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On the Transversely Isotropic,
Hyperelastic Response of
Central Nervous System White
Matter Using a Hybrid Approach
A numerical and experimental hybrid approach is developed to study the constitutive
behavior of the central nervous system white matter. A published transversely isotropic
hyperelastic strain energy function is reviewed and used to determine stress–strain rela-
tionships for three idealized, simple loading scenarios. The proposed constitutive model
is simplified to a three-parameter hyperelastic model by assuming the white matter’s
incompressibility. Due to a lack of experimental data in all three loading scenarios, a
finite element model that accounts for microstructural axons and their kinematics is
developed to simulate behaviors in simple shear loading scenarios to supplement existing
uniaxial tensile test data. The parameters of the transversely isotropic hyperelastic mate-
rial model are determined regressively using the hybrid data. The results highlight that a
hybrid numerical virtual test coupled with experimental data, can determine the trans-
versely isotropic hyperelastic model. It is noted that the model is not limited to small
strains and can be applied to large deformations. [DOI: 10.1115/1.4049168]

1 Introduction

The study of injury to the central nervous system (CNS),
including brain and spinal cord, has been of great interest in recent
years [1–7]. Traumatic brain injury (TBI) is often a consequence
of blunt impact in sports, falls, motor vehicle crashes, and explo-
sive blast shock waves. Spinal cord injury (SCI) also can occur in
these trauma settings. Axonal injury, which is considered to be a
significant contributor to cognitive dysfunction following TBI and
functional deficits following SCI, represents a critical focal area
for injury prevention and treatment, according to Amstrong [5].
Prevention of axonal injury in TBI and SCI requires knowledge of
the external force transfer mechanisms from the head or torso to
the axon level, which occurs at multiple length scales, thus
increasing the problem complexity. Of the various mechanical
parameters, the strain has been proposed as a reliable predictor of
axonal tensile injury [2]; thus, accurate strain prediction depends
on reliable mechanical behavior models and high fidelity aniso-
tropic structural models [6]. Although finite element methods
have been applied to predict the strain within the CNS white mat-
ter, they generally fail to capture the axon-level strains of the
structural injury. The latter is partially due to the selection of the
constitutive models that treat the material as homogeneous, ignor-
ing the fundamental differences between the axons’ mechanical
properties and those surrounding matrix of other cells and tissue
components. In some studies, CNS white matter was modeled as a
hyperelastic material using various hyperelastic models such as
the ones from Ogden [8], Mooney [9] and Rivlin and [10], or
Fung [11], or even Neo-Hookean ones. The parameters of the
models have been fitted in many experimental studies, with some
representative ones found in Rashid et al. [12–14]. However,
more work needs to be accomplished to address the anisotropy in
Young’s and shear moduli observed in the brain tissue, starting
from animal models that have been already highlighted in the lit-
erature including porcine brain [1], and ovine brain [15,16].

Central nervous system white matter has been treated as an ani-
sotropic, orthotropic, or transversely isotropic composite material

by considering the long axons as reinforcing fibers embedded in
an isotropic matrix. Previous studies have indicated that axons
interact with the glial matrix through myelin, which is an insulat-
ing sheath made by oligodendrocytes (a particular type of neuro-
glia that supports and insulates axons) that, in addition to
improving the speed of electrical conduction along the axon, also
serves to interconnect axons [1,2] physically. As a result, the
mechanical behavior of white matter can be generally described
with a transversely isotropic hyperelastic model, which has been
supported by experimental characterization [15,16,17]. The com-
plexity of these constitutive models increases the difficulty of per-
forming the necessary experiments to generate the required data
and data reduction methods to determine the material parameters.
Inverse procedures have been applied to recover material parame-
ters from the results of finite element models [13,15,18–20].

Most of these studies have assumed that the reinforcing axons
in the composite are perfectly connected to its surrounding matrix
treated as a homogeneous matrix material, and therefore the axons
follow idealized affine behavior. However, evidence has shown
that the undulated axons demonstrate significant nonaffine behav-
ior, especially at low stretch levels. As tissue-level strain is
increased, axons are increasingly recruited by the matrix and tran-
sition to affine behavior as they are being stretched [3,21]. This
transitional coupling between the axons and the matrix dictated,
in part, by myelin, occurs through the nodes of Ranvier. Since it is
known that axons are most sensitive to tension, incorporating the
microscale transitional behavior from nonaffine to affine mechan-
ics and the dependence of this transition on myelin are critical
steps toward accurately describing the axon-level strain that
results the from tissue-level deformation. We have previously
incorporated discrete transitions into a finite element model to
study the mechanical response of white matter and simulate its
structural fidelity [22,23]. However, this approach has a heavy
computational burden and significantly increases the modeling
complexity.

Feng and colleagues proposed a new strain energy density func-
tion capable of capturing the anisotropy of fiber composites in
both shear and tension with respect to the fiber axis [15]. Besides
an in-plane shear modulus l and a parameter f that captures the
difference of the Young’s moduli in two different principal direc-
tions, a third parameter / was introduced to include the shear ani-
sotropy in the framework of hyperelasticity. Their model was
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further simplified to a transversely linear elastic compliance
matrix in the small strain regime, which was applied to character-
ize the material properties of the corpus callosum of ovine brain.
Although the fiber–matrix interaction is highlighted by the param-
eter /, the hyperelastic model was not advanced to represent the
transitional coupling of matrix and undulated fibers, particularly
at large strains.

In this work, the hyperelastic material model in Feng et al. [15]
is applied to characterize the mechanical behavior of the white
matter of chick embryo spinal cord beyond the linear elastic
range. Instead of using the simplified small strain elastic model,
the stress response under simple in-plane shear, out-of-plane
shear, and uniaxial tensile loading conditions were derived from
the regime’s constitutive model of large deformation. The three
independent material parameters of the incompressible model
were obtained by combining curve fitting of experimental data
with finite element simulations of idealized behavior in other
mechanical testing modes using our previously developed model
[22,23]. This finite element model captures the tortuous micro-
structure of axons and the kinematics of undulated axons, which
allows the coupling behavior of axons to be related to the
fiber–matrix interaction parameter, /:

2 Model Development

2.1 Transversely Isotropic Hyperelastic Model. Within the
framework of continuum mechanics [24–27] for the large defor-
mation of an elastic body, the deformation gradient tensor is
denoted as F ¼ @x=@X, where X is a material vector in the refer-
ence configuration, and x is the corresponding deformed vector in
the deformed configuration. The right and left Cauchy–Green ten-
sors are C ¼ FTF and B ¼ FFT , respectively. It is hypothesized
that the strain energy density function for a transversely isotropic
material can be written as a function of the invariants of the right
Cauchy–Green tensor C

w Cð Þ ¼ wðI1; I2; I3; I4; I5Þ (1)

where I1 ¼ trðCÞ, I2 ¼ 1
2
f½trðCÞ�2 � trðC2Þg, I3 ¼ detðCÞ,

I4 ¼ a0 � Ca0, I5 ¼ a0�C2a0 and a0 is the unit vector along the
mean fiber direction in the reference configuration. I4 and I5 are
pseudo-invariants under rotation about the axis of symmetry. The
second Piola–Kirchhoff stress tensor can be obtained using the
chain rule

S ¼ 2
@w Cð Þ
@C

¼ 2
X5

a¼1

@w I1; I2;…; I5ð Þ
@Ia

@Ia
@C

(2)

and subsequently implemented to derive the Cauchy stress as
follows:

r ¼ J�1FSFT (3)

where J ¼ detðFÞ is the Jacobian of the deformation gradient
tensor.

Feng [15] proposed a new strain energy density function
accounting for the stretch ratio’s contributions in the fiber direc-
tion as well as the contributions of shear strain in planes parallel
to the fiber axis. The new strain energy density function is

w ¼ l
2

�I1 � 3ð Þ þ f �I4 � 1ð Þ2 þ /�I
�
5

h i
þ j

2
ðJ � 1Þ2 (4)

where �I1 and �I4 are modified principal invariants of the modified

right Cauchy–Green tensor �C ¼ �F
T �F and j is the bulk modulus.

The unimodular deformation gradient tensor is �F ¼ J�
1
3F. The

shear strain in planes parallel to the fiber axis is denoted by a

quadratic function, namely, �I
�
5 ¼ �I5 � �I

2
4, when the fiber axis is X1

is considered. Similarly, �I5 is a modified principal invariant of the

modified right Cauchy-Green tensor �C. Following a tensorial
operation procedure highlighted in Eqs. (1)–(4), the Cauchy stress
can be obtained as

r ¼ lJ�1 �B þ j J � 1ð Þ � 2lJ�1 1

6
�I1 þ

f
3

�I4
�I4 � 1ð Þ þ /

3
�I
�
5

� �� �
I

þ 2lJ�1 f �I4 � 1ð Þ � /�I4

� �
�a � �a þ l/J�1ð�a � �B�a þ �B�a � �aÞ

(5)

where �a ¼ �Fa0. A detailed derivation of the constitutive equation
can be found in Appendix A following a similar procedure to
Feng [15]. Equation (5) is a four-parameter constitutive equation
for reinforced materials that demonstrate transversely hyperelastic
behavior, such as the CNS white matter. This formulation should
be solved according to the desired loading conditions to develop
stress–strain laws for each testing mode.

2.2 Simple Shear in the Transversely Isotropic Plane.
There are generally four parameters in the transversely isotropic
hyperelastic constitutive relation of Eq. (5). For an incompressible
material that corresponds to J � 1 ¼ 0 parameter j may be
regarded as a Lagrangian multiplier, and it should be obtained
from the solution of equilibrium equations of motion using appro-
priate boundary conditions [24,27]. Furthermore, three simple
loading cases are consecutively considered to determine the other
three material parameters l; /; and f. The axon direction a0 is
assumed to be along the X1 axis. The first loading case is in-plane
simple shear in the transverse isotropic plane. The deformation is
described by

x1 ¼ X1; x2 ¼ X2 þ c23X3; x3 ¼ X3 (6)

thus, the deformation gradient is expressed by

F ¼ @x

@X
¼

1 0 0

0 1 c23

0 0 1

2
4

3
5 (7)

while the modified right and left Cauchy–Green tensors are

�C ¼ �F
T �F ¼

1 0 0

0 1 c23

0 c23 1þ c2
23

2
4

3
5 (8)

and,

�B ¼ �F
T �F ¼

1 0 0

0 1 c23

0 c23 1þ c2
23

2
4

3
5 (9)

In the undeformed space, the axon direction a0 is described by

a0 ¼
1

0

0

2
4
3
5 (10)

and, in the transformed space, by

�a ¼ J�
1
3a ¼ J�

1
3Fa0 (11)

From the right Cauchy–Green tensor �C, it is straightforward to
determine the invariants �I1 ¼ 3þ c2

23, �I4 ¼ 1, �I
�
5 ¼ 0. Substitution

into Eq. (5) results in the in-plane shear stress r23 that is expressed
in terms of the c23 shear strain as

r23 ¼ lc23 (12)

The above equation implies that parameter l is the in-plane shear
modulus.
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2.3 Simple Shear in the Anisotropic Plane. A simple shear
can be applied in a plane parallel to the axon direction to measure
the second parameter /. This process is initiated by denoting the
loading conditions as

x1 ¼ X1 þ c12X2; x2 ¼ X2; x3 ¼ X3 (13)

and by following a similar procedure as above, the simple
stress–strain relation can be written as

r12 ¼ l 1þ /ð Þc12 (14)

The introduction of the parameter, /, to the relation implies in-
plane coupling of the axons. Since the in-plane shear parameter l
has been determined previously, the coupling parameter / can be
determined using Eq. (14).

2.4 Uniaxial Tension. The last parameter f, is determined by
a simple uniaxial tensile test assuming a stretch ratio k1 in the X1

direction. For an incompressible material, the deformation can be
written as

x1 ¼ k1X1; x2 ¼ k
�1

2

1 X2; x3 ¼ k
�1

2

1 X3 (15)

The deformation gradient tensor is therefore expressed by

F ¼ @x

@X
¼

k1 0 0

0 k
�1

2

1 0

0 0 k
�1

2

1

2
664

3
775 (16)

The above relation automatically satisfies the incompressibility
condition det Fð Þ ¼ 1. Following a similar procedure using
Eq. (5), one can derive

r11 ¼ l k2
1 � k�1

1

� 	
þ 2lfk2

1 k2
1 � 1

� 	
(17)

During the derivation of Eq. (17), the condition of r22 ¼ r33 ¼ 0
is enforced in accordance to uniaxial tension testing. Since the in-
plane shear modulus l has been determined using Eq. (12), the
fiber contribution parameter f can be obtained using uniaxial
stress–stretch relation.

2.6 Parameter Determination. Once the experimental data
is available for all three of these testing modes, it is straightfor-
ward to determine the parameters l; /; and f of the strain energy
density function by using Eqs. (12), (14), and (17). However, it is
usually difficult to perform all three different tests on soft tissues
due to practical difficulties such as sample preparation and sample
gripping [18]. New experimental techniques such as dynamic tests
[12,14,28] and indentation tests [29,30] have been developed to
estimate the material properties. For some of these nontrivial tests,
finite element analysis has been combined with the test to estimate
material parameters [13,15,19,20]. Moreover, finite element
analysis is a robust approach for studying the behavior of soft bio-
logical tissues ranging from microscopic to macroscopic scales
[16,20,22,31,32]. In this study, where axon tortuosity and kine-
matic coupling is included, in addition to white matter anisotropy,
only uniaxial tension data is available. As a result, these data are
combined with virtual data extracted from a simulation of white
matter representative volume elements (RVEs) executed in the
shear modes.

3 Test and Modeling Results

Uniaxial test data are taken from an experimental study of the
influence of myelin and glia on the mechanical behavior of chick
embryo spinal cord following disruption of the glial matrix in ovo

using either Ethidium Bromide (EB) or an antibody against galac-
tocerebroside (aGalC) [33]. These data are especially valuable
because they provide test cases of the same tissue with different
kinematic coupling degrees. Ethidium Bromide is cytotoxic to
dividing cells and thereby disrupts the glial matrix by killing
astrocytes and oligodendrocytes. Conversely, aGalC interferes
with the development of myelination, and thereby disrupts the
glial matrix without substantial cytotoxic effects. Spinal cords
demyelinated with either approach demonstrate significantly
lower stiffness and ultimate tensile stress than myelinated spinal
cords. The results demonstrate that the glial matrix provides sig-
nificant mechanical support to the spinal cord, and suggests that
myelin and cellular coupling of axons via the glial matrix in large
part dictates the tensile response of the tissue.

The nonlinear uniaxial tensile data are used as one loading
case. To fully determine the parameters of the transversely
hyperelastic model for white matter, two shear load simulations
are performed on the RVE of the chick embryo spinal cord to gen-
erate virtual stress–strain data. The RVE is composed of a
0.4 lm� 10 lm� 5.68 lm cubic region representing the extracel-
lular matrix and 33 axons whose tortuosity ranging from 1.05 to
1.25, as shown in Fig. 1. The volume fraction of the axon in the
RVE is 53%. A detailed description of the development and test-
ing of the RVE can be found in Pan et al. [22,23] where the effect
of the transition from nonaffine to affine interactions of axons and
matrix during uniaxial tensile loading of the spinal cord was
investigated. This model is employed here to generated virtual
stress–strain data for the in-plane and out-of-plane shear loadings
at three, 0%, 25%, and 50%, axon and matrix fixed coupling lev-
els. EB-treated tissue is assumed purely uncoupled; thus, the inter-
action between the axon and the matrix is set to 0%, representing
nonaffine kinematics between the axon and the matrix. For
untreated tissue where the coupling level is not known, interaction
levels of 25% and 50% are considered for control. To enable the
computational interaction between the axons and the matrix, the
corresponding percentage of the axonal surface area is tied to
the surrounding matrix while the rest of the axonal surface
remains is united. Furthermore, soft brain tissue consists of a high
percentage of water, thus exhibiting a rubberlike material
response under mechanical loading. That led many researchers to
use Ogden’s hyperelastic model to simulate its mechanical behav-
ior [12,13,16,33]. Here, the axons and matrix are both treated as
isotropic materials, and the Ogden’s isotropic hyperelastic mate-
rial model is employed in its strain energy form [21]

W ¼ 2G

a2
ka

1 þ ka
2 þ ka

2 � 3
� 	

(18)

where G represents the shear modulus, a is a material-dependent
parameter that introduces nonlinear behavior, and ki are the prin-
cipal stretches. The nonlinear material parameters a and G of the
glial matrix are taken from Ethidium Bromide treated chick spinal
cord test data [33], while each axon is considered as transversely
isotropic. Due to the lack of data and for simplicity, the Ogden’s
isotropic hyperelastic model is employed similarly to the Arbogast
and Margulies [1] and Meaney studies, where the shear modulus
of an axon is assumed to be three times stiffer than that of the
matrix. The parameters are provided in Table 1, and they are of
the same order of magnitude as the parameters reported for por-
cine brains using the same Ogden model [14].

Displacement boundary conditions are applied to the RVE to
simulate the two simple shear tests, and the average reaction
stresses are recorded. The first simple shear test is within the
transverse X2 � X3 plane, as shown in Fig. 2(a). The second sim-
ple shear test is within the X1 � X2 plane, as shown in Fig. 2(b).
The virtual shear stress–strain curves, are plotted in Figs. 3–5,
where the effect of the three levels of axon/matrix coupling, 0%,
25%, and 50%, is captured.

Two approaches may be considered for the determination of the
constitutive parameters l, /; and f. The first approach considers
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only one parameter, i.e., shear modulus, l; in Eq. (12), whose val-
ues are determined by a simple computational shear test in the
plane transverse to the axons (inset in Fig. 2(a)). Once the shear
modulus l is determined, the data from the in-plane shear test can
be used to fit Eq. (14) and determine the parameter /, and data
from uniaxial testing can be used to fit Eq. (17) to find the parame-
ter f. The second approach, which is used in our analysis, employs
a least-squares method and fits Eq. (12), Eq. (14), and Eq. (17)
simultaneously to determine l, /; and f. This implementation
avoids biasing the analysis toward any of the testing modes. It
should be noted that there might be multiple solutions (local min-
ima) when solving the optimization problem of curve-fitting of
hyperelastic models [34] whose parametric equations are nonlin-
ear. Since our model defined by Eqs. (12), (14), and (17) is
decoupled, the parameters are unique.

Interpretation of data is performed by fitting the error of each
parameter that is computed and added to the table. The results
were split into two groups to avoid confusion stemming from the

comparison between the treated test assuming 0% interaction and
the control test, assuming 25% or 50% interaction. One set repre-
senting the 0% and 25% interaction level cases (Table 2(a)) and
an additional set representing the 0% and 50% interaction level
cases (Table 2(b)) are pursued to test the model’s capabilities
further.

Table 1 Parameters of Ogden model for the constituents in the
microscale RVE model

Ogden parameters Matrix Axon

G (kPa) 17.4 52.2
a 8.32 8.32

Fig. 1 Finite element model of the (a) undulated axons, and (b) extracellular matrix

Fig. 2 (a) Shear test in the 23-plane transverse to the major axon direction, and (b) shear test in the 12-plane parallel to
the major axon direction

Table 2 (a) Best fit parameters for the macroscale strain
energy function at different levels of microscale axon-to-matrix
coupling. Absolute fitting error is listed in the bracket using the
python scipy.optimize.leastsq function and (b) best fit parame-
ters for the macroscale strain energy function at different levels
of microscale axon-to-matrix coupling

(a)
Coupling level 0% 25%

l (kPa) 17.1 (0.3) 27.2 (0.5)
/ 0.023 (0.023) 0.212 (0.029)
f 0.185 (0.013) 0.079 (0.012)

(b)
Coupling level 0% 50%

l (kPa) 17.1 (0.3) 31.1 (0.5)
/ 0.023 (0.023) 0.152 (0.023)
f 0.185 (0.013) 0.009 (0.007)
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As described above, two sets of experimental uniaxial tension
stress–strain data are available to tease out the role of axon-matrix
coupling on parameter determination for the bulk mechanical
response of white matter. EB-treated, demyelinated chick spinal
cords are considered fully uncoupled at the microstructural level,
and 0% interaction between axons and matrix is prescribed for the
RVE model to simulate the response in shear. These two groups
of shear data are referred to as numerical test data. The compari-
son of model predictions and the test data is illustrated in Fig. 3,
and parameter results are listed in Table 2(a) and (b). The axon-
matrix interaction is 0%; thus, the shear modulus (l ¼ 17:1 kPa)
in the transverse plane of the white matter is close to the shear
modulus of the matrix in the RVE model (G ¼ 17:4 kPa).

The level of interaction between the axons and the matrix for
the control chick spinal cord is undetermined, and either 25% or
50% interaction simulation data (simple shear) were combined
with the control uniaxial tensile test data to fit for the parameters.
The fitted curves and model prediction for 25% and 50% level of

interaction are plotted in Figs. 4 and 5, respectively. The parame-
ters are also reported in Table 2.

As noted in Eq. (12) the parameter l represents the shear modu-
lus of the composite in the material plane perpendicular to the
axon direction. Note that the value of l increases as the level of
interaction between the axon and the matrix increases. From Eq.
(14), it is apparent that / is a parameter measuring the nondimen-
sional relative shear anisotropy. The axon-matrix coupling driven
shear anisotropy is demonstrated when comparing the left plot of
Figs. 3–5. If we examine the strain energy function, it corresponds
to the strain energy contributed by the fiber deformation
other than stretching. The third parameter, f, represents the
nondimensional stretch anisotropy. The fitted curves deviate from
the experimental curves in the uniaxial tensile test, where the third
parameter is involved. It is noted that the fitted curve is much
stiffer at lower stretches than the experimental data. The latter
may be due to the lower axon contribution at lower stretch levels
in the model, whereas a stretch-dependent transition from

Fig. 3 Comparison of virtual stress–strain data from the finite element simulation of the RVE (left) or
uniaxial tension data (right) to the best fit macroscale response for uncoupled tissue

Fig. 4 Comparison of virtual stress–strain data from the finite element simulation of the RVE (left) or
uniaxial tension data (right) to the best fit macroscale response for tissue that is coupled 25% at the
microscale
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nonaffine to affine kinematics is observed [3,21]. Here, there is a
constant interaction at 25% or 50% of the axons throughout the
simulation, instead of an interaction level transitioning from low
to high gradually as more axons are engaged during the stretching
process [22,23]. Therefore, to capture the transitional coupling of
axons and matrix more accurately, a stretch-dependent coupling
parameter may be required in a future study.

Summarily in Figs. 3–5, the parameters l and / are increasing
while the parameter f is decreasing. One should note that / repre-
sents the relative shear anisotropy. When the interaction between
axon and matrix is 0%, the axon contribution is minimal, and the
fitting error is of the same magnitude of the parameter. As seen,
the parameter / increases as the level of interaction increases.
Nevertheless, it is hard to discern which group (0%–25% or
0%–50%) is closer to the realistic situation. The fact that the pre-
diction increases from the treated to the control is satisfactory and
agrees with reported data [33]. While this proof is within the
scope of the presented work, future efforts will focus on identify-
ing predicted or fitted interaction percentages that reflect real
interaction percentages.

4 Discussion and Conclusions

In this paper, a hybrid method comprised of experimental and
computational tests is studied in the context of its effectiveness to
capture the hyperelastic response of white matter tissue in loading
cases where testing data is unattainable. Experimental data from
uniaxial tension is combined with a finite element model built from
the microstructure of axons and their interaction with the surround-
ing matrix to determine the macroscopic material constitutive law
parameters. Feng’s [15] transversely isotropic hyperelastic model
that accounts for the axon-matrix contribution to the strain energy
density function is selected, and it is proven capable of
representing some tissues in which axons are highly organized and
relatively straight in the corpus callosum. When applied to the
chick embryo spinal cord data of this study, there is some
discrepancy between the uniaxial tension test stretch-stress data
and the fitted curves. The model prediction shows a stiffer response
as compared to the experimental data at a low stretch (k < 1:2). It
implies that the model lacks the mechanism of describing the tran-
sitional kinematics of axons in the chick embryo spinal cord. To
this end, the interaction between the axon and the matrix may be
affine since the axons are highly organized and relatively straight
in the corpus callosum [35]. In the limiting case where axons and

matrix are fully uncoupled, the macroscale parameter l (macro-
scale shear modulus) and the microscale shear modulus are in
agreement, and the parameter /, which introduces coupling in the
plane parallel to the axons (relative shear anisotropy), is close to
zero. When coupling at the microscale is introduced, the macro-
scale coupling parameter, /, increases, while the stretch anisot-
ropy, f, decreases. Interestingly, these two parameters appear to
balance the ultimate effects on the macroscale shear modulus, l. A
composite model that recruits the nonaffine kinematics is yet to be
developed for tissues with highly undulated fibers such as chick
embryo spinal cord and brainstem. Nonetheless, a hybrid approach
that combines finite element virtual tests, based on the micro-
architecture and micromechanics of the axon-matrix interaction,
and experimental data is demonstrated. Material parameters can
then be determined using the hybrid data to model large
deformation, transversely isotropic behavior of white matter. This
model is expected to simplify significantly multiscale modeling
efforts by allowing a “closed form” estimate of material properties
at the tissue level. Finally, the presented hybrid approach enables the
validation of tissue models when the microscale architecture
prohibits in situ experimentation. This validation is accomplished by
regressively employing hybrid data from existing experiments in
conjunction with virtual, numerical tests.
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Appendix A

Kinematics of Large Deformation

Consider a body which deforms from a volume V in the unde-
formed configuration Ro into a volume t in the deformed configu-
ration R. The motion of the body is described by the relation

x ¼ xðX; tÞ (A1)

where t is time, and x represents the position of a point in R asso-
ciated with a material point originally located at X in Ro. The
deformation gradient tensor is defined as

Fig. 5 Comparison of virtual stress–strain data from the finite element simulation of the RVE (left) or
uniaxial tension data (right) to the best fit macroscale response for tissue that is coupled 50% at the
microscale
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F ¼ @x

@X
(A2)

The Jacobian is denoted as J ¼ detðFÞ, representing the ratio of
deformed to undeformed volumes. The right Cauchy–Green ten-

sor and left Cauchy-Green tensor are C ¼ FTF and B ¼ FFT . The

Green strain tensor is E ¼ 1
2

C� Ið Þ.
The deformation gradient tensor is multiplicatively decom-

posed to volumetric and distortional parts

F ¼ J
1
3 �F (A3)

where �F ¼ J�
1
3F is the isochoric or distortional part of deforma-

tion that preserves volume, i.e.,

det �Fð Þ ¼ 1 (A4)

The modified right Cauchy–Green tensor and left Cauchy–Green

tensor are �C ¼ �F
T �F and �B ¼ �F �F

T
. For a transversely isotropic

hyperelastic with fiber direction in a0, one might decompose the
strain energy density function into a volumetric part and a distor-
tional (or isochoric) part as

w ¼ U Jð Þ þ �w �C; a0

� 	
(A5)

Feng et al. [15] proposed a volumetric function to describe the
volumetric component of the strain energy, U(J), as

U Jð Þ ¼ j
2
ðJ � 1Þ2 (A6)

where j is the bulk modulus. He then decomposed the isochoric
strain energy density function into a neo-Hookean function and a
function accounting for anisotropy as

�w �C; a0

� 	
¼ l

2
�I1 � 3ð Þ þ f �I4 � 1ð Þ2 þ /�I

�
5

h i
(A7)

where

�I1 ¼ trð�CÞ; �I4 ¼ a0 � �Ca0; �I5 ¼ a0��C2
a0 and �I

�
5 ¼ �I5 � �I

2
4

(A8)

The fiber direction in the deformed configuration is a ¼ Fa0. The
second Piola–Kirchhoff stress is

S ¼ Svol þ �S (A9)

where

Svol ¼
@UðJÞ
@E

¼ 2
@UðJÞ
@C

¼ j J � 1ð ÞJC�1 (A10)

�S ¼ 2
@�wð�C; a0Þ

@C
¼ 2

@�wð�C; a0Þ
@ �C

@ �C

@C
(A11)

It is straight forward to show that

@ �C

@C
¼ J�

2
3 I� 1

3
�C � �C

�1


 �
(A12)

where I denotes the fourth-order identity tensor, which has the
form

ðIÞijkl ¼
dikdjl þ dildjk

2
(A13)

with dik being the Kronecker delta.
Substitute Eq. (A12) into Eq. (A11), and then substitute

Eqs. (A10) and (A11) into Eq. (A9) to get

S ¼ j J � 1ð ÞJC�1 þ 2J�
2
3Dev

@�w

@ �C


 �
(A14)

where Dev() is an operator, Dev �ð Þ ¼ �ð Þ � 1
3
�ð Þ : �C

� �
�C
�1

.
Apply a push forward for Eq. (A14) to get the Cauchy stress

tensor

r ¼ J�1FSFT (A15)

Substitute Eq. (A14) into Eq. (A15) and simply, the Cauchy stress
is then

r ¼ j J � 1ð ÞI þ 2J�1dev �F
@ �w

@ �C
�F

T


 �
(A16)

where devðÞ is a tensorial operator, dev �ð Þ ¼ �ð Þ � 1
3
�ð Þ : I½ �I.

This operator enables the deviatoric nature of a second-order ten-
sor Z such that dev Zð Þ : I ¼ 0.

Using the chain rule of derivative

@ �w

@ �C
¼ @ �w

@�I1

@�I1

@ �C
þ @ �w

@�I4

@�I4

@ �C
þ @ �w

@�I
�
5

@�I
�
5

@ �C
(A17)

and substituting Eq. (A17) into Eq. (A16), and following some
tensor operations, one will have a four-parameter constitutive
equation for incompressible hyperelastic materials

r ¼ lJ�1 �B þ j J � 1ð Þ � 2lJ�1 1

6
�I1 þ

f
3

�I4
�I4 � 1ð Þ þ /

3
�I
�
5

� �� �
I

þ 2lJ�1 f �I4 � 1ð Þ � /�I4

� �
�a � �a þ l/J�1ð�a � �B�a þ �B�a � �aÞ

(A18)

where �a ¼ J�
1
3a.
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