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We start with a review of regular elliptic Langlands parameters and the
characters of discrete series representations of unitary groups. The cardi-
nality of an L-packet of discrete series representations of the unitary group
U(p; n � p) is the binomial coe¢ cient

�
n
p

�
: We would like the answer to be

a power of 2 and because the relevant parameters are strongly regular it
should be exactly 2n�1: Modifying what we mean by unitary group resolves
this. We then attach to each discrete series representation in an L-packet
a binary word of length n. For n odd there is just one group and we use
all 2n�1 even words, while for n even there are two groups and we use even
words for the quasi-split one and odd words for the other. The construction
determines a simple pairing of an L-packet with a �nite group Ssc on the dual
side. This group Ssc comes from stabilization of the spectral side of the trace
formula, and the pairing plays a central role when we discuss transfer factors
and endoscopy in Part B. We review what we have done with a short look
at unitary similitude groups (the special unitary case is no di¤erent from the
unitary case), and end with a very brief remark on base change.

1. The L-group for real unitary groups of n� n matrices
2. Langlands parameters
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3. Regular elliptic parameters
4. S-groups for regular elliptic parameters
5. Characters of S
6. Unitary groups
7. L-packets and in�nitesimal character
8. Harish Chandra theorems and stable characters
9. Real unitary groups and K-groups
10. Harish Chandra theorems and counting L-packets
11. K-groups and DG(T )
12. Partitions and Tate-Nakayama duality
13. Weyl chambers and Whittaker data
14. (a) An invariant for representations of G(R)

(b) A relative invariant for representations of G0(R)
15. (a) Endoscopic codes for G

(b) Endoscopic codes for G0

(c) Summary: a pairing
16. Groups of unitary similitudes
17. Base change example

References in this preliminary version are incomplete. Most calculations
are well-known, and many are examples for a more general discussion, with
references, in Tempered endoscopy for real groups I (Contemp. Math, 2008),
II (Automorphic Forms and the Langlands Program, Intl. Press, 2008), and
III (preprint). The binary words come from an ongoing project with a stu-
dent.

1. The L-group for real unitary groups of n� n matrices.

There is one L-group for all real unitary groups of n � n matrices. We
set G_ = GL(n;C) and �_ : g ! Jn

tg�1J�1n ; where

2



Jn =

0BBBB@
1

�1
1

:::
(�1)n+1

1CCCCA :

Notice that �_ preserves the standard splitting

splG_ = (B
_; T_; fXig)

of GL(n;C): Here B_ consists of the upper triangular matrices and T_ of
the diagonal matrices in GL(n;C); Xi abbreviates the transvection Xi;i+1 in
gl(n;C); 1 � i � n� 1:

We reserve the notation � for the nontrivial Galois element:

� = Gal(C=R) = f1; �g

throughout. We use the Weil form of the L-group. Thus

W = WR = fz � � : z 2 C�; � 2 �g;

a nonsplit extension of � by C�; with multiplication de�ned using the funda-
mental 2-cocycle a�;� = �1 of � in C�. ThenW acts on G_ throughW ! �;
and � acts by �_:

Now the L-group is the semidirect product

LG = G_ oW;

and we write a typical element as g � z � � :

2. Langlands parameters

A Langlands parameter is a G_-conjugacy class of homomorphisms ' :
W ! LG of the form

'(w) = '0(w)� w; w 2 W;

3



where '0 is a continuous map (which must be a 1-cocycle) of W into the
semisimple elements of G_. A parameter ' represented by homomorphism
' is tempered if the image of '0 is bounded, and will have discrete series
representations attached to it if and only if the image of ' lies outside every
proper parabolic subgroup of LG (this condition forces ' to be tempered).
Rather than discuss parabolic subgroups of LG at this point, we introduce
the equivalent notiony of regular elliptic parameter.

Notice that the centralizer of '(C��1) inGL(n;C) is always a connected
reductive subgroup of maximal rank, i.e. containing a maximal torus in
GL(n;C). We will call ' regular if this centralizer is abelian and thus a
maximal torus in GL(n;C): equivalently, ' has a representative ' for which

(i) the centralizer of '(C� � 1) in GL(n;C) is the diagonal group T_:

Then '(1��) normalizes T_; and we call ' regular elliptic if we have further
that

(ii) '(1� �) acts on T_ as t! t�1:

yFor a group with noncompact center, such as a group of unitary simil-
itudes, we weaken (ii) to require only that '(1 � �) acts as t ! t�1 on the
intersection of the centralizer of '(C��1) with the commutator subgroup of
G_: A (real algebraic) group G has regular elliptic parameters if and only if G
is cuspidal, i.e. G is a maximal cuspidal Levi subgroup in G or, equivalently,
G(R) has Cartan subgroups that are compact modulo the center of G(R).
Thus G has regular elliptic parameters if and only G(R) has regular elliptic
points.

3. Regular elliptic parameters

Suppose ' is a regular elliptic parameter. We now attach to splG_ a
representative ' for ' which satis�es (i) and (ii) above, and is determined
uniquely up to T_-conjugacy. In particular, the restriction of ' to C� � 1
will be determined uniquely by the splitting.

First, if z = rei� we write (z=z)m=2 for eim�; m 2 Z: De�ne '0(z � 1) to
be
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0BB@
(z=z)m1=2

(z=z)m2=2

:::
(z=z)mn=2

1CCA ;

where m1;m2; :::;mn are given distinct integers. Extending '0 to a regular
elliptic parameter requires the choice of an element g = '0(1��) of GL(n;C)
which

(i) normalizes T_;
(ii) takes the Borel subgroup B_ to its opposite relative to T_;

i.e. to lower triangular matrices, and
(iii) satis�es

g�_(g) =

0BB@
(�1)m1

(�1)m2

:::
(�1)mn

1CCA :

We can take for g any product of a diagonal matrix with Jn:We will take Jn
itself. Since

Jn�
_(Jn) = (�1)n+1I;

each mj must be of parity opposite to that of n; whatever the choice for g:
This is the only restriction needed to obtain a well-de�ned regular elliptic
parameter ': If we replace ' by Int(h) � '; for any element h in GL(n;C)
normalizing T_; then (i) - (iii) remain true. To prescribe ' up to T_-
conjugacy we insist that m1 > m2 > ::: > mn: Thus:

Proposition

The regular elliptic parameters ' are in 1-1 correspondence with tuples
(m1;m2; :::;mn) of integers, where m1 > m2 > ::: > mn and each mj is of
parity opposite to that of n: Given such a tuple, the corresponding parameter

' = '(m1;m2; :::;mn)

has representative ' given by
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'(z � 1) =

0BB@
(z=z)m1=2

(z=z)m2=2

:::
(z=z)mn=2

1CCA� (z � 1); z 2 C�
and

'(1� �) = Jn � (1� �):

4. S-groups for regular elliptic parameters

We attach to a regular elliptic parameter ' two �nite abelian groups
S = S' and Ssc = Ssc' .

Fix a representative ' and suppose S' is the centralizer in G_ = GL(n;C)
of the image of ': Then S' consists of the elements of order two in the
maximal torus Cent('(C� � 1); GL(n;C)); and so is a �nite abelian group.
Suppose

(i) S' is the image of S' in G_ad = PGL(n;C)
and

(ii) Ssc' is the preimage of S' in G_sc = SL(n;C):

Once again our de�nitions exploit the fact that the center of a unitary group
is compact.

Clearly S' is abelian, a �nite subgroup of the image T_ad of T
_ in

PGL(n;C). So also is Ssc' abelian because it is contained in a maximal
torus of SL(n;C):

Notice that if we replace representative ' by a conjugate '0 we get unique
isomorphisms S' ! S'0 ; Ssc' ! Ssc'0 :We will therefore work with our familiar
representative from the proposition, and drop ' from notation. Then S is
the group of diagonal matrices of the form0BB@

�1
�1

:::
�1

1CCA :
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The group S may be identi�ed as the quotient of S by f�Ig and so

S w (C2)n�1;

where we use Cr to denote the cyclic group of order r: Consider the extension

1! Z_sc ! Ssc ! S! 1;

where Z_sc = Cn denotes the center of G_sc = SL(n;C):

Assume n is odd. Then each element of S has a unique matrix in its
preimage under Ssc ! S with diagonal entries all �1, and so we have a
natural splitting of the extension.

Assume n is even. Then the extension does not split. For example, if
n = 2 then Ssc is generated by �

i
�i

�
;

and so Ssc = C4: In general, Ssc is the subgroup of SL(n;C) consisting of all
matrices of the form 0BB@

��
��

:::
��

1CCA ;

where �2n = 1; with the choice of � and signs restricted to yield determinant
one. This subgroup is generated by matrices with all entries �1 and an even
number of �1�s, along with a single element0BBBB@

�
�
:::

�
��

1CCCCA ;
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where � is a primitive 2nthroot of unity.

5. Characters on S

Recall that S is isomorphic to the quotient of S by f�Ig. We may
then identify the character group of S as the additive group consisting of the
binary words (strings) of length n that are even in the sense that the sum
of their bits is 0 : the word �1�2::::�n is identi�ed with the character given
on diag(�1 ; �2 ; :::; �n) 2 S; where �21 = �22 = ::: = �2n = 1; as the product
��11 �

�2
2 :::�

�n
n :

Now suppose we regard the characters of S as the characters on Ssc which
are trivial on Z_sc. Notice that

Z_sc = (Ssc)2.

Thus we have identi�ed the characters on S, or even binary words of length
n; with the quadratic characters on Ssc.

Those are all the codes we will need for n odd.

Assume from now that n is even. We will also use a second family of
characters on Ssc; to which we attach the odd binary words of length n. Fix
one character � on Ssc such that �(�I) = �1 as follows. We write the value
of � on an element diag(�1 ; �2 ; :::; �n) of Ssc as the product ��11 �

�2
2 :::�

�n
n ; where

each �j is either 0 or 1 and the sum of all �j is odd. We then attach the odd
binary word �1�2::::�n to �: For example, the character 10 maps�

i
�i

�
to i, while 01 maps it to �i: Notice that in general � has order at least 4 and
that since

(��11 �
�2
2 :::�

�n
n )

�1 = �1��11 �1��22 :::�1��nn
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the code for ��1 is obtained by reversing each bit.

The second family of characters consists of those � 0 which coincide with
� on Z_sc: Then �

0��1 is trivial on Z_sc and so has an even word attached as
before. Then the code for � 0 is de�ned by adding the words for � and � 0��1

bit by bit. In particular, when we use � = 100:::0 in calculations we have
just to reverse the �rst bit in the word for � 0��1 to obtain the code for � 0:

6. Unitary groups

For our analysis of discrete series representations we work with the stan-
dard representativesy for the isomorphism classes of real unitary groups of
n� n matrices. These are the groups U(p; q), p+ q = n: Thus U(p; q)(C) =
GL(n;C); and we will use the usual Lie group notation U(p; q) for U(p; q)(R):
The Galois action for U(p; q) is

g ! Ip;q
tg�1Ip;q;

where the bar denotes complex conjugation of entries, and

Ip;q =

0BBBBBB@
1

:::
1
�1

:::
�1

1CCCCCCA,

with p entries 1 and q entries �1: This action preserves the diagonal subgroup
of GL(n;C). We write T for the diagonal subgroup when we use this action
which coincides on T with t ! t

�1
: The real points of T form a compact

Cartan subgroup

T (R) = fdiag(ei�1 ; ei�2 ; :::; ei�n)g

of U(p; q):

The complex Weyl group 
 of T is the permutation group Sn on the
diagonal entries. The real Weyl group 
qR for U(p; q) consists all permutations
which can realized as conjugation by a matrix in U(p; q): It coincides with the
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Weyl group of T in the maximal compact subgroup U(p) � U(q) of U(p; q);
and so is Sp � Sq:

y If Ip;q is replaced by a diagonal matrix with �rst p entries positive and
the �nal q entries negative then we modify the frame of inner twists for the
K-group of Section 9 to obtain the same �nal results.

7. L-packets and in�nitesimal character

Consider now the unitary group U(p; q); where p + q = n: A short de-
scription of Langlands�correspondence for discrete series is this: it attaches
to regular elliptic ' = '(m1;m2; :::;mn) from Section 3 the L-packet con-
sisting of all (�nitely many) discrete series representations of U(p; q) with
in�nitesimal character y determined by the linear form

� : diag(t1; t2; :::; tn)! m1

2
t1 +

m2

2
t2 + :::+ mn

2
tn

on the space of complex diagonal matrices. We have assumed that m1 >
m2 > ::: > mn; each integer mj is of parity opposite to that of n:

Recall �nite-dimensional irreducible (rational or holomorphic) represen-
tations of GL(n;C). The classi�cation by highest weight is realized by tuples
(m0

1;m
0
2; :::;m

0
n) of integers such that m

0
1 � m0

2 � ::: � m0
n : let � be an

irreducible �nite-dimensional representation of GL(n;C) then d� is an irre-
ducible �nite-dimensional representation of gl(n;C): The highest weight for
the diagonal subalgebra tC is of the form

�0 : diag(t1; t2; :::; tn)! m0
1t1 +m0

2t2 + :::+m0
ntn

[see Fulton and Harris or Goodman and Wallach]. On the other hand, d� de-
termines also an irreducible �nite-dimensional representation of the universal
enveloping algebra U of gl(n;C). Elements of the center Z of U act as scalars
and so determine a character � of Z. We apply the Harish-Chandra isomor-
phism of Z with Sn-invariants in the symmetric algebra on tC to calculate �
as that character of Z determined by the linear form

diag(t1; t2; :::; tn)! (m0
1 +

n�1
2
)t1 + (m

0
2 +

n�3
2
)t2+ ::: + (m0

n +
�(n�1)

2
)tn:

Setting
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m1 = 2m
0
1 + n� 1; m2 = 2m

0
2 + n� 3; ..., mn = 2m

0
n � n+ 1;

we retrieve a tuple (m1;m2; :::;mn) of integers where, as in the last para-
graph, m1 > m2 > ::: > mn and each mi is of parity opposite to that
of n. Conversely, each such (m1;m2; :::;mn) evidently determines a tuple
(m0

1;m
0
2; :::;m

0
n) of integers such that m

0
1 � m0

2 � ::: � m0
n. We write

� = �(m1;m2; :::;mn):

By Weyl�s unitary trick, we may replace GL(n;C) by the compact form
U(n) = U(n; 0); along with its complexi�ed Lie algebra gl(n;C), to classify
irreducible �nite dimensional (equivalently, irreducible unitary) representa-
tions of U(n) either by highest weight data (m0

1;m
0
2; :::;m

0
n) or by in�nitesimal

character �(m1;m2; :::;mn).

yThis determines the central character of these representations since T (R) is
connected.

8. Harish Chandra theorems and stable characters

Assume ' = '(m1;m2; :::;mn) is a regular elliptic parameter, with at-
tached L-packet � of discrete series representations.

We start with U(n): Here � consists of a single �nite-dimensional repre-
sentation. Using the Weyl formula, we write the character of this represen-
tation on matrices in T (R) with distinct entries as

��(diag(ei�1 ; ei�2 ; :::; ei�n));

given formally by

P
!2Sn sign(!) e

i(m!1�1 + m!2�2 + ::: +m!n�n)=2Q
j<k

(ei(�j � �k)=2 � ei(�k � �j)=2)
,

where !j = !�1(j); 1 � j � n: To write this in a manner well-de�ned on the
entire regular set in T (R) we extract

Q
j<k e

i(�j � �k)=2 from both numerator
and denominator. The denominator then becomesQ

j<k(1 � e�i(�j � �k)):
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The parity conditions on the integers m1;m2; :::;mn ensure that the new
numerator is also well-de�ned: in the term involving ! 2 Sn the tuple
(m!1 ;m!2 ; :::;m!n) is replaced by the tuple

(m!1 � (n� 1);m!2 � (n� 3); :::;m!n + (n� 1))

of even integers.

Passing now to a noncompact form U(p; q); we follow Harish Chan-
dra to regard the character of a discrete series representation � as an in-
variant tempered distribution Tr � : f ! Trace �(f) on U(p; q): Again
Z acts by scalars, de�ning an in�nitesimal character for Tr � of the form
�(m1;m2; :::;mn). Until Section 10, however, we limit our attention to stable
analysis.

According to Harish Chandra, there is a unique tempered invariant
eigendistribution (with in�nitesimal character �(m1;m2; :::;mn)) represented
on the matrices in T (R) with distinct entries by the function �� above.
We write �� also for this distribution. Then (�1)pq�� is the sum of the
characters of all discrete series representations with in�nitesimal character
�(m1;m2; :::;mn); i.e. of all members of the packet �: It is, moreover, a sta-
ble distribution in the usual sense (although that is stated slightly di¤erently
in Harish Chandra�s original theorem). For any � in �; we write St-Tr � for
(�1)pq��:

9. Real unitary groups and K-groups

We follow Vogan�s idea of considering several real forms at once, but use
Kottwitz�s setting in terms of Galois cohomology, following [Arthur, 99duke].
We include various details that will be helpful later. The construction is based
on the nontriviality of the cohomology set H1(�; Gsc).

It is convenient to �x the basic endoscopic group G� (attached to triv-
ial endoscopic data) as the unitary group Un of the hermitian form �Jn;
where �2 = (�1)n+1; along with R-splitting spl� = (B�; T �; fXg), where
B� denotes upper triangular matrices, T � diagonal matrices, and fXg the
standard simple root vectors. The pairing of character lattices X�(T �) and
X�(T_) attached to the pairs (B�; T �) and (B_; T_) is the natural one: if tj :
diag(t1; t2; :::; tn)! tj and zk : diag(z1; z2; :::; zn)! zk then < tj; zk > = �jk:
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We set Gj = U(n� j; j); so that G0 is the compact form while Gm is the
quasi-split form, where m is the greatest integer less than or equal to n=2:
We �x some R-isomorphism  : Gm ! G�. There is no harm in assuming
that  is given as conjugation by an element of GL(n;C). For example, we
may �x an R-splitting of Gm and choose a conjugation that takes it to spl�:

We form the groups Gj into a single K-group if n is odd, and into two
(disjoint) K-groups if n is even. Whatever the parity of n; there is exactly
one K-group G with the quasi-split form Gm as component. We call this the
K-group of quasi-split type, and describe it �rst.

A real K-group is an algebraic variety over R whose components are
algebraic groups over R which are all inner forms of each other. We �x a
frame of inner twists among the components satisfying conditions that are
natural for Galois cohomology. We limit our discussion to the results of
some simple explicit calculations which exploit the surjectivity of the maps
H1(�; Tsc)! H1(�; Gsc) and H1(�; T )! H1(�; G) determined by inclusion.

Suppose n is odd. Then G is simply

G0 tG1 tG2 t ::: tGm,

with twists  i;j : G
i ! Gj all equal to the identity map, and  j : G

j ! G�

equal to the composition of  j;m with  : G
m ! G�: Because of the di¤erent

Galois actions on the groups Gj these maps provide us with various cocycles
which we need to track. We specify a 1-cocycle of � in a group X by an
element x� ofX such that x��(x�) = 1: Notice that  j �( j)

�1 is conjugation
by  (xj�); where x

m
� = I and for 0 � j < m; xj� is the cocycle0BBBBBBBBBBBB@

1
:::

1 (m+ 1)st

�1
:::

�1 (n� j)th

1
:::

1

1CCCCCCCCCCCCA
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in Gm: First we check that the map H1(�; G�sc) ! H1(�; G�) is injective,
and then that the cocycles  (xj�); 0 � j � m; provide a complete set of
representatives without redundancy for the image ofH1(�; G�sc) inH

1(�; G�):
if  (xj�) has negative determinant we see that it is in the image of the class
of �  (xj�) in H

1(�; G�sc): Further, this image maps bijectively to H
1(�; G�ad)

under H1(�; G�) ! H1(�; G�ad), and that justi�es our description of the K-
group G.

Suppose n is even. We again have the m + 1 cocycles  (xj�) in G�:
Negative entries in xj� now start at the (m+1)

st position. However, the class
of  (xj�) lies in the image of H

1(�; G�sc)! H1(�; G�) if and only if m� j is
even. Moreover, if j < m as well, there are two distinct classes, represented
by � (xj�); in H1(�; G�sc) mapping to distinct classes in H

1(�; G�) and then
to the same class in H1(�; G�ad): If j = m these two classes are represented by
�I and are both trivial in H1(�; G�sc): Finally the classes we have described
form the entire image of H1(�; G�sc) in H

1(�; G�): The K-group of quasi-split
type is thus

G = Gm tGm�2 tGm�2 tGm�4 tGm�4t ::: .

To describe the inner twists between components, we label the repeated
components as Gm�2;1; Gm�2;2; etc. We take  1j;m : Gj;1 ! Gm to be the
identity and compose this with  to get  1j : G

j;1 ! G�: We also take  2j;m :
Gj;2 ! Gm to be the identity, and compose this with  to get  2j : G

j;2 ! G�:
Each remaining twist is de�ned by the appropriate composition: for example,
to get from Gj;2 to Gk;1 we use ( 1k)

�1 �  2j :

Thus we have used only some of the inner forms to describe the K-group
of quasi-split type. For example, for n = 4 we have used only the quasi-split
form itself and two copies of the compact form; for n = 6 we use two copies
of a noncompact form along with the quasi-split form.

The remaining inner forms also constitute a K-group G0, but now every
form appears twice. Thus

G0 = Gm�1 tGm�1 tGm�3 tGm�3 tGm�5t ::: .

We use a copy of Gm�1 as our identity component Gm�1;1; and de�ne twists
 1j : G

j;1 ! G� and  2j : G
j;2 ! G� as before, for j = m � 1;m � 3;m �
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5; ::: . Once again the attached cocycles � (xj�) provide a complete set of
representatives without redundancy for the image ofH1(�; G�sc) inH

1(�; G�);
and we are done.

Examples

n = 2
G = U(1; 1)
G0 = U(2; 0) t U(2; 0)

n = 3
G = U(2; 1) t U(3; 0)

n = 4
G = U(2; 2) t U(4; 0) t U(4; 0)
G0 = U(3; 1) t U(3; 1)

n = 5
G = U(3; 2) t U(4; 1) t U(5; 0)

n = 6
G = U(3; 3) t U(5; 1) t U(5; 1)
G0 = U(4; 2) t U(4; 2) t U(6; 0) t U(6; 0):

10. Harish Chandra theorems and counting L-packets

We return to a regular elliptic parameter ' = '(m1;m2; :::;mn) and
the discrete series representations in the L-packets attached to ': Suppose
G = tjGj is a K-group. We will use this notation even when multiple copies
of an isomorphism class appear. We write � = tj�j; for the disjoint union of
the L-packets �j for the components Gj: Again our notation will not re�ect
that we may include two copies of the same representation. There are evident
notions of stable conjugacy in G(R) and stable character St-Tr � on G(R).
Notice that the sign (�1)pq is the same for all components of G:

First we consider packet �j for a single component Gj: We rewrite the
function representing the stable character St-Tr � on the regular set in T (R)
as
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(�1)pq
P

!2
 det! �!Q
�>0

(1 � ��1)
:

Here � > 0 means a root � that is positive in the standard ordering (i.e.
�(diag(t1; :::; tn) = tjt

�1
k for some j < k), and � is one half the sum of the

positive roots in this ordering. Also �! is the (rational) character exp(!�1�
� �). Recall that � is the linear form from Section 3 de�ning the in�nitesimal
character �(m1;m2; :::;mn) for the packet, and that we have assumed m1 >
m2 > ::: > mn; i.e. � is regular dominant for the standard ordering on roots.

By a theorem of Harish Chandra there is a unique discrete series rep-
resentation of Gj(R) whose character Tr � is given on the regular set in
T (R) by the same formula except that the summation is now taken only over
the real Weyl group 
jR: More generally, we can sum over any �xed coset
!
jR of 


j
R in 
 to obtain a unique discrete series representation of G

j(R)
with same in�nitesimal charactery and given on the regular set in T (R) by
the class function

(�1)pq det!
P

!02

j
R
det!0 �!!0Q

�>0
(1 � ��1)

:

The term det! disappears if we rewrite the formula using the (unique)
positive system for which !�1� is dominant and replacing � by !�1�.z We
then prefer to label the representation as �(C); where C is the Weyl chamber
containing the chosen element !�1� of the complex Weyl group orbit of �:
Here we can take the (open)Weyl chambers as connected components inRn of
the set of vectors with all entries distinct. So this particular representation
is given by the inequality m!1 > m!2 > ::: > m!n. We may write the
representation �(C) also as �(C 0) if and only if C 0 lies in the real (
jR-) orbit
of C.

Since these representations �(C) account for all discrete series with in�n-
itesimal character �(m1;m2; :::;mn); there are exactly

��
=
jR�� = �nj� discrete
series representations in the packet �j: Then the cardinality of a discrete
series L-packet for G is

P
j

��
=
jR�� which elementary calculation shows to
coincide with 2n�1 in each of the three cases n odd, n even and quasisplit
type, and n even not of quasi-split type. This re�ects a property of real
Galois cohomology sets that we review next.
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yOnly the orbit of (m1;m2; :::;mn) under
 = Sn matters for �(m1;m2; :::;mn).

zWe may remove all determinants and recover the formula used in [K],
[GKM], [Spallone] as follows. Let B be the Borel subgroup de�ned by !�10 (C)
and write �B in place of the (rational) character exp(!�10 !�1(� � �)): Then
the character of �(C) is given on the regular set of T (R) by

(�1)pq
P

B
�BQ

�;B
(1���1)

;

where
Q
�;B indicates a product over roots � of T in B:

11. K-groups and DG(T )

We look more closely at the purpose of the K-group construction, start-
ing with familiar motivation from the geometric side, namely stable conju-
gacy. Fix a group Gj: Given a regular elliptic stable conjugacy class O in
Gj(R); we choose an element � of T (R) in O. For g 2 GL(n;C); g�1�g
also lies in O if and only if g�(g)�1 lies in T (C): Then the Gj(R)-conjugacy
classes in O are parametrized by the set Dj(T ) of elements in H1(�; T ) which
become trivial in H1(�; Gj) under the map determined by inclusion. This set
depends on j. For example, it is trivial when j = 0, i.e. Gj(R) is compact,
and is largesty when j = m, i.e. Gj(R) is quasi-split. On the other hand,
each Dj(T ) is contained in the group

E(T ) = Im(H1(�; Tsc)! H1(�; T ))

which is the same for all j.

The K-group construction provides a useful partition of E(T ) into sub-
sets D0j(T ); and also D00j (T ) when the component Gj is repeated, in bijection
with Dj(T ): For convenience we write this partition as E(T ) = tjDj(T ).

For the K-group G of quasi-split type, the partition is as follows.z First
identify Dj(T ) with its image in E(T ) under the twist from Gj to Gm. Then
D0j(T ) is the translate of Dj(T ) by the class of the twisting cocycle xj� or
xj;1� ; while D00j (T ) is de�ned relative to the second twist and cocycle. For the
K-group G0, we replace Gm by Gm�1;1 in the de�nitions.
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We can also view Dj(T ) as a quotient of Weyl groups. Each member ! of
the complex Weyl group 
 w Sn acts as a permutation of T preserving T (R).
Recall that 
jR consists of those permutations realized in Gj(R): Because
every conjugacy class in a stable regular elliptic conjugacy class meets T (R);
wemay assume that the element g of the �rst paragraph normalizes T (C); and
so identify Dj(T ) with the quotient set 
 = 
jR: In particular, jDj(T )j =

�
n
j

�
:

Examples

n = 2
E(T ) = D1(T )

= D0(T ) t D0(T )
(2 = 2 = 1 + 1)

n = 3
E(T ) = D1(T ) t D0(T )

(4 = 3 + 1)

n = 4
E(T ) = D2(T ) t D0(T ) t D0(T )

= D1(T ) t D1(T )
(8 = 6 + 1 + 1 = 4 + 4)

n = 5
E(T ) = D2(T ) t D1(T ) t D0(T )

(16 = 10 + 5 + 1)

n = 6
E(T ) = D3(T ) t D1(T ) t D1(T )

= D2(T ) t D2(T ) t D0(T ) t D0(T )
(32 = 20 + 6 + 6 = 15 + 15 + 1 + 1):

y This may be false for a unitary similitude group. See Section 16.

z Alternatively, we may use the twisted action of 
 from [Borovoi] in the
description. For n odd, the partition is exactly into orbits for �m-twisted
action of 
 on E(T ):
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12. Partitions and Tate-Nakayama duality

We use Tate-Nakayama duality to identify E(T ) with

Image (H�1(�; X�(Tsc))! H�1(�; X�(T )));

or

H�1(�; X�(Tsc)) = Kernel(H
�1(�; X�(Tsc))! H�1(�; X�(T ))):

In the present example this is simply

X�(Tsc) = 2X�(Tsc).

Write the roots of T as

tk � tl : diag(t1; :::; tn)! tk=tl;

with corresponding coroot

ek � el : t! diag(t1; :::; tn);

where tk = t = t�1l and all other entries are 1. Then each element of E(T )
can be written as a sum of coroots

(ek1 � el1) + (ek2 � el2)+ ::: + (ekr � elr)

modulo 2X�(Tsc):

We review next how to recognize elements of Dj(T ) among the elements
of E(T ). The root tk � tl is compact in Gj if the kth and lth diagonal entries
are the same in the matrix In�j;j; and noncompact otherwise. If tk � tl is
noncompact in Gj then the Weyl re�ection !k;l relative to tk � tl determines
the nontrivial element ek� el of Dj(T ). If tk� tl is compact then !k;l de�nes
the trivial element of Dj(T ): For the contribution of a product !!0 of Weyl
re�ections (or any product in the Weyl group) we have the rule that if !; !0

determine the sums �; �0 respectively, then !!0 determines �+ !�0:
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Examples

n = 2
D0(T ) = f0g
D1(T ) = f0; e1 � e2g

n = 3
D0(T ) = f0g
D1(T ) = f0; e2 � e3; e1 � e3g

n = 4
D0(T ) = f0g
D1(T ) = f0; e3 � e4; e2 � e4; e1 � e4g
D2(T ) = f0; e2 � e3; e2 � e4; e1 � e3; e1 � e4; e1 � e3 + e2 � e4g

n = 5
D0(T ) = f0g
D1(T ) = f0; e4 � e5; e3 � e5; e2 � e5; e1 � e5g
D2(T ) = f0; e3�e4; e3�e5; e2�e4; e2�e5; e1�e4; e1�e5; e3�e4+e2�e5;

e3�e4+e1�e5; e2�e4+e1�e5g

Partitions for G

n = 2
E(T ) = D1(T )

n = 3
E(T ) = D00(T ) t D1(T );
where
D00(T ) = e1 � e2 +D0(T ):

n = 4
E(T ) = D00(T ) t D000(T ) t D2(T );
where
D00(T ) = e3 � e4+ D0(T )
and
D000(T ) = e1 � e2+ D0(T ).
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n = 5
E(T ) = D00(T ) t D01(T ) t D2(T );
where
D00(T ) = e4 � e5+ D0(T )
and
D01(T ) = e1 � e5 + e2 � e3+ D1(T ):

Partitions for G0

n = 2
E(T ) = D0(T ) t D00(T )
where
D00(T ) = e1 � e2 +D0(T ) = fe1 � e2g

n = 4
E(T ) = D1(T ) t D01(T )
where
D1(T ) = f0; e3 � e4; e2 � e4; e1 � e4g
and
D01(T ) = e2 � e3+ f0; e1 � e2; e1 � e3; e1 � e4g.

In the last example, we identify f0; e1 � e2; e1 � e3; e1 � e4g with D1(T ) for
the second component of G0 = U(3; 1) t U(3; 1):

13. Weyl chambers and Whittaker data

We work with G of quasi-split type. In analogy with the geometric side,
there are two choices that we will need to consider at various points:

(i) a base point �� for a discrete series L-packet � = tj�j for G(R),
(ii) an identi�cation of the coroots of T with the roots of the maximal

torus T_ in GL(n;C).

There will be a natural choice for each once we �x a conjugacy class of
Whittaker data.

We have �xed (respectively R-, �-)splittings splG� ; splG_ : These provide
us with the standard identi�cation of the coroots of the diagonal group T �
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in the basic endoscopic group G� with roots of the diagonal subgroup T_ of
the dual GL(n;C) : ej� ek is identi�ed with zj� zk:We do not use the same
identi�cation for T:

Consider now the diagonal subgroup T of Gm: If B is a Borel subgroup
containing T then, using the Galois action of Gm; we have that �(B) is the
Borel subgroup opposite to B relative to T: If each B-simple root � of T
is noncompact then we may de�ne an R-opp splitting spl = (B; T; fY�g):
These splittings are characterized by the property that �(Y�) = Y�� for all
B-simple �: Here we make the usual conventions about the choice of Y��,
and in particular require that the Killing form takes the value 1 on the pair
(Y�; Y��): Such splittings exist only for quasi-split cuspidal groups.

Suppose now that the simple roots de�ning the Weyl chamber C� are
all noncompact. Let spl be an R-opp splitting for this simple system. Recall
that  is a �xed R-isomorphism of Gm with G�. We can �nd a unique
isomorphism of the form Int(g�) �  ; where g� 2 G�; carrying spl to splG� ;
and thus the chamber C� to the chamber de�ned by the B�-simple roots of
T �: We may use this to identify coroots of T with coroots of T � and thence
with roots of T_:

We are interested only in the 
mR -orbit of chambers C� for which the
simple roots are noncompact. There is one such orbit if n is odd, and two if
n is even. The chamber C�� will always represent the 
mR -orbit not containing
C�.

Whittaker data for G� consist of a pair (B; �); where B is a Borel sub-
group de�ned over R, and � is a generic character on the the real points of the
unipotent radical of B: The group G�ad(R) acts transitively on these pairs by
conjugacy. So then does G�(R) if n is odd. There are two G�(R)-conjugacy
classes if n is even.

We have �xed the R-splitting spl� = (B�; T �; fXg): Given a G�(R)-
conjugacy class of Whittaker data (B; �), we may assume B = B�. De�ne
the additive characters  �R on R by  

�
R(x) = exp(�2�ix): If n is odd then

we may assume � is de�ned in terms of the simple root vectors fXg from
spl� and either character  �R . In the case n is even, fXg and  �R yield two
characters �� such that exactly one of the pairs (B�; �+) and (B�; ��) lies in
the conjugacy class of the given (B; �). Accordingly, when we apply Vogan�s
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theorem on the Langlands parameters of generic representations to our L-
packet of discrete series representations, we determine exactly one of the two
chambers C�; C�� as that for which the attached discrete series representation
is (B; �)-generic.

Thus if we start with Whittaker data (B; �) we choose between C�
and C��: We have then both a base point for the packet � and a preferred
identi�cation of the coroots of T with roots in T_:

14a. An invariant for representations of G(R)

Consider again the discrete series L-packet � for G(R): Fix any repre-
sentation �� in �m ; using the R-isomorphism  we can also regard �� as a
representation of G�(R): Now take any � 2 � = tj�j: Recall that

E(T ) = Im(H1(�; Tsc)! H1(�; T )):

We de�ne

inv(�; ��) 2 E(T )

as follows. Suppose � 2 �j:Write �� as �(C�) and � as �(C): Then the Weyl
chamber C� is uniquely determined up to the action of 
mR ; and C up to the
action of 
jR: We may choose y 2 SL(n;C) such that Int(y) �  j;m carries C
to C�: Then

(Int(y) �  j;m) � �(Int(y) �  j;m)�1 = Int(v�);

where

v� = yu��(y)
�1

and u� is a 1-cocycle in SL(n;C) such that

 j;m � �( j;m)�1 = Int(u�):
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The cocycle u� can be read from the calculations in Section 9. Then v� is
also a 1-cocycle and it evidently takes values in Tsc: Moreover its class in
H1(�; Tsc) is independent of the choices for C, C�: We write inv(�; ��) for
(the inverse of) the image of this class in H1(�; T ): Then a calculation shows
that inv(�; ��) lies in the appropriate subset D0j(T ) or D00j (T ) of E(T ):

As we have seen in Section 12, Tate-Nakayama duality allows us to re-
gard inv(�; ��) as a sum of coroots for T: We �x a conjugacy class of Whit-
taker data to determine a Weyl chamber C� for which the simple roots are
noncompact, and then use the identi�cation of Section 13 to regard inv(�; ��)
as a sum of roots of T_:

14b. A relative invariant for representations of G0(R)

There is an analogue within G0 of this last construction, where �� is
replaced by a representation of Gm�1;1(R): Instead of using this directly,
we de�ne another invariant that is useful for spectral transfer factors and
provides a simple formula relating factors for G0 to those for G (a local
hypothesis).

Let �� = �(C�), where initially we allow C� to be arbitrary. The repre-
sentation �� lies in the packet �m for Gm (or the packet for G�) attached to
'. Now take � 2 �; the packet for G0 attached to ': Recall that we have
two copies of each group appearing in G0; as usual, we will not distinguish
between them in notation. Suppose � = �(C) is a representation of Gj(R):
Again we may choose y 2 SL(n;C) such that Int(y) �  j;m carries C to C�;
and

(Int(y) �  j;m) � �(Int(y) �  j;m)�1 = Int(v�);

where v� = yu��(y)
�1 and u� 2 SL(n;C) is such that  j;m � �( j;m)�1 =

Int(u�): Now however u�; and so also v�, is not a cocycle since we have
moved outside the K-group of Gm (see the calculations of Section 9). On
the other hand, the coboundary of v� is the same as that of u�; and so is
independent of � or �; and moreover this coboundary lies in the center Zsc
of SL(n;C): This allows us to de�ne a relative invariant.

Here we describe the relative invariant for representations in two discrete
series L-packets �;�0 forG with parameters '; '0 respectively. Suppose that
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�0 = �(C 0) is a representation of component Gj0with cochains u0�; v0�: Then
these have same coboundary as u�; v� (that is built into the de�nition of
K-group), and so (v�1� ; v0�) de�nes a 1-cocycle in the torus U = Tsc � Tsc =
f(z�1; z) : z 2 Zscg: We write invC�(�; �0) for its class in H1(�; U):

Using Tate-Nakayama duality for U is not much more e¤ort than for T:
The cochains v�1� ; v0� de�ning invC�(�; �

0) project onto cocycles in Tad; and
so we may regard them as coweights (rather than the previous integral sums
of coroots). Because (v�1� ; v0�) de�nes an element of U; the sum of these two
coweights must be an integral sum of coroots. We then use C� to identify
this as a sum of roots of T_ which we evaluate at s; writing the result as
< invC�(�; �

0); sU > :

Now assume also that C� has the property that the simple roots for C�
are noncompact. Then we see that < invC�(�; �

0); sU > is independent of
the choice for C�; and write invC�(�; �0) simply as inv�(�; �0):

15a. Endoscopic codes for G

For the K-group G of quasi-split type we will attach to each discrete
series representation � a unique even binary word of length n: If n is even this
requires an additional choice, one of the two conjugacy classes of Whittaker
data. The second set of codes is then obtained from the �rst by reversing
each bit.

Assume �rst n is odd. We use the unique generic basepoint �� of the
L-packet � of � to de�ne inv(�; ��); and then identify inv(�; ��) as a sum
of roots of T_; as above. Recall that we are using additive notation for the
root lattice, but that we regard roots as (rational) characters on T_: Then
inv(�; ��) is trivial on the matrix �I, and so may be evaluated on

S = S = f�Ig:

This evaluation de�nes a character on S and hence an even binary word of
length n (Section 4). Recall also that the map Ssc ! S identi�es characters
on S as the group of quadratic characters on Ssc:

Assume now that n is even. We can proceed as for n odd once we
choose a conjugacy class of Whittaker data and require �� to be generic for
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this class. The assertion about reversing the bits follows from examining the
steps of the construction and noting that the cocycle � ! �I determines the
character 111:::1 for n even.

Examples

n = 2

U(1; 1)
m1 > m2 : �00
m2 > m1 : �11

n = 3

U(2; 1) U(3; 0)
m2 > m3 > m1 : �000 �101
m3 > m2 > m1 : �110
m2 > m1 > m3 : �011

n = 4

U(2; 2)

m1 > m3 > m2 > m4 : �0000
m1 > m2 > m3 > m4 : �0110
m3 > m1 > m2 > m4 : �1100
m1 > m3 > m4 > m2 : �0011
m4 > m3 > m2 > m1 : �1001
m4 > m2 > m3 > m1 : �1111

U(4; 0); f irst copy U(4; 0); second copy

�0101 �1010

n = 5

U(3; 2)
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m1 > m5 > m3 > m4 > m2 : �00000
m1 > m5 > m4 > m3 > m2 : �00110
m1 > m3 > m5 > m4 > m2 : �01100
m1 > m5 > m3 > m2 > m4 : �00011
m1 > m2 > m3 > m4 > m5 : �01001
m4 > m5 > m3 > m1 > m2 : �10010
m5 > m1 > m3 > m4 > m2 : �11000
m1 > m2 > m4 > m3 > m5 : �01111
m5 > m1 > m4 > m3 > m2 : �11110
m5 > m1 > m3 > m2 > m4 : �11011

U(4; 1) U(5; 0)

m1 > m5 > m3 > m4 > m2 : �11101 �01010
m1 > m4 > m3 > m5 > m2 : �10111
m1 > m3 > m5 > m4 > m2 : �10001
m1 > m2 > m3 > m4 > m5 : �10100
m5 > m1 > m3 > m4 > m2 : �00101

15b. Endoscopic codes for G0

We attach to each discrete series representation � of G0 a unique odd
binary word of length n: Now, however, we will be arbitrary about our choice
of base point �0:We follow the requirements of [Arthur, L-packets] and attach
to �0 a character � on Ssc such that �(�I) = �1, i.e. a particular odd binary
word of length n as in Section 5.

Recall inv�(�; �0) is a pair of coweights with sum equal to a sum of
coroots of T: To identify this as a sum of roots of T_ we �x one of C� and C��
(for example, by the choice of a conjugacy class of Whittaker data for the
quasi-split type G):

To de�ne the code for � we evaluate the sum of roots of T_ attached
to inv�(�; �0) on Ssc, so obtaining a quadratic character on Ssc: We multiply
this character by � to determine a character to which we have assigned an
odd binary word of length n:

If we change our choice between C� and C�� then we again simply reverse
the bits provided we also replace � by ��1:
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Examples

n = 2

U(2; 0) first copy U(2; 0) second copy

�10 (specified) �01

n = 4

U(3; 1) first copy U(3; 1) second copy

m4 > m2 > m3 > m1 : �1000 (specified) m4 > m2 > m3 > m1 : �0111
m3 > m2 > m4 > m1 : �0010 m3 > m2 > m4 > m1 : �1101
m2 > m4 > m3 > m1 : �0100 m2 > m4 > m3 > m1 : �1011
m1 > m2 > m3 > m4 : �0001 m1 > m2 > m3 > m4 : �1110

15c. Summary: pairing

Evaluation on Ssc of the endoscopic code characters can be expressed as
a pairing. Fix a G�(R)-conjugacy class of Whittaker data (B; �).

(i) For G of quasi-split type we have de�ned a pairing

Ssc � �! f�1g

which identi�es � as the group of quadratic characters on Ssc, i.e. characters
trivial on Z_sc: The unique (B; �)-generic representation in � is identi�ed with
the trivial character. The pairing is determined uniquely by the conjugacy
class of (B; �).

(ii) For G0 not of quasi-split type we have de�ned a pairing

Ssc � �! C�;
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with image in 2nth roots of unity. This pairing depends also on the choice
of base point for � and character � on Ssc with which to identify this base
point. The character � is required to satisfy �(�I) = �1: The packet � is
then identi�ed as the set of all characters on Ssc which agree with � modulo
squares in Ssc; i.e. modulo Z_sc:

We denote the pairing in both cases by

(ssc; �)! � ssc; � � :

For G we have then

� s0sc; � � = � ssc; � �

if s0sc has same image as ssc in S, while for G0 we have

� s0sc; � � = �(zsc) � ssc; � �;

where s0sc = zscssc; zsc 2 Z_sc . The factor �(zsc) is an nth root of unity.

On the other hand, for both G and G0 we always have

� ssc; �
0 � = � � ssc; � �

for any two representations �; �0 in �:

In Part B we will describe how these pairings apply to transfer [and
stabilization.]

16. Groups of unitary similitudes

As a further exercise we replace unitary groups by groups of unitary
similitudes.

In place of the unitary group U(n� j; j) we consider the corresponding
group of unitary similitudes GU(n� j; j): Recall

GU(n� j; j)(C) = GL(n;C)�GL(1;C);
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and the Galois action is given by

�(g; z) = (z�j(g); z)

for g 2 GL(n;C); z 2 GL(1;C); where �j denotes the Galois automorphism
for U(n� j; j): We write GU(n� j; j) for GU(n� j; j)(R) which consists of
those pairs (g; z) for which z 2 R� and �(g) = z�1g; we will occasionally
drop the multiplier z from notation. Notice that for n = 2m and j = m the
element (Jn;�1) lies in the real points GU(m;m) of the quasi-split form.

Consider �rst the case n is odd. Then the group GU(n � j; j) of real
points is connected because it is the product of

U(n� j; j) = U(n� j; j)� f1g

and the nonzero complex scalar matrices embedded as

f(zI; zz) : z 2 C�g.

If n = 2m this is again true unless j = m: If j = m the product forms the
identity component of GU(m;m): There is then one more component, that
of (Jn;�1):

We write T(sim) for the thickened diagonal (and maximal) torus T(sim) =
T�GL(1) inGU(n�j; j): Notice that for all n, the Cartan subgroup T(sim)(R)
consists of pairs

diag(sim)(re
i�1 ; rei�2 ; :::; rei�n) = (diag(rei�1 ; rei�2 ; :::; rei�n); r2);

where r 2 R� is positive, and T(sim)(R) is therefore connected. We may
then continue to parametrize packets of discrete series representations by
in�nitesimal character. First, notice that both the complex and the real Weyl
groups of T(sim) are unchanged when we pass from U(n� j; j) to GU(n� j; j)
unless n = 2m and j = m: Then the real Weyl group 
jR(T(sim)) also contains
the action of (Jn;�1) on T(sim):

By a discrete series representation of GU(n � j; j) we will mean an
irreducible admissible representation � which is square-integrable modulo the
center Z(R) = fdiag(sim)(rei�; rei�; :::; rei�)g ' C� of GU(n � j; j): Suppose
�(un) is a discrete series representation of U(n�j; j) and � is a quasicharacter
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on Z(R) which extends the central character of �(un): Excluding the case n =
2m and j = m we attach to (�(un); �) a unique discrete series representation
of GU(n � j; j) simply by extension. If n = 2m and j = m extension
produces a representation of the identity component of GU(m;m) which we
then induce to an irreducible representation � of GU(m;m): All discrete
series representations of GU(m;m) are obtained this way, and (�(un); �) and
(�0(un); �

0) yield the same (equivalent) representation if and only if � = �0 and
either �(un) = �0(un) or �(un); �

0
(un) are conjugate by the element (Jn;�1) of

GU(m;m):

The modi�cation to K-groups is simple. For n odd we again get a single
K-group with all isomophism classes occurring with multiplicity one:

G = GU(m+ 1;m) tGU(m+ 2;m� 1)t ::: GU(n� 1; 1) tGU(n; 0):

Suppose n = 2m: Then for each j = 0; 1; :::;m� 1, the two cocycles � (xj�)
of Section 9 now represent the same class, and we again get two K-groups

G = GU(m;m) tGU(m+ 2;m� 2) tGU(m+ 4;m� 4)t :::

and

G0 = GU(m+ 1;m� 1) tGU(m+ 3;m� 3) tGU(m+ 5;m� 5)t ::: ;

but now all isomorphism classes occur with multiplicity one.

The corresponding partition of E(T(sim)) = E(T ) is the same for n odd.
For n = 2m we remark that��Dm(T(sim))�� = 1

2
jDm(T )j = 1

2

�
2m
m

�
;

while for j < m we have

Dj(T(sim)) = Dj(T ):

Thus
��E(T(sim))�� = 1

2
jE(T )j : For the partitions of E(T(sim)); remove one half

of the elements from Dm(T ); using

e1 � en + e2 � en�1+ ::: + em � em+1 � 0:
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Also set

D0j(T(sim)) = D0j(T )

for j < m; and ignore the sets D00j (T ) attached to the second copies of com-
ponents.

Let G_(sim) = GL(n;C)�GL(1;C): Then � acts on G_(sim) via

�_(sim) : (g; z)! (�_(g); z det(g)):

We use WR ! � to then make an action of WR on G_(sim); and set

LG(sim) = G_(sim) oWR:

There is a variant of the standard splitting with T_(sim) = T_�GL(1;C) and
B_
(sim) = B_ �GL(1;C):

Recall that in the setting of unitary groups each regular elliptic parame-
ter has a representative ' = '(m1; :::;mn), where m1 > m2 > ::: > mn and
each mj is of parity opposite to that of n:We wrote '(w) as '0(w)�w: The
central character � for a discrete series L-packet satis�es

�((ei�I; 1)) = eim�=2;

where

m = m1 +m2+ ::: + mn = 2(m0
1 +m0

2+ ::: + m0
n)

in the notation of Section 7. De�ne m0 = m=2 and � by

�(rI; r2) = r�.

We will typically assume � integral. De�ne a map � : WR ! C� by

�(z � 1) = z�=2z�=2+m
0
= (zz)(�+m

0)=2(z=z)�m
0=2

and

(�(1� �))2 = (�1)m0
:
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Now set

'(sim)(w) = ('0(w); �(w))� w

for w in WR: Then '(sim) is a regular elliptic parameter, and the attached
L-packet consists of the representations we have described above for a pair
(�(un); �); where �(un) is in the packet attached to ':

We return to the constructions of Section 4. The centralizer S(sim) in
G_(sim) of '(sim)(WR) consists of all pairs (diag(�1;�1; :::;�1); z) with an
even number of negative signs and z 2 C�: We are more interested in the
component group �0(S(sim)) which we may embed in Ssc(sim). The group Ssc(sim)
is generated by �0(S(sim)) and Z_sc: Notice that if n is even then Ssc(sim) is a
subgroup of index two in Ssc (we replace the earlier generator of order 2n
with its square, i.e. with a generator of Z_sc), while if n is odd then the two
groups coincide.

For n odd, the construction of endoscopic codes is the same. For n even,
notice that the character on Ssc with binary code 111::::1 is trivial on Ssc(sim):
Given a binary word � write � for the word obtained by reversing each bit.
Then the earlier discussion modi�es easily to show that the pairs f�, �g of
even words of length n parametrize each discrete series packet for G; while
the pairs f�, �g of odd words parametrize each discrete series packet for G0:
The pairing for G0 now takes values in nth roots of unity.

17. Base change example

We return to a unitary groupG orG0: Consider the discrete series packet
� with (regular elliptic) parameter ' = '(m1; :::;mn), where m1 > m2 >
::: > mn and each mj is of parity opposite to that of n: The base change of �
is the (tempered, irreducible) representation �C of GL(n;C) with complex
Langlands parameter obtained by restriction 'C of ' to C� � 1. Recall that

'(z � 1) =

0BB@
(z=z)m1=2

(z=z)m2=2

:::
(z=z)mn=2

1CCA� (z � 1); z 2 C�:
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By de�nition of the Langlands correspondence, �C is the principal series
representation determined by the unitary character

diag(t1; t2; :::; tn)! (t1=t1)
m1=2 (t2=t2)

m2=2:::(tn=tn)
mn=2

on the diagonal subgroup ofGL(n;C): This representation has same in�nites-
imal character as the �nite dimensional representation of GL(n;C) attached
to (m1; :::;mn) as in Section 7 (or its complexi�cation). The in�nitesimal
character is given by the linear form (�; �) on tC� tC; where tC is the algebra
of complex diagonal matrices and � is the form

diag(t1; t2; :::; tn)! m1

2
t1 +

m2

2
t2 + :::+ mn

2
tn

on tC from Section 7.

The principal series representation �C is both well-de�ned and invariant
under the Galois automorphisms for G or G0 independently of the parity
conditions on the integers mj: However if some parities are incorrect for de-
scribed base change fromG orG0 then they determine instead an endoscopic
group H ... .

Version: August 2, 2008, with minor correction in Section 9, as follows.

Replace (�):

We take  2j;m : G
j;2 ! Gm to be  1j;m followed by Int(Jn);

by (��):

We also take  2j;m : G
j;2 ! Gm to be the identity,

******************
This does not a¤ect any of the later calculations as they were done using
(��): I forgot to go back and replace (�):
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Examples in endoscopy for real groups
Addendum

D. Shelstad

Let G = U(n; 1) where n = 2m: For this group, standard and Whittaker
normalizations are de�ned for both geometric and spectral factors (since G is
a component of the K-group of quasi-split type) and the two normalizations
coincide and are canonical. We use this normalization for �geom and �spec:

We want to calculate �(�H ; �) for � in the discrete series and �H in a
packet with well-aligned parameter. See examples in ban¤-notes-B. Suppose
� has parameter ' = '(m1; :::;mn+1); where m1; :::;mn+1 are even integers
(ban¤-A).

Lemma

�(�H ; �) = �(�
s; �) for some s 2 S':

Proof: First observe that any elliptic endoscopic data is of the form e(s)
for some s 2 S' (up to a modi�cation of s which does not matter) ... as
constructed in Section 6 of ban¤-B . Then check de�nitions to see that all
terms in the spectral factor � coincide: well-aligned is essential for �II (see
paper II) �

Recall that �(�s; �) = < s; � > is trivial to calculate (for this G; in par-
ticular) ... ban¤-A. We have thus to �nd the correct s. We then write the
endoscopic data for H as e(s) ...

Before doing this, notice that U(2m; 1) has a special property:

Each s = diag(�1; :::) 2 S' with one negative sign (or n negative signs)
separates o¤ exactly one representation of the packet for G:

Proof: See pp. 25 - 26 of ban¤-A for G = U(2; 1); U(4; 1). The ingredients
for a general argument along the same lines are set up in the notes: examine
D01(T ). �
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To separate �� = �(mn+1 > mn > ::: > m1); use s = diag(�1; 1; 1; :::; 1):

Lemma:

< s; �� > = (�1)m

< s; � > = (�1)m�1 for � 6= ��:

Proof: Another exercise with the setup in ban¤-A. �

To separate ��� = �(m1 > m2 > ::: > mn+1) instead, use s = diag(1; 1; :::; 1;�1):
The result is the same (with ��� in place of ��):

Version: August 18, 2008

Examples in endoscopy for real groups
Part B: 08/14/08

D. Shelstad

We start by discussing spectral transfer factors along the same lines
as the geometric factors of [LS1] and [KS], noticing a simpler structure for
geometric factors that is useful for real groups. Although we are interested
primarily in examples, it is easier to outline a general transfer theorem in this
setting. This brings us to further analysis and simpli�cation of the spectral
transfer factors, particularly in the case of Whittaker normalization. Various
calculations of spectral transfer factors are included for a pair of examples.
We then use the codes from Part A to generate quickly all endoscopic identi-
ties involving discrete series packets for unitary groups and unitary similitude
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groups when n = 4. For a general unitary or unitary similitude K-group of
quasi-split type we �nd a canonical basis of endoscopic characters for a dis-
crete series L-packet, with one exception that seems quite transparent. We
also discuss the K-group G0 not of quasi-split type along the lines suggested
by Arthur [L-packets 2006].

1. A priori de�nition of transfer factors
2. Endoscopic data for unitary groups
3. Spectral transfer factors for G
4. Spectral transfer factors for G0

5. Transfer theorem
6. Factoring parameters and adjoint relations
7. Simpli�ed factors for G
8. Endoscopic bases for G
9. Factors and generators for G0

10. Summary of endoscopic identities

1. A priori de�nition of transfer factors

In the setting of real groups, we may make a priori de�nitions of spectral
transfer factors �spec analogous to those for geometric transfer factors �geom:
There is a related notion of geometric-spectral compatibility which allows for
use of the pair (�geom;�spec) in the transfer theorem.

We start with a single (unitary) group G and an (elliptic) endoscopic
group H1: There is an induced central torus Z1 in H1 such that the maximal
tori over R in H1=Z1 embed over R as maximal tori in G: In our present
example we may take Z1 trivial, but even here we cannot always ignore an
additional datum that comes with H1: an embedding �1 of the endoscopic
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datum H in LH1; this is discussed in some detail in Section 2. On the other
hand, all choices of the z-pair (H1; �1) will determine the same spectral fac-
tors.

To recall geometric factors for a single group G we consider �rst very
regular pairs (1; �) of points: 1 is (strongly) G-regular in H1(R) and �
is (strongly) regular in G(R): Call (1; �) a related pair if 1 is an image
(or norm) of �: For two very regular related pairs (1; �) and (

0
1; �

0), we
de�ne �rst a canonical relative factor �geom(1; �; 

0
1; �

0) as in [LS1]. Then a
function � on very regular related pairs is a geometric transfer factor if

�(1; �) = �(
0
1; �

0) = �geom(1; �; 
0
1; �

0)

for all very regular related pairs (1; �) and (
0
1; �

0). In particular, the func-
tions �0;�� de�ned in [LS1] and [KS] for quasi-split G are transfer factors;
we will discuss these in detail shortly. In general, the relative factor has the
properties

�geom(1; �; 1; �) = 1;

�geom(1; �; 
0
1; �

0)�geom(
0
1; �

0; 001; �
00) = �geom(1; �; 

00
1 ; �

00
):

These ensure that geometric transfer factors exist and are determined uniquely
up to a complex constant: we may recover each normalization by �xing any
one pair (01; �

0) and specifying �(01; �
0); for then we have

�(1; �) = �geom(1; �; 
0
1; �

0) �(01; �
0)

for all very regular related pairs (1; �):

We plan to make parallel de�nitions for spectral transfer factors.y The
very regular related pairs we start with are now pairs of tempered irreducible
admissible representations (�1; �) with su¢ cently regular Langlands parame-
ters. We are interested here only in the case that � belongs to the discrete
series for G(R) , i.e. that its parameter is elliptic as well as regular.

For transfer we consider only representations �1 of H1(R) whose restric-
tion to Z1(R) acts as a character �1 prescribed by the z-pair (H1; �1): There
is also an attached mapping on parameters
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�temp(H1; �1)! �temp(G
�):

If (H1; �1) is replaced by another z-pair (H2; �2) with attached character �2
then we have a bijective map

�temp(H2; �2)! �temp(H1; �1),

with the obvious commutative diagram. We regard �temp(G) as a subset of
�temp(G

�): Then (�1; �) is a related pair if the parameter of �1 maps to that
of �:

We start with two very regular related pairs (�1; �); (�01; �
0) and de�ne a

canonical relative factor �spec(�1; �; �
0
1; �

0). It has the same general form as
�geom in that it is the product of three terms which we label�I ;�II ;�III :

z It
has properties analogous to those written above for �geom:We �nd moreover
that �spec(�1; �; �

0
1; �

0) is always simply a sign.

A function � on very regular related pairs is a spectral transfer factor if

�(�1; �) = �(�
0
1; �

0) = �spec(�1; �; �
0
1; �

0)

for all very regular related pairs (�1; �) and (�01; �
0). Examples include spec-

tral analogues of�0;�� forG quasi-split. In general, we �x (�01; �
0); prescribe

�(�01; �
0); and then set

�(�1; �) = �spec(�1; �; �
0
1; �

0) �(�01; �
0)

for all very regular related pairs (�1; �): Thus we may always normalize so
that each �(�1; �) is a sign.

Now write �geom;�spec for some choice (normalization) of geometric,
spectral transfer factors. We may de�ne a canonical compatibility factor
�comp(�1; �; 1; �); again as a product of three terms �I ;�II ;�III : There
are transitivity properties relative to spectral and geometric factors. Then
�geom; �spec are compatible if

�spec(�1; �) = �comp(�1; �; 1; �) �geom(1; �)

for one, and hence every, choice of very regular related pairs (�1; �); (1; �):
If we de�ne �geom by prescribing �geom(

0
1; �

0) for given (01; �
0); we obtain

compatible �spec by �xing (�01; �
0) and prescribing �spec(�

0
1; �

0) as
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�comp(�
0
1; �

0; 01; �
0) �geom(

0
1; �

0):

Conversely, we may prescribe �spec �rst.

Before going on to the transfer theorem itself, we describe the transfer
factors explicitly in some examples. As in Section A14 where we attached
invariants to representations, we also see that K-groups provide a natural
setting for normalization.

y This will help in identifying the transfer of a stable character in terms of
irreducible characters. In the case of discrete series characters the identi-
�cation becomes an exercise in cancelling matching geometric and spectral
contributions [see II, pp. 273 - 277].

z The corresponding arrangement for �geom is �I ; �II+ = �II�III2 ; and
�III1 :We ignore �IV and use it instead in the de�nition of orbital integrals.

2. Endoscopic data for unitary groups

Recall that we have organized unitary groups into the following K-
groups. For n = 2m+ 1 we have simply

G = U(m+ 1;m) t U(m+ 2;m� 1) t ::: t U(2m+ 1; 0):

For n = 2m we have

G = U(m;m) t
U(m+ 2;m� 2) t U(m+ 2;m� 2) t :::

of quasi-split type, and

G0 = U(m+ 1;m� 1) t U(m+ 1;m� 1) t
U(m+ 3;m� 3) t U(m+ 3;m� 3) t ::::
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Endoscopic data are the same for all components.

Fix a set of elliptic endoscopic data (H;H; s): We assume that s lies in
the group S of matrices diag(�1;�1; :::;�1) in G_ = GL(n;C). If s has a
entries +1 and b entries �1 (in any order) then H is the product Ua �Ub of
the quasi-split unitary groups of Section A9, and for H we take the subgroup
of LG generated by the element Jn�(1��) and the subgroup H_�(C��1);
where H_ is the centralizer of s in G_: Alternatively, H is generated by H_

and the image of any regular elliptic parameter ' = '(m1;m2; :::;mn):

We attach the K-group H to H using products of the unitary groups of
Section A9. We identify each component of H with the subgroup of GL(n)
consisting of matrices of the same shape as those in H_ and endowed with
the appropriate Galois action. The diagonal subgroup of each component of
H is again T; and we do have the convenient property that tj � tk is a root
of T in (a component of) H if and only if zj � zk is a root of T_ in H_: To
simplify calculations, we will pick examples where inclusion of the quasi-split
component of H in the quasi-split component of G is de�ned over R.

Example

Let n = 3 so that G = U(2; 1) t U(3; 0): We choose

s =

0@1 �1
1

1A ;

and then H = U(1; 1) � U(1; 0) which we identify as the group of matrices
of the form 0@a 0 b

0 f 0
c 0 d

1A ;

with
�
a b
c d

�
2 U(1; 1) and f 2 U(1; 0):

For the z-pair (H1; �1) we may take H1 = H = Ua�Ub; but some care is
needed with the isomorphism �1 : H ! LH determining the map �temp(H)!
�temp(G) on parameters. If G = U(2; 1)tU(3; 0) and H = U(1; 1)�U(1; 0),
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as above, then our parameters (m1;m2;m3) for regular elliptic parameters
shift parity from (odd; even; odd) forH to (even; even; even) forG. We prefer
to write the details for the following two examples for n = 4 which we will
continue to follow.

Examples

(i) Let

s =

0BB@
1
1
�1

1

1CCA :

In this example, the parameter '1 for a discrete series L-packet for

H = U(2; 1)� U(1) t U(3; 0)� U(1)

determines a tuple of integers that are all even, whereas the tuples for

G = U(2; 2) t U(4; 0) t U(4; 0)

consist of odd integers. The group H is generated by the subgroup H_ of
GL(n;C) of all matrices 0BB@

� � 0 �
� � 0 �
0 0 � 0
� � 0 �

1CCA ;

and the image of ' = '(m1;m2;m3;m4). Taking the isomorphism �1 : H !
LH to be the identity on H_; we have just to specify �1 on the image of ':
We set

�1('(1� �)) = h� (1� �);

where

h = (J3; J1) =

0BB@
0 0 0 1
0 �1 0 0
0 0 1 0
1 0 0 0

1CCA :
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Then, as we noted in Section A4, calculation in LH gives h�_(h) = I; so that

(�1('(1� �)))2 = I � ((�1� 1):

But

('(1� �))2 = J4�
_(J4)� (�1� 1) = �I � (�1� 1) = '(�1� 1)

in LG: Thus we cannot take �1 to be the identity on '(C� � 1): We may
choose �1('(z � 1)) to be0BB@

(z=z)(m1�1)=2

(z=z)(m2�1)=2

(z=z)(m3�1)=2

(z=z)(m4�1)=2

1CCA� (z � 1);
for z 2 C�. Notice that

'1 = '1(m1 � 1;m2 � 1;m3 � 1;m4 � 1)

is a regular elliptic parameter for H which maps to ' = '(m1;m2;m3;m4)
under the map �temp(H)! �temp(G); determined by �1; and that the parities
shift correctly. We could of course adjust �1 to subtract any given odd integer
from each of m1;m2;m3;m4.

(ii) Let

s =

0BB@
1
�1

�1
1

1CCA ;

so that H = U(1; 1)� U(1; 1); and there is no parity change for parameters.
At the same time we see that we may take �1 to be the identity on H

_ �
C� � 1: We could also adjust �1 to subtract any even integer from each of
m1;m2;m3;m4.

Proposition

For general s 2 S; H = Ua � Ub we may choose �1 so that �1(I � (z � 1));
z 2 C�; is given by
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0BB@
(z=z)��1=2

(z=z)��2=2

:::
(z=z)��n=2

1CCA� (z � 1);
where �j = 0 except if the jth entry of s is +1 and a is of opposite parity to
n = a+ b or if the jth entry of s is �1 and b is of opposite parity to n. For
the exceptions we may take �j = 1:

Returning to the setting of Section A7, we de�ne the linear form

�� : diag(t1; t2; :::; tn)! "1
2
t1 +

"2
2
t2 + :::+ "n

2
tn

on the Lie algebra tC of T (C). Notice that < ��; �_ > = 0 for each root �_

of T_ in H_: The signi�cance of �� for geometric transfer factors is that, in a
setting like the present one where T (R) is compact, the linear form ���H+��
exponentiates to a rational character on T .y Here � is one half the sum of the
positive roots of T in a component of G for some ordering, and �H is de�ned
similarly for H. The signi�cance of �� for spectral transfer factors is, as we
have seen in examples, in the shift of in�nitesimal character in related pairs.

We will need another remark. The split rank, or dimension of a maximal
R-split torus, of the quasi-split unitary groups U(m+1;m); U(m;m) ism: By
the split rank of G we will mean the split rank of its quasi-split component.
Notice that the split rank of H = Ua � Ub; or the associated K-group H,
is the same as that of G unless n = a + b is even and a; b are odd. In the
exceptional case, the split rank of H is one less than that of G: Example (i)
above is of this type, as is the case G = U(1; 1); H = U(1)�U(1) for n = 2:
This property is signi�cant for the term �II in spectral transfer factors.

yThese characters appear in the term �II+: The term e�
�
also persists in

local formulas and in the Lie algebra version of geometric transfer factors.

3. Spectral transfer factors for G

Let �1 be a discrete series representation of H and '1 = '1(m
0
1; :::;m

0
n)

be its parameter. The parameter ' = ��11 � '1 for G is also a tempered
elliptic parameter and may written as ' = '(m1; :::;mn), where mj = m0

j +
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�j; 1 � j � n: However, various of the mj may coincide in which case '
is not regular. Then an attached representation � does not belong to the
discrete series. We still de�ne a transfer factor �spec(�1; �) for use in the
transfer theorem, but not initially. These singular parameters also determine
Arthur parameters for nontempered cohomological representations. For now
we exclude this case and require instead that '1 is G

_-regular, i.e. that ' is
regular.

Thus let (�1; �) be a related pair of discrete series representations for
H and G; with G_-regular elliptic Langlands parameters '1; '. Recall that
the geometric transfer factor �0 was de�ned intially only for quasi-split com-
ponents where we have an absolute version of the relative term �III : The
K-group formalism allows us to extend it to all components of G, extension
to all components of H being trivial. We now describe brie�y the spectral
analogue �0(�1; �):

We start with the main term �III : Following Section A14 (see Part b)
we �x a Weyl chamber C� for T and thus a representation �� in the packet
of �: Then we use C� to identify the coroots of T as roots of T_: We again
regard inv(�; ��) as a sum of roots of T_ and evaluate this sum on the given
endoscopic datum s to obtain �III(�1; �): Thus �III(�1; �) is a sign. It
depends on the choice of C� which amounts to a choice of toral data.

The sign �I(�1; �); which is the same as the geometric term �I for reg-
ular elliptic elements, has cancelling dependence on toral data but introduces
additional dependence on a-data. Finally we introduce �II(�1; �) which has
cancelling dependence on a-data, to obtain

�0(�1; �) = �I(�1; �) �II(�1; �) �III(�1; �)

independent of the choice for toral data and a-data. For n even, �I(�1; �)
also depends on the R-splitting spl� for G� chosen initially.

There are three contributions to �II in general. Two are signs, one
from comparing signs (�1)q for H and G, and one from the relative posi-
tions among Weyl chambers of the tuples (m0

1; :::;m
0
n) for '1 and (m1; :::;mn)

for '. The second sign is also simple to calculate and will not concern us
directly here. The third contribution comes from rewriting the stable char-
acter formulas on T (R) using a Weyl denominator that depends on a-data
rather than on a positive system for the roots of T .y
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Examples

We continue with the examples (i) and (ii) from the last section. The
�rst contribution to �II is trivial: the number of positive noncompact roots
for the quasi-split components of H, G di¤ers by 2 in each case, and so each
sign is (�1)2:

In each example suppose that '1 = '1(m
0
1; :::;m

0
4) is a G

_-regular pa-
rameter which is well-aligned in the sense that m0

1 > m0
2 > m0

3 > m0
4: Then

' = '(m1; :::;m4) has m1 > m2 > m3 > m4; independently of our choices
for �1. Thus both '1 and ' are the canonical representatives from Section
A3. This makes the second sign in �II(�1; �) trivial.

We will use the chamber C� : m1 > m3 > m2 > m4 of Section A14 for
identifying coroots of T with roots of T_, and by a positive root of T we will
mean a root positive relative to C�:We use particular a-data in our formulas.
Namely, we set a� = i for each positive root �: Then the third contribution
to �II(�1; �) is (�1i )

N = iN ; where N is the number of positive roots that
are not roots for H: In the examples, N = 3 and N = 4; respectively. Thus:

Example (i): �II(�1; �) = �i

Example (ii): �II(�1; �) = 1

Notice that, in general, N is odd exactly when a; b are both odd (recall
H = Ua�Ub). Because a change in a-data changes �II(�1; �) by a sign only,
we see then that �II(�1; �) is always a sign except in the case n even and
both a; b are odd, and in that case it is �i:

We return now to �I for the two examples. This is a calculation where
we use matrices in the (simply-connected) commutator group SL(4): Here is
a summary. We assume that the R-isomorphism  : U(2; 2)! G� is Int(h1);
where h1 is the matrix

1p
2

0BB@
i 0 0 1
0 i 1 0
0 �1 �i 0
�1 0 0 �i

1CCA :
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Let B be the Borel subgroup of GL(4) containing the diagonal subgroup
T = T � and with roots determined by C�: Then spl = (B; T; fY g); where fY g
consists of the standard root vectors (transvections), is an R-opp splitting
for the Galois action of U(2; 2). The same is true of  (spl) relative to the
Galois action of G�. Let h2 = uh�11 ; where u is the matrix0BB@

� 0 0 0
0 0 � 0
0 � 0 0
0 0 0 �

1CCA ;

with �4 = �1: Then Int(h2) carries  (spl) to our �xed R-splitting spl� for
G�: We now calculate the splitting invariant for  (T ) relative to spl�, toral
data Int(h2); and given a-data. We �nd it is the 1-cocycle t� 2  (T ) given
by

h�12

0BB@
0 0 0 �i
0 0 �i 0
0 �i 0 0
�i 0 0 0

1CCA�(h2) =

0BB@
1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 1

1CCA :

This cocycle then determines the character 0110 on S by our chosen identi-
�cations. We evaluate this character on the endoscopic datum s to obtain
�I(�1; �) = �1 in (i), while �I(�1; �) = 1 in (ii).

In conclusion, we have (for the given choice of toral data or chamber
C�):

Example (i): �0(�1; �) = i �III(�1; �)
In this example, �1 is a well-aligned G-regular discrete series representa-
tion (i.e. its parameter is G_-regular and well-aligned) of U(2; 1)� U(1) or
U(3; 0) � U(1) and � is a related discrete series representation of U(2; 2) or
of one of two copies of U(4; 0):

Example (ii): �0(�1; �) = �III(�1; �)
In this example, �1 is a well-aligned G-regular discrete series representation
of U(1; 1)�U(1; 1) and � is a related discrete series representation of U(2; 2)
or of one of two copies of U(4; 0):
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y This denominator cancels conveniently with the term�II+ of the geometric
transfer factor in calculation of the transfer toG or toG0 of a stable character
for H:

4. Relative transfer factors

We will de�ne spectral transfer factors for G0 following the strategy of
Section 1, and so focus �rst on the relative factor. This relative factor is
de�ned for G also, and we include it for G to con�rm that �0 is a spectral
transfer factor.

Let (�1; �); (�01; �
0) be related pairs of discrete series representations for

H and G0; with G_-regular elliptic Langlands parameters '1; ' and '
0
1; '

0 as
before. The absolute term�I(�1; �); de�ned above when � is a representation
of G(R); depends only on parameters, and so we may write it as �I(�1; �)
in the present setting also. We then set

�I(�1; �; �
0
1; �

0) = �I(�1; �) = �I(�
0
1; �

0):

This depends on toral data and a-data, but is independent of the choice for
spl�: Similarly, the absolute term �II(�1; �) is adjusted by a constant sign
when we pass to G0; and so the relative term

�II(�1; �; �
0
1; �

0) = �II(�1; �) = �II(�
0
1; �

0)

depends only on parameters, rather than the representations themselves.

The only genuinely relative term�III(�1; �; �
0
1; �

0) is obtained by pairing
the relative invariant invC�(�; �

0) with the element sU ; as in Section A17.

This �nishes the de�nition of �(�1; �; �01; �
0); which is then seen to be

independent of the choice of toral data (essentially, the chamber C�) and
a-data. Moreover, we show that �II(�1; �) = �II(�

0
1; �

0) is a sign, so that
�(�1; �; �

0
1; �

0) is also a sign. The de�nition of �(�1; �; �01; �
0) works for G

as well as G0; and

�III(�1; �; �
0
1; �

0) = �III(�1; �) = �III(�
0
1; �

0)
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in the case of G: This implies that �0 is a spectral transfer factor: �x
any pair (�01; �

0) then �0 is the unique transfer factor � for G such that
�(�01; �

0) = �0(�
0
1; �

0):

De�nition of �(�1; �; �01; �
0) extends readily to all G-regular tempered

related pairs (�1; �); (�01; �
0): One particular value �(�01; �

0) thus determines
the spectral transfer factor �(�1; �) for all such pairs.

The extension of �(�1; �) to all tempered related pairs (�1; �) requires
more work. It can be done by applying nondegenerate coherent continuation
(translation principle) to G-regular transfer identities. The extension is nec-
essary for the converse statement (iii) in the transfer theorem, i.e. to deduce
geometric matching from spectral matching.

We return to writing �geom;�spec for some choice (normalization) of
geometric, spectral transfer factors. It remains to describe the compatibility
factor �comp(�1; �; 1; �): This is written as

�I(�1; �)=�I(1; �): �II(�1; �)=�II(1; �): �III(�1; �; 1; �);

where only the last term is yet to be de�ned and that is now routine. Recall
�geom and �spec are called compatible if

�spec(�1; �) = �comp(�1; �; 1; �) �geom(1; �)

for one, and hence every, choice of very regular related pairs (�1; �); (1; �):
In the case of quasi-split type the standard geometric and spectral factors �0

are compatible. If we multiply each factor in a compatible pair by the same
constant, as in Whittaker normalization, we still have a compatible pair of
factors.

5. Transfer theorem

We write down a result for general K-group G and endoscopic data
(H;H; s); but avoid some minor technicalities by assuming that in the z-
pair (H1; �1) we have H1 = H: Fix Haar measures on G(R) and H(R); and
assume Haar measures on shared Cartan subgroups are the same. For the
initial test functions we use the space C(�) of Harish Chandra�s Schwartz
functions.
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Theorem

Let �geom and �spec be transfer factors with compatible normalization.
Then:

(i) for each f 2 C(G(R)) there exists f1 2 C(H(R)) such that

SO1(f1) =
P

�;conj �geom(1; �)O�(f)

for all G-regular 1 in H(R);

(ii) there is a dual transfer of stable tempered characters given by

St-Tr �1(f1) =
P

�;temp�spec(�1; �) Tr �(f)

for all tempered irreducible representations � of H(R); and

(iii) conversely, if f 2 C(G(R)) and f1 2 C(H(R)) satisfy

St-Tr �1(f1) =
P

�;temp�spec(�1; �) Tr �(f)

for all tempered irreducible representations �1 of H(R) then

SO1(f1) =
P

�;conj �geom(1; �)O�(f)

for all G-regular 1 in H(R):

Remarks

A theorem of Bouaziz shows that a condition on support characterizes
the stable orbital integrals of functions in C1c (H(R)) among the stable orbital
integrals of Schwartz functions. Thus in (i), if f 2 C1c (G(R)) we may assume
that f1 2 C1c (H(R)).

Dual transfer is then de�ned for nontempered stable characters onH(R),
but it remains to describe�spec(�1; �) explicitly (i.e. compatibly with�geom).
The existence of the factors follows from the Adams-Barbasch-Vogan proof
of the Arthur conjectures. See Section 8 of [Arthur: Problems].

It is a straightforward exercise (following constructions for the geometric
side) to write down �spec(�1; �) for G-regular cohomological representations
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�1 of H(R), and to check that this is correct for the Adams-Johnson proof
of dual transfer for these representations. [Describe later].

A theorem of Clozel-Delorme allows us to insert K-�niteness conditions
on the test functions.

[references for extending transfer on the geometric side]

6. Factoring parameters and adjoint relations

We apply the spectral (S-) construction of endoscopic data to the regular
elliptic parameter ' = '(m1; :::;mn) from Section A3. Let ssc 2 Ssc= Ssc' :

(i) Take s in S with same image as ssc in PGL(n;C):

(ii) Let H_ be the centralizer in G_ of the image of ssc; or of s; in G_:

(iii) Let H be the subgroup of LG generated by H_ and the image of '.
This determines dual K-group Hs of quasi-split type.

(iv) Specify an isomorphism �s : H ! LH so that (Hs; �s) is a z-pair.

(v) Set 's = ��1s � ':
Denote by �s any representation of Hs(R) with parameter 's:

We return to the Examples (i) and (ii) from Section 2. In Example (i)
we take ssc as 0BB@

�
�
��

�

1CCA ;

where �4 = �1: In (ii) we may take ssc as the given s: Then write '1; �1 in
each case as 's; �s; and rewrite �0(�1; �) as

�0(�
s; �) = i � ssc; � � (Example (i))

or
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�0(�
s; �) = � ssc; � � (Example (ii));

for each � in the packet � attached to ': Here � �; � � is the pairing of Ssc
with � from Part A.

There are adjoint relations for general tempered spectral factors�(�s; �)
parallel to those of Arthur for the geometric factors:

1
k�k2

P
s2S �(�s; �) �(�s; �0) = jSj ��;�0 :

Here k�k is the absolute value of � which is constant since the the relative
factor is a sign. These relations provide, for example, a simple inversion
formula for the tempered character identities in the transfer theorem.

7. Simpli�ed factors for G

First we review theWhittaker normalization for spectral transfer factors.
Fix Whittaker data (B; �) for G�. We may assume B is the Borel subgroup
B� from spl� and that � is the generic character attached to spl� and an
additive character  R on R in the usual manner. At the same time, spl�

speci�es the spectral transfer factor �0(�1; �): For Whittaker normalization
we multiply�0 by the �xed epsilon factor "(V;  R) described below, to obtain
the factor ��(�1; �): This shifts the dependence from the G�(R)-conjugacy
class of spl� to that of (B; �): Moreover we obtain

��(�1; �) = �1

for all tempered (or G-regular cohomological) related pairs (�1; �):

In the factor "(V;  R); de�ned with Langlands�normalization, V denotes
the following virtual representation VG�VH of degree zero of the Galois group
�. The space VH is X�(T1)
C which we identify with VG = X�(T �)
C by
any choice of tora data for the maximally split maximal torus T1 in H. The
action of � on VH is by �H = �T1 while its action on VG is by �G� = �T � :

If the split rank of H is the same as that of G then V is trivial and
"(V;  R) = 1: Thus if n is odd we always have �� = �0 is canonical. If n is
even and H = Ua�Ub, where each of a; b are even, then again �� = �0 and
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we see also that they are canonical, i.e. independent of the G�(R)-conjugacy
class of (B; �) or spl�: This applies to our Example (ii).

On the other hand, Example (i) demonstrates the case (n even and a; b odd)
where "(V;  R) is nontrivial and its product with �0(�

s; �) = �i is a sign.
Here �H acts on the standard basis of X�(T �)
 C as0BB@

�1
�1

�1
�1

1CCA ;

while �G� acts as 0BB@
�1

�1
�1

�1

1CCA :

Then we calculate "(V;  +) = �i for  +(x) = exp(2�ix); and so

�
�
(�s; �) = (�i)(i) � ssc; � � = � ssc; � �;

where the pairing is computed relative to the base point �� = �(C�): We
use the �xed R-isomorphism  of this example (Section 3) to regard �� as a
representation of G�(R): Then a calculation shows that �� is generic for the
data attached to spl� and  +:

The same is true in general. As long as we use Whittaker normalization,
the transfer factor for a tempered pair (�s; �) is the sign determined by the
pairing of Part A:

�
�
(�s; �) = � ssc; � � :

Here the pairing is computed relative to a chamber determined by the unique
�-generic representation in �: The main content of this assertion is that

�
�
(�s; �) = 1
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if � is �-generic.

The transfer theorem thus yields the character identities

St-Tr �s(f s) =
P

�2� � ssc; � � Tr �(f)

when we use Whittaker normalization of transfer factors. These identities
generate all endoscopic characters for � in the following (strong) sense. Sup-
pose we are given an arbitrary set of endoscopic data, a z-pair and a com-
patible normalization of transfer factors. The transfer theorem then de�nes
a correspondence (f; f1) on test functions. Suppose �1 is any tempered
L-packet matching � on the level of parameters. Then for �1 2 �1 the
endoscopic character

f ! St-Tr �1(f1)

coincides, up to a complex constant, with

f !
P

�2� � ssc; � � Tr �(f);

for some ssc 2 Ssc:

8. Endoscopic bases for G

We may index the endoscopic characters

Tr(�; ssc) : f !
P

�2� � ssc; � � Tr �(f)

by S since � ssc; � � depends just on the image of ssc in S. Thus we have
a set B of jSj linearly independent virtual characters composed from the
representations in �: Moreover the adjoint relations yield an expansion

Tr � = 1
jSj
P

B � ssc; � � Tr (�; ssc)

for each � 2 �: We call B an endoscopic basis for �. It is determined
uniquely by the given conjugacy class of Whittaker data.

Example

Let n = 4 so that G = U(2; 2) t U(4; 0) t U(4; 0):

A discrete series packet � for G contains six representations
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�0000; �0110; �1100; �0011; �1001; �1111

of U(2; 2) and two copies of the one representation of the compact form
U(4; 0); labelled �0101, �1010: We write

f = f1 + f2 + f3

where the summands are supported on U(2; 2); U(4; 0); U(4; 0) respectively.
Whittaker data was speci�ed in Example (i).

The corresponding endoscopic basis for � consists of eight combinations.

Example (i) yields one:

Tr �0000 (f1)� Tr �0110 (f1) + Tr �1100 (f1)� Tr �0011 (f1)

+ Tr �1001 (f1)� Tr �1111 (f1) + Tr �0101 (f2)� Tr �1010 (f3):

This is one of four combinations which arise from transfer of stable discrete
series characters of

U(2; 1)� U(1; 0) t U(3; 0)� U(1; 0):

Example (ii) yields another type of combination:

Tr �0000 (f1) + Tr �0110 (f1)� Tr �1100 (f1)� Tr �0011 (f1)

+ Tr �1001 (f1) + Tr �1111 (f1)� Tr �0101 (f2)� Tr �1010 (f3);

which is one of three basis elements arising from transfer of stable discrete
series characters of

U(1; 1)� U(1; 1):

The remaining combination is the stable sum
P

�2� Tr �(f):

A change in the conjugacy class of Whittaker data replaces the �rst four
combinations by their negatives but does not a¤ect the others.

55



Example

Consider the corresponding similitude group G = GU(2; 2) t GU(4; 0).
There are now only four representations in a discrete series packet. Label
them �0000; �0110; �1100 and �0101: We write f = f1 + f2: The �rst four
combinations disappear since there is no endoscopic group for s with an odd
number of negative entries.y Example (ii) now corresponds to the combination

Tr �0000 (f1) + Tr �0110 (f1)� Tr �1100 (f1)� Tr �0101 (f2):

There are also

Tr �0000 (f1)� Tr �0110 (f1) + Tr �1100 (f1)� Tr �0101 (f2);

and

Tr �0000 (f1)� Tr �0110 (f1) + Tr �1100 (f1) + Tr �0101 (f2);

and the stable sum.

9. Factors and generators for G0

We work with arbitrary factors �(�s; �) forG0. Suppose that �0 belongs
to the same packet as � and is chosen as base point. We attach the character
� of Ssc to �0 as in Section A15. It is clear from the de�nitions we have
outlined that

�(�s; �) = �(�s; �
0) < inv�(�; �

0); sU >

where the pairing is the Tate-Nakayama pairing for the torus U from Section
A14.

Since

� ssc; � � = �(ssc) < inv�(�; �
0); sU >;

we obtain

�(�s; �) = �(�; ssc) � ssc; � �;
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where

�(�; ssc) = �(ssc)
�1�(�s; �

0):

Here we have followed [Arthur: L-packets]. The function � has the property

�(t�; zscssc) = t �(�; ssc) �(zsc)
�1

for t in C� and zsc in Z_sc: This is clear once we observe that �(�zscs; �0) =
�(�s; �

0):

Notice that the combination

Tr(�; ssc) =
P

�2� � ssc; � � Tr �

does not depend on the normalization of �: Now, however, it is multiplied
by the nth root of unity �(zsc) if ssc is replaced by s0sc = zscssc with same
image in S: In this setting we will call Tr(�; ssc) a generator for �:

Example

Let n = 4; so that G0 = U(3; 1) t U(3; 1):

A discrete series packet � for G0 contains four representations

�1000; �0010; �0100; �0001

of the �rst component U(3; 1); along with duplicates (in same order) labelled

�0111; �1101; �1011; �1110

for the second component U(3; 1):

We return to Example (i) in Sections 2 and 6. Here

ssc =

0BB@
�
�
��

�

1CCA ;

where �2 = i: Thus the associated generator is
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� [Tr �1000 (f1)� Tr �0010 (f1) + Tr �0100 (f1) + Tr �0001 (f1)]

+ i� [�Tr �0111 (f2) + Tr �1101 (f2)� Tr �1011 (f2)� Tr �1110 (f2)]:

For Example (ii) we may take ssc = s to obtain

Tr �1000 (f1)� Tr �0010 (f1)� Tr �0100 (f1) + Tr �0001 (f1)

+ Tr �0111 (f2)� Tr �1101 (f2)� Tr �1011 (f2) + Tr �1110 (f2):

If we pass to the similitude group G0 = GU(3; 1) then Example (i) no
longer applies,y while the analogue of Example (ii) removes the f2 terms.
There are two variants of Example (ii) where it is again possible to take
ssc = s; and �nally there is the stable sum attached to ssc = s = I:

More generally, for any similitude groupG0 we embed �0(S(sim)) in Ssc(sim)
[see Section A16]. Let s 2 S(sim) and denote by ssc the image of the compo-
nent of s: Then

� ssc; � � = �1

for any discrete series representation �: These elements ssc determine a com-
plete set of generators involving only signs. There is redundancy: �s deter-
mines the negative of the generator for s.

y Here is a brief outline of changes, from Section 2 on, for similitude groups
in general. For n even only, we now ignore those elements diag(�1; :::;�1)
of S with an odd number of negative signs (recall Section A16). Passage
to a suitable z-pair allows us to take the endoscopic groups as products of
similitude groups GUa�GUb. For n even, each of a; b must be even. Elliptic
endoscopic groups then always have same split rank asG; and transfer factors
for G with Whittaker normalization are just the standard factors �0 (which
are canonical).

10. Summary of endoscopic identities
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Suppose n is odd and G is either the unitary or unitary similitude K-
group of quasi-split type. A discrete series L-packet � has cardinality 2n�1:
We have described a canonical endoscopic basis for �.

Suppose n is even and G is the unitary K-group of quasi-split type, so
that again a discrete series packet � has cardinality 2n�1: To each of the
two conjugacy classes of Whittaker data for G we have attached a unique
endoscopic basis for �. The two bases are related in a simple manner.

Suppose n is even andG is the unitary similitude K-group of quasi-split
type, so that now a discrete series packet � has cardinality 2n�2: Then we
have a canonical endoscopic basis for �.

Suppose n is even and we consider the unitary K-group G0 not of quasi-
split type. Then we have de�ned generators for � that involve a 2nth root of
unity. In the similitude case we may involve only signs in the generators.
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