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Real groups o¤er many opportunities to explore Langlands�principle of
functoriality in the L-group. The example we consider here begins in the pa-
per of Labesse and Langlands [LL] on automorphic representations of SL(2):
certain representations with same local L-factors may be one automorphic
and the other not. A little more precisely, Labesse and Langlands deter-
mined a multiplicity formula for these representations � = 
v�v in terms
of the position of the local representations �v among representations with
same L-factors, i.e. in the same local L-packet. See [S1] for a brief report
on Langlands�lecture at Corvallis. The tempered endoscopy for real groups
of the title refers to Langlands�proposed generalization, for real reductive
groups, of the analysis of orbital integrals and tempered representations used
in the SL(2) proof. The Arthur conjectures [A2] pursue this beyond the tem-
pered spectrum.

Following a recent suggestion of Arthur [A1], we present a proof of the
geometric transfer in tempered ordinary endoscopy for real groups based
directly on the canonical transfer factors de�ned by Langlands and myself
in [LS1] for any local �eld of characteristic zero. These factors are not only
independent of the way we view the Cartan subgroups of the endoscopic
group as Cartan subgroups of the given group but are also given by an
explicit formula on each such subgroup that appears signi�cant for a number
of problems in invariant harmonic analysis. A previous proof of the transfer
of orbital integrals involved rigidly de�ned factors with an implicitly de�ned
sign [S2, S3, S4, S5]. Then a limit formula for regular unipotent orbital
integrals ([LS1], Theorem 5.5.A ) con�rmed that the canonical factors are
correct and, up to a global constant, the same as the implicitly de�ned factors
([LS2], Theorem 2.6.A).
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Once we have completed our discussion of the canonical factors and a
direct, but equally long, argument for the existence of geometric transfer, we
will also recall brie�y the dual transfer of tempered characters from [S5]. We
relabel certain wellde�ned coe¢ cients from [S5] as tempered spectral transfer
factors following Arthur [A1]. The implicit sign persists, however, along with
questions about normalization and compatibility. In an accompanying paper
[S7] we will begin again and de�ne canonical spectral transfer factors in a
simple manner that directly parallels the approach for the geometric transfer
factors we discuss in the present paper, and we will show, again directly,
that they are correct for transfer. Section 16 summarizes the �nal transfer
theorem we will prove in [S7]. We should mention here that it is the relative
transfer factors that are canonical. We will conclude with a lemma from [S7]
which shows that when we normalize the spectral factors to be signs we also
obtain a simple local form for the geometric factors.

We have chosen to limit our discussion to ordinary endoscopy, not only
to give a more direct presentation of that topic with the canonical factors,
but also to prepare a template for our approach when twisting is present.
There various technical matters complicate arguments in a general setting.
One feature from twisted endoscopy that we will use here is passage to a
z-extension of the endoscopic group, and we prefer to label the z-extension
rather the base group as the endoscopic group. This replaces passage to a
z-extension of the group we start with, a device which resolves a technical
problem in L-group embeddings only for the ordinary case. A minor needed
modi�cation of the transfer factor is available from [KS]. On the other hand,
the norm map is simpler in the ordinary case, and we retain the older termi-
nology of image from [LS1] rather than norm ( [KS], Chapter 2).

We start then with the geometric side: conjugacy classes and orbital
integrals. Our approach involves most naturally Harish Chandra�s space
of (complex-valued) Schwartz functions. We match the orbital integrals
of an arbitrary Schwartz function f on a group G(R) with the stable or-
bital integrals of a Schwartz function f1 on an endoscopic group H1(R);
using the canonical transfer factors. This yields a correspondence (f; f1) of
Schwartz spaces. We then obtain a wellde�ned dual map from tempered sta-
ble eigendistributions �1 on H1(R) to tempered invariant eigendistributions
� on G(R) : �(f) = �1(f1): The image of the stable tempered characters un-
der the dual map has been calculated in [S5]. The starting point is of course
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Harish Chandra�s characterization of discrete series characters among tem-
pered invariant eigendistributions. We take this up in [S7]; for now, we will
simply rewrite results from [S5] in the language of spectral transfer factors.

The assumption of temperedness in the map on eigendistributions can be
dropped if we use a theorem of Bouaziz [B] characterizing the stable orbital
integrals of smooth functions of compact support. But that takes us beyond
the scope of this discussion and into the realm of the Arthur conjectures [A2]
and results of [ABV].

Much of the paper consists of collecting and applying results from several
quite long papers, and we include introductory remarks at various points
along the way. In particular, there are some informal comments on terms in
the geometric transfer factors in Section 8. To begin, we will review in some
detail a characterization of stable orbital integrals by their jump conditions,
in order to make more transparent the signi�cance of canonically de�ned
transfer factors for our proof of geometric transfer.

1. Stable conjugacy in real groups

Throughout, G will denote a connected reductive algebraic group de�ned
over R; and � (or �G) will denote the Galois action on G(C); so that G(R) =
fg 2 G(C) : �(g) = gg: It is su¢ cient for now to limit our discussion to
regular semisimple elements. Thus suppose 
 is regular semisimple in G(R):
Typically, the centralizer Cent(
;G) of 
 in G is connected, and we then call

 strongly regular. In that case the stable conjugacy class of 
 in G(R) is
simply the intersection of its conjugacy class in G(C) with G(R): In general,
however, Langlands prescribes in [L1] that we take a smaller set of G(C)-
conjugates. Let g 2 G(C): If g�1
g lies in G(R) then g�(g)�1 belongs to
Cent(
;G): Then g�1
g is called a stable conjugate of 
 if g�(g)�1 lies in
the identity component of Cent(
;G), a maximal torus in G which we will
denote T
; or T if there is no confusion. Equivalently, we could require that
the map t ! g�1tg from T
 to T
0 be de�ned over R. As a simple example,

the images of
�
0 1
�1 0

�
and

�
1 0
0 �1

�
under the natural homomorphism

GL2(R)! PGL2(R) are PGL2(C)-conjugate but not stably conjugate.
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Let ST be the maximal R-split torus in T; and MT ; or just M , be the
centralizer Cent(ST ; G) of ST in G: Then T is a fundamental maximal torus
in M; and an argument involving parabolic subgroups de�ned over R shows
that g�1
g is a stable conjugate of 
 if and only if gG(R) contains an ele-
ment ofM(C) normalizing T ([S2], Theorem 2.1).Then to get a complete set
of representatives for the conjugacy classes in the stable conjugacy class of

, we may take the elements w�1
w;where w belongs to a complete set of
representatives for the quotient of the normalizer of T (R) in M(C) by the
normalizer inM(R): Equally as well, we could regard the elements w as rep-
resentatives for the quotient of the imaginary Weyl group 
(T (C);M(C)) of
T , which we will abbreviate by 
im(T ); by the subgroup 
im;R(T ) of those
elements realized in M(R): Notice that there may be redundancy unless 

is strongly regular but, neverless, for continuity reasons this is the set we
use for indexing combinations of orbital integrals for all regular semisimple
elements.

An invariant function on the regular semisimple set is thus stably invari-
ant exactly when its restriction to each Cartan subgroup is invariant under
the full imaginary Weyl group. In particular, the function �� appearing in
Harish Chandra�s construction of discrete series characters is stably invari-
ant: �� is better behaved than the individual terms �w; of which it is the
sum. We will see also that stable orbital integrals are better behaved than
ordinary orbital integrals.

2. Stable orbital integrals

In view of the passage to a z-extension that we will be making shortly,
we work modulo a central subgroup. Thus suppose that Z0 is a torus lying in
the center of G; and that �0 is a character on Z0(R) (...there will be no harm
in assuming �0 unitary). We denote by C(G(R); �0) the set of all complex-
valued functions f on G(R) that, �rst, are Schwartz modulo Z0(R), i.e. if
we factor o¤ the split component of Z0(R) from G(R) then f is Schwartz
on the complementary subgroup and that, second, transform under Z0(R)
according to ��10 ; i.e. f(zg) = ��10 (z)f(g) for all z 2 Z0(R); g 2 G(R): In
our application, we will take Z0 trivial for the given group G; recovering the
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ordinary Schwartz space C(G(R)); while for an attached endoscopic group
H1 we take Z0 to be the torus Z1 speci�ed in a z-extension.

In regard to normalization of Haar measures, some formulas will require
consistency of choices. Thus we use invariant di¤erential forms of highest
degree to specify measures dg on G(R) and dt on a Cartan subgroup T (R)
in a canonical manner (see Section 1.4 of [LS1] ). Then if T and T 0 = g�1Tg
are de�ned over R we may attach to dt a measure dtg on T 0(R).

For 
 regular semisimple in G(R) and f in C(G(R); �0) the orbital inte-
gral

O
(f; dt; dg) =

Z
T
(R)nG(R)

f(g�1
g)dg
dt

is well-de�ned. If 
 is strongly regular then the stable orbital integral of f
at 
;which we will write as SO
(f; dt; dg); or SO
(f) when the measures are
understood, is then simply the sum of the integrals O
w(f; dtw; dg) over w
belonging to a complete set of representatives for the conjugacy classes in the
stable conjugacy class of 
: There is no harm in assuming w normalizes T
.
Then dtw = dt; and the summation is over a complete set of representatives
for the quotient 
im(T )=
im;R(T ): This is the de�nition, i.e. the summation,
we will use also if regular semisimple 
 fails to be strongly regular.

We recall �rst Harish Chandra�s 0F Tf transform (adjusted for conjugation
as a right action on G(R)). Our main source for this topic is [HC2] ; it
contains references to earlier papers where many of the proofs begin. For 

regular semisimple in T (R);

0F Tf (
) = �
0(
)O
(f);

where the normalizing factor �0; a modi�ed Weyl denominator, requires the
choice of a positive system for the imaginary roots of T . Then

�0(
) =
��detg=m(Ad(
)� I)

��1=2 Q
�>0;imaginary

(�(
)� 1);

where g;m denote the Lie algebras of G,M respectively: If we choose instead
a positive system for all roots of T and use the notation

��z1=2 � z�1=2
�� for

j(1� z)(1� z�1)j1=2 then we may rewrite this as
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�0(
) =
Q

�>0;real

���(
)1=2 � �(
)�1=2
�� Q
�>0;complex

���(
)1=2 � �(
)�1=2
��

�
Q

�>0;imaginary

(�(
)� 1):

Recall that a root � is called real if �� = �; complex if �� 6= ��; or
imaginary if �� = ��: Thus � is imaginary if and only if its Galois orbit is
symmetric in the sense of [LS1].

If G is simply-connected and semisimple, and T (R) is compact, then we
may replace �0 by the more convenient skew symmetric Weyl denominator
� :

�(
) = �(
)�1�0(
);

where � is one-half the sum of the positive roots, wellde�ned as a character
on T (R) under the given assumption. Then locally we have

�(
) =
Q
�>0

(�(
)1=2 � �(
)�1=2):

In general, while a group and one of its endoscopic groups may each fail to
have wellde�ned symmetric denominators, there is always a wellde�ned term
that behaves much like a quotient of symmetric denominators: the transfer
factor of [LS1] which we will discuss in Section 8.

A theorem of Harish Chandra asserts that 0F Tf extends to a Schwartz
function on the set T (R)I�reg of all elements of T (R) regular as elements ofM .
It remains then to describe its behavior of near those elements 
 of T (R) such
that �(
) = 1 for at least one positive imaginary root � of T: For our purposes
it will be su¢ cient, again by a principle of Harish Chandra, to consider only
those elements 
0 annihilated by exactly one positive imaginary root �, i.e.
elements of T (R) lying on exactly one imaginary wall f
 : �(
) = 1g: Then
Cent(
0; G) is of type A1. It is either split modulo center, and � � are
noncompact roots, or anisotropic modulo center, and � � are compact roots.
Noncompact roots are sometimes called nonsingular.

Consider now the wall de�ned by a positive imaginary root �. For
� 2 R� and j�j su¢ ciently small, the element 
� = 
0 exp i��

_ of T (R)
is strongly regular. Also, let S be the algebra of all invariant di¤erential
operators on T (R) and D ! bD denote the automorphism of I given on
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the Lie algebra by H ! H � �(H)I: Then both lim�!0+ bD 0F Tf (
�) and

lim�!0� bD 0F Tf (
�) are well-de�ned (because
0F Tf is Schwartz), and if f is

such that they are always equal then 0F Tf extends to a Schwartz function on
T (R). For general f , Harish Chandra�s descent to the identity component of
Cent(
0; G) shows the limits are equal if � is compact, but if � is noncompact
their di¤erence, i.e. the jump of bD 0F Tf across the wall de�ned by �; is, up
to a constant, the value at 
0 of an appropriate derivative of

0Ff calculated
on an adjacent Cartan subgroup also containing 
0. Notice that because f
lies in C(G(R); �0) it is su¢ cient to consider operators D in the subalgebra
S0 of I obtained by embedding the symmetric algebra on the Lie algebra of
T=Z0 in that for T; and we will often do so without comment.

We will need to apply the precise form of this jump not just for the
function 
 ! 0F Tf (
) but also for its stable conjugates, i.e. for all functions


 ! 0F T
w

f (w�1
w);

where w�1
w is a stable conjugate of 
: It is more useful not to modify the
normalizing factor, i.e. to work instead with the function

0Fwf (
) = �
0(
)O
w(f):

Now we are concerned not just with an imaginary root � but with its orbit
under the full imaginary Weyl group (modulo the subgroup 
im;R(T )). We
call � totally compact if every root in this orbit is compact. Note that there
are no totally compact roots if G is quasisplit over R (see [S3], Lemma 9.2).
If � is totally compact then all the functions bD 0Fwf have zero jump across the
wall de�ned by �; by Harish Chandra descent to the groups Cent(
w0 ; G)

0(R);
all of which are compact modulo center.

For the remaining orbits it will be su¢ cient for our purposes to consider
the case that � itself is noncompact. Then �� are the only noncompact
roots in the orbit (see [S2], Lemma 4.2), up to the action of 
im;R(T ); and
so if w� 6= �� modulo 
im;R(T ) then bD 0Fwf has zero jump. We may then
assume w� = ��; so that either w or ww� �xes �; where w� denotes the
Weyl re�ection for �: If this re�ection is realized in M(R); i.e. belongs to

im;R(T ); and both w and ww� index the same conjugacy class in the stable
conjugacy class of a strongly regular element of T (R), then we set d(�) = 2;
otherwise, set d(�) = 1:
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We now assume w� = �: If d(�) = 2 then there is no harm in this, but
if d(�) = 1 we will have to consider the contribution from ww� as well when
we come to stable orbital integrals. By a Cayley transform with respect to
� we will mean any map 
 ! s�1
s of T to T s for which s�(s)�1 acts on T
as the Weyl re�ection w� (see [S2]). Then T s is de�ned over R; and s� is a
real root of T s: Thus for nonzero real � su¢ ciently small, we may de�ne the
strongly regular element 
s� = 
s0 exp �(s�

_) of T s(R): Note that 
s0 lies in
T s(R)I�reg:

For the jump formula, the positive system used in de�ning �0 is required
to be adapted to �: This ensures that if � is a positive imaginary root not
perpendicular to nor equal to � then �0 = �w�(�) is also positive, and
so both these roots appear in �0: Since their transport to T s via s is a
pair of complex conjugate roots, we may rewrite (�(
0) � 1)(�0(
0) � 1) as
js�(
s0)� 1j js�0(
s0)� 1j ; simplifying the comparison of �0 for T and T s (see
Lemma 13.2).

In the jump formula for 0Fwf we take s to be a standard Cayley transform,
i.e. given by the usual choice of root vectors, and so we have 
s0 = 
0. Then
Harish Chandra�s formula may be written as

lim�!0+ bD 0Fwf (
� ; dt; dg)� lim�!0� bD 0Fwf (
� ; dt; dg)

= id(�) lim�!0 cDs 0F s
�1ws
f (
s� ; dt

s; dg)

(see [S2]] for a more complete discussion and a proof).

We shall normalize the stable combination SO
(f) with the same factor
�0, setting

	(
) = �0(
)SO
(f):

Write 	T for the restriction of 	 to the regular elements in the Cartan
subgroup T (R): Then 	T is the sum of the functions 0Fwf over a complete set
of representatives w for the conjugacy classes in the stable conjugacy class of
a regular element in T (R): Thus 	T extends to a Schwartz function on the set
of all points of T (R) not annihilated by a root in the orbit of a noncompact
imaginary root. To calculate the jumps across the walls attached to the orbit
of a noncompact root �; it is enough to consider only the wall de�ned by �
and then use stable invariance of SO
(f) and the simple transformation rule
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for �0under the imaginary Weyl group. Examining 	T near semiregular 
0
with �(
0) = 1; we see that only those w such that w� = �� contribute to the
jump. These are exactly the elements we need to construct representatives for
the conjugacy classes in a stable conjugacy class of strongly regular elements
in T s(R); and thus to form 	T

s
. If d(�) = 2 then we can assume that

w� = �; and so obtain

lim�!0+ bD 	T (
� ; dt; dg)� lim�!0� bD 	T (
� ; dt; dg)

= 2i lim�!0 cDs 	T
s
(
s� ; dt

s; dg):

If d(�) = 1 and w� = � then w and ww� each contribute the same jump
(lim�!0+ for one equals � lim�!0� for the other). Thus we get the same �nal
formula regardless of the value of d(�). We may now also allow s to be any
Cayley transform for �. If D is skew with respect to w�; then both sides
of the �nal formula are zero, whereas if D is symmetric with respect to w�;
then lim�!0� equals � lim�!0+ on the left, giving the simpler formula

lim�!0+ bD 	T (
� ; dt; dg) = i lim�!0 cDs 	T
s
(
s� ; dt

s; dg)

for D symmetric with respect to w�:

3. Characterization of stable orbital integrals

We consider complex-valued functions 
 ! �(
; dt; dg) on the regular
semisimple set of G(R) with the following properties (for all 
; dt; dg) :

(i) �(
w; dtw; dg) = �(
; dt; dg) for all 
w stably conjugate to 
;
(ii) �(
; �dt; �dg) = (�=�) �(
; dt; dg) for all �; � in C�;
(iii) �(z
; dt; dg) = ��10 (z) �(
; dt; dg) for all z in Z0(R):

Now suppose �T denotes the restriction of � to the regular elements of
the Cartan subgroup T (R):We will use various objects introduced in the last
section. Set 	T = �0�T . Here the choice of dt; dg and of the positive system
for the imaginary roots of T used to de�ne �0 may be �xed arbitrarily and
ignored in notation. Then we add decay and smoothness properties:
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(iv) 	T extends to a Schwartz function on T (R)I�reg;
(v) lim�!0+ bD 	T (
�) = lim�!0� bD 	T (
�) if 
0 is on a single

totally compact wall of T (R):

We could have combined these into a single Schwartz condition, but the given
form is more useful.

Next, suppose that 
0 lies on a single noncompact imaginary wall. Let
s be a Cayley transform with respect to either of the noncompact roots an-
nihilating 
0: Choose a positive system for the imaginary roots of T adapted
to that root when de�ning bD and 	T ; and use transport by s for cDs and
	T s : Then our �nal condition is that if D is symmetric with respect to w�
then

(vi) lim�!0+ bD 	T (
� ; dt; dg) = i lim�!0 cDs 	T s(

s
� ; dt

s; dg):

Note that 
s0 lies in T
s(R)I�reg; and so the limit on the right could be replaced

by the value at 
s0. The number i appears on the left side in the de�nition
of 
� : 
� = 
0 exp i��

_: There is then no harm in replacing i by �i on both
sides. Finally, we recall again Harish Chandra�s principle that if the left
side of (vi) is zero for all noncompact imaginary walls, and hence all jumps,
across all walls and for all D; are zero by (i) and (iv), then 	T extends to a
Schwartz function on T (R):

Theorem 3.1 ([S2],Theorem 4.7)

If 
 ! �(
; dt; dg) has the properties (i) - (vi) then there exists
f 2 C(G(R); �0) such that

�(
; dt; dg) = SO
(f; dt; dg)

for all 
 regular semisimple in G(R); and all dt; dg:

De�ne a partial ordering on the set of maximal tori over R in G by T � T 0 if
and only if ST is, up to G(R)-conjugacy, a subtorus of ST 0 :Then adjacent tori
are exactly the pairs T; T s we have described. An inductive argument shows
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that it is enough to prove the following theorem (assuming the theorem, start
by matching �T to SO
(f1) on maximally split T and then replace � by ��
SO
(f1) to apply the theorem again...).

Theorem 3.2 ([S2], Lemma 4.8)

Suppose �T 0 is de�ned for all Cartan subgroups T 0(R) conjugate in G(R) to
a given T (R), satis�es (i) to (iii), and 	T 0 extends to a Schwartz function
on T 0(R): Then there exists f 2 C(G(R); �0) such that

�T 0(

0; dt0; dg) = SO
0(f; dt

0; dg)

for 
0 regular in T 0(R) and

SO
"(f; dt"; dg) = 0

for all regular 
" in T "(R) unless T " � T:

Proof: Consider �rst the example that G is simplyconnected, semisimple and
T (R) is compact. Here, keeping in mind the paradigm of characters as orbital
integrals of matrix coe¢ cients, we look to the results of Harish Chandra on
matrix coe¢ cients of the discrete series representations. We also have the
skew symmetric normalizing factor �, so we now set 	 = ��T : Then 	
extends to a smooth function on T (R) by the hypothesis of the theorem. The
invariance of �T under stable conjugacy implies that 	 is skew symmetric
relative to the full Weyl group of T: Thus if we use Fourier inversion on T (R)
to write 	 as a Fourier series

P
�	

_(�)� then the Fourier coe¢ cient 	_(�)
vanishes unless the (rational) character � is regular, and we may therefore
rewrite the expansion of 	 as a sum over regular characters � dominant
relative to the positive system de�ning � :

	 =
P

� 	
_(�)

P
w(detw)w�;

and so

�T =
P

� 	
_(�) ��1P

w(detw)w�:
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Here the sums are over the full Weyl group of T: But��1P
w(detw)w� is the

local formula on T (R)regfor the Harish Chandra�s tempered distribution ���
and, up to a constant, ��� is a sum of discrete series characters ([HC, HC1]).
Let be K be a maximal compact subgroup of G(R). Then, according to
theorems of Harish Chandra [HC2], for each regular dominant � we can
�nd K-�nite discrete series matrix coe¢ cients f�; which all lie in C(G(R));
with SO
(f�) = �(
)�1

P
w (detw)w�(
) for regular 
 in T (R); and also

SO
0(f�) = 0 for regular nonelliptic 
0. Moreover if the K-types of the
functions f� are dominated by a polynomial in the length of � then the
series

P
� 	

_(�)f� converges absolutely in C(G(R)) and the stable orbital
integrals of the sum f satisfy

SO
(f) =
P

�	
_(�) SO
(f�) = �T (
)

for regular 
 in T (R); with SO
0(f) = 0 for regular nonelliptic 
0: To �nish
this argument we may use a result of Vogan on minimal K-types. See the
discussion of [S2]; we will return to K-types later.

To consider now the general case, we note �rst that the above argument
is easily modi�ed to apply to a Cartan subgroup compact modulo the center
in a general reductive algebraic group G(R). So it applies to any T (R) if we
replace G(R) by M(R); where M = Cent(ST ; G): Suppose KM is a maximal
compact subgroup in M(R): Then to adapt the above argument to general
T (R) we need to know how to pass from the the KM -�nite discrete series
matrix coe¢ cients f�; now in C(M(R); �0); to functions in C(G(R); �0) with
appropriate orbital integrals. Again we �nd the answer in Harish Chandra�s
Plancherel theory [HC3].

We recall brie�y some results about tempered characters before describ-
ing the rest of our argument in the next section.

4. Stable tempered characters

We are concerned with tempered irreducible admissible representations
� of G(R) such that �(zg) = �0(z)�(g); for all z 2 Z0(R) and g 2 G(R): If
f 2 C(G(R); �0) then �(f) is the operator

R
G(R)=Z0(R) f(g)�(g)dg; and Tr �
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denotes the character of � as tempered distribution, i.e. as the continuous
linear form Tr � : f ! Trace �(f) on C(G(R); �0): We write �� for the
analytic function on the regular semisimple set of G(R) which represents Tr
�: Recall that by a theorem of Harish Chandra,

Tr �(f) =
R
G(R)=Z0(R) f(g)��(g)dg

for any f 2 C(G(R); �0): The distribution St-Tr �; the stable trace of �; may
be de�ned as the (�nite) sum over representations �0 in the L-packet of � of
the distributions Tr �0. It is represented by the function

�st� =
P

�0 ��0

which is invariant under stable conjugacy. When we come to the spectral
side of endoscopy we see that all tempered irreducible characters on G(R)
are recovered by the transfer maps from the stable tempered characters on
the endoscopic groups for G ([S5, S8]).

The de�nition of St-Tr � is ad hoc in the sense that it depends explicitly
on the classi�cation of tempered irreducible representations of G(R); and
most particularly on Harish Chandra�s construction of the discrete series
characters. Thus assume that G is cuspidal, i.e. that G has a maximal torus
T over R such that T (R) is compact modulo the center of G(R). We describe
the stable discrete series characters by characters � on T (R). We write �
as �(�� �; �); where (�� �; �) are its Langlands parameters (see Section 8).
Here � is one half the sum of the roots of a positive system for which � is, by
assumption, dominant regular. For each w in the Weyl group, the character
�(w�1�� �; �) is also wellde�ned. Harish Chandra�s distribution �� is given
on the regular elements 
 of T (R) by

��(
) =
P
w(detw)�(w

�1���;�)(
)Q
�>0(1��(
)�1)

:

It does not depend on the choice of positive system, and is invariant un-
der stable conjugacy on each Cartan subgroup ([HC], Section 24). Finally,
(�1)qG�� is the sum of the characters of irreducible representations attached
to the real Weyl group orbits in the full orbit ([HC1], Theorem 16). Here of
course we have to pass from the cited results to a general reductive algebraic
group, but that is routine. These representations � form an L-packet [L3],

13



and St-Tr � = (�1)qG�� for each such �. Here 2qG is the dimension of the
quotient of Gsc(R) by a maximal compact subgroup.

The remaining stable tempered characters are obtained by parabolic
induction from cuspidal Levi groups. Thus we start with a general Cartan
subgroup T (R) and consider the packet of representations �M contributing to
the discrete series character (�1)qM��M onM(R) given by the same formula
except that now the sum is over the full imaginary Weyl group and � is
one half the sum of the roots in a positive system of imaginary roots with
respect to which � is assumed dominant. Let P be a parabolic subgroup of
G de�ned over R and N be its unipotent radical. Then the character of � =
Ind(��M 
 IN(R);P (R); G(R)) is stably invariant on G(R). Its irreducible
summands � form an L-packet and each occurs with multiplicity one in �.
Thus again St-Tr � is de�ned appropriately as the sum of the characters in
the L-packet of �:Otherwise we would count the summands with multiplicity,
as it is the induced character that is stable; stability withinM is due to Harish
Chandra�s theorem and the rest, invariance under conjugacy in G(R); comes
from the inducing process.

Returning now to the proof of Theorem 3.1, we start now with	 = �0�T
which extends to a Schwartz function on T (R):When we apply Fourier inver-
sion on T (R) we obtain a series indexed by stable discrete series characters
on M(R), but now each term in the series may be rewritten as an integral
over the dual of the Lie algebra of the split component of T (R) of normalized
stable tempered principal series characters. We then �nd how to construct a
suitable function from Harish Chandra wave packets of Eisenstein integrals
from [HC3]. This is described in detail in [S2].

We will use the following in Section 16 to see that spectral matching of
functions implies geometric matching.

Theorem 4.1 ([[S2], Lemma 5.3])

Let f 2 C(G(R); �0): Then St-Tr(�)(f) = 0 for all tempered irreducible
representations � such that �(zg) = �0(z)�(g); for all z 2 Z0(R) and g 2
G(R); if and only if SO
(f) = 0 for all strongly regular 
 in G(R):

Proof: If the given stable orbital integrals of f are zero then the Weyl in-
tegration formula for G(R)=Z0(R) shows that for each given � the value of
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St-Tr(�)(f) is zero. For the converse, we argue as for Theorem 3.1. If the
stable tempered traces of f are zero then we can conclude from Fourier inver-
sion that the smooth function 	T ; made from the stable orbital integrals of f
for the (strongly) regular classes meeting a maximally split Cartan subgroup
T (R) of G(R); vanishes. Then for T 0 adjacent to T; the function 	T 0 also
extends smoothly to the whole Cartan subgroup and so again vanishes. We
continue the argument by induction. See [S2] for details.

5. Endoscopy

An endoscopic group H1 is prescribed to meet two sets of demands, one
geometric and one spectral. It comes with various additional data which we
will describe following [LS1] and [KS]. A homomorphism of L-groups LH1 !
LG almost exists. To deal with this minor complication for the functoriality
principle we follow the approach of [KS]. There will be a group H and
embeddings of H in both LH1 and LG: This provides us with a map from
certain Langlands parameters for H1 to those for G that is appropriate for
the transfer to G(R) of all stable tempered characters on H1(R) transforming
according to a �xed character �1 on a central subgroup Z1(R) of H1(R): We
discuss this further when we de�ne spectral transfer factors [S7].

We denote by G� a quasisplit inner form of G; with R-splitting splG�
(a choice of Borel subgroup B� de�ned over R; maximal torus T� over R in
B�, and a root vector X� for each simple root � of T� in B�) and choose
an inner twist  : G ! G�: We denote by G_ the complex dual of G; with
splitting splG_ preserved by the algebraic dual �G_ of the Galois action,
and by LG the L-group G_ o WR; where the Weil group WR of C=R acts
through WR ! f1; �g: The transfer factors will be independent of the choice
of splittings and, roughly speaking, of twisting  within its inner class (we
take this up later).

A set of endoscopic data for G is a tuple (H;H; s; �); where:

(i) H is connected, reductive and quasi-split over R, and so has
dual H_ with splitting splH_ preserved by dual Galois
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automorphism �H_ ;
(ii) H is a split extension of WR by H_; where again WR acts

through WR ! f1; �g; and now � acts as �H_ only up to an
inner automorphism of H_;

(iii) s is a semisimple element of G_; and
(iv) � : H ! LG is an embedding of extensions under which the

image of H_ is the identity component of Cent(s;G_); and
the full image lies in Cent(s0;LG); for some s0 congruent
to s modulo the center of G_:

Standard constructions of endoscopic data start with conjugacy classes
[L1] or with representations [LL] (see [S7] for a discussion). For simple con-
crete examples and counterexamples, we recall that the L-group of a maximal
torus T over R embeds in LG (this is central to the construction of transfer
factors). If we take H to be LT; or its embedded image in LG; we can ask
if it is possible to extend H to a set of endoscopic data. If G = GL(2);
no s exists unless T splits over R, but that is not a problem since stable
conjugacy coincides with ordinary conjugacy (but the nonsplit tori do ap-
pear in twisted endoscopy). If G = SL(2) and T (R) is compact; then we can

take s conjugate to the image of
�
1 0
0 �1

�
under the projection GL(2;C)!

PGL(2;C): For G = SU(2; 1); the compact Cartan subgroup does not work;
instead, the relevant group is larger (it is U(1; 1)). See also [S4] and Section
2.1 of [S5].

We will regard H as an endoscopic group only if H is isomorphic, as
split exension of WR; to LH: While the examples where there is no such iso-
morphism are somewhat complicated in ordinary endoscopy (see [L1], [S4]),
there are ample elementary examples when twisting is present. In general, we
choose a z-pair (H1; �1) following Section 2.2 of [KS]. ThusH1 is a z-extension
of H: This means that the derived group of H1 is simplyconnected, and we
have an extension 1 ! Z1 ! H1 ! H ! 1; where Z1 is a central torus
de�ned over R. Moreover, the torus Z1 is induced, and then H1(R)! H(R)
is surjective. For example, GL(2) is a z-extension of PGL(2); but SL(2) is
not. The second datum �1 is an embedding of extensions H ! LH1 that
extends the embedding H_ ! H_

1 (which we will write as inclusion) dual to
H1 ! H: If we take a section W ! H, follow it by �1 and then by LH1 !
LZ1 (dual to Z1 ! H1); we obtain the Langlands parameter for a wellde�ned
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quasicharacter �1 on Z1(R):As is easily seen (note Remarks 11.3, 11.4), there
is no harm in assuming �1 is unitary. Each Langlands parameter for H1

also determines a quasicharacter on Z1(R). We will be interested in those
parameters for which that quasicharacter is �1. These are the parameters
that, up to H_

1 -conjugacy, have image in �1(H): We will take this up later
([S7]). We describe parameters for �1 and � in Section 11, and again make a
harmless unitarity assumption (see Remark 11.4).

Notice that because the derived group of H1 is simply connected, the
embedding �1 always exists [L1]. In descent (Section 7) we will use an em-
bedding �1;desc provided directly by the descent. After descent we will have
an extension 1! Z1 ! Hdesc;1 ! Hdesc ! 1 with same Z1 again, but we will
not assume that the derived group of Hdesc;1 is simply connected. The char-
acter �1 will not change in parabolic descent, but may do so in the second
case, semisimple descent, that we need.

6. Endoscopy and maximal tori

Continuing with endoscopic data (H;H; s; �); we have a canonical map
from certain stable conjugacy classes in H(R); the strongly G-regular classes,
to strongly regular stable conjugacy classes in the quasisplit form G�(R) (see
[LS1], Section 1.3). At the same time, the inner twist  identi�es the set
of strongly regular stable conjugacy classes in G(R) as a subset of those in
G�(R). If the class of 
 in H(R) maps to that of � in G(R), then we call 

an image of � (in analogy with the notion of norm [KS]). If 
1 maps to 

under the surjective map H1(R)! H(R) we also call 
1 an image of �:

While the map on classes is canonical, for local analysis we need to be
able to switch freely between Cartan subgroups in G(R); G�(R) and H1(R)
and to transport roots and other objects back and forth, though in a non-
canonical way. For this we recall the isomorphisms of Cartan subgroups
associated with the choice of Borel subgroups. Later we will formalize the
following choices as toral data. They are essentially the same as the �xed
framework of Cartan subgroups in [S3], but now transfer factors will be both
explicitly de�ned and independent of these choices (see Section 12).
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Thus suppose that 
1 2 T1(R) is an image of strongly regular � 2 T (R):
There are Borel subgroups B1; B ofH1; G respectively such that the attached
homomorphism � = �B1;B : T1 ! T is de�ned over R; and by adjusting
� within its stable conjugacy class we may assume that � maps 
1 to �:
The homomorphism � is the composition of the inverse of an isomorphism
 T = Int(x) �  with a homomorphism �� = �B1;B� : T1 ! T � de�ned over
R, where the restriction of  T to T is de�ned over R.

The isomorphism � embeds the coroots of T1 in H1 as a subsystem of
the coroots of T in G; and any root � of T in G is transported to a rational
character �1 on T1 (the roots of T1 form a subset but not a subsystem in
general). The G-regular elements of T1 are those 
1 for which �1(
1) 6= 1 for
all roots � of T in G: The G-walls in T1(R) will be those f
1 : �1(
1) = 1g
for which �1 is not a root in H1 but � is a root in G (and we then also say
that � is a root outside H1): To detect if �1 is a root in H1; we return to the
endoscopic datum s:

Since we will not use it explicitly until [S8], we forgo a detailed discussion
of equivalence for endoscopic data. We do need to observe that the datum s

may be taken in the maximal torus T of G_ provided by splG_ . The splitting
also provides a Borel subgroup B containing T , and then attached to B, B
we have �_ : T_ ! T to transport s back and forth between T and T_ as
needed. If we regard the coroot �_ as a character on T_ then �1 is a root in
H1 exactly when �_(s) = 1: Note also if � is imaginary, so that �T�_ = ��_;
then �_(s) = �1:

We recall the weights �(w) for �-orbital integrals. The map T ! T_

also embeds the center Z(G_) of G_ in T_ (independently of the choice of
B, B): Set T_ad = T_=Z(G_) and � = f1; �g: Then using the property (iv) of
endoscopic data, we may �nd s0 = zs; where z is in Z(G_); �xed by �T ; giving
then an element of the component group �0((T_)�). Set T_ad = T_=Z(G_):
The image sT of this element of �0((T_)�) in �0 = �0((T

_
ad)

�) is independent
of the choice of z: By Tate-Nakayama duality, we may pair sT with an element
of H1(�; Tsc); where Tsc denotes the preimage of T under Gsc ! G: If w
represents an element of the imaginary Weyl group of T we may assume w
is the image of wsc in Gsc and set w equal to the element of H1(�; Tsc)
determined by the cocycle w� = �(wsc)w

�1
sc : Then < w; sT > is what we

will use as the weight for �-orbital integrals in the setting of Lemma 12.1,
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and for � and �w there we write inv(�; �w) in place of w. This matches the
de�nition of �-orbital integrals in Section 4 of [S3] where we, in e¤ect, used
s0 to de�ne the pairing. Notice we now replace w by w�1 in the summation
there. The pairing depends on how we transport s to T_; i.e. on the choice
of toral data, and has to be used with some care. Various transformation
rules are given in [S3].

7. Two examples of descent in endoscopy

The simplest descent is to a cuspidal Levi groupM =MT = Cent(ST ; G);
when T originates inH1; i.e when there are strongly regular elements in T (R)
with images in H1(R) or, equivalently there is a maximal torus T1 over R
in H1 with an isomorphism �B1;B : T1 ! T over R. Recall that an R-
splitting splG� = (B�;T�; fX�g) has been �xed, and �B1;B is a composition
T1 ! TH ! T � ! T . We may assume that ST � is contained in ST� ; and
choose g in Gsc such that  M = Int g � acts on T as the inverse of T � ! T .
Then  M carries ST to ST � andM toM� = Cent(ST � ; G

�) which will serve as
quasisplit inner form forM; with inner twist  M : For splitting splM� we may
use (M� \ B�;T�; fX�g); and the root vectors X� for simple roots in M�.
Then we realizeM_ as the �G_-invariant Levi group in G_ with dual splitting
splM_ = (M_\B; T ; fX�_g): For LM we may takeM_oWR; with the action
of WR onM_ inherited from LG: Now given endoscopic data (H;H; s; �) and
z-pair (H1; �1); we de�ne data (MH ;HM ; sM ; �M) and pair (MH1 ; �1;M) for
M as follows. We may assume s 2 T ; and then set sM = s: We may also
assume � is inclusion, so that H is a subgroup of LG:Then we set HM = H\
LM and take �M to be inclusion; HM is a split extension of WR byM_\H_.
For MH we may take a dual Levi group in H and we choose speci�cally
MH = Cent(STH ; H), where TH is the image of T1 under H1 ! H. Let MH1

be the inverse image of MH under H1 ! H; so that MH1 = Cent(ST1 ; G)
and 1 ! Z1 ! MH1 ! MH ! 1 is exact. For embedding �1;M of HM in
LMH1 we take the restriction of �1 to HM : The attached character on Z1(R)
is again �1: If T � T 0 then, replacing T 0 by a G(R)-conjugate if necessary, we
assume ST 0 contains ST and descend to MT 0 through MT . We will complete
our discussion of parabolic descent at the beginning of Section 13. Mean-
while, we will work in M , i.e. with the pair (M;MH1), at various points, in
preparation for the proof of the transfer theorem.
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The second example we consider is local descent to the identity compo-
nent G�0 of the centralizer of a semisimple element �0 of G(R): To establish
the geometric transfer theorem, we know by the characterization theorem
for orbital integrals that it will be enough to consider the case that �0 is
semiregular, i.e. that G�0 is of type A1: The general setting of the descent in
[LS2] for real groups may be used to extend the transfer to other conjugacy
classes after we have established its existence on the very regular set. See,
for an example, the matching of equisingular semisimple conjugacy classes
in Section 2.4 of [LS2] (also recalled in [S9]) and notice that in that setting
the stable integral is not simply the sum of the integrals over the contribut-
ing conjugacy classes. Within the semiregular setting we will make certain
choices in the descent that will allow us to replace sign calculations in [S3]
and [S5] with the conclusion that the canonical relative transfer factor has
trivial limiting behavior across the appropriate imaginary walls. This con-
clusion involves some lengthy arguments from [LS2] which we discuss a little
further in Section 13 (see also [S9]).

We return to the setting of Section 6 and a homomorphism � = �B1;B :
T1 ! T de�ned overR:Wewill work insideM; so that T1 lies inM1 =MH1, T
lies in M; and �B1;B = �M1\B1;M\B: Suppose that 
1;0 2 T1(R) is semiregular
and that the unique root �1 of T1 in B1 annihilating 
1;0 is imaginary, i.e. is
in M1 \B1; and is noncompact. We also assume that 
1;0 lies on none of the
walls outside H1; so that �0 = �(
1;0) is semiregular in G and is annihilated
by the transport � of �1 to T: We assume that the imaginary root � is not
totally compact (we will deal with the totally compact case separately at
the end), and then adjust � to assume that � itself is noncompact. We may
assume that M \B and M1 \B1 provide positive systems for the imaginary
roots of T and T1 that are adapted to � and �1 respectively. Let 
0 be
the image of 
1;0 under H1(R) ! H(R): Then our assumptions ensure that
H
0 = M


0
H is isomorphic to G�0 = M �0 over R; and thus that after descent

the endoscopy will be just that of a trivial inner twist of G�0 : To compare
transfer factors directly, we will pass from H
0 to H


1;0
1 ; its inverse image in

H1: For more discussion of the set of endoscopic data obtained by descent
we refer to Sections 1.4 - 1.6 of [LS2]. It is straightforward also to attach
to �1 : H ! LH1 an embedding for H
0 in

LH

1;0
1 ; which may modify the

attached character �1 on Z1(R); we will not need the details here.

To prepare more carefully for the local information the descent theorem
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of [LS2] gives us about terms in the transfer factors for G, we reintroduce
the quasisplit inner form G� (and M�) explicitly into our setup. Thus � is
a composition T1 ! TH ! T � ! T; and we may assume that the image ��0
of 
0 in T

� is annihilated by a noncompact imaginary root �� (there are no
totally compact roots in the quasisplit form G�): We write �� for both maps
T1 ! T � and TH ! T �: Then let sH be a Cayley transform in H
0 with
respect to �H (the image of �1) mapping TH to T

0
H : The torus T

0
H also has

admissible embeddings over R into G; as we will see explicitly. Let s� be the
standard Cayley transform with respect to � in (G�)�

�
0 ; mapping T � to T �

0
:

Then ��
0
= s� � �� � s�1H : T

0
H ! T �

0
is an admissible embedding in M� over

R ; and it is the one we will use in de�ning individual terms in the transfer
factor. Now to move across to G (or, more precisely, to M); we may modify
the inner twist  M by an inner automorphism of M and then assume that
the restriction of  M to (G�)�

�
0 is an isomorphism over R of (G�)��0 with G�0 :

Note that we can adapt the arguments of the last paragraph, keeping
the setup in H and G� but dropping the noncompactness assumption on �
in G; to see that T

0
H has admissible embeddings over R into G if and only if

� is not totally compact ([S3], Proposition 9.3).

8. Geometric transfer factors

By the very regular set of H1(R) � G(R) we will mean the set of pairs
(
1; �); where 
1 is strongly G-regular in H1(R) and � is strongly regular in
G(R): The canonical transfer factor � of [LS1], which we will now label as
the geometric transfer factor, is a function on the very regular set with the
following properties:

(i) �(
1; �) = 0 unless 
1 is an image of �;
(ii) �(
01; �) = �(
1; �) if 


0
1 is stably conjugate to 
1;

(iii) �(
1; �
0) = �(
1; �) if �

0is conjugate to �; and
(iv) �(z1
1; �) = �1(z1)

�1�(
1; �) for z1 in Z1(R):
Then we may prescribe the matching of orbital integrals for f 2 C(G(R))
and f1 2 C(H1(R); �1) as

SO
1(f1; dt1; dh1) =
P

�;conj �(
1; �)O�(f; dt; dg)
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for all strongly G-regular 
1 in H1(R):

It is the relative transfer factor �(
1; �)=�(

0
1; �

0) = �(
1; �; 

0
1; �

0) that
is canonical, and so we need a normalization for the absolute factor. As in
[LS1], we �x a pair (
1; �) in the very regular set, with 
1 an image of �
(if none exists, there is no transfer to make, and none needed), �x �(
1; �)
arbitrarily, and then set

�(
1; �) = �(
1; �)�(
1; �; 
1; �):

We say that the transfer factor has been normalized by choice of related
pair. Any normalization can be recovered in this manner. In [S7] we will
discuss normalization more systematically. The chosen normalization of the
geometric transfer factor determines uniquely the dual map on tempered
characters, and we will be particularly interested in those normalizations
where the coe¢ cients in the dual map, i.e. the spectral transfer factors, are
simply signs.

The canonical factor �(
1; �; 

0
1; �

0) is constructed in [LS1] as a product
of �ve terms: �I ; �II ; �III1 ; �III2 and �IV : All terms except �III1 are
quotients of absolute terms �I(
1; �); �I(


0
1; �

0) etc. It is convenient for the
purposes of this discussion, and those of [S7], now to write the product of
�II ; �III2 and �IV as a single term �II+: The three individual pieces �I ;
�II+ and �III1 depend on two choices: the toral data discussed in Section 6
(but not the Borel subgroups providing that data) and the a-data which we
will discuss in the next section. Here is a list of the dependence:

�I toral data, a-data
�II+ a-data
�III1 toral data

We will discuss these terms over the next several sections, and �nish
here with a few informal remarks. The analysis of orbital integrals we have
outlined so far, and an analysis of the embeddings of L-groups that we will
outline below, provide motivation for the construction of terms �II+ and
�III1, although not for the precise nature of �III1 : That will be taken up
in [S7] and [S8]. In twisted endoscopy, the analogue of the product of �II+

and �III1 does not factor in general. That is one reason for this separate
discussion of the ordinary case.
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The role of the term �I ; crucial for a canonical product, is less trans-
parent. To motivate its de�nition, and the splitting invariant of a torus on
which it is based, we may turn to the regular unipotent analysis of Section 6
in [LS1]. That topic, however, will not be discussed here. We just mention a
simple but instructive application of the analysis (for p-adic groups). With
Haar measures normalized suitably, the Shalika germ for a regular unipotent
conjugacy class U in a quasisplit group G(F ) takes value either one or zero
on a regular semisimple element 
 near the identity. We take an F -splitting
of G (the choice will not matter) and let T = Cent(
;G)0: Then we de�ne
an invariant invT (U) for U in a straightforward manner. To detect which
value we obtain for the germ for U at the element 
 su¢ ciently close to the
identity, we use a-data for T to construct an invariant inv(
) for 
: Then the
value of the germ at 
 equals one exactly when the product of inv(
) with the
splitting invariant of T equals invT (U). See [S6]. We will be concerned with
the splitting invariant again in our discussion of spectral transfer factors.

Despite the signi�cance of �I , we avoid an explicit discussion of it here.
Instead, as we have indicated, we will invoke the descent property of the
canonical transfer factors from [LS2]. We will discuss that and its proof at
various points along the way.

The product�II+ can be regrouped into two pieces: the product�II�IV

which we regard as the quotient of nonsymmetric generalized Weyl denom-
inators for G and H1 and a symmetrizing, or �-shift, character �III2 : The
de�nition of each piece involves the use of �-data, but the e¤ects of changing
the data are readily seen from [LS1] to cancel. Thus we may just as well
use the choice that facilitates reading results of Harish Chandra. We will
outine the the construction of the two pieces in the next few sections. We
should mention that it is the insertion of a-data in the construction of �II

that removes the dependence of the product �II+ on �-data. In the present
discussion, once we have picked the �-data we will group the contribution
from the a-data with �I and handle it by descent.

The two terms �I and �II+ tell us nothing about the position of a
strongly regular conjugacy class in G(R) within its stable conjugacy class.
The last term �III1 remedies this, but only in a relative manner if G is not
quasisplit. For the present discussion we just need a transformation rule for
the canonical product to extract �-orbital integrals (Lemma 12.1), and then
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we rely once again on semiregular descent to avoid a direct analysis of the
term.

9. a-data, �-data and Weyl denominators

Let T be a maximal torus in G de�ned over R: Recall that the symmetric
orbits of � = f1; �g in the roots of T are simply the pairs f��g of imaginary
roots, and the asymmetric orbits are either singletons f�g if � is real, or
pairs f�; ��g if � is complex. A set of a-data consists of non-zero complex
numbers a� such that a�� = �(a�) and a�� = � a�, for all roots �:

The �-data consist of a set f��g of characters on C� if � is imaginary or
complex, or on R� if � is real, such that ��� = �� � ��1; ��� = ��1� and if �
is imaginary �� extends the sign character on R�. These data are involved
directly only in terms �II and �III2 : We may make what we will call the
based choice given a positive system: if � is positive imaginary, set ��(z) =
z= jzj = (z=z)1=2; if � is negative imaginary, set ��(z) = jzj =z = (z=z)1=2;
and otherwise set �� trivial.

We can now describe one contribution to the transfer factor. The term
�II(
1; �; 


0
1; �

0) is a quotient �II(
1; �)=�II(

0
1; �

0) where

�II(
1; �) =
Q
O
��(

�(�)�1
a�

);

and the product is taken over representatives � for all orbits O of � outside
H1:

We return for a moment to our discussion before endoscopy was in-
troduced. Given a positive system for the roots of T we mean by Weyl
denominator the function �0 on T (R) given by

�0(
) =
Q

�>0;real

���(
)1=2 � �(
)�1=2
�� Q
�>0;complex

���(
)1=2 � �(
)�1=2
��

�
Q

�>0;imaginary

(�(
)� 1):
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Recall that
��z1=2 � z�1=2

�� is to be interpreted as j(1� z)(1� z�1)j1=2 : If � is
imaginary then

j�(
)� 1j =
���(
)1=2 � �(
)�1=2

�� ;
so that with the based choice of �-data described above, we have

�0(
) =
Q
�>0

���(
)1=2 � �(
)�1=2
��Q
�

��(�(
)� 1)

=
��detg=t(Ad(
)� I)

��1=2Q
�

��(�(
)� 1);

where the summation is over representatives � for all orbits of �: We may
include asymmetric orbits as well as symmetric orbits here since �� is trivial
unless � is imaginary.

For any sets of �-data f��g and a-data fa�g, we adjust this last formula
to de�ne �0(
; f��g; fa�g) as

�0(
; f��g; fa�g) =
��detg=t(Ad(
)� I)

��1=2Q
O ��(

�(
)�1
a�

);

where the summation is over representatives � for all orbits of O of �: This
of course can be done for any local �eld of characteristic zero. Notice that
the choice of representative � for an orbit has no e¤ect:

���(
��(
)�1
a��

) = ���(�(
�(
)�1
a�

)) = ��(
�(
)�1
a�

);

and the dependence is on the choice of a-data and �-data, rather than on
the choice of a positive system (or gauge) for the roots.

We could argue throughout with the generalized Weyl denominator
�0(
; f��g; fa�g) in place of �0(
); but there is little change in the analysis
on the geometric side, for all the additional notation. Instead, while proving
geometric transfer, we will work with Harish Chandra�s factor �0(
) and use
based �-data in the relevant terms of the transfer factor. Recall that the
combined term �II+ is, in any case, independent of the choice of �-data. It
does depend on a-data, but having chosen �-data we will now factor o¤ the
piece depending on a-data and combine it with �I :

We thus rewrite the product of the absolute terms�I(
1; �) and�II(
1; �)
as a product
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��
I(
1; �) �

�
II(
1; �):

The original �I(
1; �) is given as a Tate-Nakayama pairing < �(Tsc); sT >
which we will not review further here. For ��

I(
1; �) we add in the denomi-
nator of �II(
1; �): Thus

��
I(
1; �) = < �(Tsc); sT >

Q
�

��(a�)
�1

and

��
II(
1; �) =

Q
�

��(�(�)� 1)

where the product, in each case, is over representatives � for the orbits of �
in the roots of T outside H1: In each product the choice of representative for
an orbit does not matter.

Remark 9.1. The term ��
I(
1; �) is independent of the choice of a-data.

To check this, we replace a� by a0� = a�b�: This multiplies < �(Tsc); sT > byQ
�

��(b�) by Lemma 3.2.C of [LS1]. Here the product is over representatives

� for the pairs of imaginary roots �� outside H1:

We have made ��
I(
1; �) depend on the choice of �-data, but because

we have chosen to use based �-data that will be of no concern. Notice that

��
II(
1; �)�IV (
1; �) = �

0
G(�)=�

0
H1
(
1);

where the terms on the right are the usual asymmetric Weyl denominators
for G and H1 respectively.

Thus it remains to consider �III1 and �III2 : As already mentioned, the
purely relative term �III1 will be handled by making some careful choices in
descent, choices which also allow us to deal with the toral constant ��

I(
1; �)
without further explicit calculation, and then passing to �-orbital integrals.
We will start on that in Section 12. For now, we prepare for �III2(
1; �)
which is the value at 
1 of a certain character on T1(R). This character is
determined by comparing some embeddings of L-groups.
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10. �-data and embedding the L-group of a maximal torus

Let T be a maximal torus over R in G: Then following [LS1], a set of
�-data for the roots of T determines a G_-conjugacy class of embeddings of
LT in LG: Because we are dealing with real groups and based �-data, we
may describe an embedding from this class very simply.

First, we realizeW = WR as fz�� : z 2 C�; � 2 �g;with z1�� 1:z2�� 2 =
z1� 1(z2)a�1;�2 � � 1� 2, a�1;�2 = 1 unless � 1 = � 2 = � and a�;� = �1:Fix a pair
(B; T ): Then (B; T ) and the pair (B; T ) from splG_ determine T_ ! T
by which we embed T_ in G_: We also have positive systems at hand by
which to specify based �-data. So it remains to de�ne the embedding on the
elements 1� w; i.e. to de�ne a suitable homomorphism of WR in LG:
We may work inside M (since for based �-data we have chosen �� to be
trivial except for � imaginary), and so we will mapWR into LM: Recall that a
splitting ofM_ has been �xed; if �_ is a positive root relative to this splitting
then ��(z) = (z=z)1=2 for based �-data: The embedding � constructed in
Section 2.5 of [LS1], which we now denote �T ; has

�T (z � 1) = (z=z)� � (z � 1);

where � is the transport to T of one-half the sum of the positive roots of T
in M: Here the element (z=z)� of T is de�ned by �_((z=z)�) = (z=z)<�;�

_>;
for each rational character �_ on T : Also �T (1 � �) = n � (1 � �); where
n� (1� �) acts on T as the dual of �T = !(�;M=T ) � �M :We choose n to
be the element n(!(�;M=T )) attached in Section 2.5 of [LS1] to !(�;M=T )
using the root vectors from splM_ , so that

�T (1� �) = n(!(�;M=T ))� (1� �):

It is also convenient to write rT (z��) for the element (z=z)� of T , where
� is either 1 or �: it is the term rp(z � �) associated in Section 2.5 of [LS1]
to based �-data for (the gauge p associated with) the pair (B; T ). If we also
set !(1;M=T ) to be the identity, then we have

�T (z � �) = rT (z � �)n(!(� ;M=T ))� (z � �):
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It will be useful to know that the precise choice of n(!(�;M=T )) is not
necessary for this last formula to de�ne an L-homomorphism of LT in LG:
Lemma 3.2 of [L3] shows that it is enough to take any element n as above in
the derived group of M_ instead.

11. �-shift characters and endoscopic embeddings

First we attach data to the embeddings �1 and �: For this, we adjust the
de�nitions in [S4] to account for the z-extension H1 ! H; following Section
4.4 of [KS]. Here we will outline a simpler version since we are dealing
only with the extension C=R and with no twisting in the endoscopy. We
may assume that �1 and � are inclusion on H

_; that s 2 T , that splH_ =
(B\H_; T ; :::); that T � T1 and splH_ is extended to a splitting for H_

1 ; thus
embedding LH naturally in LH1: Moreover, since we will ultimately work in
M , and want compatibility with the descent data of Section 7, we will assume
T compact modulo the center of G; i.e. that every root is imaginary. For
w in WR mapping to � in � we choose h(w) in H acting on H_ as �H and
mapping to w under H ! WR . Note that the element h(w) is unique up
to multiplication by an element of the center of H_: On the other hand,
the element �(h(w)) in LG is of the form n(w) � w; where n(w) lies in the
normalizer of T in G_ and so acts as an element !(� ;G=H) of the Weyl
group of T . Let n(!(� ;G=H)) be the standard element acting thus (see
[LS1], Section 2.1). Then we may de�ne t�(w) by

n(w) = t�(w)n(!(� ;G=H)):

If h(w) is multiplied on the left by an element zH(w) in the center of H_

then so is t�(w): The embedding �1 of H in LH1 has a simpler form:

�1(h(w)) = t�1(w)� w;

where t�1(w) lies in T1 and is central in H_
1 : Again, multiplying h(w) by

zH(w) does the same to t�1(w): Thus the element

t�;�1(w) = t�(w)t�1(w)
�1
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of T1 is independent of the choice of h(w); but it is not in general a cocycle.

The standard �-data give two embeddings: the embedding �TH :
LTH !

LH which extends naturally to �T1 :
LT1 ! LH1 and the embedding �T :

LT ! LG ([LS1], Section 2.5). Let

aT1 = t�;�1 rT1 r
�1
T :

First of all we observe that the map aT1 : WR ! T1 is a 1-cocycle. That
is immediate if �1 is the identity map, and so Z1 is trivial, since in that
case aT1 = aTH which measures the di¤erence between two embeddings of
LTH �= LT in LG (see Section 3.5 of [LS1]). To show that aT1 is a cocycle
in general, we go back to the last comment in the last section. We choose
nH(�) 2 H_

der in the usual way such that u(w) = nH(�)h(w) acts on T1 as
�T1 if w = z � �, and we set u(z � 1) = h(z � 1). Then we observe that we
still obtain L-homomorphisms after replacing �T1 by �

0

T1
; where

�
0

T1
(t� w) = t rT1(w)t�1(w)

�1�1(u(w));

and �T by �
0

T ; where

�
0

T (t� w) = t rT (w)t�(w)
�1�(u(w)):

The needed calculation is that t�1(w)
�1�1(u(w)) and t�(w)

�1�(u(w)) lie in
the derived groups of H_

1 and G
_ respectively, when w = 1� �. Now we use

the fact that �
0

T1
and �

0

T are homomorphisms to calculate the coboundaries
of w ! rT1(w)t�1(w)

�1 and w ! rT (w)t�(w)
�1 as

�1(u(w1w2)u(w1)
�1u(w2)

�1)

and

�(u(w1w2)u(w1)
�1u(w2)

�1);

respectively. But these are, by de�nition, the same element of T ; and so aT1
is a cocycle.

Next we set
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�III2(
1; �) = < aT1 ; 
1 >

if stronglyG-regular 
1 in T1(R) is an image of strongly regular � in T (R):The
pairing is that of the Langlands parametrization of quasicharacters on a real
torus, which we will describe more explicitly shortly. Our �rst remark is that
this de�nition of �III2(
1; �) is that of [LS1] when �1 is the identity map.
Notice also that the associated relative factor is correct for the de�nition of
general twisted factors in [KS]: the hypercohomology group factors and we
need just track the cocycle aT (w) on p. 45 which we can regard as a cocycle
with values in T1 when there is no twisting.

An explicit Langlands parameter for the character �(
1) = < aT ; 
1 > is
a pair (�; �) 2 (X�(T1)
C)2; where aT1(z�1) = z�z�T1� and aT1(1��) = e2�i�

([L3]). We write � = �(�; �):The pair (�; �) has the property that

1
2
(�� �T1�) + �+ �T1� 2 X�(T1);

� is determined uniquely, whereas � is unique only modulo

X�(T1) + (1� �T1)X�(T1)
 C:

We attach a pair (��; ��) 2 (X�(T1)
 C)2 to the embeddings �1 : H !
LH1 and � : H ! LG; as follows. We may write the element t�;�1(z � 1)
as z�

�
z�

�
; and then observe that �� = �H1�

� and that < ��; �_1 > = 0 for
all roots �_1 of T1 in H_

1 : Then we also have �
� = �T1�

�: We specify �� by
requiring that t�;�1(1 � �) = e2�i�

�
: Recall from the last section that � = �G

satis�es rT (z�1) = (z=z)� = z�z�T �. Similarly, we have � = �1 for rT1 : On the
other hand, rT (1� �) = rT1(1� �) = 1:Comparing de�nitions, we conclude
that

� = �� + �1 � �G;

and that for � we may take ��: This completes our description of �III2(
1; �):
We have considered only the case needed for working with parabolic descent.
The general case involves a simple modi�cation using Lemma 3.5.A of [LS1]
(to change to general �-data f��g; set �� = 1 for � imaginary and �� = ��
for � nonimaginary).
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Thus we have recovered the correction characters of [S4] in the case
when H1 = H (see Section 4.3 of [S4] for some explicit examples), with just a
minor modi�cation for the general case. In [S4] the correction characters were
de�ned only for a �xed choice of toral data for chosen Cartan subgroups, and
the behavior of the transfer factors under stable conjugacy from H required
a long argument (Theorem 4.5.2 of [S4]). Using canonical transfer factors
this step is no longer necessary for the geometric transfer (see Lemma 4.1.C
of [LS1]). We may also avoid using the second main result of [S4], Theorem
6.1.1 on compatibility across walls of adjacent Cartan subgroups, by a direct
appeal to the descent theorem of [LS2] (see, however, the comments in Section
13 below).

Remark 11.1 (descent). The pair (��; ��) will not change in our setting
for parabolic descent. It may change in semiregular descent : one positive
root becomes simple after descent.

Remark 11.2 (trivial endoscopy). If H is an inner form of G; i.e the
endoscopic datum s is central in G_, and we pass to a suitable extension
H1 then �1 = �G on each Cartan subgroup of H1(R) and so the pair (��; ��)
determines a character �(��; ��) on each Cartan subgroup. These characters
together extend to a single character �(��; ��) on H1(R) itself.

Remark 11.3 (transformation rule for transfer factors). Notice that
�III2(
1; �) is the only term in the transfer factor �(
1; �) that depends
directly on 
1 rather than on the image of 
1 under H1 ! H: We have

�(z1
1; �) = �1(z1)
�1�(
1; �)

for z1 2 Z1(R); where Z1 = Ker(H1 ! H) ([LS1] and [KS]). Let (��z; �
�
z) be

the transport of (��; ��) under T1 ! Z_1 ; or equivalently, under restriction
to the Lie algebra of Z1(R): Then the character �(��z; �

�
z) is wellde�ned and,

by inspection of our formula above for �(
1) = < aT ; 
1 > we have

�(��z; �
�
z)(z1) = �1(z1)

�1

for z1 2 Z1(R) (see Section 4.1 of [S4]). For the spectral transfer we will then
consider those tempered irreducible representations �1 of H1(R) for which

�1(z1
1) = �(���z;���z)(z1) �1(
1):
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Remark 11.4 (linear form on Lie algebra of the endoscopic group) In gen-
eral, the datum �� attached to the embeddings �1 : H ! LH1 and � : H !
LG may be identi�ed as a linear form on the Lie algebra of any Cartan sub-
group of H1(R); or better, as a linear form on the Lie algebra of H1(R): There
is no harm in assuming that �� takes only purely imaginary values, and we
will do so to avoid having to introduce essentially tempered representations
into our discussion.

12. Beginning geometric transfer with canonical factors

To f 2 C(G(R)) we attach

�(
1; dt1; dh) =
P

�;conj �(
1; �)O�(f; dt; dg)

for all stronglyG-regular 
1 inH1(R); where �; conj indicates summation over
the conjugacy classes of strongly regular elements � in G(R); and measures
are as before. We want to �nd f1 2 C(H1(R); �1) such that

SO
1(f1; dt1; dh1) = �(
1; dt1; dh)

and so return to the conditions (i) - (vi) in Section 3. The invariance proper-
ties (i),(ii) and (iii) will be immediate from the properties of transfer factors,
at least on the strongly G-regular set. Our main concern is thus to analyze
the various potential jumps. We examine �(
1) near each imaginary wall,
including the G-walls, in a Cartan subgroup T1(R): As before, we choose a
positive system for the imaginary roots of T
1 to de�ne the normalizing factor
�0
H1
; and then set

	(
1) = �
0
H1
(
1)�(
1):

Recall that we plan to use a di¤erent positive system for each noncom-
pact wall we examine. Moreover, we will need to normalize the various
O�(f; dt; dg); and introduce �0

G(�) for some � in each stable conjugacy class.

Here is where we will exploit the fact that the transfer factors are not
only explicit but also canonical: since it will have no e¤ect on whole transfer

32



factor, we are free to make preferred choices each time (i.e. wall by wall) for
the data used in de�ning the individual terms in the transfer factor . This will
yield a simple local comparison of the transfer factor with the appropriate
�0
H1
(
1)=�

0
G(�) not available for the calculations in [S3, S5]. In particular,

the �-signature of a Cayley transform introduced in those calculations will
now be trivial. Recall from Section 6 that � is determined by the endoscopic
datum s and our choice of toral data � = �B1;B : T1 ! T over R: We then
have weights �(w) = �1 for the �-orbital integrals

P
w �(w)

0Fwf (�) which, as
functions of 
1; are dependent on the choice of �: Set � = �(
1):

Lemma 12.1

We may rewrite

	(
1) = �
0
H1
(
1)

P
�;conj �(
1; �)O�(f)

as a �-orbital integral:

�0H1
(
1)

�0G(�)
�(
1; �)

P
w �(w)

0Fwf (�):

Proof: Gathering de�nitions, we see that all we need for this is an appropriate
transformation rule for transfer factors:

�(
1; �
w) = �(
1; �) < inv(�; �w); sT > = �(
1; �)�(w):

It is proved in greater generality as Lemma 5.1.D(i) in [KS], and is not
di¢ cult to prove directly from the de�nition of �III1 in Section 3.4 of [LS1].
We recall also the caution regarding the pairing from the last paragraph of
Section 6.

Then there are two steps remaining in our examination of 	: a local

analysis of
�0H1

(
1)

�0G(�)
�(
1; �) for certain convenient choices of de�ning data,

which will be given in the next section, and the jump behavior of �-orbital
integrals, with the same convenient choices, which is available from [S3].
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13. Local properties of transfer factors

Again we �x an isomorphism �B1;B : T1 ! T over R as in Section 6, and
suppose that 
1 2 T1(R) is strongly G-regular. Set � = �B1;B(
1): Use B1; B
to specify �0

H1
;�0

G: Then we write

�0H1
(
1)

�0G(�)
�(
1; �) = D(
1):

We shall see that D(
1) is almost a constant near a semiregular element
in T
1(R). The precise sense of almost will be evident in our �rst lemma. The
second lemma will compare the constants on adjacent Cartan subgroups.

We start then with a single Cartan subgroup T1(R) for which �B1;B :
T1 ! T over R exists. Suppose that 
1;0 2 T1(R). We do not need 
1;0 to be
semiregular for Lemma 13.1. For X su¢ ciently small and nonzero in the Lie
algebra t1(R) such that 
1;0 expX is strongly G-regular we set

D
1;0(X) = D(
1;0 expX):

We regard the term �� + �1 � �G from Section 11 as a linear form on t1(R).
Then:

Lemma 13.1

For X as above, we have

D
1;0(X) = Ae�
�+�1��G(X);

where A is independent of X:

Proof: This does not require much more argument but we will take this
opportunity to gather the pieces of the transfer factors in one place. Recall
that the transfer factor is normalized as
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�(
1; �) = �(
1; �)�(
1; �; 
1; �);

where (
1; �) is a �xed related pair and �(
1; �) has been chosen arbitrar-
ily. So �(
1; �) is our �rst contribution to the constant A: The (canonical)
relative factor �(
1; �; 
1; �) is composed of �ve pieces, four of which are quo-
tients. We include the denominators ��

I(
1; �); �
�
II(
1; �); �III2(
1; �) and

�IV (
1; �) of those quotients in A: For the numerators, we can include the
toral invariant ��

I(
1; �) in A; and now use the explicit form 
1 = 
1;0 expX
and � = �B1;B(
1) to evaluate

��
II(
1; �)�III2(
1; �)�IV (
1; �)

as the product of

�(�� + �1 � �G; �
�)(
1;0 expX)

= �(�� + �1 � �G; �
�)(
1;0) e

��+�1��G(X)

with Q
im (�1(
1;0 expX)� 1)

Q
r;c

���1(
1;0 expX)� 1�� ;
where

Q
im indicates the product is over positive imaginary roots �1 outside

H1; and
Q
r;c indicates the product over positive real or complex roots �1

outside H1:
The �rst term �(�� + �1 � �G; �

�)(
1;0) contributes to A; the second term
appears in the statement of the lemma, and the last two terms together
cancel with the term�0

H1
(
1;0 expX)=�

0
G(�B1;B(
1;0 expX)) in the de�nition

of D
1;0(X): Thus the lemma will be proved if we show that the remaining
term �III1(
1; �; 
1; �) in the transfer factor is constant for our choice of 
1
and �. But that is true because � is �B1;B(
1) For this, see [LS1]: in Section
3.3, the cochain v(�) is the same for all � so chosen.

Turning now to adjacent Cartan subgroups T1(R) and T
0
1(R), we will

need only to consider the setting established in the last two paragraphs of
Section 7. Thus the semiregular element 
1;0 is common to T1(R) and T

0
1(R)

and is annihilated by the positive noncompact imaginary root �1 of T1 in H1:
The additional data are chosen so that the transport of � to T is noncompact
(we are considering only the case where that is possible) and so forth. Again
we have D
1;0(X) and the constant A of Lemma 13.1 which we now write as
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A(T1; 
1;0):We also have the analogous term for T
0
1(R) and then the constant

A(T
0
1; 
1;0), although here 
1;0 is annihilated by the real root �

0
1:

Lemma 13.2

In the setting described above, we have A(T1; 
1;0) = A(T
0
1; 
1;0):

Proof: Now 
1 = 
1;0 expX; � = �B1;B(
1); 

0
1 = 
1;0 expX

0
; and �

0
=

�B01;B
0 (


0
1): We start by comparing �(
1; �) with �(


0
1; �

0
): By the transi-

tivity property of relative transfer factors ([LS1], Lemma 4.1.A ) we can
ignore the �xed related pair (
1; �) and write the quotient of these terms as
�(
1; �; 


0
1; �

0
): We will observe in a separate lemma below that

limX;X0! 0�(
1; �; 

0
1; �

0
) = 1:

So now we compare
�0H1

(
1)

�0G(�)
with

�0H1
(

0
1)

�0G(�
0
)
: First we cancel within each quotient,

writing each as a product over roots outside H1: Since the positive system of
imaginary roots for T1 is adapted to �1; we recall our discussion in Section 2
and conclude then that

limX;X0! 0

�0H1
(
1)

�0G(�)
=
�0H1

(

0
1)

�0G(�
0
)
= 1:

Since, by the last lemma, we may compute A(T1; 
1;0)= A(T
0
1; 
1;0) as

limX;X0! 0D(
1;0 expX)=D(
1;0 expX
0
);

it follows that

A(T1; 
1;0)= A(T
0
1; 
1;0) = 1;

and the lemma is proved.

Lemma 13.3

In the setting of the proof of Lemma 13.2, we have
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limX;X0! 0�(
1; �; 

0
1; �

0
) = 1:

Proof: Replacing (H1; G) by (H

1;0
1 ; G�0); we obtain the transfer factor

�
1;0(
1; �; 

0
1; �

0
) for a trivial inner twist, i.e. an isomorphism over R. Since

we are working with H

1;0
1 in place of H
0 ; this factor is the value at 
1=


0
1

of a character on H

1;0
1 (R) (see Remarks 11.1 and 11.2). Thus we have

limX;X0! 0�
1;0(
1; �; 

0
1; �

0
) = 1:

The descent theorem for transfer factors ([LS2], Theorem 1.6) states that

limX;X0! 0�(
1; �; 

0
1; �

0
) = 1;

where

�(
1; �; 

0
1; �

0
) = �(
1; �; 


0
1; �

0
)=�
1;0(
1; �; 


0
1; �

0
);

and so the lemma follows once we observe that our slight modi�cation of the
transfer factor does not a¤ect the statement of Theorem 1.6 (see Remark
11.3).

For the proof of Lemma 13.3 we have appealed directly to the general
Theorem 1.6 of [LS2], which applies to all semisimple descent in ordinary
endoscopy for all local �elds of characteristic zero. An argument just for the
setting of Lemma 13.3 is shorter. For �I or ��

I we need the �rst comparison
lemma of Section 3.3 of [LS2], and may as well proceed more or less as in [LS2]
for all terms but�III2 : That is the term which has a long argument in general.
Theorem 6.1.1 of [S4] handles �III2 for just the setting of Lemma 13.3.
Alternatively, we could argue with the second comparison lemma of [LS2]
and avoid some of the case-by-case analysis used in the proof of Theorem
6.1.1.

14. Statement and proof of transfer
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We pause for one last and elementary step: �tting together parabolic
descent assertions for endoscopic data, transfer factors, and orbital integrals.
We return then to the setting of Section 7. Thus we have � = �B1;B : T1 ! T
de�ned over R, andM1 = Cent(ST1 ; H1) is endoscopic forM = Cent(ST ; G):
Let P be a parabolic subgroup of G de�ned over R and containing M as
Levi subgroup, and let N be its unipotent radical. Then to f 2 C(G(R)) we
attach f (P ) 2 C(M(R)); following [HC2]. Similarly, but not needed yet, we
have for f1 2 C(H1(R); �1) and parabolic subgroup P1 of H1; de�ned over R
and withM1 as Levi subgroup, the function f

(P1)
1 2 C(MH1(R); �1):Measures

are normalized in the de�nition of f (P ) so that for given dm; dg we have

O�(f; dt; dg) =
��detg=mAd(�)� I

���1=2 O�(f (P ); dt; dm)
for all � in M(R) that are strongly regular in G:

Let � be strongly regular in G and lie inM(R): Let T 0 = Cent(�;G) and
M 0 = Cent(ST 0 ; G): Then the Weyl group quotient 
(M 0; T 0)=
R(M

0; T 0)
provides a complete and irredundant set of representatives for the conjugacy
classes in the stable conjugacy class of �; whether inG or inM (or in any Levi
group containingM 0): Thus the summations in the statement of Lemma 14.2
below are the same if strongly G-regular 
1 is an image within M; i.e within
the setting of endoscopy forM . To prove the lemma, it remains then to check
that transfer factors match up term by term if normalized appropriately.

In Section 8 we have normalized transfer factors by the choice of a related
pair. Thus (
1; �), with 
1 stronglyG-regular inH1(R) an image of � inG(R);
has been �xed and �(
1; �) chosen arbitrarily. Suppose in M we choose the
related pair (
M1 ; �

M
): It shortens the discussion (we avoid taking limits) if

we assume 
M1 is strongly G-regular, rather than just strongly M -regular,
and we do so. Then �

M
is strongly regular in G so that detg=m(Ad(�

M
)� I)

is nonzero. Moreover, the number �(
M1 ; �
M
) is wellde�ned and uniquely

determined by the normalization for G. We say that the transfer factors �M

and � are normalized compatibly if �M(

M
1 ; �

M
) is chosen so that

�M(

M
1 ; �

M
) =

���detg=mAd(�M)� I
����1=2 �(
M1 ; �M):
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Lemma 14.1

If the transfer factors �M and � are normalized compatibly then

�M(
1; �) =
��detg=mAd(�)� I

���1=2�(
1; �)
if strongly G-regular 
1 is an image of � within M:

Proof: Suppose also strongly G-regular 

0
1 is an image of �

0 within M:
Then by transitivity of the relative transfer factor it is enough to check that
�M(
1; �; 


0
1; �

0) coincides with �(
1; �; 

0
1; �

0) times��detg=mAd(�)� I
���1=2 ��detg=mAd(�0)� I

��1=2 :
We return to the de�nitions of the terms �I ; �II etc. in [LS1]. First we
dispose of �IV immediately: �IV for M is simply the last displayed term
times �IV for G: For the remaining terms, we have to show that the choices
we have made yield the same term for bothM and G. In particular, we have
chosen �-data and a-data for G to be trivial on asymmetric orbits. But then
the terms �I ; �II and �III2 will have no contributions from orbits outside
M , and are then the same for G and M ; see Section 11 regarding �III2 : It
remains to check that calculating within M yields the same terms �I and
�III1. For the term �I ; we may replace the term �(Tsc) in Section 3.1 of
[LS1] by its image �(T ) in H1(�; T ) (... here T denotes the maximal torus
in M containing whichever of �; �0 we are considering) and pair with s0 from
Section 6, and then we see the terms may be constructed the same way in
G and M . For the relative term �III1 ; we may replace the inner twist  
for G by  M without harm, and then argue as in Lemma 3.1.A of [LS2] to
complete the proof.

We have now established the following:

Lemma 14.2

With P and f (P ) as above, we have
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P
�;conj;M �M(
1; �)O�(f

(P ); dt; dm)

=
P

�;conj;G �(
1; �)O�(f; dt; dg)

for all strongly G-regular 
1 in M1(R); provided the transfer factors �M and
� are normalized compatibly.

We may now complete the geometric transfer:

Theorem 14.3

Let (H;H; s; �) be a set of endoscopic data for G; and (H1; �1) be a z-pair
for H with attached character �1 on the central subgroup Z1(R); where Z1 =
Ker(H1 ! H): Let � be the attached geometric transfer factor, normalized
by the choice of related pair. Then for each f 2 C(G(R)) there exists f1 2
C(H1(R); �1) such that

SO
1(f1; dt1; dh1) =
P

�;conj �(
1; �)O�(f; dt; dg)

for all strongly G-regular 
1 in H1(R):

Proof : We have de�ned � on the strongly G-regular elements 
1 of H1(R)
by

�(
1; dt1; dh) =
P

�;conj �(
1; �)O�(f; dt; dg):

Here we may as well �x dg and dh. The choice of dt is arbitrary if 
1 is not
an image of � since �(
1; �) = 0 in that case. If 
1 is an image of � then dt
is to be obtained from given dt1 by transport.

Our �rst step is to extend � to all G-regular elements in H1(R): Suppose

1 lies in the Cartan subgroup T1(R) and is G-regular. If 
1 is not an image
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there is nothing to do: � is zero on allG-regular elements of T1(R):We should
note at this point that the notion of image is de�ned for any semisimple
element in Section 1.2 of [LS2]. If 
1 is an image of � then � is regular
semisimple and then we can extend � to 
1 by smoothness of each of the
terms on the right (see Section 4.3 of [LS1] for details).

Next we �x T1 and consider images 
1;0 on walls of T1(R) outside H1:
There is no harm in working with the normalized 	 in place of � (see Section
12). Thus 
1;0 is regular in H1 but any element �0 of which it is an image
is singular in G. For elements on the imaginary walls outside H1 we will
proceed one wall at a time. For an element 
1;0 on real or complex walls
outside H1 we observe from the statement of parabolic descent in Lemma
14.1 that � extends smoothly in a neighborhood of 
1;0. We can extend this
observation to the real or complex walls inside H1 as long as we replace �
by 	: Now we may argue by Harish Chandra�s principle that to show that 	
extends to a Schwartz function on T1(R)I�reg (as needed in (iv) of Theorem
4.1) it is enough to show that the jump of at each G-semiregular element 
1;0
on an imaginary wall outside H1 is zero.

There are two cases to consider. As usual, let �B1;B : T1 ! T be
de�ned over R: Suppose �1(
1;0) = 1; where �1 is a character on T1 but not
a root of H1; and the transport � of �1 to T is an imaginary root in G:
Set �0 = �B1;B(
1;0): Then the G-semiregularity assumption is simply that
�0 is semiregular, i.e. that �(�0) = 1 determines the root � uniquely up to
sign. The �rst case is that � is totally compact in G: Then all integrals 0Fwf
appearing in 	 (Lemma 12.1), and their derivatives, have zero jump across
�0: This together with Lemma 13.1 implies that 	 and its derivatives have
zero jump across 
1;0:

For the second case, if � is not totally compact we can adjust �B1;B so
that � itself is noncompact. We now reexamine the last two paragraphs of
Section 2. There we considered stable orbital integrals, i.e the case � trivial,
and we had two cases: d(�) = 1 or d(�) = 2: In the �rst case only, integrals
were paired and each integral in a pair contributed the same jump. Now we
argue that because � is noncompact and outside H1; we have �(w�) = �1 so
that d(�) = 1 must be true in our present setting, and that the jumps for the
integrals in each pair are now opposite in sign. Thus again we conclude that
	 and its derivatives have zero jump across 
1;0: Notice in these arguments,
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and again below, the term e�1��G in Lemma 13.1 is used to transform the map
on di¤erential operators D ! bD for H1 to that for G, the term e�

�
being

harmless since < ��; �_ > = 0 for each root � of T1 in H1:

We have now dealt with (i) - (iv) in the characterization theorem, and
come to the semiregular analysis for imaginary walls inside H1: Since (v)
is vacuous for a quasi-split group, only (vi) remains. There are two cases:
either the root � in G is totally compact or it is not. By the comment of the
last paragraph of Section 7, if � is totally compact then the right side of the
formula in (vi) is zero. So also is the left since we have only compact walls
to cross. For the second case we may return to the setting of Section 7 and
Lemma 13.2, and then observe that the jump formula for �-orbital integrals
in Lemma 4.4(ii) of [S3] takes exactly the form we need to combine with
Lemmas 13.1 and 13.2 to obtain (vi). For this observation, we note that
the �-signature of the Cayley transform in G; as de�ned in [S3], is trivial
since the transform is now chosen in the descent group G�0 and we have
�(w�) = �(�_) = 1: The proof of Theorem 14.3 is then easily completed.

It is convenient to have a separate statement for parabolic descent.

Lemma 14.4

Suppose that M is a cuspidal Levi group in G; that (MH ;HM ; sM ; �M) and
(MH1 ; �1;M) are data for M attached to (H;H; s; �) and (H1; �1) by descent.
Suppose also that f 2 C(G(R)), f1 2 C(H1(R); �1) and

SO
1(f1; dt1; dh1) =
P

�;conj �(
1; �)O�(f; dt; dg)

for all strongly G-regular 
1 in H1(R): Then f (P ) 2 C(M(R)) and f
(P1)
1 2

C(MH1(R); �1) have the same property relative to the descent data for M;
that is,

SO
1(f
(P1)
1 ; dt1; dhM;1) =

P
�;conj �M(
1; �)O�(f

(P ); dt; dm)
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for all strongly M-regular 
1 in MH1(R); provided that the transfer factor
�M is normalized compatibly.

Proof: Apply Lemma 14.2 to each side of the two equations for strongly G-
regular 
1 in MH1(R), and note Remark 11.2 for the comparison on the left.
Then extend smoothly to strongly M-regular 
1.

15. Dual transfer map

By the space of stable tempered distributions we will mean the weak
closure of the space generated by the stable orbital integrals f ! SO
(f),
for 
 strongly regular, in the dual of the space C(G(R); �0) of Section 2,
although we avoid a more systematic discussion of this space here. Let �1 be
a stable tempered distribution on H1(R). If f1 2 C(H1(R); �1) is attached to
f 2 C(G(R)) by Theorem 14.3 then we de�ne the transfer � of �1 to G(R)
by �(f) = �1(f1): Our interest is in invariant eigendistributions. Notice that
an invariant eigendistribution is stable in the sense above if and only if it is
represented by a stably invariant function on the regular semisimple set, and
that the transfer � is a wellde�ned tempered invariant distribution on G(R)
(see [S2]).

Continuing with the transfer � of a stable tempered eigendistribution
�1 on H1(R), suppose that z1�1 = �1(z1)�1 for z1 in the center Z1 of the
enveloping algebra of h1: We will describe shortly a homomorphism z ! z1
of the center Z of the enveloping algebra of g into Z1 and check that if f1 is
attached to f then z1f1 is attached to zf: Then

z�(f) = �(zf) = �1(z1f1) = z1�1(f1) = �1(z1)�1(f1) = �(z)�(f);

where � is de�ned by �(z) = �1(z1) for z 2 Z: We will also need explicit
information about the dual map �1 ! � on in�nitesimal characters.

To de�ne Z! Z1; choose any toral data T1 ! T for H1 and G: We use
the Harish Chandra isomorphism 
 to identify Z with the Weyl invariants in
the symmetric algebra S on the Lie algebra t of T (R): Because the isomor-
phism T1=Z1 ! T transports the Weyl group in H1 into that of G; we have
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an embedding of the Weyl invariants in S into the Weyl invariants in S1:
Recall the linear form �� on t1 from Section 11. The isomorphism I�� of S1
de�ned on t1 by X ! X + ��(X)I preserves the Weyl invariants because ��

is perpendicular to the roots of H1: Then 
�11 � I�� � 
 is the (injective) ho-
momorphism of Z into Z1 that we will denote by z ! z1: It is independent of
the choice of toral data. It is then easy to describe �1 ! � in terms of linear
forms. Recall that �1 belongs to the dual of C(H1(R); �1): Thus if we write
�1 as �1 � 
1; where �1 2 t�1 is extended to S1 as usual, then the restriction
of �1 to the Lie algebra of H1(R) must be the negative of the restriction of
�� (see Remark 11.3). Thus � = �1 + �� de�nes a linear form on t; and

�(z) = �1(z1) = �1(

�1
1 (I��(
(z)))) = �1(I��(
(z)))) = (�1 + ��)(
(z)):

Thus � = � � 
; and so we see that on the spectral side �� serves as a shift
in in�nitesimal character. Recall that on the geometric side �� contributed
to the symmetrizing characters for quotients of Weyl denominators.

Lemma 15.1

Let f1 2 C(H1(R); �1) be attached to f 2 C(G(R)) by Theorem 14.3. Then,
with the map z ! z1 as de�ned above, we have that z1f1 is attached to zf;
for all z in the center of the universal enveloping algebra of G:

Corollary 15.2

If �1 is a stable tempered eigendistribution on H1(R) with in�nitesimal char-
acter �1 then � is a tempered invariant eigendistribution on G(R) with in-
�nitesimal character � = �1 + ��:

Proof of lemma: As mentioned earlier, here is where we make use of Harish
Chandra�s di¤erential equations. Let z 2 Z: Then, returning to the setting
and notation of Section 3, we write the equation for z as

0F Tzf =
d
(z) 0F Tf :

Since 
(z) is invariant under the Weyl group we see easily that this equation
holds with 0F Tf replaced by

0Fwf ; for each w in the imaginary Weyl group. We
may pick any toral data. It is easiest to start with the expression

�0H1
(
1)

�0G(�)
�(
1; �)

P
w �(w)

0Fwf (�)
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from Lemma 12.1. Here � has been chosen speci�cally to be the image of 
1
under T1 ! T . By Theorem 14.3, we now know that the expression coincides
with normalized stable orbital integrals of f1 which we may write asP

w1
0Fw1f1 (
1):

Replace f by zf in the �rst expression. Then to prove the lemma we need
to show that if we move the operator d
(z) to the left of the function

�0H1
(
1)

�0G(�)
�(
1; �)

then we must replace it by the operator \
1(z1). Lemma 13.1 makes this a
routine calculation, and so the lemma follows.

If we combine geometric transfer with theWeyl integration formula then,
regarding �1 and � as functions on the regular semisimple sets, we obtain
� explicitly in terms of �1 on each shared Cartan subgroup of G(R). We
exploit this, for example, to identify discrete series characters (see [S5] and
[S7]).

We return to the setting of Section 4. Thus let �1 be a tempered irre-
ducible representation of H1(R) that transforms under Z1(R) according to
the character �1: Then we apply Corollary 15.2 to �1 = St-Tr �1 to conclude
that �; de�ned by �(f) = St-Tr �1(f1); is a tempered invariant eigendistrib-
ution. Theorem 4.1.1 of [S5] now shows that there are well-de�ned coe¢ cients
�(�1; �) = �C; where C is a constant depending only on the normalization
of the geometric transfer factors, such that

�(f) =
P

��(�1; �) Tr �(f);

where the summation is over tempered irreducible � in the L-packet attached
to that of �1 by the pair of embeddings �1 : H ! LH1 and � : H ! LG. We
set �(�1; �) = 0 for all other tempered irreducible representations of G(R):

Finally, we remark that if we start with f 2 C1c (G(R)) in Theorem 14.3
then an examination of the support ofP

�;conj �geom(
1; �)O�(f; dt; dg)
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shows that we may apply a minor variant of Theorem 6.2.1of [B] to conclude
that we can �nd f1 2 C1c (H1(R); �1) so that this expression coincides with

SO
1(f1; dt1; dh1)

for all strongly G-regular 
1 in H1(R); i.e. geometric transfer is also true
for smooth functions of compact support. On the dual side, Corollary 15.2
remains true, i.e. a stable eigendistribution � on H1(R) with in�nitesimal
character �1 transfers to an invariant eigendistribution � on G(R) with in-
�nitesimal character � = �1 + ��; and again, in terms of functions on the
regular semisimple set, we may describe � explicitly in terms of �1: At that
point we must turn to A-packets and the work of [ABV], where we �nd a
de�nition for a generalization of St-Tr �1. First, however, it is instructive
to look for an explicit formula for �(�1; �) in the tempered case.

16. Conclusion

Now write the geometric transfer factor �(
1; �) as �geom(
1; �): In [S7]
we will de�ne tempered spectral transfer factors �(�1; �) = �spec(�1; �) in
an analogous manner, along with a canonical compatibility factor for nor-
malizations of �geom and �spec: The de�nition of the spectral factors is much
simpler: the product �II+ = �II�III2�IV ; involving generalized Weyl de-
nominators and the symmetrizing character, is replaced by a single term,
a fourth root of unity. We may choose compatible normalizations so that
�spec(�1; �) is simply a sign, although we do not insist on this for the trans-
fer theorem. Finally we will verify �spec(�1; �) may replace the implicitly
de�ned coe¢ cients in the proof of Theorem 4.1.1 of [S5]. The following then
summarizes tempered endoscopic transfer for the group G.

Theorem 16.1 (see [S7])

Let (H;H; s; �) be a set of endoscopic data for G; and (H1; �1) be a z-pair
for H with attached character �1 on the central subgroup Z1(R); where Z1 =
Ker(H1 ! H): Let �geom and �spec be transfer factors attached to this
endoscopic data and z-pair, with compatible normalization. Then for each
f 2 C(G(R)) there exists f1 2 C(H1(R); �1) such that
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SO
1(f1; dt1; dh1) =
P

�;conj �geom(
1; �)O�(f; dt; dg)

for all strongly G-regular 
1 in H1(R): Moreover, there is a dual transfer of
stable tempered characters given by

St-Tr �1(f1) =
P

�;temp�spec(�1; �) Tr �(f)

for all tempered irreducible representations �1 of H1(R) transforming un-
der Z1(R) according to �1; and, conversely, if f 2 C(G(R)) and f1 2
C(H1(R); �1) satisfy

St-Tr �1(f1) =
P

�;temp�spec(�1; �) Tr �(f)

for all tempered irreducible representations �1 on H1(R) transforming under
Z1(R) according to �1 then

SO
1(f1; dt1; dh1) =
P

�;conj �geom(
1; �)O�(f; dt; dg)

for all strongly G-regular 
1 in H1(R):

Here measures dh1, dg and dt1 have been chosen arbitrarily, but dt is related
to dt1 by transport (Section 2).

Notice that the converse matching statement follows easily from Theo-
rem 4.1 along with the geometric matching, Theorem 3.1: given that f and
f1 match spectrally, use Theorem 3.1 to pick f2 in C(H1(R); �1) so that f and
f2 have matching orbital integrals. Then by dual transfer for f and f2, the
functions f1 and f2 agree on stable tempered characters and hence, by The-
orem 4.1, have same stable orbital integrals. Thus f and f1 have matching
orbital integrals.
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We �nish with a remark on the local form around the identity for the
geometric transfer factor. The result is a little surprising after the arguments
for Lemma 13.1. Its proof is quite simple but we cannot give it without a
digression into spectral transfer factors. This result applies, for example, to
a straightforward generalization of the Whittaker normalization introduced
in [KS] for the geometric factors. The " below is then the epsilon factor
de�ned there. That factor accounts for the fact that maximally split tori in
an endoscopic group H1 need not be maximal among split tori in a quasisplit
form of G, as of course happens in the familiar example of a compact torus
and SL(2):

Lemma 16.2 [S7]

Suppose that �geom and �spec are normalized compatibly and that

�spec(�1; �) = �1

for some, and hence every, G-regular related pair (�1; �): Then if we remove
the term �IV from �geom we obtain

�geom(
1; �) = � "e�
�(X)

for all strongly G-regular related pairs (
1; �) with 
1 = expX; where X is
su¢ ciently close to the origin in the Lie algebra of H1(R) and " is a constant
fourth root of unity.

Recall that �� was de�ned in Section 11 as a linear form on the Lie algebra
of H1(R) speci�ed by L-group embeddings, and that in Section 15 we saw
that it provides a shift of in�nitesimal character in passage from H1 to G.
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