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A Transition Model for Finite Element Simulation
of Kinematics of Central Nervous System

White Matter
Yi Pan, David I. Shreiber, and Assimina A. Pelegri∗

Abstract—Mechanical damage to axons is a proximal cause of
deficits following traumatic brain injury and spinal cord injury.
Axons are injured predominantly by tensile strain, and identifying
the strain experienced by axons is a critical step toward injury pre-
vention. White matter demonstrates complex nonlinear mechani-
cal behavior at the continuum level that evolves from even more
complex, dynamic, and composite behavior between axons and the
“glial matrix” at the microlevel. In situ, axons maintain an undu-
lated state that depends on the location of the white matter and the
stage of neurodevelopment. When exposed to tissue strain, axons
do not demonstrate pure affine or non-affine behavior, but instead
transition from non-affine-dominated kinematics at low stretch lev-
els to affine kinematics at high stretch levels. This transitional and
predominant kinematic behavior has been linked to the natural
coupling of axons to each other via the glial matrix. In this pa-
per, a transitional kinematic model is applied to a micromechanics
finite element model to simulate the axonal behavior within a white
matter tissue subjected to uniaxial tensile stretch. The effects of the
transition parameters and the volume fraction of axons on axonal
behavior is evaluated and compared to previous experimental data
and numerical simulations.

Index Terms—Finite element methods, kinematics, transition
kinematic model, white matter.

I. INTRODUCTION

AXONAL injury is a primary cause for functional deficits
following traumatic brain injury (TBI) and spinal cord

injury (SCI), and therefore represents a critical target for in-
jury prevention and treatment. Mechanical strain has been
identified as the proximal cause of axonal injury, while sec-
ondary ischaemic and excitotoxic insults associated with the pri-
mary trauma potentially exacerbate the structural and functional
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damage [1], [2]. Many studies have attempted to identify the
states of stress and strain in white matter using animal and
finite element models and, sequentially, establish injury crite-
ria through the use of actual accident data [3]–[11]. The ma-
terial models employed in these finite element simulations of
central nervous system (CNS) soft tissues heavily depend on
phenomenological representations. The accuracy of these sim-
ulations depends not only on correct determination of the ma-
terial properties, but also on precise depiction of the tissues’
microstructure.

There have been several studies that have examined the kine-
matic response of axons in white matter axons to understand
the micromechanical behavior and how the axons contribute
to bulk, continuum level properties. Kinematic properties have
been inferred from changes in axon morphology when the tis-
sue is exposed to controlled stretch. The first studies by Bain
et al. [12], using a guinea pig optic nerve model, demon-
strated that: 1) axons maintain an initial undulated state;
2) axons straighten during stretch; and 3) axons do not demon-
strate pure affine or non-affine behavior, but instead transition
from non-affine-dominated kinematics at low stretch levels to
affine kinematics at high stretch levels. Affine here (also in [12])
refers to the perfectly bonded of the interface of two different
constituents within a composite.

This transition and the predominant kinematic behavior were
then linked to the natural coupling of axons to each other via the
glial matrix, especially oligodendrocytes that interconnect ax-
ons through myelination [13]. Axon kinematics was evaluated in
the chick embryo spinal cord at different stages of myelination.
Early in development, before significant myelination and, pre-
sumably, coupling via oligodendrocytes, non-affine kinematics
dominated. As myelination increased, affine behavior became
more prevalent [13] and tissue tensile stiffness also increased.
When myelination was disrupted in the developing chick em-
bryo by killing glia or by interfering with the connections of
oligodendrocytes to axons, a significant decrease in the stiffness
and strength of the tissue was observed [14].

These results support the notion that the degree of coupling
within the tissue affects the continuum mechanical properties.
Additionally, the degree of undulation and interaxonal coupling
will also affect the strain experienced by an individual axon,
and, therefore, when it becomes injured. Given this complex
response of fibers within axon bundles in white matter, a mi-
crostructural finite element model (FEM) is necessary for an
accurate representation of axon mechanics. A previous study
implemented a representative volume element (RVE) approach
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to axon mechanics [10], but assumed fully coupled kinematics
and produced results that did not match well with experimental
observations. Herein we present an approach to generate and
implement an RVE with adjustable kinematics. We adapted the
transitional kinematic model (TKM) proposed in [12] to a mi-
cromechanical finite element analysis. In this TKM, when the
undulation is greater than a critical value, the axon and matrix
deform non-affinely. When the undulation is less than the crit-
ical value, the axon partially switches to deform affinely with
the matrix.

II. TRANSITIONAL KINEMATIC MODEL

A kinematic switching model was implemented based on
previous kinematic interpretations of experimental results of the
mechanical behavior of CNS white matter. The ABAQUS finite
element package [15] and python scripting language are used for
the analyses. The model assumes that the fraction of the axonal
and glial populations experiencing affine deformation increases
with applied elongation [12]. The microstructural behavior of
tissue component was successfully represented by a transitional
model that assumes a gradual coupling of the glial matrix to the
undulated axons, where each axon displays a unique tortuosity
at which it transitions from non–affine to affine behavior.

The pure affine model, the non-affine model, and the mi-
crostructural transitional model are briefly described herein. For
an undulated axon, the tortuosity (T) is defined as the ratio of
the true length and end-to-end length of an undulated axon. Fol-
lowing Bain et al.’s work, the geometry of an undulated axon
can be modeled as a periodic wave [12]:

y(z) = A0 cos
(

2πz

P0

)
(1)

where A0 and P0 are the amplitude and period of the wave and
z is the axis along the length of the axon. For the pure affine
model, the tortuosity of the deformed axon can be approximated
based on the applied stretch level (λ) and its initial tortuosity
(T0)

Tt = T0

[
1
λ3 +

1
T 2

0

(
1 − 1

λ3

)]1/2

. (2)

For the non-affine model,

Tt =
1
λ

T0 , for λ < T0 and Tt = 1.0, for λ ≥ T0 (3)

In the case of the TKM, the critical transitional tortuosities
of all axons within the tissue constitute a transitional interval,
[T1 , T2], defined by a lower bound T1 and an upper bound T2 .
For T < T1 , axons are coupled to the surrounding cells, while
for T > T2 , axons are not affected by the glial cell matrix and are
uncoupled to them. For the guinea pig optic nerve white matter,
the lower and upper bounds are 0.98 and 1.08, respectively.

To implement the transitional model in a finite element frame-
work, each axon was assigned a tortuosity value drawn randomly
from a uniform distribution in the interval, [0.98, 1.08], at which
it switches from non-affine to affine. Since tortuosity can never
be lower than 1.0, which corresponds to a perfectly straight
axon, the percentage of axons that will never switch to affine is

TABLE I
PERCENTAGE OF TIE CONSTRAINT OF THE AXON/EXTRACELLULAR MATRIX

INTERFACE AT DIFFERENT STRETCH LEVELS

20%, no matter how much stretch is applied. The histogram of
axon tortuosity in [12] is used to approximate the percentage of
axons that may switch from non-affine to affine at a given stretch
level. First, a uniform distribution is mapped onto the distribu-
tion of axons with a tortuosity between 1.0 and1.08, at which
an axon possibly switches. Second, to approximate the number,
the histograms are binned into 0.02 bins, i.e., [1.0, 1.02], [1.02,
1.04], [1.04, 1.06], [1.06, 1.08], with corresponding possibility
of switching of 100%, 75%, 50%, and 25%. Using data from the
histograms of different stretching ratio, the percentages of axons
that have been coupled to the cellular matrix at stretching ratio
of 1.0, 1.06, and 1.12 are 8%, 20%, and 44%, respectively, as on
Table I. In a FEM application, when the axons and matrix are
partially coupled, “tie” constraints are applied to the nodes of a
certain percentage of the axon/matrix interface according to the
axon’s current tortuosity. The rest of the axon/matrix interface
is left uncoupled for the frictionless contact.

III. MICROMECHANICS-BASED FINITE ELEMENT METHOD

By taking the advantage of the known kinematics of axons
and surrounding cellular matrix, one may implement the model
into a FEM to investigate the stress and strain fields of the tissue
that have been found to be responsible for mechanical damage to
the axons [1]. The stress and the strain fields of a given domain
can be simulated with direct 3D finite element analysis [10],
[11], [16], if the constituents’ mechanical properties and proper
boundary conditions (BCs) are known. If the domain is suitably
selected so that it reflects the microstructure of the soft tissue,
i.e., the geometry and distribution of the axons and the matrix,
the macroscopic material properties can thus be derived from the
response of the selected domain, which is called a representative
volume element (RVE) of the heterogeneous material, see more
discussion on RVE size and its representation in [17].

In this simulation, an RVE that consists of six serial seg-
ments of undulated axons and matrix for the white matter mi-
crostructure is generated (see Fig. 1). From simulations in [10],
we set our initial volume fraction (vf ) of axons at 53%. Each
segment can be prescribed a different degree of tortuosity by
defining the undulation of the segment with a cosine wave. Seg-
ments one through six having representing tortuosities 1.17,
1.05, 1.26, 1.13, 1.09, 1.21, respectively. The resulting aver-
age tortuosity of the whole RVE is 1.13, which was chosen to
match the data described in [12]. Three different RVEs (A, B,
and C) are statistically generated each having unique tie locales
(see Fig. 1). Axons and glia matrix are each represented by the
Ogden isotropic, large deformation, hyperelastic material model
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Fig. 1. Illustration of tie locations along the axonal direction for three RVEs
(A, B, and C) at different applied stretch levels (λ equals 1.0, 1.06, and 1.12)
of the TKM. The locations where the extracellular matrix is tied to the axon are
marked in red color. The initial tortuosities of axon segments 1 through 6 are
also labeled. The cross-section of the RVE is illustrated in the inset.

in the strain energy form [10], [18]:

W =
2μ

α2 (λα
1 + λα

2 + λα
3 − 3) (4)

where μ and α are material parameters, and λi are principal
stretches. The Ogden model has been applied to describe soft
tissues at the continuum level. Meaney [18] developed a mi-
crostructure model, which differentiates the behaviors of the
axon and the surrounding matrix, to explain the behavior of
guinea pig’s optic nerve. The material parameters were given
by comparing the structural model with an equivalent Ogden’s
model. Based on works in [3], [18], Karami et al. has justi-
fied μ = 290.8 Pa for axon and μ = 96.9 Pa for matrix, and
α = 6.19 for both [10], which are also used here.

The degree of interaction between the axon and glia is con-
trolled by altering the percentage of tied nodes at the axon/matrix
interface. General frictionless surface contact is applied to the
interface, but “tie” constraints are partially applied to introduce
glial coupling. Only nodes in segments with tortuosity smaller
than 1.08 are eligible to be tied. When using the TKM, we as-
sume that the model derived from the experimental data on the
real tissue consisting of a large number of axons is also applica-
ble to a single axon consisting of several segments with different
tortuosities. The RVE is stretched to stretch ratios of 1.06, 1.12,
and 1.25, which represent the stretch levels at which undulation
was characterized, as in [12], in sequential steps. The percentage
of tied area in those segments is updated as described in Table I.
In steps from 1.06 to 1.12 and from 1.12 to 1.25, import analyses
are performed using the updated tied conditions and the results
stored in the immediate previous step. Three models are run
for each volume fraction, which differ by randomly assigning
the tied locations along the length of the axon. The tied loca-
tions are illustrated stepwise in Fig. 1 along with the deformed
profiles along the axon direction. Periodic boundary conditions
are applied to the RVE to mimic the constraint exerting on the
RVE by its neighboring RVEs. The periodic bound conditions
are given as

ui(xα + Lα ) = ui(xα ) + ε̄0
ijLj (5)

Fig. 2. Tortuosity of individual axon segments decreases due to stretching.
Large initial tortoucities are presented with faster axon undulation as the applied
strain increases.

where ui is the displacement component on the surface of the
RVE, Lj is a periodic vector of periodicity, and ε̄0

ij is a averaged
strain being applied. The periodic vector is a vector from a
point in one RVE to a corresponding point in another unit cell.
In this paper, all components of ε̄0

ij vanish except ε̄0
33 , where

subscript 3 is along the global axon direction. The performance
of the model is evaluated by comparing the predicted average
tortuosity at each stretch level to the experimental results in Bain
et al. [12].

IV. RESULTS

A typical change of segmental tortuosity along with the ap-
plied strain levels is illustrated in Fig. 2. The tortuosity of highly
undulated segments, which demonstrate non-affine kinematics,
decreases drastically with increasing stretch. As the applied
strain level increases and axon segments become less undu-
lated, coupling is gradually engaged to the axons and matrix
and the tortuosity decreases slowly.

The overall tortuosity of RVEs decreases as the applied stretch
level increases as plotted in Fig. 3. Although the tied locations
along the axon segment are randomly assigned (as illustrated in
Fig. 1), the overall curves are very consistent for both models
with axon vf of 53% and 80%. When there is no extracellu-
lar matrix and axons behavior is purely non-affine, tortuosity
continues to decrease until all axons are perfectly straight. This
should occur when the stretch level reaches the maximum tor-
tuosity of the unstretched axons. The tortuosity of an RVE with
higher axon volume fraction decreases more rapidly than that
with lower axon volume fraction, likely because less extracellu-
lar matrix introduces a smaller coupling effect on the behavior
of axons. Therefore, as the axon volume fraction increases, the
tortuosity change curve resides closer to the non-affine regime.
Predictions from the analytical non-affine and affine models
in [12] are also shown in Fig. 3.

The tortuosity changes measured in experiments and pre-
dicted by other numerical models, such as a pure affine mi-
cromechanics model in [10] and partially tied model in [11]
are also plotted. Karami et al.’s micromechanics FE model
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Fig. 3. Comparison of model predictions on overall tortuosity change with
applied strains. Experimental data are from [12]. The randomly tied axons with
vf of 53% and 80% present close correlation to the experimental data.

Fig. 4. Comparison of predicted stress–strain behavior of the TKM and the
models in [10] and [11]. The tie levels at different stretch intervals for the TKM
RVEs are: 8% for [1, 1.06], 20% for [1.06, 1.12], and 44% for [1.12, 1.25]. As
seen, increased coupling between axons and matrix (namely, tie recruitment)
results in stiffening of the white matter.

assumes that axons and extracellular matrix are perfectly bonded
together [10]. Hence, tortuosity evolution of their model is
very close to that from the analytical affine model given in
(2). Both of these models predict a very slow drop of tortu-
osity when an RVE subjects to uniaxial loading as compared
to the experimental data. We improved the micromechanics FE
model by applying partial coupling to the axon and matrix [11].
By prescribing only 5% of the axon/matrix interface as tied,
the evolution of tortuosity began to approach the experimental
averages reported by Bain et al. [12], but did not decrease as
quickly at small strains.

The RVE stress–strain curves of the current TKM, the par-
tially tied model in [11], and the perfectly bonded model in [10]
are plotted in Fig. 4 (axon vf of 53%). As demonstrated, the
stiffness of the transitional kinematic model at stretch level up
to 1.12 (5–20% tie) is smaller than that in the other two models,
whereas it becomes larger at higher stretch levels (44% tie) as the
extracellular matrix coupling with the axon is increased result-
ing in stiffened material behavior [14]. The perfectly bonded

model yields the largest stiffness among the models at small
stretch (λ < 1.12).

V. CONCLUSION

In this transition model, both RVEs with axon volume fraction
of 53% and 80% yield satisfactory curves very close to the ex-
perimental results. The current transitional model yields much
better prediction on the tortuosity changes resulting from uni-
axial stretching than the pure affine kinematics model through
perfect bonding of axon and matrix and the partially tied model.
Currently, the RVEs only consist of limited segments having
representative tortuosities ranging from 1.05 to 1.26. A more
desirable 3-D micro-structural tissue model that consists of a
large amount of axons having the statistical signature of a real
tissue is being explored. The correct kinematics of axon and
matrix is also critical for future stress and strain field analysis
using the finite element method.
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