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Abstract. We follow the theme of stabilization, and start with Arthur’s par-
adigm for the invariant trace formula, geometric side = spectral side, in the
case G = SL(2) over a number field. A simple canonical sign, an adelic trans-
fer factor, provides a measure of instability in the invariant trace formula from
the geometric side. If we write a good product formula, over all places, for
the factor then we can find another simple canonical sign, an adelic spectral
transfer factor, giving a spectral interpretation of instability. This offers some
motivation for a more recent look at endoscopy, twisted or not, for general
connected, reductive G defined over R, for extended groups (K-groups) even.
Internal motivation is that a structure for tempered spectral factors comes
almost for free once the geometric transfer factors have been defined. We will
discuss some of the theorems and describe tools used in their proof that may
be helpful as well for an approach to some questions at the infinite places in
Langlands’program for stable transfer (or stable-stable transfer for emphasis
that it lies beyond endoscopy). We also discuss results, some only partial,
useful in Arthur’s endoscopic classification for classical groups.
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1. A SETTING FOR REAL ENDOSCOPY

• Let G be a connected reductive algebraic group defined over R. Then G(C)
is connected but G(R) is not, in general. For our statements, it is crucial that
we use the entire group G(R), as it is in this setting that some basic formulas of
Harish Chandra from connected semisimple Lie groups with finite center attain
their simplest form. In particular, we consider full special orthogonal groups.

• By means of twisted analysis we can introduce disconnected G(C) if we work
one component at a time. For example, we may discuss orthogonal groups in terms
of twisted analysis on special orthogonal groups.
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• There are two kinds of endoscopy, ordinary and twisted. The first is a special
case of the second, but we will single it out when it illustrates a remark adequately.
More parts of the theory are incomplete when there is twisting.

•We use the Weil form of the L-group. Thus LG is a semidirect productG∨oWR,
with WR acting through WR → Γ = Gal(C/R) = 〈σ〉 . By construction, Γ preserves
some splitting (épinglage) of G∨. We work with a fixed Γ-splitting spl∨; this will
be harmless for our results.

• In a general twisted setting, we use both an automorphism θ of G defined
over R and a character $ on G(R) with central parameter a (which is used also for
inner twists of G). There will be no harm in fixing a 1-cocycle of WR in the center
of G∨ that determines this parameter.

• As quasi-split case, we consider a quasi-split group G∗ with R-splitting spl∗,
an automorphism θ∗ of G∗ defined over R and preserving spl∗, along with a cocycle
a. There exists a dual Γ-automorphism θ∨ of G∨ preserving spl∨.

• We call (G, θ, ψ) an inner twist of (G∗, θ∗) if ψ : G → G∗ is an inner twist
transporting θ to θ∗ up to an inner automorphism.

• In ordinary endoscopy we consider all Langlands (or Arthur) parameters. In
twisted endoscopy we are interested only in those fixed under the action of the
automorphism Lθa of LG given by g × w → θ∨(g).a(w)× w.

• Endoscopy starts with injective L-homomorphisms LH → LG, where H∨ is
the identity component of the θ∨-twisted centralizer of a θ∨-semisimple element
s in G∨. Here we may as well take s in the maximal torus provided by spl∨.
This distinguished element s is required to possess appropriate Galois-invariance
(it generates various κ’s as in κ-orbital integral). In general, there are not enough
such homomorphisms LH → LG.

•• Instead we may work with a diagram
LH1

↗
H
↘

LG

of injective homomorphisms, where H is a split extension of WR by the subgroup
H∨ = Centθ∨(s,G∨)0 of G∨ and H1 is as follows.

•• From H we can extract an L-action on H∨ and thus an L-group LH. Let H
denote a dual quasi-split group over R. Then H1 is a z-extension of H : the derived
group of H1 is simply-connected and the kernel of H1 → H is a central induced
torus.

•• This setup is directly useful for endoscopy. For example, consider Langlands’
original construction in ordinary endoscopy for factoring parameters for G.

•• Thus let ϕ : WR → LG be admissible (so that its conjugacy class under G∨

is a Langlands parameter). Write Sϕ for the centralizer in G∨ of the image of



D. SHELSTAD 3

ϕ. Let s be a semisimple element in Sϕ. Define H = H(ϕ, s) as the subgroup of
LG generated by Cent(s,G∨)0 and the image of ϕ. Since ϕ factors through H, a
diagram provides us with admissible ϕs : WR → LH1.

•• We will write LH1
z→ LG for the diagram and call H1 an endoscopic group.

•• Norms, or images in the case of ordinary endoscopy, of appropriate elements
in G(R) lie naturally in the group H(R). Since H1(R) → H(R) is surjective and
the structure of stable classes is the same for both these groups, we also find good
norm correspondences between G(R) and H1(R).

•• On the spectral side, we are interested in those Langlands parameters for H1

which factor through H (which makes sense at the level of parameters). This is
the same as prescribing a character on Z1(R) = Ker(H1(R)→ H(R)), nontrivial if
LH → LG does not exist. Thus, via parameters at least, packets of representations
of H1(R) for which Z1(R) acts by this character, call it $1, transfer to packets for
G(R).

2. SOME THINGS WE USE

• By a Cartan subgroup of G(R) we mean one in the sense of Harish Chandra for
reductive Lie groups. It coincides with the real points on a maximal torus T in G
defined over R. We call G cuspidal if it has a maximal torus T that is R-anisotropic
modulo the center ZG of G, so that G(R) has a discrete series if and only if G is
cuspidal. For now, we ignore twisting data θ,$.

• Assume T is a maximal torus over R in G (cuspidal or not). If we use the
Galois form for L-groups there is of course an obstruction to embedding LT in LG,
a 2-cocycle of Γ in T∨ which we may write explicitly. Since its inflation to WR
splits, there always exists an embedding of LT in LG for the Weil form of L-groups.

• An explicit description of the splitting, and then of LT ↪→ LG, is provided by
χ-data for the action of Γ on the set R(T,G) of roots of T in G. These χ-data also
play a role in the harmonic analysis for endoscopy.

• An orbit O of Γ in R(T,G) is either symmetric (O = −O) or asymmetric
(O ∩ −O = ∅). Here, as we are considering only C/R, the possibilities are simply
the following. Symmetric O is of the form {±α}, with α an imaginary root in
Lie group terminology, and asymmetric O is either {α}, where α is a real root, or
{α, σα}, with α a complex root.

• To a symmetric orbit {±α} we attach two characters χα, χ−α of C× such
that χ−α = χ−1

α and each character extends the sign character on R×. To the
asymmetric {α, σα} we attach any two characters χα, χσα of C× such that χσα =
χα, and to asymmetric {α} we attach any character χα on R×. These various
characters form a set {χα} of χ-data.

•• An example of an embedding LT ↪→ LG. Assume that G is semisimple
and T is R-anisotropic. Each O is symmetric. Identify T∨ with the maximal torus
in G∨ provided by spl∨ (use the inner twist and an inner automorphism of G∗

to identify T with the maximal torus provided by spl∗ equipped with transported
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Galois action; then take duals). Define χα(z) = (z/z)1/2 if α∨ is a root of the
Borel subgroup provided by spl∨, and then take χ−α as we must. Let ι be one-half
the sum of all such roots α. Then (z/z)ι =

∏
O

[χα(z)]α is an element of T∨. The

embedding attached to {χα} is given by
t× (z × 1) → t.(z/z)ι × (z × 1)

t× (1× σ) → t.n× (1× σ),

where t ∈ T∨, z ∈ C×, and n ∈ G∨ represents the longest element of the Weyl
group of T∨ in G∨ (ambiguity in the choice of n does not matter).

• Along with χ-data we have a-data {aα} : aα ∈ C×, a−α = −aα and aσα = aα,
for all α ∈ R(T,G). The a-data appear first in another problem which we skip here.
Next we have a use for both types of data that prepares for the geometric side of
endoscopy.

• For regular γ ∈ T (R), D(γ) = det[Ad(γ) − I]g/t lies in R× and is stably

invariant. We will include |D(γ)|1/2 in the definition of an orbital integral:

O(γ, fdg) = |D(γ)|1/2
∫
T (R)\G(R)

f(g−1γg)
dg

dt

for a suitable measure fdg on G(R) (dg is a Haar measure on G(R), f is of C∞c -
or Schwartz type) and Haar measure dt on T (R). Then, for γ strongly regular, the
stable orbital integral is

SO(γ, fdg) =
∑
γ′

SO(γ′, fdg),

with the summation over representatives γ′ for the conjugacy classes in the stable
class of γ. Here we use related Haar measures dt, dt′ ... prescribed by invariant
differential forms of highest degree.

• To define a variant ΨT of Harish Chandra’s Ff -transform we note that

χα(
α(γ) − 1

aα
)

is independent of the choice of α within its Galois orbit O, and set

ΨT (γ) =
∏
O

χα(
α(γ)− 1

aα
).SO(γ, fdg).

Then ΨT extends smoothly everywhere on T (R) off the walls α = 1 for certain (in
the quasi-split case, all) imaginary roots α.

• Across such walls ΨT exhibits jump behavior. This is the key ingredient in
a characterization of stable orbital integrals. The wall α = 1 is shared with an ad-
jacent and more split Cartan subgroup T ′(R) for which the wall is not problematic.
Assume γ0 ∈ G(R) lies on this and no other wall. Then ΨT ′(γ0) is well-defined. In
T (R) we may cross through the wall at γ0 along the curve

R � ν → γν = γ0 exp ν(aαHα).

Here Hα is more familiar notation for the coroot α∨ as element of the complex Lie
algebra; aαHα lies in the Lie algebra of T (R) and is independent of the choice of α
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in its orbit. Because we use stable integrals it is clear, given existence of the limits
(Harish Chandra), that

limν→0−ΨT (γν) = − limν→0+ΨT (γν).

We now require certain easily satisfied symmetry properties relative to α of the
a-data and χ-data for T, T ′. Then we also find, after some quite long arguments if
we start with the original Ff -transform, the simple formula

limν→0+ΨT (γν) = ΨT ′(γ0).

Here Haar measures dt, dt′, suppressed in notation, are also to be related appropri-
ately.

• There are also formulas for derivatives. Consider the action of operators in
the symmetric algebra on t either symmetric or antisymmetric relative to the Weyl
reflection for α, and apply a suitable twist. In the antisymmetric case the jump is
zero, while in the symmetric case we adapt (quickly) Harish Chandra’s differential
equations for the Ff -transform to get the same simple formulas as above when a
related pair of operators on T, T ′ are applied to ΨT ,ΨT ′ respectively.

• How do we use this? We start with twisted orbital integrals for a measure fdg
on the group G(R), and find that suitably weighted sums of these integrals factor
through the norm map to the endoscopic groupH1(R), at least for suffi cently regular
elements. The suitable weights are the geometric transfer factors which we come
to next. Then we will use our characterization of stable orbital integrals on H1(R)
via the transforms ΨT1 to prove geometric transfer, i.e. to verify that this factoring
is through the stable orbital integrals of a suitable measure f1dh1. See Theorem 1
for a more precise (and stronger) statement.

3. RE MOTIVATION FROM STABLE TRACE FORMULA

• Stabilization of the regular elliptic term on the geometric side of Arthur’s
invariant trace formula offers guidelines for defining transfer factors; in particular,
these factors are needed at all places and they must satisfy a product formula. The
motivation from SL(2) mentioned in the abstract is a refinement which requires
more preparation, and so we will save it until later.

4. STRUCTURE OF TRANSFER FACTORS

• Transfer factors are defined first on very regular pairs of points or represen-
tations. For example, for the geometric factor ∆geom we consider pairs of points
(γ1, δ), where γ1 ∈ H1(R) is strongly G-regular and δ ∈ G(R) is strongly θ-regular.
We set ∆geom(γ1, δ) = 0 unless γ1 is a norm of δ. Rather than pick a normalization
for ∆geom, we will define a canonical relative factor ∆geom(γ1, δ; γ

′
1, δ
′) and then

call ∆geom(−,−) a geometric transfer factor if

∆geom(γ1, δ)/∆geom(γ′1, δ
′) = ∆geom(γ1, δ; γ

′
1, δ
′)

whenever strongly G-regular γ1, γ
′
1 is a norm of δ, δ′ respectively.

• Consider now a spectral pair (π1, π). Here we will limit our attention to tem-
pered irreducible admissible representations. Call a parameter ϕ for G(R) regular
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if Cent(ϕ(C×), G∨) is abelian. Because this centralizer is always connected, we can
ignore strongly in the definition. Recall that for the endoscopic group H1(R) we
consider parameters ϕ1 with image in H. The diagram LH1

z→ LG attaches to ϕ1

a parameter ϕ for G(R). We call ϕ1 G-regular if ϕ is regular. Then ϕ1 is regular
as parameter for H1(R), and we call (ϕ1, ϕ) a G-regular related pair.

• Fix (π1, π) with G-regular related pair (ϕ1, ϕ) as parameters. By the endo-
scopic constructions, ϕ is preserved by the automorphism Lθa. Then the packet
Π of π is preserved under π′ → $−1 ⊗ (π′ ◦ θ). We write Πθ,$ for those π′ ∈ Π
fixed by this map, i.e. for those π′ ∈ Π such that π′ ◦ θ ≈ $ ⊗ π′. These are the
only members of the packet contributing nontrivially to (θ,$)-twisted traces. We
call Πθ,$ a twist-packet. A twist-packet may be empty but not in the setting we
will consider. We call (π1, π) a G-regular related pair (or a very regular related
pair) if also π lies in Πθ,$.

• If (π1, π) is a very regular pair that is not related then set ∆spec(π1, π) = 0.
For any two very regular related pairs (π1, π), (π′1, π

′), we will define canonical
∆spec(π1, π;π′1, π

′) and then call ∆spec(−,−) a spectral transfer factor if

∆spec(π1, π)/∆spec(π
′
1, π
′) = ∆spec(π1, π;π′1, π

′).

In the general twisted case there are two cheats here: (i) in some cases our method
misses a few pairs, and (ii) there is a hidden dependence in relative ∆spec we will
discuss later (it will be harmless for the transfer statement).

• We consider now the structure of ∆geom(γ1, δ; γ
′
1, δ
′) in some detail, and then

∆spec(π1, π;π′1, π
′) will come almost for free.

• Relative ∆geom comes as a product ∆I .∆II .∆III .

• Start with ordinary endoscopy. First, we remove a small piece of ∆III (usually
written ∆III2) and put it with ∆II , a term related to the harmonic analysis we have
already discussed. The new ∆II involves χ-data but that choice doesn’t matter.
The choice of a-data is, however, important.

• The remaining piece ∆III1 of the ∆III term now measures the relative posi-
tions of the conjugacy classes of δ, δ′ in their stable classes. It is critical that this
measurement is done via the quasi-split form. We can define, via Tate-Nakayama
pairing in Galois cohomology, relative positions of the two classes, but not absolute
position, in general. However, even the relative position depends on how we identify
maximal tori in H = H1/Z1 as maximal tori in G∗. Such identifications are given
by a choice of toral data (for the quasi-split form).

• A local analysis of ∆III using a geometric method of Langlands shows us that
we can introduce a term ∆I which cancels the dependence on toral data. It does
introduce a dependence on a-data, but that is cancelled by the use of a-data in the
term∆II needed for harmonic analysis. Thus we have canonical∆geom(γ1, δ; γ

′
1, δ
′).

• In twisted endoscopy we cannot separate a term ∆III2 from ∆III in general:
the pairings in ∆III become a single pairing in Galois hypercohomology. There is
then no separate relative positional term in general. Nevertheless the same principle
applies: the positional contribution to ∆III depends on toral data in a way that
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cancels with the dependence in ∆I at the expense of introducing dependence on
a-data. That cancels with the dependence in ∆II . The choice of χ-data does not
matter for the product∆II∆III , and so we again have canonical∆geom(γ1, δ; γ

′
1, δ
′).

•We can use the same strategy for spectral factors. Again start with the ordinary
case. First we make a relative positional term ∆III for representations within a
packet. This uses the same Galois cohomology constructs as in the geometric case
and, in particular, depends in the same way on toral data. Thus we introduce
∆I as before. Again we need ∆II depending correctly on a-data. We will find it
in local character expansions, as described shortly. There is no dependence on χ-
data. Thus we have canonical ∆spec(π1, π;π′1, π

′) for any two tempered G-regular
related pairs (π1, π), (π′1, π

′). Harish Chandra’s explicit formulas for discrete series
characters show ∆spec(π1, π;π′1, π

′) to be a fourth root of unity, and then a little
further analysis shows it to be a sign.

• Before extending this to the twisted case, we review our setting. We will start
with the case G is cuspidal as our main interest will be discrete series packets for
G(R). Suppose then that T is a maximal torus in G that is R-anisotropic modulo
the center ZG of G, so that T (R)/ZG(R) is compact and connected.

• Start with the quasi-split data (G∗, θ∗). Recall that θ∗ preserves the R-splitting
spl∗ based on a maximally R-split torus in G∗. Consider a splitting spl based instead
on T, say (B, T, {Xα}). Here B is a Borel subgroup containing T and, for each root
α in a base for R(T,B), Xα is a root vector for α. Complete each Xα, Hα to a
simple triple {Xα, Hα, X−α}. We call spl fundamental if σXα = ±X−α for all
α in the base. Such splittings exist for G∗ and for each of its inner forms (same
definitions apply). Moreover, any automorphism of G that preserves a fundamental
splitting is defined over R as long as its restriction to the center ZG is defined over
R. For G∗ alone, we can find splittings with σXα = X−α for all α in the base; this
will concern us later. Finally, our quasi-split datum θ∗ preserves some fundamental
splitting of G∗.

• Now take an inner twist (G, θ, ψ). We can adjust ψ within its inner class
to transport a θ∗-stable fundamental splitting of G∗ to a fundamental splitting
of G. So θf = ψ−1 ◦ θ∗ ◦ ψ is defined over R, and coincides with θ up to an
inner automorphism defined over R. The twist-packets are nonempty if the inner
automorphism is realized by an element of G(R). To save time and notation, we will
assume here that θ itself preserves a fundamental splitting. The terms ∆I(π1, π),
∆III(π1, π;π′1, π

′) are defined by adapting the machinery from the geometric case to
spectral information. For ∆III , fundamental splittings are the key new ingredient:
under our assumption on θ, we can attach to each π (in a discrete series twist-
packet) a fundamental splitting splπ preserved by θ.

5. SPECTRAL FACTORS AND LOCAL CHARACTER FORMULAS

• Here we focus on the term ∆II(π1, π) from harmonic analysis, in the case that
π is a discrete series representation. This term will depend on a-data for T in
exactly the way we need.
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• We start with the endoscopic group H1(R) and the ordinary stable traces
attached to a discrete series packet. Write Π1 for the packet of π1. By π1(f1dh1)
we mean the operator ∫

H1(R)/Z1(R)

f1(h1)π1(h1)dh

(in f1dh1, only dh = dh1
dz1

is variable), and then St-Trace π1(f1dh1) means the sum
over π′1 ∈ Π1 of Trace π′1(f1dh1). Fix Haar measures and drop them from notation.
According to Harish Chandra’s regularity theorem, the stable tempered distribution
f1 → St-Trace π1(f1dh1) is represented by a locally L1 function we will call St-
Chπ1 that is real analytic on the regular set of H1(R). It will be enough to examine
the Harish Chandra formula for St-Chπ1 near the identity on the regular set of a
Cartan subgroup T1(R) that is compact modulo ZH1

(R). Such a T1 is provided by
the choice of toral data for T as in the last step. The choice of toral data will not
matter for ∆II(π1, π).

• Consider a regular element γ1 = expX1,with X1 ∈ t1(R) close to 0. Then we
may write St-Chπ1(γ1) as

υH1
(a1).∆a1(X1).

∑
w1

det(w1).ew1µ1(X1).

Here ∆a1(X1) is, by definition,∏
O1 sign (

eα1(X1)/2 − e−α1(X1)/2

aα1
). |D(expX1)|−1/2

,

where the product is over representatives α1 for the Galois orbits O1 = {±α1}
of roots of T1 in H1. We use a-data a1 = {aα1} provided by a-data for T. The
summation

∑
w1
is over the full (complex) Weyl group of T1 in H1. Next, µ1 ∈

X∗(T1)⊗C is a regular linear form on t1 = X∗(T1)⊗C uniquely determined by the
choice of toral data. The constant υH1(a1) is computed, using Harish Chandra’s
character formula, to be a fourth root of unity.

•• The formula we have written for St-Chπ1(γ1) is purely local. We may use
χ-data to make it global: each choice of χ-data provides us with a different way
of writing the (same) extension of this local formula to Harish Chandra’s global
formula on the regular set in T1(R).

•We turn to the twisted character of π. First define a unitary (bounded) operator
π(θ,$) on the space of π to interwine π ◦ θ and $ ⊗ π :

π(θ(g)) ◦ π(θ,$) = $(g).(π(θ,$) ◦ π(g)),

for g ∈ G(R). Then consider the distribution

f → Trace[π(f) ◦ π(θ,$)]

on G(R). By Bouaziz’s extension of Harish Chandra’s regularity theorem and a
little further argument if the twisting character $ is nontrivial, this distribution is
represented by a locally L1 function Tw-Chπ real analytic on the twisted regular
set of G(R).

• We will define ∆II(π1, π) so that

∆II(π1, π).T race[π(f) ◦ π(θ,$)]
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is independent of the normalization of π(θ,$).

• Recall that θ fixes the fundamental splitting splπ = (Bπ, Tπ, {Xα}). We con-
sider a local expression for Tw-Chπ around the identity. Let T 1 be the identity
component of the fixed points of θ in Tπ. For strongly θ-regular δ = expX, with
X ∈ t1(R) suffi ciently close to zero, we may write

Tw-Chπ(δ) = υG(ares).∆a(X).
∑
w,R

detw.ewµ(X).

Here:
(i) The summation

∑
w,R is over the quotient

Norm(T 1, G(R))/Cent(T 1, G(R)) = Norm(T 1, G(R))/Tπ(R).

Since θ preserves a (fundamental) splitting, this quotient embeds naturally in the
complex Weyl group of T 1 in (Gθ)0.
(ii) The factor ∆a(X) is∏

Ored sign(
eNα(X)/2 − e−Nα(X)/2

aαres
).
∣∣det[Ad(expX) ◦ θ − I]g/tπ

∣∣−1/2
,

where the product is over the set of Galois orbits Ored = {±αres} of the reduced
roots among the restrictions to T 1 of the roots α of Tπ in G, and Nα is the sum of
all roots in the θ-orbit of α. Also ares = {aαres} are a-data in this setting.
(iii) The constant υG(ares) depends on our choice of the operator π(θ,$), but

clearly
υG(ares)

−1Trace[π(f) ◦ π(θ,$)]

does not.
(iv) The linear form µ on t1(R) is uniquely determined by the choice of toral

data for T .

•• Once again we may use χ-data to globalize the formula, now to the θ-regular
θ-elliptic set in G(R). Care is needed for the orbits of those αres for which 2αres is
a restricted root (the sign above is misleading).

• The linear forms µ1, µ attached to the parameters ϕ1, ϕ for π1, π have dom-
inance properties relative to the fixed splittings for H∨, G∨. In general, µ1 is not
dominant for G∨. It is, however, dominant for G∨, or well-positioned, in the case
that ϕ1 is obtained from ϕ by Langlands’factoring, the case of main interest to us
here.

• For ϕ1 well-positioned, we define

∆II(π1, π) = (−1)qG−qG∗ .υH1(a1).υG(ares)
−1,

where qG is one-half the dimension of the symmetric space attached to the simply-
connected cover Gsc of the derived group of G. For general ϕ1 there is an additional,
easily described, sign.

• We have now finished describing the terms in ∆(π1, π;π′1, π
′). For ordinary

endoscopy this relative spectral factor is a canonical sign. In the twisted setting, it
is nonzero but depends on the normalization of operators π(θ,$), π′(θ,$).



10 D. SHELSTAD

• We reduce this last choice to normalization of a single operator per twist-
packet. Consider a map PΠ : π → π(θ,$) defined on the twist-packet in Π. Call
PΠ balanced if, with this choice of operators π(θ,$), we obtain

∆II(π1, π) = ∆II(π1, π
′),

for all π, π′ in the twist-packet. This is easily arranged for PΠ in the setting we
discuss here, and so we assume it from now on.

6. GEOMETRIC-SPECTRAL COMPATIBILITY

• The geometric transfer theorem will depend on the normalization of ∆geom.
Once that is fixed there can be only one normalization of ∆spec that works for the
dual transfer. Suppose we pick a very regular pair (π1, π). Also pick a very regular
geometric pair (γ1, δ). Neither choice will matter (because of transitivity properties
of the various relative factors). We call ∆geom,∆spec compatible if

∆geom(γ1, δ)/∆spec(π1, π) = ∆comp(γ1, δ;π1, π),

where the (almost) canonical factor ∆comp is constructed as a product ∆I .∆II .∆III

using the various pieces of the parallel geometric and spectral constructions.

•We now defineWhittaker normalizations for∆geom,∆spec and see that they are
compatible. We will assume here that (G, θ, ψ) is the trivial inner twist (G = G∗,
θ = θ∗, ψ = identity), although there is a useful extended (K-group) setting.

• First we may define absolute terms ∆III(γ1, δ) and ∆III(π1, π) for very regular
pairs. Then absolute ∆0 = ∆I∆II∆III makes sense for both the geometric and
spectral versions. We verify easily that each is a transfer factor and then that they
are compatible, almost by definition. There are two dependences in this normal-
ization: in spectral ∆II there is the choice of balanced PΠ (in the twisted case),
and in both ∆I terms there is our choice (fixed throughout) of θ

∗-stable R-splitting
spl∗.

• For Whittaker normalization, the insertion of an epsilon factor shifts the de-
pendence on spl∗ to dependence on Whittaker data.

•Whittaker data consist of a pair (B, λ), where B is a θ∗-stable Borel subgroup
of G∗ defined over R and λ is a θ∗-invariant generic character on N(R), where N
is the unipotent radical of B. There will be no harm in assuming that B is part of
spl∗, and that λ is the character determined by spl∗ and the choice of an additive
character ψR on R. Consider the representation of Γ on VG = X(T ∗)θ

∗ ⊗ C, where
T ∗ comes from spl∗. Similarly, although we have not mentioned it explicitly, we
work with an R-splitting spl∗H for H (determining spl∗1 for H1) with torus T ∗H . Set
VH = X(T ∗H)⊗ C. Then X(T ∗)θ

∗
, X(T ∗H) are isomorphic but not as Γ-modules in

general. Set V = VG − VH and define εL(V, ψR) as in Section 3 of Tate’s Corvallis
article.

• The transfer factors with Whittaker normalization (relative to (B, λ))
are defined for very regular pairs (γ1, δ), (π1, π) by

∆Wh(γ1, δ) = εL(V, ψR).∆0(γ1, δ)
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and
∆Wh(π1, π) = εL(V, ψR).∆0(π1, π).

It is immediate from our earlier comments that they are compatible. In the case
of SL(2), this normalization coincides with that in Labesse-Langlands (for all local
fields of characteristic zero).

• In the case of Whittaker normalization there is also a natural choice for bal-
anced PΠ: the representation πWh generic relative to (B, λ) lies in the twist-packet
Πθ,$, and then PΠ is determined by the familiar requirement that πWh(θ,$) fix
one, and hence every, Whittaker functional.

7. SOME THEOREMS FOR REAL ENDOSCOPIC TRANSFER

• We start with ordinary endoscopy: G is arbitrary and H1 is endoscopic for G.

• Conventions on measures are to make choices irrelevant as far as transfer
factors are concerned: see references. There is also some analysis regarding central
characters, which will become critical after twisting is introduced. Here we will
ignore this also: see references. Recall, however, we consider only representations
of H1(R) for which the central subgroup Z1(R) acts by the fixed character λ1.

THEOREM I, Part 1 (Geometric transfer, ordinary endoscopy)

Let ∆geom be a geometric transfer factor. Then for each measure fdg on G(R)
there exists a measure f1dh1 on H1(R) such that

SO(γ1, f1dh1) =
∑

δ
∆geom(γ1, δ) O(δ, fdg)

for all strongly G-regular γ1 ∈ H1(R).

• If f is a Schwartz function then we take f1 Schwartz modulo λ1,while if f is
C∞c then we may take f1 to be C∞c modulo λ1 (Bouaziz).

• The easiest proof appears to be as a special case of the one we will discuss
(briefly) for the twisted case.

• The very regular geometric transfer extends in various ways to other conjugacy
classes. The very regular case is suffi cient to determine uniquely the stable tempered
traces St-Trace π1(f1dh1).

•We now break up the results on dual transfer to highlight the various challenges
for the twisted case.

THEOREM I, Part 2a (Dual very regular tempered spectral transfer)

Let ∆spec be the spectral transfer factor compatible with ∆geom. Then

St-Trace π1(f1dh1) =
∑

π
∆spec(π1, π) Trace π(fdg)

for all G-regular tempered irreducible representations π1 of H1(R) with Z1(R)
acting by λ1.
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• In this setting, the critical case is when π1 is a G-regular discrete series repre-
sentation. Then ∆spec(π1, π) is nonzero only for π in the corresponding packet of
discrete series representations on G(R). Here we use Harish Chandra’s characteri-
zation of discrete series representations to prove the following:

f → St-Trace π1(f1dh1)

and
f →

∑
π

∆spec(π1, π) Trace π(fdg)

are tempered invariant eigendistributions which agree on the regular elliptic set
and hence coincide. The remaining cases follow from putting together the pieces of
parabolic descent.

THEOREM I, Part 2b (Extension to full tempered spectral transfer)

Let ∆spec be the spectral transfer factor compatible with ∆geom. Then there is a
unique extension of ∆spec such that

St-Trace π1(f1dh1) =
∑

π
∆spec(π1, π) Trace π(fdg)

for all tempered irreducible representations π1 of H1(R) with Z1(R) acting by λ1.

• This extension comes from the translation principle (coherent continuation) in
the tempered setting, and uses a uniform L-group version for decomposing unitary
principal series representations of real reductive groups.

• Variants of the Weyl integration formula allow us to rewrite the results as a
set of character identities, if desired.

THEOREM I, Part 3 (Converse)

If fdg and f1dh1 satisfy

St-Trace π1(f1dh1) =
∑

π
∆spec(π1, π) Trace π(fdg)

for all tempered irreducible representations π1 on H1(R) with Z1(R) acting by λ1

then
SO(γ1, f1dh1) =

∑
δ

∆geom(γ1, δ) O(δ, fdg)

for all strongly G-regular γ1 in H1(R).

• Proof is easy given existence of the geometric transfer (Part 1) and dual transfer
attached to it (Part 2b): if f ′1dh1 is provided by geometric transfer, all stable
tempered traces agree on f1dh1 and f ′1dh1, and so then do all stable orbital integrals.

• Consider now the twisted setting. For the proof of geometric transfer, both
G and θ,$ are (almost) arbitrary. We do have to allow for a slight twisting in
defining stable classes on H1(R) but we will ignore this in notation. This slight
twisting arises in cases where twist-packets are empty.
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THEOREM II, Part 1 (Geometric transfer, twisted endoscopy)

Let ∆geom be a geometric transfer factor. Then for each measure fdg on G(R)
there exists a measure f1dh1 on H1(R) such that

SO(γ1, f1dh1) =
∑

δ
∆geom(γ1, δ) O

θ,$(δ, fdg)

for all strongly G-regular γ1 ∈ H1(R).

• Proof: Is long, but less so if the twisting is trivial. A study of norm corre-
spondences and some descent arguments reduce the problem to an analysis of the
relative transfer factor across the problematic walls. Here the canonicity is critical,
as we make different choices of a-data and χ-data at the various walls, choices that
are not globally consistent in general.

• A twisted analogue of the statement in THEOREM I, Parts 2a and 2b, is:

Let ∆spec be the spectral transfer factor compatible with ∆geom. Then

St-Trace π1(f1dh1) =
∑

π
∆spec(π1, π) Trace [π(fdg) ◦ π(θ,$)].

• Here again π1 is a tempered irreducible representation of the endoscopic group
H1(R) with Z1(R) acting by λ1. We start with the G-regular case, and more par-
ticularly with π1 a G-regular discrete series representation.

• First we reduce to the case θ preserves a fundamental splitting. Then we
apply a characterization lemma: if a transfer exists for π1 then the coeffi cients
must coincide with those we have defined. Thus Mezo’s results for discrete series
representations can be applied to our setting, and the transfer statement is proved
for π1.

• Then we handle most of the G-regular case via an inductive step: an analysis
of parabolic descent for the norm map gives a straightforward generalization of the
argument for ordinary endoscopy.

• Extension to general tempered case: this is taken up by Mezo.

• Then the analogue of the converse statement in THEOREM I, Part 3 follows,
as before.

• We have not discussed settings with empty twist-packets.
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8. STRUCTURE ON PACKETS AND AN APPLICATION

• Here we limit our attention to tempered parameters ϕ and look first at structure
on the full packet Π attached to ϕ. We return to factoring ϕ. Write S for Sϕ, the
centralizer in G∨ of the image of ϕ. Then to semisimple s ∈ S there are attached
an ordinary endoscopic group, now denoted Hs, and a well-positioned parameter
ϕs for Hs(R); πs will denote a representation in the packet for ϕs.

• We need a slight variant of this factoring. First, let Sad be the image of S
in the adjoint form G∨ad and S

sc be the preimage of Sad in the simply-connected
covering G∨sc of the derived group of G

∨. Thus we have surjective homomorphisms

Ssc S
↘ ↙

Sad

Also
π0(Sad) ' S/ZΓS0 ' Ssc/Zsc(Ssc)0.

• The group π0(Sad) can be paired with the packet Π but, following Arthur’s
Note, we work instead with π0(Ssc) as this will give us better information for global
multiplicity formulas outside the quasi-split setting.

• We will write s for the image in G∨ of an element ssc in Ssc. Although s need
not lie in S, it is still an endoscopic datum and the factoring construction works.
We use the same notation as for the case s ∈ S.

• Suppose first that Π consists of discrete series representations. We choose the
(almost) canonical representative for ϕ attached to spl∨. Then S consists of the
Γ-invariants in the maximal torus for spl∨, where the action of Γ is that given by
the tori in G that are anisotropic mod center. Thus S0 is central and both Sad,
Ssc are finite and abelian, so that

π0(Sad) = Sad ' S/ZΓ ' Ssc/Zsc.

•• [For SL(2), Sad is cyclic of order two and Ssc is cyclic of order four. In
contrast, for p-adic SL(2) and parameters that factor through the image of a LT ,
T anisotropic, if the parameter is regular but not strongly regular then Sad is the
four-group while Ssc is the quaternion group: see Arthur’s Note. The strongly
regular p-adic case is like real SL(2).]

• Arthur’s refinement in Note of Langlands’original conjecture requires a pairing
〈−,−〉 : Π× Ssc → C×

with the following properties (since Ssc is abelian).

(i) The function επ : ssc → 〈π, ssc〉 is a character on Ssc for each π ∈ Π.
(ii) [A condition on the restriction of επ to Zsc we almost ignore here.]
(iii) The characters επ, επ′ are distinct for distinct π, π′ ∈ Π.
(iv) For all ssc ∈ Ssc and π, π′ ∈ Π, we have

〈π, ssc〉 / 〈π′, ssc〉 = ∆(πs, π) / ∆(πs, π′).
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• Recall that ∆(πs, π) / ∆(πs, π′) coincides with ∆(πs, π;πs, π′). Our definition
of this canonical relative factor makes

ssc → ∆(πs, π;πs, π′)

an easily described character trivial on Zsc, i.e. a character on Sad. We use Kot-
twitz’s version of the Tate-Nakayama pairings (−,−) for the description.

•• Thus let T be a maximal torus over R in G that is anisotropic mod center.
Then π, π′ determine (the real Weyl group orbits of) Weyl chambers C,C ′ for T.We
take a Weyl group element mapping C to C ′ and attach to it an element invG(π, π′)
of

D(T ) = Ker(H1(Γ, T )→ H1(Γ, G))

in a familiar way: if n ∈ G represents the Weyl element then σ → nσ(n)−1 repre-
sents invG(π, π′). Recall that D(T ) is contained in

E(T ) = Im(H1(Γ, Tsc)→ H1(Γ, T )).

Define inv(π, π′) by choosing n in Gsc instead. Then inv(π, π′) maps to invG(π, π′)
underH1(Γ, Tsc)→ H1(Γ, T ). [Notice inv(π, π′) is the inverse of the term inv(π′, π)
from references.]

•• On the other hand, there are unique toral data making C ′ dominant for spl∨.
Use these data to regard S as the Γ-invariants in the torus T∨ dual to T. Since the
homomorphism (T∨)Γ → (T∨ad)

Γ factors through the projection (T∨)Γ → π0[(T∨)Γ]
we can find s ∈ π0[(T∨)Γ] with same image sad in (T∨ad)

Γ as ssc ∈ Ssc.

•• Then
∆(πs, π;πs, π′) = (invG(π, π′), s)

= (inv(π, π′), sad).

Thus ∆(πs, π;πs, π′) depends only on sad and is evidently a character.

• Now pick one (base) character εb satisfying (ii) and one (base) element πb of
Π. Then there is a unique pairing 〈−,−〉 : Π × Ssc → C× satisfying εb = επb plus
the conditions (i) - (iv), namely

〈π, ssc〉 = ∆(πs, π;πs, πb).εb(ssc)

= (inv(π, πb), sad).εb(ssc)

for π ∈ Π, s ∈ Ssc.

•• The pairing generalizes to all tempered packets Π, with Ssc replaced by
π0(Ssc) which is abelian. The proof relies on precise information in the extension
of ∆(πs, π;πs, π′) to the general tempered setting as in Theorem I, Part 2b.

• We stay with discrete series for the rest of our discussion here. We also return
to the Whittaker normalization. Thus we assume G = G∗ and the inner twist ψ is
the identity. Fix Whittaker data, and define transfer factors ∆Wh with Whittaker
normalization. We can take Arthur’s constraint (ii) above as: each επ is trivial
on Zsc and so defines a character on Sad. Then we may as well return to working
with Sad as S/ZΓ, and define sad as the image of s ∈ S. Let πWh be the unique
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member of the packet that is generic relative to the given Whittaker data. We take
εb = επWh

to be the trivial character. Then the pairing is given by

〈π, sad〉 = ∆(πs, π;πs, πWh) = ∆Wh(πs, π)

= (inv(π, πWh), sad)

= ±1,

and spectral transfer becomes simply

St-Trace πs(fsdhs) =
∑

π ∈ Π
〈π, sad〉 Trace π(fdg).

• The key property ∆(πs, π;πs, πWh) = ∆Wh(πs, π) follows immediately from a
theorem (the strong base-point property for Whittaker normalization):

∆Wh(πs, πWh) = 1.

•• The pairing is perfect in the sense that it identifies Π as the dual of Sad if we
replace G = G∗ by an extended group (K-group) qjGj and take Π as an extended
packet qjΠj . The class inv(πj , πWh) now lies in qjD(T j) which the K-group
construction identifies with E(T ). This construction is nontrivial, i.e. qjGj is more
than just G∗ itself, if and only if H1(Γ, Gsc) 6= 1.

•• [Inversion of spectral transfer in this setting is now trivial.]

•• [comments on global motivation, elsewhere]

• Finally we reintroduce twisting data (θ = θ∗, $) for G = G∗, and put structure
on the twist-packet Πtw = Πθ,$. The set

Stwϕ = Stw = {s ∈ G∨ : Lθa ◦ ϕ = Int(s−1) ◦ ϕ}
is nonempty because Π is assumed (θ,$)-stable.

• Let s ∈ Stw and factor ϕ through parameter ϕs as in the ordinary case. Again
let πs denote an element of the packet attached to ϕs.

• Fix θ-stable Whittaker data, and let πWh denote the unique element of the
twist-packet Πtw in Π that is generic for the given data. Then we define

〈π, s〉tw = ∆(πs, π;πs, πWh)

for all π ∈ Πtw, because we take 〈πWh, s〉tw ≡ 1.

• Assuming the (tentative) strong base-point property in this twisted setting, we
have

∆Wh(πs, πWh) = 1,

so that
〈π, s〉tw = ∆Wh(πs, π),

and we have a simple transfer statement also in the twisted case. In any case,

〈π, s〉tw = (invθ(π, πWh), sθ).

Here we use the Tate-Nakayama pairing after defining the element invθ(π, πWh)
of H1(Γ, (Tsc)

θsc) via conjugacy of splittings and prescribing sθ ∈ ((T∨ad)θ∨ad)Γ as
below.
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•We introduce also ordinary (i.e. untwisted) transfer for Π. Then Stw is replaced
by the subgroup S from before. To s0 ∈ S attach parameter ϕs0 ; πs0 denotes an
element of the packet attached to ϕs0 .We use the Whittaker data already specified
to define Whittaker normalizations of the ordinary geometric and spectral transfer
factors. Then

〈π, s0〉 = ∆Wh(πs0 , π)

defines our pairing between Π and S/ZΓ.

• Suppose π lies in the twist-packet Πtw ⊆ Π. Notice that if s1, s2 ∈ Stw then
s0 = s1(s2)−1 lies in S, so that 〈π, s0〉 is well-defined. Then we have that

〈π, s1〉tw = 〈π, s0〉 . 〈π, s2〉tw .

•• To check this, we calculate
〈π, s1〉tw = 〈π, s0s2〉tw = (invθ(π, πWh), (s0s2)θ)

= (invθ(π, πWh), sθ).(invθ(π, πWh), (s2)θ),

where sθ denotes the image of s0 as Γ-invariant in T∨ under

(T∨)Γ → (T∨ad)
Γ → ((T∨ad)θ∨ad)Γ,

(T∨ad)θ∨ad being the dual of (Tsc)
θsc . We can just as well project only as far as

(T∨ad)
Γ and project invθ(π, πWh) to untwisted inv(π, πWh) in H1(Γ, Tsc), to com-

pute (invθ(π, πWh), sθ) as untwisted 〈π, s0〉, and the claim follows.

• We can interpret this claim slightly differently. Assume for convenience that
$ is trivial.

• Replace the dual group G∨ by G∨ o
〈
θ∨
〉
and consider instead the group

S = Cent(ϕ(WR), G∨ o
〈
θ∨
〉
),

where θ∨ acts on ϕ(WR) by its action on the first component, i.e. by Lθ.

• Then both S and Stw embed in S. First, s 7→ s× 1 embeds S as

Cent(ϕ(WR), G∨ × 1),

and then t 7→ t× θ∨ embeds Stw as
Cent(ϕ(WR), G∨ × θ∨).

• For each π in the twist-packet, the function
t.ZΓ 7→ 〈π, t〉tw

on the quotient set Stw/ ZΓ determines (uniquely) a sign character on the group
S / ZΓ extending both itself and the character

s.ZΓ 7→ 〈π, s〉
on the group S / ZΓ.
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• In particular, in the case of quasi-split special orthogonal groups, we see that
we have the correct pairing for discrete series packets in the statement of Theorem
2.2.4 in Arthur’s book.

9. REFERENCES FOR 7 AND 8

J. Arthur
A note on L-packets, Pure and Appl. Math. Quart., Coates vol. (2006), 199-217.
The Endoscopic Classification of Representations: Orthogonal and Symplectic Groups,
(book) preprint.
http://www.claymath.org/cw/arthur/pdf/Book.pdf

P. Mezo
Character identities in the twisted endoscopy of real reductive groups, preprint.
http://mathstat.carleton.ca/~mezo/twisted2.pdf

D. Shelstad
Tempered endoscopy for real groups I: geometric transfer with canonical factors,
Contemp. Math., 472 (2008), 215-246.
Tempered endoscopy for real groups II: spectral transfer factors, in Automorphic Forms
and the Langlands Program, Higher Ed Press/International Press, 2009/2010, 236-276.
Tempered endoscopy for real groups III: inversion of transfer and L-packet structure,
Represent. Theory, 12 (2008), 369-402.
On geometric transfer in real twisted endoscopy, preprint.
On spectral transfer factors in real twisted endoscopy, preprint.
A note on real endoscopic transfer and pseudo-coeffi cients, preprint.
http://andromeda.rutgers.edu/~shelstad

email: shelstad rutgers edu

June 24, 2011

6/30 fixed typo: page 4, line 3


