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Abstract
Whereas most prior research on the learning curve has focused
on improvements in efficiency, this paper deals with the impact
of learning on product quality. The key data are measures of
automobile reliability published in Consumer Reports. Analysis
yields three findings: (1) Quality improves over the production
life of a car model with the same kind of regularity as an effi-
ciency learning curve. Thus, there is a quality learning curve.
(2) Unlike in the efficiency domain, however, learning in the
domain of product reliability is primarily a function of time,
and not of how many cars have gone down the assembly line.
Thus, quality depends not on the accumulation of production
experience per se, but on the intensity of ‘‘off-line’’ quality
improvement activities and on the transfer of knowledge from
the general environment over time. (3) In contrast to the tradi-
tional injunction, ‘‘do not buy a new car in its first year of
production,’’ the opposite advice actually seems to apply: In
any given year, the newest car models have the best quality.
That is, new car-model designs typically include significant
quality improvements that are more than enough to outweigh
any disruption created in manufacturing by the new model’s
introduction and that even surpass the incremental improve-
ments made to older, existing car models.
(Learning Curve; Knowledge Transfer; Product Reliabil-
ity; Quality; Cars; Auto Industry)

The fact that people get better at doing things as they gain
experience, but at a decreasing rate, is captured in what
is often called a learning curve. This type of improvement
has been well documented at many different levels of
analysis: for individuals (Mazur and Hastie 1978), small
groups (Leavitt 1951), work shifts within a factory (Epple
et al. 1991), entire factories (Argote et al. 1990), multi-
factory organizations (Irwin and Klenow 1993), and in-
dustries (Udayagiri and Balakrishnan 1993). Yet despite

the long history of research on organization-based learn-
ing curves going back at least to Wright (1936), the phe-
nomenon’s theoretical underpinnings have remained
murky (Kantor and Zangwill 1991).

The present study contributes to the effort to identify
the factors underlying the learning curve—to show that
the learning curve does not just ‘‘happen’’ (Adler and
Clark 1991, Zangwill and Kantor 1998). To help outline
these theoretical underpinnings, it may be useful to re-
view briefly the ‘‘five W’s’’ (who, what, where, when,
and why) of organizational learning curves. This study
suggests we need to rethink in particular the what and
when of learning curves.

Who does the learning? Argote (1993) focuses on three
broad categories: individual employees, organizational
systems (e.g., coordination, technology), and actors in the
organization’s environment (e.g., suppliers, competitors).
According to this classification, then, the ‘‘learning’’ un-
derlying a learning curve is achieved by a combination
of employees, organizational systems, and outside actors.

What is learned? In most learning curve studies, the
measure that shows improvement is productivity, which
is an important element of organizational effectiveness,
but only one element. A key goal of this study is to extend
the boundaries of the learning curve concept to test its
applicability to another crucial element of performance,
quality improvement. While some might assume that
whatever research applies to productivity learning must
also apply to all other aspects of organizational perfor-
mance, such an assumption is questionable. After all, or-
ganizational performance itself is not a single coherent
construct; rather, it is an ‘‘umbrella’’ construct that in-
cludes many distinct organizational goals (Hirsch and
Levin 1999). Thus, what we know about productivity-
based learning may or may not carry over into the quality
domain.
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Where does the learning take place? In answering this
question, researchers have emphasized the important role
of cognitive factors, such as search algorithms (Muth
1986), and of behavioral factors, such as engineering
changes and training (Adler and Clark 1991). More re-
cently, Zangwill and Kantor (1998, p. 913) have proposed
that learning and improvement, though often observed at
the aggregate level, take place in ‘‘numerous small activ-
ities [such as] entering sales data, billing, contacting cli-
ents, training, telephoning.’’

When does organizational learning take place? This
question has not been widely or systematically addressed
by the literature. This study tries to fill this gap by ex-
tending the theoretical argument advanced by Zangwill
and Kantor (1998). Specifically, this paper argues that,
when an organization’s main learning processes for no-
ticing and improving problems are a function of time
rather than accumulated production experience, then the
overall learning curve will be a function of time rather
than cumulative experience. This argument, presented in
more detail below, runs counter to the usual finding in
the learning curve literature, where ‘‘studies have found
that calendar time becomes statistically insignificant
once cumulative output is included in the analysis’’
(Lieberman 1987, p. 442).

This study will not only explore learning during the
learning curve, but also any learning before the learning
curve even begins. For many years it has been routinely
recommended never to buy a new car model in its first
year of production (Consumer Reports 1982, p. 11;
Harbour and Associates 1990, p. 52). This advice implies
that quality-related learning proceeds faster during pro-
duction than in the new car model design process. Con-
sistent with the arguments of Tyre and Orlikowski (1994),
however, I find evidence that the opposite is true: namely,
that managers typically make the largest quality improve-
ments during certain ‘‘windows of opportunity,’’ and one
of those key windows is the period before product intro-
duction. This early knowledge determines the starting
point of a product’s eventual learning curve. The current
study extends this idea of a window of opportunity by
proposing that the larger the opportunity, the greater the
amount of learning and improvement activities that can
occur. For a car model’s minor update or facelift every
year (the learning curve), the improvement will be rela-
tively small; for a major model change or all-new car
model introduction, the learning will be larger.

Why does learning occur? Few researchers have asked
this question because it is hard to imagine why people
would not want to improve. As long as learning curve
research focuses only on costs, researchers will only find
instances in which the motivation to learn is present. Yet,

while firms typically have a strong economic incentive to
reduce their costs, they do not always have an incentive
to improve product reliability. However, by the 1980s,
U.S. automakers finally had a major strategic incentive in
the form of Japanese competition. As one industry analyst
noted, ‘‘The decade [of the 1980s] started with product
quality being the domestic industry’s number one prob-
lem. It was a major reason why it was losing market share
to Japanese imports at an alarming rate’’ (Harbour and
Associates, 1990 p. 142). The auto industry, then, should
be an especially good context in which to find and ex-
amine learning curves for quality.

In sum, this study extends our understanding of learn-
ing curves in three main ways. First, it expands the what
of learning curves beyond efficiency to include a new
area, quality improvement. Second, in terms of when (and
perhaps how) learning occurs, it provides evidence that
at least some kinds of learning are time-based instead of
experience-based. Third, by comparing the two times
when learning can occur, this study shows that consid-
erably more improvement occurs as a result of new prod-
uct introduction than during any year of subsequent pro-
duction (i.e., the learning curve).

Hypotheses
Quality improvement in the car industry arises out of two
processes occurring at the product level. For a given car
model at a given point in time, quality is a function of
(1) improvement made during the car model’s production
life, and (2) the car model’s initial baseline level of qual-
ity. Most learning curve research focuses on the first pro-
cess (‘‘the learning curve’’ itself), but, especially in the
car industry, the second process (new product develop-
ment) is also important. I begin by investigating the learn-
ing curve itself, then step back to see the effects of new
product introduction, and, finally, I compare the effects
of each process. The first three hypotheses (H1–H3) ad-
dress the rate of improvement for the learning curve:
Does a learning curve for quality exist? If so, what form
does it take? What factors influence it? Then, separate
from these questions of what happens during the learning
curve itself, Hypothesis 4 asks what happens during new
product introduction, before the learning curve even
starts: Is there improvement in the ‘‘starting points’’ of
these learning curves? Finally, Hypothesis 5 compares
these two types of learning—annual learning-curve im-
provements versus annual starting-point improvements—
to see which has a greater impact.

Quality can be defined in many different ways (Garvin
1988). The definition of quality used in this study is a
product’s reliability, measured by frequency-of-repair
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rates. While it is interesting to look at ‘‘internal’’ mea-
sures of quality, such as conformance to specifications, it
is arguably even more interesting to take the customers’
point of view and focus on their experience of quality.
Improvements in quality, and more specifically auto re-
pair rates, should take the form of a learning curve. After
all, ‘‘we might expect that when a car has been in pro-
duction several years, management should have invested
in identifying and solving most of the product’s quality
problems. In other words, there ought to be a learning
curve’’ (Cole 1990, p. 80). We expect this quality im-
provement to take the shape of a learning curve for the
same reason that we see a learning curve for productivity
improvement: namely that, after a while, ‘‘the easiest
gains have already been made—the cream has been
skimmed. New gains in product quality [then come] more
slowly and appear to [get] more expensive’’ (Cole 1990,
p. 77). The implication is that quality improvement in
automobiles will show a learning curve for quality, as
measured by repair rates.

HYPOTHESIS 1. The average car model improves in
quality during its production life, but in decreasing in-
crements.

Note that Hypothesis 1 (H1) leaves open the question
of whether this quality-improvement learning curve is a
function primarily of experience gained over time or as a
result of cumulative production volume experience.
Granted, these two possibilities are highly correlated, and
their effects are not always so easy to tease apart (Adler
1990). Yet, from a theoretical perspective, this open ques-
tion is an interesting one because it helps us to get at some
of the underlying sources of organizational learning. In
the well-documented domain of productivity-based learn-
ing curves, Argote (1993, p. 41) notes, ‘‘empirical studies
have demonstrated that calendar time is generally not a
significant predictor of organizational learning [once one
takes into account the role of] cumulative output at the
particular group or organization.’’ We might therefore ex-
pect a similar effect, in which cumulative experience
(based on production volume) is more important than the
‘‘mere’’ passage of time, for quality as well. After all,
the growing popularity in the manufacturing domain of
continuous improvement and statistical process control as
a means of improving quality in the auto industry sug-
gests that cumulative production experience should be the
driver of quality improvement.

HYPOTHESIS 2. Quality improvement during the aver-
age car model’s production life is a function of cumula-
tive production output.

There is, however, reason to question this expectation,

for in the quality domain, one might expect differences
in (1) how people notice problems of poor reliability and
(2) how they solve such problems.

There is, by definition, a time lag between when a prod-
uct is produced and when producers start to notice how
reliable it is. That is, producers get less immediate feed-
back for reliability than they do for efficiency, or even
for defects. Fortunately for automakers, it does not always
take years to get feedback on product reliability. For ex-
ample, they can get early warning signs from warranty
claims, high-mileage vehicles like taxis and rental cars,
and from performing their own endurance tests. However,
this type of feedback does not depend especially on how
many units of a given car model were made. Rather, it
depends on how intensively, during a given period of
time, people focus on gaining this knowledge.

The use of this feedback to solve problems of poor
reliability may also be more a function of time than of
production experience. The total quality management
(TQM) movement has relied heavily on off-line improve-
ment teams. These teams first identify the root causes of
problems, then propose, design, test, and implement so-
lutions to the most important root cause until it is cor-
rected; then move on to the next most important source
of problems. Indeed, this improvement cycle ‘‘is the it-
erative learning loop at the heart of TQM’’ (Sterman et
al. 1997, p. 504). As a consequence, learning in the qual-
ity domain is likely to come not so much from how many
cars have gone down the assembly line, but from the in-
tensity of ‘‘off-line’’ activities. And indeed, past studies
of TQM have assumed that the form of improvement for
quality improvement activities is largely a function of
time (Schneiderman 1988, Sterman et al. 1997).

Given the importance of time-dependent quality-
improvement cycles for solving reliability problems, as
well as the time lag for how these problems get noticed
in the first place, a competing hypothesis to H2 would be:

HYPOTHESIS 2–ALT. Quality improvement during the
average car model’s production life is a function of time.

Learning in an organization can be a function not only
of the organization’s own internally generated knowl-
edge, but also of knowledge transferred from the orga-
nization’s environment (Argote 1993). What are some
likely sources of transferred knowledge that would en-
hance a car model’s learning curve for quality? One likely
source might be the makers of other, closely related car
models. Prior research, after all, has found that knowl-
edge transfer occurs within similar categories of nuclear
power plants (Lester and McCabe 1993), pharmaceutical
research programs (Henderson and Cockburn 1996), and
semiconductors (Udayagiri and Balakrishnan 1993). In
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the automobile industry, the opportunity to share similar
information and technology could potentially occur
among car models within the same product ‘‘family,’’
called a vehicle platform. Even car models from different
product families often share technological processes, sup-
pliers, and certain common parts like seatbelts. It is also
easier to transfer knowledge across groups or organiza-
tions if they have a shared culture (Argote 1993), so
among car models in the same division or company, we
might expect to see some knowledge transfer. Among
U.S. automakers, too, there is a shared ‘‘Detroit’’ culture
of sorts (Ingrassia and White 1994), as well as some
shared suppliers (Harbour and Associates 1990).

Along these lines, several prior studies have investi-
gated cumulative output-based knowledge transfer (also
called ‘‘spillovers’’), where the cumulative production
output of one group or organization benefits another
(Argote 1993, Darr et al. 1995, Irwin and Klenow 1993).
Thus, it may be possible to detect production-based
knowledge transfers in the quality domain from the fol-
lowing sources:

HYPOTHESIS 3. The average car model’s quality im-
proves as a function of the cumulative production output
of its (a) platform, (b) division, (c) company, and
(d) industry.

We should note an alternative view of these spillover
effects: It is also possible that the external knowledge
available to stimulate quality improvements accumulates
in a manner more related to the passage of time; e.g., by
reverse engineering a competitor’s product, or by learning
from a supplier’s technological breakthrough, or by
avoiding the mistakes of earlier projects within the firm.
We might therefore imagine an H3–ALT, focusing on
time. This process, however, is already captured by H2–
ALT, because car models from the same platform typi-
cally debut at the same time and because U.S. automakers
and their divisions began operations too many decades
ago for any differences in founding dates to be meaning-
ful in this context. Indeed, prior research (Argote 1993)
has identified the passage of time (e.g., as in H2–ALT)
with a generalized knowledge transfer, or ‘‘march of pro-
gress.’’ H2–ALT thus reflects, in a general way, the bene-
fits to car model producers from others’ knowledge of
how to solve reliability problems.

So far we have focused on the rate of improvement for
existing products; i.e., the learning curve. Over time,
however, companies introduce new products with ma-
jor—even dramatic—improvements already built in.
Surely, then, no picture of quality improvement and
learning in the auto industry is complete without consid-
ering the learning that takes place as a result of new prod-
uct introductions, before a car model’s learning curve

even begins. For example, previous studies (Consumer
Reports 1991, p. 248; Harbour and Associates 1990) have
documented the fact that each of the Big Three U.S. au-
tomakers—Chrysler, Ford, and General Motors (GM)—
made significant overall strides in improving quality dur-
ing the 1980s. But, if we return to the ‘‘five W’s’’ of
learning curves, we must ask when this improvement
takes place. That is, do these overall improvements come
from (1) incremental improvements made to existing car
models (the learning curve examined in H1–H3), or from
(2) the introduction of all-new car models to replace poor-
quality ones? This second type of improvement affects
the ‘‘starting point,’’ or baseline performance level, of
the learning curve. The null hypothesis would be that,
over time, all of an automaker’s new car models, on av-
erage, have the same baseline quality level; i.e., a debut-
ing car model must start from scratch, with no carryover
of learning from previous car models and with no benefit
from any newly created knowledge. In contrast, a ‘‘march
of progress’’ view would suggest that it is likely that mak-
ers of debuting car models learn from the past. Moreover,
in this view, the debut of a new model provides a window
of opportunity (Tyre and Orlikowski 1994) for manufac-
turers to incorporate the very latest knowledge on design,
materials, assembly, etc., because the usual constraints
(e.g., the large costs in changing any production line tech-
nologies) are temporarily lifted when a new product line
debuts.

HYPOTHESIS 4. The later a car model debuts, the better
is its baseline quality level.

This hypothesis is tested in terms of time; i.e., it focuses
on the year a car model debuts. (Note that it might also
be interesting, as part of a future research study with the
benefit of a longer time series, to test a comparable H4–
ALT, based on cumulative production output, as well.)

If H4 is supported, then we can say that there is at least
some learning present before a new learning curve begins.
But how does this new-and-improved starting point com-
pare to the benefits of being at the end of a long learning
curve? Is this ‘‘debut-year’’ learning enough to compen-
sate for the lack of production experience? Prior research
(e.g., Hayes and Clark 1986) tells us that the introduction
of a new product into a repetitive manufacturing context
can be highly disruptive, impairing efficiency and some-
times dramatically so. Such disruption is also likely to
impair quality. This ‘‘disruptive learning’’ perspective
would suggest that, even if the baseline quality improves,
it will still take time before product quality reaches (and
eventually surpasses) its previous level. After all, one
could argue, any learning requires at least some ‘‘unlearn-
ing,’’ and so some disruptions are probably inevitable.
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Figure 1 Three Alternatives for How a New Car Model’s De-
but Might Affect the New Learning Curve’s Starting
Point

This view is expressed in the old industry adage, ‘‘Don’t
buy cars in their first year’’ (Consumer Reports 1982, p.
11; Harbour and Associates 1990, p. 52). This saying is
based on the premise that the learning that ultimately oc-
curs during production will outweigh any reliability en-
hancements embedded in a brand-new product.

By contrast with this adage and with the cases dis-
cussed by Hayes and Clark (1986), Garvin (1988), who
investigated the defect rates of factories making room air
conditioners, found that although defects did worsen for
a day or so after the annual shutdown period, no effect
was detectable in the quarterly data. That is, new models
pick up the quality levels right where the older models
leave off. According to this ‘‘constant learning’’ view,
debut-year improvements and learning-curve improve-
ments are equal, so that there is a constant rate of learning
for automakers as they transition from older car models
to newer ones.

A third alternative derives from a theoretical perspec-
tive we might call ‘‘enhanced learning.’’ This perspective
suggests that debuting car models will benefit from some
combination of the carryover from previous learning, mi-
nus a few minor disruptions, plus the exploitation of the
larger window of opportunity provided by the debut. This
last point implies that more extraordinary or exceptional
learning will occur during product debuts, and have a
greater effect, than the more incremental changes made
during a product’s production life (Lant and Mezias 1992,
Tushman and Romanelli 1985). Although the basic de-
sign of cars has not changed fundamentally during the
past century, the introduction of a new product is none-
theless an important discontinuity in design, manufactur-
ing, and sales. Thus, relative to day-to-day changes, or
even to annual model changes, ‘‘major’’ model changes
or debuts can indeed involve more ‘‘radical’’ rethinking.
Assuming firms are motivated to improve quality, as U.S.
automakers surely were in the 1980s, then it follows that
the larger the opportunity to improve, the greater the
learning and improvement will be. That is, although the
window of opportunity to improve a car model during its
production life occurs at least every year, these opportu-
nities are relatively small in scope. Change too much and
factory costs will rise; take too long to make changes
while the assembly line is shut down, and lost product
sales will mount. But the window of opportunity is much
larger when a new product first debuts. So much is chang-
ing anyway that the marginal cost of making major qual-
ity improvements is likely to be relatively low. Further-
more, to minimize costs and disruptions, organizations
may wait until the next new product is introduced to in-
corporate new manufacturing and product technologies
that will enhance reliability. Thus, the large window of

opportunity makes possible a greater improvement in
product quality from the organizational learning embed-
ded in new products.

So is this debut-year learning enough to compensate
for the associated disruption? Figure 1 shows the three
possible answers we have discussed. (Note that the ver-
tical axis in Figure 1 is in logarithmic form, so the learn-
ing curves appear linear.) The final hypothesis, which is
based on the ‘‘enhanced learning’’ perspective, frames
the key test:

HYPOTHESIS 5. In any given year, car models with the
latest debuts will have the best quality, despite having a
shorter production life in which to make improvements.

Methods

Unit of Analysis
Unlike many learning curve studies that focus on a com-
pany or factory, the unit of analysis in this study is the
car model, which may be built at multiple sites. One rea-
son for this choice is that analyzing the data at the level
of the product or product line allows better control for
the many technological changes and innovations that oc-
curred over the course of this study’s time frame
(Abernathy and Utterback 1978). Moreover, the design-
ers, managers, and assemblers associated with a single
car model share both the same corporate and task envi-
ronment. Hence, they make up a kind of organizational
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unit, regardless of how geographically spread out they
may be. One drawback to this approach is that quite a
number of car models in the 1980s were built at multiple
plants, but the Consumer Reports data on car model qual-
ity,1 used in this study, cannot be broken down by plant.
Thus, there is unobserved variation in plant performance
across sites building the same model.

This study’s sample includes all Big Three passenger
car (not truck) models assembled exclusively in the
United States and Canada. This group was chosen be-
cause North American carmakers formed an important
and cohesive industry group facing, to one degree or an-
other, a common set of competitive and quality problems
in the 1980s (Harbour and Associates 1990, Ingrassia and
White 1994). Although every car model is redesigned
slightly from year to year, the unit of analysis for this
study is defined as the car model produced over the four-
to thirteen-year period following a major overhaul. Be-
cause the difference between a major and a minor over-
haul is not always obvious, and only sometimes coincides
with a name change, the determination of a major rede-
sign or introduction was done by coding the descriptions
in Ward’s Automotive Yearbook (1974–1989) of each
year’s car models. Typically, Ward’s described major
changes with interchangeable phrases like all-new or de-
buting or bowing. Coding was done separately by the au-
thor and an assistant blind to the hypotheses, with agree-
ment in 93.9% of the cases (Cohen’s kappa � 0.75).
Agreement increased to 100% after attempts by the two
coders to reconcile their lists. Each car model has also
been designated as belonging to a narrowly defined car
platform, containing several ‘‘sibling’’ models, and to a
broadly defined platform, containing several sets of sib-
lings (‘‘cousins’’). For example, according to Ward’s
(1977–1989), in 1977 GM began building large rear-
wheel drive cars off of its (broadly defined) ‘‘B/D’’ plat-
form. The narrowly defined ‘‘B’’ platform included sev-
eral siblings—the Buick LeSabre, Chevrolet Caprice,
Oldsmobile 88, and Pontiac. Their slightly larger cousins,
built off of the ‘‘D’’ platform, were the Buick Electra,
Cadillac, and Oldsmobile 98.

Outcome Variable
The repair rate data for this study come from the annual
reader survey conducted by the nonprofit magazine, Con-
sumer Reports, and include car models built from 1981
to 1989. In two separate sets of analyses, each designed
to validate the other, this study takes these car models,
built in the 1980s, and measures their repair record at two
different milestones: during the third year of ownership
and during the sixth year of ownership. This three- and
six-year measurement lag is used to gauge the reliability

of cars manufactured in each year of a car model’s pro-
duction life; i.e., for cars from a car model’s debut year
in production, from its second year in production, from
its third year in production, etc.

One potential concern here is that measuring quality in
the sixth year of ownership, or even in the third year of
ownership, is too far removed from what took place in
the factory. However, the median age of cars in operation
in the United States was six or seven years throughout
the 1980s, and more than 90% of the cars built between
1981 and 1989 were still in operation six years later
(Ward’s Automotive Yearbook 1996). Thus, six years
seems a reasonably relevant and meaningful time frame
for measuring a car’s reliability. Furthermore, some qual-
ity problems, like rust, may not even appear on a car right
away.

Another potential pitfall in measuring quality after so
many years of ownership is the possibility that repair rates
improved during this period because owners neglect their
cars today less than they used to, so that their cars no
longer need to be repaired as much. While it may be dif-
ficult to completely rule out the possibility of an overall
reduction in owner neglect, there is some circumstantial
evidence to contradict this alternative explanation. First,
the initial quality (90 days after purchase) of Big Three
cars improved throughout the 1980s (Harbour and As-
sociates 1990), so it seems probable that their long-term
reliability would improve as well, apart from anything
owners did. Second, a trend of less owner neglect might
imply that, all else equal, owners would become less
likely to ‘‘junk’’ their cars after six years, but this did not
occur (Ward’s Automotive Yearbook 1996). In any event,
this study’s use of statistical controls and dummy vari-
ables may help to some extent in easing this concern. It
may also be the case that customers’ reporting of reli-
ability problems has been affected by increasing customer
expectations for quality. Nevertheless, if anything, this
possible bias merely strengthens most of the study’s re-
sults, because it should be harder, not easier, to detect
improvement in customer-perceived quality over time if
customer expectations of quality are rising.

This study’s repair ratings do, of course, have the same
problems as other survey-based research, although with
hundreds of thousands of respondents per year, sampling
error is probably small. One potential limitation of this
study is that the recollection of car owners about recent
repairs may somehow be biased by the media or other
outside influences in ways that would affect parameter
estimates. Even if Consumer Reports survey respondents
do not represent the general public, though, it seems rea-
sonable to assume that any overall bias would affect the
ratings of all North American car models about equally
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(Eberts and Eberts 1995, Ginter et al. 1987). Moreover,
the analyses for H1–H3 statistically control for repair rate
differences across car models, including those due to
owner neglect, by using a dummy variable in the regres-
sion analysis for each car model. The analysis for H4 and
H5 also includes an effort to control for extraneous fac-
tors like owner neglect and differences in customer bases
(see below).

This study also makes an effort to ensure year-to-year
consistency in the data set. When the repair record of only
one version (e.g., V6 or V8 engine) of a car model was
published by Consumer Reports, then that rating has been
used to represent the entire car model for that year. In
those cases where the frequency-of-repair data in a given
year were published for two or three versions of the same
car model, this study uses a weighted average based on
production volume. Any biases from aggregating by en-
gine type should be lessened by the fact that this study
has excluded all engine-related repairs (see below). For
repair rates measured during the third year of ownership,
this study’s initial sample includes 317 observations of
car models by year (1984–1989); these data come from
the Big Three firms, their nine divisions, and 76 car mod-
els. Unfortunately, Consumer Reports only began pub-
lishing repair rates in a format usable for this study in its
1987 issue; as a result, the earliest repair rates measured
during the third year of ownership only go back as far as
cars manufactured in 1984. For cars in their sixth year of
ownership, though, the data set can begin with cars made
in 1981. Thus, for repair rates measured during the sixth
year of ownership, this study’s sample includes 376 ob-
servations of 78 car models by year (1981–1989).

Consumer Reports publishes frequency-of-repair data
for more than a dozen ‘‘trouble spots’’ (e.g., fuel system,
air conditioning) on a five-point scale, where each of the
five rating categories corresponds to a percentage range.
These ratings have been adjusted by Consumer Reports
for mileage differences across models. For this study the
frequency-of-repair ratings have been converted to the
midpoint of the range indicated for each trouble spot. For
the first four categories on the five-point scale, this
method will lead to frequency-of-repair estimates that are
somewhat imprecise, but not systematically biased in ei-
ther direction (King et al. 1994). However, for the fifth
category (those cars with the worst repair rates in that
year), Consumer Reports only indicates that the repair
rate was above a particular percentage. Using a rule of
thumb suggested by a source at Consumer Reports, an
upper bound (15 percentage points above the industry
average) has been placed on these ‘‘Category 5’’ data,
and the midpoint of the resulting range used. The issue
of whether or not this procedure can potentially lead to

biased parameter estimates (i.e., a ‘‘ceiling effect’’) is
addressed in more detail in the section on analysis tech-
niques (see below).

Because this study will test the effects of time versus
cumulative production output, and because most prior re-
search has focused on cumulative output, a conservative
test should use a measure of quality more closely related
to cumulative output. Thus, I have selected reliability fac-
tors that relate as closely as possible to manufacturing in
general and to assembly in particular (Krafcik 1988),
which are the primary subject of cumulative production
output-based learning curve theory. In the data from Con-
sumer Reports, at least four of the various trouble spots
fit this description:

(1) Body rust, e.g., pitting, corrosion, and perforation;
(2) Paint and exterior trim, e.g., fading, discoloring,

chalking, peeling;
(3) Body integrity, e.g., air or water leaks, wind noise,

rattles and squeaks;
(4) Body hardware, e.g., window, door, and seat mech-

anisms, locks, belts.
Statistical analysis allows us to confirm that these trouble
spots tap an underlying construct at the car model level
of analysis. For the sample of repair rates measured dur-
ing the third year of ownership, a factor analysis of these
trouble spots indicates the presence of only one under-
lying factor, onto which all four items have factor load-
ings above 0.4. These four items also form a statistically
reliable scale, with a Cronbach’s alpha of 0.70. In addi-
tion, this four-item scale, computed as the average
(Harman 1976) of the four repair rates, is relatively stable
over time; i.e., it has a similar factor structure and statis-
tical reliability for every year of the sample. For the sam-
ple of repair rates measured during the sixth year of own-
ership, however, the factor analyses do not always yield
a one-factor solution with all four trouble spots, but con-
sistently do so when the data on body hardware are
dropped. Because this study’s theory does not require the
inclusion of the body hardware trouble spot, and a more
valid and reliable measure can be constructed by deleting
it, a three-item measure is used here instead for cars in
their sixth year of ownership. All factor loadings are well
above 0.4, and the three-item scale has a reliability of
0.75. This three-item scale, computed as the average of
the three repair rates, is also stable over time in terms of
both its factor structure and statistical reliability. To en-
sure comparability across the two data sets, most of the
regression analyses were also conducted on a three-item
repair measure for cars in their third year of ownership
(Cronbach’s alpha � 0.66), with substantially similar
results.
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Predictor Variables
Data on production output and on market segments (sub-
compact, compact, intermediate, full-size, and luxury)
come from Ward’s Automotive Yearbook (1975–1989).
Because the repair rate data are reported by model year,
which begins approximately every August, cumulative
production volume is also computed based on model-year
output. Platform designations are based on information
reported in Ward’s (1976–1989); in a handful of cases,
this information was supplemented or confirmed by
checking Consumer Reports (1976–1989) and popular-
press articles in LEXIS-NEXIS (1983–1989). Industry-
wide production is defined in this study as all United
States and Canadian output produced by the Big Three.

The starting point used for division, company, and in-
dustry production output is 1975, a date which should be
early enough to capture most cumulative production
knowledge, since all of the car models in the sample did
not even debut until 1976 or later. Furthermore, recent
empirical work (Argote et al. 1990, Darr et al. 1995,
Epple et al. 1991, Henderson and Cockburn 1996) has
found that production knowledge tends to depreciate; i.e.,
more recent production experience is more useful than
earlier experience. So, because all of the Big Three have
been making cars for many decades, it seems reasonable
to assume that any pre-1975 learning that is carried for-
ward into the 1980s will be modest and, in any case,
largely common across the companies.

Analysis Techniques
This study uses panel data. The regression equations are
based on ordinary least squares (OLS) with fixed effects,
i.e., with a dummy variable included for each car model.
This approach assumes that each car model has its own
baseline level of quality—i.e., its own intercept, or start-
ing point, on the learning curve—but has the same rate
of learning as all other car models. Accounting for fixed
effects, especially because these data consist of many
short time series, is assumed to eliminate the major
sources of autocorrelation and heteroscedasticity.

The traditional shape of the learning curve is y � ax�b,
where y is the outcome measure (repair rate) of a car
model produced in a given year, a is a constant, x is that
car model’s cumulative output up through the previous
year, and b is the slope of the learning curve. By taking
the natural logarithm of both sides of this equation, it can
be rewritten as ln (y) � ln (a) � b ln (x). Typically,
additional predictor variables are included in this second
equation, already in log form. While researchers have also
used other specifications for the learning curve, this func-
tional form, the power curve, remains the most common
and robust (Kantor and Zangwill 1991). Note that when

one includes dummy variables corresponding to each car
model, the predictor variables in the regression equation
are only able to explain the variation in repair rates within
a car model.

The passage of time is also included in this study’s
statistical model. A preliminary analysis, using a subset
of this study’s sample, determined that the year of pro-
duction was a critical predictor of improvements in repair
rates. The functional form of this relationship, however,
is difficult to predict from theory. The current study takes
the somewhat novel approach of using the least restrictive
method for incorporating a time trend: dummy variables
are used for each year that a car model has been in pro-
duction, up through the 13th year (the highest). Another
advantage to using dummy variables for the year of pro-
duction is that it helps rule out the alternative explanation
that the industry’s reduction in repair rates is not a learn-
ing curve at all, but just a sign that car models with bad
repair rates are taken off the market, and that surviving
car models have better quality than ones that exit the mar-
ket. There is no evidence that the Big Three discontinue
car models early because of poor repair rates (Cole 1990).
Nevertheless, the dummy variables make it possible to
examine year-to-year changes in repair rates even early
on in the production life of the average car model before
any car models start exiting the market. Note that because
the cumulative output measures are computed using a
one-year lag, there is no output to predict a car model’s
first-year repair rate; the reference category for the time
trend dummy variables in the initial regression equations
(Tables 2 and 3) is therefore the second year of produc-
tion.

One pitfall to the procedure (described earlier) of plac-
ing an upper limit on repair rate data from Category 5 (on
the five-point scale) is that it may lead to a ‘‘ceiling ef-
fect’’ and thereby bias the regression results (Kennedy
1985). To the extent that this problem exists, it should be
more pronounced for repair rates measured during the
sixth year of ownership, when the least reliable cars may
start to have repair rates that are not just bad, but truly
awful—i.e., above the repair rate ‘‘ceiling’’ imposed on
the data set. For example, in its sixth year of ownership,
the 1989 Hyundai Sonata, although not included in this
study’s data set, was singled out by Consumer Reports
(1995, p. 286) for having the worst repair rate for body
hardware, 37%, well above that year’s Category 5 range
of 14.8% and above. Censoring models, such as TOBIT
or PROBIT, are sometimes used to address this problem,
but these statistical models are not designed for either
fixed effects or the use of a multimeasure scale as the
outcome variable. So instead, this study uses a procedure
to test to see if including the Category 5 observations does
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in fact create a ceiling effect, i.e., make the regression
slopes flatter. To do so, a dummy variable (‘‘ceiling’’) is
created that corresponds to a Category 5 rating for any of
the three or four trouble spots used to construct the overall
repair rate measure for a given car model in a given year.
An observation is thus assigned a zero for the ‘‘ceiling’’
variable only if the car model in question was able to
score below a five on all the relevant trouble spots in that
year. In contrast, observations ‘‘tainted’’ with at least one
trouble-spot rating of five (on the five-point scale) are
assigned a one for the ‘‘ceiling’’ variable. Unfortunately
for U.S. carmakers, this latter group of observations is
sizable: For repair rates measured during the third year
of ownership, the ‘‘ceiling’’ observations (i.e.,
ceiling � 1) make up 36% of the sample; for repair rates
measured during the sixth year of ownership, they make
up 42%. The ‘‘ceiling’’ dummy variable is then interacted
with the relevant predictor variables. If the interaction
effects are significant, then caution dictates limiting any
generalizations of exactly how steep or flat the learning
curve is only to certain car models; namely, those models
not associated with the worst-possible repair rating in a
given year.

Unlike the tests for learning curve parameters (H1–
H3), the tests for differences in baseline repair rates by
debut year (H4 and H5) do make comparisons across car
models. In particular, to avoid any linear dependence
among the predictor variables, the car model fixed effects
have been replaced in Equation 11 with 13 control vari-
ables that correspond to the five market segments (sub-
compact, compact, intermediate, full-size, and luxury),
the Big Three automakers (Chrysler, Ford, and GM), and
the interaction terms among these variables (e.g.,
Ford*luxury). There are 13, not 15, controls because there
is a reference category, and no Chrysler luxury cars are
in the sample. If debut year, which ranges from 1976 to
1988, has a significantly negative regression coefficient
in Equation 11, then H4 is supported. If it is indeed neg-
ative but significantly less so than the coefficient for year
of production, then a ‘‘disruptive learning’’ perspective
is supported; if it is significantly more negative than the
coefficient for year of production, however, then an ‘‘en-
hanced learning’’ perspective (H5) is supported. Note that
compared to the fixed effects model, however, these 13
control variables may not statistically control as well for
all of the differences in repair rates across car models that
might be due to extraneous factors. This omitted variable
bias does not appear to be much of a problem because
the coefficient for year of production seems fairly similar
in Equation 9 and Equation 11. However, some people
may still wish to consider this analysis suggestive.

Results
Table 1 shows the means, standard deviations, and simple
correlations among the variables used in the regression
equations in Table 2. Because each of the paper’s four
tables of regression results (Tables 2–5) has a slightly
different sample size, this paper, in the interests of par-
simony, shows only the correlations corresponding to
Table 2. Although some of the variables are logarithmi-
cally transformed in the regression equations, they are
shown in their untransformed (and more interpretable)
state in Table 1. Note that the simple (zero-order) corre-
lations among the variables shown in Table 1 may seem
a bit confusing, even misleading, because they lack the
statistical controls used in the multiple regression equa-
tions below.

H1: Learning Curve
The traditional learning curve equation, taking the natural
log of both the left-hand and right-hand variables, is
shown for repair rates measured during the third year of
ownership (Table 2) and for repair rates measured during
the sixth year of ownership (Table 3). There appears to
be support for H1 in terms of cumulative production ex-
perience. On average, when a manufacturer has previ-
ously produced a lot of cars of a given model, that car
model’s repair rate is lower, whether that repair rate is
measured during the third or sixth year of ownership
(Equation 2). So it would seem that increased experience
leads to improved product quality, yet (because this equa-
tion is in log-log form) in decreasing increments. In other
words, as predicted, there is a learning curve for car
model repair rates.

H2 and H2-ALT: Learning over Time
This cumulative output-based effect disappears, however,
when the year-of-production dummy variables are taken
into account. Although cumulative production experience
is highly correlated with the passage of time, the regres-
sion analysis is able to distinguish between the two. Once
we control for the fact that the average car model’s repair
rate generally improves from year to year during its pro-
duction life, the extent of a manufacturer’s production
experience for a particular car model appears to make no
difference (Equation 3).

Additional analyses (not shown here) were conducted
to see if incorporating the idea that production knowledge
can depreciate might make the production output variable
a significant independent predictor of repair rates after all.
This alternative explanation was tested by replacing cu-
mulative production output with variables corresponding



DANIEL Z. LEVIN Organizational Learning and the Transfer of Knowledge

ORGANIZATION SCIENCE/Vol. 11, No. 6, November–December 2000 639

Table 1 Means, Standard Deviations, and Simple Correlationsa

Mean Std. Dev. 1 2 3 4 5 6 7

1. Repair rateb 0.077 0.025
2. Years in Production 5.84 2.78 0.17**
3. Car model outputc 750 818 0.24** 0.72**
4. Sibling outputc 2,515 2,859 0.28** 0.67** 0.71**
5. Cousin outputc 4,122 3,460 0.13* 0.62** 0.61** 0.80**
6. Division outputc 10,700 5,940 0.17** 0.18** 0.48** 0.20** 0.07
7. Firm outputc 39,371 19,352 0.19* 0.10 0.24** 0.35** 0.15** 0.31**
8. Big Three outputc 92,394 13,146 –0.25** 0.24** 0.14* 0.01 0.02 0.25** 0.31**

aN � 317.
bRepair rate is measured during the third year of ownership.
cComputed as cumulative production output (lagged by one year). Shown in 000s.
*p � 0.05
**p � 0.01

Table 2 Regression Results for Cumulative Production Output and Year of Productiona

Outcome Variable � ln (Repair rate, measured during the third year of ownership)
Equation 1 Equation 2 Equation 3 Equation 4 Equation 5

76 fixed effects signif.*** signif.*** signif.*** signif.*** signif.***
Car model outputb �0.128*** (0.022) 0.003 (0.065) �0.037 (0.092) 0.015 (0.099)
3rd Year of Production �0.201** (0.063) �0.216** (0.067) �0.156 (0.085)
4th Year of Production �0.222* (0.089) �0.248* (0.098) �0.114 (0.148)
5th Year of Production �0.269* (0.107) �0.302* (0.119) �0.088 (0.212)
6th Year of Production �0.305* (0.124) �0.342* (0.138) �0.048 (0.273)
7th Year of Production �0.283* (0.140) �0.323* (0.154) 0.042 (0.336)
8th Year of Production �0.340* (0.152) �0.383* (0.167) 0.051 (0.394)
9th Year of Production �0.311 (0.164) �0.355* (0.179) 0.175 (0.468)
10th Year of Production �0.294 (0.172) �0.340 (0.187) 0.273 (0.532)
11th Year of Production �0.326 (0.177) �0.376 (0.194) 0.320 (0.591)
12th Year of Production �0.550** (0.185) �0.601** (0.202) 0.175 (0.652)
13th Year of Production �0.487* (0.203) �0.536* (0.218) 0.283 (0.702)
Sibling outputb 0.064 (0.101) �0.004 (0.118)
Cousin outputb 0.046 (0.076)
Division outputb 0.532 (0.802)
Firm outputb �1.434 (1.62)
Big Three outputb �0.037 (1.64)

R 2 � 0.720 0.755 0.779 0.780 0.783
adjusted-R2 � 0.633 0.677 0.695 0.695 0.694

aN � 317. Standard errors are in parentheses.
bComputed as the log of cumulative production output (lagged by one year).
*p � 0.05
**p � 0.01
***p � 0.001
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Table 3 Regression Results for Cumulative Production Output and Year of Productiona

Outcome Variable � ln (Repair rate, measured during the sixth year of ownership)
Equation 1 Equation 2 Equation 3 Equation 4 Equation 5

78 fixed effects signif.*** signif.*** signif.*** signif.*** signif.***
Car model outputb �0.093*** (0.020) 0.114 (0.066) 0.046 (0.088) 0.067 (0.092)
3rd Year of Production �0.122 (0.066) �0.145* (0.069) �0.160 (0.099)
4th Year of Production �0.244** (0.093) �0.283** (0.098) �0.304 (0.176)
5th Year of Production �0.287* (0.112) �0.336** (0.119) �0.361 (0.249)
6th Year of Production �0.409** (0.127) �0.463*** (0.135) �0.494 (0.322)
7th Year of Production �0.476*** (0.141) �0.537*** (0.150) �0.569 (0.396)
8th Year of Production �0.477** (0.150) �0.541*** (0.160) �0.571 (0.464)
9th Year of Production �0.526** (0.160) �0.592*** (0.169) �0.633 (0.545)
10th Year of Production �0.501** (0.173) �0.568** (0.182) �0.611 (0.615)
11th Year of Production �0.460* (0.180) �0.535** (0.192) �0.598 (0.676)
12th Year of Production �0.495* (0.192) �0.570** (0.203) �0.634 (0.740)
13th Year of Production �0.772*** (0.197) �0.843*** (0.206) �0.861 (0.798)
Sibling outputb 0.107 (0.091) 0.069 (0.100)
Cousin outputb 0.053 (0.071)
Division outputb �0.456 (0.524)
Firm outputb 2.126 (1.54)
Big Three outputb �1.680 (1.67)

R 2 � 0.773 0.788 0.805 0.806 0.808
adjusted-R 2 � 0.714 0.732 0.744 0.744 0.743

aN � 376. Standard errors are in parentheses.
bComputed as the log of cumulative production output (lagged by one year).
*p � 0.05
**p � 0.01
***p � 0.001

to a given car model’s (non-cumulative) output from the
previous year, from the year before that, from two years
before that, etc. At a minimum, to estimate a knowledge
depreciation parameter, the coefficients of these variables
should be statistically significant and decreasing in mag-
nitude the farther back one goes (Darr et al. 1995); in
fact, they were neither. Thus, there is no evidence of pro-
duction knowledge depreciation in this study’s data. Tak-
ing knowledge depreciation into account, then, does not
change the central finding from Equation 3—namely, that
the year in a car model’s production life, not cumulative
production experience up to that point, best predicts a car
model’s ultimate repair rate (confirming H2–ALT).

So far, because the cumulative experience variable is
computed using a one-year lag, this study has excluded
repair rate data based on a car model’s first year in pro-
duction. Because measures of lagged production output
are not statistically significant, however, it now becomes
possible to expand this study’s sample size to include
these data. Doing so adds 39 more observations and seven
more car models for repair rates measured during the third

year of ownership (Table 4); for repair rates measured
during the sixth year of ownership, 67 more observations
and ten more car models can be added (Table 5). As be-
fore, the year of production is examined using the least
restrictive approach of having dummy variables which
correspond to the number of years since a car model be-
gan its production life (Equation 7). In this case, the ref-
erence category for the dummy variables is the first year
of a car model’s production. The coefficients for
Equation 7 in both Tables 4 and 5 seem to indicate a
gradual reduction in repair rates for each subsequent year
of a car model’s production life. When we compare the
R2 figures for Equation 6 versus Equation 7, we see that
this learning curve explains an additional 10% of the total
variance in repair rates and about one-third of the within-
car model variance in Table 4. In Table 5, it explains an
additional 4% of the total variance and one-sixth of the
within-car model variance.

To test for a possible ‘‘ceiling effect’’ for these data,
each of the time trend dummy variables is interacted (in
Equation 8) with the ‘‘ceiling’’ dummy variable, de-
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Table 4 Regression Results for Year of Production and Debut Yeara

Outcome Variable � ln (Repair rate, measured during the third year of ownership)
Equation 6 Equation 7 Equation 8 Equation 9 Equation 10 Equation 11

83 fixed effects signif.*** signif.*** signif.*** signif.*** signif.***
2nd Year of Production �0.112** (0.040) �0.054 (0.046)
3rd Year of Production �0.318*** (0.042) �0.142** (0.045)
4th Year of Production �0.337*** (0.043) �0.178*** (0.046)
5th Year of Production �0.386*** (0.046) �0.217*** (0.050)
6th Year of Production �0.416*** (0.049) �0.284*** (0.052)
7th Year of Production �0.395*** (0.056) �0.248*** (0.058)
8th Year of Production �0.452*** (0.061) �0.272*** (0.061)
9th Year of Production �0.422*** (0.071) �0.311*** (0.075)
10th Year of Production �0.405*** (0.074) �0.399*** (0.084)
11th Year of Production �0.437*** (0.078) �0.348*** (0.085)
12th Year of Production �0.661*** (0.090) �0.433*** (0.079)
13th Year of Production �0.598*** (0.123) �0.487*** (0.116)
‘‘Ceiling’’ effect 0.378*** (0.055) 0.430*** (0.040) 0.420*** (0.041) 0.496*** (0.043)
Ceiling * Yr. of Production

dummy variables
n.s. not reported not reported not reported

Year of Production �0.038*** (0.006) �0.037*** (0.008) �0.030*** (0.006)
Ford * Yr. of Production 0.007 (0.012)
Chrysler * Yr. of Production �0.020 (0.013)
Debut Year �0.043*** (0.006)
13 control variables for all

company by market segment
combinations

signif.***

R 2 � 0.688 0.786 0.881 0.877 0.878 0.744
adjusted-R 2 � 0.595 0.709 0.830 0.831 0.832 0.722

aN � 356. Standard errors are in parentheses.
*p � 0.05
**p � 0.01
***p � 0.001
n.s. � not significant

scribed above. For repair rates measured during the third
year of ownership (Table 4), the overall interaction is not
significant. Nevertheless, the ceiling effect is statistically
significant for one or two individual years (not shown),
and omitting the ceiling effect variables seems to distort
several of the point estimates; this analysis therefore re-
tains these interaction variables in subsequent analyses.
For repair rates measured during the sixth year of own-
ership (Table 5), the overall interaction effect is statisti-
cally significant (p � 0.022), so these interaction vari-
ables are also included in subsequent analyses. The
‘‘ceiling’’-related data points are not dropped altogether,
however, because they help identify the coefficients of
the fixed effects dummy variables. In sum, although there
is some evidence of a ceiling effect, it is important to note
that, with or without these potentially biased observa-
tions, Equations 7 and 8 both indicate a similar downward

trend in repair rates over time. That is, this problem only
really affects what our estimate of the learning curve’s
slope should be, and thus does not alter this study’s cen-
tral findings on evidence of learning.

The decline in repair rates for a car model during its
production life is plotted for a so-called ‘‘no ceiling ef-
fect’’ line, i.e., for car models in a given year that did not
receive the worst-possible repair rating of five (on a five-
point scale) for any relevant trouble spot. These plots are
based on the coefficients from Equation 8 for repair rates
as measured during the third year of ownership (Figure 2)
and during the sixth year of ownership (Figure 3). In both
graphs, the lines suggest a relatively straight trend. (The
fluctuations at the far right of Figure 3 are probably due
to a small sample size for car models after the tenth year
of production. Note the large corresponding standard er-
rors in Equation 8 of Table 5). Because the repair rate
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Table 5 Regression Results for Year of Production and Debut Yeara

Outcome Variable � ln (Repair rate, measured during the sixth year of ownership)
Equation 6 Equation 7 Equation 8 Equation 9 Equation 10 Equation 11

88 fixed effects signif.*** signif.*** signif.*** signif.*** signif.***
2nd Year of Production �0.092* (0.040) �0.084* (0.042)
3rd Year of Production �0.128** (0.040) �0.132** (0.041)
4th Year of Production �0.200*** (0.040) �0.272*** (0.043)
5th Year of Production �0.199*** (0.042) �0.293*** (0.048)
6th Year of Production �0.289*** (0.047) �0.366*** (0.052)
7th Year of Production �0.335*** (0.053) �0.475*** (0.061)
8th Year of Production �0.320*** (0.056) �0.410*** (0.067)
9th Year of Production �0.362*** (0.066) �0.476*** (0.080)
10th Year of Production �0.320*** (0.075) �0.389*** (0.102)
11th Year of Production �0.274** (0.088) �0.722*** (0.137)
12th Year of Production �0.305** (0.107) �0.497** (0.190)
13th Year of Production �0.586*** (0.119) �0.754*** (0.116)
‘‘Ceiling’’ effect 0.188** (0.058) 0.222*** (0.051) 0.218*** (0.051) 0.413*** (0.051)
Ceiling * Yr. of Production

dummy variables
signif.* not reported not reported not reported

Year of Production �0.062*** (0.006) �0.058*** (0.008) �0.057*** (0.007)
Ford * Yr. of Production �0.001 (0.011)
Chrysler * Yr. of Production �0.026 (0.014)
Debut Year �0.070*** (0.005)
13 control variables for all

company by market segment
combinations

signif.***

R 2 � 0.763 0.802 0.867 0.860 0.862 0.758
adjusted-R 2 � 0.705 0.745 0.821 0.819 0.819 0.742

aN � 443. Standard errors are in parentheses.
*p � 0.05
**p � 0.01
***p � 0.001

Figure 2 Learning Curve (on Log Scale) for Car Model Repair
Rate as Measured During the Third Year of Owner-
shipa

aPlotted points correspond to the coefficients listed in Equation 8 of
Table 4.

measure is in log form, a straight line essentially means
that during a car model’s production life quality im-
proved, but in decreasing amounts (confirming H1 and
H2–ALT). Because Equation 8 only includes dummy
variables, the corresponding graphs are not in log-log
form but in semilog form. So, technically speaking,
Figures 2 and 3 show an exponential curve, not a power
curve. To test the linearity of the trend line shown in
Figures 2 and 3 formally, Equation 8 can be compared to
Equation 9. For repair rates as measured during the third
year of ownership (Table 4), F11,248 � 1; for repair rates
as measured during the sixth year of ownership (Table 5),
F11,330 � 1.490, p � 0.133. Thus, we cannot reject the
presumption that the lines in Figures 2 and 3 are essen-
tially linear.

The slopes (shown in Equation 9) of these lines rep-
resent the annual rate of learning for the average car
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Figure 3 Learning Curve (on Log Scale) for Car Model Repair
Rate, as Measured During the Sixth Year of Owner-
shipa

aPlotted points correspond to the coefficients listed in Equation 8 of
Table 5.

model that did not receive the worst-possible repair rating
in a given year (i.e., for the ‘‘no ceiling effect’’ obser-
vations). Specifically, when repair rates are measured
during the third year of ownership (Table 4), every ad-
ditional year that a car model is produced results in a
3.8% drop in the repair rate measure. When repair rates
are measured during the sixth year of ownership
(Table 5), every additional year that a car model is pro-
duced results in a 6.2% drop.

Thus far, we have assumed that these learning rates are
an industrywide phenomenon. To test this assumption,
the year of production variable (for the ‘‘no ceiling ef-
fect’’ observations) is interacted with two dummy vari-
ables (Ford and Chrysler, with GM as the reference cate-
gory) representing the Big Three automakers. The results,
shown in Equation 10 of Tables 4 and 5, indicate that
these learning rates are essentially the same for all three
firms (for Table 4, F2,257 � 1.740, p � .178; for Table
5, F2,339 � 1.818, p � .164).

H3: Transfer of Production-Based Knowledge
When lagged cumulative production experience for a car
model’s platform, division, firm, or industry are added
sequentially as predictors in Equations 4 and 5 of
Tables 2 and 3, and in various other combinations not
shown here (including each variable on its own), none of
the individual variables have statistically significant co-
efficients. As can often occur, however, the very high
correlations among some of the cumulative output mea-
sures, as well as the year of production, introduce a great
deal of multicollinearity into the data. The result can be
erratic parameter and standard error estimates, as seen in

Equation 5, where every single predictor variable goes
‘‘haywire’’ and loses its statistical significance; the mul-
ticollinearity is simply too great. Nevertheless, it turns out
that the five ‘‘knowledge transfer’’ variables in
Equation 5 do not even have a combined statistically sig-
nificant effect on repair rates over and above that of the
predictor variables in Equation 3: for Table 2, F 5, 224 � 1;
for Table 3, F 5, 281 � 1.

These data thus provide no evidence for the transfer of
production-based knowledge on product quality, as mea-
sured by repair rates (H3). Indeed, taken with the support
for H2–ALT, this study finds no benefit to a car model’s
repair rate from any measure of cumulative production
experience, not for the car model itself, its siblings, its
cousins, its division, or its firm. Furthermore, additional
analyses (not shown here) designed to account for a pos-
sible ceiling effect for the production output measures (by
interacting these measures, in numerous combinations,
with the ‘‘ceiling’’ variable) yield similar results.

H4: ‘‘Debut-Year’’ Learning
As shown in Equation 11 of Tables 4 and 5, even after
controlling for a combination of all companies by market
segment, the later a car model begins its production life,
the lower its baseline repair rate is, thus confirming H4.

H5: Debut-Year Learning Versus the Learning
Curve
According to Equation 11 in Table 4, the average car
model debuts with a baseline repair record (as measured
in the third year of ownership) that is 4.3% better than
the previous year’s debuting car model. In contrast, that
previous year’s debuting car model improved incremen-
tally only an average of 3.0% during the one intervening
year. In other words, an extra year of ‘‘debut-year’’ learn-
ing (as embedded in a new car model debut) leads to
better repair rates than does an extra year of the incre-
mental learning curve during a car model’s production
life. Thus, on balance, a car model’s debut is not a dis-
ruptive or even neutral event, but instead gives rise to
‘‘enhanced’’ learning (confirming H5). As shown in
Figure 4, the incremental improvements during the learn-
ing curve (3.0% per year on average) do add up consid-
erably over the years, but the larger improvements (4.3%
per year) made to debuting car models mean that the gap
will never be closed. These overall results are statistically
significant for repair rates measured during either the
third year of ownership (F1, 327 � 8.626, p � 0.004) or
the sixth year of ownership (F1, 414 � 5.232, p � 0.023).
There is no evidence of a ceiling effect for debut year in
Equation 11 in Table 4, although there is some evidence
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Figure 4 ‘‘Debut-Year’’ Learning Versus the Learning Curvea

aFor car model repair rate, as measured during the third year of
ownership. Plotted points correspond to the coefficients listed in
Equation 11 of Table 4.

for it in Table 5. Nevertheless, correcting for this possible
ceiling effect yields similar results.

Discussion
The findings from this study suggest a number of specific
ways in which we may need to rethink our understanding
of organizational learning and of learning curves. These
new insights, which both expand and refine prior re-
search, deal primarily with the what and when of orga-
nizational learning curves. In particular, the evidence sug-
gests three main conclusions: (1) that stable learning
curves are not limited to the cost or efficiency domain;
(2) that, contrary to prior research in the efficiency do-
main, some learning curves appear to be more a function
of time than a function of cumulative experience; and
(3) that improvements to the starting point of some learn-
ing curves, when a product is first introduced, are even
more important than improvements made during subse-
quent production.

This study presents systematic empirical evidence that,
as predicted by H1, there is indeed a learning curve for
quality. However, researchers and others may need to be
cautious in generalizing efficiency-based findings to other
aspects of performance like quality, because the sources
and forms of organizational learning, especially the when
of learning, can vary depending on the outcome measure
chosen. Learning curve researchers may be somewhat
surprised by this study’s finding that, as predicted by H2–
ALT, the main source of quality improvement appears to
be the passage of time, and not cumulative production
experience. After all, most studies of productivity-related
learning have found cumulative experience to be more,

not less, important than the passage of time (Argote 1993,
Argote and Epple 1990, Lieberman 1987). However, to
those familiar with the ‘‘quality movement,’’ this finding
is consistent with the notion that quality improvement
occurs as a result of broad organizational practices that
are not directly tied to production experience (Benson et
al. 1991, Shortell et al. 1995). Moreover, not only are
‘‘off-line’’ quality-improvement efforts likely to be a
function of time (Schneiderman 1988, Sterman et al.
1997), but so too is the design cycle in this industry. The
findings here thus also suggest that learning in the area
of product reliability may be heavily based on the design
group and its annual window of opportunity (Tyre and
Orlikowski 1994) to update and improve car models at
the end of every summer.

If annual product updates provide organizations with a
small window of opportunity to keep moving along the
learning curve for quality, then major model changes (or
debuts) provide an even larger window of opportunity to
begin the learning curve at an improved baseline level by
incorporating new knowledge that improves quality. In-
deed, as predicted by H4, this study finds that more re-
cently introduced car models have better baseline repair
records than do models that debuted earlier. Moreover, as
predicted by H5, the learning embedded in later-debuting
car models, rather than having a disruptive effect, on bal-
ance actually enhances organizational learning. That is,
the learning embedded in later-debuting car models (what
we might call ‘‘exceptional’’ learning) leads to better re-
pair rates at any given point in time than the more incre-
mental organizational learning that typically occurs dur-
ing a car model’s production life (‘‘everyday’’ learning).
For consumers, this finding suggests that, all else being
equal, and contrary to conventional wisdom, the latest-
debuting model is likely to be a more reliable product.
Wait a year and that debuting car model will likely be
better in quality (H1), but not as good on average as that
next year’s debuting model (see Figure 4).

Besides these three main findings—that there is a learn-
ing curve for quality; that it is a function of time; and
that, above all, improvements to the learning curve’s
starting point are particularly critical—we must now con-
sider the issue of knowledge transfer. The lack of support
for H3 suggests that know-how brought in from outsiders
does not accumulate as a function of their production ex-
perience, but the favorable results for H2–ALT are con-
sistent with the idea that this outside knowledge accu-
mulates with the passage of time. Thus manufacturers
probably do share quality-related knowledge across prod-
uct families, divisions, and firms. For example, the in-
vention of two-sided galvanized steel has helped reduce
rust problems in cars (Berry 1986). What this study’s data
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cannot say, however, is to what extent quality improve-
ments made with the passage of time, whether for a prod-
uct’s debut (H4) or subsequent learning curve (H1), are
due to inventions by that product line’s design or research
engineers; to knowledge transferred from others in the
same company (Argote 1993); to knowledge ‘‘diffused’’
across the industry (Lieberman 1987); or to technological
breakthroughs occurring in related industries. Indeed, if
we think back to the earlier theoretical question of who
does the learning—employees, organizational systems,
and outside actors (Argote 1993)—then any or all of these
may be contributing to the reduction in repair rates over
time. That is, it was not possible to trace this kind of
knowledge transfer back statistically to any specific
source, as H3 attempted to do. Nevertheless, some ‘‘re-
searchers use time as a proxy variable for [knowledge
transfer], assuming that the acquisition of knowledge in
the general environment would be associated with the
passage of time’’ (Argote 1993, p. 41). As a result, we
might plausibly interpret the support for H2–ALT (learn-
ing as a function of year in production) and for H4 (learn-
ing as a function of debut year) as evidence of a kind of
generalized knowledge transfer, a technological ‘‘march
of progress.’’ Thus, in a sense, we do find evidence of
knowledge transfer after all.

Conclusion
In sum, the process of learning, in an industrial setting,
is more complex than previously thought. First, a learning
curve exists not only for efficiency but also for quality.
Second, organizational learning in the area of product re-
liability depends on the passage of time rather than on
cumulative production experience. This result is the re-
verse of what researchers have found for efficiency learn-
ing curves. Third, while it is common wisdom not to buy
a new car in its first year of production, the opposite ad-
vice actually seems to apply. That is, more learning takes
place as a result of new product introduction, before the
learning curve even begins, than in any year of produc-
tion. These findings expand the traditional concept of
learning, especially our understanding of what gets
learned when.

It is worth noting some of the limitations of this study.
For example, it may be the case that automobile quality,
in general or as measured in this study, is a unique situ-
ation. Further study is needed to determine if the time-
dependent learning curve proposed here can be general-
ized to other types of organizations, since this study is
the first large-scale, industrywide investigation of orga-
nizational learning and learning curves in the area of re-

pair rates. In addition, it is possible that a learning curve
based on production experience does exist for quality but
cannot be detected using only annual data because the
curve simply flattens out in the early months after a car
model’s debut or redesign.

Future research might focus usefully on the why of
learning curves. The motivation to learn in the quality
domain was strong among North American automakers
during this study’s time frame due to competitive pres-
sure, but motivation is not a constant. When we focus on
variables like cost, we can safely assume that the people
in the organization want to learn, especially in for-profit
firms. With product reliability, however, as in some other
domains like research and development (Levin 1999), the
motivation to learn and improve is not always as strong.
This same point also applies to a performance indicator
like customer satisfaction, which organizations do not al-
ways have a strong economic or strategic incentive to
improve. From a conceptual perspective, then, organiza-
tional learning theory might benefit from incorporating the
insights of ‘‘desire-and-ability’’ models of organizational
change (Levin and Shortell 1996, Zajac and Kraatz 1993).

Another fruitful area for future research would be the
how of organizational learning curves. By using a more
qualitative research methodology of in-depth field stud-
ies, this alternative approach would complement the
quantitative approach used here to uncover this area’s un-
derlying mechanisms, patterns, and routines. Such studies
of organizational processes (Levin 1999; Pentland 1992,
1995) enable us to probe more deeply inside the ‘‘black
box’’ of organizational learning. Along similar lines, al-
though the current study used public data pragmatically,
it was not possible to detect all of the subtleties (e.g.,
manufacturing process changes) underlying learning rates
within the industry. By gaining access to one or more
companies, however, future studies could explore such
subtleties in more depth.
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