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Part I

An overview with examples
1 Introduction

The purpose of this paper is to explain a quite simple-minded way of looking at
some of Langlands’vast and visionary program of conjectures. Part II of our
project, more concerned with precise general statements and their proofs, will
be presented elsewhere.
What does transfer mean? We may just as well ask: what does Langlands

functoriality mean? The two notions, whatever they are or should be, are
intricately intertwined with each other.
To get started, what are the objects we study? And then, what does it

mean to transfer them? Where do functoriality principles come into play? Af-
ter very limited remarks towards answers in some generality, we examine, also
briefly, a concrete example where we do have quite simple explicit answers. We
also include sources and hints for our approach, including remarks on a short
expository gem from Harish-Chandra in 1966.

2 Settings

We limit our attention to fields that have characteristic zero, even when that is
not necessary. Then we fix a field F that either is local, i.e. a finite extension
of a completion of Q, or is global, i.e. a finite extension of Q itself (a number
field). We are interested in connected reductive algebraic groups defined over
F . There are three types of problems: those in the local setting, those in the
global setting, and those concerned with the relationships among objects in the
two settings.
In the local setting, our objects of study fall into two types, geometric and

spectral. The geometric objects are the so-called orbital integrals on G(F )
and the spectral objects are irreducible representations of G(F ). For us,
geometric transfer (the transfer of orbital integrals) emphatically comes first.
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3 Flavors for transfer

Following Langlands’vision, transfer itself comes in two flavors. First there is
endoscopic transfer which involves a severely limited family of groups and must
be viewed as a preliminary step for the second transfer which fully embraces the
notion of Langlands functoriality and is very different both in overview and in
details. We label the second transfer as stable-stable transfer (for reasons that
will become apparent). Again we stress that our goal in this paper is to explain
how these principles may be built out of elementary considerations.

4 Endoscopic transfer

First some more words about orbital integrals and endoscopic transfer. A deep
analysis of orbital integrals played a central role in the monumental work of
Harish-Chandra in the 1940s, 50s and 60s on representation theory of real re-
ductive Lie groups. That analysis is our starting point, and we can’t stress
enough that we plan to do only simple things with it.
Thus let G be a connected reductive linear algebraic group defined over

R, the field of real numbers. This forces G(C) to be a connected complex Lie
group and G(R) to be a real Lie group with finitely many connected components.
What is an orbital integral (on G(R))? By an orbital integral we mean the set
of integrals of a nice function fG on G(R) along the various conjugacy classes in
G(R). The measure on each conjugacy class must be specified. For the purposes
of actually defining endoscopic transfer we are able to limit our attention to the
so-called strongly regular conjugacy classes. We stress that this will be enough
to provide us with a transfer for all conjugacy classes.

5 Focus on geometric side

The strongly regular classes are the conjugacy classes of the regular semisim-
ple elements γG in G(R) for which the centralizer Cent(γG, G) of γG in G is
connected as algebraic group and so coincides with the maximal torus TγG of
G containing γG. Here is how we choose a measure on the conjugacy class of
such γG. Let dg and dtγG be Haar measures on G(R) and TγG(R) respectively
(the choices will be of no consequence when we arrive at a careful statement
of endoscopic transfer). Then dg

dtγG
will be the quotient measure on the space

TγG(R)\G(R). This quotient is diffeomorphic to the conjugacy class of γG, a
closed subset of G(R), via TγG(R)g 7−→ g−1γGg. We define the orbital inte-
gral O(γG, fG) at γG of fG to be

∫
TγG (R)\G(R)

fG(g−1γGg) dg
dtγG

.We organize the
strongly regular classes using Harish-Chandra’s Ff−transform, or more gener-
ally his ′Ff−transform, defined for all regular semisimple conjugacy classes, as
our inspiration. Harish-Chandra made two different definitions of his transforms
and it is crucial to our considerations that we use the second (final) version [6].
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6 Stable conjugacy

In fact, what will work much better for our goals, is to work with the notion
of stable conjugacy. The stable conjugacy class of a strongly regular element
in G(R) consists of all elements in G(R) that are conjugate to that element by
an element of G(C). Langlands’general definition of stable conjugacy of two
elements requires further conditions on the chosen elements of G(C), but what
we may show eventually is that in endoscopic transfer basic results for all classes
follow a simple pattern heralded by the strongly regular case.

7 Algebraic groups foremost

For all that we do it is crucial that we work in the algebraic group setting.
There is much apparently lucky cancellation in otherwise unwieldy formulas.
Nevertheless, the resulting simple formulas hold deep information (here we will
concern ourselves only with some fairly immediate examples of our evidence for
this).
One thing to notice is that while we work with the results of classical theory

of real reductive Lie groups, we do not fix a Cartan decomposition up front.
That comes only after we have our algebraic setting in place. Again, that we do
these things, with algebraic information at the forefront, is key to our agenda.
Another point, quite minor, is that once we can deal with the case F = R,

it takes comparatively little effort to talk in terms of the general archimedean
setting. We will save that for elsewhere, noting that much of what we need is
found in Langlands’paper [8] on real groups.

8 Working with real groups: one algebraic fea-
ture that is harder

Thus we start with a connected reductive linear algebraic group G defined over
R. And we are looking for a welldefined notion of endoscopic transfer. An
immediate stumbling block is that the stable conjugacy classes are not quite big
enough ... for example, for a nonanistropic unitary group G in 3 variables, there
are 3 conjugacy classes in a stable conjugacy class of regular elliptic elements
in G(R), whereas a little work shows we might reasonably expect 4 conjugacy
classes. Where do we find the missing class?
The idea for our answer is due essentially to Vogan, although he considered

not conjugacy classes but dual objects, namely irreducible representations, and
we further capitalize on a refinement due to Kottwitz; see [3]. We define an
extended group over R to be a (necessarily finite) collection of connected reduc-
tive linear algebraic groups Gi, each defined over R, together with a family ψij
of isomorphisms Gi −→ Gj over C for which σ(ψij)ψ

−1
ij is inner, i.e., each ψij

is an inner twist, subject to constraints we will come to later.
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An extended group may include several copies of an individual group, but
there can be at most one copy of a group that is quasi-split over R. Every group
appears in some extended group. We call an extended group quasi-split over R
if it does include a group that is quasi-split over R. We stress that not every
group appears in an extended group quasi-split over R.

9 Endoscopic transfer: diffi culty making a well-
defined notion

We emphasize again that we seek a welldefined notion of geometric endoscopic
transfer, and this is a most delicate issue. The considerations of Adams and
Johnson in [1] are not adequate, nor are those of Adams, Barbasch and Vogan
[2]. The notion of geometric transfer discussed in the Wikipedia article on the
Fundamental Lemma is not welldefined. We simply cannot use an endoscopic
group alone as primary datum.

10 Our primary datum

Instead, we look to embeddings of (Weil group versions of) L-groups. Actually
we need a technical modification of no serious interest here so we ignore that.
Our primary datum for an endoscopic transfer will then be a pair (s,LH ↪→
LG), where LG = G∨ oWR is the L-group of the extended group {(Gi, ψij)}, s
is a semisimple element of G∨, and LH = Cent(s,G∨)0 oWR.

Another point to stress is that we want a robust notion of transfer: our
"nice functions" must form a large enough space defined independently of our
problem, although we keep in mind that the larger the geometric transfer is,
the more limited the dual spectral transfer must be. We will find that there is
a remarkable balance between our geometric and spectral transfers.

11 More on well-defined notions

What precisely do we mean by a well-defined notion of transfer? And what is
its significance?
Our first observation is that any geometric transfer uniquely determines a

dual transfer of distributions.
Is it clear that this dual transfer is an endoscopic transfer of characters of

irreducible representations? The short answer is no. However, there is consid-
erable progress.
Could we start with making a well-defined notion for the transfer of (some)

characters and then get a uniquely determined transfer of orbital integrals? In
principle, the answer may be yes. However, a deep understanding of the repre-
sentation theory of our group would be needed, and so we insist on geometric
transfer as the starting point.
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We have introduced our primary datum for endoscopic transfer, certain L-
group information. Does this determine a unique endoscopic transfer? Almost!
In fact, we get a family of transfers with a simply transitive C×-action on the
family. A more technical analysis shows this is exactly what we want, and so it
is our definition of a well-defined transfer.

12 Measures in place of functions

It turns out that certain related measures are simpler to work with than nice
functions themselves. We deal with that now. By a nice measure on G(R) we
will mean a measure of the form fdg, where f is a nice function on G(R) and
dg is a Haar measure on G(R). This is all expressed more elegantly in terms
of tensor products: see, for example,[10]. However, our more concrete approach
will serve us well enough here.

13 What is a nice function?

We have two answers. First, we define a nice function to be a smooth function
on G(R) that is rapidly decreasing in the sense of Harish-Chandra. The set of all
such functions forms a complete topological vector space, the Harish-Chandra
Schwartz space C(G(R)) via the wellknown Harish-Chandra seminorms. We will
label the corresponding nice measures as HCS-measures. Our second space of
nice functions is C∞c (G(R)), the set of smooth compactly supported functions on
G(R) under the topology of uniform convergence on compact sets. We then label
the attached measures as C∞c -measures. The natural embedding of C

∞
c (G(R))

in C(G(R)), being continuous, provides us with a compatibility demand for the
two transfers that we define. That demand will be satisfied thanks to work of
Bouaziz [4].

14 A different and simpler problem

We pause to look at an evidently much less complicated problem, combinatorial
in nature. The results will be critical not only for our work on endoscopic
transfer but also for the second, and main, transfer we have not yet addressed.
We start with a single connected reductive group G defined over R.

Let T , T ′ be maximal tori in G, each defined over R. Then we say that T ,
T ′ are stably conjugate if there is g ∈ G(C) such that the restriction of Int(g)
to T is defined over R and carries T (C) to T ′(C). In that case, Int(g) is easily
seen to carry T (R) to T ′(R), and by an old theorem [9], g may be chosen in
G(R). Thus for the base field F = R, stable conjugacy for maximal tori over F
coincides with G(F )-conjugacy.
We write tst(G) for the set of (stable) conjugacy classes of maximal tori in

G that are defined over R. This finite set has a partial ordering: let T , T ′
be maximal tori over R, and write {T}, {T ′} for their stable conjugacy classes.
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Then we define {T} � {T ′} if the unique maximal R-split torus ST in T is G(R)-
conjugate to an R-split torus in T ′ or, equivalently, there is g ∈ G(R) such that
Int(g) carries ST into ST ′ . This partial ordering makes tst(G) a lattice with
a unique minimal element, namely the class of fundamental maximal tori over
R, and a unique maximal element, namely the class of those maximal tori over
R containing a maximal R-split torus in G. In our pictures of these lattices we
place the minimal element at the top.

15 Examples

We consider a few low-dimensional cases.
G = SL(2) :

o
↓
o

G = SU(2, 1) :

o
↓
o

G = Sp4, the R-split symplectic group in 4 variables :

o
↙ ↘

o o
↘ ↙

o

G = Sp(2, 2), an example of a hyperbolic symplectic group.

o
↓
o

16 Concrete view in general case

We have a concrete description of the structure of the lattice tst(G) in terms
of the structure of G as algebraic group. Define T to be adjacent to (or to
immediately precede) T ′ and {T} to be adjacent to {T ′} if {T} � {T ′} and
dimST ′ = 1 + dimST .
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Adjacency is key to the structure of tst(G), and the symmetric orbits which
come next are key to understanding adjacency.
First we describe adjacency in concrete terms using Harish-Chandra’s clas-

sification of roots, but in purely algebraic terms. Let α be a root of T in G.
Then α is a rational character on T , and so is the root σα, the image of α
under the action of the nontrivial element σ in Gal(C/R). We consider the
Galois orbit Oα = {α, σα} in X∗(T ), the module of all rational characters on
T. If Oα = O−α, where we write −α for the root t 7→ α(t)−1, then we call Oα
symmetric. An orbit Oα that is not symmetric must have the property that
Oα and O−α are disjoint, and we then call Oα antisymmetric. These orbits are
important too, but not yet.

17 More prep for this view

For Oα symmetric, the roots ±α are imaginary in the sense of Harish-Chandra
or they are real in his sense. This is according as σα = −α or σα = α. In contrast
to the usual practice, we now make a purely algebraic definition. Thus we call
an imaginary root α compact or nonsingular according as the 3-dimensional
simple group Gα over R determined by α is R-isomorphic to SU(2) or to SL(2).

The imaginary roots of T in G are exactly the roots of T in the connected
reductive subgroup MT = Cent(ST , G) of G. The group MT is defined over
R. We describe the Weyl group ΩMT

of T in MT , usually called the imaginary
Weyl group of T , concretely as the group Norm(T (C),MT (C))/T (C). This
Weyl group acts on the set of imaginary roots. We call an orbit for this action
totally compact if each root in it is compact. This sets up our concrete algebraic
description of adjacency.

18 General picture

Suppose that the imaginary root α of T is not totally compact. Then we find
an element s of MT (C) such that (i) T ′ = sTs−1 is defined over R and (ii)
σ(s)s−1, which then normalizes T , acts on T as the Weyl reflection ωα for α.
This ensures that T is adjacent to T ′. Conversely, given adjacent pair T and
T ′, we can find such an α.
If T does not contain a maximal R-split torus of G then T has imaginary

roots, and if at least one of these roots, say α, is not totally compact then there
exists T ′ adjacent to T. Replacing α by a root in its imaginary Weyl group
orbit does not change the stable conjugacy class of T ′. Passing to a not totally
compact imaginary root outside the Weyl orbit of α does change the stable
conjugacy class of T ′. Finally, suppose that T ′ is any given maximal torus over
R. Then, apart from the case T ′ is fundamental, there exists T adjacent to T ′.
It is instructive to check how this view works in our examples above, but

details are not included here.
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19 Remark on other fields

How do things change when we replace R by other fields of interest to us here?
Assume for the rest of this paragraph that F is nonarchimedean. Then a fun-
damental maximal torus over F in G is elliptic. On the other hand, stable
conjugacy for maximal tori over F does not coincide with G(F )-conjugacy ex-
cept in certain cases. We no longer have a unique fundamental (elliptic) stable
conjugacy class. We do have a unique maximally F -split stable conjugacy class
which is then a single conjugacy class.

20 tst(G) and inner forms

A lemma of Langlands [8, Lemma 3.2] shows that an inner twist ψ : G → G∗,
where the connected reductive group G∗ is quasi-split over R, determines a map
ψ(t) : tst(G)→ tst(G

∗). We see easily from our analysis above of familiar results
on roots that ψ(t) maps tst(G) to an initial segment of tst(G∗). More precisely,
ψ(t) is injective and maps the class of fundamental maximal tori over R in G to
the corresponding class in G∗. Further, there is a unique maximal element in
the image of tst(G), namely the image of the class of maximal tori containing a
maximal R-split torus in G. This image is the class of maximal tori containing
a maximal R-split torus in G∗ only if G is quasi-split over R (and then ψ must
be an isomorphism over R). The notion of tst(G) as simply an initial segment
of tst(G∗) is developed extensively as we go on.

21 Back to endoscopic transfer

How is tst(G) helpful in visualizing endoscopic transfer?
First, we recall the original goal in endoscopic transfer of orbital integrals.

For some groups at least, the (finite) set of conjugacy classes in the stable
conjugacy classes of a strongly regular element in G(R) has the structure of
a finite abelian group, a sum of Z/2’s. An immediate diffi culty for us is that
this group structure is not uniquely determined by the stable conjugacy class.
Nevertheless, first attempts at endoscopic transfer involved picking families of
structures and showing that certain combinations of orbital integrals associated
with these families could be identified with stable orbital integrals on a certain
lower dimensional group, an endoscopic group. This point of view prevailed a
long time despite the fact, already emphasized, that it was clear that this does
not lead to a well-defined notion of endoscopic transfer.
Another diffi culty is that for other groups, only parts of the mentioned fi-

nite abelian groups appear in the considerations for a single group G. That is
resolved by a variant of an already discussed Vogan technique. It is not really
significant for our present concerns, so we will just assume that we may work
with a single group G.
While it is hardly surprising that a detailed analysis of the structure of tst(G)

played an important role in the original point of view, can it really matter in
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the proof of existence of a well-defined geometric endoscopic transfer?
Our answer is that the only way we know to prove the existence is to ex-

plicitly construct it ... in this one case F = R. Moreover, our approach gives
us much more: indeed, we see the form the transfer statement must take in
the nonarchimedean case in order to satisfy local-global compatibility demands,
although of course our methods do not offer a proof of the existence for the
nonarchimedean case. We will see that these constructive methods are heavily
influenced by the structure of tst(G).

22 Our results for endoscopic transfer for F = R
Our primary datum for endoscopic transfer is (on ignoring an easily-handled
technical modification) a pair (s,LH ↪→ LG), where LG = G∨ oWR is the L-
group of a given extended group {(Gi, ψij)}, s is a semisimple element of G∨,
and LH = Cent(s, G∨)0 oWR.

Consider the product of the set of strongly regular stable conjugacy classes
in H(R) with the set of strongly regular conjugacy classes in G(R). We identify
a certain subset of this product as the set of very regular pairs. For each very
regular pair (ΓstH ,ΓG) we define a complex number ∆(ΓstH ,ΓG) such that for each
nice measure mG on G(R) there exists a nice measure mH on H(R) satisfying

Ost(ΓstH ,mH) =
∑

∆(ΓstH ,ΓG)O(ΓG,mG)

for all ΓstH contributing to very regular pairs (i.e., for all strongly G-regular
stable classes in H(R)). The proof, while firmly based on only elementary
consequences of the Harish-Chandra theory, is long and quite complicated. The
result is suffi cient to establish our main goal, a well-defined geometric transfer
in the endoscopic setting.
What about the attached dual transfer ... does it behave as desired regarding

representations? The answer is yes in the HCS case, also called the tempered
case. Our constructive methods for the orbital integral matching greatly simplify
the arguments on the spectral side; this will be explained in Part II of the
present project. We will also describe some progress we have made for the C∞c -
case, partially by recasting some results of others. For example, motivated by
important work of Waldspurger, we see that the dual transfer builds in a natural
way on the elliptic representations. We note in passing that Knapp-Zuckerman
decomposition of unitary principal series builds from a wider, more complicated
family of representations.

23 Algebraic point of view again

As we have indicated already, we have used a simple algebraic method for the
normalization of Haar measures. Starting instead with Cartan involutions, usu-
ally called the geometric method, we get very different normalizations. This
is proved by an elaborate calculation available already in the 1960’s in work
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of Harish-Chandra (see [6]) using different language. The algebraic approach
clearly works better for our intended applications, including geometric ones. We
will say no more about this in the present paper.

24 Getting started on stable-stable transfer

We come now to the main, and entirely different, type of transfer. Before we
start, we ask again about what endoscopic transfer has achieved. It tells us that
orbital integrals along conjugacy classes in G(R). can be expressed in terms
of orbital integrals along stable conjugacy classes from a certain related finite
collection of groups H(R). These groups include a quasi-split inner form of G,
and all other groups in the collection are of lower dimension.For the attached
dual transfer, if we consider the HCS-case then we know that all tempered
characters on G(R) are nicely expressed in terms of stable characters on the
H(R). Consider what we will call the trivial case of endoscopic transfer, that
where the endoscopic group is a quasi-split inner form, say G∗, of G. It shows
that stable orbital integrals on G(R) may be viewed as stable orbital integrals on
G∗(R), and stable tempered characters on G(R) as stable tempered characters
on G∗(R). This will allow us to reduce our new transfer involving only stable
orbital integrals to the case where both groups, say G1 and G2, are quasi-split
over R. A more elaborate reduction will then bring us to the case that G1 and
G2 have same split rank over R. That is the only case we will investigate here.

Our primary datum is (up to a technicality we continue to ignore here) an
L-homomorphism from LG1 to LG2. What if G1 is endoscopic for G2? Have we
already solved the second transfer problem by doing endoscopic transfer? Em-
phatically, no ... unless we are in the trivial case ... where, because both groups
are quasi-split over R) the L-homomorphism determines an R-isomorphism from
G1 to G2.

25 Working concretely

Consider the following example. We take G1 to be a 1-dimensional torus
anisotropic over R and G2 to be SL(2). Before starting, we remark that we
will apply to the general case a principle of Harish-Chandra that pervades his
work on real groups. We have called it the Semiregular is suffi cient Principle,
and, very roughly, it tells us how this little example can be applied over and
over, along with various elementary arguments, to generate the general case.
Now, for details in the example, we identify G1(R) as the group of rotation

matrices r(θ) =

[
cos θ − sin θ
sin θ cos θ

]
, θ ∈ R. We notice that r(θ) is strongly SL(2)-

regular if and only if θ 6= 0 modπ. The endoscopic transfer tells us that, as
function of θ, the suitably normalized unstable combination of orbital integrals
of nice measuremSL(2) along the stable conjugacy class of r(θ) extends smoothly
across the points θ = 0 modπ on the real line. In the language of transfer,
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the stable orbital integrals, i.e., the point values at r(θ) for θ 6= 0 modπ, of
the function so defined match the unstable combination of orbital integrals of
mSL(2). Here we have been careless in notation when switching back and forth
between nice measures and nice functions.
This smoothness is a simpler preliminary version of the second formula in [5,

page 40], wellknown even longer than the formula itself. Notice that translation
of our language to that of Harish-Chandra’s Ff requires a change from our
difference of two terms to the sum of his two terms.
Harish-Chandra’s first formula in [5, page 40] points us towards the state-

ment of stable-stable transfer. His formula tells us for θ 6= 0 modπ how to write
a stable orbital integral on SL(2,R) at r(θ) in terms of stable tempered charac-
ters on SL(2,R). To review, we denote by Ch(Πn, ∗) the stable discrete series
character attached to the positive integer n,.and by Ch(Πλ,+, ∗), Ch(Πλ,−, ∗)
the two unitary prinicipal series characters attached to the positive real number
λ. Here we are following, as closely as our different conventions allow, Harish-
Chandra’s notation in [5]. Then we write the first formula as

Ô(Γθ,m) =∑
n>0 ∆(Γθ,Πn)Ch(Πn,Γθ)

+
∫∞
0

∆(Γθ,Πλ,+)Ch(Πλ,+,Γθ)dλ

+
∫∞
0

∆(Γθ,Πλ,−)Ch(Πλ,−,Γθ)dλ,

where Γθ denotes the stable conjugacy class of r(θ) for θ 6= 0 modπ. We may
use Harish-Chandra’s simple explicit formulas for the coeffi cients ∆(Γθ,Πn),

∆(Γθ,Πλ,+) and ∆(Γθ,Πλ,−), along with the temperedness of the represen-
tations Πn,Πλ,∓ to see that convergence of the series is absolute, uniform on
compact subsets of θ 6= 0 modπ,and similarly for the integrals.

26 Some heuristics

Now we explain some elementary and rather crude heuristics that do, however,
lead us on from the general version of Harish-Chandra’s first formula (namely,
Fourier inversion for stable orbital integrals) to our final statement of stable-
stable transfer. Without stating explicitly what we mean by the space Γ of stable
orbital integrals nor describing the measure dΓ on it, we write O(Γ,m) for the
(stable orbital) integral of a nice measure m along the stable conjugacy class Γ,
and Ô(Γ,m) for the normalized version via the usual discriminant function. On
the spectral side we similarly use a space Π of tempered packets with measure
dΠ. Then Tr(Π, ∗) denotes the stable trace for the packet Π, and Ch(Π, ∗)
is the real analytic function on the regular semisimple elements of G(R) that
represents the stable trace (via Harish-Chandra’s Regularity Theorem). The
normalized version is Ĉh(Π, ∗).
Instead of G1 and G2, we label our two groupsH and G, and attach subscript

H or G to Π,Π,Γ and Γ, as needed. We do not assume that H is endoscopic
for G but do insist that H and G have same rank and that we have primary
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datum ξ embedding LH in LG. This determines a map ΠH → ΠG, and we will
write ΠH→G for the image of the packet ΠH .
What we seek are transfer identities of the following "shape":
for each nice measure mG on G(R) there exists a nice measure mH = (mG)H

on H(R) such that

Ô(ΓH , (mG)H) =
∫
ΓG

Θ(ΓH ,ΓG)Ô(ΓG,mG)dΓG

and

Ĉh(ΠH→G,ΓG) =
∫
ΓH

Ĉh(ΠH ,ΓH)Θ(ΓH ,ΓG)dΓH

for all (strongly) regular semisimple ΓH ,ΓG.
Assume this is true (in some sense!). We will also change order of integration

freely. Using the Weyl integration formula on G(R) we write
Tr(ΠH→G,mG) as∫

ΠG
Ĉh(ΠH→G,ΓG)Ô(ΓG,mG)dΓG.

Then Tr(ΠH→G,mG) is given by∫
ΠG

∫
ΠG

Ĉh(ΠH ,ΓH)Θ(ΓH ,ΓG)Ô(ΓG,mG)dΓHdΓG

=
∫
ΠH

Ĉh(ΠH ,ΓH)
∫
ΠG

Θ(ΓH ,ΓG)Ô(ΓG,mG)dΓGdΓH

=
∫
ΠH

Ĉh(ΠH ,ΓH)Ô(ΓH , (mG)H)dΓH
= Tr(ΠH , (mG)H).

This is stable-stable transfer at the level of traces, which we do expect as
our final, emphatically not our initial, transfer formula.
Continuing in the same spirit, we also see functoriality emerging:
given a composition LJ →L H →L G of L-homomorphisms, assume there

are attached stable-stable transfer. Then mG determines both (mG)J and
((mG)H)J , and we see that these two measures are stably equivalent (same
Ô(ΓJ , ∗) for all ΓJ) provided

Θ(ΓJ ,ΓG) =
∫

Θ(ΓJ ,ΓH)Θ(ΓH ,ΓG)dΓH .

As a final comment, we write down our proposed "shape" for Θ(ΓH ,ΓG),
and concern ourselves just with our particular example, to make sense of this
Θ(ΓH ,ΓG) and verify the geometric stable-stable transfer.
Set

Θ(ΓH ,ΓG) =
∫
ΠH

∆(ΓH ,ΠH)Ĉh(ΠH→G,ΓG)dΠH ,

where ∆(ΓH ,ΠH) is the coeffi cient in Fourier inversion of the stable orbital
integral Ô(ΓH , ∗) on H(R):

Ô(ΓH ,mH) =
∫
ΠH

∆(ΓH ,ΠH)Tr(ΠH ,mH)dΠH

for all nice measures mH on H(R).

12



27 Back to the example

Here we write the proposedΘ(r(θ),ΓG) as
∑
n∈Z e

inθĈh(Πn∗ ,ΓG),.where n∗ > 0
is attached to n ∈ Z using the Langlands’classification. We can make sense of
Θ(r(θ),ΓG) as a distribution or as a generalized function. Calculation shows
that we then get the desired transfer of orbital integrals, our stable-stable trans-
fer.
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