
Tempered endoscopy for real groups III:
inversion of transfer and L-packet structure

D. Shelstad

1. Introduction

This is the last part of a project in which we use the canonical (geomet-
ric) transfer factors de�ned in [LS1] for all local �elds of characteristic zero
to prove stronger explicit versions of old results about tempered endoscopy,
or L-indistinguishability, for real groups [S3]. We have introduced canoni-
cal spectral transfer factors as well in our setting [S1, S2], and completed a
proof of the main transfer theorem directly in terms of these and the geomet-
ric factors. Our plan now is to invert the spectral identities of the transfer
theorem in the same manner, and then to describe familiar pairings on tem-
pered L-packets, but now explicitly in terms of transfer factors. Our formula
for the pairing both satis�es Arthur�s recent conjecture in [A1] for the case
of real K-groups and reconciles the implicitly de�ned formulation of [S3].
It also leads us naturally to an analysis of the Whittaker normalization of
absolute transfer factors introduced �rst in [KS] for the geometric side in the
more general setting of twisted endoscopy over a local �eld of characteristic
zero. We then prove the expected simpler statements for real K-groups of
quasi-split type.

Inverting the spectral identities means that we write each tempered ir-
reducible character on a real reductive group explicitly as a combination of
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endoscopic characters, i.e. as a combination of the virtual characters ob-
tained by transfer of stable tempered characters on endoscopic groups. We
will �nd that the weights in these combinations are the (adjoint) spectral
transfer factors for which we have provided explicit formulas.

The inversion rests on explicit adjoint relations for our spectral transfer
factors �spec de�ned intially as a product �I�II�III in the G-regular case
(see [S2]). These relations are motivated by Arthur�s parallel relations for
geometric factors in [A2], and we place the spectral factors in that setting,
where several inner forms are handled simultaneously. The use of several
inner forms is due originally to Vogan, but here we need the formulation of
Kottwitz discussed in [A2] . That turns out to be a useful setting for our
construction of spectral�II in terms of Harish Chandra�s distribution��� and
generalized Weyl denominators, as well as for the term �III , for the transfer
theorem itself, and then �nally for the adjoint relations and inversion.

Write � for the extended spectral transfer factor. Then the �nal inver-
sion formula may be written

Tr �(f) = 1
n(�)k�k2

P
ssc
�(�s;�) St-Tr �s(f s):

We will explain the terms shortly. Because of properties of the transfer
factors this sum may also be written more simply as

1
n(�)

P
ssc
�(�s;�)�1 St-Tr �s(f s):

We also note that we may always normalize transfer factors so that

�(�s;�) = �1

for all � (see Section 4 of [S2]), and that n(�) is the cardinality of the
L-packet of �:

In this formula we are given a tempered irreducible admissible repre-
sentation � of the K-group G(R) associated to a real reductive group G,
and f is a Schwartz function on G(R): The right side is an expansion of the
character
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f ! Tr �(f)

of � as tempered distribution on G(R): Each distribution

f !St-Tr �s(f s)

in this expansion comes from the transfer theorem (see Theorem 6.2). It
is the transfer of the tempered stable character St-Tr �s on an endoscopic
groupHs(R), and is a virtual character onG(R) composed of representations
in the L-packet of � with spectral transfer factors as weights.

To describe which endoscopic characters appear in the expansion, we
choose a homomorphism

' : WR ! LG

representing the Langlands parameter for � and write S' for the centralizer
of the image of ' in G_; the complex dual group of G; and Sad' for the image
of S' in the adjoint form G_ad of G

_: The group Sad' of components of Sad' ,
a sum of groups of order two, counts the representations in the L-packet
of �: It was used in Section 5 of [S3] to establish structure conjectured by
Langlands for the tempered L-packets attached to a single group G: Now,
as well as working with G in place of G; we will follow Arthur�s re�nement
in [A1] and consider the inverse image Ssc' of Sad' in the simply-connected
covering G_sc of G

_
ad, as well as its group Ssc' of components. This is also

motivated by the setting of [ABV] and [AV]. If ssc is a semisimple element of
Ssc' we write s for its image in G_: We will see that the corresponding term
in the inversion formula depends only on the image of ssc in Sad' ; and then
take the summation over Sad' :

Before continuing on to the structure on L-packets, we recall brie�y
the structure of the spectral transfer factors. Assume that H1 is endoscopic
for G. For the inversion formula, we are interested in the complex conjugate
�(�1;�) of the spectral factor�(�1;�) of [S2]. It is de�ned for all tempered
irreducible admissible representations �1 of H1(R) with appropriate central
character and all tempered irreducible admissible representations � ofG(R).

We start with the G-regular setting. By de�nition, �(�1;�) is nonzero
exactly when the G-regular pair (�1;�) is related, i.e. the Langlands para-
meter for �1 is G-regular and maps to the parameter for �.
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We may prescribe the normalization of transfer factor � by the choice
of �(�1;�) for a �xed G-regular related pair (�1;�) (see Section 11 of [S2];
the notation �1;� has nothing to do with complex conjugation). Then

�(�1;�) = �(�1;�)�(�1;�;�1;�);

where �(�1;�;�1;�) is the canonical spectral factor

�I(�1;�)
�I(�1;�)

�II(�1;�)
�II(�1;�)

�III(�1;�;�1;�)

constructed in [S2], and extended to K-groups below in Section 5.

Since

�(�1;�;�1;�) = �1

(see [S2], Theorem 11.1), �(�1;�) is again a transfer factor �conj(�1;�),
but now normalized by the choice

�conj(�1;�) =�(�1;�).

Moreover,

�(�1;�) =�(�1;�)
�I(�1;�)
�I(�1;�)

�II(�1;�)
�II(�1;�)

�III(�1;�;�1;�):

See Sections 8, 9 and 10 of [S2] to recall the formula for �I (which
parallels the �rst geometric term and involves the splitting invariant of a
torus), for �II (involving normalization of the stable Harish Chandra distri-
bution ���) and for�III (parallel to the third geometric term, now re�ecting
position in L-packet instead of position in stable conjugacy class). Recall
also that �II depends on the choice of a-data, �III on the choice of toral
data, and that �I depends on both these choices, while the relative product
�(�1;�;�1;�) is canonical.

IfG is of quasi-split type we have the standard normalizations�0 (since
�III may then be written as a quotient also) and Whittaker normalizations
�� (�0 modi�ed by an epsilon factor) for the absolute factors. The factor
�0 depends on the choice of R-splitting and �� on the choice of Whittaker
data (B; �); as on the geometric side [LS1, KS]. Also,
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�0(�1;�) =�I(�1;�)�II(�1;�)�III(�1;�)

(see Section 11 of [S2]), while

��(�1;�) =��(�1;�) = �1

([S2], Lemma 11.4), so that we get the simplest form of the inversion by
using a Whittaker normalization. Here again we use the extension to K-
groups below in Section 5.

So far, we have described the spectral transfer factors forG-regular pairs
(�1;�). That will be su¢ cient for the inversion in the case that � has regular
parameter. In general, the spectral transfer factors are de�ned by (nondegen-
erate) coherent continuation, and so we need to show that this continuation
�ts naturally with our inversion method. The main step, adapted from [S3]
to our present setting, is in Section 9. We also follow Section 5.4 of [S3],
using a uniform version of the Knapp-Zuckerman classi�cation of the tem-
pered spectrum, now for reductive K-groups, to see that endoscopic transfer
captures all tempered characters on G(R).

As we will explain in more detail in Section 7, the inversion itself rests
very simply on Theorem 7.5 which recovers and supplements results of Sec-
tion 5 of [S3] in the setting of K-groups. The theorem is proved in Sections
8, 9 and 10.

We have chosen the inversion problem as our primary focus only because
it is easy to motivate in terms of building all tempered characters from the
transfer of stable characters on endoscopic groups. Theorem 7.5 has another
interpretation coming from stabilization of the Arthur-Selberg trace formula
and global multiplicity formulas. This second interpretation of the theorem,
which relates transfer factors to pairings on tempered L-packets, is in many
ways more useful as a motivation for the broader questions for real groups
discussed in [A]. That applies, in particular, to interpreting the Adams-
Barbasch-Vogan proof of the Arthur conjectures [ABV] (see Section 8 of
[A]). See also the discussion in [AJ] (p.274) on the failure of inversion in the
earlier work of Adams-Johnson on transfer of cohomological representations.

Arthur has given some precise requirements for the pairings on tempered
L-packets in the case of groups over nonarchimedean �elds [A1]. We will
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observe in Corollary 11.2 that our formulation satis�es the requirements of
Arthur�s conjecture in the setting of real K-groups. The pairing is speci�ed
by factoring the spectral transfer factors of [S2]. Once we �x a base point
for an L-packet and decide how it is to pair within Arthur�s constraint, the
rest of the pairing on the packet is uniquely determined: see Corollary 11.1
and Remark 11.3. In particular, we see concretely how the pairing may yield
more than just a sign. At the same time we obtain intrinsic normalizations
of all endoscopic characters (Lemma 11.4).

For a K-group of quasi-split type, there is a natural way to arrange
that the pairings involve only signs: Whittaker normalization �� = "�0 of
the absolute transfer factors. Then no factoring is needed. We �rst satisfy
Arthur�s constraint by choosing the attached generic representation as base
point and pairing it as the trivial character. Then Theorem 11.5 will imply
that

< ssc ; � > =��(�
s;�);

for all semisimple ssc in Ssc' and � in the L-packet � attached to '. The
dependence on ssc and s is through their common image in Sad' ; and so ��

carries with it a dual pairing of � with Sad' . This pairing is determined
uniquely by the conjugacy class of (B; �). It may involve all inner forms
(for example, G = SU(n+ 1; n)), the quasi-split form alone (G = Sp2n); or
multiple copies of some nonquasi-split forms along with the quasi-split form
(G = SU(n; n)).

It remains to prove Theorem 11.5, that if tempered � is generic relative
to (B; �) then

��(�
s;�) = 1

for all semisimple ssc in Ssc' : We may restrict our attention to the quasi-
split component G of G (see Lemma 12.6). Recall that ��(�

s; �) is de�ned
initially for G-regular pairs (�s; �) as a product of four terms, two fourth
roots of unity and two signs. Our proof in Section 13 avoids direct calculation
of ��(�

s; �) except for the representations of the next paragraph, and even
then we reduce to the familiar computation for SL(2). Those representations
allow us to handle discrete series representations when the derived group of
G is simply-connected. The rest of the argument relies on general properties
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of endoscopic transfer, and of course the entire discussion rests on results of
Kostant [K] and Vogan [V] classifying generic representations of real groups.

In Section 12 we pause to gather various remarks. These concern mainly
a family of tempered representations that generalize those with zero in�nites-
imal character discussed by Carayol and Knapp [CK]. The representations
exist for each cuspidal reductive quasi-split group with simply-connected de-
rived group and for its elliptic endoscopic groups. Their (small) L-packets
consist entirely of generic representations, one for each G(R)-conjugacy class
of Whittaker data. On the other hand, the representations are identi�ed in
such a way (with totally degenerate data) that the spectral transfer factors
are not immediately evident. We observe another natural candidate for the
attached pairing which we show to be correct in Lemma 12.1. Its de�ni-
tion is, unsurprisingly, analogous to that on the geometric side for regular
unipotent conjugacy classes in Section 5 of [LS1]. We note in passing that
endoscopic inversion expresses the character of each representation very sim-
ply in terms of the stable versions of these same characters on endoscopic
groups. Use of the appropriate Whittaker normalization removes the last
extraneous constant.

See [S7] for some worked examples related to K-groups and spectral
transfer factors.

Throughout this paper we delete the term�IV from the geometric trans-
fer factors �geom and compatibility factors �comp; and follow the common
practice of incorporating it instead in the de�nition of orbital integrals.

2. Isomorphisms of endoscopic data

We start by reviewing isomorphism of endoscopic data in the sense of
[LS1] and [KS]. We will then observe the e¤ect of a given isomorphism of
endoscopic data on the ingredients of the transfer theorem proved in [S2]. The
arguments are quite elementary, and we spend most of the section recalling
basic de�nitions and results in order to motivate Lemma 2.4 and Remark
2.5.
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We gather de�nitions from [LS1] and [KS], and follow the notation of
[S1, S2]. Thus G is a connected reductive algebraic group de�ned over R, and
G� is a quasi-split inner form ofG:We choose a pair ( ; u); where  : G! G�

is an inner twist and u is a 1-cochain of the Galois group � = f1; �g of C=R
in G�sc such that  �( )

�1 = Int u(�), � 2 �. We write G_ for the complex
dual of G; and LG for the L-group G_ oWR; where the Weil group WR of
C=R acts through WR ! �:

We recall once again that a set of endoscopic data for G is a tuple
(H;H; s; �); where:

(i) H is connected, reductive and quasi-split over R, and so has
dual H_ with dual Galois automorphism �H_ ;

(ii) H is a split extension of WR by H_; where WR acts
through WR ! �; and now � acts as �H_ only up to an
inner automorphism of H_;

(iii) s is a semisimple element of G_; and

(iv) � : H ! LG is an embedding of extensions under which the
image of H_ is the identity component of Cent(s;G_); and
the full image lies in Cent(s0;LG); for some s0 congruent
to s modulo the center Z(G_) of G_:

In addition, a z-pair for (H;H; s; �) consists of a pair (H1; �1); where
H1 is a z-extension of H and �1 is an embedding of H in LH1 (Section
2.2 of [KS]). We �x a z-pair and write �1 for the attached quasicharacter
on Z1(R); where Z1 is the kernel of H1 ! H: For convenience, we require
�1 to be unitary. We are interested in tempered (irreducible admissible)
representations of H1(R) which transform under Z1(R) according to �1: Our
data provide a map �temp(H1; �1) ! �temp(G

�) on Langlands parameters
(see Section 2 of [S2]).

Let e = (H;H; s; �) and e0 = (H 0;H0; s0; �0) be sets of endoscopic data
for G: We use �; �0 to identify H;H0 as subgroups of LG: Combining the
discussion of Section 2.1 of [KS] with Section 1.2 of [LS1], we de�ne an
isomorphism from e to e0 to be an element g of G_ such that

gHg�1 = H0
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and

gsg�1 2 s0 Z(G_)(Z(H 0_)�)0:

When this isomorphism g lies in H_, it is easy to see that there is no e¤ect
on the various constructions. In general, we will be concerned only with g
modulo right multiplication by an element of H_; and we write � for the
restriction of Int g to H_:

It is convenient at this point to specify some splittings: an R-splitting
for each of the various quasi-split groups over R, and a �-invariant splitting
for each of the dual groups. Ultimately these choices will have no e¤ect on
our results. After multiplication on the right by an element of H_ we may
assume that, for an isomorphism g as above, the attached isomorphism � :
H_ ! H 0_ maps splH_ to splH0_. Then �H0_ � � � �H_ = �: Let � : H ! H 0

be the isomorphism dual to ��1 and mapping splH to splH0 : Then � is de�ned
over R.

We need to extend � to an isomorphism �1 of z-pairs de�ned over R and
then we set �

0

1 = �1 � ��11 : It is a routine exercise to construct (H 0
1; �

0
1) and

then �1; and we forgo the details. We will also assume that splH1 projects to
splH and splH_ extends to splH_

1
in the obvious sense, and similarly for the

splittings attached to H 0: We have that �1 maps H1(R) isomorphically to
H 0
1(R) and �1 induces a map �temp(H1; �1) ! �temp(H

0
1; �

0
1) which respects

the map �1 ! �01 = �1� ��11 : Also we save notation by writing 01 for the
image �1(1) of 1 2 H1(R):

We write �spec and �comp for the relative spectral and compatibility
factors attached (in [S2]) to (H;H; s; �); (H1; �1) and ( ; u); and �

0
spec and

�0
comp for those attached to (H

0;H0; s0; �0); (H 0
1; �

0
1) and same ( ; u):

Lemma 2.1

(i) Let 1 2 H1(R); � 2 G(R): Then (1; �) is a strongly G-regular
related pair relative to H1 if and only if (01; �) is a strongly
G-regular related pair relative to H 0

1:

(ii) Let �1 be a tempered irreducible representation of H1(R)
transforming under Z1(R) according to �1 and � be a
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tempered irreducible representation of G(R): Then (�1; �)
is a G-regular related pair for H1 if and only if (�01; �) is a
G-regular related pair for H 0

1:

(iii) Let (�1; �); (�1; �) be G-regular related pairs for H1: Then

�spec(�1; �; �1; �) = �
0
spec(�

0
1; �; �

0
1; �):

(iv) Let (�1; �) be a G-regular related pair and (1; �) be a
strongly G-regular related pair for H1: Then

�comp(�1; �; 1; �) = �
0
comp(�

0
1; �; 

0
1; �):

Proof: At this point we pause to review the de�nition of admissibility (and
of toral data). First, �1 is a composition of the projection T1 ! T1=Z1 = TH
with an admissible embedding � : TH ! T: This means that � is de�ned
over R and is the composition of an admissible embedding �� : TH ! T �

of the maximal torus TH in the quasi-split form G� and the inverse of a
modi�ed twist Int x� : T ! T � over R. Thus it is the isomorphism �� that
we need to describe. We have chosen splittings of H;H_; G� and G_; and
may then identify the chosen maximal torus TH in H_ with that, T , in G_:
The choice of Borel subgroups in H and G� containing respectively TH and
T � determines isomorphisms T_H ! TH and T ! T �_; and then by duality
�� : TH ! T �:We call �� admissible when the Borel subgroups are chosen so
that �� is de�ned over R (see Section 1.3 of [LS1]), and also write ��1 for the
composition of �� with the projection T1 ! T1=Z1 = TH : For convenience,
we call ��1 quasi-split toral data and �1 toral data for G, leaving implicit the
role of the Borel subgroups.

We claim that �1 : T1 ! T is admissible for H if and only if �1 � ��11 :
T 01 ! T is admissible forH 0. Since � is de�ned by Int g : T ! T and both �1
and �1���11 are de�ned over R, this, as well as (i), is clear from the de�nitions.
Also (ii) reduces to a wellknown property of the Langlands parametrization.
For (iii) and (iv) we observe, by inspecting each construction, that the same
assertions are true for the individual terms�I ; �II and�III . Here we choose
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toral data as in the argument for (i) and use the same a-data for T in each
case, transporting a-data for H and H 0 accordingly.

Corollary 2.2

Let � be a spectral transfer factor for H and de�ne a function �0

for H 0 by

�0(�01; �) = �(�
0
1 � �1; �).

Then �0 is a spectral transfer factor for H 0:

Proof: We have to show that

�0(�01; �)=�
0(�01; �) = �

0
spec(�

0
1; �; �

0
1; �):

But

�0(�01; �)=�
0(�01; �)

= �(�01 � �1; �)=�(�01 � �1; �)

= �spec(�
0
1 � �1; �; �01 � �1; �):

So the result follows from (iii).

Now write these absolute factors as �spec; �
0
spec. Arthur discusses the

analogous geometric factors �geom; �
0
geom in [A1] (or we could argue directly

as in Lemma 2.1 and Corollary 2.2).

Corollary 2.3

�0
spec and �

0
geom are compatible if and only if the same

is true for �spec and �geom:

Proof: This is immediate from (iv).

We now apply this to the transfer theorem ([S2], Theorem 5.1). Thus
we �x an isomorphism (H;H; s; �) ! (H 0;H0; s0; �0); attach z-pair (H 0

1; �
0
1)

to given (H1; �1) as above, and also attach compatible factors �
0
geom, �

0
spec

to given compatible �geom, �spec as in Corollaries 2.2 and 2.3. Then the
following is immediate, �rst for the G-regular case, and then in the general
by applying the coherent continuation of Section 14 of [S2].
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Lemma 2.4

Suppose in the hypothesis of the transfer theorem we replace (H;H; s; �)
by (H 0;H0; s0; �0); (H1; �1) by (H

0
1; �

0
1) and �geom, �spec by �0

geom, �
0
spec.

Then in the conclusion of the theorem we may replace f1 by f 01 = f1���11 :
Moreover, whatever the choice we make for f 01; we have

St-Tr �1(f1) = St-Tr �01(f
0
1)

for all tempered irreducible �1:

Remark 2.5

If g is an isomorphism from e = (H;H; s; �) to e0 = (H 0;H0; s0; �0); we
set e0 = g:e and �0 = g:�: As Arthur explains in [A1], if G is quasi-split
then we can extend a normalization for the absolute transfer factors � for
given e to its isomorphism class by attaching g:� to g:e; but that, for a
general reductive group G, g may �x e yet act nontrivially on �: As we
have just seen, this does not concern us in the statement of the transfer
theorem. Nor will it matter in the inversion identity where the terms are
independent of the normalization of � (see Section 7). It does concern us for
the normalization of endoscopic characters (see Section 3), and again when
we come to the structure of L-packets in Section 11. Arthur�s analysis of g:�
in [A1] motivates his statement of the property we prove in Corollary 11.2.
This then yields intrinsic normalizations for all endoscopic characters (see
Lemma 11.4).

3. Tempered endoscopic characters

We will call the distribution

f ! St-Tr �1(f1);
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which we have shown in the transfer theorem [S2] to coincide with the tem-
pered virtual character

f !
P

��spec(�1; �) Tr �(f);

an endoscopic character on G(R): It evidently depends on the choice of nor-
malization for the compatible factors �geom, �spec: Such factors may only be
multipled by a common constant, and all endoscopic characters attached to
a given set of endoscopic data and given z-pair are then multiplied by the
same constant. In the inversion formula we will multiply each endoscopic
character by a coe¢ cient with cancelling dependence; see Lemma 7.1.

We have seen in Lemma 2.4 that endoscopic characters are unchanged
when the endoscopic data is modi�ed by an isomorphism, provided we use
the attached modi�cation of transfer factors. Next we note that the choice of
z-pair works similarly. Suppose that (H1; �1) and (H2; �2) are both z-pairs for
(H;H; s; �): Then we have a bijection �temp(H1; �1)! �temp(H2; �2); which
we will write as '1 ! '2; obtained by choosing a representative '1 for '1
with image in �1(H) and mapping it to the class '2 of '2 = �2 � ��11 � '1:
Let �1; �2 have parameters '1;'2 respectively, and let � be a tempered
irreducible representation of G(R): Then (�1; �) is a (G-regular) related pair
for (H1; �1) if and only if (�2; �) has the same property for (H2; �2):

Lemma 3.1

We may normalize the spectral transfer factors for (H1; �1)
and (H2; �2) so that

�spec(�2; �) = �spec(�1; �):

Proof: We start with the G-regular case. As in the last section we just have
to show that the relative factors coincide, i.e.

�spec(�2; �; �2; �) = �spec(�1; �; �1; �):
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A check of the de�nitions shows that this is true when �spec is replaced by
each of �I ;�II ;�III using the corresponding toral data and same a-data,
and so we are done in the G-regular case. For the general case, we recall
again the de�nition of �spec(�i; �) by coherent continuation, and the lemma
follows.

If we replace (H1; �1) by (H2; �2) we will use Lemma 3.1 to de�ne the new
spectral transfer factor, and then apply the canonical compatibility factors
to �x the normalization of the geometric factors as in Section 4 of [S2], and
so avoid a direct discussion of the geometric factors which would take a little
longer (see Remark 11.3 of [S1]).

Lemma 3.2

Suppose in the hypothesis of the transfer theorem we replace the
z-pair (H1; �1) by another z-pair (H2; �2), with the modi�cation of
transfer factors described above. Then if f1 is replaced by f2 in the
conclusion, we have

St-Tr �2(f2) = St-Tr �1(f1):

Proof: We have arranged the normalization of spectral transfer factors so
that the formulas for St-Tr �1(f1) and St-Tr �2(f2) given by the transfer
theorem are identical.

We emphasize that, according to our de�nition, stable tempered charac-
ters on G(R) are endoscopic. Notice that if we use the trivial endoscopic data
(G�;LG; 1; id) and normalize transfer so that the geometric transfer factors
are either one or zero, then the associated endoscopic characters are the usual
stable characters attached to tempered L-packets, but now multiplied by the
constant (�1)qG�qG� . We may of course arrange to insert this constant in the
de�nition of the geometric transfer factors instead, if we wish. Whichever
way is chosen, (�1)qG�qG� appears in the formulas when we write the spectral
transfer as a set of identities for the characters as analytic functions on the
regular semisimple set of G(R).
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4. Review of K-groups and extended geometric factors

We come then to the role of the twisting data ( ; u) in the transfer
theorem. First of all, notice that, for a given twist  ; the choice of cochain u
has no e¤ect on the relative transfer factors: u potentially a¤ects only �III1

and there the choice does not matter (see p. 31 of [LS1]). The argument for
relative spectral factors is the same. Moreover, it is only the inner class of
 that matters, i.e. the factors are unchanged if we replace  by  0 = Int
g �  ; with g 2 G�. In that case we may replace u by u0 given by u0(�) =
gscu(�)�(gsc)

�1; � 2 �; where gsc 2 G�sc and g have same image in G�ad:

We prepare now to work simultaneously with several pairs (G0;  0). We
follow Arthur�s discussion in [A2] ofK-groups and extended geometric factors
based on constructions due to Kottwitz.

To start, we recall certain inner forms of G. Throughout, (G; ; u) is
�xed. Consider also (G0;  0; u0) and write  0 as  � �; and � � �(�)�1 as Int
xsc(�); where xsc(�) lies in Gsc, � 2 �: We are interested in groups G0 for
which xsc is a 1-cocycle of � inGsc:Wemay assume that u0 =  sc(xsc)u: Since
@u0 is easily calculated to be  sc(@xsc)@u; we obtain @u

0 = @u: Conversely, if
given instead that @u0 = @u we see that xsc =  �1sc (u

0u�1) is a 1-cocycle of �
in Gsc. We will make use of the following.

Lemma 4.1

(�1)qG�qG� = (�1)qG0�qG� ;

where 2qG is the dimension of the symmetric space attached to Gsc:

Proof: This is immediate from [K2]. On pp. 295-6 it is proved that (�1)qG�qG�
is the Kottwitz sign e(G) for a group G over R, and in the de�nition of e(G)
on pp. 291-2, we have that uad and u0ad map to the class of @u = @u0 under

H1(�; Gad)! H2(�; Z(Gsc)):
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The rest of the de�nition is the same for G and G0; so that e(G) = e(G0).

The prescription of [A2] is to consider one inner form G0 for each element
of the image of the map H1(�; Gsc) ! H1(�; G): Some small examples are
useful to keep in mind. If G is SL(2) then we get nothing new, whereas if G
is SU(2) then we have two cohomology classes, and each of these yield the
compact form SU(2) as G0: So for G = SL(2) we will work with one copy of
SL(2), but for G = SU(2) we will work with two copies of SU(2). On the
other hand, the case G = SU(3) is nicer: we work with one copy of each of
SU(3) and SU(2; 1): Starting instead with SU(2; 1) leads to the same result.

These examples also illustrate very simply what we gain from the K-
group construction. If we consider G = Gsc = SU(2; 1) then a stable con-
jugacy class of regular elliptic elements consists of three conjugacy classes
parametrized by three of the four elements of H1(�; T ); where T is a compact
maximal torus, and similarly an L-packet of discrete series representations is
parametrized by three elements of the same group. TheK-group construction
�nds for us a fourth conjugacy class and a fourth representation from SU(3):
Similarly, if we start with SU(3) then we add three classes or representations
from SU(2; 1):On the other hand, in the case ofG = Gsc = SL(2) = SU(1; 1)
no additions are needed: conjugacy classes in a stable conjugacy class of reg-
ular elliptic elements and L-packets of discrete series representations are each
parametrized by the two element group H1(�; T ): When we come to SU(2)
however, we are missing a conjugacy class and a representation. The second
copy of SU(2) provides these. In terms of Langlands� original de�nitions
[L1], the construction expands the parametrization set

D(T ) = Ker(H1(�; T )! H1(�; G));

which is a subset of the group

E(T ) = Im(H1(�; Tsc)! H1(�; T ));

to all of E(T ): The group E(T ) is the same in each inner form G0 sharing
T , whereas D(T ) is not. The K-group construction allows us us to recover
E(T ) exactly as the disjoint union of the contributing D(T ). We recall the
argument in Section 8 (see the proof of Theorem 7.5).

In general, we choose a set of 1-cocycles xjsc of � in Gsc (and identify
xjsc with xjsc(�) when convenient) for which the images x

j in G represent
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the classes in the image of the map H1(�; Gsc) ! H1(�; G); j = 1; 2; :::;
and then attach a set of triples (Gj;  j; uj); with (G1;  1; u1) = (G; ; u) and
uj =  sc(x

j
sc)u: That is enough to specify a frame for aK-group as in Section

1.2 of [A2]. This K-group is an algebraic variety de�ned over R which we
denote by G. We identify G(C);G(R) with the disjoint union of the groups
Gj(C); Gj(R) respectively, writing G = tjGj; etc. Also, we write  jk for the
inner twist ( k)�1 �  j from Gj to Gk, and then ( 1k)�1�( 1k) = Int xksc:

The image xj in G of xjsc is also a cocycle. Its class in H
1(�; G) deter-

mines a character on A(G) = �0(Z(G
_)�) [K1]. This character is, by design,

the trivial character [K1]. At the same time, for all j, the image ujad of u
j in

G�ad determines the same character �G on A(G
�
ad) = A(Gad) = (Z

_
sc)

�; where
Z_sc is the center of the simply-connected cover G

_
sc of the adjoint group for

G_ (see, particularly, 1.4 of [K1]). We will mention this character �G explic-
itly in Section 11, and in the proof of Theorem 7.5 for the singular elliptic
case (Section 9). More speci�cally, in that proof we use the character �GM
on �0(Z(M_

sc)
�); attached to �G by Arthur in Section 2 of [A2], to interpret

results we would otherwise deduce directly from [S3] in a less appealing form.
Here M denotes a cuspidal Levi group in G (see [A2] for the fundamental
results) and, as is customary, M_

sc denotes the inverse image of the adjoint
group of M_ in the simply-connected form attached to G_ rather than in
that attached to M_:

A stable conjugacy class in G(R) is the union of matching stable conju-
gacy classes in the inner formsGj(R). In particular, strongly regular elements
�j and �k; in Gj(R) and Gk(R) respectively, are stably conjugate if and only
if  jk(�j) is conjugate to �k in Gk(C). For general regular semisimple �j and
�k we add the usual requirement that the conjugation be given by an element
gk of Gk(C) such that the restriction of Int gk� jk to the identity component
of Cent(�j; Gj) is de�ned over R. If the maximal torus T�j = Cent(�j; Gj)0 is
fundamental (maximally compact) in Gj then there is a matching conjugacy
class in Gk(R) for every k ([S4], Lemma 2.8).

We turn now to endoscopy and extended transfer factors. Relative fac-
tors concern us �rst. Fix a set (H;H; s; �) of endoscopic data and a z-pair
(H1; �1). We recall the geometric factor for G which we will denote �geom:

We follow Kottwitz�s de�nition [A2] to specify �geom(1; �; 
0
1; �

0) for
stronglyG-regular related pairs (1; �); (

0
1; �

0) inH1(R)�G(R): This means,
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of course, that � = �j 2 Gj(R) and �0 = �k 2 Gk(R) for some j; k; and that
(1; �

j); (01; �
k) are strongly Gj-, Gk-regular related pairs in H1(R)�Gj(R)

and H1(R) � Gk(R) respectively. If j = k we revert to our old notation
of �; �0 instead of �j; �k. The factor �geom is the product of three terms
which we write as�I ;�II+;�III1 . See [S1] for our grouping, and recall that
we now remove the original �IV from �II+. We �x toral data for each of
the pairs (1; �

j); (01; �
k) relative to G; by which we mean that we use the

same quasi-split toral data whatever the index j or k; and then extend this
homomorphism to Gj; Gk by means of the chosen twists  j;  k (see the proof
of Lemma 2.1 to recall de�nitions). These data then allow us to generate
a-data in each Gj from a single set of a-data in the quasi-split form, if we
wish.

Each of �I ; �II+ is a quotient of absolute terms, so there is nothing
new to do:

�I(1; �; 
0
1; �

0) =�I(1; �)=�I(
0
1; �

0) = �I(1; �
j)=�I(

0
1; �

k);

and so on. The de�nition of �III1 requires more care. Following [A2], we
return to Section 3.4 of [LS1], and use �j to make the cochain vj of � in the
maximal torus T �sc in G

�
sc provided by the chosen toral data, and similarly we

use �k in T �0sc to make v
k: Set U = U(T �sc; T

�0
sc) in the notation of [LS1]. Then

since

@vj = @uj = @uk = @vk

we obtain a wellde�ned cocycle in U from ((vj)�1; vk); and the rest of the
construction of �III1(1; �; 

0
1; �

0) proceeds as in [LS1]. Because �I ;�II+

depend only on the quasi-split form G� rather than on Gj and Gk, the argu-
ment that �geom(1; �; 

0
1; �

0) is canonical also proceeds as in [LS1].

The absolute geometric transfer factor �(1; �) = �geom(1; �) is then
de�ned by

�(1; �) =�geom(1; �; 1; �)�(1; �),

where (1; �) = (1; �
j) is some �xed strongly G-regular related pair and

�(1; �) is chosen arbitrarily. Thus a uniform normalization of the absolute
geometric factors �(1; �

j) is achieved for the groups Gj; strengthening the
relative local hypothesis of Corollary 4.2.B of [LS1] for general inner forms.
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5. Extended spectral factors and compatibility

On the spectral side, we use the conventions of [S2] for Langlands para-
meters. Thus �temp(Gj) consists of the parameters in �temp(G�) that are rele-
vant to Gj with respect to  j:We write such a parameter as 'j and typically
distinguish it in notation from its image '� under the inclusion of �temp(Gj)
in �temp(G�):Then �temp(G) consists of the parameters in �temp(G�) that are
relevant to at least one Gj. Any discrete parameter (if such exists) is relevant
to all Gj. We write ' for a typical parameter for G, so that ' = 'j for at
least one j. The L-packet attached to ' 2 �temp(G) (or extended L-packet
for emphasis) is the union of the L-packets for those 'j for which ' = 'j.

The stable characters attached to tempered L-packets are invariant un-
der inner twisting (in the sense of [S5]) up to a sign which in the case of the
twist  jk is (�1)qGk�qGj . By Lemma 4.1 this sign is trivial. That implies that
the characters �'j attached to those L-packets forming a tempered L-packet
for G determine a stably invariant function �' on the regular semisimple set
of G(R) by the simple patching formula

�'(�) = �'j(�
j)

for � stably conjugate to regular semisimple �j in G(R): This function rep-
resents the tempered distribution on G(R) that we will denote St-Tr(�); for
any � in the L-packet.

By spectral G-regular related pairs (�1;�); (�01;�
0) we mean Gj-, Gk-

regular related pairs (�1; �j); (�01; �
k); for some j; k in the sense of [S2]. If

j = k we switch back to the notation �; �0 instead of �j; �k: Thus �1; �01 have
parameters '1;'

0
1 2 �temp(H1; �1) which have images '�;'�0 in �temp(G�)

and images 'j;'k in �temp(Gj) which are the parameters for �j; �k. Our
next step is to use the parallel constructions of [S2] to de�ne

�spec(�1;�; �
0
1;�

0) =�(�1; �
j; �01; �

k)

as a product �I�II�III :

We pick toral data relative to G, as well as a-data. Again there is
nothing new to do for �I ;�II since they are each a quotient of absolute
terms (see Sections 8 and 9 of [S2]):
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�I(�1; �
j; �01; �

k) = �I(�1; �
j)=�I(�

0
1; �

k);

and

�II(�1; �
j; �01; �

k) = �II(�1; �
j)=�II(�

0
1; �

k):

For �III we adapt the method for geometric �III1 ; now using Section 10 of
[S2] to make a cocycle ((vj)�1; vk) in the torus U = U(T �sc; T

�0
sc). It is routine

then to show that �spec(�1; �
j; �01; �

k) is canonical. The arguments again
come from [LS1] for the e¤ect of choices on�I ;�III : For�II ; Lemma 9.3 of
[S2] shows that the behavior is correct under change of toral data and change
of a-data.

We may now �x a normalization of the absolute spectral factor

�spec(�1;�) =�(�1;�)

by the standard device. Thus we �x a G-regular related pair (�1;�) and �x
�(�1;�) as we wish. Then for all G-regular related pairs (�1;�) we de�ne

�(�1;�) =�spec(�1;�; �1;�)�(�1;�):

In particular, we have then a normalization of the absolute spectral factors
�(�1; �

j) for each group Gj: We extend these factors for each group to all
tempered related pairs (�1; �j) by coherent continuation as in [S2]. This
yields a wellde�ned factor �(�1;�) for each tempered related pair in G (or
we could argue by a coherent continuation directly on G(R)):

Similarly we may de�ne an extended compatibility factor

�comp(�1;�; 1; �)

and formulate compatibility of the absolute factors �(1; �) and �(�1;�)
as

�(�1;�) =�comp(�1;�; 1; �)�(1; �);
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for one, and hence every, set of (strongly) G-regular related pairs (see Sec-
tions 4 and 12 of [S2]).

We will call G of quasi-split type if some Gj is quasi-split and  j : Gj !
G� is de�ned over R. We will check in Lemma 12.6 that j is then uniquely
determined. Since uj lies in Z(G�sc) we may as well take u

j to be the identity,
so that each uk is a cocycle. Thus the cochain vk above (and from the last
section for the geometric case) is now a cocycle. Recall that the (geometric)
factor �0 was de�ned in [LS1] for the case G = G� and  = id; and the
analogous spectral factor in [S2]. Each is a product �I�II�III ; where �I

and �II are the absolute terms already discussed (geometric �II includes
old �III2). We de�ne extended factors �0 in the same manner. All we need
is an absolute version of relative �III = �III1 in the geometric case and of
relative �III in the spectral case. Since each vk is a cocycle this is easy. To
de�ne the various terms we have chosen toral data for G (as well as a-data
and for absolute �I ; an R-splitting of G�):We may now pair the class of vk in
H1(�; T �sc) with the element of �0((T

_
ad)

�) provided by the endoscopic datum
s as in Section 3.4 of [LS1], and de�ne �III as the inverse of this pairing.
Then

�III(1; �
k)=�III(

0
1; �

k0) = �III(1; �
k; 01; �

k0)

and

�III(�1; �
k)=�III(�

0
1; �

k0) = �III(�1; �
k; �01; �

k0);

for all (strongly) G-regular related pairs. Then:

�0 = �I�II�III :

Moreover, the geometric and spectral factors are compatible. The Whit-
taker normalizations (see [KS, S2]) then also extend. We may use the R-
isomorphism  j to transport Whittaker data from G� to Gj; if we wish.

Finally, we will see that there is no harm for the transfer theorem in
replacing the endoscopic groupH1 by aK-groupH1 of quasi-split type. Then
in the spectral transfer factors, the representation �1 may be replaced by any
representation in its extended L-packet and will be denoted �1: Similarly, the
element 1 in a geometric transfer factor is replaced by 1 in H1(R).
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6. Extended transfer theorem and endoscopic characters

Our �nal step in preparation is to record an extension of the transfer
theorem of [S2] to K-groups. Extension of the geometric side was noted in
[A2]. We may also state the theorem as a simultaneous version of Theorem
5.1 of [S2] for the various groups comprising the K-group.

We start with a group G and inner twist  , and attach K-group G.
Next, (H;H; s; �) is a set of endoscopic data for G. We attach K-group
H to H; as well as a z-pair (H1; �1) with character �1 on Z1(R); where
Z1 = Ker(H1 ! H): We then construct a z-pair (H1; �1) for the K-group
H in the obvious manner, as well as attached character �1 on Z1(R); where
Z1 = Ker(H1 ! H): To save notation, we will assume each component of
Z1 is Z1 and each component of �1 is �1; so that �1 consists of copies of the
character �1: Also, Schwartz functions, Haar measures etc. are de�ned in the
evident manner (see [A2]).

Lemma 6.1

Let f1 2 C(H1(R);�1): Then St-Tr(�1)(f1) = 0 for all tempered
irreducible representations �1 such that �1(z1h1) = �1(z1)�(h1);
for all z 2 Z1(R) and h1 2 H1(R); if and only if SO1(f1) = 0
for all strongly regular 1 in H1(R).

Proof: We may use the stable transfer of orbital integrals to the quasi-split
form [S4] to rewrite SO1(f1) as a stable orbital integral on H1(R): We then
apply the assertion of the lemma for a single group ([S1], Theorem 4.1) and
lastly the dual transfer of stable tempered characters [S4] to complete the
proof.

Theorem 6.2 (Transfer theorem for K-groups)

Let �geom and �spec be extended transfer factors with compatible
normalization. Then for each f 2 C(G(R)) there exists
f1 2 C(H1(R);�1) such that
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SO1(f1) =
P

�;conj�geom(1; �)O�(f)

for all strongly G-regular 1 in H1(R): Moreover, there is a dual
transfer of stable tempered characters given by

St-Tr �1(f1) =
P

�;temp�spec(�1;�) Tr �(f)

for all tempered irreducible representations �1 of H1(R) which
transform under Z1(R) according to �1: Conversely, if f 2 C(G(R))
and f1 2 C(H1(R);�1) satisfy

St-Tr �1(f1) =
P

�;temp�spec(�1;�) Tr �(f)

for all tempered irreducible representations �1 of H1(R) which
transform under Z1(R) according to �1 then

SO1(f1) =
P

�;conj�geom(1; �)O�(f)

for all strongly G-regular 1 in H1(R):

Proof: First of all, we have the transfer theorem of [S2] for the forms Gj using
the normalizations �j provided by the K-group normalizations of Sections 4
and 5. Suppose f = ff jg and for each j choose f j1 2 C(H1(R); �1) such that

SO1(f
j
1 ) =

P
�j ;conj �

j
geom(1; �

j)O�j(f
j):

Then we sum these identities over j and set f1 =
P

j f
j
1 . Regarding f1 as

f1 2 C(H1(R);�1); we obtain the geometric transfer. Suppose now f and f1
have matching orbital integrals. By Lemma 6.1, St-Tr �1(f1) is independent
of the choice for f1. Thus we may take f1 to be f1 as above. Since we have

St-Tr �1(f
j
1 ) =

P
�j ;temp�

j
spec(�1; �

j) Tr �j(f j)
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for all j, the spectral matching follows. The converse statement follows as
for a single group G ([S1], Section 16 ) using Lemma 6.1. This completes the
proof.

As in Section 3 for a single group, we call the tempered virtual character

f ! St-Tr �1(f1)

an endoscopic character on G(R): The results and comments of Sections 2
and 3 generalize immediately to the present setting.

7. Inversion and adjoint relations

Let � be a tempered irreducible admissible representation of G(R): Our
plan is to recover Tr �(f) from the identities (for various H1; �1 )

St-Tr �1(f1) =
P

�0;temp�spec(�1;�
0) Tr �0(f)

of the transfer theorem. We do this by establishing an explicit set of adjoint
relations

P
�1;temp

�(�1;�) �(�1;�
0) = n(�;�0):

In this summation
P

�1;temp
over certain (L-packets of) representations

�1 of endoscopic groups, yet to be de�ned precisely, there will be only �-
nitely many nonzero terms in which our given � appears. Note that by the
de�nition of �; if �(�1;�) is nonzero then

�(�1;�) �(�1;�
0)

24



is nonzero exactly when �0 lies in the same L-packet as �:We will see that the
sum n(�;�0) is zero unless �0 = �: Evidently n(�;�) is the product of k�k2
(see Section 12 of [S2]) with the number n(�) of nonzero terms �(�1;�) in
the summation

P
�1;temp

. The summation
P

�0;temp from the transfer theorem
similarly has only �nitely many nonzero terms (corresponding to �0 from a
single L-packet) in which given �1 appears.

Once the adjoint relations are established, we have just to multiply the
identity from the transfer theorem by the factor

�(�1;�)

n(�)k�k2 ;

then apply the summation
P

�1;temp
and reverse the order of the summations,

to obtain

Tr �(f) = 1
n(�)k�k2

P
�1;temp

�(�1;�) St-Tr �1(f1);

the desired inversion formula.

Lemma 7.1

�(�1;�)

k�k2 =�(�1;�)
�1;

for all tempered related pairs (�1;�):

Proof: For any G-regular related pair (�1;�) we have

j�(�1;�)j = k�k ;

and so the assertion is clear in that case. We extend the formula to all
tempered pairs by coherent continuation (see the formulas of Section 14 of
[S2]).

We may thus rewrite the inversion as

Tr �(f) = 1
n(�)

P
�1;temp

�(�1;�)
�1 St-Tr �1(f1):
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Notice that the inversion formula will be independent of the normaliza-
tion of transfer factors. More precisely:

Lemma 7.2

A change in normalization of the compatible transfer factors
�geom and �spec =� does not change

1
k�k2�(�1;�) St-Tr �1(f1)

=�(�1;�)
�1 St-Tr �1(f1):

Proof: We have to multiply �geom and �spec by the same constant. Then f1
may be replaced by the same multiple of itself in the new transfer theorem,
and so the lemma is proved.

The following begins the proof of the inversion. See [A2] (Section 3) for
the geometric analogue.

Lemma 7.3

Assume that (�1;�) and (�1;�0) are G-regular related pairs.
Then

1
k�k2�(�1;�) �(�1;�

0) =�III(�1;�;�1;�
0)

provided the same toral data are chosen for each of
(�1;�) and (�1;�0):

Proof:

1
k�k2�(�1;�) �(�1;�

0) =�(�1;�)
�1�(�1;�

0)

is just the canonical factor

�(�1;�;�1;�
0):

Under the assumption on the toral data, we have
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�I(�1;�;�1;�
0) �II(�1;�;�1;�

0) = 1

(and the terms themselves are trivial if we further require the same a-data
for each pair). Thus we obtain

�III(�1;�;�1;�
0);

which completes the proof.

Corollary 7.4

In the setting of the lemma, the term �III(�1;�;�1;�
0) is canonical.

To specify the summation
P

�1;temp
for a given tempered representation

� of G(R) we return to Langlands�original constructions. Suppose that the
Langlands parameter for � is the G_-conjugacy class ' of ' : WR ! LG,
and set S' = Cent('(WR); G

_): We will make use of Sad' , the image of S'
in G_ad = G_=Z(G_); and of Ssc' by which we will mean the inverse image
of Sad' in G_sc: Notice that if ' is regular then S' is just the set of '(1� �)-
�xed points in the maximal torus Cent('(C�); G_); and so is abelian. For
all tempered ' we set

Sad' = �0(S
ad
' ) w S'=S

0
'Z(G

_)�:

This group was denoted S' in Section 5 of [S3]. Also set Ssc' = �0(S
sc
' ):

Keeping in mind Arthur�s conjecture of [A1], we work with a semisimple
element ssc of Ssc' instead of an element of S'; and now always use s to denote
the image of ssc in G_: Thus s lies in S' only up to an element of Z(G_); but
that will be su¢ cient to attach endoscopic data

e(ssc) = e(s) = (H
(s);Hs; s; �s)
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in the usual manner. Recall that Hs is the subgroup of LG generated by
Cent(s;G_)0 and the image of '; while �s is inclusion and H(s) is a dual
quasi-split group. We noted the requirements (i) - (iv) for endoscopic data
in Section 2. It is immediate that these are each satis�ed by e(s): We have
used the notation H(s) to preserve Hs for z-extensions.

Fix some attached z-pair (Hs; �s1) for e(s): By construction, '(WR) lies
in Hs and so we have a wellde�ned homomorphism 's = �s1 � ' representing
an element 's of �temp(Hs;�s1); where �

s
1 is the character attached to the

z-pair (Hs; �s1): Of course, '
s maps to ' under

�temp(H
s;�s1)! �temp(G):

We write �s for a representation of Hs(R) with parameter 's.

In the summation
P

�1;temp
we will take �1 = �s: Because we �nd that

1
k�k2�(�

s;�) �(�s;�0)

depends only on the image sad of ssc under Ssc' ! Sad' ! Sad' (Theorem
7.5 (i) below), we may take the summation over Sad' or, more precisely, over
semisimple representatives ssc for Ssc' =Ker(Ssc' ! Sad' ), and then n(�) will
be the order of Sad' :

For semisimple ssc 2 Ssc' and �0 in the L-packet of �; de�ne

�(ssc) = ��;�0(ssc) =
1

k�k2�(�
s;�) �(�s;�0):

By Lemma 7.1,

��;�0(ssc) =�(�
s;�)�1�(�s;�0)

and so

��;�0(ssc)��0;�"(ssc) = ��;�"(ssc)
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for all �;�0;�" in the same L-packet.

Theorem 7.5

(i) �(ssc) depends only on the image sad of ssc under Ssc' ! Ssc' ! Sad' :

(ii) sad ! �(ssc) is a character on Sad' which is nontrivial unless � = �0:

(iii) All characters on Sad' are so obtained.

This theorem gathers up results from Section 5 of [S3] into the K-group
setting. For the proof we will recall what we need from [S3] step by step
in the next three sections, and integrate this with the needed properties of
K-groups we have discussed in Sections 4 and 5.

Corollary 7.6

Summing over semisimple representatives ssc for

Ssc' =Ker(Ssc' ! Sad' ) w Sad'

we obtain

1
k�k2

P
ssc
�(�s;�) �(�s;�0) =

��Sad' �� Kr(�;�0);
where Kr denotes the Kronecker delta function.

Corollary 7.7

For each tempered irreducible admissible representation � of G(R)
we have

Tr �(f) = 1
n(�)k�k2

P
ssc
�(�s;�) St-Tr �s(f s)

= 1
n(�)

P
ssc
�(�s;�)�1 St-Tr �s(f s);
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where n(�) =
��Sad' �� is the cardinality of the L-packet of �:

Lemma 7.8

(i) Each summand in the inversion formula of Corollary 7.7 is
independent of the choice of representative for the Langlands
parameter ' of �:

(ii) Also, each summand is independent of the choice of z-pair (Hs
1 ; �

s
1)

attached to the endoscopic data e(s).

Proof: Applying Lemma 2.4 to the construction of e(s) shows that the terms
on the right side are unchanged when ' is replaced by another representative
Int g � '; g 2 G_. For a change in z-pair we apply Lemma 3.1.

8. Regular elliptic case

We now prove Theorem 7.5 in the case that � is elliptic as well as regular,
i.e. � is a discrete series representation. We apply theK-group setting to the
example of Section 5.2 of [S3]. See Section 3 of [A2] for a parallel argument
on the geometric side. In particular, we see how E(T ) replaces D(T ) in the
parametrization of discrete L-packets (recall the small examples of Section
4).

Thus G is cuspidal and ' = '(�) is discrete, i.e. the image of any
representative ' for ' is contained in no proper parabolic subgroup of LG:
Let T be the maximal torus Cent('(C�); G_) in G_. Then S' consists of
the elements of T �xed by the automorphism dual to the Galois action of
a Cartan subgroup T compact modulo the center of G: Thus the nontrivial
elements of Sad' = Sad' are exactly the elements of order two in the image Tad
of T in G_ad. Then S

sc
' = Ssc' ; an extension of Sad' by Z(G_sc); is a subgroup

of the inverse image Tsc of Tad in G_sc; and so is abelian as well as �nite.

For each ssc in Ssc' ; the parameter '
s must be G-regular and discrete,

so that �s is also a discrete series representation. The attached set e(s) of
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endoscopic data is thus elliptic, and Hs shares each Cartan subgroup T of
G that is compact modulo the center of G:

Before continuing, we recall representatives ' = '(�; �) for ' and 's =
'(�s; �s) for 's. We have �xed a splitting splG_ = (B; T ; fX�_g): Let � be
one half the sum of the roots of T in B. Then according to [L2] there is a
pair �; � 2 X�(T )
 C satisfying

1
2
(�� �T�)� �+ (�+ �T�) 2 X�(T )

and with � (thus integral) regular and B-dominant, with the property that
a representative ' = '(�; �) is given by

'(z � 1) = z�z�T(�)

for z 2 C�; and

'(1� �) = e2�i�n(�T)� (1� �);

with n(�T) the element of G_ attached by fX�_g to the Weyl group element
w(�T); where �T acts as w(�T) � � on T , as in Section 2.1 of [LS1]. Here �
is determined uniquely, while � is determined only modulo

X�(T ) + f� � �T� : � 2 X�(T )
 Cg,

and so ' is determined uniquely up to T -conjugacy.

Consider the embeddings (�s; �
1
s) attached to the endoscopic data e(s):

Recall that �s is the inclusion map of Hs in LG; and �1s embeds Hs in the
L-group LHs of the z-extension Hs. There are some harmless assumptions
we make: that T is the maximal torus and B\(H(s))_ is the Borel subgroup
speci�ed by our chosen �-splitting spls for (H(s))_, that (H(s))_ is a subgroup
of (Hs)_, and that the splitting we use for (Hs)_ is the natural extension spls1
of spls: We now denote by (��s; ��s) the pair (��; ��) attached in Section 11
of [S1] to the embeddings (�s; �

1
s): Each of �

�s; ��s lie in the space X�(T1)
C
containing X�(T ) 
 C. We see then that the parameter 's for Hs

1 has data
(�s; �s) relative to spls1, where

�s = �� ��s and �s = �� ��s:
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Given ssc in Ssc' and thus the endoscopic data e(s); we now �x toral
data for a fundamental maximal torus T over R in G. This includes, in
particular, a fundamental maximal torus T � in G�:Because T � is compact
modulo center, we may insist that the underlying isomorphism T ! (T �)_ is
independent of the choice of ssc. For our chosen representative ' = '(�; �);
we have S' contained in T and so T ! (T �)_ provides an isomorphism of
S' with the invariants in (T �)_ for the Galois action on T �:

Proof of Theorem 7.5 (' discrete):

By Lemma 7.3, we have

�(ssc) =�III(�
s;�;�s;�0):

By de�nition (following Section 10 of [S2] and Section 3.4 of [LS1]),

�III(�
s;�;�s;�0) = < (v�1; v0)U ; sU >;

where <;> denotes the Tate-Nakayama pairing for the torus U = U(T �; T �):
Since sU depends only on sad we conclude that �(ssc) depends only on sad
also, and since sad ! sU is a homomorphism we see that sad ! �(ssc) is a
character.

Recall next that the Tate-Nakayama pairing identi�es Sad' = Sad' w
S'=S

0
'Z(G

_)� as the dual of E(T �): Fix � and consider the characters ��;�0 =
��0 as �0 varies. It remains to show that we get jE(T �)j distinct characters
this way, with �� is trivial. Observe that, as in [A2], the product v�1v0 is
a 1-cocycle of � in T �sc which we may map to T

�; thus de�ning an element
of E(T �): We may evaluate ��0(sad) as < v�1v0; sad > : So it is clear (again)
that �� � 1:

Recall our notation associated with the K-group G in Section 4. The
chosen toral data provide T = tjT j as well as T �: There is no harm in
assuming that  �1 = ( 1)�1 maps T � to T = T 1 over R. Since we plan to
work in T 1 we use  1 to identify the two tori and suppress it in notation.
Notice, in particular, that E(T �) = E(T 1): We may further assume that the
cocycles xjsc; and so also the cochains u

j; each take values in T 1sc (see Section
10 of [K1]) and then that the isomorphisms  j : T 1 ! T j are part of the
chosen toral data.
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Recall also the notation of Sections 7b and 10 of [S2] for discrete series
representations (for given toral data). If �0 is a representation of Gj then
we write �j = �j(w); for some w in D(T j): From � = �j(1) and the various
�0 = �j(w) we get jD(T j)j distinct characters ��0 in the usual manner [S3]
(see also the paragraph before Remark 7.1 of [S2]).

There is no harm in assuming now that the �xed � is �1(1): Observe
that if �0 = �j(1) then

v�1v0 = (u1)�1uj = xjsc

up to coboundaries in T 1sc: More generally, we may estabish a bijection be-
tweenD(T j) and the classes in E(T 1) which map to the class of xj inH(�; G):
For this, we check that if g 2 G1sc and 0 denotes image under the twist
 1jsc : G

1
sc ! Gjsc, then

( gxjsc�
1(g)�1)0 = (g0�j(g0)�1):(xjsc)

0;

and so mapping the image of g0�j(g0)�1 in T j to the image of gxjsc�
1(g)�1 in

T 1; for appropriate g; establishes the bijection. We thus identify E(T 1) with
tjD(T j), and since

��1(1);�j(w) = ��1(1);�j(1)��j(1);�j(w);

the proof of Theorem 7.5 is now easily completed for discrete ':

9. Singular elliptic case

A useful intermediate case is that where G is cuspidal and � is elliptic
(in the sense of character theory). A standard representative '0 for ' = '(�)
from [L2] factors through a discrete parameter for a cuspidal Levi subgroup
LM and so through LTM; where the maximal torus TM is compact modulo
the center of M: To follow the arguments of [S3], we construct a represen-
tative ' factoring through LT; where T is compact modulo the center of G.
This new representative ' will be of the form '(�; �) of the last section, but
now the regularity requirement on � is dropped. We call such a ' a limit of
discrete parameters.
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Recall that in the proof of the transfer theorem (see Section 14 of [S2])
we obtained, by transfer of a discrete parameter for an elliptic endoscopic
group, a limit of discrete parameters ': We then constructed a standard
representative '0 (see Section 4.4 of [S3]) using the fact that, in this setting,
Cent('(C�); G_) is of type (A1)n; where n is the number of positive roots
outside the endoscopic group. We observe now that parameters with this
property are also su¢ cient for inversion in the elliptic case.

Thus we start with standard representative '0 for tempered parameter
'; assuming ' is relevant to G and that the attached extended L-packet
contains an elliptic representation. We follow the setting of Section 5.4 of
[S3], but now alter the notation slightly. Thus we now write '0 as discrete
'M(�; �) relative to the cuspidal Levi group

LM in our usual manner [S2].
As in 5.4 of [S3], a Levi group LfM is then constructed using the Knapp-
Zuckerman classi�cation in the dual setting of Langlands (reviewed in 5.3
of [S3]): this dual construction allows us to handle all representations in an
extended L-packet at once. The characters of these representations vanish
on the regular semisimple conjugacy classes not meeting fM(R); and so we
must have fM = G: Thus the representative ' = '(�; �), written e' in [S3],
is a limit of discrete parameters, and Cent('(C�); G_) is of type (A1)n (see
Proposition 5.4.2). Notice that the data (�; �) comes from '0 as discrete
parameter forM (see Proposition 5.4.3).

The representative ' has the property that we may �nd a complete
set of representatives ssc for Ssc' =(S

sc
' )

0 in the maximal torus Tsc: To check
this we recall some steps in the proof of Theorem 5.4.4 of [S3]. First, Lang-
lands�dual description of the R-group is used to construct representatives for
S'0=(S'0)

0 as in the proof of (5.4.5) on p. 424. Clearly these elements have
analogues in G_sc, and these analogues then provide a complete set of repre-
sentatives for Ssc'0=(S

sc
'0)

0: Next ' is de�ned as the conjugate of '0 given by the
element s described on p. 423. The conjugates under s of the representatives
chosen for Ssc'0=(S

sc
'0)

0 all lie in Tsc; and we thus obtain representatives ssc in
Tsc for all elements of Ssc' =(Ssc' )0, as desired. Notice also that the roots �_i
of the proof are, with their negatives, exactly the roots of Cent('(C�); G_):
For each representative ssc; the roots �_i for which �

_
i (ssc) = 1 are, with

their negatives, exactly the roots of Cent('s(C�); (Hs)_): If the parameter
's attached to ssc is a discrete parameter for the attached endoscopic group,
i.e. if �_i (ssc) = �1 for all �_i ; we recover the setting of the proof of transfer
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in Section 14 of [S2]; otherwise, 's is also a limit of discrete parameters and
we rely on coherent continuation.

Now suppose that � 2 X�(Tsc) is G_-dominant and G_-regular, so that
'� = '(� + �; �) and 's� = '(�s + �; �s) are discrete parameters. Then
the results of the last paragraph provide us with surjective homomorphisms
Ssc'� = Ssc'� ! Ssc' and Sad'� = Sad'� ! Sad' , along with the evident commu-
tative diagram. Suppose we attach to given representations �, �0 (with
parameter ') the corresponding representations �(�), �0(�) with parameter
'� described in Section 14 of [S2], i.e. �, �

0 are obtained from �(�), �0(�)
respectively by coherent continuation. Then, by the result of the last section,
for ssc in Ssc'� = S

sc
'�
we have the character

sad ! �(ssc) =
1

k�k2�(�(�)
s;�(�)) �(�(�)s;�(�)0)

on Sad'� : We argue by coherent continuation as in Section 14 of [S2] (see Sec-
tion 5.4 of [S3]), that the transfer factors �(�(�)s;�(�));�(�(�)s;�(�)0)
must coincide with �(�s;�);�(�s;�0) respectively, and thus �(ssc) coin-
cides with

1
k�k2�(�

s;�) �(�s;�0):

Proof of Theorem 7.5 (' elliptic):

It is su¢ cient to show that � descends to a character on Sad' ; and then
that for �xed � we get exactly

��Sad' �� distinct characters in this way.
To start, Ker(Sad'� ! Sad' ) = Ker(Sad'� ! Sad' ) is a subgroup of Tad which

we will describe shortly using arguments from the proof of Theorem 5.4.4 of
[S3].

To show that � is trivial on Ker(Sad'� ! Sad' ), we proceed in two steps: if
�, �0 belong to the same group Gj then we just use the argument for Lemma
5.4.19 in [S3], but if they belong to di¤erent groups then we need a property
of the K-group G that re�ects the relevance of ':

For this second step where the groups are di¤erent, we may assume that
we are in the setting of the last section for the proof in the discrete case.
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We will further assume that ��= �1�(1) and �
0
� = �j�(1); as we may easily

reduce to this case. Suppose we transport the class of xjsc to T
� by  1 to

obtain an element, say x; of H1(�; T �); and suppose that t is an element of
Sad'� ; i.e. t is an element of Tad �xed by the Galois action of T; and that t
lies in Ker(Sad'� ! Sad' ): Then we have to show that

< x; t > = 1:

Recall that x = (u1)�1uj (Section 4), and each of u1; uj de�ne cocycles u1ad;
ujad in the adjoint form Tad: We will check that t is the image of an element
tsc in Ker(Ssc'� ! Ssc' ) under the projection Tsc ! Tad with the property that

< u1ad; tsc > = < ujad; tsc > :

Since < x; t > may be calculated as

< xad; tsc > = < ujad; tsc > = < u1ad; tsc >;

we are then done with the second step. The proof of (5.4.6) in Theorem
5.4.4 of [S3] shows that we may construct the desired tsc and that it lies in
the �-invariants in the center Z(M_

sc) of the Levi group M
_
sc in G

_
sc: Then

we calculate both < u1ad; tsc > and < ujad; tsc > as �GM(tsc) in the notation of
Section 2 of [A2], and so the result follows.

It remains now to count that we have the correct number of characters.
We recall the discrete case from the last section and the exact sequence

1! E(T 1M)! Sad' ! R' ! 1;

where R' denotes Langlands� version of the R-group. From our explicit
description of the extended L-packet in terms of coherently continued char-
acters (see [S3] and Section 14 of [S2]), we see that we get exactly jR'j such
characters for each element w of E(T 1M) = tkD(T kM). Notice that because we
have assumed that the L-packet contains an elliptic representation, we have
the analogue of (5.4.15) of [S3] for each of the Gj comprising G; but that our
arguments for Theorem 7.5 apply equally as well with only the assumptionfM = G:
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10. General tempered case

To complete the proof of Theorem 7.5, it remains to consider the case
that the cuspidal Levi group fM of the last section is proper. This is little
more than an application of parabolic induction.

If ' is regular then fM = M, the R-group is trivial, and the map of
E(T 1M) = Sad'M into S

ad
' is an isomorphism. We may lift this to an isomorphism

Ssc'M ! Ssc' ; where again the superscript sc for M indicates the associated
Levi group in G_sc: If � = I(�M) and �0 = I((�M)0) then write �M for
the character attached to �M; (�M)0 and � as usual. If ssc lies in Ssc'M then
�M(ssc) = �(ssc) by the de�nition of transfer factors (Sections 8 - 10 of [S2]),
and so Theorem 7.5 for regular ' follows from the same result for the discrete
'M .

In general, we still have irreducible induced representations, but now we
invoke the results of the last section for fM: We have again an isomorphism
Ssc'fM ! Ssc' : This is an immediate consequence of the version of Theorem
5.4.4 of [S3] in Section 9. If semisimple ssc lies in Ssc'fM then �

fM(ssc) = �(ssc)
by the construction of spectral transfer factors (see Section 14 of [S2]). This
completes the proof of Theorem 7.5.

Remark 10.1 Observe that, as noted on p. 213 of [A1], we always have
that the character �G is trivial on (Z

_
sc)

� \ (Ssc' )0 = Z_sc \ (Ssc' )0:

11. Structure of tempered L-packets

In view of Theorem 7.5 it is tempting now to follow [S3] and simply
identify the L-packet � attached to a tempered parameter ' with the dual
of Sad = Sad' = �0(S

ad
' ); a �nite sum of groups of order two, but that is

not quite what is needed for global purposes [A1], at least when G is not of
quasi-split type. Following [A1], and motivated by [AV], we have introduced
the group Ssc = Ssc' = �0(S

sc
' ): This group is also abelian because it is a

quotient of a subgroup of a maximal torus in G_sc. By construction, S
sc
' is an

extension of Sad' by Z_sc = Z(G_sc); and so Ssc is an extension of Sad by the
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quotient of Z_sc by Z
_
sc \ (Ssc' )0: The group Ssc, while �nite and abelian, is

not necessarily a sum of groups of order two. The following small example is
useful to keep in mind: for the K-group SU(2) = SU(2)t SU(2); the group
Ssc is cyclic of order four when ' is discrete.

Recall that the character �G on (Z_sc)
� is trivial on (Z_sc)

� \ (Ssc' )0 =
Z_sc \ (Ssc' )0 (see Remark 10.1). We then follow [A1] and extend �G to a
character on the subgroup

Z_sc = Z
_
sc \ (Ssc' )0 = Ker(Ssc ! Sad)

of Ssc which we will also denote �G: Now because Ssc is abelian we may make
a further extension of �G to a character � on Ssc itself. In particular, if G is
of quasi-split type then we may take � to be the trivial character on Ssc. On
the other hand, � must be of order four in the case of SU(2): Also choose
a member �base of the L-packet � to serve as basepoint. There will be no
harm in using the same notation for both a semisimple element ssc of Ssc

and its image in Ssc: We de�ne

< ssc;�
base > = �(ssc):

We may now reinterpret Theorem 7.5 as:

Corollary 11.1

(i) There is an unique extension of < ; > to a pairing

< ; > : Ssc� � ! C�

satisfying

< ssc;� > = < ssc;�
0 > = �(�s;�) = �(�s;�0)

for all �;�0 2 �; ssc 2 Ssc:

(ii) This pairing identi�es � as the set of all characters on Ssc
of the form � 
 !; where ! is a character trivial on the kernel
of the projection Ssc ! Sad; i.e. as the set of all characters
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on Ssc whose restriction to Z_sc = Z_sc \ (Ssc' )0 coincides with �G:

We remark once again that�(�s;�)=�(�s;�0) coincides with the canon-
ical spectral transfer factor �(�s;�;�s;�0) of [S2] in the regular setting. In
general, it is a sign. The following is also part of Arthur�s conjecture in
Section 3 of [A1].

Corollary 11.2

�(�s;�) = �(�;ssc) < ssc;� >;

where �(�;ssc) satis�es

�(t�;zscssc) = t �(�;ssc) �G(zsc)
�1

for t 2 C� and zsc 2 Z(G_sc):

Here, of course, we have an explicit formula:

�(�;ssc) = �(ssc)
�1�(�s;�base):

For the proof of the corollary, we observe that if zsc 2 Z(G_sc) has image
z 2 Z(G_) then

�(�zs;�base) =�(�s;�base):

This is because we have attached endoscopic data in such a way (see Section
7) that e(zs) = e(s), and so the same z-pair will serve to construct both
'zs and 's: The construction then gives 'zs = 's; so that we may take
�zs = �s, and the corollary follows.

Remark 11.3 (Uniqueness of the pairing)

The pairing depends of course on the base point �base and the character
� extending �G: It does not, however, depend on the choice of representative
' for the Langlands parameter provided we adjust � 0 accordingly. To describe
this more precisely, suppose ' is replaced by '0 = Int(g) � '; where g 2 G_:
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Then if gsc 2 G_sc has same image in G
_
ad as g; we may use gsc to de�ne a

bijection ssc ! s0sc from semisimple elements in Ssc' to those in Ssc'0 : This
gives an isomorphism, also denoted ssc ! s0sc; of Ssc' with Ssc'0 ; as well as an
isomorphism � ! � 0 on characters such that � 0(s0sc) = �(ssc): As before, we
write s; s0 for the images of ssc; s0sc in G

_; Then e(s0) = g:e(s); and we can
take �s

0
for (�s)0 in the notation of Section 2. If ' is regular and �;� lie in

� we have

�(�s;�) = �(�s;�) =�(�s;�;�s;�)

which, by Lemma 2.1(iii) in the setting of K-groups, coincides with

�(�s
0
;�;�s

0
;�) =�(�s

0
;�) = �(�s

0
;�);

so that

�(�s;�) = �(�s;�) =�(�s
0
;�) = �(�s

0
;�)

in the regular case. We obtain the same result for all tempered ' by applying
the coherent continuation of Section 14 of [S2]. This and the de�nition of �
allow us to conclude now that

< ssc;� > = < s0sc;� >

for all � 2 �; semisimple ssc 2 Ssc' ; and so our assertion is proved.

Next, write Tr (�;ssc) for the endoscopic character

f ! St-Tr �s(f s) =
P

�2��(�
s;�) Tr �(f):

This character depends, of course, on the normalization of the transfer factor
� (recall Remark 2.5 and Section 3). Notice that we may use the factor
�(�;ssc) to shift the dependence:

Tr�(�;ssc) = �(�;ssc)
�1 Tr (�;ssc) =

P
�2� < ssc ; � > Tr �
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depends instead on the basepoint �base for� and the (constrained) character
� by which we pair �base:

Lemma 11.4

Every tempered endoscopic character on G(R) is a multiple of
some Tr�(�;ssc):

Proof: We have to show that the tempered endoscopic character

St-Tr �1(f1) =
P

�2� �(�1;�)Tr �(f);

attached to a set of endoscopic data e = (H;H; se; �) and z-pair (H1; �1); is a
multiple of some St-Tr �s(f s): In view of our analysis in Sections 2 and 3 we
may replace e by isomorphic data and (H1; �1) by another z-pair whenever
needed, and by Remark 11.3 we may use any convenient representative for
a Langlands parameter. As always, we use � to identify H as a subgroup
of LG: We may then assume parameter (representative) '1 for �1 has image
in �1(H), so that the attached parameter ' for � has image in H. We may
assume the datum se lies in S'; writing now s; and then adjust s again by a
central element to assume instead that it is the image of ssc in Ssc' . Thus H
= Hs since both groups are generated by the the image of ' together with
the identity component of the same centralizer in G_: We may also assume
H(s) = H; so that e = e(s); and use (H1; �1) for (H

s; �s): Now '1 coincides
with 's, and the lemma follows.

Assume now, and for the rest of this paper, that the K-group G is of
quasi-split type and that we use the normalization of transfer factors �geom

and �spec attached to Whittaker data (B; �) for G; writing instead �� for
each factor.

From Lemma 11.4, Corollary 14.1 of [S2], along with Section 5 above, it
follows that

��(�
s;�) = �1

for all tempered � and semisimple ssc 2 Ssc with image s in S: On the other
hand, we may assume that the character � on Ssc is trivial. Then (ii) of
Corollary 11.1 implies that < ssc;� > depends only on the image of ssc in
Sad, a sum of groups of order two, so that we have also
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< ssc;� > = �1:

Theorem 11.5

Assume that the basepoint �base for � is generic relative to (B; �):
Then

�(��;ssc) =��(�
s;�base) = 1

for all semisimple ssc 2 Ssc:

Recall that by results of Kostant [K] and Vogan [V], every tempered
L-packet forG contains generic representations, and within a packet we may
always choose (a unique class of) representations generic relative to given
Whittaker data (B; �) or, just as well, generic relative to any pair in the
G(R)-conjugacy class of (B; �): We will assume from now that �base is so
chosen, and that � is trivial.

Corollary 11.6

The pairing of Corollary 11.1 is given by

< ssc;� > =��(�
s;�)

for all semisimple ssc 2 Ssc and � 2 �.

Corollary 11.7

The endoscopic characters

Tr�(�;ssc) = Tr (�;ssc) =
P

�2� < ssc ; � > Tr �

are determined uniquely by (the G(R)-conjugacy class of) (B; �):

We prove Theorem 11.5 in Section 13.

Remark on notation We switch now to (B�; ��) for Whittaker data for
the rest of the paper. We will not need explicitly our earlier use of �� in data
attached to the embeddings of an endoscopic L-group. Also we continue to
use  for an inner twist. An additive character on R will be denoted  R:
Generally, T will denote a (maximally) compact maximal torus and T � a
maximally split one.
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12: Some examples

Recall �rst that the spectral transfer factors are de�ned in terms of
nondegenerate coherent continuation. This is not always the way an L-
packet is presented. For example, if we examine the form of the discrete
parameter '(�; �) from Section 8 (here we have returned to our normal use
for the notation �) we see that we may remove the regularity requirement
on � entirely, and still obtain a well-de�ned representative for a tempered
Langlands parameter '; and thus also an attached L-packet provided ' is
relevant to the given cuspidal K-group G. We can, at the same time, form
the set of distributions �(w�1�; �; w�1	), for any group G comprising G:
Recall that � is dominant with respect to the set 	 of B-simple roots of T ;
w is an element of the Weyl group of T : Each distribution, a limit of discrete
series, is either identically zero or a tempered irreducible character,. The
labelling of the individual characters, i.e. the choice of w; depends of course
on the map T ! T_; where T is compact modulo the center of G; used to
transport data, but the set so obtained does not.

In Theorem 4.3.2 of [S3] we showed that if ' is relevant to G then
the nonzero characters among these limits form the (nonempty) L-packet
attached to ', and that all limits are zero if ' is not relevant. The argument
was by induction on the dimension of G, using the fact that the transfer
identity allows coherent continuation, nondegenerate or not, while the proof
of endoscopic transfer required only the nondegenerate case. The extension
of Theorem 4.3.2 to K-groups is immediate. Assume ' is relevant to G and
that � is the extended L-packet attached to ': Then, according to Remark
11.3, there is no harm in using the (generally degenerate) parameter '(�; �)
to describe the pairing on �:

We observe now how to work directly with the parameter '(�; �) for
some particular representations considered by Carayol and Knapp [CK]. We
will make use of these representations in the proof of Theorem 11.5. First
we remark on the setting of [CK], and so assume the connected reductive
algebraic group G is simply-connected, semisimple, cuspidal and quasi-split
over R. Then the parameter � in '(�; �) is always zero and may be omitted.
We consider '(�) for � = 0; which is permitted since now � 2 X�(T ): The
K-group machinery may be ignored since '(0) is relevant only to a quasi-
split component of G which, as we check below, is unique. Notice that
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S'(0) = Sad'(0) is simply the group of �xed points in G
_ under conjugation by

the element '(0)(1� �) of LG:

For a slightly more general setting that is useful for endoscopy, and
needed for the argument of the next section, we allow the connected (as
algebraic group) cuspidal G to be reductive, and consider those '(�; �); for
which

< � ; �_ > = 0

for all roots �_ of T in G_. Again we assume G quasi-split over R; for
otherwise '(�; �) is not relevant to G: We will assume also that the derived
group of G is simply-connected or, equivalently, that the center of G_ is
connected, as this guarantees the existence of such parameters for G and its
elliptic endoscopic groups.

To show the existence, let T be a maximal torus over R that is compact
(anisotropic) modulo the center of G; and �x T ! T_ as usual to transport
data; we will have a particular way of choosing this shortly. By assumption,
the weight � de�nes a (rational) character on Tder(R). We take any extension
of this character to a continuous character on T (R) and write its Langlands
parameter as 'T (� + �; �): Then, by the congruence recalled in Section 8,
'(�; �) is a wellde�ned parameter for G. It is clear also that < � ; �_ > = 0
for all roots �_ of T in G_.

We now de�ne distributions �(w�1�; �; w�1	) = �(�; �; w�1	). Turn-
ing to endoscopy, because �s = ����s; where< ��s; �_ > = 0 for all roots �_

of T s in (Hs)_ (see Section 11 of [S1], also Section 8 above), 's = '(�s; �s)
has the same property relative to the endoscopic group Hs: Notice that, as in
the original case, we have Cent('(C�); G_) = G_; and so '; 's each factor
through all cuspidal Levi groups, and G must be quasi-split for relevance.
The L-packet attached to one of these parameters then forms the set of con-
stituents of a unitary minimal principal series representation.

We continue to ignore the K-group structure for now. We identify G
with its basic endoscopic group G� and take the inner twist  to be the
identity. We have �xed �-splitting splG_ = (B; T ; fX�_g) of G_, de�ning
'(�) uniquely up to T -conjugacy, and R-splitting spl� = (B�; T �; fX�g) of
G for transport purposes, and T is a maximal torus over R in G, compact
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modulo center. We are interested in R� opp splittings (B; T; fY�g): By this
we mean �(B) is the Borel subgroup of G opposite to B relative to T and
�(Y�) = Y�� for each B-simple root �: Here Y�� is chosen to form a simple
triple with Y�; H�: Notice that these splittings provide us exactly with the
Borel subgroups B containing T for which all B-simple roots are noncompact
(see Section 2 of [S4] for a review of de�nitions in our setting).

Fix an R � opp splitting spl = (B; T; fY�g): If spl0 is also an R � opp
splitting then (spl0)w = spl; where w lies in Gsc; and we see easily that �(w)
has the same property as w; and so w� = �(w)w�1 lies in the center Zsc ofGsc:
Conversely, if w� = �(w)w�1 lies in Zsc then (spl)w

�1
is an R� opp splitting.

Thus the G(R)-conjugacy classes of R� opp splittings of G are parametrized
by Ker(H1(�; Zsc) ! H1(�; G)); where H1(�; Zsc) ! H1(�; G) is given by
inclusion of Zsc in G: We will observe in Remark 12.3 that in the present
setting this kernel is the entire group H1(�; Zsc):

On the other hand, write spl as (spl�)h; where the element h of Gsc
acts by conjugation. Then we may use h to produce T ! T_; as well as
toral data including T . We thus attach the distributions �(�; �; w�1	) to
'(�; �); where now we regard 	 as the B-simple roots of T; and we assume,
without harm, that w from the last paragraph normalizes T; and so acts as an
element of the Weyl group of T . We associate w� to �(�; �; w�1	): Recall
that for a general Weyl group element w; the distribution �(�; �; w�1	)
is nonzero if and only if w�1	 consists of noncompact roots, and so we
also parametrize the nonzero distinct characters among the �(�; �; w�1	)
by Ker(H1(�; Zsc) ! H1(�; G)); i.e. by H1(�; Zsc): Thus the L-packet �
attached to '(�; �) consists of jKer(H1(�; Zsc)j representations.

Each of the representations in � is large (Theorem 6.2 of [V]) and there-
fore generic [K, V]. Distinct (classes of) representations are evidently generic
relative to distinct G(R)-conjugacy classes of Whittaker data. We wait to in-
troduce Whittaker normalization of the transfer factors until after the proof
of the next lemma. Instead, we simply take �base = �(�; �;	); and assume
that �base is paired as the trivial character. If �(�; �; w�1	) is nonzero, write
�(w) for the class of representations with this character. We map the class
of w� in H1(�; Zsc) to its image wT under H1(�; Zsc) ! H1(�; Tsc): Also,
given a semisimple element sad of Sad'(�;�); we de�ne sT 2 (T_ad)� in the usual
manner: conjugate sad to an element of Tad and transport that element to an
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element sT of T_ad �xed by the Galois action of T: The choice of conjugation
does not matter because w� is central (see the proof of Lemma 3.2.A of [LS1]
for a similar argument). Denote the Tate-Nakayama pairing on Tsc by < ,
>T : Then:

Lemma 12.1

< ssc; �(w) > = < sT ; wT >T :

Proof: Divide the left side by < ssc; �(1) > which, by assumption, is trivial.
The result is, by Corollary 11.1 above, �(�s; �(w)) = �(�s; �(1)); and so
we are back to examining transfer factors. First we recall how to assemble
suitable data.

First we conjugate '(�; �) to a standard representative '0: The data
for '0 must be of the form (�; �0) relative to the minimal Levi group T �;
and so � consists of the constituents of a unitary minimal principal series
representation. To present these constituents with nondegenerate data, we
then pass to e' = 'fM(�; e�) in the usual manner ([S3], Section 5). To simplify
notation, we now write M for fM Thus each �(�; �; w�1	) is parabolically
induced from a similarly de�ned �M(�; e�;w�1M 	M) for this cuspidal Levi
group M of type (A1)n:

Because the cocycle w� is central, conjugation by w de�nes an automor-
phism of G(R): Multiplying by an element of G(R); we may assume that
w de�nes an automorphism of M(R) of the same kind [S4]. From the de-
scent properties of transfer factors [S2], we have only to examine the factors
for M: We may continue coherently back into the chamber and assume that
�M(1); �M(w) are discrete series. We argue as in the proof of Lemma 3.2.A
of [LS1] again to see that we may compute the pairing on the right in a
fundamental maximal torus TM of M: Then we have only to recall from [S2]
how to compute �(�s; �(w)) = �(�s; �(1)) in a discrete L-packet to complete
the proof of the lemma.

We now use Whittaker normalization of the transfer factor. To specify
a particular set (B�; ��) of Whittaker data, we �x the R-splitting spl� =
(B�; T �; fX�g) as usual, along with a nontrivial additive character  R on R.
We then de�ne �� on a real point u of the unipotent radical of B� as always:
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if u = expx�1X�1 expx�2X�2 ::: modulo commutators, where �1; �2; ::: is an
enumeration of the B�-simple roots, then ��(u) =  R(x�1 + x�2 + :::): Recall
that the transfer factor ��� has one term depending on  R and one on spl

�;
but the factor itself, i.e. the product, depends only on the resulting character
�� [KS] or, just as well, on the G(R)-conjugacy class of (B�; ��): Once we
�x  R; we may identify the G(R)-conjugacy classes of data with the G(R)-
conjugacy classes of R-splittings of G:

Now we may choose an R�opp splitting spl = (spl�)h of G; and transfer
dual data as above, so that the representation �(1) with character �(�; �;	)
is generic with respect to (B�; ��): Suppose (spl)w

�1
is another R � opp

splitting of G; where w normalizes T: Then �(w) is generic with respect
to (B�; ��)w

�1
; and, if we assume Theorem 11.5 for � = �(1), we have

���(�
s; �(w)) = < ssc; �(w) > = < sT ; wT >T

for all semisimple ssc in Ssc' : Here, as usual for a quasi-split group, we have
designated the base point �(1) to pair as the trivial character. The simple
pairing on the right may be computed in terms of any maximal torus T
shared with the endoscopic group Hs; and so we will write just < s;w > :

Inversion of endoscopic transfer now expands each character Tr �(w) =
�(�; �; w�1	) as:

Lemma 12.2

Tr �(w)(f) = 1
jH1(�;Zsc)j

P
ssc
< s;w > St-Tr �s(f s):

Here St-Tr �s is the sum in Hs of all characters �(�s; �s; w�1s 	s) attached
to 's = '(�s; �s). As we have observed in the proof of Lemma 12.1, this
stable character St-Tr �s is a minimal principal series for Hs. Write '(�; �)
as ': Then the summation

P
ssc
is over any set of semisimple elements ssc

in Ssc' whose images in G_ad represent the components of the group of �xed
points in G_ad of conjugation by the element '(1 � �) of LG: For example,
for SU(2; 1) we are free to use either SU(2; 1) or U(1; 1) as the endoscopic
group contributing the one term on the right side.

Notice that if we use a general normalization of transfer factors in the
inversion then we may retain the right side of this formula as long as we
replace the left side by
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�(�s; �(1)) Tr �(w)(f):

Recall that �(�s; �(1))= j�(�s; �(1))j is a fourth root of unity [S2].

Remark 12.3 We have yet to check that H1(�; Zsc) ! H1(�; G) is the
trivial map. Here, with Remark 12.5 in mind, we allowG to be any connected
reductive quasi-split group. This is presumably wellknown and can be veri�ed
several ways. It is enough to check that H1(�; Z) ! H1(�; G) is trivial under
the assumption that G is simply-connected and semisimple.*     By a familiar
descent to a cuspidal Levi group, we may also assume G cuspidal. We reduce
immediately to absolutely simple groups. We have seen that the cardinality
of the L-packet � attached to '(�; �) is jKer(H1(�; Z)! H1(�; G))j : On
the other hand, the cardinality of � is also the same as the cardinality of the
R-group for the standard representative '0: The cardinality of this group is
listed in the �fth column of Table 5.1 of [CK] . In each case, that number
coincides with the cardinality of H1(�; Z):

Alternatively,  to check directly that the map H1(�; Z) ! H1(�; G) is
trivial when G is simple, simply-connected, cuspidal and quasi-split, we have
only to notice the following.

Lemma 12.4

In this setting, the image of H1(�; Z) in H1(�; T ) lies in the set D(T ):

Proof: We identify H1(�; T ) with

H�1(�; X�(T )) = X�(T )=2X�(T );

by Tate-Nakayama duality. The image of H1(�; Z) is then the image of

H�2(�; X�(Tad)=X�(T ))! H�1(�; X�(T ));

where Tad = T=Z; and so consists of the cosets represented by twice a
coweight. We may assume the simple roots are noncompact, and then the
coset of a sum of orthogonal simple coroots lies in D(T ) (see, for example,
calculations in Sections 2, 3 of [S6]). Suppose H1(�; Z) 6= 1: Then in each
case we observe from the tables in [B] a coweight �_ for which the coset of 2�_

is (i) nontrivial and (ii) represented by a sum of orthogonal simple coroots,
and that �nishes the proof except for D2n. For D2n, we �nd a second (and
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third) such coweight giving a distinct nontrivial coset, and that is enough to
�nish the proof.

Remark 12.5 Let G = tjGj be a K-group, with G1 quasi-split over R
and  1 : G1 ! G� de�ned over R. Then if Gj is also quasisplit over R there is
an inner automorphism Int ysc such that Int ysc� j is an R-isomophism, and
so the cocycle uj of Section 5 provides us with a cocycle yscuj�(ysc)�1 with
values in Z�sc: By the K-group construction, the image in H

1(�; G�) of this
cocycle is nontrivial if j 6= 1. According to Remark 12.3 that is impossible,
and so we conclude:

Lemma 12.6

The quasi-split component of a K-group of quasi-split type is unique.

In some cases, such as G1 = SU(n; n); this is the only component de-
termined uniquely by its isomorphism class: Lemma 12.4 fails for all other
inner forms of SU(n; n). On the other hand, for G1 = SU(n + 1; n) every
component is uniquely determined by its isomorphism class, and every inner
form of G1 appears in the K-group.

13. Proof of Theorem 11.5

Consider now any K-group G of quasi-split type, and denote by ���

the spectral transfer factor attached to the Whittaker data (B�; ��). Lemma
12.6 allows us to ignore the K-group structure. To save notation we also
assume that quasi-split G = Gj coincides with G�; and that the inner twist
 j is the identity. We will also �x throughout an additive character  R on R;
and use it with our chosen splitting spl� = (B�; T �; fX�g) of G to specify the
Whittaker data (B�; ��):We then specify other Whittaker data by adjusting
only the splitting.

First we reduce to the case that Gder is simply-connected, so that the
representations of the last section are available for the cuspidal Levi groups
in G. Recall that for many problems in ordinary endoscopy we may pass
without harm to a z-extension G1 of a given connected reductive group G
[L1, LS1], and that the derived group of G1 is simply-connected. Theorem
11.5 asserts that
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���(�
s; �) = 1

if � is generic relative to (B�; ��); where s denotes the image in G_ of given
ssc in Ssc: We regard � as a generic representation of G1(R) which trans-
forms trivially under the central kernel Z1(R) of the surjective homomor-
phism G1(R) ! G(R); and its Langlands parameter ' as a homomorphism
into LG1 with image in the subgroup LG: Then ssc; s are unchanged, and the
z-extension Hs may be chosen as in Section 4.4 of [LS1]. Recall from Section
3 that the particular choice of z-extension does not a¤ect our results. We lift
(B�; ��) and ���(�

s; �) to G1, observing term by term, including the epsilon
factor, that we again have the Whittaker normalization. The reduction step
now follows.

Next assume also that G is cuspidal, and the parameter ' = '(�; �) for
� is discrete. Choose toral data with T compact modulo center for which we
may write � = �(1) = �(�; �;	): Recall that we can do this by attaching to
� a R� opp splitting as in Section 12. Now use � = �	 to form a parameter
'0 = '(�0; �0) with < �0 ; �

_ > = 0 for all roots � in G; also as in Section
12. Set �0 = �0(1) = �(�0; �0;	): Then (�� �0; �� �0) de�nes a character
�(� � �0; � � �0) on T (R) and provides the necessary data for coherent
continuation from � to �0 (see Section 5 of [SV]). Here the role of ���0 is to
provide a needed shift in central character. Recall that in the present setting
both Gder(R) and Tder(R) are connected, while T (R) = Tder(R)Z(R) and
the various �(w�; �; w	) are supported on Gder(R)Z(R): Because Gder(C)
is connected and simply-connected we may easily �nd a highest T (C)-weight
that restricts to �(���0; ���0):We also have characters �(w���0; ���0),
thus allowing a uniform continuation of the entire extended L-packet of �;
which we abbreviate as continuation of ' to '0: Recall the transfer identity
for (�s; �) at the K-group level:

St-Tr �s(f s) =
P

�0;temp���(�
s;�0) Tr �0(f):

The representations �0 contributing nontrivially to the right side are the
representations �(w) of the quasi-split form on which we are working, as well
as some representations on other forms if D(T ) is a proper subset of E(T ):
The latter representations contribute nothing after coherent continuation to
'0 is applied to both sides of the transfer identity (more precisely, on the left,
the continuation is to 's0; as below), and so we may as well work exclusively
with the identity
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St-Tr �s(f s) =

���(�
s; �) Tr �(f) +

P
w 6=1���(�

s; �(w)) Tr �(w)(f)

on G(R); where the summation is over w in D(T ): The element ssc serves
for both ' and '0; and '

s = '(�s; �s) continues to 's0 = '(�s0; �
s
0), where

�s0 = �0 � ��s; �s0 = �0 � ��s, as ' continues to '0. The transfer identity
then becomes

St-Tr �s0(f
s) =

���(�
s; �) Tr �0(f) +

P
w 6=1���(�

s; �(w)) Tr �0(w)(f);

where now only those w in the image of H1(�; Zsc) contribute nontrivially
to the summation on the right. But the coe¢ cients on the right are, by the
transfer theorem, ���(�

s
0; �0) and ���(�

s
0; �0(w)): Thus to prove Theorem

11.5 for the pair (�s; �) it is su¢ cient to check that

���(�
s
0; �0) = 1:

Our assumption on the toral data or, more speci�cally on T � ! T; is
that �, generic relative to (B�; ��); is the member of the packet designated
�(1) = �(�; �;	): Since �0 = �0(1) = �(�0; �0;	); we have that �0 is generic
relative to the same (B�; ��). This property for our coherent continuation
(to the wall) follows easily from the arguments of Section 4.6 of [K].

Thus it remains to examine the identity

St-Tr �s0(f
s) =

P
w���(�

s
0; �0(w)) Tr �0(w)(f);

where the summation is over all w in the image of H1(�; Zsc): We may of
course rewrite the right side as

���(�
s
0; �0)

P
w < s;w > Tr �0(w)(f);

but that does not concern us here. The stable trace on the left is the character
of a minimal principal series representation of the elliptic endoscopic group
Hs(R): On the right, we then have characters that are parabolically induced
from a cuspidal Levi group M with the property that none of its roots are
from Hs: Thus M is of type (A1)r; where r is the number of positive roots
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in M . We may arrange that �1; �2; :::; �r is a superorthogonal set of B�-
positive real roots of T � such that conjugation by t 2M performs a sequence
of standard inverse Cayley transforms with respect to these roots, mapping
T � to a fundamental maximal torus TM in M . Thus spl�; (spl�)t provide an
R-splitting and an R � opp splitting for M: We now descend to M : �0 is
obtained by parabolic induction from a representation �0;M generic relative
to the attached data for M; and

���(�
s
0; �0) = ���(�

s
0;M ; �0;M):

We prove this last assertion by �rst recalling G-regular descent for the pairs
(Hs; G); (M1;M) from Section 12 of [S2] and then applying (nondegenerate)
coherent continuation as in Section 14 of [S2]. Here of course M1 is simply
the chosen maximally split torus in Hs; and by de�nition the epsilon factors
in the Whittaker normalizations relative to G andM are the same. Thus we
have only to prove

���(�
s
0;M ; �0;M) = 1:

Since M is of type (A1)r; we can calculate concretely, starting with discrete
series. With the standard (internal) choices we get

���(�
s
0;M ; �0;M) = [(�i)(�1)(�i)(1)]r = 1;

and so this step is done.

The last step in the proof is to drop the assumption that G is cuspidal
and the parameter ' is discrete. Notice that in the argument of the last
paragraph we may replace G by a cuspidal Levi subgroup. Now to deal
with a general tempered L-packet we combine descent to to a cuspidal Levi
subgroup with a coherent continuation as in Section 14 of [S2] (see also
Section 10 above). This �nishes our proof of Theorem 11.5.

For each tempered L-packet� attached to aK-group of quasi-split type,
we have now established the pairing

< ssc;� > =���(�
s;�);

52



for semisimple ssc 2 Ssc, � 2 �: The dependence on ssc is through its image
in the component group Sad; and we have a dual pairing of Sad and �. The
pairing of course depends on the Whittaker data (B�; ��) or, more precisely,
on the G(R)-conjugacy class of (B�; ��):

Our �nal remark concerns a change in the G(R)-conjugacy class of
(B�; ��). Write another set (B��; ���) of Whittaker data as (B�; ��)w

�1
; where

w� = �(w)w�1 lies in Zsc; and de�ne < s;w > as before (Section 12). This
sign may be computed using either H1(Zsc) or its image in H1(Z); so that it
is constant on G(R)-conjugacy classes of data.

Lemma 13.1

For all semisimple ssc 2 Ssc, � 2 �; we have

����(�
s;�) = < s;w >���(�

s;�):

Proof: We can argue exactly the same way as for the geometric factors [KS].
Both transfer factors����,��� are modi�cations of a standard factor�0 by
an epsilon factor. We can use the same epsilon factor by �xing the additive
character  R; and change instead the R-splitting used to de�ne the term �I

of �0. Then we are back to results in Section 3.2 of [LS1], and the lemma is
proved.

Alternatively, since ����, ��� are transfer factors they di¤er by a con-
stant (for given ssc): We may thus check the result on a single tempered
L-packet. We arrange that �s belongs to the minimal principal series, and
then the result is clear by a familiar reduction to SL(2).
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