ∈ G(F ) and nS ∈ NS̃,reg(F ).

Recall that the set of regular semisimple conjugacy classes Γ(H̃0) was equipped with a
measure in Subsection 2.4. We define

J̃Y (f) =

∫
Γ(H̃0)

DH̃(t)χ̃(t)

∫
B
S̃

(F )\G(F )

∫
N
S̃

(F )

f(x−1tnSx)ṽB
S̃
,ξ,ι,Y (x, nS)dnSdxdt

and

JY (f) =

∫
Γ(H̃0)

DH̃(t)χ̃(t)

∫
B
S̃

(F )\G(F )

∫
N
S̃

(F )

f(x−1tnSx)vB
S̃
,ξ,ι,Y (x, nS)dnSdxdt.

By Lemma 2.9.3 of [7], Proposition 4.11 and the lemma above, we know that the above two

integrals are absolutely convergent for all f ∈ C∞c (G̃(F )) (resp. for all f ∈ C(G̃(F )) if the

model (M,H0) is tempered). Note that since we have assumed that (M̃, H̃0) is coregular,

the function t ∈ H̃0(F ) ∩ M̃rs(F ) 7→ DH̃0 (t)

DM̃ (t)1/2
= DH̃(t)

DG̃(t)1/2
is locally bounded on H̃0(F ). If we

further assume that (M̃, H̃0) is tempered, that function is globally bounded. The geometric
expansion is the following theorem (see Lemma 3.6).

Theorem 6.5. Let 0 < ε < 1 and fix f ∈ C∞c (G̃(F )). For k > 0, we have

|IY (f)− JY (f)| � N(Y )−k

for every Y ∈ AX̃,K = AX̃M ,KM with d(Y ) > εN(Y ). Moreover, if the model (M,H0) is

tempered, then the estimates hold for all f ∈ C(G̃(F )).

Remark 6.6. It is clear that in order to prove the above theorem, we only need to prove

|IY (f)− J̃Y (f)| � N(Y )−k

and
|JY (f)− J̃Y (f)| � N(Y )−k.

To end this subsection, we will also state an analogue of the trace formula in Theorem
6.5 for functions with a fixed central character. We fix a character ω : AG̃(F ) → C× whose
restriction to AH0

G̃
(F ) coincides with χ where AH0

G̃
stands for the connected component of

AG̃ ∩H0. For f ∈ C∞c (G̃(F )/AG̃(F ), ω−1) and Y ∈ AX̃,K = AX̃M ,KM , define

I(f, x) =

∫
N(F )

∫
H̃0(F )/A

H0
G̃

(F )

f(x−1hnx)ξ(n)χ(h)dhdn, x ∈ G(F );
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IY (f) =

∫
H(F )A

G̃
(F )\G(F )

I(f, x)κY (x)dx.

If (M,H0) is tempered, we can also define I(f, x) and IY (f) for f ∈ C(G̃(F )/AG̃(F ), ω−1).
For the geometric side, we define

JY (f) =

∫
Γ(H̃0)

DH̃(t)χ(t)

∫
B
S̃

(F )\G(F )

∫
N
S̃

(F )

f(x−1tnSx)vB
S̃
,ξ,ι,Y (x, nS)dnSdxdt.

where H0 = H0/A
H0

G̃
and Γ(H̃0) is the set of regular semisimple conjugacy classes of the

twisted space H̃0(F ) equipped with a measure defined in Subsection 2.4. The following
theorem is an analogue of Theorem 6.5 and it can be proved by the exactly same argument.

Theorem 6.7. Let 0 < ε < 1 and fix f ∈ C∞c (G̃(F )/AG̃(F ), ω−1). For k > 0, we have

|IY (f)− JY (f)| � N(Y )−k

for every Y ∈ AX̃,K = AX̃M ,KM with d(Y ) > εN(Y ). Moreover, if the model (M,H0) is

tempered, then the estimates hold for all f ∈ C(G̃(F )/AG̃(F ), ω−1).

The goal of the rest of this section is to prove Theorem 6.5.

6.4 Some reduction

Recall that we have defined

I(f, x) =

∫
N(F )

∫
H̃0(F )

f(x−1hnx)ξ(n)χ̃(h)dhdn, x ∈ G(F );

IY (f) =

∫
H(F )A

G̃
(F )\G(F )

I(f, x)κY (x)dx.

By the Weyl’s integration formula (applied to H̃0), we have

IY (f) =

∫
H(F )A

G̃
(F )\G(F )

κY (x)

∫
N(F )

∫
H̃0(F )

f(x−1hnx)ξ(n)χ̃(h)dhdndx

=

∫
H(F )A

G̃
(F )\G(F )

κY (x)

∫
N(F )

∫
Γ(H̃0)

DH̃0(t)

∫
S(F )\H0(F )

f(x−1h−1thnx)ξ(n)χ̃(t)dhdtdndx

=

∫
Γ(H̃0)

DH̃0(t)χ̃(t)

∫
A
G̃

(F )S(F )N(F )\G(F )

κY (x)

∫
N(F )

f(x−1tnx)ξ(n)dndxdt

=

∫
Γ(H̃0)

DH̃0(t)χ̃(t)

∫
T (F )N(F )\G(F )

∫
A
G̃

(F )S(F )\T (F )

κY (tMx)
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∫
N(F )

f(x−1tnx)ξ(tMn(tM)−1)dndtMdxdt.

Here as in the previous subsection, for t ∈ (H̃0)rs(F ), we let S = H0,t, T = Mt, S̃ = St and

T̃ = Tt. It is easy to see that the isomorphism

NS̃(F )×NS̃(F ) N(F )→ N(F ) : (nS, n) 7→ (Adt)
−1(n−1)nSn

has Jacobian DH̃0(t)−1DH̃(t), hence the above expression is equal to∫
Γ(H̃0)

DH̃(t)χ̃(t)

∫
T (F )N(F )\G(F )

∫
A
G̃

(F )S(F )\T (F )

κY (tMx)

∫
N
S̃

(F )×NS̃(F )
N(F )

f(x−1t(Adt)
−1(n−1)nSnx)ξ(tM(Adt)

−1(n−1)nSn(tM)−1)d(nS, n)dtMdxdt

=

∫
Γ(H̃0)

DH̃(t)χ̃(t)

∫
T (F )N(F )\G(F )

∫
A
G̃

(F )S(F )\T (F )

κY (tMx)

∫
N
S̃

(F )×NS̃(F )
N(F )

f(x−1n−1tnSnx)ξ(tMnS(tM)−1)d(nS, n)dtMdxdt

=

∫
Γ(H̃0)

DH̃(t)χ̃(t)

∫
T (F )N

S̃
(F )\G(F )∫

A
G̃

(F )S(F )\T (F )

κY (tMx)

∫
N
S̃

(F )

f(x−1tnSx)ξ(tMnS(tM)−1)dnSdt
Mdxdt.

Definition 6.8. With the notation above, we define

κY,S̃,ξ(x, nS) =

∫ ∗
A
G̃

(F )S(F )\T (F )

κY (tMx)ξ(tMnS(tM)−1)dtM

:=

∫
A
G̃

(F )S(F )\T (F )

∫
Tc

κY (tM tx)ξ(tM tnS(tM t)−1)dtdtM

and

IY,S̃(f) =

∫
S̃(F )

DH̃(t)χ̃(t)

∫
B
S̃

(F )\G(F )

∫
N
S̃

(F )

f(x−1tnSx)κY,S̃,ξ(x, nS)dnSdxdt.

We also define

J̃Y,S̃(f) =

∫
S̃(F )

DH̃(t)χ̃(t)

∫
B
S̃

(F )\G(F )

∫
N
S̃

(F )

f(x−1tnSx)ṽB
S̃
,ξ,ι,Y (x, nS)dnSdxdt

and

JY,S̃(f) =

∫
S̃(F )

DH̃(t)χ̃(t)

∫
B
S̃

(F )\G(F )

∫
N
S̃

(F )

f(x−1tnSx)vB
S̃
,ξ,ι,Y (x, nS)dnSdxdt.
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Lemma 6.9. There exists d > 0 such that

κY,S̃,ξ(x, nS)� N(Y )d · σG/A
G̃

(x)dσN
S̃,reg

(nS)d

for all Y ∈ AX̃,K = AX̃M ,KM , x ∈ G(F ) and nS ∈ NS̃,reg(F ).

Proof. This follows from Proposition 6.2.

We fix t, S, T, S̃, T̃ as above. By the integration formula (2.4.2), in order to prove Theorem
6.5, we only need to establish the following theorem.

Theorem 6.10. Let 0 < ε < 1 and fix f ∈ C∞c (G̃(F )). For k > 0, we have

|IY,S̃(f)− J̃Y,S̃(f)| � N(Y )−k

and
|JY,S̃(f)− J̃Y,S̃(f)| � N(Y )−k

for every Y ∈ AX̃,K = AX̃M ,KM with d(Y ) > εN(Y ). Moreover, if the model (M,H0) is

tempered, then the estimates hold for all f ∈ C(G̃(F )).

6.5 Comparison of the weights

Recall that for c > 0 we have defined the function 1<c(·, ·) to be the characteristic function
of

{(x, nS) ∈ AG̃(F )\G(F )×NS̃(F )| σA
G̃
\G(x) < c, σN

S̃,reg
(nS) < c}.

The goal of this subsection is to prove the following lemma.

Lemma 6.11. There exists C > 0 such that

κY,S̃,ξ(x, nS) = ṽB
T̃
,ξ,ι,Y (x, nS)

for all Y ∈ AX̃,K = AX̃M ,KM and (x, nS) such that 1<N(Y )ε(x, nS) 6= 0, d(Y ) > εN(Y ) and
d(Y ) > C.

Let M(S̃) = M(t) be the centralizer of the maximal split torus of T in G and let

M̃(S̃) = M̃(t) = M(S̃)S̃. For all Q̃ ∈ FM̃ι (M̃(S̃)) (resp. Q̃ ∈ FB̄
S̃
,ι(M̃(S̃))), let L̃ be the

Levi factor containing M̃(S̃) and let Q̄ be the opposite parabolic subgroup of Q with respect
to L. We first need a lemma.

Lemma 6.12. For all Q̃ ∈ FB̄
S̃
,ι(M̃(S̃)), we have UQ̄ ⊂ P .

The above lemma is a direct consequence of the next lemma.

Lemma 6.13. Let AT,ι be the maximal split ι-split torus in T (F ). Every root in ∆(AT,ι, N)
can be written as a linear combination of roots in ∆(AT,ι, NS̃) with nonnegative coefficients.
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Proof. For a ∈ AT,ι and a character ξ′ of N(F ), we say a shrinks ξ′ if

lim
i→∞

ξ′(a−inai) = 1

for all n ∈ N(F ). To prove the lemma, we only need to show that for a ∈ AT,ι, if a shrinks ξ,
then a shrinks all the characters of N(F ). The characters of N(F ) can be naturally identified
with the vector space n̄(F )/[n̄(F ), n̄(F )] and we endow it with the natural topology coming
from the vector space. We only need to show that a shrinks an open subset of the characters.
There exists a ι-split parabolic subgroup Pa,ι of M = G0 such that limi→∞ a

−ipai exists for
all p ∈ Pa,ι(F ). Then we know that a shrinks all the characters ξ′ of N(F ) of the form

ξ′(n) = ξ(m−1nm), m ∈ Pa,ι(F )H0(F ).

Since ξ is a generic character and Pa,ιH0 is Zariski open in G0 = M , we know that a shrinks
an open subset of the characters. This proves the lemma.

Let C ′ > 0 be a constant large enough (with respect to 1
ε

and the inverse of the constant

in Prop 6.2(1)). For every positve (G̃,M(S̃), ι)-orthogonal set Y0 = (Y0,Q̃,ι)Q̃∈Fι(M̃(S̃)), by

using the parabolic subgroup P = MN it induces a (M̃,M(S̃), ι)-orthogonal set Y0,M =

(Y0,M,Q̃,ι)Q̃∈FM̃ι (M̃(S̃))
where Y0,M,Q̃,ι = Y0,Q̃·N̄,ι. We fix an auxiliary positive (G̃,M(S̃), ι)-

orthogonal set Y0 = (Y0,Q̃,ι)Q̃∈Fι(M̃(S̃)) satisfies the following conditions.

� We have
(6.5.1)
1

C ′2
N(Y ) < N(Y0,M) <

1

C ′
N(Y ),

1

C ′2
N(Y ) < N(Y0) <

1

C ′
N(Y ), d(Y0,M) > εN(Y0,M).

� For any Q̃ ∈ FM̃ι (M̃(S̃)) and α ∈ ∆(AT,ι, N), we have

(6.5.2) α(Y0,M,Q̃,ι) >
1

C ′3
N(Y ).

It is clear such Y0 exists (for example, we can take it to be of the form (
Y
Q̃,ι

C′′
+X)Q̃ for some

C ′′ > 0 and X ∈ AM̃,ι). For Q̃ ∈ FM̃ι (M̃(S̃)), define

κY0,Q̃
Y,S̃,ξ

(x, nS) =

∫ ∗
A
G̃

(F )S(F )\T (F )

κY (tMx)ξ(tMnS(tM)−1)

ΓQ̃
M̃(S̃),ι

(HM̃(S̃),ι(t
M), Y0,M)τ M̃

Q̃,ι
(HM̃(S̃),ι(t

M)− Y0,M,Q̃,ι)dt
M ,

ṽY0,Q̃B
S̃
,ξ,ι,Y (x, nS) =

∫ ∗
A
G̃

(F )S(F )\T (F )

ΓB̄
S̃
,ι(HM̃(S̃),ι(t

M), Y (x))ξ(tMnS(tM)−1)

ΓQ̃
M̃(S̃),ι

(HM̃(S̃),ι(t
M), Y0,M)τ M̃

Q̃,ι
(HM̃(S̃),ι(t

M)− Y0,M,Q̃,ι)dt
M .

By (4.8.1), in order to prove Lemma 6.11, it is enough to compare κY0,Q̃
Y,S̃,ξ

(x, nS) and ṽY0,Q̃B
S̃
,ξ,ι,Y (x, nS)

for all Q̃ ∈ FM̃ι (M̃(S̃)). Fix Q̃ ∈ FM̃ι (M̃(S̃)). We are reduced to prove the following lemma.
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Lemma 6.14. There exists C > 0 such that

κY0,Q̃
Y,S̃,ξ

(x, nS) = ṽY0,Q̃B
S̃
,ξ,ι,Y (x, nS)

for all Y ∈ AX̃,K = AX̃M ,KM and (x, nS) such that 1<N(Y )ε(x, nS) 6= 0, d(Y ) > εN(Y ) and
d(Y ) > C.

Proof. We can rewrite the weighted functions as (Tc is the maximal compact subgroup of
T (F ))

κY0,Q̃
Y,S̃,ξ

(x, nS) =

∫
A
G̃

(F )S(F )\T (F )

∫
Tc

κY (ttMx)ξ(ttMnS(tM)−1t−1)

ΓQ̃
M̃(S̃),ι

(HM̃(S̃),ι(t
M), Y0,M)τ M̃

Q̃,ι
(HM̃(S̃),ι(t

M)− Y0,M,Q̃,ι)dtdt
M ,

ṽY0,Q̃B
S̃
,ξ,ι,Y (x, nS) =

∫
A
G̃

(F )S(F )\T (F )

∫
Tc

ΓB̄
S̃
,ι(HM̃(S̃),ι(t

M), Y (x))ξ(ttMnS(tM)−1t−1)

ΓQ̃
M̃(S̃),ι

(HM̃(S̃),ι(t
M), Y0,M)τ M̃

Q̃,ι
(HM̃(S̃),ι(t

M)− Y0,M,Q̃,ι)dt
M .

Hence it is enough to show that the two functions

tM 7→ ΓQ̃
M̃(S̃),ι

(HM̃(S̃),ι(t
M), Y0,M)τ M̃

Q̃,ι
(HM̃(S̃),ι(t

M)−Y0,M,Q̃,ι)·
∫
Tc

κY (ttMx)ξ(ttMnT (tM)−1t−1)dt

tM 7→ ΓB̄
S̃
,ι(HM̃(S̃),ι(t

M), Y (x))ΓQ̃
M̃(S̃),ι

(HM̃(T̃ ),ι(t
M), Y0,M)τ M̃

Q̃,ι
(HM̃(S̃),ι(t

M)− Y0,M,Q̃,ι)

·
∫
Tc

ξ(ttMnS(tM)−1t−1)dt

on AG̃(F )S(F )\T (F ) are equal to each other. We denote these two functions by F1,x,nS and
F2,x,nS .

Let x = mnk be the Iwasawa decomposition of x with respect to P = MN . Since κY
is left N(F )-invariant and right K-invariant, the function F1,x,nS only depends on m. By

Lemma 6.12, we know that N ⊂ Q for all Q̃ ∈ PB̄
S̃
,ι(M̃(S̃)). This implies that the function

F2,x,nS also only depends on m. So we may assume that x = m ∈ M(F ). Let x = luk
be the Iwasawa decomposition of x with respect to Q̄ = LUQ̄. We first prove the following
statement.

(1) With the assumption on Y and (x, nS), once we choose C large enough the above two
functions F1,x,nS and F2,x,nS only depends on l.

For the function F1,x,nS , since κY is right K-invariant, we know that it only depends on
lu. It is enough to show that for tM ∈ AG̃(F )S(F )\T (F ) with

ΓQ̃
M̃(S̃),ι

(HM̃(S̃),ι(t
M), Y0,M)τ M̃

Q̃,ι
(HM̃(S̃),ι(t

M)− Y0,M,Q̃,ι) 6= 0,
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we have
κY (tM lu) = κY (tM l).

For tM ∈ AG̃(F )S(F )\T (F ), we can always choose a representative of tM in T (F ), denoted
by t2, such that the projection of HM̃(S̃)(t2) ∈ AM̃(S̃) to Aι

M̃(S̃)
belongs to a compact subset

that only depends on T̃ . It is enough to show that

κY (t2lu) = κY (t2l).

The argument is the same as the proof of (5.3.14) of [7] and we will skip it here. This proves
(1) for the function F1,x,nS .

For the function F2,x,nS , let Q̃′ = Q̃N̄ ∈ FB̄
S̃
,ι(M̃(S̃)) and ˜̄Q′ = ˜̄QN ∈ FB

S̃
,ι(M̃(S̃)). By

Lemma 6.13, we know that there exists c1 > 0 such that if∫
Tc

ξ(ttMnS(tM)−1t−1)dt 6= 0,

then

(6.5.3) α(HM̃(S̃),ι(t
M)) ≤ c1N(Y )ε, ∀α ∈ ∆(AT,ι, N).

Combining with the second condition (6.5.2) of Y0, we know that once we choose C,C ′ > 0
large enough, we have

ΓQ̃
M̃(S̃),ι

(HM̃(S̃),ι(t
M), Y0,M)τ M̃

Q̃,ι
(HM̃(S̃),ι(t

M)− Y0,M,Q̃,ι)

∫
Tc

ξ(ttMnS(tM)−1t−1)dt 6= 0

⇒ ΓQ̃
′

M̃(S̃),ι
(HM̃(S̃),ι(t

M), Y0)τQ̃′,ι(HM̃(S̃),ι(t
M)− Y0,Q̃′,ι) 6= 0.

Combining with (4.8.4) (applied to the case when X = Y0 and Y = Y (x) − Y0, note that

by the first condition (6.5.1) of Y0 we know that Y is positive with d(Y) > d(Y )
2

) we get the
following statement.

(2) If

ΓQ̃
M̃(S̃),ι

(HM̃(S̃),ι(t
M), Y0)τ M̃

Q̃,ι
(HM̃(S̃),ι(t

M)− Y0,Q̃,ι)

∫
Tc

ξ(ttMnS(tM)−1t−1)dt 6= 0,

then
ΓB̄

S̃
,ι(HM̃(S̃),ι(t

M), Y (x)) = φQ̃′,ι(HL̃,ι(t
M)− YQ̃′,ι +H ˜̄Q′,ι

(x)).

In particular, we have proved statement (1) for the function F2,x,nS .
From now on assume that x = l ∈ L(F ). We only need to prove the following two

statements.

(3) With the assumption on Y and (x, nS), once we choose C > 0 large enough, for
tM ∈ AG̃(F )S(F )\T (F ) with F1,x,nS(tM) 6= 0, the following holds.
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– φQ̃′,ι(HL̃,ι(t
Mx)− YQ̃′,ι) = 1.

– F1,x,nS(tM) = ΓQ̃
M̃(S̃),ι

(HM̃(S̃),ι(t
M), Y0)τ M̃

Q̃,ι
(HM̃(S̃),ι(t

M)−Y0,Q̃,ι)·
∫
Tc
ξ(ttMnT (tM)−1t−1)dt.

(4) With the assumption on Y and (x, nS), once we choose C > 0 large enough, for
tM ∈ AG̃(F )S(F )\T (F ) with F2,x,nS(tM) 6= 0, the following holds.

– φQ̃′,ι(HL̃,ι(t
Mx)− YQ̃′,ι) = 1.

– F2,x,nS(tM) = ΓQ̃
M̃(S̃),ι

(HM̃(S̃),ι(t
M), Y0)τ M̃

Q̃,ι
(HM̃(S̃),ι(t

M)−Y0,Q̃,ι)·
∫
Tc
ξ(ttMnT (tM)−1t−1)dt.

Statement (4) follows from (2). It remains to prove (3). As in the proof of (2), by Lemma
6.13 and (6.5.2), we know that once we choose C > 0 large enough, then

(6.5.4) τ M̃
Q̃,ι

(HM̃(S̃),ι(t
M)− Y0,Q̃,ι) ·

∫
Tc

κY (ttMx)ξ(ttMnS(tM)−1t−1)dt 6= 0

⇒ τQ̃′,ι(HM̃(S̃),ι(t
M)− Y0,Q̃′,ι) 6= 0.

We can choose a representative of tM in T (F ) of the form t′t1a where t′ belongs to a
compact set, a ∈ AL̃,ι(F ) and t1 ∈ Tι(F ) with HL̃,ι(t1) = 0. Here Tι is the maximal ι-split
torus of T .

Since ΓQ̃
M̃(S̃),ι

(HM̃(S̃),ι(t
M), Y0,M) 6= 0, by Proposition 4.16 and (6.5.1), we know that once

we choose C > 0 large enough, we have

(6.5.5) σG/A
G̃

(t′t1) <
d(Y )√
C ′
.

Combining with (6.5.4) and (6.5.2), we know that once we choose C > 0 large enough, we
can write a as a = a1a2 such that a1 ∈ A+

Q̃′,ι
and

(6.5.6) σG/A
G̃

(t′t1a2x) <
d(Y )√
C ′
.

Combining (6.5.6) with Proposition 6.2, we know that

κY (ttMx) = κY (tt′t1a2xa1)

is equal to 1 if and only if φQ̃′,ι(HL̃,ι(t
Mx)−YQ̃′,ι) = 1. This proves (3) and finishes the proof

of the proposition.

109



6.6 The proof of Theorem 6.10

We have

|IY,S̃(f)− J̃Y,S̃(f)| ≤
∫
S̃(F )

DH̃(t)

∫
B
S̃

(F )\G(F )

∫
N
S̃

(F )

|f(x−1tnSx)| · |κY,S̃,ξ(x, nS)− ṽB
S̃
,ξ,ι,Y (x, nS)|dnSdxdt.

Let N > 0. By Lemma 6.4, 6.9 and 6.11, there exists d0 > 0 such that

|κY,S̃,ξ(x, nS)− ṽB
S̃
,ξ,ι,Y (x, nS)| � N(Y )−N(σG/A

G̃
(x) + σN

S̃,reg
(nS))d0

for all Y ∈ AX̃,K = AX̃M ,KM , x ∈ G(F ), nS ∈ NS̃,reg(F ) with d(Y ) > εN(Y ). Since the

left hand side is invariant under the transform (x, ns) 7→ (bx, bnsb
−1) for all b ∈ BS̃(F ), by

Lemma 4.9 it follows that

|κY,S̃,ξ(x, nS)− ṽB
S̃
,ξ,ι,Y (x, nS)| � N(Y )−N(σG̃reg(x

−1tnSx) + σS̃′(t))
d0

for all Y ∈ AX̃,K = AX̃M ,KM , x ∈ G(F ), nS ∈ NS̃,reg(F ), t ∈ S̃ ′(F ) with d(Y ) > εN(Y ).
Combining this with Proposition 4.11, we deduce that, for any d > 0, the integral

DH̃(t)

∫
B
S̃

(F )\G(F )

∫
N
S̃

(F )

|f(x−1tnSx)| · |κY,S̃,ξ(x, nS)− ṽB
S̃
,ξ,ι,Y (x, nS)|dnSdx

is essentially bounded by
N(Y )−N · σS̃′(t)

d0 · σG̃(t)−d

for t ∈ S̃(F ) and Y ∈ AX̃,K = AX̃M ,KM with d(Y ) > εN(Y ). Moreover, we can choose d > 0
large enough such that the expression∫

S̃(F )

σG̃(t)−dσS̃′(t)
d0dt

is convergent (see Lemma 2.9.3 of [7], note that σS̃′(t) ∼ σG̃(t) + log(2 + DG̃(t)−1)). This
proves the first inequality of Theorem 6.10. The second inequality follows from the same
argument except that we replace Lemma 6.11 by Lemma 4.21. This finishes the proof of
Theorem 6.5 and 6.10.

7 Application of the geometric expansion

In this section, we will discuss the application of the geometric expansion in Theorem 6.10.
The first application is a simple local twisted trace formula for strongly cuspidal functions in
the coregular case. The second application is a multiplicity formula for Whittaker induction
of coregular symmetric pairs. We use the same notation as in the previous section.
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7.1 A simple local trace formula

With the same notation as in Theorem 6.7, for f ∈ C∞c (G̃(F )/AG̃(F ), ω−1) (or f ∈ C(G̃(F )/AG̃(F ), ω−1)
if the model (M,H0) is tempered) and Y ∈ AX̃,K = AX̃M ,KM , we have defined

I(f, x) =

∫
N(F )

∫
H̃0(F )/A

H0
G̃

(F )

f(x−1hnx)ξ(n)χ(h)dhdn, x ∈ G(F );

IY (f) =

∫
H(F )A

G̃
(F )\G(F )

I(f, x)κY (x)dx.

We also define

I(f) =

∫
H(F )A

G̃
(F )\G(F )

I(f, x)dx

whenever this integral is convergent. The next proposition has been proved in Proposition
5.1.

Proposition 7.1. The integrals defining I(f, x) and I(f) are absolutely convergent for all
f ∈ C∞c,scusp(G̃(F )/AG̃(F ), ω−1) satisfies (5.0.2). If (M,H0) is tempered, then both integrals

are absolutely convergent for all f ∈ Cscusp(G̃(F )/AG̃(F ), ω−1) satisfies (5.0.2).

Remark 7.2. In fact we can even prove the convergence without the assumption on R̃(f).
But since we will not use it here, we will postpone the proof of the general convergence to
our next paper.

For t ∈ Γrs(H̃0), let S, T, S̃, T̃ be the same as in the previous section and we let Ot =
OS̃ ∈ Nilreg(g

∗
S̃
) be the orbit associated to ξS̃ as explained at the beginning of Section 4.

For a quasi-character Θ on G̃(F ) with central character ω−1, we define

mgeom,H̃(Θ) :=

∫
Γell(H̃0)

DH̃(t)cΘ,−Ot(t)χ(t)dt.

Here Γell(H̃0) is the set of regular elliptic semisimple conjugacy classes of the twisted space

H̃0(F ) equipped with a measure defined in Subsection 2.4. By Lemma 2.4 and coregular
assumption, we know that the integral defining mgeom,H̃(Θ) is absolutely convergent.

For f ∈ Cscusp(G̃(F )/AG̃(F ), ω), we define

Igeom(f) = ν(H̃0)mgeom,H̃(Θf ), ν(H̃0) = |H0(F ) ∩ AG̃(F ) : AH0

G̃
(F )|.

The next theorem is the geometric side of a simple local twisted trace formula in the coregular
case.

Theorem 7.3. 1. We have I(f) = Igeom(f) for all f ∈ C∞c,scusp(G̃(F )/AG̃(F ), ω−1) such
that the integral defining I(f) is absolutely convergent.
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2. If the symmetric pair (M,H0) is tempered, then I(f) = Igeom(f) for all f ∈ Cscusp(G̃(F )/AG̃(F ), ω−1)
such that the integral defining I(f) is absolutely convergent.

Proof. It is enough to show that the limit of IY (f) is equal to Igeom(f) as N(Y ) goes to
infinity where Y runs over all the elements in AX̃,K = AX̃M ,KM with d(Y ) > εN(Y ). In the
previous section we have also defined

JY (f) =

∫
Γ(H̃0)

DH̃(t)χ(t)

∫
B
S̃

(F )\G(F )

∫
N
S̃

(F )

f(x−1tnSx)vB
S̃
,ξ,ι,Y (x, nS)dnSdxdt

and we proved in Theorem 6.7 that

(7.1.1) |IY (f)− JY (f)| � N(Y )−k

for every Y ∈ AX̃,K = AX̃M ,KM with d(Y ) > εN(Y ). This implies that the limit of IY (f) is
equal to the limit of JY (f) as N(Y ) goes to infinity. Since the function

Y 7→ vB
S̃
,ξ,ι,Y (x, nS)

is an exponential polynomial with bounded degree and with exponents in a fixed finite set
(both independent of x and nS), we know that the limit of JY (f) is equal to

J(f) =

∫
Γ(H̃0)

DH̃(t)χ(t)

∫
B
S̃

(F )\G(F )

∫
N
S̃

(F )

f(x−1tnSx)vB
S̃
,ξ,ι(x, nS)dnSdxdt.

Here vB
S̃
,ξ,ι(x, nS) is defined in Section 4.8. In particular, as Y goes to infinity, JY (f) is a

constant independent of Y .
Fix t ∈ Γrs(H̃0) and let S, T, S̃, T̃ be as in the previous section. Define

JS̃(f) =

∫
S̃(F )/A

H0
G̃

DH̃(t)χ(t)

∫
B
S̃

(F )\G(F )

∫
N
S̃

(F )

f(x−1tnSx)vB
S̃
,ξ,ι(x, nS)dnSdxdt.

Fix ε ∈ (A+
B
S̃
)ι in general position. By Corollary 4.25, we have the descent formula

vB
S̃
,ξ,ι(x, nS) =

∑
Q̃∈FB

S̃
(M̃(S̃))

ε∈(A+

Q̃
)ι

dε(Q̃)vQ̃,ιB
S̃
,ξ(x, nS).

This implies that

JS̃(f) =
∑

Q̃∈FB
S̃

(M̃(S̃))

ε∈(A+

Q̃
)ι

dε(Q̃)J Q̃
S̃

(f)

where

J Q̃
S̃

(f) =

∫
S̃(F )/A

H0
G̃

DH̃(t)χ(t)

∫
B
S̃

(F )\G(F )

∫
N
S̃

(F )

f(x−1tnSx)vQ̃,ιB
S̃
,ξ(x, nS)dnSdxdt.

112



By Corollary 4.24 and the assumption that f is strongly cuspidal, we know that J Q̃
S̃

(f) = 0

if Q̃ 6= G̃. If Q̃ = G̃, then ε ∈ (AG̃)ι. Since ε ∈ (A+
B
S̃
)ι is in general position, we must have

(A+
B
S̃
)ι = (AGx)ι = (AG̃)ι. This implies that S̃ is elliptic. If this is the case, the function

ΓG̃,ιB
S̃

in the definition of vG̃,ιB
S̃
,ξ is just the function ΓB

S̃
. Hence we have

vG̃,ιB
S̃
,ξ(x, nS) = ν(H0)vB

S̃
,ξ(x, nS).

Here ν(H0) = |H0(F ) ∩ AG̃(F ) : AH0

G̃
(F )| comes from the volume of S(F )AG̃(F ) : AG̃(F )

which is equal to the volume of S(F )/AH0

G̃
(F ) (which is equal to 1) times |S(F ) ∩ AG̃(F ) :

AH0

G̃
(F )| = |H0(F ) ∩AG̃(F ) : AH0

G̃
(F )| = ν(H̃0). This implies that JS̃(f) is equal to 0 if S̃ is

not elliptic, and is equal to

ν(H0)

∫
S̃(F )/A

H0
G̃

DH̃(t)χ(t)

∫
B
S̃

(F )\G(F )

∫
N
S̃

(F )

f(x−1tnSx)vB
S̃
,ξ(x, nS)dnSdxdt

if S̃ is elliptic. Then the theorem follows from Theorem 4.8.

7.2 The multiplicity formula

We use the same notation as the previous subsection and we assume that the twisted space
G̃ is just G (i.e. the automorphism θ is the identity map). Let π be an irreducible smooth
representation of G with central character ω−1. Define

m(π) = HomH(F )(π, χ
−1 ⊗ ξ−1), mgeom(π) :=

∫
Γell(H0

DH(t)χ(t)cΘ,−Ot(t)dt.

By [14], we know that the multiplicity m(π) is finite. The goal of this subsection is to
prove the following multiplicity formula.

Theorem 7.4. The multiplicity formula m(π) = mgeom(π) holds for all supercuspidal repre-
sentations of G(F ) with central character ω−1. If (M,H0) is tempered, then the multiplicity
formula holds for all discrete series of G(F ) with central character ω−1.

Proof. For f ∈ C∞c,scusp(G(F )/AG(F ), ω−1) (or f ∈ Cscusp(G(F )/AG(F ), ω−1) if (M,H0) is
tempered), we have defined

I(f, x) =

∫
N(F )

∫
H0(F )/A

H0
G (F )

f(x−1hnx)ξ(n)χ(h)dhdn, I(f) =

∫
H(F )A

G̃
(F )\G(F )

I(f, x)dx.

in the previous subsection. Proposition 5.1, (5.0.5), (5.0.6) and Theorem 7.3 implies that

I(f) = ν(H0)mgeom,H(Θf )
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for all f ∈ ◦C(G(F )/AG(F ), ω−1) ∩ C∞c (G(F )/AG(F ), ω−1) (or f ∈ ◦C(G(F )/AG(F ), ω−1)
if (M,H0) is tempered). Here ◦C(G(F )/AG(F ), ω−1) is the span of matrix coefficients of
discrete series of G(F ) with central character ω−1. For f ∈ ◦C(G(F )/AG(F ), ω−1), define

Ispec(f) = ν(H̃0)
∑

π∈Πdisc(G,ω−1)

tr(π(f̄))m(π).

By Theorem 4.1.1 of [7], we have the spectral expansion

(7.2.1) ν(H0)mgeom,H(Θf ) = I(f) = Ispec(f)

for all f ∈ ◦C(G(F )/AG(F ), ω−1) ∩ C∞c (G(F )/AG(F ), ω−1) (or f ∈ ◦C(G(F )/AG(F ), ω−1) if
(M,H0) is tempered). Then the multiplicity formula follows from (7.2.1). All we need to do
is to let f be the matrix coefficient of a supercuspidal representation (or a discrete series if
(M,H0) is tempered). This finishes the proof of the multiplicity formula.

Remark 7.5. Some special cases of the multiplicity formula proved in the above theorem are
the multiplicity formulas for the Galois models and the generalized Shalika models proved in
[7] and [9] .

8 The unitary Shalika model

In this section we will prove our main theorems for the unitary Shalika model (i.e. Theorem
1.9, 1.10, and 1.12). In Section 8.1 we will recall the defintion of the models and prove a
comparison between the unitary Shalika model and the twisted Shalika model (for general
linear groups). Then in Section 8.2 we will prove Theorem 1.9, 1.10, and 1.12.

8.1 Some comparison

Let Z be a E-vector space of finite dimension n > 1. Let Z∗,c be the conjugate-dual of Z
that is the space of c-linear forms on Z (a similar notation will be applied later to other
vector spaces). Set V = Z ⊕ Z∗,c and we equip with the nondegenerate Hermitian form

h(v + v∗, w + w∗) = 〈v, w∗〉+ 〈w,w∗〉c, (v, v∗), (w,w∗) ∈ Z ⊕ Z∗,c.

Here 〈., .〉 stands for the canonical pairing between Z and Z∗,c. Let G = U(V, h) be the
unitary group associated to this Hermitian form. We define two maximal parabolic subgroups
Q and Q of G as the stabilizers of the maximal isotropic subspaces Z and Z∗,c respectively.
Then, L = Q ∩Q is a Levi component of Q and restriction to Z induces an isomorphism

(8.1.1) L ' ResE/FGL(Z).

Let N be the unipotent radical of Q. Thus Q = LN and restriction to Z∗,c induces an
isomorphism

(8.1.2) N '
{
X ∈ Hom(Zc,∗, Z) | TXc = −X

}
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where TXc denotes the transpose conjugate of X (seen as a linear endomorphism Z → Z∗,c

through the canonical identification (Z∗,c)∗,c = Z). We will actually identify the right hand
side above with the Lie algebra n of N in a way such that the above isomorphism becomes
the exponential map.

We henceforth choose two isomorphisms W+,W− : Z → Z∗,c satisfying TW c
± = −W±

and such that the corresponding antihermitian forms on Z are not equivalent (there are
actually only two equivalence classes of antihermitian forms on Z). For ε ∈ {±}, we let
H0,ε ⊂ L ' ResE/FGL(Z) be the unitary group associated to Wε, that is the stabilizer of Wε

for the obvious action. Then, H0,ε(F ) coincides with the stabilizer in L(F ) of the character

ξε : N(F )→ C×,

exp(X) 7→ ψ(Tr(WεX)) (X ∈ n(F )).

We will henceforth assume, as we may, that W± have been chosen so that H0,+ is quasi-split.
Set Hε = H0,ε n N . We extend ξε to a character of Hε(F ) trivial on H0,ε(F ). We

also fix a character χ of E1 = ker(NE/F ) that we will consider as a character of H0,ε(F )
through composition with the determinant det : H0,ε(F ) → E1 . For a smooth irreducible
representation π of G(F ), we define the multiplicity

mε(π, χ) := dim(HomHε(F )(π, χ⊗ ξε)).

For x ∈ H0,ε(F )ell, the centralizer Gx = ZG(x) is quasi-split and the intersection Nx :=
Gx ∩ N is a maximal unipotent subgroup of it. Moreover, by restriction ξε induces a non-
degenerate character of Nx(F ). We let Ox be the regular coadjoint nilpotent orbit in g∗x
associated to it. For any quasi-character Θ on G(F ), we set

Jε,χ,geom(Θ) =

∫
Γell(H0,ε)

DG(x)1/2cΘ,Ox(x)χ(x)−1dx, Jχ,geom(Θ) = J+,χ,geom(Θ)+J−,χ,geom(Θ).

By Theorem 7.4, the multiplicity formula

mε(π, χ) = Jε,χ,geom(Θπ)

holds for all discrete series.
Recall that two semisimple regular elements x, y ∈ Grs(F ) are said to be stably conjugated

if they are conjugated in G(F ) and that a quasi-character Θ on G(F ) is called stable if it
is constant on stable conjugacy classes (that is if x, y ∈ Grs(F ) are stably conjugated then
Θ(x) = Θ(y)). If Θ is stable it is clear that we have cΘ,Ox(x) = cΘ(x). The following
comparison between the geometric sides will be used in our applications.

Proposition 8.1. Assume that Θ is a stable quasi-character on G(F ). Then

Jχ,geom,+(Θ) = Jχ,geom,−(Θ).

Proof. This follows from the following two facts
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� there is a natural measure-preserving bijection x+ ↔ x− between the regular elliptic
stable conjugacy classes of H0,+(F ) and the regular elliptic stable conjugacy classes of
H0,−(F );

� under the above bijection x+ ↔ x−, the number of rational conjugacy classes in a
regular elliptic stable conjugation class x+ of H0,+(F ) is equal to the number of rational
conjugacy classes in a regular elliptic stable conjugation class x− of H0,−(F ) and we
have cΘ(x+) = cΘ(x−).

Set G′ = ResE/FGL(V ) and let Q′, Q
′

be the maximal parabolic subgroups of G′ stabi-

lizing the subspaces Z and Z∗,c respectively. Then, L′ := Q′ ∩Q′ is a Levi component of Q′

and we have an isomorphism (given by restriction)

(8.1.3) L′ ' ResE/F (GL(Z)×GL(Z∗,c)).

We fix an isomorphism W : Z ' Z∗,c satisfying TW c = −W and we let H ′0 ⊂ L′ be the
subgroup {(h,WhW−1) | h ∈ ResE/FGL(Z)}.

Let N ′ be the unipotent radical of Q′ (so that Q′ = L′N ′). We will identify its Lie algebra
n′ with ResE/FHom(Z∗,c, Z) and we define a character of N ′(F ) by

ξ′ : exp(X) ∈ N ′(F ) 7→ ψ(trE/F (Tr(WX))), X ∈ n′(F ).

We let H ′ = H ′0 n N ′ be the Shalika subgroup. The character χ of E1 induces a character
χ′ of E× by χ′(x) = χ(x/xc) and we will identify χ′ with the character of H ′0(F ) given by
(h,WhW−1) 7→ χ′(deth)).

For every g ∈ G, let us denote by g? the adjoint linear map with respect to the Hermitian
form h on V . We define θ to be the automorphism g 7→ (g?)−1 of G and we let G̃ = Gθ
be the nonneutral component of the nonconnected group G o {1, θ}. It is a twisted space
in the sense of §2.2. We also set Q̃′ = Q′θ, L̃′ = L′θ. These are respectively a twisted
parabolic subspace of G̃′ and a Levi component of it. The automorphism θ preserves H ′0 and
H ′ and we let H̃ ′0 = H ′0θ, H̃

′ = H ′θ be the corresponding twisted spaces. The character χ′

of H ′0(F ) being conjugate self-dual, it can be extended to the twisted space H̃ ′0. We fix such
an extension whose value at θ is equal to 1 and we still denote by χ′.

For every quasi-character Θ̃ on G̃′(F ), we define

J̃χ′,geom(Θ̃) =

∫
Γell(H̃

′
0)

DG̃′(x)1/2cΘ̃(x)χ′(x)−1dx.

Let
Nr : G̃′(F )→ G′(F ), gθ 7→ gθ(g)

be the norm map. Recall that an element x ∈ G̃′rs(F ) is said to be G-regular if Nr(x) is

regular and that if x ∈ G̃′rs(F ) is G-regular, an element y ∈ Grs(F ) is called a norm of x if it
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is conjugated to Nr(x) inside G′(F ) (note that G(F ) ⊂ G′(F )). Remark that if y ∈ Grs(F )
is a norm of x and y′ ∈ Grs(F ) is stably conjugated to y then y′ is also a norm of x (this
is because in G′(F ) there is no difference between conjugation and stable conjugation). Let

Θ be a stable quasi-character on G(F ). We also recall that a quasi-character Θ̃ on G̃′(F ) is

said to be a transfer of Θ if for every G-regular element x ∈ G̃′rs(F ) and every y ∈ Grs(F )
that is a norm of x, we have

DG̃′

0 (x)1/2Θ̃(x) = DG(y)1/2Θ(y).

Here DG̃′
0 (x) = DG̃′(x)dG̃′(x)−1 where dG̃′(x) is defined in Section 1.6 of [35] (it is 1 unless the

residue characteristic is 2). To end this subsection, we prove a comparison between Jχ,geom
and J̃χ′,geom. This will be used in our application.

Proposition 8.2. Let Θ be a stable quasi-character on G(F ) and Θ̃ be a quasi-character on

G̃′(F ). If Θ̃ is a transfer of Θ, we have

Jχ,geom(Θ) = Jχ,geom,+(Θ) + Jχ,geom,−(Θ) = J̃χ′,geom(Θ̃).

Proof. Recall that (note that since Θ is stable we have cΘ,Ox(x) = cΘ(x))

Jχ,geom(Θ) =

∫
Γell(H0,+)∪Γell(H0,+)

DG(x)1/2cΘ(x)χ(x)−1dx,

J̃χ′,geom(Θ̃) =

∫
Γell(H̃

′
0)

DG̃′(x)1/2cΘ̃(x)χ′(x)−1dx.

There is a natural bijection (denoted by t ↔ t′) given by the norm map described above
between the regular stable elliptic conjugacy classes of H0,+(F ) ∪ H0,−(F ) and the regular
stable elliptic twisted conjugacy classes of H̃ ′0(F ). For each t↔ t′, the number of conjugacy
classes in t is equal to the number of twisted conjugacy classes in t′. By the definition of the
character χ′ we know that χ(t) = χ′(t′) for t↔ t′. Moreover, by Section 2.2 of [6], we know
that under this bijection we have dt′ = dH̃′0(t

′)−1dt where dH̃′0(t
′) is defined in Section 1.6 of

[35] (it is equal to 1 unless the residue characteristic of F is 2). Hence it is enough to show
that for all t↔ t′, we have

DG(t)1/2cΘ(t) = dH̃′0(t
′)−1DG̃′(t′)1/2cΘ̃(t′).

We fix a representative of t (resp. t′) and by abusing of language we still denoted it by
t (resp. t′). Let a be the natural isomorphism between E× and ZL(F ). Also let W be the
Weyl group of Gt(F ) (which is also equal to the Weyl group of (G′)t′(F )). By Proposition
4.5.1 of [5], we have

DG(t)1/2cΘ(t) = lim
λ∈F×→1

DG(ta(λ))1/2Θ(ta(λ))

|W |
,
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DG̃′(t′)1/2cΘ̃(t′) = lim
λ∈F×→1

DG̃′(t′a(λ))1/2Θ̃(t′a(λ))

|W |
.

Hence it is enough to show that

(8.1.4) DG(ta(λ))1/2Θ(ta(λ)) = dH̃′0(t
′)−1DG̃′(t′a(λ))1/2Θ̃(t′a(λ))

for 1 6= λ ∈ F× that is close to 1. For λ 6= 1 that is close to 1, we know that ta(λ) (resp.
t′a(λ)) is a regular semisimple element of G (resp. G̃′). Since t↔ t′, we know that the stable
conjugacy class of ta(λ) corresponds to the stable conjugacy class of t′a(λ). Then (8.1.4)
follows from the fact that Θ and Θ̃ are the transfer of each other (note that by the definition
of the constant d(·) we have dH̃′0(t

′)2 = dG̃′(t
′a(λ))). This proves the proposition.

8.2 The proof of the main results for the unitary Shalika model

In this section, we will prove Theorem 1.9, 1.10, and 1.12. We start with Theorem 1.9.

Theorem 8.3. 1. Let π be a finite length discrete series of G(F ) with central character
χn. If Θπ is a stable distribution, then m+(π, χ) = m−(π, χ).

2. Let Πφ(G) be a discrete L-packet of G(F ) with central character χn. Then we have∑
π∈Πφ(G)

m+(π, χ) =
∑

π∈Πφ(G)

m−(π, χ).

Proof. The first part is a direct consequence of the multiplicity formula and Proposition
8.1. The second part follows from the first part together with the fact that the distribution
character ΘΠφ(G) =

∑
π∈Πφ(G) Θπ is stable.

Next we will prove a necessary condition for a discrete L-packet to be distinguished and
compute the summation of the multiplicity for some special cases. Let (G,Hε, χ⊗ ξε) be the
unitary Shalika model defined in the previous subsection. Let Πφ(G) be a discrete L-packet
of G and let Πφ(G′) be its base change to G′(F ) = GL2n(E). Then Πφ(G′) is an irreducible
tempered representation and we can extend it to a unitary twisted representation on G̃′(F )

(denoted by Π̃φ(G′)) so that Θ
Π̃φ(G′)

is a transfer of ΘΠφ(G). Our goal is to prove the following

theorem.

Theorem 8.4. With the notation above, the packet Πφ(G) is (H+, χ ⊗ ξ+)-distinguished
(i.e. m+(π) 6= 0 for some π ∈ Πφ(G)) only if Πφ(G′) is distinguished by the Shalika model
(H ′, χ′ ⊗ ξ′).

Remark 8.5. By Theorem 8.3, we know that the packet Πφ(G) is (H+, χ⊗ξ+)-distinguished
if and only if it is (H−, χ⊗ ξ−)-distinguished.
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Proof. Assume that Πφ(G′) is not distinguished by the Shalika model, we need to show that
the packet Πφ(G) is not (H+, χ⊗ ξ+)-distinguished. It is enough to show that

Jχ,geom(ΘΠφ(G)) = 0

where ΘΠφ(G) =
∑

π∈Πφ(G) Θπ. By Proposition 8.2, we only need to show that

J̃χ′,geom(Θ
Π̃φ(G′)

) = 0.

Since Πφ(G′) is not distinguished by the Shalika model, by Corollary 1.1 of [25], we can
choose a small neighborhood ω of Πφ(G′) in Tempind(GL2n(E)) such that every element in
ω is not distinguished by the Shalika model. By Proposition 2.12, we can find a strongly
cuspidal function f̃ on G̃′(F ) such that f̃ is supported on ω and Θf̃ = Θ

Π̃φ(G′)
. Hence it is

enough to show that J̃χ′,geom(Θf̃ ) = 0.

By our assumption on the support of f̃ and Plancherel formula of Shalika model in [13] we
known that R̃(f̃) = 0 and hence f̃ satisfies (5.0.2). Applying Proposition 5.1 and Theorem
7.3 to the twisted Shalika model, we have

J̃χ′,geom(Θf̃ ) =

∫
H′(F )\G′(F )

∫
N ′(F )

∫
H̃′0(F )

f̃(x−1hnx)ξ′(n)−1χ′(h)−1dhdndx = ν(H̃ ′)tr(R̃disc(f̃)) = 0.

This finishes the proof of the theorem.

Remark 8.6. The Plancherel decomposition proved in [13] is for the case when χ′ = 1.
However, by our definition of χ′ we know that χ′(−1) = 1 which implies that the character
χ′ is a square of another character χ′′ of E×. Then we just need to twist the Plancherel
decomposition in [13] by the character χ′′ ◦ det.

Now assume that Πφ(G′) is distinguished by the Shalika model (H ′, χ′⊗ξ′). By Corollary
1.1 of [25], Πφ(G′) is of the form (note that χ′′ is a character of E× with χ′ = (χ′′)2)

Πφ(G′)⊗ (χ′′ ◦ det)−1 = (τ1 × · · · × τl)× (σ1 × σ∨1 )× · · · × (σm × σ∨m)

where

� τi is a discrete series of GL2ai(E) that is conjugate self-dual, self-dual and of symplectic
type. In particular, ai is even.

� σj is a discrete series of GLbi(E) that is conjugate self-dual, but NOT self-dual.

� τi, σj are all distinct.

�
∑l

i=1 ai + 2
∑m

j=1 bj = 2n.

We will consider the special case when m = 0. The general case will be consider in our
future paper. When m = 0, by the Plancherel decomposition proved in [13], Πφ(G′) appears
discretely in the L2-space of the Shalika model. Our goal is to prove the following theorem.
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Theorem 8.7. With the notation above, we have∑
π∈Πφ(G)

m+(π, χ) =
∑

π∈Πφ(G)

m−(π, χ) = 2l−1.

Proof. It is enough to show that Jχ,geom(ΘΠφ(G)) = 2l where ΘΠφ(G) =
∑

π∈Πφ(G) Θπ. Since

Jχ,geom(ΘΠφ(G)) =
∑

π∈Πφ(G) m+(π, χ) + m−(π, χ) is a non-negative integer, we only need

to show that |Jχ,geom(ΘΠφ(G))| = 2l. By our assumption of Πφ(G′) and the Plancherel
formula of Shalika model [13], it appears discretely in the L2 space of the Shalika model
and hence we can choose a small neighborhood ω of Πφ(G′) in Tempind(GL2n(E)) such
that Πφ(G′) is the only element in ω distinguished by the Shalika model. By Proposition
2.12, we can find a strongly cuspidal function f̃ on G̃′(F ) such that f̃ is supported on ω,

Θf̃ = Θ
Π̃φ(G′)

and tr(Π̃φ(G′)(f̃)) = 2l. Note that the number |Stab(iA∗
G̃,F

, τ)|−1D(τ) in

Proposition 2.12 is equal to 2−l for Π̃φ(G′). By Proposition 8.2, we only need to show that
|J̃χ′,geom(Θ

Π̃φ(G′)
)| = 2l.

By our assumption on the support of f̃ and Plancherel formula of Shalika model in [13]
we known that R̃(f̃) satisfies (5.0.2). By Proposition 5.1 and Theorem 7.3, it is enough to
show that

(8.2.1) |tr(Π̃φ(G′)(f̃)) · tr(θ〈Π̃φ(G′)〉|M(Π̃φ(G′)))| = 2l.

Since Π̃φ(G′) is unitary, so is θ〈Π̃φ(G′)〉|M(Π̃φ(G′)). As the multiplicity space M(Π̃φ(G′))

is one dimensional, this implies that |tr(θ〈Π̃φ(G′)〉|M(Π̃φ(G′)))| = 1. Then (8.2.1) follows

from the facts that tr(Π̃φ(G′)(f̃)) = 2l. This proves the theorem.

9 Galois model for classical groups

In this section we will prove our main theorems for the Galois models (i.e. Theorem 1.6 and
1.7). In Section 9.1 we will prove a comparison between the Galois model for classical groups
and the twisted Galois model for general linear groups. Then in Section 9.2 we will prove
Theorem 1.6 and 1.7.

9.1 Some comparison

Let H be a quasi-split special orthogonal group or a symplectic group defined over F and
G = ResE/FHE. Let G′ = ResE/FH

′
E where H ′ = GL2n if H = SO2n or SO2n+1 and

H ′ = GL2n+1 if H = Sp2n. Let θ be the involution of G given by θ(g) = w(gt)−1w−1 where
w is the longest Weyl element. Let G̃′ be the non-neutral component of G′ o {1, θ} and let
H̃ ′ = H ′θ. Then G̃′ (resp. H̃ ′) is a twisted space of G′ (resp. H ′). Finally, if H is the even
special orthogonal group, let H0 be a quasi-split special orthogonal group that is not a pure
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inner form of H and such that G = ResE/FHE = ResE/FH0,E (i.e. the determinanats of the
quadratic forms defining H and H0 belong to the same square class in E×/(E×)2 but belong
to different square classes in F×/(F×)2). If H = Sp2n or SO2n, let χ be the trivial character
on H (and H0 if H = SO2n) and let χ′ be the trivial character on H ′. If H = SO2n+1,
let χ ∈ {1, ηn} where ηn is the composition of the Spin norm character of SO2n+1 with the
quadratic character ηE/F . In this case, we let χ′ = 1 if χ = 1 and χ′ = η′n := ηE/F ◦ det if

χ = ηn. In both cases, we can extend the character χ′ to the twisted space H̃ ′ by making it
equal to 1 on θ.

For a quasi-character Θ (resp. twisted quasi-character Θ̃) on G(F ) (resp. G̃′(F )), define

Jgeom(Θ) =

∫
Γell(H)

DG(t)1/2Θ(t)χ(t)−1dt, if H = SO2n+1, Sp2n,

Jgeom(Θ) =

∫
Γell(H)∪Γell(H0)

DG(t)1/2Θ(t)χ(t)−1dt, if H = SO2n,

J̃geom(Θ̃) =

∫
Γell(H̃′)

DG̃′(t)1/2Θ̃(t)χ′(t)−1dt.

Proposition 9.1. Let Θ be a stable quasi-character on G(F ) and Θ̃ be a twisted quasi-
character on G̃(F ). If H is the even orthogonal group, we fix a Whittaker datum in the
definition of the transfer factor so that the element η in Section 1.6 of [37] is equal to 1.
Assume that Θ and Θ̃ are the transfer of each other (in the sense of Section 1.6 of [35]).
Then we have

2 · Jgeom(Θ) = J̃geom(Θ̃).

Proof. When H is the odd orthogonal group, the proposition is a direct consequence of the
following four facts

� There is a natural bijection (denoted by t ↔ t̃) between the stable regular elliptic
conjugacy classes of H(F ) and of H̃ ′(F ). Under this bijection, we have dt̃ = dH̃′(t̃)

−1dt
(Section 1.4 of [35]).

� We have

DG(t)1/2Θ(t) = DG̃(t̃)1/2dG̃′(t̃)
−1/2Θ̃(t̃) = DG̃(t̃)1/2dH̃′(t̃)

−1Θ̃(t̃)

for all t↔ t̃ (note that the transfer factor between t and any rational twisted conjugacy
class in t̃ is trivial by Section 1.10 of [37]).

� For t↔ t̃, the number of H(F )-conjugacy classes in t is half of the number of H̃ ′(F )-
conjugacy classes in t̃ (the other half belongs to the pure inner form of the odd special
orthogonal group).

� For all t↔ t̃, we have χ(t) = χ′(t̃).
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The first three facts are straightforward. For the last one, it is trivial when χ = 1. It
remains to consider the case when χ = ηn and χ′ = η′n. In this case, the stable conjugacy
class t (resp. t̃) corresponds to (see Section 1.3 of [37])

(Fi, F±i, ti)1≤i≤h

where

� F±i/F is a finite extension of degree di with
∑h

i=1 di = n;

� Fi is a quadratic extension of F±i;

� ti ∈ ker(NFi/F±i).

It is easy to see from the definition that

χ(t) = χ′(t̃) = ηE/F (Πh
i=1NFi/F (ei))

where ei is any element in F×i such that ei
ēi

= ti (ēi is the conjugation of ei under the nontrivial
element of Gal(Fi/F±i)). This proves the last fact.

For the rest two cases, the characters χ and χ′ are trivial. When H is the symplectic
group, the proposition is a direct consequence of the following three facts (all of them are
straightforward)

� There is a natural bijection (denoted by t ↔ t̃) between the stable regular elliptic
conjugacy classes of H(F ) and of H̃ ′(F ). Under this bijection, we have dt̃ = 1

2
· |2|F ·

dH̃′(t̃)
−1dt (Section 1.6 of [35], note that in this case |T (F )θ : Tθ(F )| = 2 for any

maximal elliptic twisted torus T̃ of H̃ ′(F )).

� We have

DG(t)1/2Θ(t) = DG̃(t̃)1/2dG̃′(t̃)
−1/2Θ̃(t̃) = DG̃(t̃)1/2dH̃′(t̃)

−1Θ̃(t̃)

for all t↔ t̃ (note that the transfer factor between t and any rational twisted conjugacy
class in t̃ is trivial by Section 1.10 of [37]).

� For t↔ t̃, the number of H(F )-conjugacy classes in t is equal to the number of H̃ ′(F )-
conjugacy classes in t̃ divided by |F×/(F×)2|. Moreover, |F×/(F×)2| = 4 · |1

2
|F .

When H is the even special orthogonal group, the proposition is a direct consequence of
the following three facts

� There is a natural map Γst,ell(H ∪H0)→ Γst,ell(H̃
′) (denoted by t→ t̃) from the stable

regular elliptic conjugacy classes of H(F ) and H0(F ) to the stable regular elliptic
conjugacy classes of H̃ ′(F ). The fiber of each element in the image of this map has
exactly two elements (differed by the outer automorphism of the even special orthgonal
group). Under this map, we have dt̃ = dH̃′(t̃)

−1dt (Section 1.6 of [35]).
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� We have

DG(t)1/2Θ(t) +DG(t)1/2Θ(t′) = DG̃(t̃)1/2dG̃′(t̃)
−1/2Θ̃(t̃) = DG̃(t̃)1/2dH̃′(t̃)

−1Θ̃(t̃)

for all t → t̃ where t′ is another element in the fiber of t̃. On the other hand, if t̃ is a
stable regular elliptic conjugacy class of H̃ ′(F ) that does not belong to the image of
Γst,ell(H ∪H0)→ Γst,ell(H̃

′), then Θ̃(t̃) = 0.

� For t→ t̃, the number of H(F )-conjugacy classes (or H0(F )-conjugacy classes) in t is
half of the number of H̃ ′(F )-conjugacy classes in t̃ (the other half belongs to the pure
inner form of the even special orthogonal group).

The first and third facts are straightforward. For the second one, we need to show that
the trasnfer factor between t and any rational twisted conjugacy class in t̃ is trivial for all
t ∈ Γst,ell(H ∪H0) → t̃ ∈ Γst,ell(H̃

′). We follow the notation in [37]. Under the notation in
Section 1.3 of [37], the stable conjugacy class t is of the form

(Fi, F±i, ti)1≤i≤h

where

� F±i/F is a finite extension of degree di with
∑h

i=1 di = n;

� Fi is a quadratic extension of F±i;

� ti ∈ ker(NFi/F±i).

A rational twisted conjugacy class in t̃ is of the form

(Fi, F±i, ti, ci)1≤i≤h

where ci ∈ F×i /Im(NEi/Fi). Next we need to describe how does (Fi, F±i, ti, ci)1≤i≤h behave
under base change. There are three types:

Type 1 If E is not contained in Ei, then (Fi/F±i, ti, ci) becomes (Ei, E±i, ti, 1) where Ei =
Fi ⊗F E and E±i = F±i ⊗F E. Here we view ti as an element of ker(NEi/E±i) via the
canonical embedding from ker(NFi/F±i) to ker(NEi/E±i).

Type 2 If E is not contained in F±i and E ⊂ Fi, then (Fi/F±i, ti, ci) becomes (Fi⊕Fi, Fi, (ti, t−1
i ), 1).

Type 3 If E ⊂ F±i, let F±i = E[x]/f(x) and we define the field F ′±i to be F ′±i = E[x]/f̄(x)
where f 7→ f̄ is the conjugation map on E[x] induced by the non-trivial element
of Gal(E/F ). Similarly we can also define the field F ′i which will be a quadratic
extension of F ′±i. Moreover, we have a natural isomorphism (denoted by x 7→ x̄)
between ker(NFi/F±i) and ker(NF ′i/F

′
±i

). Then (Fi/F±i, ti, ci) becomes (Fi/F±i, ti, ci) ∪
(F ′i/F

′
±i, t̄i, c̄i).
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We decompose the set I into I1 ∪ I2 ∪ I3 where Ij consists of those i ∈ I such that (Fi, F±i)
belongs to Type j above.

Then if we view t as a stable conjugacy class of G(F ), it is of the form

(Ei, E±i, ti)i∈I1 ∪ (Fi ⊕ Fi, Fi, (ti, t−1
i ))i∈I2 ∪ ((Fi/F±i, ti) ∪ (F ′i/F

′
±i, t̄i))i∈I3 .

Similarly, if we view a rational twisted conjugacy class in t̃ as a rational twisted conjugacy
class of G̃′(F ), it is of the form

(Ei, E±i, ti, 1)i∈I1 ∪ (Fi ⊕ Fi, Fi, (ti, t−1
i ), 1)i∈I2 ∪ ((Fi/F±i, ti, ci) ∪ (F ′i/F

′
±i, t̄i, c̄i))i∈I3 .

For i ∈ I1, the quadratic character ηEi/E±i is trivial on F×±i. For i ∈ I2, the quadratic
character ηFi⊕Fi/Fi is the trivial character. For i ∈ I3, the natural isomorphism from F×±i to
(F ′±i)

× maps the quadratic character ηFi/F±i to the quadratic character ηF ′i/F ′±i . Combining
these three facts with the definition of transfer factor in Section 1.10 [37] (note that we have
choosen the Whittaker datum so that the number η in loc. cit. is equal to 1), we know that
the transfer factor between t and any rational twisted conjugacy class in t̃ is trivial. This
finishes the proof of the proposition.

9.2 The proof of the main theorem for Galois model

We start with a necessary condition for a discrete L-packet to be distinguished (i.e. Theorem
1.6).

Theorem 9.2. Let H = Sp2n, SO2n or SO2n+1, G = ResE/FHE, χ = 1 if H = Sp2n or SO2n,
and χ ∈ {1, ηn} if H = SO2n+1. Let Πφ(G) be a discrete L-packet of G(F ) and Πφ(G′) be the
endoscopic transfer of the L-packet to the general linear group G′ = GLa(E) (here a = 2n if
H = SO2n or SO2n+1 and a = 2n+ 1 if H = Sp2n). Then the packet Πφ(G) is distinguished
(i.e. m(π, χ) 6= 0 for some π ∈ Πφ(G)) only if Πφ(G′) is (GLa(F ), χ′)-distinguished. Here
χ′ = 1 if χ = 1 and χ′ = η′n := ηE/F ◦ det if χ = ηn.

For the summation of the multiplicities (i.e. Theorem 1.7), assume that Πφ(G′) is (GLa(F ), χ′)-
distinguished. By Theorem 4.2 of [26], Πφ(G′) is of the form

Πφ(G′) = (τ1 × · · · × τl)× (σ1 × σ̄1)× · · · × (σm × σ̄m)

where

� τi is a discrete series of GLai(E) that is conjugate self-dual. Moreover, if (H,χ) =
(SO2n+1, ηn), τi is self-dual of symplectic type; otherwise, τi is self-dual of orthogonal
type.

� σj is a discrete series of GLbi(E) that is NOT conjugate self-dual. Moreover, if (H,χ) =
(SO2n+1, ηn), σj is self-dual of symplectic type; otherwise, σj is self-dual of orthogonal
type.
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� τi, σj are all distinct.

�
∑l

i=1 ai + 2
∑m

j=1 bj = a.

We will consider the special case when m = 0. The general case will be consider in our
future paper. When m = 0, by the Plancheral formula for the Galois model proved in [8],
Πφ(G′) appears discretely in the L2 space of the Galois model (GLa(E),GLa(F ), χ′).

Theorem 9.3. With the notation above, if H is the symplectic group or the odd special
orthogonal group, we have ∑

π∈Πφ(G)

m(π, χ) = 2l−1.

If H is the even special orthogonal group, we let H0 be another even special orthogonal group
as in the previous subsection. We use m0(π, χ) to denote the multiplicity for the model
(G,H0, χ). Then we have ∑

π∈Πφ(G)

m(π, χ) +m0(π, χ) = 2l−1.

The proof of the above two theorem is almost the same as the unitary Shalika model
case. The only differences is to replace Proposition 8.2 by Proposition 9.1, and to replace
the Plancherel formula for Shalika model in [13] by the Plancheral formula for the Galois
model in [8]. We will skip the details here.

A Projections of finitely generated convex sets

In this appendix, we state and prove a decomposition result for orthogonal projections of
finitely generated convex sets that is directly inspired from [1, Appendix].

Let a be a real Euclidean space with scalar product denoted by (., .). A subset C ⊂ a is
a finitely generated convex set if it satisfies one of the following equivalent properties:

� C is a finite intersection of half-spaces (by which we mean subsets of the form {X ∈ a |
(Y,X) 6 c} for some Y ∈ a and c ∈ R);

� There exists finite subsets {Xi | i ∈ I} and {vj | j ∈ J} of a such that

C = Conv{Xi |∈ I}+
∑
j∈J

R+vj;

� C × {1} is the intersection of a× {1} with a finitely generated cone in a⊕ R.

Remark that any finitely generated convex set is automatically closed.
Let C ⊂ a be a finitely generated set. We let

C := {X ∈ a | C + R+X = C}
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be its asymptotic cone and denote by

C∨ := {Y ∈ a | (Y,X) 6 0 ∀X ∈ C}

be the corresponding dual cone.
For H ∈ C, we define its tangent cone and normal cone respectively by

TC(H) := R+(C −H), NC(H) := TC(H)∨ = {Y ∈ a | (Y,X) 6 0 ∀X ∈ TC(H)}.

Note that both are finitely generated cones.

Lemma A.1. Let C1, C2 ⊂ a be two finitely generated convex sets. Then, for H ∈ C1 ∩C2 we
have

TC1∩C2(H) = TC1(H) ∩ TC2(H) and NC1∩C2(H) = NC1(H) +NC2(H).

Proof. The first equality is obvious by definition. The second follows from the first one and
the relation (C1∩C2)∨ = C∨1 +C∨2 that holds for every finitely generated cones C1, C2 ⊂ a.

A face of C is its nonempty intersection with a supporting (affine) hyperplane i.e. a subset
of C of the form

F = {H ∈ C | (λ,H) = c}

where λ ∈ a and c ∈ R are such that (λ,H) 6 c for every H ∈ C with equality for at least
one such H. Note that we allow λ = 0 so that C is a face of itself. We let F(C) be the set
of faces of C.

To every face F ∈ F(C), we associate the subspace aF that is the span of F − XF for
any XF ∈ F . Moreover, the normal cone NC(XF ) is independent of XF when the latter is
chosen in the relative interior F̊ of F (that is its interior relative to F + aF ) and we shall
denote by a+

F the relative interior of this normal cone. For any XF ∈ F̊ we have

a+
F = {Y ∈ a | (Y,H −XF ) < 0 ∀H ∈ C − F}.

Lemma A.2. We have a partition

C∨ =
⊔

F∈F(C)

a+
F .

Proof. We lemma reduces to the three following claims:

(A.0.1) the cones a+
F , F ∈ F(C), are mutually disjoint.

Indeed, let F, F ′ ∈ F(C) be distinct faces and choose XF ∈ F̊ , XF ′ ∈ F̊ ′. Without loss of
generality we may assume that F ′ 6⊂ F so that XF ′ /∈ F . Then, for H ∈ a+

F ∩ a+
F ′ we have

(H,XF −XF ′) 6 0 and (H,XF ′ −XF ) < 0.

As these two inequalities are incompatible this shows that a+
F ∩ a+

F ′ = ∅.
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(A.0.2) For every F ∈ F(C) we have a+
F ⊂ C∨.

Indeed, for XF ∈ F̊ we have C ⊂ TC(XF ) hence a+
F ⊂ NC(XF ) ⊂ C∨.

(A.0.3) For every X ∈ C∨, there exists F ∈ F(C) such that X ∈ a+
F .

Indeed, the function Y 7→ (X, Y ) attains a maximum on C (as follows from the fact that C
can be written as the sum of a convex hull of finitely many points and C) say c ∈ R. Then,

F := {H ∈ C | (X,H) = c}

is a face of C and X ∈ a+
F .

Let b be a vector subspace of a and b⊥ be its orthogonal complement. Denote by p : a→ b
and p⊥ : a→ b⊥ the two orthogonal projections. For ξ ∈ b⊥ we set

F(C, ξ) = {F ∈ F(C) | ξ ∈ p⊥(a+
F )}.

Proposition A.3. Assume that dim(C∨+b) = dim(a) and ξ ∈ p(a+
C) is in general position.

(More precisely, we require that for every face F ∈ F(C) with dim p⊥(a+
F ) < dim b⊥ we have

ξ /∈ p⊥(a+
F )). Then, we have:

(i) p induces a bijection between ⋃
F∈F(C,ξ)

F and p(C).

(ii) For F1, F2 ∈ F(C, ξ) we have

p(F1) ∩ p(F2) = p(F1 ∩ F2).

Proof. Let H ∈ C and consider the intersection

CH,b := (H + b⊥) ∩ C.

It is a finitely generated set with asymptotic cone Cb := b⊥∩C and dual cone C∨b = b+C∨.
As ξ ∈ C∨b , by the decomposition of Lemma A.2, there exists a unique face FH,b ∈ F(CH,b)
such that ξ ∈ a+

FH,b
. Take X ∈ F̊H,b. Then, by Lemma A.1, we have

a+
FH,b

= NCH,b(X)◦ = NC(X)◦ + b = a+
F + b

where F ∈ F(C) is the unique face such that X ∈ F̊ . In particular, we see that F ∈ F(C, ξ).
This already shows that p induces a surjection⋃

F∈F(C,ξ)

F → p(C).

To prove that this map is also injective, it only remains to check that for the face FH,b is a
singleton. But, by the assumption that ξ is in general position, ξ ∈ b + a+

F = a+
FH,b

implies

that dim(a+
FH,b

) = dim(a) i.e. that FH,b is reduced to one extreme point of CH,b. This proves

(i). Note that (ii) is a direct consequence of (i).
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B Howe’s conjecture for twisted weighted orbital inte-

grals

The purpose of this appendix is to establish an analog of Howe’s conjecture [19] for weighted
orbital integrals on a p-adic twisted space. This result is needed for the proof of Theorem 4.8.
A similar extension of Howe’s conjecture to weighted orbital integrals was established for
honest reductive groups by Arthur [3] based on his local trace formula but to the best of our
knowledge Arthur’s argument hasn’t been extended to twisted spaces. The proof presented
here is a direct adaptation of the work of Barbasch and Moy [4] which has the advantage of
allowing non-Archimedean local fields of arbitrary characteristics. Actually, the reasoning
in [4] extends without much effort to twisted spaces but for the comfort of the reader, as
well as for the authors own edification, we reproduce below with some details Barbasch and
Moy’s beautiful argument.

The first section of this appendix contains the precise statement of the “Howe conjecture
for twisted weighted orbital integrals” as well as a reduction to a certain property of twisted
Hecke modules (Proposition B.2). The proof of this proposition will be given in Section B.3
following very closely the paper [4]. The intermediate Section B.2 aims to collect necessary
material on Bruhat-Tits buldings and the Moy-Prasad filtrations.

B.1 The statement

We will freely use the basic notations introduced in Chapter 2 for twisted spaces and their
subgroups. The main objects under consideration will a priori depend on the choices of Haar
measures. However, the precise normalization of those are completely irrelevant for the main
result of this appendix and we will therefore assume that Haar measures have been fixed
every time they appear in a formula.

Let (G, G̃) be a twisted reductive space defined over F . Let K be a special maximal
compact subgroup of G(F ) so that for every parabolic subgroup P ⊂ G we have an Iwasawa

decomposition G(F ) = P (F )K. Let M̃ ⊂ G̃ be a Levi subspace. For every parabolic sub-

space P̃ ∈ P(M̃) and g ∈ G(F ) we set HP̃ (g) := HM̃(mP (g)) where g = mP (g)uP (g)kP (g)
is an arbitrarily chosen decomposition with mP (g) ∈M(F ), uP (g) ∈ NP (F ) and kP (g) ∈ K.

Note that for g ∈ G(F ), the convex hull Conv{HP̃ (g) | P̃ ∈ P(M̃)} is contained in a trans-

late of the subspace aG̃
M̃

. We let vM̃(g) be the volume of that convex hull with respect to a

given Haar measure on aG̃
M̃

.

For γ ∈ M̃(F ) ∩ G̃rs(F ) and f ∈ C∞c (G̃(F )), we can form the weighted orbital integral

WOM̃(γ, f) = WOG̃
M̃

(γ, f) =

∫
Gγ(F )\G(F )

f(g−1γg)vM̃(g)dg

for some choice of invariant measure on Gγ(F )\G(F ).

For any subset Ω ⊆ M̃(F ), we denote by WOM̃(Ω) the span of the linear functionals

f ∈ C∞c (G̃(F )) 7→ WOM̃(γ, f) for γ ∈ Ω ∩ G̃rs(F ). Also, for J ⊂ G(F ) a compact open
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subgroup we set

H̃J = H̃G̃
J = Cc(G̃(F )/J).

Howe’s conjecture for twisted weighted orbital integrals can now be stated as follows:

Theorem B.1. Assume that Ω ⊆ M̃(F ) is compact modulo conjugation and let J ⊂ G(F )

be a compact-open subgroup. Then, the restriction of WOM̃(Ω) to H̃J is finite dimensional.

We will now reduce the above theorem to a statement about twisted Hecke modules. The
space H̃ = H̃G̃ = C∞c (G̃(F )) is a bimodule over the Hecke algebra H := C∞c (G(F )) for the
action by left and right convolution (after fixing a Haar measure on G(F )). For J ∈ CO(G),

we denote by [H, H̃J ] the span of the commutators [φ, f ] = φ∗ f − f ∗φ for (φ, f) ∈ H×H̃J .

Equivalently, [H, H̃J ] is the span of the differences gf − f for (g, f) ∈ G(F )× H̃J where we

have set gf(γ) := f(g−1γg), γ ∈ G̃(F ).

For any subset Ω ⊂ G̃(F ), we define let H̃J(Ω)c be the subspace of functions f ∈ H̃J

that are supported in G̃(F ) \ΩJ . We will establish the theorem through the following more
technical statement.

Proposition B.2. Let Ω ⊂ G̃(F ) be a subset that is compact modulo conjugation and
J ⊂ G(F ) be a compact-open subgroup. Then, there exists an open subgroup J ′ ⊂ J such
that the quotient space

H̃J/([H, H̃J ′ ] ∩ H̃J + H̃J(Ω)c)

is of finite dimension.

To end this section, we now explain why Proposition B.2 implies Theorem B.1. Let

τΩ = τ G̃Ω : H̃ → C∞(Ω ∩ G̃rs(F ))

be the linear map sending f ∈ H̃ to the function

γ ∈ Ω ∩ G̃rs(F ) 7→ WOM̃(γ, f).

We need to show that τΩ(H̃J) is finite dimensional. The proof is by induction on the semisim-
ple rank of G and thus we assume that the result already holds for all the proper Levi
subspaces of G̃.

For g ∈ G(F ), f ∈ H̃ and γ ∈ M̃(F ) ∩ G̃rs(F ) we have the splitting formula [23,
Proposition 2.9.4 (4)]

(B.1.1)
DG̃(γ)1/2

DM̃(γ)1/2
WOM̃(γ, gf) =

∑
Q̃∈F(M̃)

WO
L̃Q

M̃
(γ, fg,Q̃)

where L̃Q stands for the unique Levi factor of Q̃ containing Q̃, fg,Q̃ ∈ C∞c (L̃Q(F )) is the
function given by

fg,Q̃(m̃) = δP̃ (m̃)1/2

∫
K×NQ(F )

f(k−1m̃uk)uQ̃(kg−1)dudk, m̃ ∈ L̃Q(F )
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and

uQ̃(h) :=

∫
aG̃
Q̃

ΓQ̃(H,−HQ̃(h))dH, for h ∈ G(F ).

Let ΩG ⊆ G̃(F ) be the union of all G(F )-conjugates of Ω. As Ω is compact modulo
M(F )-conjugation, ΩG is similarly compact modulo G(F )-conjugation. Let J ′ ⊂ J be as in

Proposition B.2 with ΩG instead of Ω. Then, for every Q̃ ∈ F(M̃) we can find a compact-
open subgroup JQ ⊂ LQ(F ) such that

(B.1.2) fg,Q̃ ∈ H̃
L̃Q
JQ
, for every f ∈ H̃J ′ and g ∈ G(F ).

From (B.1.1) and (B.1.2) we deduce that

τΩ([H, H̃J ′ ]) ⊆
∑

G̃ 6=Q̃∈F(M̃)

τ
L̃Q
Ω (H̃L̃Q

JQ
).

By the induction hypothesis, this implies that τΩ([H, H̃J ′ ]) has finite dimension. Further-

more, since the distribution WOM̃(γ, .) for γ ∈ Ω ∩ G̃rs(F ) is supported in the G(F )-

conjugacy class of γ, the image of H̃J(ΩG)c by τΩ is zero. By Proposition B.2, it follows that

τΩ(H̃J) is also of finite dimension Q.E.D.

B.2 Bruhat-Tits building and the Moy-Prasad filtrations

Let B be the restricted Bruhat-Tits building of G. It is a polysimplicial complex carrying
polysimplicial actions of G(F ) and G̃(F ) that are compatible in the sense that

(gγg′) · x = g · (γ · (g′ · x)), for every (g, γ, g′) ∈ G(F )× G̃(F )×G(F ) and x ∈ B.

Moreover, these actions factor through G(F )/ZG(F ) and G̃(F )/ZG(F ) respectively and the
resulting actions are proper. Picking, for some minimal Levi subgroup M0 ⊂ G, a scalar
product on aGM0

that is invariant under NormG̃(F )(M0) yields a distance function

dist : B × B → R+

on B that is uniquely geodesic and invariant under G̃(F ). For x, y ∈ B we shall denote by
[x, y] the unique geodesic joining x and y and we set ]x, y[= [x, y] \ {x, y}.

By a chamber of B, we shall mean the closure of a facet of maximal dimension.
For γ ∈ G̃(F ), the displacement function dγ : B → R+ is defined by

dγ(x) = dist(x, γ · x), x ∈ B.

For any chamber C ⊂ B and γ ∈ G̃(F ) we set

dC(γ) := inf
x∈C

dγ(x).
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We also set
d(γ) := inf

x∈B
dγ(x), for γ ∈ G̃(F ).

Note that, as the set of all chambers cover B, we have

(B.2.1) d(γ) = inf
C⊂B

dC(γ)

where the infimum is taken over the set of all chambers in B.

Lemma B.3. (i) For any chamber C ⊂ B, the value set dC(G̃(F )) is a closed discrete
subset of R+ and can thus be linearly ordered

dC(G̃(F )) = {0 = r0 < r1 < r2 < . . .}.

(ii) Let x ∈ B and γ ∈ G̃(F ) be such that dγ(x) > d(x). Then, for every y ∈]x, γ · x[ we
have

dγ(y) < dγ(x).

(iii) Let x ∈ B and γ ∈ G̃(F ). Then, if dγ attains a local minimum at x we have dγ(x) =
d(x).

(iv) The function d : G̃(F )→ R+ is invariant by G(F )-conjugation and locally constant.

Proof. (i) The statement is equivalent to dC(G̃(F ))∩ [0, R] being finite for every R > 0. The
set

B(C,R) := {x ∈ B | inf
y∈C

dist(x, y) 6 R}

is compact. Thus, by the properness of the action of G̃(F )/ZG(F ), the set

{γ ∈ G̃(F ) | dC(γ) 6 R}

is compact modulo ZG(F ). However, dC is also right invariant by the pointwise stabilizer
GC of C which is an open subgroup of G(F ) containing ZG(F ). The claim follows.

(ii) By the triangular inequality, and since y ∈]x, γx[, we have

dγ(y) = dist(y, γy) 6 dist(y, γx) + dist(γx, γy)

= dist(y, γx) + dist(x, y) = dist(x, γx) = dγ(x).

Moreover, as B is uniquely geodesic, equality holds if and only if γx ∈]y, γy[ or equivalently
γx ∈ [x, γ2x]. Assume by way of contradiction that dγ(y) = dγ(x). Then, we have γnx ∈
[γn−1x, γn+1x] for every n > 1 from which if follows that the geodesics [x, γx], . . . , [γn−1x, γnx]
piece together to form the geodesic [x, γnx] and so

dist(x, γnx) = ndγ(x), for every n > 0.
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On the other hand, as dγ(x) > d(γ), we can find z ∈ B such that dγ(z) < dγ(x). By the
triangular inequality again, we have

ndγ(x) = dist(x, γnx) 6 dist(x, z) + dist(z, γnz) + dist(γnz, γnx)

6 2dist(x, z) + ndγ(z)

for each n > 0. Letting n goes to infinity leads to a contradiction. Therefore, dγ(y) < dγ(x)
and we are done.

(iii) This follows from (ii), noting that if γx 6= x every neighborhood of x meets ]x, γx[.
(iv) It is clear that d is invariant by G(F )-conjugation. Let us show that it is also locally

constant. Let γ ∈ G̃(F ). Then, by (i) and (B.2.1) there exists a chamber C ⊂ B such that
d(γ) = dC(γ). As C is compact and x ∈ C 7→ dγ(x) is continuous, dγ attains its infimum on C
and therefore d(γ) = dγ(x) for some x ∈ C. Let J ⊂ G(F ) be a compact-open subgroup that
fixes pointwise some neighborhood of x in B. Then, for each k ∈ J the function dγk attains
a local minimum at x from which we deduce, by (iii), that d(γk) = dγk(x) = dγ(x) = d(γ)
i.e. d is constant on the coset γJ .

Let x ∈ B. For every real number r > 0, Moy and Prasad have defined an open-compact
subgroup Kx,r ⊂ G(F ) with the following properties:

(B.2.2) For every s > r > 0 and x ∈ B, we have Kx,s ⊆ Kx,r;

(B.2.3) For each x ∈ B,
⋂
r>0Kx,r = {1};

(B.2.4) For any x ∈ B, r > 0 and γ ∈ G̃(F ), we have Kγ·x,r = Adγ(Kx,r);

(B.2.5) There exists h > 0 such that for each integer n > 0 and x ∈ B, Kx,nh only depends
on the facet F containing x;

(B.2.6) For r > 0 and x, y, z ∈ B such that y ∈ [x, z] we have

Ky,r ⊂ Kx,r ·Kz,r.

By (B.2.5), for any chamber C ⊂ B we may define KC,n as Kx,nh for any point x in the
relative interior of C.

B.3 Proof of Proposition B.2

Fix a chamber C ⊂ B. It suffices to prove Proposition B.2 for J = J ′ = KC,n and n large
enough. In particular, we will assume that n is sufficiently large that J fixes pointwise all
the chambers C ′ ⊂ B with C ∩ C ′ 6= ∅.

By Lemma B.3(i), we can write

dC(G̃(F )) = {0 = r0 < r1 < r2 < . . .}
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and for each i > 0 we let H̃J,6ri be the subspace of f ∈ H̃J which are supported in the

set of γ ∈ G̃(F ) with dC(γ) 6 ri. Then, i 7→ H̃J,6ri is an increasing and exhaustive

filtration of H̃J and since the action of G̃(F )/ZG(F ) on the building is proper, the quotients

H̃J,6ri/H̃J,6ri ∩ H̃J(Ω)c are finite dimensional. Therefore, it suffices to check that for i
sufficiently large we have

(B.3.1) H̃J,6ri ⊆ H̃J,6ri−1
+ [H, H̃J ] + H̃J(Ω)c.

We will actually show that the above inclusion holds as soon as

(B.3.2) ri > sup
γ∈Ω

d(γ).

We thus assume that the above inequality is satisfied. The quotient H̃J,6ri/H̃J,6ri−1
is

spanned by the images of the functions 1γJ for γ ∈ G̃(F ) with dC(γ) = ri and it suf-

fices to show that for such γ, 1γJ ∈ H̃J,6ri−1
+ [H, H̃J ] + H̃J(Ω)c. For this we distinguish two

cases:
First we assume that dC(γ) = d(γ). Let x ∈ C be such that dC(γ) = dγ(x). Then, as J

fixes pointwise a neighborhood of x, for every k ∈ J the displacement function dγJ attains a
local minimum at x and therefore, by Lemma B.3(iii), we have

d(γk) = dγk(x) = dγ(x) = dC(x) = ri.

By (B.3.2), this implies γJ ⊆ G̃(F ) \ Ω and therefore 1γJ ∈ H̃J(Ω)c.
Assume now that dC(γ) > d(γ). Let again x ∈ C be such that dC(γ) = dγ(x). Then by

Lemma B.3(ii), we have [x, γx] ∩ C = {x}. Let y ∈]x, γx[ be sufficiently close to x so that
if F denotes the facet containing y we have x ∈ F (where F denotes the closure of F ). We
can find a chamber D containing y and x′ ∈ C̊ (where C̊ denotes the interior of C) such that
[x′, γx′] ∩ D̊ 6= ∅. By (B.2.4) and (B.2.6), for any y′ ∈ [x′, γx′] ∩ D̊, we have

KD,n = Ky′,nh ⊂ Kx′,nhKγx′,nh = JAdγ(J).

Let k1, . . . , k` ∈ Adγ(J) be such that

JKD,n =
⋃̀
i=1

Jki.

Then, since k−1
i γJ = γJ for any i, we have

1γJKD,n =
∑̀
i=1

1k−1
i γJki

=
∑̀
i=1

k−1
i 1γJ .

This shows that

(B.3.3) `−11γJKD,n − 1γJ ∈ [H, H̃J ].
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Furthermore, as J fixes D pointwise (since D∩C contains x and is therefore nonempty) and
y ∈ D∩]x, γx[, by Lemma B.3(ii) we have

dD(γk) = dD(γ) 6 dγ(y) < dγ(x) = dC(x) = ri

for every k ∈ J . Let g ∈ G(F ) be such that C = gD. Then, we have gKD,ng
−1 = KC,n = J

and, by the above,
dC(gγkg−1) = dD(γk) < ri

for every k ∈ J . This shows that the function

g1γJKD,n = 1gγJKD,ng−1 = 1gγJg−1J

belongs to H̃J,6ri−1
. Combining this with (B.3.3), we deduce that 1γJ ∈ H̃J,6ri−1

+ [H, H̃J ]
and the claim follows.
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