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1. Introduction

We gather results about transfer using canonical factors in order to establish
some formulas for evaluating stable tempered traces on the transfer of a pseudo-
coeffi cient for a discrete series representation, or of a genuine coeffi cient if Schwartz
functions are allowed. With a good choice of normalization for the absolute transfer
factors, these formulas are simple and easy to compute. We finish with a general
remark on the definition of spectral factors.

2. Endoscopic transfer

Let (G,ψ) be an inner form of a connected reductive algebraic group G∗ quasi-
split over R, and let e be a set of ordinary endoscopic data for G. Let (H1, ξ1) be a
z-pair for e. We consider transfer between G(R) and the endoscopic group H1(R).
For dependence solely on the choice of normalization of transfer factors, we write
the transfer statement in terms of measures of the form fdg, where f ∈ C∞c (G(R))
and dg is a Haar measure; on H1(R) the measures will be of the form f1dh1, where
f1 ∈ C∞c (H1(R), λ1) and dh1 is a Haar measure (see [S4] where the more general
twisted setting is described). Here λ1 is a character on a certain central subgroup
Z1(R) of H1(R); the pair (Z1, λ1) is prescribed by the choice of z-pair. We could
also work with a fixed central character for each of G(R), H1(R). Regard the two
characters as a character on the product ZH1(R) × ZG(R) of the centers. Let C
be the fiber product of ZH1 and ZG over ZH , where H = H1/Z1, with the obvious
maps (the constructions in Section 5.1 of [KS] of course simplify when there is no
twisting). Then the restriction of the character to the subgroup C(R) must coincide
with the character λC described in [KS] at the generalization of Lemma 5.1.C. See
also Lemma 7.3 of [S5] for the role of λC (denoted $C there) on the spectral side.
Finally we follow familiar conventions that introduce no dependence on the choice
of invariant measures on the conjugacy classes we consider (see, for example, [S4]).

Theorem 2.1. (Transfer theorem, [S3]) Assume that ∆geom,∆spec are transfer
factors with compatible normalization. Then for each measure fdg on G(R) there
exists a measure f1dh1 on H1(R) such that

SO(γ1, f1dh1) =
∑

δ, conj
∆geom(γ1, δ) O(δ, fdg)

for all strongly G-regular γ1 ∈ H1(R), and then

St-Trace π1(f1dh1) =
∑

π,temp
∆spec(π1, π) Trace π(fdg)

for all tempered irreducible representations π1 of H1(R) with Z1(R) acting by λ1.
1
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The geometric transfer factors ∆geom are defined in [LS] for any local field of
characteristic zero, while the spectral factors ∆spec are defined with similar struc-
ture, but only for the archimedean case, in [S2]. Compatibility is defined in terms of
a canonical compatibility factor ([S2], Section 12) which exploits common features
of the geometric and spectral constructions. This last factor appears to be the
hardest to calculate concretely, but in practice there appears to be little reason to
do so. Direct calculation can be avoided entirely in the case of quasi-split groups:
because the relative term ∆III is a quotient there, transitivity properties imply
quickly that geometric and spectral Whittaker (or standard ∆0) normalizations are
compatible; see Lemma 12.3 of [S2]. In general, once we decide on a normalization
for ∆geom, the normalization of compatible ∆spec is of course determined uniquely,
and vice versa.
Theorem 2.1 is a condensed version of Theorem 6.2 in [S3], where the results are

stated for K-groups, i.e. uniformly for certain families of inner twists. One purpose
of that formulation is to extend Whittaker normalization for transfer factors to a
broader collection of groups. This will be useful below, although we prefer to work
with the less cumbersome notation for a single group.
We now apply Theorem 2.1 to pseudo-coeffi cients. Assume then G is cuspidal,

making the discrete series for G(R) nonempty, and that e is elliptic, making H1

also cuspidal. Given a discrete series representation π of G(R), we define c to be a
normalized pseudo-coeffi cient fdg for π, so that

Trace π′(fdg) = δπ,π′ ,

for all tempered irreducible representations π′ of G(R). Here δπ,π′ = 1 if π = π′

and δπ,π′ = 0 otherwise. Existence of such a measure c is proved in [CD] where c
is also required to be K-finite, with K a maximal compact subgroup of G(R).
We use the transfer theorem to attach measure c1 to c. If c′ is chosen in place of

c then c− c′ is annihilated by all tempered irreducible traces and therefore by the
orbital integrals for all strongly regular elements in G(R). Thus if c′1 is attached to
c′ by geometric transfer then c′1 is stably equivalent to c1 in the sense that c1 − c′1
is annihilated by the stable orbital integrals for all strongly G-regular elements in
H1(R) and hence by all stable tempered traces, by which we mean all St-Trace
π1, for π1 tempered, irreducible, with Z1(R) acting by λ1. It is clear then that
St-Trace π1(c1) depends only on π1, π and the normalization of transfer factors
∆geom. Moreover, since we also have transfer for Schwartz functions we could just
as well have used a normalized genuine coeffi cient in place of c. Finally, compatible
factors ∆geom,∆spec may be replaced only by z∆geom, z∆spec ,where z ∈ C×, and
then c1 is replaced by zc1.

3. Stable traces, Whittaker normalization

Continue with the transfer c1 of the pseudo-coeffi cient c for the discrete series
representation π, and fix compatible transfer factors. Now write ∆(π1, π) in place
of ∆spec(π1, π). The transfer theorem implies immediately the following.

Lemma 3.1. For all tempered irreducible representations π1 of the endoscopic
group H1(R) with Z1(R) acting by λ1, we have

St-Trace π1(c1) = ∆(π1, π).
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Let ϕ1 be the Langlands parameter for the packet Π1 containing π1. By con-
struction, ∆(π1, π) = ∆(π′1, π) for all π′1 ∈ Π1, and so we could write instead
∆(ϕ1, π).

Lemma 3.2. There are only finitely many parameters ϕ1 for which ∆(π1, π) 6= 0.
Such parameters are regular elliptic, so that Π1 consists of discrete series represen-
tations. Moreover, if ∆(π1, π) 6= 0 then ∆(π1, π

′) 6= 0 for all π′ in the packet of
π.

Proof. This is a familiar result which follows quickly from an explicit description
of transfer for discrete series representations: see Section 11 of [S1] together with
[S2] for this description. �

Corollary 3.3. The measure c1 is stably equivalent to a finite linear combination
of pseudo-coeffi cients of discrete series representations of H1(R).

An analysis of compatibility for ∆geom,∆spec [S2] shows that for suitable nor-
malizations of ∆geom, this linear combination is just a signed sum of normalized
pseudo-coeffi cients.
There is a preferred choice of parameter ϕ1 for those π1 which are related to π,

i.e. for which ∆(π1, π) 6= 0. Namely, we have introduced the notion of ϕ1 being
well-positioned for (the parameter ϕ attached to) the packet Π of π (see [S5]). First
to transport data from groups to L-groups and vice-versa, we align, by choice of e
within its isomorphism class, Γ-splittings for the duals of G and H1 as in Section
7 of [S2]; here Γ = Gal(C/R). Then we may define a representative for a regular
elliptic parameter that is canonical for the relevant Γ-splitting (up to a conjugation
which does not affect attached data). The parameter ϕ1 is well-positioned for ϕ if
it has as canonical representative φ1 = ξ1 ◦ φ, where φ is canonical for ϕ. Here if
e = (H,H, s) denotes our set of endoscopic data then it has been arranged that the
image of φ lies in H, and ξ1, from our chosen z-pair, is an L-homomorphism of H
into LH1. It is convenient for calculations to fix also an R-splitting of the quasi-split
form G∗.

Lemma 3.4. Suppose that ϕ is regular elliptic. Then there exists a unique parame-
ter ϕ1 well-positioned for ϕ. If ϕ1, ϕ

′
1 are well-positioned for the packets of discrete

series representations π, π′ respectively, then the relative transfer factor

∆(π1, π;π′1, π
′)

reduces to the term
∆III(π1, π;π′1, π

′),

provided that we use the same data (a-, χ- and toral) in the construction of the
terms ∆I ,∆II ,∆III for both (π1, π) and (π′1, π

′).

Proof. For existence and uniqueness, see the comment and reference after Theorem
3.6 below. For the rest, we need only observe from the constructions in [S2] that,
for the pairs (π1, π) and (π′1, π

′) as given, the relative terms ∆I ,∆II are trivial
when the same a-, χ- and toral data are used. �

Suppose now that π, π′ belong to the same packet Π. Assume only that ∆(π1, π
′)

is nonzero (so that ϕ1 need not be well-positioned). We may compute the sign
∆III(π1, π;π′1, π

′) internally in Π in the following sense. There are unique toral
data for which π = π(1) in the sense of Section 7 of [S2]. Continuing with the same
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reference, we write π′ as π(ω), for some Weyl element ω. Then we define inv(π, π′)
to be the cohomology class inv(π(1), π(ω)) defined there. It belongs to H1(Γ, Tsc),
where Tsc is a maximal torus anisotropic over R in the simply-connected covering
of the derived group of G, and its image in H1(Γ, T ) is independent of the choice
of ω. Finally, the prescribed toral data are used to obtain sπ from the endoscopic
datum s. Using the Tate-Nakayama pairing we obtain the following.

Lemma 3.5.
∆III(π1, π;π′1, π

′) = 〈inv(π, π′), sπ〉−1

Proof. Notice that the right side is simply a sign and that the formula is similar to
(1) in Theorem 5.1.D of [KS] for conjugacy classes in a stable conjugacy class. We
apply the argument for that case instead to the spectrally constructed objects, and
notice that the discussion in Section 5.1 of [KS] simplifies since there is no twisting.
See Section 9 of [S2]. �

What we have done so far applies to all compatible normalizations of transfer
factors, with G arbitrary. Consider now the case that the group G is quasi-split
over R. Choose a G(R)-conjugacy class wh of Whittaker data for G. As we have
already recalled, the attached normalizations ∆wh are compatible.

Theorem 3.6. ([S3]) Suppose that ϕ1 is the unique parameter well-positioned for
Π and that πwh is the unique member of Π that is generic for wh. Then

∆wh(π1, πwh) = 1.

This is Theorem 11.1 of [S3]. The parameter ϕs for π1 that is constructed
there (see Section 7 of [S3]) is clearly the well-positioned one (we may assume,
without harm, that the endoscopic datum s centralizes the image of a canonical
representative for ϕ).

Lemma 3.7. Continue the setting of the last lemma and, in particular, assume
that ϕ1 is well-positioned for Π. Consider the transfer c1 of a pseudo-coeffi cient c
for a given π ∈ Π. Then

St-Trace π1(c1) = 〈inv(πwh, π), sπwh〉.

Proof. Since
∆wh(π1, πwh) = ∆(π1, πwh;π1, π) ∆wh(π1, π),

this follows from Lemmas 3.4 and 3.5, along with Theorem 3.6. �

The right side in Lemma 3.7 is calculated easily by first using some remarks of
Langlands (partly described in [S6]) that provide a quick passage from the definition
of inv(πwh, π) by Weyl group elements to a cocharacter. Then the pairing is given
by evaluation on the transport sπwh of the endoscopic datum s.

4. Other cases

The Whittaker normalizations, and the results above, extend to K-groups. In
particular, we may extend Lemmas 3.4, 3.5 and 3.7 to certain inner forms (G,ψ)
of a cuspidal G∗ quasi-split over R, those for which the (inner class of the) twist
ψ is specified by the choice u of an element of the set H1(Γ, G∗sc). Here we take
π in the packet Π∗ for G∗(R) attached to ϕ and π′ in the packet Π for G(R) also
attached to ϕ; in our application π is chosen to be πwh, and π′ is then written π.
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For Lemma 3.4, the term ∆III(π1, π;π′1, π
′), and then also ∆(π1, π;π′1, π

′) itself, is
defined in [S3] for any K-group; the definition parallels that of Kottwitz described
in [A] for the geometric transfer factors. Since we limit our attention to a K-group
of quasi-split type, this relative term is naturally a quotient. In Lemmas 3.5, 3.7,
the pairing again yields a sign. That sign may then be written a product of two
signs, one for position in Π (with basepoint fixed by means of πwh and ψ) and one
attached to u (see [S3]).
For the case that ϕ1 is not well-positioned for Π, there is an (easy) explicit

description of all parameters ϕ1 related to Π which is convenient for handling the
additional sign in ∆(π1, π) produced by ∆II ; that sign is described in Section 9 of
[S2].
For general (G,ψ), we may either work with a local hypothesis or return to

the definition of the spectral transfer factors in terms of the relative factor ∆ =
∆I∆II∆III , noting that each relative term is a sign [S2] and that we may ignore
∆I if we use a fixed related pair (π1, π), where π is in the discrete series, to fix
compatible normalizations and then follow the conventions of Lemma 3.4.

5. Alternative definition of spectral factors

Wemay of course use Lemma 3.1 for an alternative and simpler a priori definition,
also available in other settings, for compatible spectral factors ∆(π1, π), where π
belongs to the discrete series. We proceed as follows.
Suppose that the strongly regular geometric transfer identity, i.e. the first half

of Theorem 2.1, has been proved for the transfer factors ∆geom from [LS]. Given a
discrete series representation π of G(R), choose a normalized (pseudo-) coeffi cient
c as in Section 2, and define a measure c1 by geometric transfer of c. If now π1 is
a tempered irreducible representation of H1(R) with Z1(R) acting by λ1 then, as
noted in Section 2, St-Trace π1(c1) depends only on the pair (π1, π) and the choice
of normalization for ∆geom. Define

∆new(π1, π) = St-Trace π1(c1).

To show that ∆new(π1, π) may replace ∆spec(π1, π) in the dual spectral transfer,
i.e. to prove the second half of Theorem 2.1 when π is in the discrete series, we
may invoke such transfer for the factors ∆spec(π1, π). It is then immediate from
the transfer statement that

∆new(π1, π) = ∆spec(π1, π)

for all tempered irreducible representations π1 of H1(R) with Z1(R) acting by λ1.
At the same time we have available the various properties of ∆spec(π1, π), espe-
cially the adjoint relations that provide structure on the extended discrete series
packets (see [S3]) as well as the simple formulas of the present note. To complete
the definition of ∆new(π1, π) or ∆spec(π1, π) for all tempered π, we check first that
both endoscopic transfer and tempered Langlands parameters behave well for (non-
degenerate) coherent continuation to the wall and for parabolic induction. Then
we make the definitions as we must for functoriality; see [S2].
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