
Appendix for
FEEDBACKS: FINANCIAL MARKETS AND ECONOMIC ACTIVITY

For Online Publication

Markus K. Brunnermeier, Darius Palia, Karthik A. Sastry, and Christopher A. Sims



1

CONTENTS

I. Choice of Prior Distributions 3
I.1. Shock Impacts A0 and Relative Variances Λi 3
I.2. Reduced Form Coefficients BJ 3
I.3. “Fat-tail shocks” ξi,t 3
II. Posterior Sampling Method 4
II.1. First Block (P[θ1 | θ3, Y]) 5
II.2. Second Block (P[θ2 | θ1, θ3, Y]) 6
II.3. Third Block (P[θ3 | θ1, θ2, Y]) 6
II.4. A note about normalization 7
III. Computational Details and Algorithm Convergence 7
III.1. Execution and Timing 7
III.2. Burn-in 8
III.3. Convergence and Effective Sample Size 8
III.4. Marginal Likelihood Estimates 9
IV. Comparison of Shock Identification 12
V. Construction of Credit Data 12
V.1. Correction for Measurement Breaks 13
V.2. Comparison with Quarterly Data 14
VI. Large Residuals in the Main Model 15
VII. Robustness of the Main Model 15
VII.1. Models with more, or less, time variation 16
VII.2. Different Error Distributions 16
VII.3. Shortened Sample Period 18
VII.4. Triangular Normalization 18
VII.5. Long-term Growth Rates 19
VII.6. Non-linear Transformation 19
VIII. Models with Fewer Variables 20
VIII.1. A Small VAR Model 20
VIII.2. Monte Carlo Exercise 20
IX. Models with Quarterly Data 22
References 24



2

I. CHOICE OF PRIOR DISTRIBUTIONS

As described in the main text, the model with Gaussian errors has n2 free parameters
in A0, (M − 1)n free parameters in the Λm, and n2p free parameters in the Aj, where n
is the number of observed variables, M the number of variance regimes, T the number
of observations excluding initial conditions, and p the number of lags. The mixture of
normal models (including the baseline t model) have an additional nT parameters.

I.1. Shock Impacts A0 and Relative Variances Λi. The Gaussian prior for A0, treating
each element as independent with standard deviation 200 and means of zero off the di-
agonal and 100 on the diagonal, implicitly scales each equation to an expected prior stan-
dard deviation of 0.01. This is a standard assumption for log macro time series, and
potentially a slight over-estimate for interest rates (expressed in decimal terms, with 0.01
as 1 percent).

The Dirichlet(2) prior on λ·,i/M, a multivariate generalization of a Beta distribution,
centers the model around equal variance in each period and enforces the normalization
that the average variance equal one.

I.2. Reduced Form Coefficients BJ . For priors on the reduced form coefficients, we im-
plement dummy observations following Sims and Zha (1996).

First, a set of “Minnesota prior” dummy observations centers belief around indepen-
dent random walks in each equation, with prior precision around a mean of zero increas-
ing for further lags. In the notation of the reference, we use a tightness of 3 and decay of
0.5.

A second set of dummy observations, a “unit root prior,” expresses belief that the vari-
ables will stay at a “mean level.” We estimate the prior mean as the sample mean from
the lagged observations, which are not used on the left-hand-side of estimation. One ob-
servation expresses belief that all variables stay at the level, and another n observations
express the belief that each independently stays at the level. Again, in the notation of the
reference, we specify this with tightness 5 and persistence 1.

We turn these priors on the reduced form coefficients of Bj into priors on the structural
coefficients Aj by multiplying the dummy data, along with the actual data, by A0.

I.3. “Fat-tail shocks” ξi,t. We assume the “fat-tail shocks”1 in the normal mixture ver-
sions of the model are i.i.d. across equation and time. The former restriction is natural
because, a priori, we do not distinguish the order of equations. The latter we claim is rea-
sonable since the regime-changing heteroskedasticity controls low-frequency volatility
movements.
1The main article discusses the sense in which we could call these “parameters” or “shocks” — in a Bayesian
framework, they are treated symmetrically as random variables.
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Step Distribution Method
(1) P[θ1 | θ3, Y] Metropolis-Hastings step
(2) P[θ2 | θ1, θ3, Y] Exact conditional
(3) P[θ3 | θ1, θ2, Y] = P[θ3 | θ2, Y] Exact conditional

TABLE 1. Overview of Gibbs Sampling algorithm.

In the normal mixture case, we assume three normal distributions (based on fitting
residuals from the standard model) with prior probabilities α1, α2, α3. In the t-distributed
case, we assume a prior distribution of inverse-gamma(scale = k/2, rate = 2/k) to make
the errors t with unit scale and k degrees of freedom.

To select parameters, we estimated a maximum likelihood fit based on residuals from
the Gaussian error model. We picked standard deviations .68, 1.17, and 2.55 with prior
probabilities .59, .39 and .02 in the first case. The second case has degrees of freedom 5.7.
On the residuals, the difference in fit between the two models was only 0.22; this was a
179 log point improvement over a model of independent, unit-scale normals.

II. POSTERIOR SAMPLING METHOD

This section describes in detail the method we use to sample the posterior in the models
with normal mixture errors.2 The procedure for sampling the model with Normal errors
is nested within. We separate the parameters into the following three blocks:

(1) θ1 =
{

A0, (Λm)
M
m=1

}
. These are the contemporaneous coefficients and their scal-

ings.
(2) θ2 =

{
(Ai)

p
i=1 , (εi,t)

n,T
i,t=1

}
. These are the structural form coefficients and the struc-

tural shocks.
(3) θ3 =

{
(ξi,t)

n,T
i,t=1

}
. These are the variance adjustments (or high-frequency volatility

shocks) for each equation in each time period. We can think of them as uniformly
1 (point mass prior) if errors are Gaussian.

and proceed with a Gibbs sampling algorithm, a special case of the Metropolis-Hastings
posterior sampling algorithm that samples from the joint posterior P[θ1, θ2, θ3 | Y] by
iteratively taking samples from conditional distributions.

Our approach, outlined in Table 1, is a somewhat non-standard Metropolis-in-Gibbs
approach because the first step samples from a distribution integrated over the parameter
block θ2. This poses no additional technical challenges for proving the validity of Gibbs
sampling for delivering a random sample from the joint posterior P[θ1, θ2, θ3 | Y]. But
it does greatly enhance the efficiency of the Metropolis-Hastings step by eliminating n2p

2The next section (C) describes in more detail the computatuional implementation of the method and its
numerical convergence.



4

highly dependent parameters from the updating.3 Step (3) also technically uses a mar-
ginal posterior, but that is also an exact conditional (put differently the εit are sufficient to
define that conditional distrubtion).

The remainder of this section describes each block in further detail.

II.1. First Block (P[θ1 | θ3, Y]). This step requires a Metropolis update, and is the most
computationally intensive of the three.

Recall the structure of the model

A0yt =
p

∑
j=1

Ajyt−j + C + εt (1)

with
εi,t ∼ Normal (0, λi,tξi,t) (2)

A useful notation for each equation i of this system is

Y((A0)i,·)
′ = X(A+)i,· + Ei (3)

where we stack all the left-hand-side data into a T × n matrix Y, we select the ith row of
A0 (and then transpose it into a column vector), we collect all right-hand-side variables
into the matrix X, stack the ith rows of the Ai and constant C into the vector (A+)i,·, and
stack all the εi,t into Ei.

The first step is to augment the observed data in X and Y with “dummy observations”
that implement the prior. These observations are described in more detail in the first
Appendix section. This gives the augmented system of equations

Ỹ((A0)i,·)
′ = X̃(A+)i,· + Ei (4)

Next we need to turn Et into Gaussian errors of unit variance. One way to represent
this is to construct a matrix Ξi with diagonal elements

√
ξi,t and a matrix Li with diagonal

elements
√

λi,t and then work with

ΛiΞiỸ((A0)i,·)
′ = ΛiΞiX̃(A+)i,· + ΛiΞiEi (5)

Now it is straightforward to find the posterior mode, the posterior covariance matrix for
the coefficients of each equation (in (A+)i,·), and the marginal likelihood

P [Yt | Y0, A+, θ1, θ3]

The goal for our sampling is to evaluate P [Yt | Y0, A+, θ1, θ3]P[θ1], an un-normalized
posterior, and apply a standard Random Walk Metropolis (RWM) algorithm. In this case,
starting from some draw θ1,j, we generate a proposal θ

(k)
1 from a Gaussian distribution

3As will be illustrated below, the nT parameters of εit are linear functions of Y and the Ai, so they do not
need to be drawn separately



5

with meal θ′1 and specified variance Vθ1 , customarily estimated from an optimization to
find the posterior mode (in this case, an optimization of the model with Gaussian errors)
times a scale factor. Scale factors of 0.05-0.10 were succesful in generating reasonable
acceptance rates of about 20 to 30 percent.4

Given the proposal, we set θ
(k+1)
1 = θ′1 with probability

min

1,
P [Yt | Y0, A+, θ′1, θ3]P[θ′1]

P
[
Yt | Y0, A+, θ

(j)
1 , θ3

]
P[θ(j)

1 ]

 (6)

else we set θ
(k+1)
1 = θ

(k)
1 .

II.2. Second Block (P[θ2 | θ1, θ3, Y]). The previous section already suggested the condi-
tional distribution of A+, which is Gaussian with a block diagonal covariance structure.
More explicitly, if X̂ := ΛiΞiX̃ and Ŷ = ΛiΞiỸ((A0)i,·)

′,

P
[
(A+)i,· | A0, Λ

]
∼ Normal

((
X̂′X̂

)−1 X̂′Ŷ,
(
X̂′X̂

)−1
)

(7)

Note that if the third block is degenerate (e.g., if we want the model with Normal
shocks), we can delay this block until after completing a full sample from the first. This
is computationally convenient, as we may only want to compute impulse responses for
some subset (often subsampling) of the full sample of (A0, Λ).

In the general case, we also want to form the structural errors. In fact the object that is
more useful to us will be ui,t := εi,t/λi,t, and that is formed as

Ui = (Ξi)
−1 (Ŷ− X̂(A+)i,·

)
(8)

The implementation of this is to take the residuals from the linear regression (which is
evaluated at the conditional posterior mode of A+), subtract the correction from the de-
viation of the A+ draw from that posterior mode, and then divide by the ξit element-by-
element.

II.3. Third Block (P[θ3 | θ1, θ2, Y]). In the two cases we consider, there are simple ways
to sample the posterior distributions of the ξi,t with closed-form distributions. The im-
portant object, as stated previously, is ui,t := εi,t/λi,t, the residual before transformation
by ξi,t. We can observe that P[ξi,t | θ1, θ2] = P[ξi,t | ui,t], and the updates can be done in
parallel for each equation and each time period.

4Gelman et al. (2014) suggests that RWM jump rules for a d-dimensional posterior are optimally efficient
with covariance matrix c2Σ where c = 2.4/

√
d and Σ is an estimate of the posterior covariance matrix. For

d = 150, this formula suggests c2 = 0.0384, which is close to what we use. In this context, effiency measures
the number of MCMC draws to direct draws from the posterior to achieve a target variance. A more efficient
sampler needs fewer draws to give us the same “performance” with respect to this (important) moment.
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If ξi,t has an inverse-gamma distribution with shape α and rate β, the posterior distri-
bution conditional on ui,t is IG(α + 1/2, β + u2

i,t/2).
In the multinomial normal mixture case, which is discussed in more detail in Appendix

VII, the posterior distribution places posterior probability mass

pi =
αi ϕ(ui,t/

√
xi)/
√

xi

∑N
i=1 αi ϕ(ui,t/

√
xi)/
√

xi

on each of the N possible values xi, where αi are the prior weights and ϕ(·) evaluates the
Gaussian pdf.

II.4. A note about normalization. Our prior, because it puts positive prior means on
the diagonal elements of A0, is not invariant to permutations and scale changes of equa-
tion coefficients. As a result, we find no indication that our posterior sampling scheme
is distorting results by not eliminating draws that are permutations or sign-switches of
each other. We have verified that there are local peaks in the posterior at points in the
parameter space that permute the ordering of variables but otherwise match the param-
eter values at the global peak. The prior is smaller by more than 100 log points at these
permutations of the global posterior model, though, and this is enough to prevent even
our MCMC samples of hundreds of thousands of draws from wandering into the neigh-
borhoods of these local peaks. Nonetheless these methods, if applied on data for which
identification did not emerge as strongly, might need to test for and eliminate permuted
or sign-switched models.5

III. COMPUTATIONAL DETAILS AND ALGORITHM CONVERGENCE

This Appendix section describes, in some detail, the implementation of the posterior
sampling meethod described in Appendix B. A code supplement provides software to
replicate all of this paper’s empirical analysis in R.6

III.1. Execution and Timing. Major calculations were executed on two machines, (1) a
16-core, 2.60GHz Intel Xeon workstation and (2) a 4-core, 4.00 GHz Intel i7-4790K desk-
top. Evaluating a function proportional to the posterior of A0 and Λ conditional on the ξi,t

and integrated over the coefficients A+ (in the previous section’s notation, P[θ1, θ3 | Y])
took approximately 0.20 seconds for the full model (10 variables, 6 variance regimes) and
the full set of data. Each posterior draw required two likelihood evalulations (for the
Metropolis-Hastings step), so we could simulate about 215,000 draws per computer per
24 hours.

5This is a special case of the kind of normalization issue discussed by Hamilton, Waggoner and Zha (2007).
6Documentation within the code supplement describes, in some more detail, how to use all the programs
and recreate specific figures and tables.
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Obtaining a reliable sample from the model posterior(s) proved challenging. Our main
results are based off of pooling draws among several dispersed MCMC chains. We be-
lieve this approach should give conservative estimates of parameter variance and allay
concerns that our algorithm sampled only a small subset of the parameter space (e.g.,
around one thin peak but ignoring other high density areas).

For each model, we ran two stages of MCMC with an adaptive step in the middle.
Before any runs, we ran an optimization algorithm on the posterior of the normal errors
model and obtained posterior mode x0 and estimated inverse Hessian matrix C0. Our
first stage of MCMC consisted of several parallel chains started from dispersed starting
points x0 + N(0, C0), where N(0, C0) was a Gaussian random vector with zero main and
covariance C0. Each chain used random-walk Metropolis transition density N(0, kC0),
where k was adjusted to obtain about 20% acceptance on the Metropolis step (set around
0.04). In the second stage, we calculated a covariance matrix C1 from the pooled draws
of the first stage, picked an x1 from the highest (conditional on ξit) density draw from the
first stage, and set starting points x1 + N(0, C1) and RWM transition densities N(0, kC1)

tuned in the same way.

III.2. Burn-in. We based our estimate of appropriate “burn-in” (discarded initial draws
before sufficient convergence to the posterior) on the stability of trace plots for the log
posterior density (from the Metropolis step, so conditional on (ξit)i,t and integrated over
the (Ai)i≥1) and the parameters. Figure 1 provides some example trace plots from selected
parameters of one representative MCMC chain. The initial draw indexed 0 is more than
300,000 draws from the initialization. We take the lack of low-frequency trend in the
log posterior density (and parameter) trace plots as some evidence that the sampler has
stabilized around the highest density area of the posterior.

III.3. Convergence and Effective Sample Size. There are two general areas of concern
for an iterative simulation posterior sample:

(1) Within-sequence auto-correlation reduces the “effective” amount of independent
draws.

(2) The simulation sequences do not represent the target (posterior) distribution. Symp-
toms of this can include disagreement among chains with dispersed starting points,
or significant non-stationary “drift” in certain parmeters over draws.

The simplest, within-chain measure of “effective sample size” is the appropriate ne

such that Var[µ̂] = Var[µ]/ne, where µ̂ is the empirical mean and σ2 is the (consistently
estimated) variance of each scalar parameter. The first three columns of Table 2 (“Within
chain”) gives quantiles of these ESS statistics for each parameter and for each chain (i.e., so
the quantiles are over (number of chains) x (number of parameters) objects). The ESS for
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the impulse response parameters7 are relatively healthy, and tend to increase linearly (if
slowly) with sample size (based on incremental ESS calculations which are available upon
request). Less confidence about the sampling of certain parameters of A0 and Λ, which
might also reflect relatively poor identification, is less important for the main qualitative
results of our paper, so we find it less concerning.

The next three columns of Table 2 gives an “across chain” measure of ESS based on
the individual chain variances of each parameter relative to the pooled variances. In this
sense, it jointly addresses concerns (1) and (2). Across chain ESS is considerably lower for
all parameters, which motivates our using pooled MCMC draws for major calculations.
But ESS for the impulse responses seems relatively reasonable.

A different way of presenting the across=chain ESS measures is given in Table 3, which
reports the the Gelman and Rubin (1992) “potential scale-reduction factor” defined as
PSRF =

√
1 + m/ESS, where m is the number of MCMC chains. The PSRF can be inter-

preted as the scale by which the parameter distribution could be reduced if simulations
were continued to infinite length. The reference Gelman et al. (2014) suggests a “safe”
threshold value of PSRF < 1.1, which is mostly (but not completely) met by our impulse
response parameters. In particular, for the t-distributed, full data model, 85% of impulse
response parameters corresponding to shocks 3 (HH credit expansion), 6 (monetary pol-
icy), 9 (GZ spread), and 10 (interbank spread) are less than 1.1.

We consider these results sufficiently converged because the impulse response func-
tions are ultimately the parameters of greatest interest for our analysis. Furthermore,
pooling across several chains produces a conservative estimate of posterior variance, and
the additional posterior variance that is attributed (in our sample) to cross-chain differ-
ences is, in the scale of economic interpretation and relative to the additional uncertainty
in sampling the (Ai)i≥1 coefficients, not so large.

III.4. Marginal Likelihood Estimates. We numerically estimate the marginal data den-
sity (MDD) of various models using the modified harmonic mean formula implemented
by Geweke (1999). This approach uses the following identity for some probability density
g (with conditioning on F omitted):

E

[
g(θ)

P[Y | θ]

]
=
∫ g(θ)

P[Y | θ]P[θ]
P[θ | Y]dθ

=

(∫
P[Y | θ′] dθ′

)−1

(9)

7Hear, the impulse response parameters are the “average” response of each variable to each shock at the 1,
12, and 48 month horizons.
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Within chain Across chain
A0 Λ IR A0 Λ IR

t, full data
25% 82.99 57.82 1225.97 3.32 0.99 76.65
50% 115.75 86.10 1661.85 8.42 2.76 176.22
75% 140.62 119.66 2517.96 21.36 5.60 515.65

multinomial, full data
25% 93.76 63.89 1230.26 4.61 0.86 67.05
50% 130.36 90.50 1614.72 10.55 3.00 192.10
75% 161.48 118.10 2326.62 27.14 10.40 750.59

Gaussian, full data
25% 120.26 74.01 1086.44 8.34 4.09 539.94
50% 174.72 153.15 1457.54 18.47 10.42 1120.87
75% 211.89 205.17 2257.27 49.65 22.53 2337.71

t, data to 12/07
25% 40.87 33.97 69.11 5.57 2.26 17.59
50% 55.30 45.97 286.92 10.96 4.58 65.67
75% 70.06 60.06 918.15 24.84 8.79 254.72

TABLE 2. Distribution of effective sample size (ESS) measures of posterior
simluation convergence across variables. “Within chain” means ESS is cal-
culated within each chain, but quantiles are across chains (i.e., quantiles of a
list of (n chains) × (n parameters) values). “Across chain” ESS is calculated
using relative variance within chain and across chains. The columns are: 1)
only elements of contemporaneous coefficents matrix A0; 2) only state vari-
ances; and 3) the impulse response of each variable to each shock at the 1
month, 12 month, and 48 month horizons.

This is the inverse of the marginal data density that we are targeting As a Monte-Carlo
approximation to the above we take the following:

Ê

[
g(θ)

P[Y | θ]

]
= G−1

N

∑
i=1

g(θ(i))
P[Y | θ(i)]P[θ(i)]

(10)

where i = {1 . . . N} index individual draws.
In our specific case, we rely on the Monte Carlo method to numerically integrate over

θ̃ := {θ1, θ3} = {A0, {Λm}M
m=1, {ξi,t}n,T

i,t=1}, since we have access to the posterior density
already integrated over θ2. We set g(θ̃) = f (θ1)g(θ3), where f (θ1) is a Gaussian approx-
imation of the distribution of θ1, truncated to 100ρ% of its probability mass to control
the effects of outliers, and g(θ3) is the appropriate prior distribution for the {ξi,t}n,T

i,t=1.
We make separate estimates for each of several MCMC chains, and use the comparison
between chains to (very roughly) estimate the variance in our estimators (which, in our
experiences, tends to be underestimated by what asymptotic theory in the number of
draws and chains suggestions).

Table 4 gives some sense of the dispersion in our marginal data density estimates for
ρ = 0.95. Results for other ρ ∈ [0.90, 0.99] were very similar (i.e., within 1 log point or
less). In absolute terms, the consistency between chains is low (a 5 log point difference
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A0 Λ IR

t, full data

25% 1.13 1.44 1.01
50% 1.31 1.78 1.02
75% 1.68 2.66 1.04

% < 1.1 24% 4% 94%

multinomial, full data

25% 1.05 1.14 1.00
50% 1.13 1.42 1.01
75% 1.29 2.12 1.02

% < 1.1 38% 20% 98%

Gaussian, full data

25% 1.04 1.09 1.00
50% 1.10 1.18 1.00
75% 1.22 1.41 1.00

% < 1.1 48% 36% 100%

t, data to 12/07

25% 1.07 1.27 1.01
50% 1.21 1.48 1.04
75% 1.46 2.02 1.15

% < 1.1 29% 14% 68%
TABLE 3. Distribution of potential scale factor reduction (PSRF) measures
of posterior simluation convergence across variables. The columns are:
1) only elements of contemporaneous coefficents matrix A0; 2) only state
variances; and 3) the impulse response of each variable to each shock at
the 1 month, 12 month, and 48 month horizons. Numbers are based on
6000 draws per chain subsampled from 60,000 (first three models) and 4000
draws subsampled from 40,000 (t up to 12/07 model).

Model Chains Median Min. Max.
t, full data 6 21434 21420 21448
multinomial, full data 3 21344 21344 21345
Gaussian, full data 4 20712 20705 20714
Gaussian, full data with 3-year growth 3 20195 20170 20204
Gaussian, time-varying A0 4 19511 19500 19520

TABLE 4. Marginal data density estimates for different models and different
truncations of the Gaussian weighting distribution.

implies a substantial exp(5) ≈ 150 odds ratio between two models). But the precision is
enough to distinguish among our models, in the sense that no rankings are flipped when
we use the minimum estimate for the higher density model and the maximum estimate
for the lower density model. The last line of Table 4 shows MDD results for the model
with time variation in A0 described below in section VII.1.
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VAR Shock External Shock
FF1 FF4 FF1 (GB) FF4 (GB) RR

IP -0.041 -0.007 -0.092 -0.102 -0.024
P -0.079 -0.016 -0.058 -0.006 0.050
HHC -0.040 -0.117 -0.037 -0.119 -0.125
BC -0.084 -0.060 -0.107 -0.096 0.093
M1 -0.024 0.024 -0.075 0.023 0.032
Mon. Pol. 0.536 0.479 0.334 0.244 0.315
PCM 0.029 -0.005 0.025 -0.012 0.069
TS 0.042 0.032 0.006 0.007 0.053
GZ 0.172 0.106 0.194 0.141 0.082
ES -0.187 -0.237 -0.042 -0.068 -0.095

Start date 2/1990 2/1990 2/1990 2/1990 1/1983
End date 12/2007 12/2007 12/2007 12/2007 12/2007

TABLE 5. Correlation of external monetary instruments (as reported by
Ramey, 2016) with the posterior mode structural shocks from the t-errors
model. Green color denotes the largest correlations in absolute value.

IV. COMPARISON OF SHOCK IDENTIFICATION

Table 5 shows the correlation of several leading monetary instruments with the struc-
tural shocks estimated in our model (taken from the posterior mode of our t-errors model).
Formally, this is related to the regression one would run to rotate the matrix of shocks in
a “Proxy SVAR” model. The shocks are surprises to the current month and three-month-
ahead Fed Funds futures (FF1 and FF4), the same shocks with the gap between Greenbook
and private-sector forecasts projected out (the same shocks with “(GB)”), and a version
of the Romer and Romer (2004) narrative shock constructed by Johannes Weiland. All
data are as constructed and compiled by Ramey (2016). All versions of the instrument
correlate most with the monetary shock, though there is some persistent ambiguity about
the correlation with spread shocks.

V. CONSTRUCTION OF CREDIT DATA

This section provides more details about our selection and treatment of aggregate credit
data and a comparison with the quarterly frequency data available in the U.S. Flow of
Funds. Later, in Appendix IX, we investigate how switching between these two data
sources changes our main results.

For our main VAR analysis, we use total loans data from the Federal Reserve’s H.8
“Assets and Liabilities of Commercial Banks in the United States” dataset. These data are
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Date Consumer RE C & I Reason
Oct. 2006 -3.1 -144.6 -3.1 Acquisition from nonbank institution
Mar. 2007 0.0 80.6 0.0 Conversion to thrift bank
Oct. 2008 -15.5 -192.6 -1.6 Acquisition from nonbank institution
Nov. 2009 0.0 -89.0 -1.8 Acquisition from nonbank institution
Mar. 2010 -90.9 -7.2 -7.7 Adoption of FAS 166 Accounting Standards (1)
Apr. 2010 -272.7 -21.5 -23.2 Adoption of FAS 166 Accounting Standards (2)

TABLE 6. Changes made to commercial bank credit data, in consumer
(Cons.), real estate (RE), and commercial & industrial (C & I) categories,
based on release notes. Units are millions of dollars. “Household” in the
dataset is the sum of consumer and real estate; “Business” is C & I.

compiled from a sample of approximately 875 domestically chartered banks and “foreign-
related institutions” as of the most current release.8 These constitute, to our knowledge,
the most complete monthly or higher frequency source of historical credit data in the
United States. There are conceptual barriers to extrapolating conclusions with these data
to conclusions about household credit and firm credit more properly defined. Our mea-
sure of “household” credit includes both houshoeld and commercial real estate, and our
measure of “firm” credit includes only commercial and industrial loans. Additionally the
subset of credit issued by commercial banks may not be representative of all credit in the
economy. In spite of these obstacles, we argue that a commercial bank data series with
some corrections for large “measurement breaks” (including bank mergers, accounting
standards changes, and other “non-fundamental” sources of variation) closely matches
the dynamics of more precisely defined, lower-frequency measures. Thus we expect (and
find) that results would be very similar using a different, quarterly-frequency dataset.9

V.1. Correction for Measurement Breaks. At several points in the raw credit data, we
found big outliers in growth rates that corresponded to special notes in the H.8 data re-
leases. Under the assumption that these observations do not represent relevant variation
in credit conditions, we manually “corrected” the data by adding or subtracting the quan-
tities attributed to these events in the documentation (Table 6).10 Note that these changes
affect the entire time series after the break date in terms of levels.

8A full documentation can be found at https://www.federalreserve.gov/releases/h8/About.
htm.
9An alternative option we do not pursue is interpolating the quarterly data with these monthly estimates.
The Federal Reserve’s G.19 “Consumer Credit” series, for instance, does something similar. We have (stan-
dard) concerns about endogeneity issues in time-series regressions.
10The corrections for March and April relate to the same event, which ocurred in the last week of March.
Our monthly data are simple averages of these weekly data. So our solution was to make 1/4 of the correc-
tion in March (i.e., to correct for 1/4 of the averaged data which was affected) and 3/4 of the correction in
April. Figures 2 and 3 show that the resulting data series look reasonably smooth.

https://www.federalreserve.gov/releases/h8/About.htm
https://www.federalreserve.gov/releases/h8/About.htm
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Figures 2 and 3 show these changes in log difference units for household and busi-
ness credit measures respectively. It is worth noting that our correction does not com-
pletely smooth over the accounting change in April 2010, presumably because there is
some change in balance sheets in anticipation in the previous period. We suspect that
the model with normal mixture errors would not be very affected by one relatively small
outlier, but an alternate approach that we have not yet implemented is to correct around
a linear trend for that three month stretch.

In a model with Gaussian errors and heteroskedasticity, the pre-correction data series
generated outliers up to 7 standard deviations and consequently had a significant ef-
fect on model fit (entirely removing our result of a weakly significant negative output
response to a household credit shock).

V.2. Comparison with Quarterly Data. Many other studies have used the quarterly credit
series published in the Federal Reserve’s Z.1 “Financial Accounts of the United States.”
These data are separate for the balance sheets of “Households and nonprofit organiza-
tions,” “Nonfinancial corporate businesses,” “Nonfinancial noncorporate businesses,”
“State and local governments,” the “Federal government”, “Domestic financial sectors,”
and the “Rest of the world.” The Bank for International Settlements (BIS), in its multi-
country panel dataset, reports versions of the “Households and nonprofit organizations”
and “Nonfinancial corporate business” series adjusted for breaks.

Figure 4 compares measures of household credit in our dataset versus the single series
in the quarterly dataset. In general, we find that the sum of consumer and real estate credi
closely approximates the dynamics of the quarterly series, though perhaps with an extra
large contraction after the 2008 financial crisis. A series constructed with just consumer
credit (in blue), while it does avoid the issue of including real estate loans to businesses,
seems to grow at a signficantly slower rate and include different medium-frequency (3-4
year) cyclical patterns.

Figure 5 plots a similar comparison for the business credit series, but with multiple
options at the quarterly frequency. The monthly data (in red) does not so clearly approx-
imate the blue series of nonfinancial corporate credit, which is favored by the BIS (and
other panel studies which use that dataset). It does, however, capture some of the same
long-term trends (including accelerations and slow-downs around business cycles), and
much more closely approximates the nonfinancial noncorporate series (in green) and the
average between the two quarterly series (in orange).
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Sorted by εit Sorted by εit/
√

λit
Month Shock εit dyi,t Month Shock εit/

√
λit Expected count

5/1980 6 -22.627 -0.067 10/2001 5 -12.667 0.109
10/2008 9 18.275 0.023 5/1980 6 -11.134 0.221
10/2008 10 10.840 0.019 9/2001 5 10.897 0.248
3/1980 6 10.409 0.031 10/2008 9 10.875 0.251
2/1981 6 -10.135 -0.030 2/2008 6 -9.082 0.668
9/2008 1 -9.875 -0.043 9/2008 1 -8.919 0.736

10/2001 5 -9.766 -0.047 10/2008 10 8.297 1.083
5/1981 6 9.312 0.028 7/2002 9 8.014 1.302
7/1974 10 8.950 0.016 8/2007 10 7.627 1.691
8/2011 5 8.507 0.041 8/1974 8 -7.518 1.824
TABLE 7. The ten largest “shocks” in the model (evaluated at the posterior
median), as defined in two different ways. The left panel ranks shocks by
the size of the structural residual (the “economic size” of the shock), and
gives the impact on the same numbered variable as dyi,t. The right panel
ranks shocks by the size of the residual scaled by the regime variance. These
should be draws from a t(df = 5.7) random variable, so the final column
gives the expected count of a draw this large in absolute value over 5000
observations.

VI. LARGE RESIDUALS IN THE MAIN MODEL

Table 7 displays the 10 largest residuals unscaled by λ, on the left, and the 10 largest
scaled (i.e. “surprise units”) residuals on the right. The two 9/11 residuals are more
prominent as surprises.

Five of the ten biggest surprises are in 2007-8. This concentration in time suggests that
our specification of variance regime periods could be improved.

The far right column of the table shows that these residuals, though far out in the tails
of the t(5.7) distribution we have assumed for them, are not totally unexpected. How-
ever, with the approximately 5000 residual values from our model, the t(5.7) distribution
makes the expected number of surprise residuals as big as 7.52 only 1.8, whereas we have
estimated 10 of this size. This discrepancy suggests another direction in which our model
specification could be improved.

VII. ROBUSTNESS OF THE MAIN MODEL

Here we discuss small perturbations of the paper’s main VAR specification. These in-
clude changes to the distribution of structural shocks, the sample period, and the method
of identification, the assumed linear specification of credit growth rates
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VII.1. Models with more, or less, time variation. The first and last lines of the main
paper’s Table 3 display MDD’s for Gaussian-error, reduced form VAR models. The first
line is for a model that keeps both Σ and A(L) constant over the whole sample — i.e., fits
a reduced form VAR with constant coefficients. It uses the same type of Minnesota prior
as our main model, but we experimented with the prior parameter values to see if they
would improve fit. The MDD reported is the best we found in these experiments. The
difference between the reported MDD and what we found with the prior parameters the
same as in the main model was 14 log points. As note in the text, comparing the MDD for
this model with that for the main model’s Gaussian-error version provides a measure of
how important it is to model fit to allow for time-variation in variances. Table 4 shows the
uncertainty in the MDD calculations arising out of the MCMC computations, as discussed
in appendix section III.4.

The last line of Table 3 is for a model that allows completely different reduced form
VAR’s in each of our regime periods. We use our Minnesota prior for each of these peri-
ods. Because the periods are relatively short, the parameter estimates are uncertain and
strongly affected by the prior. Nonetheless, if there were sharp variations in A(L) across
regimes, this model would be expected to fit better than our main model, which it does
not. Here again we experimented with parameters of the prior and display the best MDD
we found, which differs from that obtained with the prior parameters in our main model
by 43 log points.

We also looked at a Gaussian-errors model that relaxed our main model’s restriction
that A0 remains constant across regimes, while preserving the assumption that other co-
efficients in A(L) are constant. This model relaxes the main model’s constraint that Σt,
the reduced form residual covariance matrix, must have the same eigenvectors in each
regime. It does, though, imply constraints on the nature of variation in the reduced form
coefficients and in the impulse responses, and these constraints have no simple interpre-
tation. Because the model leaves A0 unidentified, we constrained it to take triangular
form (which puts no constraint on Σ). The reasons for working with this model were that
it allowed a form of time variation in A(L) without adding nearly as many parameters as
did the completely unrestricted model, and that it could be estimated with minor modi-
fications of our existing code. The model did not fit well. Its MDD values are shown in
appendix Table 4.

VII.2. Different Error Distributions. Figures 6 and 7 present the full full impulse re-
sponses for the models with t and normal error distributions, respectively. Most of the
impulse responses are similar, and in most cases the error bands are wider for the normal
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model than for the t model. This is what would be expected if the t model were cor-
rect, since in that case the normal model would still give consistent estimates, but would
provide less efficient estimates.

There are a few notable differences between results from the models with Gaussian
and t-distributed shocks. The differences between the two models can be seen in Figure
8, which compares the median impulse responses for IP, HHC, BC, R, PCM, GZ and ES
to shocks 3 (HHC), 4 (BC), 6 (R, or monetary policy), 7 (PCM), 9 (GZ) and 10 (ES), with
each shock scaled so that its largest initial component is the same size for both the t and
Gaussian models. The differences between them are mainly within the error bands, with
four major exceptions. The normal errors model puts more posterior probability on a
nonzero output effect for the household credit shock and the interbank spread shock. The
output response of the former, with normal errors, is comfortably significant (less than
zero) with 68% bands and barely significant with 90% bands (which are not pictured).
The output response of the latter is comfortably significant, from the first 18 months of
response, at both levels.

The Gaussian errors model shows a substantial negative response of output to shock 7
(PCM), whose largest component is a persistent increase in commodity prices. The shock
also induces a modest, but significantly positive, upward movement in BC. Since this
shock moves PCM immediately and BC with a delay, it is best interpreted as a commod-
ity price shock, not an autonomous credit shock. It nonetheless implies a component of
variation with a negative correlation between business credit and later output growth.

The normal model places considerably less posterior probability on a negative output
response for a business credit shock, though in this case the t model’s response is well
within the normal model’s error bands.

Note that these models are not simply alternative views of the data. The t-distributed
errors model fits better than the normal model by a wide margin. To the extent that the
Gaussian and t models differ, this is likely due to the Gaussian model being distorted by
large outliers that are downweighted in the t model.

We also experimented with a mixture-of-normal errors model, which is not discussed
in the main paper and is included in this appendix mainly as a robustness check. It sets
the structural residual εi,t ∼ N(0, λi,tξi,t) with

ξi,t = βi with probability αi for i ∈ {1 . . . k} (11)

We choose k = 3 and set β1 < β2 < β3, which provides an intuition of “low, medium,
and high” variance options for each observation. Based on maximum likelihood esti-
mation with residuals from the normal-errors model, we set βi = {.46, 1.37, 6.50} and
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Heteroskedasticity Model
4 (BC) 6 (R/MP) 9 (GZ) 10 (ES)

Cholesky
Model

4 (BC) 0.996 0.159 0.148 0.135
6 (R/MP) -0.008 0.883 -0.016 0.114

9 (GZ) 0.005 0.002 0.943 0.165
10 (ES) -0.009 -0.003 0.017 0.916

TABLE 8. Correlation among shocks (indexed by number, named in the
columns) in two triangularized models, without regime heteroskedasticity
(rows) and with regime heteroskedasticity (columns).

αi = {.59, .39, .02}. The normal-mixture model produced impulse responses and fit in
between the Gaussian and t models for the most part (Figure 9).

VII.3. Shortened Sample Period. Figure 10 shows the full impulse responses from the
t model estimated with data through 12/07. The impulse responses are quite similar to
those from the full sample, with no differences that merit singling out. This suggests that
the impact of spread shocks on macro variables is not special to the 2008-9 crash and was
estimable from earlier data.

VII.4. Triangular Normalization. Figures 11 and 12 show the full impulse responses of
two Gaussian-errors models with triangular restrictions on short-run responses. The for-
mer uses these restrictions for identification (i.e., is a standard “Cholesky” recursive VAR
with no heteroskedasticity). The latter includes heteroskedasticity and imposes short-run
restrictions as over-identifying.

The Cholesky model includes a sizable long-term output contraction (about 0.4% over
48 months, explaining 13.0% of variance at that horizon) in response to a business loans
shock. This shock, like the corresponding shock in the baseline (no restrictions, with het-
eroskedasticity) model, includes some monetary tightening in the response to this fourth
shock. The modest tightening of monetary policy and credit spreads suggests that this
shock at least partially represents business (but not household) borrowing in the midst of
both monetary stringency and financial stress. On the other hand, the overidentified (tri-
angular model with regime-switching variance) model produces impulse responses that
look much like their counterparts in the unrestricted Gaussian-errors model.

Table 8 sheds some light on the discrepancy by reporting the correlations between
shocks 4 (BC, business credit), 6 (R, monetary policy), 9 (GZ, corporate bond spread),
and 10 (ES, inter-bank (Eurodollar) spread) in the two models. The business credit shock
in the plain, Cholesky-identified VAR (rows) “absorbs” small amounts of each of the three
interest rate shocks in the model with regime switching heteroskedasticity. Breaking this
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down by regime illustrates the pattern more closely. In the period of aggressive Fed-
eral Reserve action (October 1979 to December 1982), the Cholesky VAR’s business loans
shock is very closely correlated with the other model’s monetary policy shock (0.467). In
the financial crisis and Great Recession (January 2008 to December 2010), the Cholesky
VAR’s business loans shock is positively correlated with the corporate bond and inter-
bank shocks (0.644 and 0.620 respectively) and negatively correlated with the monetary
policy shock (-0.206) to partially offset the effect. In this context, identification through
heteroskedasticity delivers a different, and perhaps a priori more reasonable, separation
of policy, financial stress, and credit expansion effects than a simple triangular orthogo-
nalization.

VII.5. Long-term Growth Rates. Our estimated system uses 10 months of lagged values,
or with quarterly data four lags. Of course an autoregressive system with 10 lags can cap-
ture dynamics that operate over much longer spans of time than 10 months, but certain
kinds of dynamics, e.g. pure delays of over 10 months, cannot be well approximated by
a 10-lag autoregressive system. As a check, we try estimating our main (Gaussian errors)
specification with three-year growth rates of household and business credit instead of lev-
els. Figure 13 displays the impulse responses of output, prices, and the differenced credit
aggregates in this model’s two “credit aggregate” shocks. The household credit shock in
this model explains a large proportion of long-term forecast errors in the growth rate of
credit (29% at 5 years), but still only a modest amount (6%) of GDP variation at the same
horizon.

We can directly and easily compare the fit of this model and the original models through
posterior odds conditional on initial conditions.11 The differences model fits considerably
worse than the levels model (see Table 4). So even if the model did imply a very strong
connection between credit growth and recessions, we would have strong evidence to fa-
vor the original model.

VII.6. Non-linear Transformation. Potentially our method is failing to capture a positive
long-term relationship because it considers only linear effects. This implies that small
credit movements have effects in proportion to large ones, and that negative shocks have
an equal and opposite effect as positive shocks.

While extensive exploration of possible nonlinearities in the model would have to be
a new research project, we did try applying a smooth non-linear transformation to the 3-
year growth rates of credit that allowed increased weight on large positive growth rates.
The idea was to explore the hypothesis, put forward in other research, that modest credit

11The Jacobian of any linear transformation like this is one. But now, if the model is with three three-year
growth rates, we are implicitly conditioning on the values of {c0 − c−36, c−1 − c−37, . . .}, where ct is the
credit variable. This is different but not higher dimensional information.



19

expansion has no negative effects, while unusually rapid credit expansion does create
future problems. We considered transforming credit growth according to the function

f (ct) =


ct if ct < a
α1 + α2ct + α3c2

t if a ≤ ct < b
βct if ct ≥ b

for ct as credit growth rates, b > a > 0, and with the coefficients αi and β calibrated to
make slopes and levels continuous at a and b. This allowed the “extra weight” f ′(ct) to get
larger without getting unboundedly big. We looked for a posterior mode optimizing over
a, b, and β, as well as the other parameters of the model.12 In all optimization exercises to
find the posterior mode of such a model, the data favored models without any nonlinear
transformation.13

VIII. MODELS WITH FEWER VARIABLES

In this section, we estimate a VAR model with only the following variables: industrial
production, the price level, and the two credit variables. It is possible to obtain results
suggesting that credit shocks lead to long-term output contractions. We argue based on
Monte Carlo simulations (in analogy with our analysis of single-equation models in Sec-
tion IV) that the small-system results are consistent with our main, larger model.

VIII.1. A Small VAR Model. Figure 14 presents the impulse response of the aforemen-
tioned four-variable model, identified with heteroskedasticity. In such a model, a shock
associated a persistent increase in business loans is associated with a greater than half
a percentage persistent reduction in output. This shock (at posterior mode parameters)
accounts for 58% of business loan variation and 7% of output forecast error variation in
one-quarter-ahead forecasts, and 22% and 8% respectively in five-year-ahead forecasts.
This is considerable relative to the fraction of output variation produced by the corre-
sponding shock in the 10-variable model.14

If one estimates a four-variable VAR without regime-changing heteroskedasticity (and
identifies structural shocks with Cholesky ordering), the results are qualitatively similar
to those in Figure 14 but with tighter error bands.

VIII.2. Monte Carlo Exercise. We can shed some light on this by simulating data from
the posterior mode point estimates of the large model, then estimating the same small

12Wwe used a coarse grid over a and b (based on matching quantiles of the observed distribution) and
searched continuously over β, with an exponential prior with parameter 2
13In this specification, β1 = 1, α1 = α3 = 0, α2 = 1.
14In the larger model, two shocks together explain approximately the same first period variance. One is the
4th shock (which explains 38.8% of variance at the posterior median) and the other is the 2nd shock (which
explains 26.2%). Neither produces a negative correlation between business credit and output.
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Proportion β̂ < 0

HH Credit Bus. Credit

monthly 0.21 0.75
quarterly 0.29 0.75

annual 0.50 0.75

Proportion β̂ < −.005

HH Credit Bus. Credit

monthly 0.00 0.11
quarterly 0.02 0.30

annual 0.16 0.45

TABLE 9. Probability, in simulated draws from the posterior distribution of
the t-model for the data, of a negative or “economically significant” (more
than 0.5% negative) 3-year response of IP to a positive credit shock in a 4-
variable VAR. Based on 6,000 simulated data series. Parameter draws that
implied explosive behavior were treated as not having β̂ < 0, so these pro-
portions are lower bounds.

models on the simulated data. Like in Section IV, we simulated 6,000 samples from the
posterior mode of the t-errors model. and, for each artificial time series, estimated a
four-variable Cholesky-identified VAR (including output (IP), the price level (P), house-
hold credit (HHC), and business credit (BC)).15 We obtained negative and “large” (greater
than a 0.5% output contraction) response to a one-standard deviation credit shock with
the probabilities shown in Table 9. These calculations are done with data at different
frequencies, aggregated by taking averages of the monthly data our model generates.
Observing negative point estimates (suggesting a negative impulse response of output
to credit shocks) is not so uncommon, particularly as the frequency of data is reduced to
annual.

The posterior simulations show that pattern of results observed in the real data is not
unlikely, with 11% of samples showing a strong negative effect of BC shocks on output
and none showing an effect of HHC shocks on output. With more highly time aggregated
data, as has been used in some previous studies, our model implies that the probability
of finding BC shocks predict substantially negative future output growth is stronger.

15These are the point estimate impulse response from lower triangular (Cholesky) identified VARs, with
“standard” coefficient shrinkage, unit root, and covariance priors.
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IX. MODELS WITH QUARTERLY DATA

Figure 15 displays the results from estimating our model with a normal error assump-
tion on quarterly averaged data. With quarterly data, the monetary policy shock (MP)
and the interbank spread shock (ES) are not well separated. The monthly data show in-
terest rates responding with some delay, but within a couple of months, to the ES shock.
The quarterly data show the interest rate response to thes ES shock as larger and within-
quarter. The monthly data show the interbank spread responding to the MP shock, but
not as strongly as to the ES shock. In the quarterly data, the MP shock accounts for most
of the variance of the interbank spread (ES) variable. Because the quarterly data seem to
partially confound the monetary policy shock with the spread shock, we omit detailed
discussion of the rest of the impulse responses.

Nonetheless it is worth noting that in Figure 16, where we have substituted the Flow
of Funds versions of our credit aggregates for our own measures, there is evidence that
the definition of the credit aggregates does matter. In the flow of funds results, the HHC
shock moves the price level down by a statistically significant, but small, amount, and
immediately lowers the term spread without much immediate effect on R — i.e. it lowers
long rates. The shock is followed with a delay by negative output growth. With our
data quarterly averaged, neither the HHC or BC shocks (which in the monthly data we
have interpreted as “credit aggregate shocks”) is followed by substantial negative output
growth, and the simultaneous jumps in P and TS in response to the HHC shock that
appear in the flow of funds data results are not present.

These results make clear that the Flow of Funds aggregates and the data we are us-
ing behave somewhat differently. It is possible, though, to reconcile these results with
some more qualitative aspects of our main model’s story. The credit shocks in the model
estimated with Flow of Funds data explain only small fractions of credit and output vari-
ance. At the 20 quarter (5 year) horizon, this HHC shock explains only 2.7% of forecast
error variance in HHC itself and only 7.6% of forecast error variance in IP. Moreover, both
credit shocks (to HHC and BC) spike in relative variance during the variance regime of
the extreme monetary policy (Q1 1980 to Q4 1982) rather than the Great Moderation, in
build-up to the Great Recession (Table 10).
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Shock Q1 1973 –
Q4 1979

Q1 1979 –
Q4 1982

Q1 1983 –
Q4 1989

Q1 1990 –
Q4 2007

Q1 2008 –
Q4 2010

Q1 2011 –
Q1 2015

HHC 0.73 2.89 1.03 0.77 0.27 0.29
BC 0.19 2.16 1.30 0.90 1.07 0.36

R (MP) 1.81 3.13 0.46 0.06 0.51 0.01
TABLE 10. Selected relative variances in a model estimated with quarterly
credit data from the Federal Reserve/BIS.
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FIGURE 1. Trace plots for log posterior density (top left); the 6th diagonal
entry of A0, corresponding to the monetary policy equation (top right); the
variance of the 6th (monetary policy) shock in the first period (bottom left);
and the first auto-regressive coefficient for the 6th shock (A1[6, 6], where the
square brackets index the matrix). The black line plots every 1,000th draw,
and the blue line is a two-sided moving average of 1,000 draws subsampled
from every 10,000.
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FIGURE 2. Log differences of household credit series before (green) and af-
ter (blue) corrections. Vertical red lines denote the dates of changes.

2008 2010 2012 2014 2016

−
0.

02
0.

02
0.

06

FIGURE 3. Log differences of business credit series before (green) and after
(blue) corrections. Vertical red lines denote the dates of changes.
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FIGURE 4. Comparison of household credit series, in log levels normalized
to zero at the beginning of 1973. The data series we use in our main analysis
is in red.
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red.
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FIGURE 6. Impulse responses to the ten orthogonal structural shocks in the
t errors model over 60 months, with 68% (dark blue) and 90% (light blue)
posterior uncertainty regions. Scaled to an “average” period with unit scale.
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FIGURE 7. Impulse responses to the ten orthogonal structural shocks in the
Gaussian errors model over 60 months, with 68% (dark blue) and 90% (light
blue) posterior uncertainty regions. Scaled to an “average” period with unit
variances.



Figures 29

IP

−0.010

−0.005

0.000

Monetary Policy HH Credit Firm Credit GZ (Stress 1) ES (Stress 2)

P

−0.010

−0.005

0.000

0.005

HHC

−0.04

−0.02

0.00

BC

−0.04

−0.02

0.00

0.02

R
0.000

0.005

GZ

−0.0005
0.0000
0.0005
0.0010
0.0015
0.0020

ES

0.000

0.001

0.002
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in blue, t model in red, scaled to have identical sized initial shocks in HHC,
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mode and median respectively, and dotted lines are 68% bands.
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FIGURE 9. Impulse responses to the ten orthogonal structural shocks in the
model with discrete normal mixture distributed errors over 60 months, with
68% (dark blue) and 90% (light blue) posterior uncertainty regions. Scaled
to an “average” period with unit variances.
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FIGURE 10. Impulse responses to the ten orthogonal structural shocks in
the t errors model, estimated with data up to December 2007, over 60
months, with 68% (dark blue) and 90% (light blue) posterior uncertainty
regions. Scaled to an “average” period with unit scale.
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FIGURE 11. Impulse responses to 10 structural shocks in a Cholesky-
identified VAR with constant structural variances over 60 months, with 68%
(dark blue) and 90% (light blue) posterior uncertainty regions.
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FIGURE 12. Impulse responses to 10 structural shocks in a model with tri-
angular restrictions and heteroskedasticity over 60 months, with 68% (dark
blue) and 90% (light blue) posterior uncertainty regions.
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FIGURE 13. Impulse responses to candidate credit growth shocks in a
(Gaussian errors) model with 3 year growth rates of credit aggregates.
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FIGURE 14. Impulse responses to four structural shocks in a “small model”
over 60 months, with 68% (dark blue) and 90% (light blue) posterior uncer-
tainty regions. Scaled to an “average” period with unit variances.
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FIGURE 15. Impulse responses with quarterly-averaged data. Het-
eroskedasticity with change dates as in the main monthly model. Normal
errors assumption.
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FIGURE 16. Impulse responses with quarterly-averaged data and Flow of
Funds credit series. Heteroskedasticity with change dates as in the main
monthly model. Normal errors assumption.
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