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Abstract

We have previously presented the exponent for an up-
per bound on the error probability of a “peaky” signaling
scheme that achieves the capacity of the Rayleigh fading
channel under an average power constraint in the limit of in-
finite bandwidth. In the present work, we complement this
result with a lower bound. We find that the exponents of
the upper and lower bounds coincide in the wideband limit
and therefore yield the reliability function of the Rayleigh
fading channel using peaky signaling. We illustrate the be-
havior of the reliability function and the upper and lower
error probability bounds with some numerical examples.

1. Introduction

Interest in the study of fading channels with very
large bandwidths has been spurred in recent times with
the emergence of proposals for ultra-wideband (UWB) ra-
dio and wideband CDMA systems. The use of such
spread-spectrum signaling schemes in the very large band-
width regime, however, contradicts established information-
theoretic results. Indeed, it is known that direct-sequence
spread-spectrum signals perform poorly in this regime in
terms of mutual information. More precisely, assuming that
the channel exhibits time and frequency decorrelation and
has no specular component and that the signal scales in-
versely with bandwidth in an appropriate manner (which
induces a constraint on the fourth moment) the mutual in-
formation approaches zero with increasing bandwidth. This
result has been shown with several variations in the channel
model and the assumptions on the properties of the input
signal [1, 2, 3].

Rather, given an infinite band, capacity can be reached
using “peaky” signaling, i.e. transmitting with a low-duty-
cycle frequency-shift keying scheme. Such signaling is de-
scribed as peaky because transmission energy is concen-
trated into narrow regions of time (owing to the low duty cy-
cle) and frequency (owing to the employment of frequency-
shift keying). The capacity reached by this scheme, which
assumes no channel state information at either the receiver

or the sender, is the same as that of the AWGN channel.
This result was presented by Kennedy [4] and by Gallager
[5, §8.6] for the case of Rayleigh fading, and most recently
by Telatar and Tse [3] for general multipath fading.

Therefore, if the bandwidth is large enough, then
spreading energy over that band in an even manner that
keeps the fourth moment constrained, for example with
direct-sequence or related spread spectrum techniques, is
not advisable. In addition, peaky signaling should yield
good performance. The bandwidth at which spreading be-
gins to become detrimental, however, is not entirely clear
(though the issue is partially addressed in [6]) nor is the
bandwidth at which peaky signaling begins to become ad-
vantageous. We address the latter issue in the case where
the fading process is modeled as Rayleigh.

We have previously derived the exponent for an upper
bound on the error probability of this scheme that vanishes
with increasing bandwidth [7]. This is similar to the ran-
dom coding exponent obtained by Gallager [5,§5.6,§7] for
discrete-time memoryless channels, which is the exponent
at which an upper bound on the error probability of ran-
dom block coding vanishes with increasing block length.
And, just as the random coding exponent brings out the
relationship among the error probability, data rate, block
length, and channel behavior, the exponent that we derive
brings out the relationship among the error probability, data
rate, bandwidth, “peakiness”, and fading parameters such as
the coherence time. The relationships drawn are, however,
based only upon upper bounds on the error probability. In
the case of random block coding over discrete memoryless
channels, Gallager [5,§5.8] has found exponents for lower
bounds, namely the sphere-packing and straight-line expo-
nents, to better determine the true exponential behavior of
the error probability. Likewise, we obtain in the present
work, a lower bound in the case of peaky signaling over
Rayleigh fading channels and use it to determine the tight-
ness of the upper bound. We shall see that the exponent of
the upper bound represents the true exponential dependence
of the error probability in the wideband limit and is hence
thereliability function.



2. Channel model

The channel is modeled as a Rayleigh fading channel
with block fading in time. For a given input waveformx(t),
the output waveformy(t) is given by

y(t) =
L∑

l=1

al(t)x(t − dl(t)) + z(t), (1)

whereL is the number of paths,al(t) anddl(t) are the gain
and delay on thelth path at timet respectively, andz(t)
is white Gaussian noise with power spectral densityN0/2.
The total effect of the paths is consistent with Rayleigh fad-
ing. LetTc andTd be the coherence time and delay spread
of the fading channel respectively. We assume that the pro-
cesses{al(t)} and{dl(t)} are constant and i.i.d. over time
intervals of Tc, and that the channel is underspread (i.e.
Td � Tc).

3. Capacity-achieving scheme

A full description of the capacity-achieving scheme can
be found in [3]. We briefly summarize it below.

Suppose that the average power constraint isP , and let
θ ∈ (0, 1]. Suppose further that we have a code-book of
sizeM . Themth code word is represented at baseband as a
complex sinusoid of amplitude

√
P/θ at frequencyfm, i.e.

xm(t) =

{√
P/θ exp(j2πfmt) 0 ≤ t ≤ Ts,

0 otherwise;
(2)

where the time duration of the signalTs is taken to be the
coherence timeTc. The frequencyfm is an integer multiple
of 1/T ′

s, whereT ′
s = Ts − 2Td.

Let us consider the channel output over the interval
[Td, Ts − Td] (the time axis at the receiver is shifted by
the shortest path delay). During this interval,{al(t)} and
{dl(t)} are constant owing to the assumptions of the model,
and we denote their values by{al} and{dl} respectively.
So by (1), the received signal when messagem is sent is

y(t) = G
√

P/θ exp(j2πfmt) + z(t) (3)

where G =
∑L

l=1 al exp(−j2πfmdl) is a circularly-
symmetric complex Gaussian random variable since the
fading process is Rayleigh. We define signal power in the
conventional sense as the received signal power, and thus
normalize the channel gain so thatE[|G|2] = 1.

At the receiver, we form the correlator outputs

Rk =
1√

N0T ′
s

∫ Ts−Td

Td

exp(−j2πfkt)y(t)dt (4)

for 1 ≤ k ≤ M .

The message is repeated overN disjoint time intervals
to obtain time diversity. Hence for1 ≤ k ≤ M and1 ≤
n ≤ N , we have

Rk,n = δkmGn

√
P T ′

s

θN0
+ Wk,n, (5)

where {Gn} and {Wk,n} are sets of i.i.d. circularly-
symmetric complex Gaussian random variables of unit vari-
ance. We construct the decision variables

Sk =
1
N

N∑
n=1

|Rk,n|2 (6)

and use a threshold decoding rule: Let

A = 1 + (1 − ε)
P T ′

s

θN0
(7)

(whereε ∈ (0, 1) is an arbitrary parameter) be the threshold.
If Sk exceedsA for one value ofk only, then we estimate
m̂ = k; otherwise we declare an error.

We transmit using the above scheme only for a fraction
of time θ. Hence the average power isP . Note that the
scheme transmitsln M nats inNTs/θ seconds, so the rate
is R = θ ln(M)/(NTs).

4. Upper bound on the error probability

Owing to symmetry, we can assume without loss of gen-
erality thatm = 1. An error occurs ifS1 < A or if Sk ≥ A
for some2 ≤ k ≤ M . Let B1 be the eventS1 < A and let
Bk be the eventSk ≥ A for 2 ≤ k ≤ M . Then, denoting
the error probability bype, we have

pe = Pr

{
M⋃

k=1

Bk

}
≤ Pr{B1} + MPr{B2}. (8)

For notational convenience, we define

p(1)
e � Pr{B1}, p(2)

e � Pr{B2}. (9)

In [7], we obtain exponential upper bounds top
(1)
e and

p
(2)
e using the Chernoff bound, viz.

p(1)
e ≤ exp(−N [A′ − 1 − ln(A′)]), (10)

p(2)
e ≤ exp(−N [A − 1 − ln(A)]); (11)

where

A′ =
A

1 + P T ′
s/(θN0)

. (12)

Thus

pe ≤ exp(−N [A′ − 1 − ln(A′)])
+ exp(−N [A − 1 − ln(A) − RTs/θ]). (13)



Sinceε is a characteristic of the decision rule with no impli-
cation on physical quantities of interest, we minimize over
ε and get

pe ≤ 2 exp(− ln(M)E(R, θ)) (14)

where

E(R, θ) =
θ

RTs

{
RTsN0

P T ′
s

+
θN0

P T ′
s

ln
(

1 +
P T ′

s

θN0

)
− 1

− ln
(

RTsN0

P T ′
s

+
θN0

P T ′
s

ln
(

1 +
P T ′

s

θN0

))}
(15)

for

0 ≤ R <
T ′

sP

TsN0
− θ

Ts
ln

(
1 +

P T ′
s

θN0

)
. (16)

The error exponentE(R, θ) is positive over its domain of
definition, so recalling thatTs = Tc, we see that there exists
θ ∈ (0, 1] such thatpe vanishes asM → ∞ as long as
R does not exceed(1 − 2Td/Tc)P/N0. Therefore, since
the channel is underspread, rates very close to the infinite-
bandwidth AWGN capacity ofC = P/N0 can be achieved.

5. Lower bound on the error probability

Conditioned uponm = 1, we have

S1 =
1
N

N∑
n=1

∣∣∣∣∣Gn

√
P T ′

s

θN0
+ W1, n

∣∣∣∣∣
2

(17)

and

S2 =
1
N

N∑
n=1

|W2, n|2. (18)

Recall that{Gn} and{Wk,n} are sets of i.i.d. circularly-
symmetric complex Gaussian random variables of unit vari-
ance, soS1 andS2 conditioned uponm = 1 are bothχ2

random variables with2N degrees of freedom, andp(1)
e and

p
(2)
e can in fact be exactly evaluated using the cdf forχ2 ran-

dom variables with an even number of degrees of freedom
[8, §2.1.4]:

p(1)
e = Pr




N∑
n=1

∣∣∣∣∣Gn

√
P T ′

s

θN0
+ W1,n

∣∣∣∣∣
2

< NA




= exp(−NA′)
∞∑

k=N

(NA′)k

k!

(19)

and similarly,

p(2)
e = exp(−NA)

N−1∑
k=0

(NA)k

k!
. (20)

Since(NA′)k/k! and(NA)k/k! are both positive for allk,
we have the inequalities

∞∑
k=N

(NA′)k

k!
≥ (NA′)N

N !
, (21)

N−1∑
k=0

(NA)k

k!
≥ (NA)(N−1)

(N − 1)!
(22)

by taking only one of the summation terms. Therefore,

p(1)
e ≥ exp

{
−NA′ + ln

[
(NA′)N

N !

]}
(23)

p(2)
e ≥ exp

{
−NA + ln

[
(NA)N−1

(N − 1)!

]}
. (24)

Applying Stirling’s formula, we then obtain

p(1)
e > exp{−N(A′ − 1 − ln(A′) + o1(N))}, (25)

p(2)
e > exp{−N(A − 1 − ln(A) + o2(N))}; (26)

whereo1(N) ando2(N) are quantities that go to zero with
increasingN that are given by

o1(N) =
1

2N
ln(2πN) +

1
12N2

, (27)

o2(N) =
1

2N
ln(2πNA2) +

1
12N2

. (28)

Thus the upper and lower bounds onp
(1)
e andp

(2)
e are expo-

nentially tight, i.e. the error exponents are arbitrarily close
for N , or equivalentlyln(M), sufficiently large.

We now observe that

pe ≥
M∑

k=1

Pr{Bk} −
∑
j �=k

Pr{Bj ∩ Bk}

= p(1)
e + (M − 1)p(2)

e − (M − 1)p(1)
e p(2)

e

− (M − 1)(M − 2)
2

p(2)
e

2
.

(29)

After substituting the upper and lower bounds onp
(1)
e and

p
(2)
e and applying l’Ĥopital’s rule, we obtain

lim
N→∞

− ln(pe)
N

≤ min(A′ − 1 − ln(A′), A − 1 − ln(A) − RTs/θ) (30)

for RTs/θ < A−1− ln(A). The reverse inequality follows
straightforwardly from (13). Thus (30) holds with equality.
For RTs/θ ≥ A − 1 − ln(A), we use

pe = 1 − Pr

{
M⋂

k=1

Bc
k

}
≥ 1 − (1 − p(2)

e )(M−1), (31)
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Figure 1: Reliability functionE(R, θ) as a function ofR
for θ = 10−2 (solid), θ = 10−3 (dashed), andθ = 10−4

(dotted).
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Figure 2: Error probability bounds as functions ofEb/N0

for bandwidths of 1 GHz (upper bound solid, lower bound
dotted) and 10 GHz (upper bound dashed, lower bound dot-
dashed). The duty factor isθ = 4 × 10−3.

and get

lim
N→∞

− ln(pe)
N

≤ 0. (32)

By noting thatpe is a probability and is therefore at most 1,
the reverse inequality follows. Hence (32) also holds with
equality. After optimization overε, we have

lim
M→∞

− ln(pe)
ln(M)

= lim
N→∞

−θ ln(pe)
NRTs

= E(R, θ). (33)

ThereforeE(R, θ) represents the true exponential depen-
dence of the error probability onln(M) for M sufficiently
large — it is the reliability function of the Rayleigh fading
channel using peaky signaling with duty factorθ.

6. Numerical results

For numerical results, we choose fading parameters that
are typical for very-high frequency transmission in an in-
door environment (the proposed setting for UWB systems):
Let Td = 10−7 s andTs = Tc = 2 × 10−3 s. Let
P = N0 = 1 so C = 1. Figure 1 illustrates the behavior
of the reliability function for various values of the duty fac-
tor θ. It is evident that smaller values of the duty factor are

required to achieve higher rates, though the optimalθ for a
given rate is not immediately apparent. Suppose we impose
a peak power constraint ofP/θ ≤ 250, which is rather rea-
sonable. It follows thatθ must be at least4 × 10−3. Given
this restriction onθ, we find, using numerical methods, that
the optimal reliability function is achieved for all rates un-
der capacity by takingθ = 4 × 10−3. With this choice of
parameters, the behavior of the upper and lower error prob-
ability bounds as functions ofEb/N0 for bandwidths of 1
GHz and 10 GHz is shown in Figure 2.

7. Conclusion

We presented a lower bound on the probability of error
of a capacity-achieving scheme for the infinite-bandwidth
Rayleigh fading channel. This result complements the up-
per bound that we previously presented in [7]. We used the
lower bound to show that the exponent of the upper bound
is the true exponential dependence of the error probability
in the wideband limit and is thus the reliability function of
the Rayleigh fading channel using peaky signaling.
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