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Abstract

This is the second of three papers reinterpreting old theorems in endoscopy, or
L-indistinghuishability, for real groups in terms of the canonical transfer factors of
Langlands and Shelstad. The a priori de�nition of those factors provides an explicit
geometric transfer theorem. The present paper introduces a parallel de�nition
for spectral transfer factors. The author uses various simple properties of these
factors and their relation to the geometric factors to prove an explicit version of
the tempered spectral transfer theorem. This prepares for an explicit inversion of
the transfer for several groups simultaneously and related results in the third paper.
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1. Introduction
Endoscopy is an example of Langlands�functoriality principle. It arises when

representations with same L-functions appear with di¤erent multiplicities in au-
tomorphic forms. For SL(2), Labesse and Langlands determined the multiplicity
of certain representations � = 
v�v in terms of the position of each �v amongst
representations with same local L-factor, i.e. amongst representations within its
L-packet [LL]. Their method is based on stabilization of the adelic trace formula
for SL(2). Langlands�proposed generalization of needed local analysis, in par-
ticular, transfer of orbital integrals and characters, is accessible for the tempered
spectrum of real groups through the Plancherel theory of Harish Chandra. The
Arthur conjectures carry the program to the nontempered spectrum.

We start then with a connected reductive algebraic group G de�ned over R.
Endoscopy has two sides: geometric and spectral. First, there are two standard
constructions of endoscopic data for G, one geometric and one spectral, each in-
troduced by Langlands. For the purposes of this introduction, we will assume an
arbitrary set of data has been �xed, and mention speci�cally only the attached
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2 D. Shelstad

endoscopic group H1. Modulo a central subgroup Z1(R), the Cartan subgroups
of H1(R) are Cartan subgroups of G(R); and the coroots form a subsystem of the
coroots for G:

On the geometric side, the basic notion is stable conjugacy. For the very
regular elements this is simply conjugacy under the complex points of the group.
We are concerned �rst with comparing very regular stable conjugacy classes in
H1(R) and G(R). Then geometric transfer amounts to matching certain precise
combinations of the integrals of a test function on G(R) along the conjugacy classes
in a stable class with a stable combination of the integrals for a test function on
H1(R): This matching will de�ne a correspondence on test functions (initially,
Harish Chandra�s Schwartz functions) for G(R) and H1(R):

As the example of G = SL(2) and H1 a compact torus quickly shows, there
are several ways to view the Cartan subgroups of H1(R) as Cartan subgroups
of G(R), and we shall want a transfer statement independent of these choices.
Introduction of the canonical transfer factors from [LS] allows us to formulate
such a statement, as in the �rst part of Theorem 5.1. A direct proof of geometric
transfer in this form was given in [S3]. A previous proof combined the older implicit
methods of [S1] with results from [LS] and [LS2].

In this paper we turn to the spectral side where, for tempered representations
at least, the basic notion is an L-packet. It has an attached stable tempered char-
acter. We examine transfer to G(R); dual to the geometric transfer, of a stable
tempered character on H1(R): Our discussion continues on from the introductory
discussion of Sections 15 and 16 of [S3]. This transfer yields a tempered virtual
character on G(R) [S1], an endoscopic character. The irreducible characters con-
tributing to an endoscopic character form the L-packet predicted by Langlands�
functoriality principle (applied to the map attached to the choice of endoscopic
data). It is the coe¢ cients that concern us, as these were given only implicitly in
[S1]. Arthur [A] has labeled them as spectral transfer factors.

Our main purpose is to give a simple explicit formula for the spectral trans-
fer factors in terms of the geometric transfer factors or, more precisely, to intro-
duce independent, but parallel, de�nitions of canonical spectral transfer factor and
compatibility factor (relative to the geometric factor), and then show directly that
these describe the tempered transfer correctly. The arguments for the transfer
follow closely those in [S1] in many places, but now we structure them explicitly
in parallel with the geometric side. In particular, we start by looking for canonical
de�nitions in a (strongly) G-regular setting.

We �rst prepare in Sections 2, 3 and 4 for the statement of the transfer
theorem in Section 5. We then return to an introductory discussion of spectral
transfer factors in Section 6, along the same lines as our discussion of the geometric
factors of [LS] in Section 8 of [S3]. We prepare in Section 7 for de�ning the terms
in the spectral factors. We de�ne the spectral factors term by term in Sections 8,
9 and 10 for the G-regular setting, and summarize our results in Section 11. We
see, in particular, that we can always arrange that the spectral factors are simply
signs. This happens, for example, when we use a Whittaker normalization in the
quasi-split case.

In Section 12 we turn to de�nition of the compatibility factors discussed in
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Section 4. We then devote Section 13 to the proof of the transfer theorem, Theorem
5.1, in the G-regular case. The calculation there, while elementary, is given step
by step, as it explains how our de�nitions untangle the various contributions to
the signs in [S1]. Certain signs now cancel naturally, thanks to the generalized
Weyl denominators introduced in Section 7c. In Section 14 we describe how to
extend the de�nition of the spectral factors to the general tempered setting, and
complete the proof of Theorem 5.1.

The argument in Section 13 for the G-regular case of the transfer theorem
rests on Harish Chandra�s characterization of discrete series characters, while for
the general case we show, with the aid of the character identities of Hecht and
Schmid, that coherent continuation of the identities from the G-regular case works
correctly for functoriality and so yields the desired transfer. We do not need the
full strength of the Knapp-Zuckerman classi�cation of the tempered spectrum at
this stage.

We have yet to show that we have assembled su¢ ciently many character
identities to retrieve each tempered irreducible character as a combination of en-
doscopic characters. We could quote Section 5 of [S1] directly. Instead we prefer
to work with our newly de�ned spectral factors, and will discuss very brie�y in
Section 15 the attendant inversion formula of [S2]. Once again the spectral factors
appear as coe¢ cients.

2. The setting of endoscopy
Let G be a connected reductive algebraic group de�ned over R; and G� be a

quasisplit inner form of G with R-splitting

splG� = (B�;T�; fX�g):

Let  : G! G� be an inner twist and u(�) be an element in the simply connected
covering G�sc of the derived group of G

� such that

 �( )�1 = Intu(�);

where � = f1; �g denotes the Galois group of C=R: Let G_ denote the complex
dual of G; with splitting

splG_ = (B; T ; fX�_g)

preserved by the algebraic dual �G_ of the Galois action. By the L-group LG we
mean G_ oWR; where the Weil group WR of C=R acts through WR ! �: The
transfer factors will be independent of the choice of splittings, although splG� is
involved directly in the construction of the term �I ; and splG_ in that of �II :

Suppose
(H;H; s; �)

is a set of endoscopic data for G as in [LS]. We choose a z-pair (H1; �1) following
[KS]. Thus H1 is a z-extension of H and �1 is an embedding of extensions

H ! LH1
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that extends the embedding H_ ! H_
1 dual to H1 ! H: Let �1 be the attached

quasicharacter on Z1(R); where

Z1 = Ker(H1 ! H):

We may assume �1 unitary. See [S3] for further discussion and notation.
The set �temp(G) of Langlands parameters for the L-packets of equivalence

classes of tempered irreducible admissible representations of G(R) is the set of
G_-conjugacy classes of continuous homomorphisms

'(w) = '0(w)� w

ofWR into LG = G_nWR for which '0(WR) is bounded and consists of semisimple
elements, and for which ' is relevant to G:We will discuss relevance in more detail
in Section 7b; it depends on the choice of inner twist  from G to G�: For the
quasisplit form G� all parameters are relevant, and in general we may identify
�temp(G) as a subset of �temp(G�); although we will often not identify ' with its
image '�in notation. We write ' for the class of ' when we need to distinguish
between the canonical ' and the various choices of representatives ' for it. This
is particularly relevant in Section 14. Also, '(�) will denote the parameter of the
L-packet of a tempered irreducible representation �:

Regarding the parameters

�temp(H1; �1)

for the L-packets of the representations �1of H1(R) which transform by the char-
acter �1 on Z1(R); we recall �rst the Langlands parameter for �1: Let c :WR ! H
be a splitting of H ! WR as speci�ed in the de�nition of endoscopic data. Then
the composition of c with �1 and the natural map

LH1 ! LZ1 provides us with
a homomorphism a : WR ! LZ1: The Z_1 -conjugacy class of a is the Langlands
parameter for �1: Now suppose '1 2 �temp(H1): Then composing any '1 in '1
with LH1 ! LZ1 to obtain

'1 :WR !L Z1

also yields a unique parameter for a character on Z1(R); and �temp(H1; �1) consists
of those '1 for which that character is �1:We will write �1 for �1 whenever there
is a notational con�ict.

To the pair of embeddings � : H ! LG; �1 : H ! LH1 we attach a map

�temp(H1; �1)! �temp(G
�)

as follows. Take any splitting c :WR ! H of H ! WR as above, and again use �1
to form a parameter a : WR !L Z1 for �1: Now pick '1 in '1 such that '1 = a:
This ensures that '1(WR) is contained in H, so that we can apply ��11 . Also, if
we take another '01 in '1 such that '

0
1 = a then because Z(H_

1 )
� ! (Z_1 )

� is
surjective (recall Z1 is induced) we may check that '01 is conjugate to '1 under
H_. We then conclude that

'1 ! ' = � � ��11 � '1
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gives a wellde�ned map �temp(H1; �1) ! �temp(G
�) on conjugacy classes of ho-

momorphisms.
Suppose now �1 is a tempered irreducible representation of H1(R) which

transforms by the character �1 on Z1(R) and � is a tempered irreducible repre-
sentation of G(R):
De�nition 2.1We call (�1; �) a related pair if '(�) is the image of '(�1) under
the map �temp(H1; �1)! �temp(G

�) associated to �; �1:
Given any such �1; there are always related pairs (�1; ��) for the quasisplit

form G�, and there are related pairs (�1; �) for G if and only if '(��) lies in
�temp(G):
De�nition 2.2 A related pair (�1; �) is G-regular if the parameter '(�1) is G-
regular in the sense that for some, and hence any, ' in its image '(�) we have
that

Cent('(C�); G_)

is abelian.
Since the group Cent('(C�); G_) is connected a separate notion of strong

G-regularity is unnecessary in this setting.

3. Spectral transfer factors
Continuing from [S3], we write the spectral transfer factors, so far de�ned

only implicitly, as �(�1; �): For all f 2 C(G(R)) there is f1 2 C(H1(R); �1) with
orbital integrals matched via the geometric transfer factors, and then

St-Tr �1(f1) =
X
�

�(�1; �)Tr �(f);

for all tempered irreducible representations �1 of H1(R) which transform by the
character �1 on Z1(R). The summation on the right is over equivalence classes of
tempered irreducible representations � of G(R): Here St-Tr �1 is our notation for
the stable character attached to (the L-packet of) �1. By de�nition, �(�1; �) = 0
unless (�1; �) is a related pair, so that the sum on the right is either zero or has
nonzero contributions exactly from those � in the single L-packet predicted by the
functoriality principle.

Now we start afresh and de�ne explicit candidates for �(�1; �): We �rst
restrict our attention to those tempered, irreducible �1 that are G-regular in the
sense we have de�ned at the end of Section 2. If (�1; �) and (�01; �

0) are G-regular
related pairs then each factor �(�1; �); �(�01; �

0) will be nonzero. We will give an
explicit formula for the quotient

�(�1; �)=�(�
0

1; �
0) = �(�1; �;�

0

1; �
0)

that, like the formula for the relative geometric factor on the very regular set, is
canonical.

Recall that any normalization for the geometric transfer factors can be recap-
tured as follows. On the geometric side, strongly G-regular related pairs are of the
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form (1; �); with 1 strongly G-regular in H1(R) and an image of (strongly reg-
ular) � in G(R): Fix a strongly G-regular related pair (1; �) and specify �(1; �)
as desired. Then for all 1 strongly G-regular in H1(R) and all strongly regular �
in G(R) we have

�(1; �) = �(1; �)�(1; �; 1; �);

where �(1; �; 1; �) is the canonical relative transfer factor of [LS].
We may proceed in a similar way on the spectral side. Thus �x a G-regular

tempered related pair (�1; �). Since f1 2 C(H1(R); �1) has been prescribed by
geometric transfer for f 2 C(G(R)), we will have to specify �(�1; �) in terms of
�(1; �) for the dual transfer. Then we set

�(�1; �) = �(�1; �)�(�1; �;�1; �);

for all �1 G-regular, using the canonical �(�1; �;�1; �) that we will describe
shortly.

In Section 14 we will see how to extend our formula for �(�1; �) in the
G-regular case to all tempered pairs (�1; �):

4. Compatible normalization
We now write the transfer factors as �geom and �spec respectively. They

are determined uniquely up to normalization, and for the transfer theorem the
normalizations must satisfy a compatibility condition. To describe this, we start
with the device of chosen related pairs. Suppose (�1; �) and (1; �) are chosen.
Then the quotient

�spec(�1; �)=�geom(1; �)

of compatible normalizing factors will have an interpretation as a canonical relative
form

�comp(�1; �; 1; �);

as we will describe in Section 12.
Continuing with chosen related pairs, we observe that we may then normalize

spectral factors �rst if we wish. For example, we may choose a G-regular tempered
related pair (�1; �) �rst, and require �(�1; �) = �1: We will show independently
that the canonical factor �(�1; �;�1; �) is a sign. Thus this normalization yields

�(�1; �) = �1

for all G-regular tempered related pairs (�1; �): Then for a compatible normaliza-
tion on the geometric side we take a strongly G-regular related pair (1; �) and
normalize the geometric transfer factor �(1; �) by setting

�(1; �) = �comp(�1; �; 1; �)
�1�(�1; �):

With this compatible normalization, the local form for the geometric transfer factor
also simpli�es. See Lemma 12.6.
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We may avoid explicit mention of chosen related pairs. Factors �geom and
�spec, with any normalization, are compatible if and only if

�spec(�1; �) = �comp(�1; �; 1; �)�geom(1; �)

for all G-regular pairs (�1; �) of tempered irreducible representations and all
strongly G-regular pairs (1; �) of R-rational points (Lemma 12.2). For exam-
ple, suppose that G is the quasisplit form and the inner twist  is the identity.
Then geometric factors �0(1; �) are introduced in [LS] that depend on an R-
splitting for G: Using the same splitting we will de�ne spectral factors �0(�1; �):
These normalizations are compatible (Lemma 12.3). We �nd however that

�0(�1; �) = �i

is possible (recall SL(2)), in which case this is true for all tempered G-regular pairs
(�1; �): The Whittaker normalization (Sections 5.2 and 5.3 of [KS]) remedies this.
The geometric factor ��(1; �) of [KS] depends instead on Whittaker data (B; �).
We will introduce a Whittaker normalization for the spectral factor the same way,
i.e. we multiply spectral �0 by the same epsilon factor. Then we obtain, just as
for SL(2; F ); that

��(�1; �) = �1
for all G-regular pairs (�1; �) of tempered irreducible representations (Lemma
11.4).

5. Transfer theorem
Tempered endoscopic transfer for the real reductive group G is now summa-

rized in the following:

Theorem 5.1 Let (H;H; s; �) be a set of endoscopic data for G; and (H1; �1) be
a z-pair for H with attached character �1 on the central subgroup Z1(R); where
Z1 = Ker(H1 ! H): Let �geom and �spec be transfer factors attached to these
endoscopic data and z-pair, with compatible normalization. Then for each f 2
C(G(R)) there exists f1 2 C(H1(R); �1) such that

SO1(f1; dt1; dh1) =
X
�;conj

�geom(1; �)O�(f; dt; dg)

for all strongly G-regular 1 in H1(R): Moreover, there is a dual transfer of stable
tempered characters given by

St-Tr �1(f1) =
X

�;temp

�spec(�1; �)Tr �(f)

for all tempered irreducible representations �1 of H1(R) which transform under
Z1(R) according to �1; and, conversely, if f 2 C(G(R)) and f1 2 C(H1(R); �1)
satisfy

St-Tr �1(f1) =
X

�;temp

�spec(�1; �)Tr �(f)
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for all tempered irreducible representations �1 of H1(R) which transform under
Z1(R) according to �1 then

SO1(f1; dt1; dh1) =
X
�;conj

�geom(1; �)O�(f; dt; dg)

for all strongly G-regular 1 in H1(R):

Here measures dh1; dg are arbitrary: the measures dt1; dt must be related by
transport ([S3]).
Outline of proof : See [S3] for a discussion and proof of the geometric transfer,
and the converse matching statement. What remains now is to describe the pro-
posed explicit spectral transfer factors �spec(�1; �) and to show they may be used
in place of the implicit values for which the spectral transfer has been proved ([S1],
Theorem 4.1.1). This will occupy the rest of the paper. First, we will introduce
the various ingredients and some of their properties. Only the term �II of Section
9 is not familiar from geometric transfer. Once we are done with the canonical
factors in the G-regular case, we complete the proof of transfer in this setting in
Section 13. Then we extend the factors to all tempered pairs (�1; �) and �nish
the proof in Section 14.

Notice that in the statement of the theorem we do not mention explicitly
the twisting data ( ; u) of Section 2. We will examine the role of this choice in
Section 4 of [S2]. This will then lead us to an extended version of Theorem 5.1 for
K-groups ([S2], Theorem 6.2) or, equivalently, a simultaneous version for several
triples (G; ; u):

6. Canonical spectral transfer factors: outline
Suppose that (�1; �) and (�01; �

0) are related pairs, with �1; �
0
1 both G-

regular. Let '1 = '1(�1); '
0
1 = '1(�

0
1); ' = '(�) and '0 = '(�0): The factor

�(�1; �;�
0

1; �
0) will be a product of three terms:

�(�1; �;�
0

1; �
0) = �I(�1; �;�

0

1; �
0)�II(�1; �;�

0

1; �
0)�III(�1; �;�

0

1; �
0):

We give a brief summary of the construction of each term.
First, �I(�1; �;�

0

1; �
0) is an exact analogue of the term �I of the geometric

factor in the sense that it is constructed in the same way from the same type of
data. The starting point is the splitting invariant of a torus from Section 2.3 of [LS]
(see Section 8 of [S3] for some comments). It, �I ; is a quotient �I('1)=�I('

0
1):

Each term in the quotient depends only on the L-packet of the representation
of the endoscopic group, rather than on the representations themselves. Each
term does depend on the choice of R-splitting for the quasisplit form G�; but the
quotient does not. On the other hand, each term in the quotient, like the quotient
itself, does depend on the choice of toral data and a-data.

Second, �II(�1; �;�
0

1; �
0) is again a quotient, which we denote

�II('1; ')=�II('
0
1; '

0);
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each term depending just on the L-packet of each representation. This spectral
�II parallels the term

�II+ = �II�III2�IV

of the geometric transfer factor. That term is a product of an �-shift character
(�III2) with a quotient of generalized Weyl denominators for G and H1 (�II
�IV ). Construction of the terms �II ;�III2 involves �-data, but the product is
independent of that choice. Similarly, construction of the spectral �II involves
generalized Weyl denominators and �-data, this time in the local formulas for
stable traces, and again the choice of �-data will be be seen not to matter. The
choice of toral data also does not matter, but the e¤ect of a change in a-data is
to provide a term cancelling that produced by the change in �I(�1; �;�

0

1; �
0): The

product
�I(�1; �;�

0

1)�II(�1; �;�
0

1; �
0)

thus depends only on toral data.
Finally, the term

�III(�1; �;�
0

1; �
0)

is the only genuinely relative term, and the only term depending on the represen-
tations �; �0 of G(R) themselves, rather than simply on the parameters. It is an
exact analogue of the term �III1 of the geometric factor. It depends, as it must
for a canonical product, only on toral data.

Regarding the dependence on parameters, �I is the same for '� and ': In the
case of �II ; however, we have chosen to include a global sign that would otherwise
be included in the compatibility factor. In particular, we will have that

�II('1; ') = (�1)q
�
G�qG�II('1; '

�);

where 2(qG��qG) is the (even) di¤erence in the dimension of the symmetric spaces
attached to G�sc; Gsc:

We will wait until Section 3 of [S2] to observe (in more precise terms) that the
e¤ect of the choice of z-pair, and in particular the choice of z-extension H1 ! H;
is negligible.

Now we consider brie�y the numerical values of each term. As with the
corresponding geometric terms �I and �III1 , we have

�I(�1; �;�
0

1; �
0)2 = �III(�1; �;�

0

1; �
0)2 = 1;

since each term is de�ned by a pairing in (abelian) Galois cohomology for C=R:
We will observe during the construction in Section 10 that while the terms

�II('1; ') and �II('
0

1; '
0) are each fourth roots of unity, their quotient must be

a sign. Thus
�II(�1; �;�

0

1; �
0)2 = 1;

and then we conclude that

�(�1; �;�
0

1; �
0)2 = 1:



10 D. Shelstad

7. Various tools

a. Toral data

To transport data among shared Cartan subgroups in G(R); G�(R) and
H1(R) we recall �rst the notion of toral data. We will also use these data to
transport data from the dual groups. First we can save some notation by assum-
ing that the embedding � of H in LG is inclusion on the subgroup H_; and then
taking the endoscopic datum s in T ; where

splG_ = (B; T ; fXg):

We also take
splH_ = (B \H; T ; fY g)

and extend it to
splH_

1
= (B1; T1; fY g);

although none of these choices a¤ects our �nal results. If B1 is a Borel subgroup
of H1 containing the maximal torus T1 de�ned over R; then attached to the pairs
(B1; T1) and (B1; T1) is an isomorphism T_1 ! T1 and similarly T �_ ! T is
attached to (B�; T �); for T �de�ned over R in G�:

Given T1 over R in H1 we can always �nd B1 and a pair (B�; T �) in G� with
the composition

�� = �B1;B� : T1 ! TH ! T �

de�ned over R and dual to T �_ ! T_1 constructed from maps

T �_ ! T ,! T1 ! T_1

as above. Such a map �� is what we mean by toral data for G�: The choice
of Borel subgroups determining this map does not a¤ect our constructions (see
Sections 2.3, 2.6 of [LS], in particular). Since we have �xed splG_ we will use B to
specify positivity for roots and coroots of T1 and T �: Then, for example, by based
�-data for T � we will mean the set of �-data f��g; where

��(z) = (z=z)
1=2

for � positive imaginary and �� is trivial if � is not imaginary. We can also use
�� to de�ne roots from H1; or outside H1 etc. If T is a maximal torus over R in
G and

 T = Int(x) �  : T ! T �

is de�ned over R then the composition � =  �1T ��� de�nes toral data for G: Then
we take  T (B

�) = B as Borel subgroup containing T; and say T originates in H1.
We recall brie�y parabolic descent (for endoscopic data) attached to a choice

of toral data. Consider a cuspidal Levi group

M =MT = Cent(ST ; G);
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where T originates in H1: Choose toral data

�B1;B : T1 ! TH ! T � ! T:

We may assume that ST� is contained in ST� ; and set  M = Int g �  acting on
T as the inverse of T � ! T . Then  M carries ST to ST� and M to

M� = Cent(ST� ; G
�)

which will serve as quasisplit inner form for M; with inner twist  M : For splitting
splM� we use

(M� \B�;T�; fX�g);

with the root vectors X� for simple roots in M�. Then we realize M_ as the
�G_-invariant Levi group in G_ with dual splitting s

plM_ = (M_ \ B; T ; fX�_g):

For LM we take M_ nWR; with the action of WR on M_ inherited from LG:
Given endoscopic data (H;H; s; �) and z-pair (H1; �1); we may now attach

descent data
(MH ;HM ; sM ; �M )

and pair (MH1 ; �1;M ) for M . First, we will assume s 2 T ; and then set sM = s:

We have also assumed that � is inclusion, so that H is a subgroup of LG: We set
HM = H\ LM and take �M to be inclusion also; HM is a split extension of WR by
M_\H_. ForMH we may take a dual Levi group in H and we choose speci�cally

MH = Cent(STH ;H);

where TH is the image of T1 under H1 ! H. Let M
1
be the inverse image of MH

under H1 ! H; so that
M

1
= Cent(ST1 ;H1)

and
1! Z1 !M

1
!MH ! 1

is exact. For embedding �1;M of HM in LM
1
we take the restriction of �1 to HM :

The attached character on Z1(R) is again �1: If T � T 0 then, replacing T 0 by
a G(R)-conjugate if necessary, we assume ST 0 contains ST and descend to MT 0

through MT when convenient. Finally, toral data for MT 0 or MT in this setting
serve also as toral data for G:

b. Character data (G-regular case)

We come then to the map �temp(H1; �1) ! �temp(G
�). Since we have an-

other temporary use for the notation �1 we will switch this one temporarily to
�1: Suppose �rst that G is cuspidal, i.e. G contains Cartan subgroups that are
compact modulo the center of G; that H1 is elliptic, i.e these Cartan subgroups
originate in H1; and that '1 2 �temp(H1;�1) is discrete, i.e. '1 factors through
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no proper parabolic subgroups of LH1. We will refer to this as the cuspidal-elliptic-
discrete case from now on. Since we are assuming G-regularity, the image '� of '1
in �temp(G�) is also discrete and relevant to G; so that ' is wellde�ned. Choose
toral data

T1 ! T � ! T;

where each torus is compact modulo center.
We observe from [L] how to attach to any discrete '1 the data needed for

character formulas for the representations in the attached L-packet. First, we use
the chosen splitting splH_

1
to �x an essentially unique representative for '1 as

follows. Let �1 be one half the sum of the positive roots of T1 in H_
1 relative to

the splitting. Then there is a representative

'1 = '1(�1; �1)

for '1 given by
'1(z � 1) = z�1z�T1 (�1)

and
'1(1� �) = e2�i�1n(�T1)� (1� �);

with n(�T1) the element of H
_
1 attached by splH_

1
as in [LS] to the Weyl group

element w(�T1); where �T1 acts as w(�T1)�H1
. Here

�1; �1 2 X�(T1)
 C:

Because '1 is discrete, �1 must be regular so that it is uniquely determined once
we observe that < �1; �

_
1 > is integral for all roots �

_
1 of H

_
1 (by the next displayed

formula) and require that �1 be dominant. On the other hand, �1 is determined
only modulo

X�(T1) + f� � �T1� : � 2 X�(T1)
 Cg

by the conjugacy class '1 of '1. The crucial property from [L] (see Lemma 3.2)
that we have for (�1; �1) is the following: if �1 is one half the sum of the positive
roots of T1 in H_

1 then the pair (�
0
1; �1); where

�01 = �1 � �1;

satis�es
1

2
(�01 � �T1�01) + (�1 + �T1�1) 2 X�(T1):

This provides us with a wellde�ned Langlands parameter 'T1(�1 � �1; �1) for the
Cartan subgroup T1(R) and hence a character

�(�1 � �1; �1)

on T1(R): Then for each w1 in the Weyl group 
(H_
1 ; T1) of T1 inH_

1 , the character

�(w�11 �1 � �1; �1)
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is also wellde�ned. Notice that the Weyl group acts trivially on �1 modulo equiv-
alence under

X�(T1) + f� � �T1� : � 2 X�(T1)
 Cg:
It is this collection

f�(w�11 �1 � �1; �1)g
of characters, along with the usual Harish Chandra denominator, that we use for
the character formulas on T1(R) of the representations in the L-packet attached
to '1.

Next, from the construction of geometric transfer factors, we recall that to �-
data for T1 and splH_

1
is attached an embedding �T1of

LT1 in LH1 ([LS], Section
2.6). This gives us then a map

�temp(T1)! �temp(H1):

Collecting de�nitions, we see that if we use the based �-data and denote the
attached embedding �baseT1 then

'1(�1; �1) = �baseT1 � 'T1(�1 � �1; �1):

Since we want the freedom to change �-data we now check the e¤ect on our
parameters. Of course, for given '1 the pair (�1; �1) is unchanged. On the other
hand, �1 will be replaced, as will the denominator in the character formulas (by
the denominator to be de�ned shortly in 7c). Suppose � is positive for splH_

1
and

the based �-datum
�base� (z) = (z=z)1=2

is replaced by
��(z) = (z=z)

1
2+n� ;

where n� is integral. Set
�� = �1 +

X
�>0

n��:

Then if �T1 is the embedding attached to the new �-data we see from the de�nitions
that

'1(�1; �1) = �T1 � 'T1(�1 � ��; �1):
In Section 9 we will observe that the e¤ects of a new choice of �-data all cancel in
our construction of �II : At that point we will return to the based �-data and use
the familiar parametrization for the rest of the paper.

Turning now to character formulas for the representations attached to '�

and '; we �rst examine the data from Langlands parameters. We have the two
embeddings

�1 : H !L H1; � : H !L G:

While it is true that often �1 is the identity map, and there is no harm in assuming
that � is inclusion, we have some useful data to gather. We may assume that the
image of the parameter '1(�1; �1) is contained in H and then map it to a well-
de�ned representative '�: It will not in general be the representative we attach
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to splG_ as in the last paragraph. Following Section 11 of [S3] we attach a pair
(��; ��) in

(X�(T1)
 C)2

(this pair is discussed at length in [S4] when �1 is the identity map). The pair
depends on the character �1 on Z1(R): Notice that because we consider only
parameters in �temp(H1;�1) we have that both

�� + �1; �
� + �1

lie in the subspace X�(T )
 C of X�(T1)
 C (see Remark 11.3 in [S3]). Then we
see that '� = '�(�; �); where � = �� + �1 and � = �� + �1: Also � is regular by
the G-regularity assumption on '1:

The characters on T �(R) needed for the local character formulas for the L-
packet of '�can be retrieved from � just as well as from the dominant form in the
orbit of �: These characters are of course just

�(w�1�� �; �);

for w in the full Weyl group. For ' we transport these characters to T (R) by the
chosen toral data. We list the irreducible representations in the L-packets by real
Weyl group cosets. Thus we denote by �� = ��(1) the representation involving
�(w�10 � � �; �) for w0 in the real Weyl group of T �(R); and more generally, by
��(w) the representation involving the characters

�(w�10 w�1�� �; �):

We do the same in G; thus de�ning �(w): Then we may de�ne

inv(�(1); �(w))

to be the element of H1(�; Tsc) represented by the cocycle

�(wsc)w
�1
sc ;

where the image of wsc 2 Gsc in G acts on T as w. When we pair this element
with the image in

�0 = �0((T
_
ad)

�)

of the transport to T_ of the endoscopic datum s via the given toral data we write
the result as

< inv(�(1); �(w)); s�(1) > :

On the geometric side, we write < inv(�; �w); s� > in the analogous setting.
Remark 7.1 If, in either pairing, w is replaced by w1w; where w1 is from H1 with
respect to the given toral data then the value of the pairing is unchanged. This
is an easy consequence of an observation of Langlands (see [S5], Propositions 2.1,
3.3). Note that here we use the fact that the Cartan subgroup T (R) is compact
modulo the center of G(R):
Remark 7.2 (i) In this same setting (cuspidal-elliptic-discrete) we de�ne w� in
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the Weyl group of T � by requiring that w�� be dominant. Notice �rst that detw�
is independent of the choice for splG_ :
Remark 7.2 (ii) Also, we may drop the requirement that �1 be dominant, i.e.
allow �1 to be arbitrary in its Weyl orbit, but now de�ne both w�(G) and w�(H1).
Then the original detw� coincides with

detw�(G)=detw�(H1)

since now we have
� = �� + w�11 �01 = w�11 (�� + �01);

where �01 is the H1-dominant form and w1 = w�(H1): Thus

w�(G)w
�1
1 (�� + �01)

is G-dominant, and so w� coincides with w�(G)w
�1
1 ; giving the claimed result.

Remark 7.2 (iii) It is also evident that we may rewrite detw� as the sign ofQ
�_>0; outside H_

< �;�_ >;

where the ordering on the roots is that of splG_ : For most of the calculations in
Section 13 we prefer to work with dominant �1 and detw�.

We consider now arbitrary G-regular '1 2 �temp(H1; �1): Following [L] we
choose a cuspidal Levi group M1 in H1 such that '1 factors discretely (i.e. min-
imally) through LM1. We have then a discrete parameter 'M1 for M1: We may
assume that M1 is endoscopic for a cuspidal Levi group M� in G� by descent of
endoscopic data, as recalled in Section 7a. Let '�M be the parameter for M� so
attached. Because '1 is G-regular, '

�M is discrete. On the other hand, we can
continue to G; de�ning Levi group M and discrete parameter 'M if and only if
'� is relevant to G (i.e ' is wellde�ned) or, equivalently, if and only if we can
extend given toral data T1 ! T � for G�; where T1 is compact modulo center in
M1, to toral data T1 ! T � ! T for G: Suppose that is the case and choose such
toral data for the elliptic cuspidal endoscopic pair (M1;M): Then we are back in
the cuspidal elliptic discrete setting, and so we attach to 'M1 a pair (�1; �1) with
�1 dominant for M1; and to '�M and 'M the pair (�; �); where

� = �� + �1; � = �� + �1:

The pair (M�;'�M ) is determined uniquely up to G�(R)-conjugacy by '1; and
(M;'M ) up to G(R)-conjugacy, in the obvious sense for discrete parameters. No-
tice that the set of characters �(w�1� � �; �); where w is in the subgroup of the
Weyl group of T � in G� consisting of all elements which commute with �; accounts
for G�(R)-conjugacy as well as M�(C)-conjugacy, and is uniquely determined by
'1 and choice of pair (M

�; T �); and similarly in G:

c. Generalized Weyl denominators

It will be helpful to introduce generalized Weyl denominators in a way that
works for any local �eld of characteristic zero. We did this in [S3] for the geometric
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side. Now we write �0right for the term de�ned in Section 7 of [S3], and introduce
a left version for local character formulas. Motivation is provided by Lemma 7.3
below. Thus, given a maximal torus T over R in a connected reductive group G
over R and a-data fa�g, �-data f��g for T; we de�ne

�0left() = �
0
left(; fa�g; f��g)

to be the product��det(I �Ad(�1))g=t��1=2Y
O
��(�a�(1� �()

�1
)):

The choice of root � within a Galois orbit O of roots of T in G does not matter,
and the product is over all Galois orbits of roots. If we use based �-data (for a
given ordering on the roots) then �0left(; fa�g; f��g) is a multiple of the usual
Harish Chandra denominator

�0() =
��det(I �Ad(�1))g=m��1=2 Y

�>0; imag

(1� �()
�1
);

namely,

�0left(; fa�g; f��g) = (
Y

�>0; imag

(
�a�
ja�j

)) �0():

In general, our de�nition for

�0right(; fa�g; f��g)

is ��det(I �Ad(�1))g=m��1=2Y
O
��((�()� 1)=a�):

In preparation for calculations with the Weyl integration formula we set

JG=T () =
��det(I �Ad(�1))g=t�� = ��det(I �Ad())g=t�� ;

and observe the following:
Lemma 7.3

�0left(; fa�g; f��g)�0right(; fa�g; f��g) = JG=T ()

Proof: We have to showY
O
��(�a�(1� �()

�1
))
Y
O
��((�()� 1)=a�) = 1:

If O is symmetric, then

��(�a�(1� �()
�1
))��((�()� 1)=a�)

= ��((�()
�1
� 1)(�()� 1)) = 1
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since �()
�1�1) and (�()�1) are complex conjugates and �� is trivial on norms.

If O is asymmetric then the two orbits �O contribute

��((�()
�1
� 1)(�()� 1))���((�()� 1)(�()�1 � 1)):

Since
��� = ��1�

this equals 1 also.

8. Spectral transfer factor: �rst term
Throughout Sections 8 - 11, suppose that (�1; �) and (�01; �

0) are G-regular
related pairs of tempered irreducible representations. Write '1 = '1(�1); ' =
'(�) and '01 = '1(�

0
1); '

0 = '(�0) for the attached Langlands parameters, and
'� and '0� for the corresponding parameters for the quasisplit form G�. We
choose appropriate toral data, i.e. data as in Section 7a, and write T1; T �; T; etc.,
T 01; T

0�; T 0; etc. for the Cartan subgroups.
As mentioned already, we de�ne

�I(�1; �;�
0

1; �
0) = �I('1)=�I('

0

1);

where �I('1) is the term < �(T �sc); sT� > introduced in Section 3.2 of [LS] for
geometric factors. Here �(T �sc) is the splitting invariant for T

�
sc; an element of

H1(�; T �sc); sT� is the element of �0((T
_
ad)

�) obtained by transport and projection
of the endoscopic datum s, and <;> denotes the Tate-Nakayama pairing. We also
write �I(�1; �) in place of �I('1) when convenient.

To examine the dependence of �I('1) on splG� ; toral data and a-data we
will refer directly to Section 3.2 of [LS]. First, notice that the calculations are
done in the quasi-split form, there denoted G in place of our present G�:

The splitting splG� may be replaced by its conjugate under g 2 G�sc(C);
where g�(g)�1 lies in the center Zsc(C): Then g de�nes an element gT� with
which we may pair sT� : Lemma 3.2.A shows that �I('1) is multiplied by < gT� ;
sT� > and then that this factor is independent of T �; i.e. �I('01) is multiplied by
the same number, so that the quotient is independent of the choice of splG� :

The e¤ect of a change in toral data, with a related change in a-data, is given
in Lemma 3.2.B. We will return to this explicitly in our discussion of �III :

We come then to the choice of a-data. Suppose fa�g is replaced by fa
0

�g:
Then b� = a

0

�=a� lies in R�; and Lemma 3.2.C shows that �I('1) is replaced by

�I('1)
Y
O
��(b�) = �I('1)

Y
O
sign(b�):

Here the product is over symmetric Galois orbits, i.e. pairs �� of imaginary roots,
of G� (or G) outside H1. The choice of representative � for O does not matter
since b�� = b�: We could also include the asymmetric orbits in the product since
each such pair �O contributes

��(b�)���(b��) = 1:
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9. Spectral transfer factor: second term
Here we de�ne

�II('1; ') = �II(�1; �)

and then set
�II(�1; �;�

0

1; �
0) = �II(�1; �)=�II(�

0
1; �

0):

The term �II('1; ') comes from normalizing stable tempered distributions on G
�

and H1: We attach toral data and start with based �-data. The a-data can be
arbitrary.

We now write �II('1; ') as �II('1;') until we are done with choosing
representatives. We start with the cuspidal-elliptic-discrete case. Then T1 is com-
pact modulo the center of H1 and T � is compact modulo the center of G� and
the G-regularity of '1 requires that '

�; ' are also discrete parameters. Suppose
'1(�1; �1) 2 '1. Recall that (�1; �1) are the data for a character �(�1 � �1; �1)
on T1(R) and regular �1 is assumed dominant for convenience. Then the toral
data and based �-data also attach to '� the data (�; �); where � = �1 + �� and
� = �1 + ��: The form � is regular but not necessarily dominant for the chosen
toral data, and the characters �(w�1�� �; �); for w in the complex Weyl group of
T �; are well-de�ned.

The stable tempered character attached to discrete '� is a multiple of Harish
Chandra�s stable distribution �� which may be described in terms of the regular
data (�; �): On the regular set of T �(R) the formula for �� may be written as

��(�) =

P
w (detw) �(w�1� � �; �)(�)

detw�
Q
�>0(1 � �(�)�1)

;

where w� is the Weyl element we apply to � to obtain a dominant form, and
of course the summation is over the full (complex) Weyl group. We replace the
denominator by the generalized Weyl denominator from Section 7c to obtain the
multiple P

w (detw) �(w�1� � �; �)(�)

�0left(�; fa�g; f��g)

of ��(�): Since we are using the based �-data, all we have done is to divide �� by
a factor (detw�)(�i)n; where n is the number of positive roots. Recall Remark
7.2 regarding detw�: Note that because the a-data are arbitrary we have to allow

a�= ja�j = �i;

for each positive root �:
Now we consider arbitrary �-data in the de�nition of ��(; fa�g; f��g). Re-

call that �-data is involved in the needed characters on T �(R), and so a change
a¤ects both numerator and denominator. We will see, however, that the e¤ects
cancel. Recall the linear form �� attached to f��g in Section 7b: � � �� is an
integral linear combination of the roots of T �: Then, for each w in the complex
Weyl group of T �;

�(w�1�� � ��; �)
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is a wellde�ned character on T �(R); and we may de�ne

��(�; fa�g; f��g) =
P

w (detw) �(w�1� � ��; �)(�)

�0left(�; fa�g; f��g)
:

Lemma 9.1 If both f��g and f�0�g are �-data for T � then

��(�; fa�g; f��g) = ��(�; fa�g; f�0�g)

for all regular � in T �(R) and a-data fa�g for T �:
Proof: We may assume f�0�g are the based data, so that ��0 = �: Then because

�� + �� = �+ �

the quotient of the two numerators is (�� ��)(�): Let � > 0. Then

(��=�
0
�)(z) = (z=z)

n� ;

where n� is an integer. Recall that

�� �� = �
X
�

n��:

Thus the contribution to (�� ��)(�) from � is (�(�))�n� : On the other hand, the
quotient of the denominators is Y

�

(z�=z�)
n� ;

where
z� = �a�(1� �(�)

�1
)

so that
z�=z� = �(1� �(�)

�1
)=(1� �(�)) = �(�)�1;

and we are done. Notice the role of the a-datum: a�=a� = �1 provides a crucial
sign.
Lemma 9.2 If both fa�g and fa0� = a�b�g are a-data for T � then

��(�; fa0�g; f��g) =
Y
O
��(b�)

�1 ��(�; fa�g; f��g)

for all regular � in T �(R) and �-data f��g for T �:
Proof: This is immediate since only the Weyl denominator depends on a-data.

In conclusion, whatever the choice of �-data, the formula for the distribution
��(�; fa�g; f��g) determines the same multiple of the Harish Chandra distribution
��: We now write ��(�; fa�g) for this distribution and its local formula.

Let �'� denote the stable character attached to '
�. Then we de�ne the

number �('�; fa�g) by

�'� = �('�; fa�g) ��(�; fa�g):
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As our notation suggests, a change in toral data does not change �('�; fa�g) (see
the next proof). Next we do the same in H1 for '1: Given a-data for T

� we will,
as always, use the a-data for T1 obtained by transport under the toral data, using
the same notation. Then we obtain ��1(�; fa�g) and �('1; fa�g) such that

�'1 = �('1; fa�g)��1(�; fa�g):

We set
�II('1;'

�) = �('1; fa�g=�('�; fa�g):

We recall (from [S6]) that

�' = (�1)qG�qG��('�; fa�g)��(�; fa�g);

where ��(�; fa�g) is identi�ed with its transport to G(R) by the chosen toral
data. Thus we set

�('; fa�g) = (�1)qG�qG��('�; fa�g)

to obtain
�' = �('; fa�g)��(�; fa�g):

Observe that Lemmas 9.1 and 9.2 remain true when G�; T � are replaced by
G;T using our toral data. We set

�II('1;') = �('1; fa�g=�('; fa�g):

Lemma 9.3 (i) �II('1;') is independent of the choice of toral data and split-
ting for G_; (ii) if a-data fa�g is replaced by fa0� = a�b�g then �II('1;') is
multiplied by Y

O
��(b�)

�1 =
Y
O
sign(b�);

where the product is over all Galois orbits of roots of T �outside H1; and (iii) we
have

�II('1;') = (�1)qG��qG�II('1;'�):

Proof: If we change the splitting but not the toral data then there is no change
in the terms in �II('1;') since any two �-splittings of G

_ are conjugate by an
element �xed by � ([L], Lemma 2.6). Also, all terms in ��(; fa�g) are unchanged
when toral data are modi�ed by a conjugation de�ned over R, and �'() is un-
changed since �' is, by construction, stable. The same is true in H1; and so (i)
follows. Our requirement on a-data for H1 ensures (ii), and (iii) is immediate.
Remark 9.4 To write ��(�; fa�g) as a sum of distributions attached to the
irreducible representations contributing to �� we set

�w(�; fa�g) =
P

w0
(detww0)�(w

�1
0 w�1� � �; �)(�)

�0left(�; fa�g; f��g)
;
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where the summation is over real Weyl group elements w0 while w is a �xed
element in the full Weyl group. Then �('�; fa�g) plays the same role as in the
stable case, i.e. if � = �(w) in the notation of Section 7b then

�� = �('; fa�g)�w(�; fa�g):

This is used in the main calculation in Section 13.
For a concrete formula we recall that

'(�1) = '1(�1; �1) and '(�) = '(�; �);

where
� = �� + �1; � = �� + �1:

We will no longer require �1 dominant.
Lemma 9.5

�II(�1; �) = (�1)qH1�qG
Q

�_>0; outside H_

� ja�j sign < �; �_ >

a�

Proof: We may as well compute with based �-data. Then we see that

�('; fa�g) = (�1)qG detw�(G)
Q

�_>0

(�a�= ja�j);

in the notation of Remark 7.2, and so the lemma follows from (ii) and (iii) of
Remark 7.2.

We now consider the general G-regular case. We factor '1 minimally through
the L-group LM1 of a standard cuspidal Levi groupM1 in H1; obtaining a discrete
parameter 'M1 : Attaching toral data as in Section 7a, we then obtain a standard
cuspidal Levigroup M� in G� and M in G such that '�;' factor through LM:
Because '1 is G-regular, we again obtain discrete parameters '

�M ;'M . We con-
sider the related pair ('M1 ;'

M ) for the endoscopic group M1 for M . Both terms
�('M ; fa�g) and �('M1 ; fa�g) are well-de�ned, and we set

�II('1) = �
M
II ('

M
1 ) = �('M1 ; fa�g)=�('M ; fa�g):

This is independent of the choice of factoring, and the three assertions of Lemma
9.3 remain true. As noted at the end of Section 8, the asymmetric orbits of roots,
i.e. those orbits outside M; contribute trivially to the product in (ii). For (iii) we
recall that

(�1)qM��qM = (�1)qG��qG

[S6].
Notice that because we make de�nitions inM we ignore a-data for the asym-

metric orbits. We could just as well make our de�nition in terms of an induced
stable character on G(R) that included all a-data and �-data. To show that the
choice of �-data does not matter, i.e. that the extra terms in the Weyl denom-
inator cancel with the change in the character formula, we observe that Lemma
3.5.A of [LS] measures the change in the geometric factor �III2(take &� = �� for
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asymmetric orbits and &� = 1 for symmetric orbits) which changes the numerator
in the character formula. This provides the cancellation with the extra terms.
Then Lemma 9.3 again applies and yields the same result as we have now since
asymmetric orbits contribute trivially to the product in part (ii) of the lemma.
Remark 9.6 The formula of Lemma 9.5 remains true provided we adjust the
q-sign and the product is taken over positive imaginary roots outside H1.

This completes the de�nition of �II(�1; �;�
0

1; �
0) in the general G-regular

case. We conclude now:
Lemma 9.7 The product

�I(�1; �;�
0

1; �
0)�II(�1; �;�

0

1; �
0)

is independent of the choice of a-data.
Recall that �I depends also on the choice of toral data while �II does not.

Finally, we have that �II(�1; �;�
0

1; �
0) is simply a sign:

Lemma 9.8
�II(�1; �;�

0

1; �
0)2 = 1:

Proof: We use based a-data (and �-data) to compute �II('1;') as in Remark
9.4. All we have do now is to observe that as we apply a Cayley transform with
respect to a root � from H1 we change the number of positive imaginary roots
among the roots outside H1 by an even number: if �� are imaginary roots outside
H1 so also are �w�(�): So imaginary roots outside H1 can change only to complex
pairs up to sign. Then as we change '1 we change �II('1;') by at most a sign,
i.e.

�II('1;')=�II('
0
1;'

0)

is a sign at each step in a sequence of Cayley transforms, and the lemma is proved.

10. Spectral transfer factor: third term
Again we start with just the cuspidal-elliptic-discrete setting although the

general G-regular case takes an analogous form. We have chosen two sets of toral
data, one for (�1; �); and one for (�

0

1; �
0). We start with representative '1 for '1

and use the toral data to produce T �-data (�; �) for representation �� as in Section
7b. Also � determines T -data (��; ��); with �� regular, uniquely up real Weyl
group conjugacy. Similarly, �0 determines T �0-data (�0; �0) and T 0-data (��0 ; ��0):

We proceed now as in Section 3.4 of [LS] for the geometric term �III1 : Recall
that  : G ! G� is our chosen inner twist and that we have �xed u(�) in G�sc so
that  �( )�1 = Int u(�). We may �nd g; g0 2 G�sc such that Int g � transports
T to T � over R and (��; ��) to (�; �); while Int g0 �  transports T 0 to T �0 over
R and (��0 ; ��0) to (�0; �

0): Then

v(�) = gu(�)�(g)�1

lies in T �sc; and
v0(�) = g0u(�)�(g0)�1
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lies in T �0sc and as cochains of � they are uniquely determined up to coboundaries
because of the G-regularity of '1 and '

0
1. Moreover, the coboundary of each

coincides with the coboundary of u(�); all three taking values in the center Z�sc of
G�sc:We de�ne the torus U = U(T �; T �0) as the quotient of T �sc�T �0sc by f(z�1; z);
z 2 Z�scg: Then

(v(�)�1; v0(�))

is a 1-cocycle of � in U: We write

inv(
�1; �

�
0
1; �

0 )

for its class in H1(�; U): As described in [LS], the endoscopic datum s and the
toral data determine an element sU in the component group �0((U_)�) of the
Galois invariants in the dual torus U_: Now we use the Tate-Nakayama pairing to
de�ne

�III(�1; �;�
0

1; �
0) = < inv(

�1; �

�
0
1; �

0 ); sU > :

Notice that if G is quasisplit and  is the identity, so that u(�) = 1; we may
instead de�ne inv(�1; �) in H1(�; Tsc) and pair it with sT . Then

�III(�1; �;�
0

1; �
0) = < inv(�1; �); sT >

�1< inv(�01; �
0); sT 0 >;

which coincides with the previous de�nition.
A change in toral data replaces g by hg; where h�(h)�1 lies in T �sc and so

de�nes an element hT� of H1(�; T �sc); and we similarly obtain an element hT�0 of
H1(�; T �0sc) from the second set of toral data. Then, as in Lemma 3.4.A of [LS],
�III(�1; �;�

0

1; �
0) is multiplied by

< hT� ; sT� > < hT�0 ; sT�0 >
�1 :

On the other hand, Lemma 3.2.B shows that this cancels with the change in
�I(�1; �;�

0

1; �
0).

Now we drop the assumption that G is cuspidal and H is elliptic. Thus
the Cartan subgroups T �; T �0are now arbitrary. We again de�ne inv( �1;�

�
0
1;�

0 ) in

H1(�; U); where U = U(T �; T �0) as above. Because '1 is G-regular, � is an
irreducible unitary principal series representation, and so the internal structure
of the inducing L-packet is all we need. More precisely,we factor '1 minimally
through the L-group LM1 of a standard cuspidal Levi group M1 in H1; obtaining
a discrete parameter 'M1 : For the given toral data, we obtain a standard cuspidal
Levi groupM� in G� such that '� factors through LM�: Because '1 is G-regular,
we obtain discrete parameters '�M for M�and 'M for M: Although we need not
insist that ('M1 ;'

�M ) is a related pair for the endoscopic group MH1
of M�; we

may attach data (�; �) to '�M as in the �rst paragraph, and attach (��; ��) to
the inducing representation �M for � with parameter 'M as in Section 7b, and
we again may again de�ne the cochain v(�): Similarly we have v0(�); and again
inv( �1;�

�
0
1;�

0 ) is a wellde�ned element. We then de�ne �III(�1; �;�
0

1; �
0) as in the

cuspidal elliptic case, with the same remark for the quasisplit case. The lemmas
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from [LS] used in the discrete case again apply, and so we conclude:
Lemma 10.1 The product

�I(�1; �;�
0

1; �
0)�III(�1; �;�

0

1; �
0)

is independent of the choice of toral data.
We will also remark the analogue of the transitivity property of geometric

transfer factors ([LS], Lemma 4.1.A). It follows from the next lemma which can
be argued as in the geometric case.
Lemma 10.2

�III(�1; �;�
0

1; �
0)�III(�

0
1; �

0;�"1; �
") = �III(�1; �;�

"
1; �

"):

11. Canonical spectral transfer factor
We now gather up the results of last three sections to conclude that the

relative spectral transfer factor is canonical.

Theorem 11.1 Suppose that (�1; �) and (�01; �
0) are G-regular related pairs of

tempered irreducible representations. Then

�(�1; �;�
0

1; �
0) = �I(�1; �;�

0

1; �
0)�II(�1; �;�

0

1; �
0)�III(�1; �;�

0

1; �
0)

is independent of choices made during the construction of �I ;�II ;�III :Moreover,

�(�1; �;�
0

1; �
0)2 = 1;

and if (�"1; �
") is also a G-regular related pair then

�(�1; �;�
0

1; �
0)�(�01; �

0;�"1; �
") = �(�1; �;�

"
1; �

"):

In general, we will normalize the spectral transfer factor by choice of re-
lated pair. Thus we �x some G-regular related pair (�1; �) and choose �(�1; �)
arbitrarily. Then

�(�1; �) = �(�1; �)�(�1; �;�1; �):

In the case G is quasisplit and  is the identity there are two normalizations that
we may write without explicit mention of a chosen related pair. They both exploit
the fact that �III is a quotient in this case. Thus, in the notation of Sections 8 -
10, set

�0(�1; �) = �I(�1; �)�II(�1; �) < inv(�1; �); sT >
�1 :

= �II(�1; �) < �(Tsc)inv(�1; �)
�1; sT > :

We may rewrite this as

�0(�1; �) = �I+(�1; �)�II(�1; �);

where
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�I+(�1; �) = < �(Tsc)inv(�1; �)
�1; sT > :

Lemma 11.2 For given (�1; �); the product �0(�1; �) depends only on the choice
of an R-splitting of G (through �I+(�1; �)), while �I+(�1; �) and �II(�1; �) each
depend on the choice of a-data as well but not on the choice of toral data.
Proof: Here is what a¤ects the de�nition of each term in �0(�1; �): For

�I(�1; �) = < �(Tsc); sT >:

an R-splitting, toral data, a-data. For �II(�1; �): a-data. For < inv(�1; �); sT >
: toral data. We have seen that the e¤ects of changing toral data or a-data cancel
appropriately. Thus the lemma is proved.

The e¤ect of a change in R-splitting on �I(�1; �); and hence on �I+(�1; �);
was noted in Section 8.
Lemma 11.3 (i) �0(�1; �) is a spectral transfer factor. (ii) �0(�1; �)4 = 1:
Proof: Choose any G-regular tempered related pair (�1; �) and set

�(�1; �) = �0(�1; �):

Since
�0(�1; �) = �0(�1; �)�(�1; �;�1; �)

by the factoring of �(�1; �;�1; �) in Section 10, we are done with (i). For (ii),
both �0(�1; �) and < inv(�1; �); sT > are signs. We observed in Section 9 that a
simple calculation shows that �II(�1; �)4 = 1; and so (ii) is proved.

Since
�0(�1; �)=�0(�1; �) = �(�1; �;�1; �) = �1

we may multiply �0(�1; �) by a constant to obtain a spectral transfer factor that
takes just the values �1.

We introduce some temporary notation. Consider Whittaker data (B; �) for
G: B is a Borel subgroup of G de�ned over R and � is a generic character on N(R);
where N is the unipotent radical of B. In Section 5.3 of [KS] the geometric transfer
factor with Whittaker normalization ��(1; �) was introduced in a general twisted
setting. Although de�ned as a multiple of �0(1; �); it was shown to depend only
on the choice of Whittaker data (B; �).

We follow the same procedure now to de�ne a Whittaker normalization for
the spectral factor. Given Whittaker data (B; �) we choose an R-splitting with
B as its Borel subgroup and an additive character  on R (temporary notation
again) such that � is the generic character on N(R) attached to  by the splitting
in the usual manner. We use the splitting to specify the spectral transfer factor
�0(�1; �): Now choose toral data for a maximally split torus T1 in H1, and set
TH = T1=Z1: Then

��(�1; �) = "L(V;  )�0(�1; �);

where the subscript L indicates the Langlands normalization and V is a virtual
representation VG � VH of the Galois group �: First, the space VH is X�(TH)
C
which we identify with VG = X�(T )
C using the toral data. The action of � 2 �
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on VH is by �H = �TH while its action on VG is by �G which is not the same as
�T = �TH unless the maximally split tori in H = H1=Z1 are maximally split in G:
The choice of toral data does not matter as a change does not change the equiva-
lence class of the representations, and now the argument that ��(�1; �) depends
only on the Whittaker data is the same as that for the geometric case (pp. 65, 66
of [KS]).
Lemma 11.4 For all G-regular related pairs of tempered irreducible representa-
tions (�1; �) we have

��(�1; �)
2 = 1:

Proof : We will show that for every G-regular parameter '1 in �temp(H1; �1), we
have

�II('1; ')
2 = "(V;  )2:

Thus we have to show that when we normalize Harish Chandra�s distribution ��

for the cuspidal Levi groups in H1 and G; the results on corresponding groups in
H1 and G di¤er by a sign up to this �xed "-factor. By Lemma 9.8 we just have
to show this for a single parameter '1: We choose G-regular '1 factoring through
LT1; i.e. associated to a minimal unitary principal series representation of H1(R);
and apply Lemma 9.5 toMT = Cent(ST ; G): Because T1 is maximally split in H1;
all imaginary roots of T in G are outside H1: Thus we conclude that

�II('1)
2 = (�1)n;

where n is the number of positive imaginary roots of T in G:
To compute "(V;  )2 we note as in [KS] that it is (detV )(�1); where detV =

det[VG � VH ] is regarded as a character on R�: Now we observe that because the
imaginary roots of T all lie outside H1 (if they exist), the sum of any two of their
coroots cannot be a coroot. Thus they must form a system of type (A1)n: Consider
the positive roots among them. None of these roots can be (totally) compact since
G is quasisplit, and so to pass from T to a maximally split torus in G we must
apply n Cayley transforms with respect to these roots. The rest is elementary.
Notice that the space VG therefore has subspace V1 with the following properties:
V1 has dimension n; V1 is invariant under both �H and �G; �H acts on V1as �I
while �G acts as I; and �H and �G have the same action on VG=V1: We conclude
then that det[VG � VH ] = (�1)n and so

"(V;  )2 = (�1)n = �II('1; ')2;

as claimed. We could also argue as at the end of Section 5.2 of [KS]. The lemma
is thus proved.

12. Canonical compatibility factor
Now we take up the plan outlined in Section 4. Given G-regular pair (�1; �) of

tempered irreducible representations and strongly G-regular pair (1; �) of R-
rational points, we de�ne a compatibility factor

�comp(�1; �; 1; �)
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as the product of three terms:

�I(�1; �)=�I(1; �)

�II(�1; �)=�II+(1; �)

�III(�1; �; 1; �):

Only the last term has yet to be de�ned. We return to the de�nition of the relative
terms

�III(�1; �;�
0
1; �

0)

and
�III(1; �; 

0
1; �

0):

Notice that once we have chosen toral data they are de�ned in the same way with
a cocycle

(v(�)�1; v0(�))

of � in U = U(T; T 0): Now we take v(�) to be the cochain attached to (�1; �) and
v0(�) to be the cochain attached to (1; �); and so de�ne

inv(
�1; �

1; �
)

in H1(�; U): Then

�III(�1; �; 1; �) = < inv(
�1; �

1; �
); sU > :

The �rst two quotients are so written to exploit the fact that numerator and
denominator behave the same way under change of data used in the de�nitions:
R-splitting of G�, toral data and a-data. Thus we conclude:
Lemma 12.1 (i) the compatibility factor

�comp(�1; �; 1; �)

is independent of all choices, (ii) there is right transitivity with geometric factors:

�comp(�1; �; 
0
1; �

0) = �comp(�1; �; 1; �)�geom(1; �; 
0
1; �

0);

(iii) there is left transitivity with spectral factors

�spec(�1; �;�
0
1; �

0)�comp(�
0
1; �

0; 1; �) = �comp(�1; �; 1; �);

and (iv) if G is quasisplit and the inner twist  is the identity then

�comp(�1; �; 1; �) = �0(�1; �)=�0(1; �):

Proof: For (i): compare de�nitions. For (ii), (iii) the crucial fact is the transitivity
of the relative term, which is a rewording of Lemma 4.1.A of [S3]. Finally, (iv) is
clear from the same statement for �geom and �spec.
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Now we make the de�nition indicated in Section 4. Suppose that �geom and
�spec are normalized by choice of related pairs (1; �) and (�1; �): Then �geom
and �spec have compatible normalization if

�spec(�1; �) = �comp(�1; �; 1; �)�geom(1; �):

Lemma 12.2 Suppose that �geom and �spec are any pair of geometric and spectral
transfer factors. Then �geom and �spec are normalized compatibly if and only
if �spec(�1; �) = �comp(�1; �; 1; �)�geom(1; �) for all strongly G-regular pairs
(1; �) of R-rational points and G-regular pairs (�1; �) of tempered irreducible
representations.
Proof: By (ii) and (iii) of Lemma 12.1 this statement is true for one choice of
(1; �) and (�1; �) if and only if it is true for all choices, and the lemma follows.
Lemma 12.3 (i) If G is quasisplit and the inner twist  is the identity then
�0(�1; �) and �0(1; �) have compatible normalization. (ii) If G is quasisplit
and the inner twist  is the identity then the factors ��(�1; �) and ��(1; �)
with Whittaker normalization are compatible.
Proof: This is clear from (iv) in Lemma 12.1 and the observation that multiplying
both factors by the same constant preserves compatibility.

We next check geometric-spectral compatibility against compatibility for de-
scent to a cuspidal Levi group. This compatibility was recalled in Section 14 of
[S3] for geometric factors, and so we return to that setting. Thus we have toral
data � = �B1;B : T1 ! T de�ned over R, and M1 = Cent(ST1 ;H1) is endoscopic
for M = Cent(ST ; G); P is a parabolic subgroup of G de�ned over R and con-
taining M as Levi subgroup, and N is its unipotent radical. Similarly, we de�ne
P1 and N1 in H1: Working within the endoscopic pair M1;M we choose a related
pair (M1 ; �

M
) of elements such that M1 is strongly G-regular, rather than just

strongly M -regular. We have called the normalizations of geometric factors �M
and � compatible if �M (M1 ; �

M
) is chosen so that

�M (
M
1 ; �

M
) =

���det(Ad(�M )� I)g=m����1=2�(M1 ; �M ):
Then we get the same formula for all related pairs (1; �) in M with 1 strongly
G-regular; this rests on the property of the relative geometric transfer factor that
we check term by term in Lemma 14.1 of [S3]. The same simple step will work for
the spectral factors we have de�ned. Thus to normalize a spectral factor for M
we choose a related pair (�M1 ; �

M ) with �M1 now G-regular. Then

�1 = I(�M1 ) = Ind(�M1
1 
 IN1(R);P1(R);H1(R))

is tempered irreducible, with correct character on Z1(R): Similarly, let � = I(�M ):
We call spectral �M compatible with given spectral � for G if �M (�M1 ; �

M )
coincides with the wellde�ned number

�(I(�M1 ); I(�
M )):

Lemma 12.4 If spectral �M is compatible with spectral � then

�M (�
M
1 ; �

M ) = �(I(�M1 ); I(�
M ))
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for all related pairs (�M1 ; �
M ) in M for which �M1 is G-regular.

Proof: We have to show the the relative spectral factor

�M (�
M
1 ; �

M ;�M1 ; �
M )

for M coincides with the relative spectral factor

�(I(�M1 ); I(�
M ); I(�M1 ); I(�

M ))

for G when �M1 ; �
M
1 are G-regular. We write each as a product

�I�II�III :

To calculate those terms for G we use, as we may, toral data inside M , and a-data
that is trivial for roots outside M: The remarks in the proof of Lemma 14.1 of
[S3] apply to �I and �III : For �II ; we return to its de�nition and observe by
inducing in stages that the required property is built into the de�nition.
Lemma 12.5 In the same setting, suppose that �geom and �spec are normalized
compatibly and that �M;geom; �M;spec are compatible with �geom; �spec respec-
tively. Then �M;geom and �M;spec are normalized compatibly.
Proof: We just have to show that �comp may be computed either inside M or
in G with induced representations for su¢ ciently regular parameters. This is now
clear from our arguments above.

Finally, we may now prove the following:
Lemma 12.6 Suppose that �geom and �spec are normalized compatibly and that

�spec(�1; �) = �1

for some, and hence every, G-regular related pair (�1; �): Then if we remove the
term �IV from �geom we obtain

�geom(1; �) = �"e�
�(X)

for all strongly G-regular related pairs (1; �) with 1 = expX; where X is su¢ -
ciently close to the origin in the Lie algebra of H1(R) and " is a constant fourth
root of unity.
Proof: We work with the device of chosen related pairs. Since we have that

�spec(�1; �) = �1

we must have that
�(1; �) = �comp(�1; �; 1; �)

�1

up to a sign. Ignoring all evident signs and �IV in �geom(1; �) we �nd that we
are left with

�II(1; �)�III2(1; �)=�II(�1; �):

From Lemma 9.9 we have
�II(�1; �)

4 = 1:
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On the other hand, the local form around the identity for

�II(1; �)�III2(1; �)

is e�
�(X) times the product over positive imaginary roots � outside H1 of the terms

sign((e�(X)=2 � e��(X)=2)=a�):

The lemma is then proved.
Recall from Section 9 that �� provides a shift in in�nitesimal character. Also

if we use the Whittaker normalization then the proof shows that we may take the
factor "(V;  ) for ":

We �nish with some simple observations that will be useful in [S2]. Again
�IV is to be removed from �II+ and thus also from �comp as well as �geom:
Lemma 12.7 ���geom(1; �; 01; �0)�� = 1;

j�spec(�1; �;�01; �0)j = 1;

j�comp(�1; �; 1; �)j = 1

for all strongly G-regular related pairs (1; �); (
0
1; �

0) of R-rational points and
G-regular related pairs (�1; �); (�01; �

0) of tempered irreducible representations.
Proof: Our (harmless) unitarity assumption on �� ensures that

j�III2(1; �)j = 1:

The rest is immediate.
Corollary 12.8 (i) For each normalization we have that

k�geomk = j�geom(1; �)j

is independent of the choice for strongly G-regular related pair (1; �); and simi-
larly

k�speck = j�spec(�1; �)j

is independent of the choice for G-regular related pair (�1; �). (ii) If �geom;�spec
are compatible then

k�geomk = k�speck :

13. Proof of Theorem 5.1 (G-regular case)
We follow the same procedure as in [S1] to prove that the spectral transfer

factors are correct in the G-regular case. Because of the many constants involved,
it is easier to start from scratch. First, we reduce by parabolic descent to the
main case: G cuspidal, H1 elliptic, and parameter '1 discrete as well as G-regular.
We continue with the setting of Lemmas 12.4 and 12.5. For f 2 C(G(R)) we
have Harish Chandra�s f (P ) 2 C(M(R)) and for f1 2 C(H1(R); �1) and parabolic
subgroup P1 of H1; de�ned over R and withM1

as Levi subgroup, we have f (P1)1 2
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C(M
1
(R); �1): Here the modular function is inserted in f (P ) and measures have

been normalized so that for given dm; dg we have

O�(f; dt; dg) =

����det
g=m

Ad(�)� I
�����1=2O�(f (P ); dt; dm)

for all � in M(R) that are strongly regular in G; and then also

Tr I(�M )(f) = Tr �M (f (P )):

Compatible choices of normalizations for the various factors now give the reduc-
tion: Given f �nd f1 from geometric transfer, descend to get both geometric
matching for f (P ) and f (P1)1 (Lemma 14.3 of [S3]) and spectral matching by as-
sumption (G-regular parameter '1factors discretely through M1

): Then lift the
spectral matching back to G by Lemma 12.4. Notice that we no longer need to
deal with a number of signs introduced in [S1].

Assume then for the rest of this section that G is cuspidal, H1 is elliptic,
and that the tempered parameter '1 is discrete as well as G-regular. Again we
follow [S1], but now the argument for the elementary but crucial Lemma 4.2.4 is
structurally much simpler. We will include the details after outlining the steps.
We recall �rst the setting. The parameter '1 is �xed. We have two tempered
invariant eigendistributions with same regular in�nitesimal character:

f !
X

�;temp

�spec(�1; �)Tr �(f)

which is a �nite sum of discrete series characters, and

f ! St-Tr �1(f1)

for which we can exploit the geometric matching of f and f1 to get an explicit
formula in terms of stable discrete series characters on H1(R): According to Harish
Chandra�s uniqueness theorem, applied with care regarding support since the the-
orem is stated for connected semisimple Lie groups (see Lemma 4.4.6 (iii) of [S1]),
these two distributions are equal if they are represented by the same formula on
the regular elements of a Cartan subgroup T (R) that is compact modulo the center
of G(R):We start with the second distribution and pick toral data including T and
a torus T1 in H1: We take the formula for the stable character �'1 (representing
St-Tr �1) on the strongly G-regular elements of

TH(R) = T1(R)=Z1(R);

and integrate it against the stable orbital integrals of f1 according to the Weyl
integration formula. We then use the geometric transfer to transport this to the
integral of a function against orbital integrals of f over strongly regular elements
in T (R): This function involves geometric transfer factors. We gather the terms
we do not need for the harmonic analysis and then use the compatibility factor to
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transform them into spectral factors. We �nd then that we have exactly the local
formula for X

�;temp

�spec(�1; �)Tr �(f)

on the strongly regular elements in T (R). Extension to all regular elements in T (R)
is immediate, and so the theorem is proved. Here are the steps of the calculation.

We may assume that f; f1 are supported on the strongly G-regular elliptic
sets. Then according to the Weyl integration formula we may evaluate St-Tr
�1(f1) as

[
(H;TH)]
�1
Z
TH(R)

�'1(1)SO1(f1)JH() d;

where the product
�'1(1)SO1(f1)

is wellde�ned as a function of the image  of 1 in TH(R); we have used the
invariance of the usual Weyl integral formula under

 ! w�1w; w 2 
(H;TH);

and JH = JH=TH is the Jacobian from Section 7. We take � to be the image of 1
under T1 ! T: Then

SO1(f1) = �geom(1; �)
X
w;G

< inv(�; �w); s� > O�w(f);

where w;G indicates summation over representatives w for 
(G;T )=
R(G;T ); and

�'1(1) = �('1; fa�g)
X

w12
(H;TH)

(detw1) �(w
�1
1 �1 � �1; �1)(1)

�0left(; fa�g; f��g)
:

We could drop f��g from notation since we are using the based choice of �-data
in writing the character formula this way. We now apply Lemma 7.3 to rewrite
the product of the denominator of �'1(1); the terms

�II(1; �)�IV (1; �)

of �geom; and JH() as

�0left(�; fa�g; f��g)�1JG(�):

At the same time we observe that the product of the numerator of �'1(1) with

�III2(1; �) = �(�
� + �1 � �; ��)(1)

is wellde�ned as a function of  and hence of � (note Section 9 of [S3]). More
explicitly, recall from Section 7 that

� = �� + �1; � = �� + �1;



Tempered Endoscopy for Real Groups II 33

that (�� �; �) are character data on T (R); and that for w1 in 
(H;TH) we have

w�11 �� � = (w�11 �1 � �1) + (�� + �1 � �):

We write �restgeom for the terms in �geom that we have not mentioned so far. At
this stage we can transport the original expression to T (R) as

[
(H;TH)]
�1
Z
T (R)

�('1; fa�g)
P

w12
(H;TH)
(detw1) �(w

�1
1 � � �; �)(�)

�0left(�; fa�g; f��g)

times
�restgeom(1; �)

X
w2
(G;T )=
R(G;T )

< inv(�; �w); s� > O�w(f)

times
JG(�) d�:

We expand the sum in the middle term to one over 
(G;T ); and divide the integral
by [
R(G;T )]: We will see below that �restgeom(1; �) is a constant. Thus we may
apply invariance of the whole integral under � ! w�; to now write St-Tr �1(f1)
as

[
R(G;T )]
�1
Z
T (R)

F (�)O�(f)JG(�) d�;

where F (�) is the product of

[
(H;TH)]
�1�restgeom(1; �)�('1; fa�g)

times the sum over w 2 
(G;T ) of the terms

< inv(�; �w); s� >
P

w12
(H;TH)
(detw1) �(w

�1
1 � � �; �)(w�)

�0left(
w�; fa�g; f��g)

:

We regroup to write F (�) as

�restgeom(1; �)�('1; fa�g)

times X
w2
(G;T )

< inv(�; �w); s� >
detw �(w�1� � �; �)(�)

�0left(�; fa�g; f��g)
:

Here we have used

< inv(�; �w); s� > = < inv(�; �w1w); s� >

for w1 from H1 (see Remark 7.1). We regroup once again, this time with respect
to 
R(G;T ); and so rewrite this last sum as

�('; fa�g)�1
X

w2
(G;T )=
R(G;T )

< inv(�; �0); s� > ��0(�);
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where � = �(1) relative to the chosen toral data and �0 denotes the representation
�(w); so that we have

inv(�; �0) = inv(�; �w); s� = s�:

See also Remark 9.4. Since

�(�1; �
0) = �(�1; �) < inv(�; �0); s� >

it remains to show that

�restgeom(1; �)�('1; fa�g)�('; fa�g)�1

or, equivalently,
�restgeom(1; �)�II(�1; �)

coincides with the (constant for this calculation) spectral factor

�(�1; �):

This is an exercise with constants and compatibility:

�restgeom(1; �) = �(1; �)�I(1; �)�III(1; �; 1; �)=�I(1; �)�II+(1; �);

and, by our choices for � and �, we have

�III(�1; �; 1; �) = 1:

Thus
�III(1; �; 1; �) = �III(�1; �; 1; �)

= �III(�1; �;�1; �)�III(�1; �; 1; �):

Now we may use geometric-spectral compatibility again to replace

�(1; �)�III(�1; �; 1; �)=�I(1; �)�II+(1; �)

by
�(�1; �)=�I(�1; �)�II(�1; �);

and so �restgeom(1; �) is the product of

�(�1; �)=�I(�1; �)�II(�1; �)

and
�III(�1; �;�1; �)�I(1; �):

This product simpli�es to

�(�1; �)�I(1; �)=�I (�1; �)�II (�1; �):

Since
�I(1; �) = �I(�1; �)
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we have that
�restgeom(1; �)�II (�1; �) = � (�1; �);

as desired.
We then conclude that the distributions

f !
X

�;temp

�spec(�1; �)Tr �(f)

and
f ! St-Tr �1(f1)

coincide. Since we have dealt with the inductive step already, this �nishes the
proof of the transfer theorem in the G-regular case.

14. Completion of proof of Theorem 5.1
To complete the proof of the transfer theorem we have two tasks. The �rst

is, given �1 without assumption of G-regularity, to de�ne �spec(�1; �) for all tem-
pered irreducible representations � of G(R):The second is then to prove that the
distributions

f !
X

�;temp

�spec(�1; �)Tr �(f)

and
f ! St-Tr �1(f1)

coincide for our choice of �1: We will again start with the case G cuspidal, H1

elliptic and '1 discrete, and complete the two tasks in this setting. Then we will
be able to complete both tasks in general by an application of parabolic induction.

Assume then we are in the cuspidal-elliptic-discrete setting, and pick toral
data for both G� and G. The parameter '1 is H1-regular but no longer neces-
sarily G-regular, and while '� is de�ned, it is not necessarily discrete. Further,
a parameter ' for G need not exist. Notice, however, that Cent('�(C�); G_);
while no longer a torus, can only be of type (A1)r since its roots form a system
R('�) in which, by the H1-regularity of '1; every root takes the value �1 on the
endoscopic datum s.

We start again with the representative '1(�1; �1) for '1; with �1 dominant
regular in H1; and attach representative '�(�; �) for '�: Recall that the repre-
sentations in the L-packet for '� are de�ned as constituents of certain unitary
principal series. Notice that R('�); of type (A1)n; consists of the coroots �_ for
which < �;�_ > vanishes, and so it will be a straightforward exercise with Hecht-
Schmid character identities to �nd the appropriate cuspidal Levi group for the
principal series and also to test if '� is relevant to G. To recall those arguments
(Lemmas 4.3.5 and 4.3.7 of [S1]) we �rst assemble tempered distributions associ-
ated to the Weyl group orbit of (�; �) by coherent continuation of discrete series
characters.
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We may translate the given H1-regular-dominant �1 by a form � 2 X�(T ) �
X�(T1) with the properties that (i) �1 + � is a G-regular H1-dominant element in
X�(T1)
 C, (ii)

�+ � = �� + �1 + �

remains in a G-chamber containing �; and (iii), to preserve unitarity, � is trivial on
the maximal split torus in T: For this, recall �� is perpendicular to the roots from
H1: Then '�(� + �; �) is a discrete parameter for G� and '(� + �; �) a discrete
parameter for G: So we have L-packets

f��(w) = ��(w�1(�+ �); �)g

and
f�(w) = �(w�1(�+ �); �)g:

Write 	� for the positive system relative to which � + � is dominant. Then we
rewrite the character of ��(w�1(�+ �); �) as

��(w�1(�+ �); �; w�1	�);

and that of �(w�1(�+ �); �) as

�(w�1(�+ �); �; w�1	�):

(We have already used the usual notation � for the Harish Chandra distribution
and �� for the stable version). We then de�ne the tempered distributions

��(w�1�; �; w�1	�)

and
�(w�1�; �; w�1	�)

by coherent continuation.
Now the �rst step (Lemma 4.3.5 of [S1]) is to show that �(w�1�; �; w�1	�)

vanishes, i.e. is the zero distribution, for all w in the Weyl group, if '� is not
relevant to G: In that case, of course, we de�ne the transfer factor

�spec(�1; �) = 0

for all tempered irreducible representations � of G(R): To complete the proof of
the transfer theorem for �1 we then have to show that f ! St-Tr �1(f1) vanishes
as well. For that we just have to believe we may put � = 0 in the character
identities established for the G-regular case.

Suppose then that '� is not relevant to G: First we will �nd

M� = Cent(ST� ; G
�)

or, equivalently, T
�
; such that '� factors discretely through M�: We have chosen

representative '� = '�(�; �) for '�: Set

R('�) = f��_1 ; :::;��_r g:
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Then we construct easily a homomorphism '� of the form Int(s)� '� such that
'� and '� agree on C� while '�(1� �) acts on T as

w�_1 :::w�_r '
�(1� �) = w�_1 :::w�_r �T�

(see top of p. 407 of [S1] for the exact choice). Because G� is quasisplit there are
toral data for G�, including torus T

�
with ST� contained in the chosen maximal

split torus, such that �T� acts as w�1 :::w�r�T� : Then '
� factors through the

conjugacy class of the homomorphism '� = '�(�; �) for M�: This parameter is
discrete since R('�) consists of coroots that are real for T

�
. We have assumed

that '� is not relevant to G; and so we cannot continue the toral data for M� to
G: Given that is the case, at least one root among �1; :::; �r must become totally
compact in G (as recalled in the context of orbital integrals in [S3]) along the
way, when we pass from T � to T

�
by Cayley transforms from the Weyl orbits of

the roots �1; :::; �r: Then we can argue on T that for each w in the Weyl group,
fw�1�1; :::; w�1�rg contains a compact root. Since one of each pair �w�1�i is
evidently w�1	�-simple we conclude from a wellknown result of Hecht and Schmid
(but in the disconnected case) that for each w; the distribution �(w�1�; �; w�1	�)
vanishes.

Suppose now that '� is relevant to G; so that ' is wellde�ned. Then we can
extend the toral data to G; obtaining now T and M; as well as discrete parameter
'(�; �) for M: We may and will adjust the toral data so that �1; :::; �r are all
noncompact on T; and then �(�; �;	�) does not vanish. An argument with K-
types shows that if

�(w�1�; �; w�1	�)

is also nonvanishing then it coincides with �(�; �;	�) if and only if w lies in the real
Weyl group of T: A routine argument (see bottom of p. 408 of [S1]) using the char-
acterization of noncompact roots in a Weyl orbit shows that �(w�1�; �; w�1	�)
vanishes unless, modulo right multiplication by an element of the real Weyl group

R, w lies in the subgroup 
� generated by re�ections with respect to �1; :::; �r
and the roots perpendicular to each of �1; :::; �r. It remains then to show that

f�(w�1�; �; w�1	�) : w 2 
�
R=
Rg

consists precisely of the characters of the constituents of the induced representa-
tions attached to '(�; �): That can be argued directly with the character identities
of Hecht and Schmid, once we observe that � has the correct form for these iden-
tities to exist. We get that from remarking that '�(1 � �) was chosen expressly
to act on a root vector X�_i

by (�1); and then comparing this with a formula of
Langlands (in an appendix to [A2]). The formula tells us which multiple of X�_i
we get in terms of the parity of < �i; �

_
i >; where �i is one half the sum of the

roots which restrict to a positive multiple of �i on ST . Here we could just as well
take one half the sum of all positive roots. The needed result is that the parity
matches that of < 2�; �_i > : The main step is the inductive argument to be found
starting at the bottom of p.84 of [A2].

Notice that the characters

�(w�1�; �; w�1	�);
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for w in 
�
R; are nondegenerate in the sense of Knapp and Zuckerman because
the Weyl re�ection with respect to a noncompact root outside H1 cannot be real-
ized in G(R). This same property of noncompact roots outside H1 is decisive in
the transfer of orbital integrals (see Section 14 of [S3]).

Finally, we de�ne �spec(�1; �) for

� = �(w�1�; �; w�1	�)

in the L-packet of ' by

�spec(�1; �) = �spec(�1(�); �(�));

where �1(�) is any representation attached to

'1(�1 + �; �1)

and
�(�) = �(w�1(�+ �); �):

For any other tempered irreducible representation � we set

�spec(�1; �) = 0:

Now to complete the transfer theorem for �1 in this case, as well as in the case
that '� is not relevant to G; we argue by coherent continuation to the wall. Since
we are dealing only with tempered representations, we work somewhat informally
with character formulas and identities. We start with the identity proved when
�1 replaced by �1(�) :

St-Tr �1(�)(f1) =
X

�;temp

�spec(�1(�); �(�)) Tr �(�)(f):

The right side is coherent (to a G-wall) in �, and so is the left side as distribution
on H1(R); i.e. as function of f1: Also we argue, for example by use of the Weyl
integration formula on the various Cartan subgroups, that transport to G(R) does
not destroy this coherence. Thus we may put � = 0 on each side to obtain the
transfer statement. Further, since the left side is independent of the choice for
�, so also is the right side. By the linear independence of characters we conclude
then that �spec(�1; �) is independent of the choice of � and toral data in the last
paragraph. We can also check this with explicit computations as in [S1].

The last case to consider is that where we drop the cuspidal-elliptic-discrete
assumption. Thus the parameter '1 is an arbitrary tempered parameter for H1:
We choose appropriate toral data and factor '1 minimally through a cuspidal
Levi group M1; and thus return to the cuspidal-elliptic-discrete setting for M1

as endoscopic group for M�: Assume 'M1 and '�M are so de�ned and that '�

is relevant to G; so that ' and a pair M;'M are de�ned, and otherwise set the
spectral transfer factor to be zero. We describe the L-packet for 'M as limits of
discrete series representations �M , as above. Suppose �1 is a constituent of I(�M1 )
and � is a constituent of I(�M ): Then we set

�spec(�1; �) = �spec(�
M
1 ; �

M );
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where we use a compatible factor on M(R):We now argue as in �rst paragraph of
Section 13 for the G-regular case to obtain the desired transfer result for �1. As in
the G-regular case, we see that �spec(�1; �) is independent of the factoring choice.
For this we could also argue by coherent continuation of the relevant induced
representations. This completes the proof of Theorem 5.1.

The following is an immediate consequence of the proof.
Corollary 14.1 The assertions of Lemma 11.3(ii), Lemma 11.4 remain true for
all tempered related pairs (�1; �).
Notice also that, in general, we have

�(�01; �
0) = � �(�1; �)

for any two tempered related pairs (�1; �) and (�01; �
0):

15. Conclusion
Given an endoscopic group we have now de�ned the spectral factors �(�1; �)

for all tempered related pairs (�1; �) and proved the transfer identity

St-Tr �1(f1) =
X
�

�(�1; �)Tr �(f):

This completes our study of tempered spectral transfer factors as functions of �1;
although in [S2] we will check the e¤ect on the transfer theorem of an isomorphism
of endoscopic data and of a change in z-pair. Our main focus in [S2], however,
will be with the factors as functions of �:

We know by Section 5 of [S1] that we can invert the transfer identities, i.e.
given a tempered irreducible admissible representation � of G(R); we can �nd
endoscopic groups and related pairs (�1; �) such that the character Tr �(f) is a
linear combination of the endoscopic characters

f ! St-Tr �1(f1):

The coe¢ cients in this combination are su¢ ciently explicit to display a structure
on tempered L-packets conjectured by Langlands, but leave us with several con-
cerns. We know, originally by results of Adams, Barbasch and Vogan, that it
is desirable to consider several inner forms at once. Also a recent conjecture of
Arthur [A3] places precise requirements on the coe¢ cients in terms of transfer
factors. So for the inversion we will start, once again, directly from our de�nition
of the spectral transfer factors and work with several inner forms simultaneously.

There is no harm in assuming

�(�1; �) = �1

for all tempered related pairs (�1; �) as, for example, in the Whittaker normaliza-
tion. This allows us to write the inversion formula simply as

Tr �(f) =
1

n(�)

X
�1

�(�1; �)St-Tr �1(f1);
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where n(�) is the cardinality of the extended L-packet of �:We have hidden in the
notation

P
�1
a description, intrinsic to the extended L-packet of �; of appropriate

related pairs (�1; �): This description allows us to display a structure on tempered
L-packets satisfying Arthur�s requirements. See Sections 1 and 7 of [S2] for a more
detailed outline of our approach.
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