
ON GEOMETRIC TRANSFER IN REAL TWISTED ENDOSCOPY

D. SHELSTAD

Abstract. We prove the existence of a transfer of orbital integrals in en-
doscopy for real reductive groups when there is twisting by an automorphism
defined over the reals and by a character on the real points of the group. Our
proof contains a relatively short self-contained argument for the already known
case of standard endoscopy.

1. Introduction

Endoscopy concerns conjugacy classes and irreducible representations for reduc-
tive groups: conjugacy classes within a stable class and irreducible representations
within a packet. We consider just real groups. Here, under the assumption of
no twisting, geometric and spectral transfer identities have been used to display
structure on packets of representations which in the regular elliptic case (discrete
series) reflects that on the set of conjugacy classes in a regular elliptic stable con-
jugacy class. As is well-known, this structure plays a role in various comparisons
of trace formulas and in multiplicity formulas for automorphic representations. In
the present paper we consider the broader setting of twisted endoscopy, again for
real groups. Our purpose is to present a complete argument for the main geometric
transfer identity. This identity shows that sums of integrals over suitably regular
twisted conjugacy classes, when weighted by the transfer factors introduced in [KS]
(see also [KS12]), may be interpreted as integrals over stable conjugacy classes in an
endoscopic group. The precise result has two immediate applications. First, locally
(i.e., for real groups), it establishes the underlying structure for a functorial dual
transfer of stable traces on a twisted endoscopic group to virtual twisted traces on
the ambient group. In a separate paper [S9] we begin the description of an explicit
form for the dual transfer via compatible spectral transfer factors. This extends
the standard, or untwisted, case [S2, S3] and appears useful in the global theory;
see, for example, [A1, Theorem 2.2.4]. Second, in the global picture, our geometric
transfer identity is of course one ingredient for stabilization of the geometric side
of the general twisted version of the Arthur-Selberg trace formula.
Suppose G is a connected reductive algebraic group defined over R. There are

two familiar types of twisting we will consider for an admissible representation
π of the reductive Lie group G(R): composing π with an R-automorphism θ of
G and multiplying π by a character $ of G(R). An isomorphism Aπ between π ◦ θ
and $ ⊗ π, if it exists, provides us with a distribution f → Trace(π(f)Aπ), a
(θ,$)-twisted character for π, on a suitable space of test functions f . Comparing
these twisted traces with ordinary stable traces for a lower dimensional group, an
endoscopic group H1(R) for (G, θ,$), requires a correspondence on test functions.
That is provided by the main geometric transfer identity which displays weighted
sums of (θ,$)-twisted orbital integrals of test functions on G(R) as stable orbital
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integrals of the corresponding test functions on H1(R). For the remainder of Section
1 we will discuss in some detail our setting for this and related results. The results
themselves will then be described in more detail in Section 2.
Our setting is based on the constructions and results of [KS] for the case of real

groups. For the norm correspondence of [KS, Chapter 3, Section 5.4] between points
of G(R) and points of an endoscopic groupH1(R) for (θ,$), it is an associated outer
automorphism θ∗ of a quasi-split inner form G∗ that is significant. If θ is inner
then θ∗ is the identity, and we have a slight variant of the setting for standard
endoscopy [LS1, Section 1.3]. To simplify the presentation we will carry a minor
assumption on the norm correspondence for most of the paper. Fix an inner twist
ψ : G → G∗, where G∗ is quasi-split over R. There is an R-automorphism θ∗

of G∗ which preserves a given R-splitting of G∗ and for which θ∗ and ψ ◦ θ ◦
ψ−1 differ by an inner automorphism of G∗. We then say (G, θ, ψ) is an inner
twist of (G∗, θ∗), as in [KS, Appendix B]. Start now with the pair (G∗, θ∗). We
will consider those (isomorphism classes of) inner twists (G, θ, ψ) for which there
is a norm correspondence from twisted conjugacy classes in G(R) to the ordinary,
i.e., untwisted, conjugacy classes in an endoscopic group H1(R). See Section 6
for a precise version of the assumption. If θ∗ is the identity this excludes certain
inner automorphisms θ. In these cases the twist θ persists to conjugacy classes in
the endoscopic group according to the formalism of [KS, Section 5.4]. The general
excluded case is a variant of this, and we use a slightly twisted norm correspondence.
It can be handled by a straightforward extension of our arguments, as we will
describe in Section 12.
An endoscopic group H1 comes with more data. First we assume that we are

given, rather than the twisting character $ itself, a 1-cocycle a$ (of the Weil
group WC/R in the center of the connected complex dual group G∨ of G or G∗) to
which $ is attached by Langlands’construction [Bor, 10.1]. A set e of endoscopic
data for (G, θ, a$) or (G∗, θ∗, a$) is a tuple (H,H, s, ξ) as in [KS, Section 2.1].
There is no harm in assuming that ξ, an embedding of the group H in the L-group
LG = G∨oWC/R, is the inclusion map incl, so that H is given as a subgroup of LG.
We do so, and drop ξ entirely from notation. This subgroup H is, by definition, a
split extension of WC/R by H∨. In some cases, there is an L-isomorphism ξ1 : H →
LH. This provides us then with an L-embedding incl ◦ (ξ1)−1 of LH in LG, and H
itself may serve as an endoscopic group. The L-embedding incl ◦ (ξ1)−1 determines
both a term for geometric transfer factors and a shift in infinitesimal character for
the dual spectral transfer fromH(R) toG(R). The shift is necessary for the existence
of a transfer identity satisfying the functoriality principle; for some examples, see
[S4, Part B, Section 2]. Existence of ξ1 as isomorphism, however, excludes many
cases; quick examples can be found for an outer automorphism of SU(2, 1) or for
base change in Sp4 (in standard endoscopy, examples are harder to find). To avoid
these exclusions, we add to the endoscopic data e = (H,H, s) a z-pair (H1, ξ1) as
in [KS, Chapter 2], and then H1, rather than H, serves as endoscopic group. This
group H1 is quasi-split over R with simply-connected derived group, and there
is an exact sequence 1 → Z1 → H1 → H → 1 defined over R, where Z1 is an
induced central torus in H1. Then H1(R)→ H(R) is surjective and LH is naturally
embedded in LH1. Now ξ1 is an injective L-homomorphism of H in LH1 (see [KS,
Section 2.2] for proof of existence), and ξ1 determines, in particular, a character
$1 on Z1(R). For example, in the SU(2, 1) case we may pass from the problematic
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H = PGL(2) to the group H1 = GL(2) with sign character $1 on Z1(R) = R×.
Spectral transfer from H1(R) to G(R) involves just those representations π1 of
H1(R) for which Z1(R) acts by$1.We will assume this property for a representation
π1 without further mention. The L-embedding incl ◦ (ξ1)−1, now defined on a
subgroup of LH1, plays essentially the same role in spectral transfer as before, but
of course with H1 in place of H.
We will prove transfer for test functions on G(R) that are smooth and either

compactly supported or rapidly decreasing on G(R) (passage to functions with
prescribed behavior under the action of twisted conjugation by the center is then
routine). In the case of smooth functions of compact support this provides a direct
analogue of Waldspurger’s results in the nonarchimedean case [W1]. In particular,
we use the same normalization of twisted orbital integrals [W1, Sections 1.5, 3.10].
We no longer need the technical assumption on the central behavior of θ from an
earlier draft (see Lemma 8.1 and its preparation from Sections 6, 7). Following the
formalism of z-pairs [KS, Section 2.2] we do prescribe behavior of test functions on
H1(R) under translation by the central subgroup Z1(R) = Ker(H1(R) → H(R)).
Namely, we require that a test function f1 on H1(R) satisfy

f1(z1h1) = $1(z1)−1f1(h1),

for all z1 ∈ Z1(R), h1 ∈ H1(R).
For our test functions we could go directly to C∞c -spaces and then obtain, as

a corollary of the geometric transfer, the dual transfer of stable admissible traces
to twisted-invariant distributions. Instead we prefer to start with a more general
space of functions of Harish-Chandra Schwartz type, and then later pass to C∞c -
functions using a well-known result of Bouaziz [B2, Théorème 6.2.1]. Thus from our
main theorem we obtain first a dual spectral transfer of stable tempered traces to
tempered twisted-invariant distributions. There has been recent progress by Mezo
[M] on identifying these distributions as weighted sums of tempered irreducible
twisted traces. For standard endoscopy, this program has been completed [S2],
with the weights identified as the predefined canonical spectral transfer factors of
[S2]. Then, for standard endoscopy, we conclude from the existence of geometric
transfer that a spectrally defined transfer identity for a pair (f, f1) of test functions
of any type also yields a geometric transfer identity for the pair if and only if it
is correct on the tempered spectrum, i.e., it has the spectral transfer factors as
weights. For progress with twisted spectral factors and their relation to Mezo’s
constants, see [S9].
To define a θ-Schwartz function f on G(R) we consider as usual the manifold

G(R)θ within G(R) o AutR(G). On G(R)θ there is an action of G(R) by conju-
gation: xθ.g = g−1(xθ)g = g−1x θ(g) θ. To a smooth complex-valued function f
on G(R) we attach the smooth function fθ on G(R)θ given by fθ(xθ) = f(x). We
call f a θ-Schwartz function on G(R) if fθ is Schwartz on G(R)θ. This requires
a straightforward generalization of Harish-Chandra’s definition; see Appendix for
details and references. Write C(G(R), θ) for the space of all such functions. On
H1(R) we consider the space C(H1(R), $1) of functions that are $1-Schwartz in
the usual sense. As mentioned already, for the fully general case there is a twist also
on H1(R) by an inner automorphism θ1. In that setting, H1(R)θ1 may be replaced
by an appropriate coset of H1(R) in H1(C) (see Section 12) and we again require
that test functions transform by $−1

1 under the translation action of Z1(R).
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To specify a correspondence (f, f1) it will be suffi cient to consider those twisted
conjugacy classes of elements δ in G(R) that are strongly θ-regular and have a
(strongly G-regular) norm γ1 in H1(R) in the sense of [KS, Sections 3.3, 5.4].
Then the θ-twisted centralizer Centθ(δ,G) of δ is reductive and abelian, but is
not necessarily connected (as complex group). Because δ has a norm in H1(R), $
is trivial on Centθ(δ,G)(R); see [KS], where we use Theorem 5.1.D to strengthen
Lemma 4.4.C. The ordinary centralizer Cent(γ1, H1) is a torus which we write as
Hγ1 (we will assume no twisting inH1(R) until Section 12). There is a simple notion
of compatibility for normalization of Haar measures on Centθ(δ,G)(R) andHγ1(R);
see Section 11. We fix Haar measures dg on G(R) and dh1 on H1(R). This choice
can be avoided if we work instead with Schwartz measures fdg and f1dh1. In any
case, it plays no significant role provided we insist on compatible measures dtδ and
dtγ1 for Centθ(δ,G)(R) and Hγ1(R) when γ1 is a norm of strongly θ-regular δ. For
f ∈ C(G(R), θ) and quotient measure dg

dtδ
we have the well-defined (θ,$)-twisted

orbital integral

Oθ,$(δ, f) =

∫
Centθ(δ,G)(R)\G(R)

f(g−1δθ(g))$(g)
dg

dtδ

(see Appendix). Finally we have the familiar stable orbital integral SO(γ1, f1),
defined for f1 ∈ C(H1(R), $1) and the quotient measure dh1

dtγ1
. If strongly θ-regular

δ does not have a norm in H1(R) we may still define a (θ,$)-twisted orbital inte-
gral Oθ,$(δ, f) but it plays no role in the transfer to H1(R). There will be other
endoscopic groups that do account for it [KS, Chapter 6].
The last ingredient for our transfer identity is the transfer factor ∆(γ1, δ) from

[KS] (see also [KS12]). While its definition is complicated in general, it has the
property that the relative factor

∆(γ1, δ)/∆(γ1, δ) = ∆(γ1, δ; γ1, δ)

is canonical [KS, Theorem 4.6.A]. This means that the relative factor depends only
on the data we have prescribed: the inner twist (G, θ, ψ), cocycle a$ defining the
twisting character $, endoscopic data e with z-pair (H1, ξ1) for e, and of course the
pairs (γ1, δ), (γ1, δ). When $ is trivial, it is only the appropriate conjugacy classes
of these pairs that matter: the stable (slightly twisted) conjugacy classes of γ1, γ1

in H1(R) and the ordinary (G(R)-) twisted conjugacy classes of δ, δ in G(R). In
general, there is a twist by $ over twisted conjugacy classes in G(R) in the sense
of [KS, Theorem 5.1.D (2)].
The canonicity property motivates our approach to proving transfer and is crit-

ical to our arguments, reducing the diffi culties in establishing the main transfer
identity to simply stated problems at various walls in the endoscopic group. We
are free to make convenient choices for the data determining the individual terms
in transfer factors at each wall, and thereby avoid the long consistency arguments
for various local choices over on the ambient group in our original approach to the
case of standard endoscopy for real groups [S8]. In particular, given the definitions
of the transfer factors in [LS1] and the alternate characterization of stable orbital
integrals we use here (see Section 4 and Theorem 12.1, where we may set g0 to be
the identity), the present paper offers a relatively short proof of the transfer for
standard endoscopy. Indeed, we may go directly to Section 9 since the results of
Sections 6 - 8 for ordinary conjugacy are known [S5] and Section 5 is essentially just
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a statement of the main jump formula from which the transfer follows quickly. The
argument for this jump formula is a special case of the arguments in Sections 9 - 11.
There we reduce easily to questions about the terms in transfer factors. Then, in
loosely technical terms, our choice of a-data from Section 3, which is different from
but in the same spirit as that in [Kal], makes the previously intractable term ∆I

easy to handle (Lemma 9.5). The term ∆II is trivial to handle and so the burden
is on ∆III . Our choice of χ-data from Section 3 allows us to deal with this term in
our main lemma (Lemma 9.3) by a sequence of cohomological calculations based
on results in [LS1], [LS2] and [KS], and we are done. In particular, we avoid the
convoluted arguments needed in Section 13 of [S1] for the proof of standard transfer
sketched there.
In some cases there are particular normalizations for the absolute factor ∆(γ1, δ)

which simplify its form, but these do not play a direct role in the arguments of
the present paper. In fact, since the choice of normalization does not matter for
existence of the transfer identity, in Section 5 we simply fix a pair (γ1, δ) and
specify ∆(γ1, δ) in a way that allows us to avoid carrying various constants in our
calculations.
Finally, we note that Waldspurger has pointed out two corrections ([W2], per-

sonal communication) needed for the definition of twisted transfer factors in [KS].
These have been addressed in [KS12]. The first does not affect our archimedean
setting; see Remark 1 of Section 9. The second involves the choice of a sign in
the Galois hypercohomology pairing of Appendix A of [KS] used to define the term
∆III in transfer factors. In the archimedean case we may simply invert the pairing
without further change, as explained in Remark 2 of Section 9.

2. Statement of the main theorem

We fix a set e of endoscopic data, along with a z-pair (H1, ξ1) for e, and study
geometric transfer for G(R) and H1(R) under the transfer factor ∆. Until Section
12 we assume that the norm correspondence involves no twisting of the conjugacy
classes in H1(R).
Suppose f is a θ-Schwartz function on G(R), i.e., f ∈ C(G(R), θ). We have

attached to e and (H1, ξ1) the shift character $1 on the central subgroup Z1(R) of
H1(R). Define the subset

Trans(f)

of C(H1(R), $1) to consist of those $1-Schwartz functions f1 on H1(R) whose
strongly G-regular stable orbital integrals match, through the norm correspondence
for G(R) and H1(R) attached to θ, ∆-weighted combinations of (θ,$)-twisted or-
bital integrals of f :

SO(γ1, f1) =
∑

δ, θ-conj

∆(γ1, δ)O
θ,$(δ, f)

for all strongly G-regular γ1 in H1(R). The summation is over θ-conjugacy classes
of strongly θ-regular elements in G(R); for fixed γ1, the product ∆(γ1, δ) O

θ,$(δ, f)
depends only on the θ-conjugacy class of strongly θ-regular δ, and is nonvanishing
on finitely many such classes (see Section 5).
This transfer identity for the pair (f, f1) says, in particular, that if strongly

G-regular γ1 is not a norm then

SO(γ1, f1) = 0
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since, by definition, we then have ∆(γ1, δ) = 0 for all strongly θ-regular δ in G(R).
Moreover, the stable orbital integrals of f1 have relatively simple behavior around
semiregular semisimple elements. One requirement of the identity is thus that the
weights ∆ provide a great deal of cancellation in the singularities of the individual
(θ,$)-twisted orbital integrals of f .
Notice that f1 ∈ Trans(f) is determined uniquely modulo the annihilator in

C(H1(R), $1) of the space of stable tempered characters on H1(R): the strongly
G-regular elements are dense in the set of all regular semisimple elements in H1(R),
and so functions f1 and f2 in Trans(f) have the same stable orbital integrals on
all regular semisimple elements. Then, by Harish-Chandra’s regularity theorem for
characters (see [HCI], Section 11, Theorem 1) and a simple application of a stable
Weyl integration formula, those integrals generate all stable tempered characters
on H1(R). Hence f1 and f2 agree on such characters, as asserted.
We may consider instead f ∈ C∞c (G(R), θ), by which we mean that fθ lies in

C∞c (G(R)θ), and define the set Transc(f) of functions f1 ∈ C∞c (H1(R), $1) such
that f and f1 have ∆-matching orbital integrals in the same manner. Embedding
C∞c (G(R), θ) in C(G(R), θ), we may adapt the argument above to see that f1 ∈
Transc(f) is determined uniquely modulo the annihilator in C∞c (H1(R), $1) of
the space of all stable tempered characters on H1(R).

Theorem 2.1. (Main Theorem) For all f ∈ C(G(R), θ), the subset Trans(f)
of C(H1(R), $1) is nonempty.

We conclude from this theorem that the correspondence (f, f1), where f ∈
C(G(R), θ) and f1 ∈ Trans(f), is well-defined. This correspondence determines
a map from C(G(R), θ) to the quotient of C(H1(R), $1) by the annihilator of stable
tempered characters on H1(R). If we switch from Schwartz functions to Schwartz
measures then the map is determined uniquely up to normalization of transfer fac-
tors. In standard endoscopy, where the dual tempered spectral transfer is available
(see [S2] and [S3] for the form needed), we may normalize the tempered spectral
factors ∆(π1, π) first if we wish. For example, for certain inner forms there is a com-
mon Whittaker normalization that has desirable properties [S3, Sections 11, 13].
Then for simultaneous geometric and spectral transfer identities the geometric fac-
tors must be normalized so that ∆(π1, π)/∆(γ1, δ) coincides with a predefined, and
canonical, compatibility factor ∆(π1, π; γ1, δ) [S2, Section 12]. In the Whittaker
case, this brings us back to the geometric version of the Whittaker normalization
in [KS, Section 5.3] for ∆(γ1, δ) [S2, Section 12]. Similar results are expected for
the twisted case; see [S9].
There is an analogue for C∞c -functions:

Corollary 2.2. For all f ∈ C∞c (G(R), θ) the subset Transc(f) is nonempty.

Proof. Let f ∈ C∞c (G(R), θ). Using the main theorem we first find f ′1 in the subset
Trans(f) of C(H1(R), $1). Then because the stable orbital integrals of f ′1 vanish
off the conjugacy classes meeting a set in H1(R) that is bounded modulo Z1(R),
Bouaziz’s characterization of stable orbital integrals of C∞c -functions shows that
there exists f1 ∈ C∞c (H1(R), $1) such that

SO(γ1, f1) = SO(γ1, f
′
1)

for all strongly G-regular γ1 in H1(R). Here, a slight extension of [B2, Théorème
6.2.1] is needed; see [R2, Section 5.3]. Then f1 ∈ Transc(f). �
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Let K,K1 be maximal compact subgroups of G(R), H1(R) respectively. If f ∈
C∞c (G(R), θ) is K-finite then spectral methods are expected to show that there
is K1-finite f1 in Transc(f), as for standard endoscopy. In the standard setting,
if ∆(π1, π) is the spectral transfer factor compatible with given geometric factor
∆(γ1, δ), then the Paley-Wiener argument of Clozel in an appendix to [CD] shows
that there is K1-finite f1 satisfying tempered spectral transfer for f with weights
∆(π1, π). Thus f1 ∈ Transc(f).
Sections 3 - 11 are dedicated to a proof of the main theorem which, after some

preparation, hinges almost entirely on Theorem 5.1. In Sections 3 and 4, we in-
troduce a variant of Harish-Chandra’s ′Ff transform that fits better with transfer
factors. In particular, we obtain the limit formulas of Theorem 4.2 for ordinary
stable orbital integrals. These are simpler; for example, the troublesome fourth
root of unity that appears in the jump formulas for stable ′Ff (see [S1, Section 3])
is gone. In Sections 5 - 10, our main goal is to prove Theorem 5.1 which amounts
to analogous limit formulas for the right side of the transfer identity, i.e., for sums
of twisted orbital integrals weighted by the transfer factors. At this stage we ignore
the limit formulas for derivatives that will be required later in the paper and focus
instead on the needed analysis of terms in the transfer factors.
The main lemma (Lemma 9.3) in the proof of Theorem 5.1 is a simple wall-

crossing property of the term ∆III in the transfer factor ∆ = ∆I∆II∆III∆IV that
we deduce from a detailed examination of constructions from [LS1], [LS2] and [KS].
Two features are crucial to the cancellations that yield this result: use of the s-
compatible data sets introduced in Section 3 and precise control of data attached
to the abstract norm map (see toral descent data at γ0 in Section 7). The term
∆II then contributes trivially at the wall, apart from the piece needed for descent
to a neighborhood of the identity in a twisted centralizer of Dynkin type A1, while
analysis of ∆I may be avoided if we use known results for standard endoscopy.
Since we plan to deduce that case as well we also give an independent analysis of
∆I as an exercise with descent formulas from [LS2]. The term ∆IV is, as usual,
absorbed into the definition of normalized integrals.
Once we have finished the proof of Theorem 5.1, we extend the limit formulas

to derivatives. Again use of the alternative transform simplifies both statements
and arguments. We then complete our proof of the main theorem in Section 11. In
Section 12, the theorem is extended to the general case, i.e., to the case of slightly
twisted norms.
Our notation will follow this pattern: O for unnormalized integrals, Φ for nor-

malized integrals, and Ψa,χ for our variant of the stabilized ′Ff transform.
We should mention the work of Renard [R1, R2] which offers insight into the

diffi culties of local analysis for twisted transfer. In [R2], however, the focus is
different from ours; certain choices are made there that we expressly exclude here by
the symmetry (s-compatibility) requirements of the next section. Those choices are
reminiscent of our initial approach to standard endoscopy [S8], and unfortunately
the reference [Sh6] in [R2] consists only of some personal notes which make no
attempt to address the remaining problems for making the method work. In the
example of base change, we note that the consistency problems in [S11] were resolved
only by the new approach of [S12]. With the dual spectral transfer in mind (see
[S9, Section 11]), we also need the slightly more general setting of [KS], and we
start with Schwartz functions to capture the dual tempered transfer first. Some of
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our early results from Section 6 have analogues in [R2], but our paths soon separate
since we bundle transfer factors with the twisted integrals from the start, and then
focus on the space of (abstract) norms and the endoscopic group. This leads us to
local problems for transfer factors directly related to descent arguments from [LS1]
and [LS2]. Those are the problems we propose to describe and solve here since, as
we have already mentioned for the special case of standard endoscopy, the desired
transfer then follows quite quickly.

3. Generalized Weyl denominators

A stabilized version of Harish-Chandra’s ′Ff transform was introduced in [S5] to
characterize stable orbital integrals. We prepare in the present section to introduce
a variant of this transform based on the generalized Weyl denominators from [S1,
Section 9] (see also [S2, Section 7c]) that depend on the a-data and χ-data of [LS1,
Section 2] rather than on a choice of positive roots.
Let G be a connected reductive algebraic group defined over R, and T be a

maximal torus in G defined over R. The familiar skew-symmetric Weyl denominator
on the Lie algebra tR of T (R) does not in general lift to T (R). Harish-Chandra
introduced the closely related function ∆′ on T (R) defined by

∆′(γ) =
∣∣det(Ad(γ)− I)g/m

∣∣1/2∏
α>0,imag

(α(γ)− 1)

where m is Lie algebra of the centralizer M in G of the split component of T. The
product is over those imaginary roots, i.e., roots of T in M, which are positive for
some specified ordering. See Section 17 of [HCI]; this paper has the final version
of ′Ff . An earlier definition, which differs by a sign that depends on the ordering,
is recognized by the presence of a term εR. Note also that we have modified the
definition to accommodate the use of the right action of conjugation in prescribing
orbital integrals. Following Harish-Chandra [HCI], we partition roots of T in G
as real (σα = α), imaginary (σα = −α), or complex (σα 6= ±α). Here, and
throughout, σ denotes the action of the nontrivial element of Γ = Gal(C/R) on T,
on the rational characters X∗(T ), etc. Then

∆′(γ) =
∏

α>0,imag
(α(γ)− 1)

∏
α real,cmplx

∣∣∣α(γ)1/2 − α(γ)−1/2
∣∣∣1/2 ,

where
∣∣α(γ)1/2 − α(γ)−1/2

∣∣ is convenient notation for ∣∣(α(γ)− 1)(α(γ)−1 − 1)
∣∣1/2 .

If γ is regular as an element of M we may further write

∆′(γ) =
∏

α>0,imag

(α(γ)− 1)

|α(γ)− 1|
∏

α

∣∣∣α(γ)1/2 − α(γ)−1/2
∣∣∣1/2 .

Let Oα denote the Galois orbit of the root α of T in G. If α is imaginary then Oα is
symmetric: Oα = −Oα = {±α}. Otherwise Oα is asymmetric. Then Oα and −Oα
are disjoint and Oα consists of one or two roots according as α is real or complex.
Recall that we define a-data {aα} and χ-data {χα} as follows [LS1, 2.2 and 2.5].
For each root α, aα is a nonzero complex number and

aσα = aα, a−α = −aα.

In particular, if α is real then aα is a real number, while if α imaginary then aα
is purely imaginary. Turning to χ-data, if α is imaginary or complex then χα is a
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character on C×. Further, if α is imaginary then χα must be an extension to C×
of the sign character on R×. Finally,

χσα = χα ◦ σ, χ−α = χ−1
α .

If α is real then χα is a character on R× and χ−α = χ−1
α .

IfOα is asymmetric then χα may be the trivial character, in which case the choice
of aα will not matter for the objects we construct (for the sake of completeness, we
will often pick aα = ±1 = −a−α), and we say that such data are trivial.
The associated (right) generalized Weyl denominator is

∆a,χ,right(γ) =
∏
O
χα(

(α(γ)− 1)

aα
)
∏

α

∣∣∣α(γ)1/2 − α(γ)−1/2
∣∣∣1/2

=
∣∣det(Ad(γ)− I)g/t

∣∣1/2∏
O
χα(

(α(γ)− 1)

aα
),

where the product is over all Galois orbits O, symmetric or not. Notice that the
choice of representative α for O does not matter.
We may also define ∆a,χ,left(γ) by replacing each term χα( (α(γ)−1)

aα
) with the

term
χα(−aα(1− α(γ)−1)).

A useful property for computing the dual transfer of characters is that the product

∆a,χ,left(γ)∆a,χ,right(γ)

coincides with the term
∣∣det(Ad(γ)− I)g/t

∣∣ appearing in the Weyl integration for-
mula [S2, Lemma 7.3]. In the present paper we are interested only in ∆a,χ,right(γ)
and will write it simply as ∆a,χ(γ).
To return to the Harish-Chandra factor ∆′(γ), we choose a positive system for

the imaginary roots and then set

χα(z) = (z/z)
1
2 =

z

|z| ,

for α positive imaginary. We also set χα trivial for all real roots and all complex
roots. Then for any choice {aα} of a-data we have

∆′(γ) = ∆a,χ(γ)
∏

α>0,imag

aα
|aα|

.

Notice that the product on the right is a fourth root of unity.
Suppose (arbitrarily chosen) χ-data {χα} are replaced by another such set {χ′α =

ηαχα}. Then

∆a,χ′(γ) = ∆a,χ(γ)
∏
O,symm

ηα(
α(γ)− 1

aα
)
∏
±O,asymm

ηα(α(γ)).

Suppose α is imaginary and choose a square root α(γ)1/2 for α(γ). Then ηα(α(γ)1/2)
is independent of this choice, and the last formula may be rewritten as

∆a,χ′(γ) = ∆a,χ(γ)
∏
O,symm

ηα(α(γ)1/2)
∏
±O,asymm

ηα(α(γ)),

showing that the change is independent of the choice of a-data. Replacing {aα} by
another set {a′α = aαbα} yields

∆a′,χ(γ) = ∆a,χ(γ)
∏
O,symm

sign(bα),

and then that change is independent of the choice of χ-data.
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Let α be an imaginary root of T. By a Cayley transform with respect to α we
mean the restriction to T of an inner automorphism of G, written γ → γs = s−1γs
or T → T s, for which sσ(s)−1 acts on T as the Weyl reflection ωα with respect to
α. Then T s is defined over R. This is a generalization of the usual Cayley transform
(see [S5], [S10, Section 3], also a review in [S6, Section 2]) that works well for stable
conjugacy. Such a transform exists if and only if the orbit of α under the imaginary
Weyl group, i.e., the Weyl group of T in M , contains a noncompact root (see [S5,
Proposition 4.11]). In the terminology of [S6, Section 2] this says that α is not
totally compact. For each root β of T we denote by βs its transport by s to a root
of T s.
Suppose that {aβ}, {χβ} are a-data and χ-data for T , and fix an imaginary root

α. Assume that α is not totally compact so that we may choose a Cayley transform
s with respect to α. Then we call {aβ}, {χβ} together with a-data and χ-data
{aβs}, {χβs} for T s an s-compatible data set if

aωα(β) = aβ , χωα(β) = χβ

for all β 6= ±α, and
aβs = aβ , χβs = χβ

for all roots β 6= ±α of T except those complex β for which βs is real, while for
such β we require

aβ = aβs , χβ = χβs ◦NmC
R.

This definition places no additional restrictions on the data aα, aαs , χα or χαs
corresponding to the Cayley roots α, αs. On the other hand, we are not free to
make the usual assumption that the data are trivial on all asymmetric orbits for
T s : the data must be nontrivial on those asymmetric (complex) orbits for T s which
bifurcate into symmetric orbits on passage back to T (see the last step in the proof
of Lemma 3.1). In the case of bifurcation of an asymmetric (complex) orbit for T
into asymmetric (real) orbits for T s, mentioned in the definition, we may choose
trivial data, but if we do not then only real (Galois-invariant) aβ , χβ are allowed.
The requirements in this last case are made with the proofs of Lemmas 4.1 and 9.1
in mind.

Lemma 3.1. Suppose that s is a Cayley transform. Then s-compatible data sets
exist.

Proof. Write σ, σs for the Galois actions on T, T s respectively. By construction,

σs(βs) = (ωασβ)s,

for all roots β of T . Thus, as in the case of the standard Cayley transform, the roots
±αs are real. If β is real then so is βs. If β is complex then either ωαβ 6= ±σβ and
βs is complex, or ωαβ = σβ and βs is real. Here the case ωαβ = −σβ (equivalently,
βs imaginary) has been excluded since that implies βs is orthogonal to αs, so that
β must be imaginary and orthogonal to α.
First we pick a-data and χ-data for T. Clearly we may adjust the data to satisfy

the conditions that aωα(β) = aβ and χωα(β) = χβ for all imaginary β 6= ±α. Suppose
that β is real. Then we may take χβ trivial and arrange that aβ = ±1 = − a−β .
Suppose that β is complex. Then we again take χβ to be trivial and arrange
that aβ = ±1 = − a−β . We may also require that aωα(β) = aβ = aσβ . For
this we observe that the orbit of β under the group generated by σ and ωα is
asymmetric and moreover disjoint from its negative: if βs is real then ωαβ = σβ
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and the orbit is {β, σβ}, whereas if βs is complex then ωαβ 6= ±σβ and the orbit
is {β, σβ, ωαβ, ωασβ}. The disjointness property is then clear.
To complete the proof of the lemma we show that we may define a-data and

χ-data for T s as follows. First use the formulas

aβs = aβ , χβs = χβ

for all roots β of T except ±α and those complex β for which βs is real. Suppose
β is complex and βs is real. We pick aβs = aβ , and take χβs trivial on R×. We
choose χ±αs trivial on R× and aαs = 1 = −a−αs .
There is nothing left to show for aβs , χβs unless β is imaginary and β 6= ±α.

Then βs is imaginary or complex according as β is orthogonal to α or not. If β
is orthogonal to α then σs(βs) = (σβ)s and so it is clear that our chosen a±βs =
aβ , χ±βs = χβ are appropriate. If β is not orthogonal to α then

σs(βs) = (−ωαβ)s.

Using the additional requirement

aωα(β) = aβ , χωα(β) = χβ ,

we see that
aσs(βs) = a−ωαβ = aωαβ = aβ = aβs

and
χσs(βs) = χ−ωαβ = χωαβ ◦ σ = χβ ◦ σ = χβs ◦ σ.

Since clearly a−βs = −aβs and χ−βs = χ−1
βs , this finishes the proof. �

4. A limit formula for stable orbital integrals

We continue with the setting of the last section. Suppose that SO is an un-
normalized stable orbital integral on the regular semisimple set of G(R), i.e., that
there is a Schwartz function f on G(R) such that, for each regular semisimple γ
in G(R), SO(γ) is the stable orbital integral SO(γ, f). Suppose also that γ lies
in T (R). Then we use the factors ∆′ and ∆a,χ from the last section to define the
transforms

Ψ(γ) = ∆′(γ)SO(γ)

for a given choice of positive imaginary roots for T , and

Ψa,χ(γ) = ∆a,χ(γ)SO(γ)

for a given choice of a-data and χ-data for T. The choice of measures has been
suppressed in notation; we follow [S5] (see also Section 11). Our purpose in the
present section is to deduce simple limit formulas for Ψa,χ from the limit formulas
for Ψ; see [S5] for a detailed proof of the latter.
We confine our attention to the behavior of orbital integrals near semiregular

semisimple elements of G(R), those elements with centralizer of type A1. Suppose
then that γ0 is a semiregular element of T (R), that α(γ0) = 1, where α is an
imaginary root which is not totally compact, and that s is a Cayley transform with
respect to α. We may regard the coroot α∨ as an element of the Lie algebra of T
and then aαα∨ lies in the real Lie algebra: σ(aαα

∨) = a−α(−α∨) = aαα
∨. For

a suffi ciently small nonzero real number ν, the element γν = γ0 exp(νaαα
∨) is a

regular element in T (R). Moreover it is unchanged if α is replaced by −α. At the
same time, the element γs0 lies in T

s(R) and is annihilated only by the real roots
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±αs. Then Ψas,χs(γ
s
0) is prescribed by smooth extension [HCI, Section 17, Theorem

1]. In particular, if we set γs,ν = γs0 exp(νaαs(α
s)∨) then

Ψas,χs(γ
s
0) = lim

ν→0
Ψas,χs(γs,ν).

We note first a lemma that simplifies our argument for the next theorem (and
motivates the definition of s-compatibility).

Lemma 4.1. For any s-compatible data set {aβ}, {χβ}, {aβs}, {χβs} we have∏
O6=Oα

χβ(
(β(γ0)− 1)

aβ
) =

∏
Os 6=±Oαs

χβs(
(βs(γs0)− 1)

aβs
).

On the left, the product is over all Galois orbits O for T except Oα = {±α}.
Each term is independent of the choice of representative β for O. The right side
is defined by using all Galois orbits for T s except {αs} and {−αs}, and again the
choice of representative has no effect on the terms.

Proof. If O is orthogonal to Oα then we find immediately a matching term for O
on the right side of the equation. For the remaining cases, if β is imaginary and
β′ = ωαβ is distinct from β then the contributions to the left from {±β}and {±β′}
are equal and moreover they each equal the contribution to the right from each of
the two orbits {βs,−(β′)s} and {−βs, (β′)s}. If β is complex and βs is complex then
we clearly have matching terms. If β is complex and βs is real then (σβ)s = ωαsβ

s.
The product of the terms for {β, σβ} and {−β,−σβ} is χβ(β(γ0)). The product of
the terms for {βs}, {−βs} is χβs(βs(γs0)) which equals the product for {ωαsβs},
{−ωαsβs}. Since β(γ0) = βs(γs0) is real, s-compatibility ensures that

χβ(β(γ0)) = χβs(β
s(γs0)2) = χβs(β

s(γs0)).χωαsβs(ωαsβ
s(γs0)),

and the lemma is proved. �

Theorem 4.2. For any s-compatible data set we have

lim
ν→0−

Ψa,χ(γν) = − lim
ν→0+

Ψa,χ(γν)

and

lim
ν→0+

Ψa,χ(γν) = Ψas,χs(γ
s
0).

Proof. As a first step, we check that it is suffi cient to verify these limits for one s-
compatible data set. Suppose then that the result is true for the choice {aβ}, {χβ}
and {aβs}, {χβs}. We now use another set which we write as {aβbβ}, {χβηβ} and
{aβsbβs}, {χβsηβs}, and consider the effect on Ψa,χ(γν) and Ψas,χs(γ

s
0). We may

argue orbit by orbit.
Notice that only the data for Oα = {±α} affect γν . The characters η±α = η±1

α

are trivial on R×, while bα = b−α may be any nonzero real number. Then γν is
replaced by γbαν and ∆a,χ(γν) is multiplied by

χα(bα)−1ηα(
α(γν)− 1

aα
) = sign(bα)ηα(eνaα)

since α(γν) = e2νaα and (eνaα − e−νaα)/aα is real. Thus the first limit statement
remains true (each side is replaced with the negative of the other if bα is negative),
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and then the second limit statement follows also. Next we observe that η±αs = η±1
αs

and bαs = b−αs contribute no change to Ψas,χs(γ
s
0) since

ηαs(
αs(γ)− 1

aαs
)η−αs(

αs(γ)−1 − 1

a−αs
)χαs(bαs)

−1χ−αs(b−αs)
−1 = ηαs(α

s(γ))

for any regular γ in T s(R), and so has limit 1 as γ approaches γs0. Thus we are done
with the orbits Oα, ±Oαs .
For the remaining orbits we could do a calculation for each symmetric orbit O

and each asymmetric pair ±O individually. Instead we appeal to Lemma 4.1 to
see that the (nonzero) total contribution can be cancelled from the limit formulas.
This finishes the first step.
The second step in our proof is to compare the proposed limit formulas with the

limit formulas for the stable version Ψ = ∆′.SO of Harish-Chandra’s ′Ff transform
([S5], recalled in Section 3 of [S1]). It is convenient to assume first that α itself
is noncompact and then drop this assumption later. We pick a system of positive
imaginary roots for T that is adapted to α. This means that α is positive and that if
β is positive imaginary and not orthogonal to α then β1 = −ωα(β) is also positive.
For convenience we will choose χβ to be the standard character z → z

|z| if β is
positive imaginary and orthogonal to α. This is also assumed for β = α. In each
of these cases we set aβ = i. For each pair of positive roots β, β1 = −ωα(β) not
orthogonal to α and distinct from α we pick one, labelling it β, and make χβ the
standard character. Then χβ1 must be its inverse. Also we set aβ = i, so that aβ1
must be −i. We assume that χβ is the identity character if β is real or complex.
Now we compare ∆a,χ(γ) with ∆′(γ) at γν = γ0 exp(iνα∨), as well as ∆as,χs(γ

s
0)

with ∆′(γs0). We proceed orbit by orbit, considering the contribution of O to the
change for ∆a,χ and of Os to the change for ∆as,χs . Real or complex orbits for
T contribute no change to either ∆′(γν) or ∆′(γs0). Consider the imaginary orbits
orthogonal to α. Suppose there are N such orbits. Then passage to ∆a,χ(γν)
multiplies ∆′(γν) by (i)−N . Since N is the number of imaginary orbits for T s

and we use s-compatible data for T s, the term ∆′(γs0) is also multiplied by (i)−N .
Consider next the orbits of a pair of positive imaginary roots β, β1 not orthogonal
to α and distinct from α. Then we replace

A(γν) =
β(γν)− 1

|β(γν)− 1| .
β1(γν)− 1

|β1(γν)− 1|
by

B(γν) =
β(γν)− 1)/i

|β(γν)− 1| .
|β1(γν)− 1|
−(β1(γν)− 1)/i

=
β(γν)− 1

1− β1(γν)
.
|β1(γν)− 1|
|β(γν)− 1| .

Because β1(γ0) = β(γ0)−1 = β(γ0), we have

lim
ν→0+

A(γν) = lim
ν→0−

A(γν) = 1,

whereas
lim
ν→0+

B(γν) = lim
ν→0−

B(γν) = β(γ0).

Thus we have to multiply all limits by β(γ0). Consider now the change to ∆′(γs0).
This term is multiplied by

χβs(
βs(γs0)− 1

aβs
).χ−βs(

βs(γs0)−1 − 1

−aβs
) = χβs(

βs(γs0)− 1

1− βs(γs0)−1
)



14 D. SHELSTAD

= χβ(
β(γ0)− 1

1− β1(γ0)
) = B(γ0) = β(γ0),

and so we are done with this case.
There is one remaining orbit, that of α. Its contribution multiplies ∆′(γν) by

i−1, but there is no change to ∆′(γs0). This is exactly what we need to deduce the
claimed limits from the analogous limits for the Harish-Chandra type function Ψ
(see [S1, Section 3, Property (vi)]). Step 2 is thus complete and the assertions of
the theorem proved for the case that α is noncompact.
Suppose that α is compact and that ω is an element of the imaginary Weyl group

for which α† = ω−1α is noncompact. Assume that ω acts on T as Int(w). Then
if s is a Cayley transform relative to α, s† = w−1s is a Cayley transform relative
to α†. Also if γ0 is a semiregular element of T (R) such that α(γ0) = 1 then γw0 is
a semiregular element of T (R), α†(γw0 ) = 1 and (γw0 )s

†
= γs0. Finally, to obtain an

s†-compatible data set from an s-compatible data set {aβ}, {χβ} and {aβs}, {χβs},
we may replace {aβ}, {χβ} by {a′β}, {χ′β}, where a′β = aωβ and χ′β = χωβ , and
leave {aβs}, {χβs} unchanged. Then

γwν = γw0 exp vaα†(α
†)∨,

and because SO is stable we have

Ψa,χ(γν) = Ψa′,χ′(γ
w
ν ).

The limit formulas at γ0 now follow immediately from those at γw0 , and this com-
pletes the proof of Theorem 4.2. �

Notice that Lemma 4.1 allows us to use ∆α in place of ∆a,χ in the statement of
Theorem 4.2, where

∆α(γ) = χα(
(α(γ)− 1)

aα
)
∣∣det(Ad(γ)− I)g/t

∣∣1/2 .
Here ∆−α = ∆σα = ∆α, and so only the (symmetric) orbit O of α matters. We
write then ∆O in place of ∆α.
We end this section with a remark on the normalized orbital integral

Φ(γ) =
∣∣det(Ad(γ)− I)g/t

∣∣1/2 SO(γ).

Set
ΨO(γ) = ∆O(γ) SO(γ) = χα( (α(γ)−1)

aα
) Φ(γ).

Assume, as in the theorem, that α is not totally compact. Notice that if we write
aα as ibα, where bα is real, then for |ν| small and nonzero we have

χα(
(α(γν)− 1)

aα
) = χα(eiνbα)χα(

eiνbα − e−iνbα
ibα

)

= χα(eiνbα)χα(
2 sin(νbα)

νbα
ν) = χα(eνaα)sign(ν).

Because s defines an inner twist between the identity components of their respective
centralizers, the elements γ0 and γs0 are stably conjugate in G(R) in the sense
introduced by Kottwitz in Section 3 of [K1] for the untwisted setting. Comparing
limits for ΨO with limits for Φ, we see, by an argument along the lines of Section 2
that the assertions of Theorem 4.2 may be rephrased as the existence and equality
of the limits of Φ(γ) as (i) γ approaches γ0 through the regular elements of T (R)
and (ii) γ approaches the stable conjugate γs0 of γ0 through the regular elements
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of T s(R) (see Section 2 of [S6]). This suggests another approach to the proof of
transfer; we simply found our present approach quicker. Our preference for working
with ΨO rather than Φ is explained by the formulas of Section 10 for derivatives.
It is now a short exercise to modify the characterization theorem for stable

orbital integrals in [S5] using the statement of Theorem 4.2 or, more precisely, its
generalization to derivatives. As mentioned in Section 1, we will need eventually to
introduce a slight twist in the stable integrals. Thus we will wait until Section 12,
and then write a slightly more general characterization theorem (Theorem 12.1).

5. A limit formula for twisted orbital integrals

We return to the statement of the main theorem in Section 2, and follow the
notation established in that setting. In particular, we will consider (θ,$)-twisted
integrals for G, while the endoscopic group H1 will now assume the role of the group
of the last two sections. Recall that, because of our assumption on the inner twist
(G, θ, ψ), we consider completely untwisted integrals on H1(R). To commence the
proof of the main theorem, we assume that f ∈ C(G(R), θ) and define a function
Φ1 on the strongly G-regular elements γ1 of H1(R) by

Φ1(γ1) =
∣∣det(Ad(γ1)− I)h1/t1

∣∣1/2 ∑
δ,θ−conj

∆(γ1, δ)O
θ,$(δ, f).

We must show Φ1 is a normalized stable orbital integral on H1(R). Our primary
concern will be an analogue of the limit formulas of the last section.
Consider Φ1 near a semiregular element γ0 in H1(R) annihilated by an imaginary

root α1 of a maximal torus T1 in H1. Because H1 is quasi-split over R the root
α1 is not totally compact [S10, Lemma 9.2]. We then have a Cayley transform
s1 in the sense of Section 3 for α1, along with the semiregular element γ

s1
0 in

the adjacent Cartan subgroup T s11 (R) annihilated by the real root αs11 . We will
choose an s1-compatible data set in Section 9 based on compatible twisted data.
We make the additional requirement that γ0 be G-semiregular (see Section 6 for
definition). For all nonzero real ν with |ν| suffi ciently small, we will see that both
γν = γ0 exp(νaα1α

∨
1 ) in T1(R) and γs1,ν = γs10 exp(νaαs11 (αs11 )∨) in T s11 (R) are

G-regular, and then that Φ1(γν), Φ1(γs1,ν) are defined.

Theorem 5.1. All relevant limits exist and the assertions of Theorem 4.2 are true
for the group H1 when Φ (normalized stable orbital integral on H1(R)) is replaced
by Φ1 (normalized transport of a weighted sum of twisted integrals on G(R)) :

lim
ν→0−

Ψa,χ(γν) = − lim
ν→0+

Ψa,χ(γν)

and
lim
ν→0+

Ψa,χ(γν) = lim
ν→0

Ψas1 ,χs1 (γs1,ν).

We will gather ingredients for a proof of the theorem over the next four sections,
completing the argument in Section 10. Later the theorem will be strengthened to
include derivatives (see Lemmas 10.1, 10.2) and all semiregular γ0 (see Section 11).
Often we will write γ′ν for γs1,ν and a

′, χ′ for as1 , χs1 .
To begin, we replace Oθ,$(δ, f) by the normalized integral

Φθ,$(δ, f) =
∣∣∣det(Ad(δ) ◦ θ − I)g/Cent(gθδ ,g)

∣∣∣1/2Oθ,$(δ, f).
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Assume strongly G-regular γ1 is a norm of δ. Then the term ∆IV (γ1, δ) in the
transfer factor is the quotient of the normalizing term above by that for ordinary
orbital integrals on H1(R). Thus our proposed normalized stable orbital integral is
given on γ1 by

Φ1(γ1) =
∑

δ,θ−conj

∆(γ1, δ)

∆IV (γ1, δ)
Φθ,$(δ, f).

We may as well assume for the rest of the paper that there exists a strongly
G-regular element in H1(R) that is a norm, for otherwise the zero function lies in
Trans(f) and the main theorem is proved. We then fix a pair (γ, δ), with strongly
G-regular γ ∈ H1(R) a norm of strongly θ-regular δ ∈ G(R), in order to normalize
transfer factors as mentioned in Section 1. We gather all terms involving only (γ, δ)
as

∆∗(γ, δ) = ∆(γ, δ)[∆I(γ)∆II(γ)∆IV (γ)]−1.

Here we have dropped the second argument in our notation for ∆I ,∆II ,∆IV since
it plays no role. There is no harm for the proof of Theorem 5.1 in assuming that
transfer factors are normalized so that

∆(γ, δ) = ∆I(γ)∆II(γ)∆IV (γ),

and then

∆∗(γ, δ) = 1.

This allows us to rewrite Φ1(γ1), for any strongly G-regular γ ∈ H1(R), as

∆I(γ1)∆II(γ1)
∑

δ,θ−conj
∆III(γ1, δ; γ, δ) Φθ,$(δ, f),

where the summation is over θ-conjugacy classes of strongly θ-regular elements δ
in G(R). Here we declare the contribution of the class of δ to be zero if γ1 is not a
norm of δ.
If γ1 is a norm of δ then the torus Cent(γ1, H1) is a norm group (in the sense

of the next section) which, as noted in Section 1, implies that the character $ is
trivial on Centθ(δ,G)(R). The transformation rule (2) of Theorem 5.1.D of [KS]
further allows us to write ∆III(γ1, δ; γ, δ)O

θ,$(δ, f) in the form∫
Centθ(δ,G)(R)\G(R)

∆III(γ1, g
−1δθ(g); γ, δ)f(g−1δθ(g))dg/dt.

As a function of δ, this is constant on θ-conjugacy classes, as is the normalizing

factor
∣∣∣det(Ad(δ) ◦ θ − I)g/Cent(gθδ ,g)

∣∣∣1/2 for Φθ,$(δ, f). The set of elements with

γ1 as norm forms a single stable θ-conjugacy class of elements in G(R), as will be
reviewed in Sections 6 and 7. Thus the summation in Φ1(γ1) may be taken over
the (finite) set of θ-conjugacy classes in this stable class.
In Section 7 we will define Φ1(γ1) for G-regular elements γ1 that are not strongly

G-regular in the same way as for the untwisted case, i.e., by smooth extension.
First, we need to describe our choice of stable θ-conjugacy class with norm γ1 in
that setting. At the same time we prepare for the more delicate analysis of Φ1(γ1)
when γ1 is near semiregular γ0.
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6. Norm groups and semiregular elements

To view semisimple elements of the endoscopic group H1(R) as norms, we adapt
the definition of image in standard endoscopy (see (1.2) of [LS2]) to our twisted
setting. Recall that we have made an assumption to avoid any twisting in H1(R).
Namely, we have fixed quasi-split data (G∗, θ∗) and inner twist (G, θ, ψ);

ψσ(ψ)−1 = Int(u(σ))

and
ψ ◦ θ ◦ ψ−1 = Int(gθ)

−1 ◦ θ∗,
where u(σ), gθ lie in G∗sc.We write u(σ), gθ also for the images of these two elements
in G∗ under the natural map G∗sc → G∗. Define m : G → G∗ by m(δ) = ψ(δ)g−1

θ .
Then our assumption is that we may choose u(σ), gθ so that

σ(m)(δ) = u(σ)−1m(δ)θ∗(u(σ)).

See Lemma 3.1.A and Appendix B of [KS] for its (hyper)cohomological significance.
It is not diffi cult to drop the assumption, as we will check in Section 12.
We start our discussion of norms with the correspondence of [KS] between the

set of stable conjugacy classes of strongly G-regular elements in H1(R) and the set
of stable θ-conjugacy classes of strongly θ-regular elements in G(R). Recall from
the last section that we may as well assume this correspondence is nonempty. It is
uniquely determined by the choice of gθ (see [S9] for a related discussion). If the
class of strongly θ-regular δ in G(R) corresponds to the class of strongly G-regular
γ1 in H1(R) then γ1 is a norm of δ. We will call a maximal torus T1 over R in
H1 a norm group for (G, θ) if T1(R) contains strongly G-regular elements that are
norms of strongly θ-regular elements in G(R); this generalizes a definition in [KS,
Section 3.3].
Let T1 be a maximal torus over R in H1. Then by Lemma 3.3.B of [KS] there

exist a θ∗-stable maximal torus T in G∗ defined over R and an admissible homo-
morphism T1 → Tθ∗ from T1 to the coinvariants of θ

∗ in T. In more detail: there
exist a θ∗-stable maximal torus T in G∗ defined over R and a θ∗-stable Borel sub-
group B containing T , along with Borel subgroup B1 containing T1 such that the
homomorphism

T1 → T1/Z1 → Tθ∗

attached to the pairs (B1, T1) and (B, T ) is defined over R. Here the map T1 →
T1/Z1 is the natural projection, and the construction of T1/Z1 → Tθ∗ comes from
the definition of endoscopic data. The strongly θ∗-regular elements of T (R), which
include a dense subset of T (R)0, have strongly G∗-regular norms in T1(R), and so
the cited lemma shows that any maximal torus over R in H1 is a norm group for
the pair (G∗, θ∗).
Assume now that T1 is a norm group for (G, θ). Suppose that γ1 is a strongly

G-regular element of T1(R) and that γ1 is a norm of strongly θ-regular δ in G(R).
First we take an admissible homomorphism T1 → Tθ∗ mapping γ1 to an element,
say γ∗, of Tθ∗(R). Because γ1 is a norm of δ there is also an associated isomorphism

Int(g) ◦ ψ : Gθδ → (T θ
∗
)0

defined over R, where g is chosen in G∗sc so that

δ∗ = gm(δ)θ∗(g)−1
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lies in T and N(δ∗) = γ∗ ; see [KS, Sections 3.3, 4.4]. Here, as in [KS, Section 3.2],
N denotes the abstract norm map, i.e., the projection T → Tθ∗ to coinvariants,
while Gθδ denotes Centθ(δ,G)0, a torus defined over R. In the equation δ∗ =
gm(δ)θ∗(g)−1, the element g has been identified with its image in G∗ (we will do
this repeatedly, often without mention) and m is the modification of the inner
twist ψ : G → G∗ defined in the first paragraph. Because of the strong regularity
condition, g is unique up to an element of Tsc once T1 → Tθ∗ has been fixed. Also,
changing T1 → Tθ∗ changes g in a simple manner [KS, Section 4.4].
In summary: if strongly G-regular γ1 in H1(R) is a norm of strongly θ-regular δ

in G(R) we identify the quotient of Cent(γ1, H1) = T1 by Z1 with the group of θ
∗-

coinvariants in T. Here T is provided by the data for an admissible homomorphism
T1 → Tθ∗ . We also identify Gθδ = Centθ(δ,G)0 with the identity component of the
group of θ∗-invariants in T .
Recall that the strong θ-regularity of δ ensures only that Centθ(δ,G) is abelian

and diagonalizable. The isomorphism Int(g) ◦ ψ above maps Centθ(δ,G) onto the
full group of θ∗-invariants in T.
Now we drop the assumption of strong G-regularity on a semisimple element in

H1(R). Then the ambient norm group is not unique unless the element is G-regular
and so we proceed torus by torus.
Suppose that γ0 is an element in the norm group T1(R) and assume that δ0 is

a θ-semisimple element of G(R). Then, by definition [KS, Section 3.2], Int(δ0) ◦ θ
preserves some pair (B†, T †). Write T δ0 for the identity component of the fixed
points of Int(δ0) ◦ θ in T †. Then T δ0 is a maximal torus in the reductive group Gθδ0
defined over R, and we may assume T δ0 is defined over R (otherwise replace (B†, T †)
by a suitable Gθδ0-conjugate pair). Fix an admissible homomorphism T1 → Tθ∗ and
write γ∗0 for the image of γ0. Then there is an isomorphism Int(g) ◦ ψ carrying
(B†, T †) to (B, T ), where g ∈ G∗sc. This implies that δ∗0 = gm(δ0)θ∗(g)−1 lies in T.
Definition: We call γ0 a T1-norm of δ0 if we may choose g ∈ G∗sc so that (i)

N(δ∗0) = γ∗0 and (ii) the isomorphism Int(g) ◦ ψ : T δ0 → (T θ
∗
)0 is defined over R.

In the case that γ0 is strongly G-regular (ii) follows from (i) [KS, (3.3.6)]. In
general, for given T1, the choice of admissible homomorphism T1 → Tθ∗ does not
affect the existence of g.
Next, we consider together all elements in the γ0-component γ0T1(R)0 of T1(R).

Lemma 6.1. The following are equivalent for γ0 ∈ T1(R) :
(i) γ0 is a T1-norm,
(ii) some strongly G-regular element in the γ0-component is a norm,
(iii) every element of the γ0-component is a T1-norm.

Proof. Fix an admissible homomorphism T1 → Tθ∗ and assume that γ0 ∈ T1(R) is
a T1-norm of a θ-semisimple δ0 ∈ G(R). Choose elements g, δ∗0 as in the definition.
Take ε in the identity component of the Cartan subgroup T δ0(R) of Gθδ0(R) and
consider δ = εδ0. Then δ is θ-semisimple since Int(δ) ◦ θ preserves the same pair
(B†, T †) as Int(δ0) ◦ θ. Also, by results of Steinberg (see Theorem 1.1.A in [KS]),
Gθδ(R) contains T δ0(R) as Cartan subgroup. Further we may choose ε so that δ is
strongly θ-regular; the elements ε with this property are dense in T δ0(R)0. Set

δ∗ = gm(δ)θ∗(g)−1 = gm(εδ0)θ∗(g)−1

= gψ(ε)g−1.gm(δ0)θ∗(g)−1 = ε∗δ∗0 = δ∗0ε
∗,
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where ε∗ = gψ(ε)g−1 lies in T θ
∗
(R)0. The image of the γ0-component in T1(R)

under T1 → Tθ∗ then contains N(δ∗) = γ∗0N(ε∗), where γ∗0 is, as before, the image
of γ0 under T1 → Tθ∗ . Since δ

∗ is strongly θ∗-regular, each element in the γ0-
component which maps to N(δ∗) under T1 → Tθ∗ is strongly G-regular, and (ii)
now follows.
Assume (ii) and suppose strongly G-regular γ1 in the γ0-component of T1(R)

is a norm of δ. Choose δ∗, g as in the definition of norm for strongly G-regular
elements. By our assumption that the restriction of θ to the center of G is (strongly)
semisimple, the homomorphism N : T θ

∗
(R)0 → Tθ∗(R)0 is surjective. Thus the

image of γ1T1(R)0 under T1 → Tθ∗ coincides with the image under N of δ∗T θ
∗
(R)0.

We write an element γ2 of γ1T1(R)0 = γ0T1(R)0 as the image under N of some
element δ∗2 in δ

∗T θ
∗
(R)0. Then, as in Lemma 4.4.A of [KS],

σ(δ∗2)δ∗−1
2 = σ(δ∗)δ∗−1 = (θ∗ − 1)v(σ),

where the cochain v(σ) is (the image in T of) the cochain gu(σ)σ(g)−1 in Tsc. Thus

δ2 = m−1(g−1δ∗2θ
∗(g))

is θ-semisimple, lies in G(R), and has norm γ2, so that (iii) follows. The rest is
immediate. �

We expand now on the argument for (i) ⇒ (ii) in the last lemma. Write the
element ε defined there as expY, where Y belongs to the Cartan subalgebra tδ0(R)
of the Lie algebra gθδ0(R) of Gθδ0(R). Let Y map to Y ∗, where Y ∗ ∈ tθ∗(R), under
the bijection provided by Int(g) ◦ ψ. Recall from the definition of z-pair we have
the exact sequence 1 → Z1 → H1 → H → 1, with Z1 central in H1. We split the
corresponding sequence for Lie algebras in the usual manner and identify, over R,
the Lie algebra h as a subalgebra of h1 complementary to z1. Then the Lie algebra
tH of T1/Z1 is a subspace of t1 complementary to z1. There is a linear isomorphism

tθ
∗
(R)→ tθ∗(R)→ tH(R)

determined by the restriction of N : T → Tθ∗ to θ
∗-invariants and the chosen

admissible isomorphism Tθ∗ → T1/Z1. Write YH for the image of Y ∗, so that we
have

tδ0(R) 3 Y ↔ Y ∗ ↔ N(Y ∗)↔ YH ∈ tH(R).

Write Y1 ∈ t1(R) as Y1 = YH + Yz1 . Then the following is immediate.

Lemma 6.2. Assume that γ0 is a T1-norm of δ0 and Y1 ∈ t1(R). Then the element

γ0(Y1) = γ0. expY1 = expY1.γ0

in the γ0-component of T1(R) is a T1-norm of the element*

δ0(Y ) = expY.δ0 = δ0. exp θY.

The cochain v(σ) attached to γ0 also serves for γ0(Y1), while the attached element
of T is

δ∗(Y ) = δ∗0. expY ∗ = expY ∗.δ∗0.

*Recall here that expY lies in the θ-twisted centralizer of δ0.
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Now we consider all tori T1 containing a given semisimple element γ0 in H1(R).
Let δ0 be a θ-semisimple element of G(R).We call γ0 a norm of δ0 (or, for emphasis
on the ambient group, a G-norm of δ0) if there exists a norm group T1 such that
γ0 is a T1-norm of δ0. Otherwise we say that γ0 is not a (G-) norm. The following
will be proved after Lemma 6.6.

Lemma 6.3. Let γ0 be a semisimple element in H1(R) and δ0, δ
′
0 be θ-semisimple

elements of G(R). Then: (i) if γ0 is a G-norm of δ0 then so are all stable conjugates
of γ0 in H1(R), and (ii) if γ0 is a G-norm of both δ0 and δ

′
0 then δ0 and δ

′
0 are

stably θ-conjugate.

Remark: By δ′0 is stably θ-conjugate to δ0 we mean that we may write δ
′
0 ∈ G(R)

as xδ0θ(x)−1, where x ∈ G and Int(x) : Gθδ0 → Gθδ′0
is an inner twist.

Remark: As pointed out by a referee, the converse statement for (ii) in Lemma
6.3 is false in general.
Assume now that semisimple γ0 ∈ H1(R) is a T1-norm of δ0 ∈ G(R). Fix admis-

sible T1 → Tθ∗ and choose g, δ
∗
0 as in the definition of T1-norm. Then Int(g) ◦ ψ

is an isomorphism of Gθδ0 with (G∗)θ
∗

δ∗0
. We will abbreviate (slightly) the notation

for the latter group as Gθ
∗

δ∗0
. We have required that Int(g) ◦ ψ maps, over R, the

maximal torus T δ0 over R in Gθδ0 to the maximal torus (T θ
∗
)0 in Gθ

∗

δ∗0
. In the case

that Gθδ0 is of Dynkin type A1 we claim that this requirement ensures first that Gθ
∗

δ∗0

is defined over R and then that Int(g) ◦ ψ : Gθδ0 → Gθ
∗

δ∗0
is an inner twist. Indeed,

Int(g) ◦ ψ transports the two roots of T δ0 in Gθδ0 , either both imaginary or both
real, to the roots of (T θ

∗
)0 in Gθ

∗

δ∗0
which must be of the same type. An argument

with root vectors then finishes the proof.
With no restriction on the Dynkin type of Gθδ0 we will prove the next lemma at

the end of this section.

Lemma 6.4. Suppose that semisimple γ0 ∈ H1(R) is a T1-norm of δ0 ∈ G(R) and
that T1 → Tθ∗ is an admissible homomorphism. Then we may choose the elements
g, δ∗0 so that (i) σ(δ∗0)δ∗−1

0 is central in G∗ and (ii) v(σ) = gu(σ)σ(g)−1 lies in the
product of the torus (Tsc)

θ∗sc with the center of G∗sc.

In particular, if G is of adjoint type then we may arrange that δ∗0 lies in T (R).
In general, for any g, δ∗0 as in this lemma, the group G

θ∗

δ∗0
is defined over R and

Int(g) ◦ ψ : Gθδ0 → Gθ
∗

δ∗0
is an inner twist.

Before continuing with the case that Gθδ0 is of Dynkin type A1 we record an
explicit analysis of the roots of Gθδ0 and G

θ∗

δ∗0
following Steinberg (see [KS, Chapter

1],). By a restricted root we will mean the restriction αres of a root α of T in G∗ to
the torus (T θ

∗
)0. This torus is maximal in each of the reductive groups (G∗θ

∗
)0 and

Gθ
∗

δ∗0
. The set of all restricted roots forms a nonreduced root system in general. As

in Section 1.3 of [KS], we call α of type R1 if neither 2αres nor 1
2αres is a restricted

root, of type R2 if 2αres is a restricted root, or of type R3 if 1
2αres is a restricted

root. Also following [KS], we may identify a root α1 = ((α∨)res)
∨ of T1 in H1, or

of T1/Z1 w Tθ∗ in H1/Z1, as Nα or 2Nα. If α is of type R1, R3 then α1 = Nα, and
if α is of type R2 then α1 = 2Nα. Recall that Nα denotes the sum of all distinct
roots in the θ∗-orbit of α. Assume α1 is a root of T1 in the identity component
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(H1)γ0 of the centralizer of γ0 in H1. The identification of roots then implies that

α1(γ0) = Nα(δ∗0) = 1

if α is of type R1 or R3, and that

α1(γ0) = Nα(δ∗0)2 = 1

if α is of type R2. Write this second case as R2,± according as Nα(δ∗0) = ±1.

We use Int(g)◦ψ to identify roots of T δ0 in Gθδ0 with roots of (T θ
∗
)0 in Gθ

∗

δ∗0
. Let

α be a root of T in G∗. Then αres is a root of T δ0 in Gθδ0 if and only if Nα(δ∗0) = 1

in the cases α is of type R1, R2, or if and only if Nα(δ∗0) = −1 in the case α is of
type R3. We conclude the following.

Lemma 6.5. Assume that α1 = ((α∨)res)
∨ is a root of T1 in (H1)γ0 , i.e., that

α1(γ0) = 1. Then:(i) α0 = rααres is a root of T δ0 in Gθδ0 , where rα = 1 if α is of
type R1 or R2,+, rα = 2 if α is of type R2,−, and rα = 1

2 if α is of type R3. Also,
(ii) if α is of any type except R2,− then Nα(δ∗0) = 1 and α0 is a root of (T θ

∗
)0 in

(G∗θ
∗
)0. Finally, (iii) if α is of type R2,− then Nα(δ∗0) = −1 and αres = 1

2α0 is a
root of (T θ

∗
)0 in (G∗θ

∗
)0.

Remark: We will often write Nα(δ0) for Nα(δ∗0). Notice we may make a defi-
nition of Nα that is intrinsic to G by using the automorphism Int(δ0) ◦ θ and the
maximal torus T † = Cent(T δ0 , G).
Next, we assume also that γ0 is semiregular, i.e., ±α1 are the only roots of T1 in

(H1)γ0 . We will say that γ0 is G-semiregular if ±α0 are the only roots of T δ0 in Gθδ0 ,
i.e., both (H1)γ0 and G

θ
δ0
are of Dynkin type A1. Explicitly, the extra condition is

that if root β of T is not in the Q-span of the θ∗-orbit of α then Nβ(δ0) 6= 1 if β is
of type R1 or R2, and Nβ(δ∗0) 6= −1 if β is of type R3. Notice that if β is of type
R2 then Nβ(δ∗0) = −1 implies that 2βres is a root of G

θ
δ0
, and so we conclude that

for β of type R2 the extra condition can be rewritten as β1(γ0) = Nβ(δ∗0)2 6= 1,
and then that the condition for β of type R3 is redundant. We may now write the
G-semiregularity condition directly in terms of γ0 as:
α1(γ0) = 1 and β1(γ0) 6= 1 for all roots β of type R1 or R2 not in the Q-span

of the θ∗-orbit of α.
If semiregular γ0 ∈ T1(R) is not a norm we will use this condition as our definition

of G-semiregularity (which coincides with the more natural definition using the map
AG/H of [KS, Theorem 3.3.A]).
We return to the setting of Theorem 5.1, where α1 is imaginary and s1 is a Cayley

transform with respect to α1. Because of the stability of the transfer factor ∆(γ1, δ)
in its first argument γ1 [KS, Lemma 5.1.B], the argument of the last paragraph of
the proof of Theorem 4.2 shows that there is no harm (for the proof of Theorem
5.1) in assuming α1 itself is noncompact and that s1 is a Cayley transform within
(H1)γ0 . Then also γ

s1
0 = γ0, i.e., γ0 lies in T1 ∩ T s11 .

An element γ1 in T1(R) is G-regular in the sense of [KS] if and only if β1(γ1) 6= 1
for all roots β of type R1 or R2. Because γ0 is assumed G-semiregular, the elements

γν = γ0 exp(νaα1(α1)∨)

in the γ0-component of T1(R) and the elements

γs1,ν = γ0 exp(νaα′1(α
′
1)∨),
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where α′1 = αs11 , in the γ0-component of T
s1
1 (R) are easily checked to be G-regular

for all real nonzero ν with |ν| suffi ciently small. We gather the following observations
with some special cases of Theorem 5.1 in mind (see Lemma 7.2).

Lemma 6.6. Suppose γ0 is a G-semiregular element in a Cartan subgroup T1(R) of
H1(R) annihilated by a noncompact imaginary root α1. Suppose that s1 is a Cayley
transform for α1 in (H1)γ0 . Then: (i) if γ0 is not a G-norm then the G-regular
elements γν and γs1,ν are not norms, (ii) if T

s1
1 is a norm group for (G, θ) then

T1 is also a norm group for (G, θ), (iii) if γ0 is a G-norm of δ0 in G(R) then γ0

is a T1-norm of δ0, (iv) if γ0 is a G-norm of δ0 in G(R) then γ0 is a T
s1
1 -norm

of δ0 if and only if Gθδ0 is split modulo center, and (v) if T
s1
1 is not a norm group

for (G, θ) then the group Gθδ0 is compact modulo center, for each δ0 in G(R) with
T1-norm γ0.

Proof. For (i), assume γ0 is not a G-norm. We then apply Lemma 6.1 to γ0 as
element of T1 to conclude that γν is not a norm, and to γ0 as element of T

s1
1 to

conclude that γs1,ν is not a norm.
For (ii), assume that T s11 is a norm group for (G, θ). By Lemma 6.1, there is a

component of T s11 (R) consisting of T s11 -norms. Choose a G-semiregular element γ2

of this component annihilated by the real root αs11 and suppose it is a T s11 -norm
of δ2. There are θ

∗-stable maximal tori T, T ′ in G∗ defined over R and admissible
homomorphisms T1 → Tθ∗ , T

s1
1 → T ′θ∗ . Since T

s1
1 is a norm group for (G, θ) there

is also an isomorphism Int(g2) ◦ ψ : T ′δ2 → (T ′θ
∗
)0 defined over R, where δ∗2 =

g2m(δ2)θ∗(g2)−1 lies in T ′ and N(δ∗2) is the image of γ2 under T
s1
1 → T ′θ∗ . Recall

that Gθ
∗

δ∗2
is defined over R and Int(g2)◦ψ : Gθδ2 → Gθ

∗

δ∗2
is an inner twist. The root α′0

of T ′δ2 in Gθδ2 corresponding to α
′
1 = αs11 is also real: σα′0 corresponds to σα

′
1 = α′1

and so equals α′0. Let t ∈ Gsc define an inverse Cayley transform in (Gθδ2)sc for
α′0. On the other hand, the θ

∗-stable pairs (B, T ) and (B′, T ′) defining T1 → Tθ∗ ,
T s11 → T ′θ∗ are conjugate under (G∗sc)

θ∗sc (by Steinberg’s structure results, see [KS,
Theorem 1.1.A]) and so they determine an element t∗ of (G∗sc)

θ∗sc such that Int(t∗)
maps T ′ to T , T ′θ∗ to Tθ∗ and completes a commutative diagram with Int(s1)−1 :
T s11 → T1 and the admissible homomorphisms T1 → Tθ∗ , T

s1
1 → T ′θ∗ . Then t

∗ is an
inverse Cayley transform for the real root rα′0 of (T ′θ

∗
)0 in (G∗θ

∗
)0, where r = 1

or 1
2 since the action of σ(t∗)−1t∗ on (T ′θ

∗
)0 coincides with the dual transport

of σ(s1)s−1
1 which acts on T s11 as the Weyl reflection for α′1; this dual transport

coincides with the Weyl reflection for rα′0. Here we define dual transport using the
bijection (1.3.8) of [KS]. We may arrange the choices so that t∗ is standard, i.e.,
t∗ lies in the image of SL2 in (G∗sc)

θ∗sc corresponding to the root rα′0. The action
of σ(t∗)−1t∗ on (T ′θ

∗
)0 coincides with the transport by Int(g2) ◦ ψ of the action

of σ(t)−1t on T ′δ2 (t is the inverse Cayley transform defined earlier in the present
paragraph) since again each act as the same Weyl reflection. Let T δ2 be the image
of T ′δ2 under t. This property of t, t∗ (via our definition of Cayley transform in
Section 3) implies that if g3 = t∗.g2.ψ(t−1) then the composition

Int(g3) ◦ ψ : T δ2 → (T θ
∗
)0,

is defined over R, and that

g3m(δ2)θ∗(g3)−1 = Int(t∗)(δ∗2) = δ∗3
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lies in T . Finally, N(δ∗3) is the image of (γ2)s
−1
1 ∈ T1(R),so that (γ2)s

−1
1 is a T1-norm

of δ3. In particular, T1 is a norm group for (G, θ), and (ii) is proved.
For (iii), assume γ0 is a G-norm. Then because (H1)γ0 is of type A1, we see

that γ0 must be either a T1-norm or T s11 -norm. The argument for (ii) with γ2 = γ0

shows that if γ0 is a T
s1
1 -norm of an element δ0 then it is also a T1-norm of δ0.

For (iv), we return to the argument for (ii), except that now T1 in place of T
s1
1

is assumed a norm group for (G, θ).We replace the element δ2 by δ0 and, as usual,
write T δ0 for the image of (T θ

∗
)0 under the embedding into Gθδ0 . If G

θ
δ0
is split

modulo center, which implies that the root α0 of T δ0 is noncompact imaginary,
then we may construct a Cayley transform s1 in (Gθδ0)sc and argue along the same
lines as (ii) to write γ0 as a T

s1
1 -norm of δ0. For the converse, assume γ0 is also a

T s11 -norm of δ0. Then the argument for (ii) shows that Gθδ0 contains a torus T
′δ0

which has a real root and so is split modulo center.
Lemma 6.1 shows that (v) is a consequence of (iv) and the lemma follows. �

Proof. (Lemma 6.3) Suppose semisimple γ0 is a T
′
1-norm of δ0, where T ′1 is arbi-

trary. By definition, T ′1 lies in (H1)γ0 . If T
′
1 is not fundamental in (H1)γ0 then it

has a real root. Now we argue similarly as for (ii) in Lemma 6.6, with γ0 in place
of γ2 and δ0 in place of δ2, to display γ0 as a T1-norm of δ0, with T1 of split rank
one less than that of T ′1. Repeating this argument until real roots are exhausted, we
conclude that if γ0 is a G-norm of δ0 then γ0 is a T1-norm of δ0, where T1 = Tfund
is fundamental in (H1)γ0 . Recall that a stable conjugate of γ0 in H1(R) may be
written as wγ0w

−1, where the restriction of Int(w) to Tfund is defined over R [S6,
Lemma 2.5.1]. Then (i) follows.
To prove (ii), let semisimple γ0 be a G-norm of δ0, δ

′
0. Then by the last paragraph

we may use an admissible homomorphism T1 → Tθ∗ , with T1 fundamental in (H1)γ0 ,
to attach g, g′ ∈ G∗sc and δ∗0, (δ′0)∗ ∈ T to δ0, δ

′
0 respectively. Following the proof

for (i) ⇒ (ii) in Lemma 6.1 we use the elements g, g′ to define strongly θ-regular
δ3, δ

′
3 and corresponding elements δ

∗
3, (δ

′
3)∗ in δ∗0.(T

θ∗)0(R) and (δ′0)∗.(T θ
∗
)0(R)

respectively, such that N(δ∗3) = N((δ′3)∗). That construction allows us to assume
(δ′3)∗ = δ∗3tθ

∗(t)−1, where t ∈ T satisfies (δ′0)∗ = δ∗0 t θ
∗(t)−1. Set x = ψ−1(g′−1tg).

Then xδ3θ(x)−1 = δ′3 and xδ0θ(x)−1 = δ′0. From the first of these two equations (the
strongly regular case) we conclude that σ(x)−1x lies in the product of Gθδ3 = T δ0

with θ-invariants in the center of G and so δ′0 is stably θ-conjugate to δ0. �

We turn now to the proof of Lemma 6.4. Our first remark is that the elements
v(σ) = gu(σ)σ(g)−1 and δ∗0 = gm(δ0)θ

∗(g)−1 from the statement of the lemma
are unchanged when the inner twist ψ : G → G∗ is replaced by Int(x) ◦ ψ, where
x ∈ G∗sc, provided we replace u(σ) by xu(σ)σ(x)−1 and gθ by θ

∗(x)gθx
−1. Recall

that u(σ), gθ were discussed in the first paragraph of the present section. Notice
also that the change in ψ does not affect our assumption there about u(σ), gθ. We
are thus free to choose ψ as we wish within its inner class. Our choice will use
fundamental splittings, as in [S9] but without the cuspidality assumption. The
definitions are as follows.
Let TG be a fundamental maximal torus over R in G and BG be a Borel subgroup

of G containing TG. Then we call the pair (BG, TG) fundamental if the set of BG-
simple roots of TG in G is preserved by the action of −σT onX∗(T ). Such pairs exist
(see [K1, Section 10.4]; we will review this below as we use it). Consider a splitting
splG = (BG, TG, {Xα}) for G. Here Xα is a root vector for the BG-simple root α.
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Denote by X−α the root vector for −α completing Xα and the coroot Hα to a
simple triple. There are two possibilities: α is complex and |{±α,±σTα}| = 4 or α
is imaginary and |{±α,±σTα}| = 2.We call splG fundamental if the pair (BG, TG)
is fundamental and σXα = XσTα for all BG-simple roots that are complex or
noncompact imaginary, σXα = −XσTα for all BG-simple roots that are compact
imaginary. A fundamental pair may be extended to a fundamental splitting (see
[S9, Section 3] regarding imaginary roots). Suppose that η is an automorphism of
G that preserves the fundamental splitting splG. If the restriction of η to TG is
defined over R then an argument with root vectors shows that η is defined over R
as automorphism of G.
The automorphism θ∗ of G∗ preserves a (fixed) R-splitting (B∗, T ∗, {Xα∗}). Here

T ∗ is a maximally split maximal torus defined over R and B∗ is also defined over R.
We may construct a θ∗-stable fundamental pair (B, T ) for G∗ as follows. Consider
the identity component G1 of the group of fixed points of θ∗ in G∗. Then G1 has
an R-splitting that extends the pair (G1 ∩ B∗, G1 ∩ T ∗). Following Sections 10.3,
10.4 of [K2], we apply a rationality theorem of Steinberg to find a fundamental pair
(B1, T 1) for G1: choose h ∈ (G∗sc)

θ∗sc such that hσ(h)−1 preserves G1 ∩ T ∗ and
acts on G1 ∩ T ∗ as the longest element of the Weyl group of G1 ∩ T ∗ in G1, and
then set B1 = h−1B∗h, T 1 = h−1T ∗h. Let (B, T ) be the corresponding θ∗-stable
pair for G∗. Then T is fundamental since a real root would provide a real root for
the fundamental torus T 1, and further the pair (B, T ) is fundamental, again by
Steinberg’s structure theorem. We extend (B, T ) to a fundamental splitting spl.
Then θ∗ preserves spl up to an inner automorphism by an element of Tsc; this inner
automorphism is defined over R.
Returning to the inner twist ψ : G → G∗, we adjust ψ within its inner class

so that the restriction of ψ−1 to T is defined over R. Set BG = ψ−1(B), TG =
ψ−1(T ). Then (BG, TG) is a fundamental pair. We may further adjust ψ by an
inner automorphism by an element of Tsc so that ψ

−1 transports the fundamental
splitting spl of G∗ to a fundamental splitting splG of G extending (BG, TG). With
these adjustments to ψ we now conclude that θG = ψ−1 ◦ θ∗ ◦ ψ is defined over
R. Then θ = Int(hθ) ◦ θG, where hθ = ψ−1

sc (g−1
θ ). Both Int(hθ) and Int(gθ) are

defined over R, and we may take u(σ) to be fixed by θ∗sc since (Tsc)
θ∗sc → (Tad)

θ∗ad

is surjective. Then the cocycle zσ of Lemma 3.1.A of [KS] is simply ψsc(h
−1
θ σ(hθ)).

Returning to the assumption of the first paragraph of this section, we adjust the
choice of gθ, u(σ) by central elements in G∗sc to arrange that zσ = 1 [KS, p. 26].
Remark: Since θG has finite order it follows that θ may be written as the

product of an inner automorphism and an automorphism of finite order, where
each automorphism is defined over R. This result was pointed out by a referee who
also supplied another proof.
We will also make use of connectivity properties of real points of fundamental

tori. We continue with the same setting. From Sections 10.3, 10.4 of [K2] we see
that Tsc(R) is connected: because (B, T ) is a fundamental pair X∗(Tsc) has a base
preserved by −σT , namely the coroots of the B-simple roots of T and so each
σT -invariant element of X∗(Tsc) lies in (1 + σT )X∗(Tsc) which implies that Tsc(R)
has one component. The same argument for X∗(Tad), using fundamental coweights
in place of coroots, shows that Tad(R) is connected. Finally, recall that (B, T ) is
θ∗-stable. The image in X∗(Tad)/(1 − θ∗ad)X∗(Tad) = X∗((Tad)θ∗ad) of the chosen
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base for X∗(Tad) is a base for X∗((Tad)θ∗ad) since it has the correct cardinality, by
Steinberg’s structure theorem. Thus (Tad)θ∗ad(R) is connected.

Proof. (Lemma 6.4) First we observe that (ii) follows once we have proved (i): the
equation σ(δ∗)δ∗−1 = (θ∗−1)v(σ) from [KS, Lemma 4.4.A] (see the proof of Lemma
6.1) implies that the image v(σ)ad of v(σ) in Tad is an element, in fact a cocycle,
in (Tad)

θ∗ad . Since (Tsc)
θ∗sc and (Tad)

θ∗ad are both connected, the natural projection
Tsc → Tad projects (Tsc)

θ∗sc onto (Tad)
θ∗ad , and (ii) follows.

For the proof of (i), it is suffi cient to consider the case that the endoscopic group
is basic, i.e., attached to the trivial endoscopic data (G1, G

∨
1 oWR, 1) for the pair

(G, θ), where G∨1 denotes the identity component of the fixed points of θ
∨ in G∨:

if H1 is any endoscopic group and H = H1/Z1 then an admissible embedding
TH → Tθ∗ determines an admissible embedding TG1

→ Tθ∗ (see [KS, Section 3.3]),
with same data g, δ∗0 attached to the same (strongly G-regular) element in Tθ∗(R).
Assume then that H1 is basic. There exists an admissible embedding TH → Tθ∗ ,

where (B, T ) is a θ∗-stable fundamental pair, and thus there exist strongly G-
regular T1-norms; here TH = T1/Z1. Suppose strongly G-regular γ1 ∈ T1(R) is a
norm of δ ∈ G(R). Attach g ∈ G∗sc and δ

∗ ∈ T as usual. Then Nδ∗ ∈ Tθ∗(R).
Passing to the adjoint form G∗ad of G

∗, we have that δ∗ad has image in (Tad)θ∗ad(R)
under Nad. Since Nad : Tad(R)→ (Tad)θ∗ad(R) is surjective (domain and target are
connected) we may then find δ∗∗ ∈ T such that σ(δ∗∗)δ∗∗−1 is central in G∗ and
δ∗∗ ≡ δ∗(1−θ∗)T.Multiplying δ∗∗ by a suitable central element allows us to replace
(1 − θ∗)T by the image of (1 − θ∗sc)Tsc. Then multiplying g by a suitable element
of Tsc, we obtain a replacement for the pair g, δ

∗ with the desired property (i).
Lemma 6.1 shows that the assumption of strongly G-regularity is unnecessary.
We remove the assumption that T is fundamental using induction on the split

rank of T θ
∗
. By Lemma 6.1 we may assume that γ0, δ0 are the elements γ2, δ2 of

the proof of (ii) in Lemma 6.6, with attached g2, δ
∗
2. We construct g3, δ

∗
3 and adjust

them using the induction hypothesis, then replace g2, δ
∗
2 accordingly. Then δ

∗
2 =

Int(t∗)−1(δ∗3). Recall that σ(δ∗2)δ∗−1
2 is the image in G∗ of the element (θ∗sc−1)v2(σ)

in G∗sc, and σ(δ∗3)δ∗−1
3 is the image of (θ∗sc − 1)v3(σ). We claim that we can adjust

g2 again to arrange that (θ∗sc − 1)v2(σ) and (θ∗sc − 1)v3(σ) are the same central
element of G∗sc. This will both complete our inductive proof of (i) and provide a
modification of the hypercocycle property that is useful for the proof of the main
lemma of Section 9.
To justify the claim, we return to Lemma 4.4.A of [KS] and argue with Gsc

instead of G. We replace δ0 by δsc ∈ Gsc with image δ0 up to a central element.
Then σ(δsc) = z0δsc, where z0 is central in Gsc. Passing to a suitable strongly
Gsc-regular element in each case, we find that

(θ∗sc − 1)v2(σ) = ψsc(z0)σ(δ∗2,sc)(δ
∗
2,sc)

−1

and
(θ∗sc − 1)v3(σ) = ψsc(z0)σ(δ∗3,sc)(δ

∗
3,sc)

−1,

where δ∗2,sc = g2msc(δsc)θ
∗
sc(g2)−1 has image δ∗2 up to a central element in G

∗ and
δ∗2,sc = g3msc(δsc)θ

∗
sc(g3)−1 has image δ∗3 up to the same central element in G

∗.
Moreover, δ∗2,sc = Int(t∗)−1(δ∗3,sc) and σ(δ∗3,sc)(δ

∗
3,sc)

−1 is central. To prove the
claim, we observe that Int(t∗)−1(σ(δ∗3,sc)(δ

∗
3,sc)

−1) coincides with σ(δ∗2,sc)(δ
∗
2,sc)

−1

up to an element of (1− θ∗sc)T
′

sc, so that we may adjust g2 as desired. �
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Definition: Choose g, δ∗0 satisying (i), and thus (ii), of Lemma 6.4. Then we
will call (T1 → Tθ∗ , g) toral data at γ0.

7. Application to Theorem 5.1

We return to the normalized sum of twisted integrals

Φ1(γ1) =
∣∣det(Ad(γ1)− I)h1/t1

∣∣1/2 ∑
δ,θ−conj

∆(γ1, δ) O
θ,$(δ, f)

for γ1 strongly G-regular. This was rewritten in Section 5 as

∆I(γ1)∆II(γ1)
∑

δ,θ−conj
∆III(γ1, δ; γ, δ) Φθ,$(δ, f),

where the twisted integrals themselves are now normalized, and the terms ∆I ,∆II ,
and ∆III come from the twisted transfer factor ∆.
Fix a maximal torus T1 over R in H1, a G-semiregular element γ0 in the Cartan

subgroup T1(R) annihilated by an imaginary root α1, and a Cayley transform s1

for α1.
Our next step is to write Φ1(γ1) for strongly G-regular γ1 in the γ0-component

of T1(R) in a way that will be useful both for extending Φ1 to all G-regular elements
and for jump analysis around γ0.
If γ0 is not a T1-norm then Φ1(γ1) = 0 for all strongly G-regular γ1 in the γ0-

component of T1(R) and so we define Φ1(γ1) = 0 also for the remaining G-regular
elements in the component. Assume then that γ0 is a T1-norm of the θ-semisimple
element δ0 of G(R). Let (T1 → Tθ∗ , g) be toral data at γ0. As in Lemma 6.2, we have
the element δ = δ0(Y ) = (expY )δ0 with given norm γ1 = γ1(Y1) = γ0 exp(YH+Yz1)
in the γ0-component of T1(R). Suppose γ1 is strongly G-regular, so that δ is
strongly θ-regular. We fix representatives δ′ for the θ-conjugacy classes in the
stable θ-conjugacy class of δ, and then define inv(δ, δ′) and κδ as in the preamble
to Theorem 5.1.D of [KS] which also describes how these two objects are paired (for
more on the definitions, see the proof of Lemma 9.6). Then by (1) of that theorem,
Φ1(γ1) may be rewritten as

∆I(γ1)∆II(γ1)∆III(γ1, δ; γ, δ)
∑
δ′

〈
inv(δ, δ′), κδ

〉
Φθ,$(δ′, f).

Suppose, slightly more generally, that δ′ is stably θ-conjugate to strongly θ-
regular δ = εδ0, where ε ∈ T δ0(R). We may write

δ′ = δ(w) = w−1δθ(w) = w−1εw.w−1δ0θ(w),

where w ∈ G(C) (we stress C in notation just for this paragraph) and σ(w)w−1

lies in Centθ(δ,G(C)). As earlier, let T † = Cent(T δ0 , G). Then strong θ-regularity
implies that Centθ(δ,G) coincides with the group Tδ0 of fixed points of Int(δ0) ◦ θ
in T †. Set

Aθ(T δ0 ) = {w ∈ G(C) : σ(w)w−1 ∈ Tδ0(C)}.
Then, via the map w → δ(w),

Dθ(T δ0 ) = Tδ0(C)\Aθ(T δ0 )/G(R)

parametrizes the θ-conjugacy classes in the stable θ-conjugacy class of δ.
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If now we assume only that δ = δ0(Y ) is θ-regular, then by definition (see the
remark after Lemma 6.3)

{δ(w) : w ∈ Aθ(T δ0 )}
is the stable θ-conjugacy class of δ. We will define Φ1(γ1) to be∣∣det(Ad(γ1)− I)h1/t1

∣∣1/2∑
w

∆(γ1, δ(w))Oθ,$(δ(w), f),

where
∑
w indicates summation over a set of representatives w for Dθ(T δ0 ) and

∆(γ1, δ(w)) = lim
γ†1→γ1

∆(γ†1, δ
†(w)).

In this limit, the variable γ†1 = γ1 expY † is a strongly G-regular element in the γ0-
component of T1(R). This element γ†1 is a norm of each (strongly θ-regular) element
δ†(w), where δ† = (expY ††) δ. Here Y †† ↔ YH , where Y † = YH +Yz1 as in Lemma
6.2. To see that the limit exists, we have just to recall how the term ∆(γ†1, δ

†(w))
depends on Y †. First,

∆(γ†1, δ
†(w)) =

〈
inv(δ†, δ†(w)), κδ†

〉
∆(γ†1, δ

†).

The first term is a constant sign and so can be ignored. The term ∆(γ†1, δ
†) is a

product

∆I(γ1 expY †)∆II(γ1 expY †)∆III(γ1 expY †, (expY ††)δ; γ, δ)∆IV (γ1 expY †).

The new first term is a constant sign. The term ∆II∆IV is a quotient of generalized
Weyl denominators for G and H1 (see [KS, Section 4.3]). It is well-defined, smooth
and nonzero on the subset of all G-regular elements in T1(R). It remains then to
examine ∆III(γ1 expY †, (expY ††)δ; γ, δ). A check of definitions shows that it is
the product of a constant and a character on T δ0(R) evaluated at expY ††; see the
beginning of the proof of Lemma 9.3 where we introduce more detailed notation for
an analysis of ∆III . We conclude then that limγ†1→γ1

∆(γ†1, δ
†(w)) is well-defined,

which completes our (smooth) extension of Φ1 to the full G-regular set in T1(R).
Let w ∈ Aθ(T δ0 ) and write w−1δ0θ(w) as δ0(w). Then Int(w−1) : Gθδ0 → Gθδ0(w)

is an inner twist and δ0(w) is stably conjugate to δ0. The inner type of the group
Gθδ0(w) of Dynkin type A1, either split modulo center or compact modulo center,
depends only on the double coset of w in Dθ(T δ0 ). We may ignore those w for
which Gθδ0(w) is compact modulo center, as they contribute nothing to the final
limit formula (see Section 8). We have the following generalization of Lemma 4.2
of [S5]. Again α0 denotes the multiple of αres that is a root of T δ0 in Gθδ0 .

Lemma 7.1. If both Gθδ0 and G
θ
δ0(w) are split modulo center (i.e., both α0 and wα0

are noncompact imaginary roots) then there exists g ∈ G(R) such that Int(g) maps
Gθδ0 to G

θ
δ0(w) and T

δ0 to T δ0(w) , and w−1α0 = ±gα0.

Proof. We follow the proof of Lemma 4.2 in [S5]. First, a simple argument with root
vectors shows that we can arrange that Int(w−1) : Gθδ0 → Gθδ0(w) is defined over R
(see the first paragraph of the cited proof). Let s be the standard Cayley transform
in (Gθδ0)sc = SL(2) relative to the root α0 of T δ0 in Gθδ0 , and set T

′δ0 = (T δ0 )s.We
may argue in the untwisted setting with w ∈ A(T ′G), where T ′G is the maximal torus
Cent(T ′δ0 , G) inG, to choose g1 inG(R) so that Int(g1)maps T ′δ0 to w−1T ′δ0w and
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acts on the maximal split torus in T ′δ0 as Int(w−1). Then Int(g−1
1 w−1) normalizes

the derived group of Gθδ0 (by another argument with root vectors) as well as T
′δ0 .

Then Int(g−1
1 w−1) normalizes Gθδ0 itself. Multiplying g1 by a suitable element of

Gθδ0(R) we obtain g in G(R) such that Int(g−1w−1) normalizes both Gθδ0 and T
δ0 .

Then w−1α0 coincides with ±gα0. �
We will need a twisted version of Proposition 4.6 of [S5] in order to match the

elements of Dθ(T δ0 ) contributing to jumps with the elements of Dθ(T ′δ0 ), where
T ′δ0 = (T δ0 )s. Assume α0 is noncompact and that s is standard in (Gθδ0)sc = SL(2).

Let w be an element of Dθ(T δ0 ) such that Gθδ0(w) is split modulo center for some,
and hence every, w representing w. Then, following the last lemma, we may choose
w so that w normalizes Gθδ0 and T δ0 , and w−1α0 = ±α0. Now consider those
w with representative w such that w−1α0 = α0. Suppose w0 is an element of
Centθ(δ0, G) normalizing T δ0 for which the action of Int(w0) on T δ0 realizes the
Weyl reflection relative to α0. Then w and ww0 represent the same element of
Dθ(T δ0 ) if and only if we may choose w0 in G(R), i.e., in Centθ(δ0, G)(R). If that
is so then we say that the Weyl reflection relative to α0 is realized in G(R), keeping
in mind that this notion depends on the choice of δ0. The elements w of Dθ(T δ0 )
with a representative w such that w−1α0 = α0 are then exactly those w such that
Gθδ0(w) is split modulo center for each representative w. We denote this subset of
Dθ(T δ0 ) by Dθ(α0). On the other hand, if the Weyl reflection relative to α0 is not
realized in G(R) then for each element w of Dθ(T δ0 ) with representative w such
that w−1α0 = α0 there is an element w−, distinct from w, with representative
w− = ww0 such that w

−1
− α0 = −α0. In this case, Dθ(α0) will denote the set of

pairs {w,w−}.
Consider now w′ in Dθ(T ′δ0 ). Again following on from the proof of Lemma

7.1, since αs0 is a real root we may find a representative w
′ for w′ such that w′

normalizes both T ′δ0 and Gθδ0 and w
′−1αs0 = αs0. We can then further arrange that

w′ centralizes (Gθδ0)der. Thus w = s−1w′s = w′ lies in Aθ(T δ0 ) and w−1α0 = α0.
Let w be the class of w in Dθ(T δ0 ). Then another argument with root vectors shows
that w′ → w is a well-defined bijective map of Dθ(T ′δ0 ) to those w ∈ Dθ(T δ0 ) with
representative w such that w−1α0 = α0. This provides us with a bijection of
Dθ(T

′δ0 ) with Dθ(α0).
Before continuing with the analysis, we finish the proof of Theorem 5.1 for some

special cases:

Lemma 7.2. All limits in Theorem 5.1 are zero if
(i) γ0 is not a norm, or if
(ii) γ0 is a norm but T s11 is not a norm group for G, or if
(iii) γ0 is a norm, T

s1
1 is a norm group for G, but γ0 is not a T

s1
1 -norm.

Proof. For (i) we have only to apply (i) of Lemma 6.6: Φ1(γν) = 0 and Φ1(γs1,ν) = 0
for |ν| suffi ciently small and nonzero. On the other hand, for (ii) and (iii) we have,
in general, only that Φ1(γs1,ν) = 0 for |ν| suffi ciently small. Thus it remains to show
limν→0Φ1(γν) = 0. By Lemma 6.6, each group Gθδ0(w)(R) is compact modulo center

and so each unnormalized integral Oθ,$(δ(w), f) appearing in Φ1(γν) is bounded
as ν → 0 (see Section 8). Thus the limit of Φ1(γν) exists and is zero. �
For our analysis of the limits in Theorem 5.1, we may now assume that both T1

and T s11 are norm groups, and that γ0 is both a T1-norm and a T s11 -norm. Recall
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that we assume also that the root α1 of T1 annihilating γ0 is noncompact and that
s1 is a Cayley transform in ((H1)γ0)sc = SL(2).
We return to the setting established at the end of the proof of Lemma 6.4. We

may suppose γ0 is both a T
s1
1 -norm and a T1-norm of an element δ0 of G(R) for

which Gθδ0 is split modulo center, as there. We have admissible homomorphisms
T1 → Tθ∗ , T

s1
1 → T ′θ∗ and inverse Cayley transform t∗ in (G∗sc)

θ∗sc which maps
(T ′θ

∗
)0 to (T θ

∗
)0, T ′ to T , T ′θ∗ to Tθ∗ and completes a commutative diagram with

Int(s1)−1 : T s11 → T1 and T1 → Tθ∗ , T
s1
1 → T ′θ∗ . Also t ∈ Gsc defines an inverse

Cayley transform in (Gθδ0)sc for α
′
0, where α

′
0 is the root of T

′δ0 in Gθδ0 corresponding
to α′1 = αs11 . Then, with g2, g3 as at the end of the proof of Lemma 6.6, we choose
g = g3 and g′ = g2. There is another requirement that will be useful since it makes
the limits we consider for ∆I ,∆III in Lemmas 9.3, 9.5 both equal to one. Namely
we insist that if a complex root of (T ′θ

∗
)0 is positive in the ordering determined by

the toral data and our choice of R-splitting for (Gθ
∗
)0 then its complex conjugate

is also positive. That this is possible follows from a familiar argument using a
suitable lexicographic ordering of roots for the R-splitting (start with toral data for
a maximally split torus in H1, identify inverse Cayley transforms needed to reach
(T ′θ

∗
)0 through H1, adjust the R-splitting accordingly via Cayley transforms from

the torus attached to the maximally split torus in H1, and prescribe toral data for
T s11 using the inverse transforms).
We call the data of the last paragraph toral descent data at γ0.

8. Jump analysis for twisted orbital integrals

The limit formulas for the individual twisted orbital integrals guide our analysis
of the transfer factors and so we write them next. Formulas of this type are well-
known. We need only to extend the setting and to write the results in a way that
fits well with our transforms.
We continue with the toral descent data at γ0 from the end of the last section:

γ0 is both a T
s1
1 -norm and a T1-norm of an element δ0 of G(R) for which Gθδ0 is split

modulo center and of Dynkin type A1. Now s will be the Cayley transform t−1 in
(Gθδ0)sc. Fix an element of Dθ(T

′δ0 ). Our choice in the last section of representative
w′, along with w and w0, ensures that Gθδ0(w) = Gθδ0(ww0) = Gθδ0 and that the
points δ0(w), δ0(ww0), δ0(w′) all coincide. We will make a descent from G(R)
to Centθ(δ0, G)(R), then into Gθδ0(R), around δ0(w). This generalizes the descent
used in Section 4 of [S5] for the untwisted case. Notice that because the twisting
character $ is trivial on both Cartan subgroups T δ0(R), T ′δ0(R) in Gθδ0(R) [KS,
Lemma 4.4.C] (more generally, $ is trivial on both Tδ0(R), T ′δ0(R) by [KS, Theorem
5.1.D]), we have that $ is trivial on Gθδ0(R).
We may write α0 as rααres, where α1 = ((α∨)res)

∨ and the coeffi cient rα is
described in Lemma 6.5. As in [KS] (see Section 9 also), we use the same a-data and
χ-data for all multiples of αres, and write χ, a, χ′ and a′ for data χαres , aαres , χαsres
and aαsres .
Assume δ is a θ-regular element in T δ0(R)0δ0. For α0 of type R1, set

∆α0(δ) = χ(
Nα(δ)− 1

a
) |Nα(δ)− 1|1/2

∣∣Nα(δ)−1 − 1
∣∣1/2 ,
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which we abbreviate as

χ(
Nα(δ)− 1

a
)
∣∣∣Nα(δ)1/2 −Nα(δ)−1/2

∣∣∣ .
For α0 of type R2 or R3 we include the contribution from the orbits of all multiples
of αres to the numerators of ∆II ,∆IV :

∆α0(δ) = χ(
Nα(δ)2 − 1

a
)
∣∣Nα(δ)−Nα(δ)−1

∣∣ .
On the other hand, the roots ±α′0 of T ′δ0 form two Galois orbits and we include
them both. Thus if δ′ is a θ-regular element in T ′δ0(R)0δ0 then we define ∆α′0

(δ′)
as we have ∆α0(δ), but using only the contribution from +α′0 for the absolute value
term. Set

∆±α′0(δ
′) = ∆α′0

(δ′).∆−α′0(δ
′)

= χ′(
Nα′(δ′)r − 1

a′
).
∣∣Nα′(δ′)r − 1

∣∣1/2 .(χ′)−1(
Nα′(δ′)−r − 1

−a′ ).
∣∣Nα′(δ′)−r − 1

∣∣1/2
= χ′(Nα′(δ′)r).

∣∣∣(Nα′(δ′)r/2 −Nα′(δ′)−r/2∣∣∣ ,
where r = 1 if α0 is of type R1 and r = 2 if α0 is of type R2 or R3.
For ν ∈ R, set δν = exp(νY (aα∨1 )).δ0, where Y (aα∨1 ) ∈ tδ0(R)) corresponds

under the bijection of Lemma 6.2 to the multiple aα∨1 of the coroot α
∨
1 regarded as

an element of tH(R). Then δν has as T1-norm the element γν from the statement
of Theorem 5.1. Also

δν(w) = w−1δνθ(w) = exp(νY (aα∨1 )).w−1δ0θ(w)

since wα0 = α0 implies that w−1.Y (aα∨1 ) = Y (aα∨1 ). Again starting with δ0, define
δs,ν with γs,ν as T

′
1-norm, and δs,ν(w′) similarly. For |ν| suffi ciently small but

nonzero, the elements δν(w), δs,ν(w′) are θ-regular.
Since s is a Cayley transform mapping T δ0 to T ′δ0 within the group Gθδ0 , we

require that the Haar measures on T δ0(R) and T ′δ0(R) are compatible in the sense
of [S5] (also see Section 1.4 of [LS1]; we may start with differential forms, attach
measures and define compatibility using a/ |a| in place of i).

Lemma 8.1. Let f ∈ C(G(R), θ). Then for any choice of χ, a, χs and as we have

lim
ν→0+

∆α0(δν)Oθ,$(δν(w), f)− lim
ν→0−

∆α0(δν)Oθ,$(δν(w), f)

= d(α0) lim
ν→0

∆±α′0(δs,ν)Oθ,$(δs,ν(w′), f),

where d(α0) = 2 if w0 is realized in G(R) in the sense of Section 7, and d(α0) = 1
otherwise.

For the proof, we first replace the version of Harish-Chandra’s compactness prin-
ciple in Section 4 of [S5] by the following.

Lemma 8.2. If C is a compact subset of G(R) then there exist a neighborhood
Y of 0 in gθδ0(R) and a compact subset C of Centθ(δ0, G)(R)\G(R) such that if
g ∈ G(R), Y ∈ Y, and g−1(expY )δ0 θ(g) ∈ C then Centθ(δ0, G)(R)g ∈ C.

Proof. We follow the argument for Theorem 8.1.4.1 of [War] in our setting, noting
the arguments for Proposition 3.1 of [R1]. �
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Proof. (Lemma 8.1) Notice that the choice of χ, a, χ′ and a′ does not matter, by
an argument as in the first step of the proof of Theorem 4.2. In particular, there is
no harm in taking χ′ trivial and and a′ = 1.
By a continuity argument (see Appendix) it is enough to consider the case that

f ∈ C∞c (G(R), θ). Using Lemma 8.2 with δ0 replaced by δ0(w), we may then apply
a variant of Harish-Chandra’s descent argument (specifically, we generalize step by
step the arguments of [S5, Section 4]) to write the normalized twisted integrals
Φθ,$(δν(w), f) and Φθ,$(δs,ν(w′), f) as the normalized ordinary orbital integrals
of a function φ in C∞c (G(δ0)+), evaluated at exp(νY (aα∨1 )) and exp(νY (a′(α′1)∨)),
respectively. Here G(δ0)+ denotes the identity component of the derived group
of Gθδ0(R). In the descent we may replace δν(w) by an element δ = εδ0 with ε

suffi ciently close to the identity in exp tδ0(R) so that δ is θ-regular. There will be
no harm in assuming further that δ is strongly θ-regular, so that Centθ(δ,G) = Tδ0
(otherwise we use Tδ0(R) in place of Centθ(δ,G)(R) in the definition of twisted
orbital integral). We may do the same in T ′δ0 , replacing δs,ν(w′) by an appropriate
element δ′ = ε′δ0.
The constant d(α0) appears when we generalize Proposition 4.4 of [S5]. We have

Tδ0 = ZθT δ0 , T ′δ0 = ZθT ′δ0 , and an argument with root vectors shows that we also
have Centθ(δ0, G) = ZθGθδ0 (here Z

θ denotes the θ-invariants in the center of G).

Denote the center of Gθδ0 by Zδ0 and write G for the product Zδ0(R).G(δ0)+. Then
the three indices, all finite, that concern us are [Centθ(δ0, G)(R) : G], [Tδ0(R) :
Tδ0 ∩ G] and [T ′δ0(R) : T ′δ0 ∩ G], and we use them to replace the three indices in
the statement of Proposition 4.4. Arguing as in [S5], we see that a coset of G in
Centθ(δ0, G)(R) has a representative g which normalizes T δ0 and T δ0∩ G(δ0)+,
so that gα0 = ±α0. Suppose w0 ∈ Centθ(δ0, G) realizes the Weyl reflection for
α0. Either g or w0g lies in Tδ0 , and Tδ0 ∩ G = T δ0(R). Suppose we cannot choose
w0 in Centθ(δ0, G)(R), i.e., w0 is not realized in G(R) in the sense of Section 7.
Then we conclude that all three indices are the same. Suppose we may choose w0

in Centθ(δ0, G)(R). Then the first index is twice the second, and further the first
equals the third. Now we can proceed with the descent along the same lines as in
Section 4 of [S5], and the constant d(α0) will persist to the final jump formula in
the statement of Lemma 8.1.
Let Y0(a) = aα∨0 ∈ tδ0(R) and Y ′0(a′) = a′(α′0)∨ ∈ t′δ0(R) (we could drop a′ from

notation since we have assumed a′ = 1). Then the familiar jump formula at the
identity element for the ordinary orbital integrals of φ may be rewritten as

lim
ν→0+

∆(exp νY0(a))O(exp νY0(a), φ)− lim
ν→0−

∆(exp νY0(a))O(exp νY0(a), φ)

= lim
ν→0

∆′(exp νY ′0(a′))O(exp νY ′0(a′), φ),

where ∆(exp νY0(a)) is given by

χ(
α0(exp νY0(a))− 1

a
)
∣∣∣(α0(exp νY0(a))1/2 − α0(exp νY0(a))−1/2)

∣∣∣
= χ(

e2νa − 1

a
)
∣∣eνa − e−νa∣∣ ,

and
∆′(exp νY ′0(a′)) =

∣∣eν − e−ν∣∣ .
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The vectors Y (aα∨1 ), Y (a′(α′1)∨) are positive multiples of Y0(a), Y ′0(a′), and so
it remains to check that the (germs at the identity of the) normalizing factors
∆,∆′,∆α0 ,∆±α′0 behave correctly under a rescaling of the variable ν. Rather than
write down the evident general principle, we record explicit calculations for each of
the three types for α.
Assume first that α0 = αres, where α is a root of T in G∗ of type R1. Here,

as in Section 6, we have transported the root α0 of T δ0 in Gθδ0 to (T θ
∗
)0 by the

twist Int(g) ◦ ψ : Gθδ0 → Gθ
∗

δ∗0
, without change in notation. We similarly identify

the elements Y and Y ∗ of Lemma 6.2. The coroot of α0 is N(α∨), the sum of
the coroots in the θ∨-orbit of α∨, so that Y0(a) = aN(α∨). The root α1 of T1

in H1 has coroot (α∨)res. In the Lie algebra t1 w tθ∗ = t/(θ∗ − 1)t, we identify
(α∨)res with the coset of α∨ ∈ t. Then Y (aα∨1 ) must be the real θ∗-invariant
a
lα
N(α∨) = 1

lα
Y0(a), where lα is the cardinality of the θ

∨-orbit of α∨ (or θ∗-orbit
of α). Since Nα(δ0) = Nα(δ∗0) = 1 and 〈Nα,N(α∨)〉 = 2lα, we have that

∆α0(δν) = ∆α0(exp(νY (aα∨1 )))

= χ(
Nα(exp(νalαN(α∨))) − 1

a
)

∣∣∣∣Nα(exp(
νa

lα
N(α∨))1/2 −Nα(exp(

νa

lα
N(α∨))−1/2

∣∣∣∣
= χ(

e2νa − 1

a
)
∣∣eνa − e−νa∣∣ ,

By the same argument, Y (a′(α′1)∨) = 1
lα
Y ′0(a′) and

∆±α′0(δs,ν) = ∆±α′0(exp(Y (a′(α′1)∨))) =
∣∣eν − e−ν∣∣ .

We can now finish the proof for the case α0 is of type R1. In the limit formula
for the orbital integrals of φ, replace the variable ν throughout by 1

lα
ν. Rewrite the

quotient of

χ(
e2νa − 1

a
)
∣∣eνa − e−νa∣∣

by

χ(
e2νa/lα − 1

a
)
∣∣∣eνa/lα − e−νa/lα ∣∣∣ ,

as

χ(eνa(1−1/lα))χ(
sin(νb)

sin(νb/lα)
)

sin(νb)

sin(νb/lα)
,

where a = ib. Since χ is trivial on positive real numbers, the second term in this
product is trivial, and so the quotient extends continuously at ν = 0 with nonzero
value lα. The same is true, with same value lα, for the analogue∣∣eν − e−ν∣∣ ∣∣∣eν/lα − e−ν/lα ∣∣∣−1

=
sinh(ν)

sinh(ν/lα)

on the other Cartan subgroup. This allows us to replace ∆(exp 1
lα
νY0(a)) by

∆α0(δν) and ∆′(exp 1
lα
νY ′0(a′)) by ∆±α′0(δs,ν) when computing limits, and so we

get the desired formula.
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Suppose that α0 is of type R3, so that α0 again has coroot N(α∨), and Y0(a) =
aN(α∨). Here the root α1 of T1 in H1 has coroot (β∨)res in the notation of Section
1.3 of [KS], where (α∨)res = 2(β∨)res (see Lemma 6.2). Thus

Y ∗(aα∨1 ) =
a

lβ
N(β∨) =

a

2lα
N(α∨) =

1

2lα
Y0(a).

Again

∆α0(δν) = ∆α0(exp(νY (aα∨1 ))),

since Nα(δ∗0)2 = (−1)2 = 1. Also, 〈Nα,N(α∨)〉 = 2lα and so we again get the
formula

∆α0(δν) = χ(
e2νa − 1

a
)
∣∣eνa − e−νa∣∣ .

After the substitution of 1
2lα
ν for ν, we have to examine the quotient of

χ(
e2νa − 1

a
)
∣∣eνa − e−νa∣∣

by

χ(
eνa/lα − 1

a
)
∣∣∣eνa/2lα − e−νa/2lα∣∣∣ ,

and we may proceed as for R1.
Suppose that α0 is of type R2. In keeping with the notation of the last paragraph,

we write the coroot of α0 as 2N(β∨) and Y0(a) = 2aN(β∨). Now the coroot α∨1
may be either (β∨)res or (α∨)res = 2(β∨)res. Suppose α∨1 = (β∨)res. Then

Y ∗(aα∨1 ) =
a

lβ
N(β∨) =

1

2lβ
Y0(a).

Also, 〈
Nβ,N(β∨)

〉
= 2lα = lβ ,

so that

∆α0(δν) = χ(
e2νa − 1

a
)
∣∣eνa − e−νa∣∣ .

Suppose α∨1 = (α∨)res. Then

Y ∗(aα∨1 ) =
a

lα
N(α∨) =

1

2lα
Y0(a) =

1

lβ
Y0(a),

∆α0(δν) = χ(
e4νa − 1

a
)
∣∣e2νa − e−2νa

∣∣ ,
and once again we finish the argument the same way. �

For any w ∈ Aθ(T δ0 ) we may also do a similar descent (i.e., find φ as in the
proof above) around δ0(w) in Cent(δ0(w), G)(R). If Cent(δ0(w), G)(R) is compact
modulo center then we conclude that Oθ,$(δν(w), f), like the ordinary orbital in-
tegral for φ, is bounded as ν → 0 and so contributes nothing to the jump formula
for Φ1. This remark also applies to the proof of Lemma 7.2 for the setting where
every Oθ,$(δν(w), f) is of this type.
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9. Twisted transfer factors

We now examine the various terms ∆I , ..., ∆IV of the twisted transfer factor
∆(γ1, δ) in the setting of toral descent data at γ0 (last paragraph of Section 7). For
the relative analysis we have three associated Cayley transforms. First, there is s1 :
T1 → T s11 associated with the root α1 in H1. Second, there is t∗−1 = s∗ : T → T ′ in
(Gθ

∗
)0 associated with the least positive multiple of αres that is a root, and, finally,

there is t−1 = s : T δ0 → T ′δ0 for the root α0 in Gθδ0 . Details of the construction
of the terms ∆I ,∆III will be included where they are used in proofs. There is a
last ingredient for our setting, a twisted analogue of the s-compatible data sets of
Sections 5 - 7. The results for ∆II and ∆IV then follow quickly (Corollary 9.2),
while the analysis for ∆I and ∆III takes longer. The proof of the main lemma,
Lemma 9.3, will consist of several steps to remove parts (which we show to be
trivial) of a particular ∆III term until we arrive finally at a term we can compute
explicitly and also show to be trivial.
We choose a-data and χ-data following Section 1.3 of [KS]. These are data for

the system of restricted roots βres of T in G∗. We use the same pair aβres , χβres
for any positive multiple of βres that is also a restricted root and the same data for
coroots of the restrictions and for the restrictions of coroots:

aβres = a(β∨)res = a(βres)
∨

and
χβres = χ(β∨)res = χ(βres)

∨ .

This provides us then with data for the roots and coroots of T1 in H1. We make
the same choices for the torus T ′ and define s∗-compatibility for the twisted data
set {aβres}, {χβres}, {aβ′res}, {χβ′res} as in Section 3. Our constructions ensure that
s∗-compatible data (which we also call s-compatible) provide data for T1, T

s1
1 that

are s1-compatible.
Following p.36 of [KS], we write ∆II in quotient form

∆II = ∆num
II /∆denom

II ,

where ∆num
II is a term attached to (G, θ) and ∆denom

II is from standard endoscopy
for the group H1. We now prefer to index the contributions to ∆num

II by the orbits
O of reduced restricted roots αres. Thus the formulas of p.36 of [KS] yield

∆num
II (γ1, δ) =

∏
O
χαres(

Nα(δ∗)r − 1

aαres
),

where αres represents O, and r = 1 or r = 2 according as αres is of type R1 or of
type R2.
Remark 1: Waldspurger [W2] has pointed out that a correction is needed in the

definition of twisted transfer factors in the nonarchimedean case, and that it can
be made by the insertion of 2 in certain contributions to ∆II when the system of
restricted roots αres is not reduced. This has no effect in our present archimedean
case; see [KS12, Section 1] for details. An alternate way of making the correction,
which involves ∆I instead and makes sense in all characteristics, is presented in
[KS12]. It also has no effect on the definitions in the archimedean case [KS12,
Proposition 3.5.2].
Remark 2: First we observe an error on p.137 of [KS] pointed out to us by

Waldspurger. The exponent −1 in the formula (A.3.13) does not belong there.
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We emphasize that by the term Langlands’s pairing in the statement of (A.3.13)
we mean the pairing from [L]. The source of this error is on p.131 where what
is described as the Langlands map is the reciprocal of that defined in [L]. To be
explicit in the case at hand, if T is a torus defined over R then the isomorphism
H1(C×, X∗(T )) → X∗(T )⊗ C× = T (C) defined in the middle of p.131 of [KS] has
an exponent −1 not present in the isomorphism defined in [L] (an explicit formula
is found on p.243 of [L] after the first commutative diagram). We resolve this
by inverting the formula for the pairing in (A.3.9). Then the formula (A.3.13) is
true as stated in [KS]. Now, in principle, we should insert an exponent −1 in the
formula (A.3.14) involving Tate-Nakayama duality, but here in the archimedean
case the term is simply a sign and so we may use the formula as stated in [KS].
Our resolution agrees with that suggested to us by Waldspurger for the general
case, i.e., our ∆ coincides with the term ∆′ of (5.4.1) in [KS12]. It also gives
the correct shift in infinitesimal character for Langlands functoriality of the dual
spectral transfer [S9].
Returning now to our analysis of the various terms ∆I , ..., ∆IV , we observe the

following generalization of Lemma 4.1.

Lemma 9.1. For any s-compatible twisted data set {aβres}, {χβres}, {aβ′res}, {χβ′res}
we have ∏

O
χβres(

(Nβ(δ0)r − 1)

aβres
) =

∏
O′
χβ′res(

(Nβ′(δ0)r − 1)

aβ′res
).

On the left, the product is over all Galois orbits O of reduced restricted roots
for T δ0 (i.e., of types R1 or R2) except those containing a multiple of α0. Each
term is independent of the choice of representative βres for O; r = 1 if βres is of
type R1 and r = 2 if βres is of type R2. The right side is defined analogously, using
all Galois orbits O′ of reduced restricted roots for T ′δ0 except those containing a
multiple of α′0. For the precise meaning of Nβ(δ0) see the remark after Lemma 6.5.

Proof. We match contributions to each side of the formula orbit by orbit as in the
proof of Lemma 4.1. �

Because we will eventually consider derivatives of the transforms Ψa,χ and Ψa′,χ′ ,
we use the variables δ0(Y ), γ0(Y1), etc. from Lemma 6.2 in our limit formulas for
terms of the transfer factors. Each of ∆II and ∆IV is defined as a quotient of a
term associated with G and a term associated with H1 (Sections 4.3, 4.5 of [KS]).
Each denominator cancels with an identical term in one of the transforms Ψa,χ and
Ψa′,χ′ of Theorem 5.1. Denote the numerators as ∆II,num and ∆IV,num. These
numerators contribute the factors ∆α0 ,∆±α′0 from the orbits in Qα0, Qα′0 for the
twisted transforms in the jump formulas of the last section, and so these terms will
also be removed. In the case of ∆II what remains is each side of the equation in
Lemma 9.1. There is a similar assertion for ∆IV . Thus:

Corollary 9.2. For an s-compatible data set and toral descent data at γ0 we have

limY1→0 ∆II,num(γ0(Y1))∆IV,num(δ0(Y ))∆α0(δ0(Y ))−1

= limY ′1→0 ∆II,num(γ0(Y ′1))∆IV,num(δ0(Y ′))∆±α′0(δ0(Y ′))−1.
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Lemma 9.3. (Main lemma) For an s-compatible data set and toral descent data
at γ0 we have

limY1,Y ′1→0 ∆III(γ0(Y1), δ0(Y ); γ0(Y ′1), δ0(Y ′)) = 1.

Transitivity of the relative transfer factor (Lemma 5.1.A of [KS]) then implies
immediately the following about the terms of type ∆III which appear in the limit
formulas of Theorem 5.1 and Lemmas 10.1, 10.2.

Corollary 9.4. In the same setting, we have:

limY1→0∆III(γ0(Y1), δ0(Y ); γ, δ)

= limY ′1→0∆III(γ0(Y ′1), δ0(Y ′); γ, δ).

Proof. (Lemma 9.3) We start by showing that

∆III(γ0(Y1), δ0(Y ); γ0(Y ′1), δ0(Y ′)),

defined as the term 〈V1,A1〉 on p.43 of [KS], is the product of a term independent
of Y1, Y

′
1 which we will denote

∆III(γ0, δ0;T1, T
′
1)

and a term which has limit 1 as Y1, Y
′
1 approach 0. A longer argument will then

show that
∆III(γ0, δ0;T1, T

′
1) = 1.

Recall Remark 2 earlier in this section: the pairing 〈−,−〉 is now defined by the
reciprocal of the formula displayed on p.135 of [KS]. First we factorV1 asV0.V(Y ).
The tori U, S and S1 are attached to T, T ′ in Section 4.4 of [KS]. Notice that our
T1, T

′
1 are labeled TH1

, T ′H1
there. The element V1 belongs to the hypercohomology

group denoted H1(Γ, U
1−θ−−→ S1). It is the class of the pair (V,D1), where V = V (σ)

is a Galois 1-cocycle in U and D1 is an element in S1, and the hypercocycle identity
(1−θ)V = σ(D1)D−1

1 is satisfied. We have defined 1-cochains v(σ), v′(σ) in Section
6. The pair (v(σ)−1, v′(σ)) lies in Tsc × T ′sc. Its image under the projection to

U = Tsc × T ′sc/{(z−1, z) : z ∈ Zsc}
is, by definition, V (our modification at the end of Section 6 does not affect V ).
To describe D1 we start with the elements δ

∗
0(Y ), (δ∗0)′(Y ′) of T, T ′ (Lemma 6.2).

To resolve a notational conflict with [KS], we write the pullback torus T1 of p.42 of
[KS] as T2. Then (δ∗0(Y ), γ0(Y1)) lies in T2 and ((δ∗0)′(Y ′), γ0(Y ′1)) lies in T ′2. The
element

((δ∗0(Y ), γ0(Y1))−1, ((δ∗0)′(Y ′), γ0(Y ′1)))

of T2 × T ′2 factors as
((δ∗0, γ0)−1, ((δ∗0)′, γ0)).((expY ∗, expY1)−1, (expY ∗′, expY ′1)).

This factoring persists for images in the quotient S1 (defined on p.42 of [KS]) and
we write the factoring in S1 as D1 = D0.D(Y1, Y

′
1). Because Y ∗, etc., lie in the real

Lie algebras of the relevant tori, we also have a factoring of hypercocycles:

(V,D1) = (V,D0).(1, D(Y1, Y
′
1)).

Then V0 will denote the class of (V,D0), and V(Y1, Y
′
1) will denote the class of

(1, D(Y1, Y
′
1)).
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Define
∆III(γ0, δ0;T1, T

′
1) = 〈V0,A1〉 ,

so that
〈V1,A1〉 = ∆III(γ0, δ0;T1, T

′
1). 〈V(Y1, Y

′
1),A1〉 .

To see that the complementary term 〈V(Y1, Y
′
1),A1〉 has limit 1 as Y1, Y

′
1 approach

0, we recall that the element A1 in the hypercohomology group H1(WR, S
∨
1

1−θ∨−−−→

U∨) is represented by the pair (A−1, sU ) specified on p.45 of [KS]. In particular, A
is a 1-cocycle ofWR in S∨1 . The pairing for hypercohomology is compatible with the
Langlands parameterization of characters on S1(R) ([KS, A.3.13] , as corrected in
Remark 2). This allows us to compute 〈V(Y1, Y

′
1),A1〉 as the value of the character

attached to the class of A−1 in H1(WR, S
∨
1 ) on the image D(Y1, Y

′
1) of

((expY ∗, expY1), (expY ∗′, expY ′1))

in S1(R). The limit assertion is now immediate.
Thus it remains to show that 〈V0,A1〉 = 1. We factor each of (V,D0) and

(A−1, sU ) further, and so reduce to calculations with familiar pairings in cohomol-
ogy.
Recall from the end of Section 7 that we have arranged that the 1-cochains

v(σ), v′(σ) are such that (θ∗−1)v(σ) and (θ∗−1)v′(σ) are the same central element,
so that V (σ) is θ∗-invariant. Thus V is a 1-cocycle in Uθ

∗
. We then have (or may

check directly) that D0 ∈ S1(R), so that (V,D0) factors as (V, 1).(1, D0). Turning
to the dual side, we have from the hypercocycle equation that the element sU
determines a Γ-invariant element in U∨θ = U∨/(1 − θ∨)U∨, and hence an element
sU,θ in π0((U∨θ )Γ). The group Uθ

∗
is a torus since the usual isomorphism of U with

Tsc × T ′ad (see p.38 of [KS]) is θ
∗-equivariant and the invariants for each factor in

the product torus are connected. The dual of Uθ
∗
is U∨θ . Write 〈V, sU,θ〉 for the

Tate-Nakayama pairing of the class of V in H1(Γ, Uθ
∗
) with sU,θ ∈ π0((U∨θ )Γ) and

Λ for the character on S1(R) attached to A−1 by the Langlands correspondence.
Then we may compute 〈V0,A1〉 as the product 〈V, sU,θ〉 .Λ(D0) (see p.135 of [KS]).
We check now that each term in this product equals 1.
The image v′ad(σ) of the cochain v′(σ) in T ′ad is a cocycle in the torus (T ′ad)

θ∗ad .
As usual, we identify the cocharacters of this torus with the θ∗-invariant coweights
of T ′ad. Under the Tate-Nakayama isomorphism

H−1(Γ, X∗((T
′
ad)

θ∗ad))→ H1(Γ, (T ′ad)
θ∗ad),

v′ad(σ) is cohomologous to the cup product of the fundamental 2-cocycle for C/R
with a θ∗-invariant coweight x′cw for T

′
ad such that σx

′
cw = −x′cw, i.e., to (−1)x

′
cw .

Write
v′ad(σ) = (−1)x

′
cw(σ(t′)t′−1)ad,

where t′ lies in the torus (T ′sc)
θ∗sc . Extend the root α′0 trivially to Zsc. Then our

assumptions on g′ ensure that

α′0(v′(σ)) = α′0(v′ad(σ)) = 1.

Thus α′0(σ(t′)t′−1) = 1. Apply the inverse Cayley transform t∗ to x′cw to obtain a
θ∗-invariant coweight xcw for Tad. Then σxcw = −xcw and a calculation shows that

vad(σ) = (−1)xcw((−1)εα
∨
0 σ(t′′)t′′−1)ad,
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where ε ∈ {0, 1} and t′′ ∈ (Tsc)
θ∗sc . To recall the characters and cocharacters of U

we use t∗ to identify T ′ with T over C. The characters may be identified as pairs
(λ, µ), where each of λ and µ is a weight of Tad and λ−µ is an integral combination
of roots, while the cocharacters may be identified as pairs (λ∨, µ∨) of coweights
such that λ∨ + µ∨ is an integral combination of coroots. The canonical pairing is〈

(λ, µ), (λ∨, µ∨)
〉

=
〈
λ− µ, λ∨

〉
+
〈
µ, λ∨ + µ∨

〉
.

Set
x = (−xcw − εα∨0 , xcw)

(recall x′cw has now been identified with xcw). Then x lies in X∗(U
θ∗), σx = −x,

and, by evaluating characters on both sides of the following, we see that (−1)x =
V (σ).σ(u)u−1, where u is the image in Uθ

∗
of (t′′, t′)−1. Thus σ → (−1)x is coho-

mologous to V .
We may now compute 〈V, sU,θ〉 by evaluating x, as character on (Uθ

∗
)∨ = U∨θ ,

at the element sU,θ. In the notation of p.39 of [KS] where sU is defined, we have
arranged that s̃T = s̃T ′ , so that to show 〈V, sU,θ〉 = 1, it is enough to show that
α∨0 (sT ) = 1, i.e., N(α∨)(sT ) = 1 if α0 is of type R1 or R3, or N(α∨)(sT )2 = 1 if α0

is of type R2. But if α0 is of type R1 or R3 then the corresponding root α1 ofH1 is of
type R1 or R2 only, so that N(α∨)(sT ) = 1, as desired. If α0 is of type R2 then the
corresponding root α1 is of type R2 or R3, and N(α∨)(sT ) = ±1 accordingly. Since
we need only N(α∨)(sT )2 = 1, we are done. This remark, namely that α∨0 (sT ) = 1,
will be useful again. Also a partial converse result (see the proof of Lemma 11.1)
provides a crucial cancellation in the final steps of our proof of the main theorem.
It remains then to show that Λ(D0) = 1. Here s-compatibility of the χ-data

plays a key role, along with an extension of the comparison arguments of Section
4 of [LS2] already used in the definition of A in Section 4 of [KS]. Our (second)
argument for Lemma 9.5 below will have a similar structure, using the first lemma
of comparison from [LS2] in place of the second.
The element D0 of S1(R) is the image of ((δ∗0, γ0)−1, ((δ∗0)′, γ0)) under T2×T ′2 →

S1. As before, we will use t∗ to identify T ′ with T , and then T ′2 with T2, over C. The
element ((δ∗0)′, γ0) is thus identified with (δ∗0, γ0). As on p.42 of [KS] we identify S1

as T ′2 × Tad (T ′2 is labelled T1 in the reference) and then as T2 × Tad. The Galois
action on the first component is the transport σ′ of that on T ′2, while on the second
component we use the twisted action

(1, tad)→ (ψw0(σ
′(tad)), σ(tad)).

Here ψw0 : Tad → T2 is defined as follows. Pick t2 ∈ T2 in the inverse image of tad
under the surjection T2 → T → Tad. Then ψw0(tad) = w0(t2)t−1

2 is independent of
the choice for t2. The chosen Galois action makes

T2 × T ′2 → S1 → T2 × Tad : (t2, t
′
2)→ (t2t

′
2, (t2)ad)

defined over R. Write δad for the image of (δ∗0, γ0)−1 in Tad. Then δad is fixed by σ
and σ′ (recall our assumptions on δ∗0, (δ

∗
0)′), and ψw0(δad) = 1, also because of our

assumptions on δ∗0, (δ
∗
0)′. Notice that D0 ∈ S1(R) is identified with

(1, δad) ∈ (T2 × Tad)(R).

As in [KS], we identify S∨1 as T
∨
2 × T∨sc, with Galois action

(t2, tsc)→ (σ′(t2), ϕw0(σ
′(t2))σ(tsc))
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(recall we have chosen T ′2 rather than T2 to be the torus T1 in [KS]). Here ϕw0 :
T∨2 → T∨sc is the dual of ψw0 (this is the variant of the definition of α(w0) in
[KS] needed when U is replaced by S1, and we will recall how to compute it when
needed below). The 1-cocycle A(w) of WR in S∨1 is constructed as the element
(aT ′2(w), xsc(w)) of T∨2 × T∨sc, where xsc(w) is a product

τ̂(w0, σ
′).̂b(w0)−1.w0(c′(w)).c(w)−1.ϕw0(aT ′2(w)).

To begin examining these terms, we observe that we may replace the cocycles
aT2(w), aT ′2(w) by cocycles a−(w), a′−(w) for which ϕw0(a

′
−(w)) = 1. Then A(w)

will be replaced by

A−(w) = (a′−(w), τ̂(w0, σ
′).̂b(w0)−1.w0(c′−(w)).c−(w)−1)

and there is now no twist in the Galois action on the first component. This ensures
that the second component is a cocycle for the action by σ. Our strategy then will
be to examine that cocycle and see that the attached character on Tad(R) takes the
value 1 at δad, which is suffi cient to complete the proof of the lemma.
To define a−(w), a′−(w) it is more convenient to view S∨1 as a subtorus of T

∨
2 ×T∨2 ,

with Galois actions σ′, σ on the first and second components respectively. The cocy-
cleA(w) = (aT ′2(w), aT2(w)) lies in S∨1 . By construction, T

∨×T∨ embeds in T∨2 ×T∨2 ,
and S∨1 contains the image of the standard homomorphism T∨sc × T∨sc → T∨ × T∨.
Consider a cocycle in S∨1 which is the image of a cocycle (a′+(w), a+(w)) in T∨sc×T∨sc.
We will write this image also as (a′+(w), a+(w)). To evaluate the corresponding
character on S1(R) under the Langlands correspondence on the element D0 we
may, by functoriality of the correspondence, evaluate at (δad, δad) the character on
Tad(R)×Tad(R) (σ′ is the action for the first component, σ for the second) attached
to (a′+(w), a+(w)) as cocycle in T∨sc × T∨sc. We will choose (a′+(w), a+(w)) so that
the resulting value is 1, and thus Λ(D0) is unchanged when we divide A(w) by
(a′+(w), a+(w)). The cocycles a′+(w), a+(w) will come from c′(w), c(w).
The cochain c′(w) is defined as a quotient r′1(w)/r′s(w) of terms from con-

structions in Section 2.5 of [LS1]. First, r′1(w) is the term rp(w) for the group
G∨∗ = ((G∨)θ

∨
)0, Galois action σ′ and gauge p associated to our choice of posi-

tive roots (that determined by our fixed Γ-splitting of G∨ preserved by θ∨ and our
choice of toral data). Then

r′1(w) = sp/p0(w)
∏
r±O′(w),

where the product is over pairs ±O′ of orbits for σ′ in the roots of T∨∗ = ((T∨)θ
∨

)0

in G∨∗ . The term r′s(w) is defined similarly, using the roots of T∨∗ in H
∨. In the next

paragraph, we will keep track of contributions after cancellation, using the pairs
±O′ of orbits of roots in G∨∗ (the reduced restricted roots) to index them.
We claim that there are nontrivial contributions from ±O′,±2O′ to c′(w) only in

the following two cases: (i) neither ±O′,±2O′ belongs to H∨ and (ii) ±2O′ belongs
to H∨. Recall we have fixed the root α0 = αres of Gθδ0 , and (reduced) α∗ is the
multiple of α0 that is a root of (Gθ

∗
)0. Now on the dual side, we set α∗∗ to be the

multiple of (α∨)res that is a root of T∨∗ in G
∨
∗ , and denote by β∗∗ = (β∨)res a root of

T∨∗ in G
∨
∗ distinct from ±α∗∗. The coroot of β∗∗ is rNβ, where r = 1 unless β (and

hence also β∨) is of type R2 in which case r = 2. The term r±O′(w) is constructed
in Section 2.5 of [LS1]. We will need its explicit form only for symmetric orbits.
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Then
r±O′(w) = χβ∗∗(u0(w))rNβ ,

where β∗∗ represents O′ and u0(w) is defined in Section 2.5 of [LS1]. This applies
also if β∗∗ is not reduced (as in case (ii)). Now to check the claim we examine the
various possibilities as in the argument on p.49 of [KS]. We see that the contribution
in case (i) is r±O′(w), while in case (ii) it is r±2O′(w)−1. In the remaining cases, it
is 1, as asserted. We of course define c(w) in the same way as c′(w), using instead
the action σ.
The terms sp/p0(w) are, in general, different for G∨∗ and H

∨. We have assumed
that our toral data have the property that complex conjugates (relative to σ′ only)
of positive complex roots are positive. Then both terms sp/p0(w) contributing to
c′(w) , but not necessarily those contributing to c(w), are trivial (see Section 2.4
of [LS1] for their definition) and will be deleted in notation. We will deal with
sp/p0(w) for the action defined by σ in the last paragraph of our proof.
Suppose O′ 6= {±α∗∗} is asymmetric and not orthogonal to α∗∗. Our plan is to

remove a cocycle for each ±O′ contributing to c′(w) and then to remove a matching
cocycle from c(w). Because there exist trivial χ-data for ±O′, the contribution
r±O′(w) must be a cocycle (see also Corollary 2.5.B of [LS1]), and we may compute
the corresponding character Λ±O′ on Tad(R) as in Section 3.3 of [LS1]. Assume
β∗∗ belongs to ±O′. Suppose first that σ′β∗∗ = −w0β∗∗ 6= ±β∗∗ (i.e., β∗∗ is
complex for σ′ and imaginary for σ). Then according to Lemma 3.3.D of [LS1],
Λ±O′(δad) = χβ∗∗(Nβ(δad)

r). To extract a matching cocycle from c(w) we may
simply write down any cocycle that gives the correct character value. We will,
however, take time to motivate our construction, as we will use the result later.
Namely, we consider the (distinct, symmetric) σ-orbits O and w0O of β∗∗ and
w0β∗∗. The contributions r±O(w) and r±w0O(w) to c(w) are not cocycles. However,
because we use compatible χ-data, r±O(w)r±w0O(w) is of the form

χβ∗∗(u0(w))rNβχw0β∗∗(u0(w))rw0Nβ = χβ∗∗(u0(w))r(Nβ + w0Nβ).

But
Nβ + w0Nβ ≡ 2NβmodNα.

We extract χβ∗∗(u0(w))2rNβ from c(w). This is a cocycle since χ2
β∗∗

is trivial on
R× (Lemma 2.5.B of [LS1]). The value of the corresponding character at δad is
χβ∗∗(x

2), where x/x = Nβ(δad)
r (see the calculations of Section 3.3 of [LS1]).

Since
χβ∗∗(x

2) = χβ∗∗(x/x.xx) = χβ∗∗(x/x) = Λ±O′(δad),

we have removed an appropriate pair of cocycles from c′(w), c(w).
In the next step of the definition of a′+(w), a+(w) we consider the asymmetric or-

bitsO′ not orthogonal to α∗∗ for which the σ-orbitO of β∗∗ ∈ O′ is also asymmetric.
Then both r±O′(w) and r±O(w) are cocycles. If O′,O are of the same cardinality
(i.e., both consist of a complex root and its conjugate) then the correponding char-
acters have the same value at δad, and so we remove r±O′(w), r±O(w) from c′(w),
c(w) respectively. It remains to consider the case that σ′β∗∗ = β∗∗ and β∗∗ is not
orthogonal to α∗∗. Then w0β∗∗ also has this property, is distinct from β∗∗, and
has same σ-orbit as β∗∗. Here we remove both r±O′(w) and r±w0O′(w) from c′(w),
and r±O(w) from c(w). The requirement of s-compatibility that χβ∗∗ = χ′β∗∗ ◦Nm
ensures that the corresponding characters match at δad (see Section 3.3 of [LS1]),
and so we are done.
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The final step in the definition of a′+(w), a+(w) is needed only for the case where
α∗∗ is of type R2 and 2α∗∗ is a root of H∨, so that {±α∗∗} satisfies the requirements
of case (ii) above. Then r±2O′(w)−1 is a cocycle which we include in a′+(w), i.e.,
discard from c′(w), since the method of Section 3.3 of [LS1] shows that the value
of the corresponding character at δad is 1.
We observe next that c′−(w) = c′(w)/a′+(w) has contributions only from orbits

which are orthogonal to α∗∗, so that c′−(w) is fixed by w0.Moreover, by construction
[LS1], each contribution is the image of an w0-invariant in T∨sc.
Turning now to A−(w), we verify that ϕw0(a

′
−(w)) = 1. The cocycle aT ′2(w) takes

values in the torus T∨2 which is the quotient of T
∨
1 ×T∨ by the diagonally embedded

torus T∨H . It may be written as the image of the pair (t1(w), t(w)−1) on p.45 of [KS].
To compute ϕw0 on this image, we may choose an element tH(w) of T∨H so that
t1(w)tH(w) lies in the center of H∨1 , and then compute ϕw0(t(w)−1tH(w)). In this
last formula, ϕw0 denotes the standard homomorphism T∨ → T∨sc : t→ w0(tsc)t

−1
sc ,

where tsc has same image as t in T∨ad. Then

ϕw0(a
′
−(w)) = ϕw0(aT ′2(w).a′+(w)−1) = ϕw0(t(w)−1tH(w).a′+(w)−1).

Notice that ϕw0(c
′
−(w)) = 1. Our claim now is that

ϕw0(t(w)−1tH(w).a′+(w)−1) = 1.

To provide a more explicit description of t(w), and of our choice for tH(w), we
review the construction of aT ′2(w). We fix a Γ-splitting of G∨ that is preserved
by θ∨ and assume that the endoscopic datum s lies in the maximal torus of this
splitting (which we identify with T∨ using our chosen toral data). Then we use the
attached Γ-splittings for G∨∗ and H

∨. Let wH denote the action of 1× w ∈ LH on
H∨. Then wH acts on T∨H = T∨∗ and thus on T

∨ = Cent(T∨∗ , G
∨) as ω(wH)wG,

where wG is the action of 1 × w ∈ LG (or LG∗) and ω(wH) lies in the Weyl
group of G∨∗ . Let M

∨
∗ be the Levi group in G

∨
∗ containing T

∨
∗ and with root system

consisting of those β∗∗ for which σβ∗∗ = −β∗∗ (recall we use σ as an abbreviation
for σT ). Then ω(wH) lies in the Weyl group of M∨∗ , and so we construct n(ω(wH))
in M∨∗ acting as ω(wH) as in [LS1]. Further, we may find t1H(w) in T∨∗ ∩ (M∨∗ )der
so that h(w) = t1H(w)n(ω(wH)) × w ∈ LG lies in H (part of the endoscopic data
e) and acts on H∨ as wH . Then for the embedding ξ1 : H → LH1 (part of the z-
pair) we have ξ1(h(w)) = z1(w)×w, where z1(w) is central in H∨1 . The embedding
ξT ′1 :L T1 →L H1 has the property

ξT ′1(1× w) = r′s(w)ns(ω
′
H(w))× w

= z1(w)−1r′s(w).ns(ω
′
H(w)).ξ1(h(w))

= z1(w)−1r′s(w).ξ1(ns(ω
′
H(w)).h(w)).

Here σ′ acts as ω′H(σ).σH on T∨H , and ω
′
H(w) = ω′H(σ) if w → σ under WR → Γ,

while ω′H(w) = 1 if w → 1. Notice that ω′(σ) also lies in the Weyl group of
M∨∗ (although we construct ns(ω

′
H(w)) in H∨). We have to compare ξT ′1 with the

embedding ξT ′∗ : LT ′∗ →L G∗ which extends naturally to ξT ′ : LT ′ →L G. Write
the action of σ′ on T∨H = T∨∗ as ω

′
G(σ).σG. Construct n(ω′G(w)) in M∨∗ and notice

that ω′G(w) = ω′H(w).ω(wH). Then

ξT ′∗(1× w) = r′1(w)n(ω′G(w))× w

= r′1(w)ω′H(w)(t1H)−1n(ω′G(σ))n(ω(wH))−1h(w).
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We claim that
n(ω′G(σ))n(ω(wH))−1 = t2H(w)ns(ω

′
H(w)),

where t2H(w) ∈ T∨∗ ∩ (M∨∗ )der. To prove this, we compare the left side to n(ω′H(w))
using Lemma 2.1.A of [LS1]. For the right side, there is a routine generalization
of Lemma 4.3.A of [LS2] to the twisted case that allows us to compare ns(ω′H(w),
an element in the Levi group of H∨ corresponding to the appropriate multiples of
roots in M∨∗ , to n(ω′H(w)), an element of M∨∗ . The claim then follows. Thus

ξT ′∗(1× w) = r′1(w)ω′H(w)(t1H)−1t2H(w).ns(ω
′
H(w))h(w).

Turning now to aT ′2(w), we set

t1(w) = z1(w)−1r′s(w), tH(w) = r′s(w)−1

and
t(w) = r′1(w)ω′H(w)(t1H)−1t2H(w).

Then
ϕw0(t(w)−1tH(w).a′+(w)−1) = ϕw0(ω

′
H(w)(t1H)−1t2H(w)) = 1

since
ω′H(w)(t1H)−1t2H(w) ∈ T∨∗ ∩ (M∨∗ )der

and ϕw0 is trivial on T
∨
∗ ∩ (M∨∗ )der.

Our last step is to examine the second component

τ̂(w0, σ
′).̂b(w0)−1.w0(c′−(w)).c−(w)−1

of A−(w). Consider

w0(c′−(w)).c−(w)−1 = c′−(w)c−(w)−1.

If O′ is orthogonal to α∗∗ then O′ is also a σ-orbit O, and r±O′(w) = r±O(w).
Thus all that remains in w0(c′−(w)).c−(w)−1 is a term in (C×)rNα and the term
sp/p0(w) for the action σ. We compare sp/p0(w) with τ̂(w0, σ

′).̂b(w0)−1. Recall our
assumption that if β∗∗ > 0 then σ′β∗∗ > 0 unless σ′β∗∗ = −β∗∗. Then β∗∗ > 0
and σβ∗∗ > 0 requires w0β∗∗ = σ′σβ∗∗ > 0. Thus the sum defining τ̂(w0, σ

′) is
empty, so that τ̂(w0, σ

′) = 1. Next, we use a routine generalization of Lemma 4.3.B
in [LS2]. This shows that the term b̂(w0) is a product of an element of order two
and an element in (C×)rNα. The element of order two is of the form

∏
β∗∗

(−1)β
∨
∗∗ ,

where the product is over representatives for the pairs {β∗∗,−w0β∗∗} with the
property that β∗∗ > 0 and −w0β∗∗ > 0. If we consider just those pairs where
β∗∗,−w0β∗∗ are also complex roots (if one is, the other is) then we obtain sp/p0(w)
(see Section 2.5 of [LS1], and cancel terms for G∨, H∨ appropriately). Assume now
that β∗∗ is imaginary. Then (−1)β

∨
∗∗ is a Galois cocycle which inflates to a cocycle

of WC/R of order at most two. To evaluate the corresponding character at δad, we
use the method of Section 3.2 of [LS1] to reduce the calculation to evaluation at
the element Nβ(δad)

r of a character of order at most two on the real points of a
1-dimensional torus T β∗∗ . Since T β∗∗(R) is compact the (cocycle and) character
must be trivial. Notice that here the canonical constructions of [LS1] have allowed
us to avoid the more complicated setting in Theorem 6.1.1 of [S7], where case-by-
case computations were needed. Thus we may discard the pairs {β∗∗,−w0β∗∗} for
which β∗∗, and hence also −w0β∗∗, is imaginary. Since no real roots contribute, we
conclude that, after the discard, τ̂(w0, σ

′).̂b(w0)−1.w0(c′−(w)).c−(w)−1 is a cocycle
with values in (C×)rNα. It remains to evaluate the corresponding character at δad.
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We again use the method of Section 3.2 of [LS1] to reduce this to the value of
a character on a 1-dimensional torus Tα∗∗ at the element Nα(δad)

r. If α∗∗ is of
type R1 then Nα(δad)

r = Nα(δad) = 1, and if α∗∗ is of type R2 then Nα(δad)
r =

Nα(δad)
2 = (±1)2 = 1 also. Thus the value is 1, and we have finished the proof of

Lemma 9.3. Notice that we could have based our last calculation on the coroot of
the root α1 of H1 in place of the reduced α∗∗. Then we arrive at the evaluation of
a character at α1(γ0) = 1. �

Lemma 9.5. For an s-compatible data set and toral descent data at γ0 we have

∆I(γ0(Y1), δ0(Y )) = ∆I(γ0(Y ′1), δ0(Y ′))

for all Y1 ∈ t1(R) and Y ′1 ∈ t′1(R).

Proof. Given our choices, the sign ∆I depends only on the torus T1 or T
′

1 to which
the first argument, γ0(Y1) or γ0(Y ′1), belongs. The lemma asserts that not even
that matters. There are two ways we can argue this. The first is to observe that
the proof in [S8], [LS2] of geometric transfer (with the transfer factors of [LS1]) for
untwisted endoscopy avoids Lemma 9.5, using instead regular unipotent analysis
and the local hypothesis. We deduce Lemma 9.5 in the untwisted case from the
cited proof together with Corollaries 9.2 and 9.4 above: if transfer exists and all
terms but ∆I are known to match correctly then ∆I must match correctly. We
then prove Lemma 9.5 in the general case with the observation from Section 4.2 of
[KS] that ∆I for the twisted case may be interpreted as ∆I for a case of standard
endoscopy.
Our second proof for Lemma 9.5 is a direct argument, allowing us to complete a

proof for geometric transfer that works as well for, rather than assumes, standard
endoscopy. The starting point is the observation cited above for twisted ∆I . We
consider standard endoscopy for the quasi-split group Gθ

∗
sc = (G∗sc)

θ∗sc (denoted
Gx in [KS]) and the datum sT,θ defined on p.32 of [KS]. The two maximal tori

T θ
∗
sc , T ′θ

∗
sc in Gθ

∗
sc
sc are norm (image) groups for the endoscopic group J . Our toral

data and a-data provide data for this setting also. Write α∗ for the multiple of
α0 that is a root of T θ

∗
sc and define α′∗ similarly. Recall that the inverse Cayley

transform t∗ carries α′∗ to α∗. Pick a G
θ∗sc-semiregular element ε of T ′θ

∗
sc(R) with

image εJ in J(R). Then we make an endoscopic descent around the pair (ε, εJ) as
in [LS2]. By construction, the connected centralizers of ε, εJ are isomorphic over R,
so that the base endoscopy is trivial up to passage to z-extensions. In particular,
each ∆I term is trivial. Our setting satisfies the requirements for the comparison
formulas of Section 3.3 of [LS2], including the condition (3.3.2). The formula of
Lemma 9.5 is the same as the corresponding formula for Gθ

∗
sc
sc relative to the tori

T θ
∗
sc , T ′θ

∗
sc . Thus it is enough to show that the quotient of the two terms in the

formula divided by the (trivial) quotient for the centralizers, or the quotient of the
terms ΘI of [LS2] for T ′θ

∗
scand T θ

∗
sc , is trivial. Lemma 3.3.D of [LS2] describes a

class v in H1(Γ, T θ
∗
sc) with which we may pair sT,θ, by the Tate-Nakayama pairing,

to obtain this quotient of the ΘI . It remains thus to examine v (which we will write
as v∗) and conclude that, because of our particular choice of a-data, this class is
represented by a cocycle (−1)εα

∨
∗ , where ε ∈ {0, 1}. Since α∨∗ is a root of J∨ the

pairing yields 1, and the lemma is then proved.
We use, just for this paragraph, α to denote a reduced root of T θ

∗
sc different from

±α∗ (we argue in Gθ
∗
sc
sc with no reference to H∨ or the endoscopic data). Identify
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T ′θ
∗
sc with T θ

∗
sc via t∗, and write σ for the Galois action on T θ

∗
sc , σ′ for the transport

of the Galois action on T ′θ
∗
sc , and a′α for the a-data for T

′θ∗sc . Then σ = w0σ
′, where

w0 is the Weyl reflection for α∗, and

v∗(σ) = τ(w0, σ
′).b(w0)−1.w0(y′(σ)).y(σ)−1.

Here
τ(w0, σ

′) =
∏

α>0, w0α<0, σα>0
(−1)α

∨
.

Up to multiplication by an element of (C×)α
∨
∗ , the term b(w0) is

∏
(−1)α

∨
, where

the product is over representatives for pairs {α,−w0α} such that α > 0, w0α < 0
(see Lemma 4.3.A of [LS2]). Here the order on the roots is obtained by transport
of that determined by our choice of an R-splitting. The choice of splitting does not
affect the quotient of ∆I terms, and there is no harm in our assumption that if
α > 0 and σ′α 6= −α then σ′α > 0 (or see Lemma 2.3.A of [LS1], and note that the
assumption (3.3.2) of [LS2] is retained). Finally,

y′(σ) =
∏

α>0, σ′α<0

(a′α)α
∨

and
y(σ) =

∏
α>0, σα<0

(aα)α
∨
.

Suppose α > 0, σ′α < 0, so that α contributes to w0(y′(σ)). Then α = −σ′α
and w0α = α = −σ′α = −σα, so that α is imaginary for both T ′θ∗sc and T θ∗sc .
By t∗-compatibility of our a-data we have a′α = aα, and the contribution from α
to w0(y′(σ)) cancels that to y(σ). There are two remaining types of contribution
to y(σ). The first is for α > 0 such that α = −σα and w0α 6= α. Then w0α =
−w0σα = −σ′α < 0 since −σ′α 6= α. Thus we also have −w0α > 0 and −w0α is of
same type as α. The contribution to y(σ) from {α,−w0α} is

(aα)α
∨

(a−w0α)−w0α
∨

= (aα)α
∨−w0α∨(−1)−w0α

∨

since a−w0α = −aw0α = −aα. The first term in the product lies in (C×)α
∨
∗ and the

second cancels with a term in b(w0) up to multiplication by an element of (C×)α
∨
∗ .

The second type of contribution to y(σ) is from α > 0 such that σα < 0 and
σα 6= −α. Then each of α and −σα contributes and their joint contribution is

(aα)α
∨

(a−σα)−σα
∨

= (aα)α
∨

(aα)−σα
∨

(−1)−σα
∨
.

Since (aα)α
∨

(aα)−σα
∨
is a coboundary we may ignore it. Let β = −σα. Then

β > 0, σβ < 0. Also w0β = −σ′α < 0 since α > 0 and σ′α 6= −α. Thus (−1)−σα
∨

=

(−1)β
∨
cancels with the corresponding term in b(w0), and so we conclude that, up

to coboundaries, the cocycle v∗(σ) lies in (C×)α
∨
∗ . The lemma now follows. �

Finally, the following equalities will be used in assembling the jump formulas in
the next section. The terms were introduced in Section 7.

Lemma 9.6. Under the assumptions of the present section we have:〈
inv(δ0(Y ), δ0(Y )(w)), κδ0(Y )

〉
=
〈
inv(δ0(Y ), δ0(Y )(ww0)), κδ0(Y )

〉
=
〈
inv(δ0(Y ′), δ0(Y ′)(w′)), κδ0(Y ′)

〉
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Proof. The representatives w′, w were defined in the paragraph before Lemma 7.2,
and w0 lies in Gθδ0 .Write the three inv terms in the statement as inv(w), inv(ww0),

inv(w′). To define inv(w) we start with the Galois cocycle σ(w)w−1 in the maximal
torus Aδ0 = Cent(T δ0 , G) of G (earlier we used the notation T † for Aδ0). Notice
that Aδ0 is preserved by θ0 = Int(δ0) ◦ θ and Int(δ0(Y )) ◦ θ acts as θ0 on Aδ0 . Let
Aδ0sc be the corresponding torus in Gsc. Then we factor w in the usual manner, as
the product of the image of an element wsc of Gsc and a central element z. The
pair (σ(wsc)w

−1
sc , (θ0 − 1)z) represents inv(w), an element of H1(Γ, Aδ0sc

ϕ
−→ Bδ0).

Here Bδ0 is the image of Aδ0 under θ0 − 1 and ϕ is the composition of θ0 − 1 with
the projection Aδ0sc → Aδ0 . We have arranged that σ(ww0)(ww0)−1 coincides with
σ(w)w−1.(−1)α

∨
0 up to coboundaries in Aδ0 ∩ (Gθδ0)der = T δ0 ∩ (Gθδ0)der. Thus we

can factor the corresponding hypercocycle as (σ(wsc)w
−1
sc , (θ0 − 1)z).((−1)α

∨
0 , 1).

The usual argument (see the proof of Lemma 9.3) shows that the second term in
the statement of the present lemma is α∨0 (sT ) times the first. Since α∨0 (sT ) = 1
(see the proof of Lemma 9.3 again), we are done with the first equality.
Our choices ensure that inv(w) is represented by a hypercocycle (asc(σ), (θ0 −

1)z) and inv(w′) is represented by (s(asc(σ)), (θ0 − 1)z). Here, recall that s is a
Cayley transform in (Gθδ0)sc. Since we have also to analyze the dual data we use
our chosen toral data to pass from G to G∗. Then in place of H1(Γ, Aδ0sc

ϕ
−→ Bδ0) we

consider H1(Γ, Tsc → (θ∗ − 1)T ), etc., and we identify T ′ with T over C using the
inverse Cayley transform t∗ = (s∗)−1. Consider the pair (inv(w)−1, inv(w′)) in

H1(Γ, Tsc × T ′sc → (θ∗ − 1)(T × T ′)).
It is represented by

((tsc(σ), (θ∗ − 1)z)−1, (tsc(σ), (θ∗ − 1)z)),

where tsc(σ) is the image of asc(σ) under our identification of Aδ0 with T. To prove
that the (equal) first and second terms in the statement of the lemma coincide with
the third, we show that (inv(w)−1, inv(w′)) pairs trivially with the class in

H1(WR, [(θ
∗ − 1)(T × T ′)]∨ → T∨ad × (T ′∨)ad)

represented by
((bT (w)−1, sad), (bT ′(w)−1, sad)),

where bT , bT ′ are as constructed on p.55 of [KS] (we will describe them in detail
shortly). Recall

S = S(T, T ′) = T × T ′/{(z−1, z) : z ∈ Z(G∗)}.
The projection (θ∗−1)(T ×T ′)→ (θ∗−1)S determines a map on hypercohomology
groups under which the image of (inv(w)−1, inv(w′)) is represented (in the obvious
manner) by ((tsc(σ)−1, 1), (tsc(σ), 1)). Thus by functoriality of the pairing, it is
enough to show that ((bT (w)−1, sad), (bT ′(w)−1, sad)) represents a class in the image
of

H1(WR, [(θ
∗ − 1)S]∨ → T∨ad × (T ′∨)ad)

under the (dual) map on dual hypercohomology groups. Thus it is enough to
show that the cocycle (bT (w), bT ′(w)) in [(θ∗ − 1)(T × T ′)]∨ lies in the subtorus
[(θ∗ − 1)S]∨.
Recall the cocycle (aT2(w), aT ′2(w)) of WR in T∨2 × T∨2 from the construction of

∆III ; see the proof of Lemma 9.3 and p.45 of [KS]. Also, the torus [(θ∗−1)(T×T ′)]∨
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may be identified with T∨2 ×T∨2 / T∨1 ×T∨1 (see p.55 of [KS]). Then (bT (w), bT ′(w))
is, by definition, the image of (aT2(w), aT ′2(w)) under the natural projection

proj : T∨2 × T∨2 → T∨2 × T∨2 /T∨1 × T∨1 .
By construction, (aT2(w), aT ′2(w)) lies in S∨1 (identified as a subtorus of T

∨
2 × T∨2 ).

We denote by θ2 the extension of θ
∗ to T2, T

′
2 (p.42 of [KS]). The torus (θ∗ − 1)T

may be identified as the (isomorphic) image of (θ2 − 1)T2 under the projection
T2 → T, and so (θ∗ − 1)S may be identified with (θ2 − 1)S1 under S1 → S. Since
[(θ2 − 1)S1]∨ coincides with the image of S∨1 under proj, we are done. �

10. Proof of Theorem 5.1 and extension to derivatives

To complete the proof of Theorem 5.1 we return to the formulas of Sections 7
and 8, and combine them with the results of Section 9. We have only to consider
the case that γ0 is both a T

s1
1 -norm and a T1-norm, and maintain the toral descent

data attached to γ0, along with the s-compatible data sets, in Section 7. Write
Φ1(γν) as ∣∣det(Ad(γν)− I)h1/t1

∣∣1/2∑
w

∆(γν , δν(w)) Oθ,$(δν(w), f)

= ∆I(γν) ∆II(γν) ∆III(γν , δν ; γ, δ) ∆IV,num(δν)

×
∑
w

〈inv(δν , δν(w)), κδν 〉 Oθ,$(δν(w), f).

To pass to the transform Ψa,χ(γν), we simply replace ∆II(γν) by ∆II,num(γν).
Without changing notation, we drop the terms for those classes in Dθ(T δ0 ) with
no representative w for which wα0 = ±α0. Since

〈inv(δν , δν(w)), κδν 〉 = 〈inv(δν , δν(ww0)), κδν 〉
(Lemma 9.6), we may then replace the sum by a sum over representatives w for
Dθ(α0), and examine

∆I(γν).∆II,num(γν)∆IV,num(δν)∆α0(δν)−1.∆III(γν , δν ; γ, δ)

×(2/d(α0))
∑
w

〈inv(δν , δν(w)), κδν 〉 ∆α0(δν) Oθ,$(δν(w), f).

On the other hand,

Ψa′,χ′(γ
′
ν) = ∆I(γ

′
ν).∆II,num(γ′ν)∆IV,num(δ′ν)∆±α′0(δ

′
ν)−1.∆III(γ

′
ν , δ
′
ν ; γ, δ)

×
∑
w′

〈
inv(δ′ν , δ

′
ν(w′)), κδ′ν

〉
∆±α′0(δ

′
ν)Oθ,$(δ′ν(w′), f),

where the summation is over representatives w′ for the elements of Dθ(T ′δ0 ). From
Lemma 8.1, Corollaries 9.2, 9.4, and Lemmas 9.5, 9.6 we conclude that

lim
ν→0+

Ψa,χ(γν)− lim
ν→0−

Ψa,χ(γν)

= 2 lim
ν→0

Ψa′,χ′(γ
′
ν).

For the final step in the proof of Theorem 5.1, we notice that the Weyl reflection
w1 for α1 provides a stable conjugation of γ−ν with γν . Since Φ1 is invariant under
stable conjugacy, it is enough to examine the factor∏

O1
χβ1(

(β1(γ1)− 1)

aβ1
),
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where γ1 is regular in T1(R). There is no change in the total contribution from the
orbits O1 6= {±α1} when γ1 is replaced by γ

w1
1 since the definition of s-compatible

data ensures that χw1β1 = χβ1 and aw1β1 = aβ1 ; the contribution from the orbit of
β1 is interchanged with that from the orbit of w1β1. For the case O1 = {±α1}, we
have

χα1(
(α1(γw11 )− 1)

aα1
) = −χα1(α1(γ1))−1χα1(

(α1(γ1)− 1)

aα1
).

Since χα1(α1(γ0)) = χα1(1) = 1,

lim
ν→0−

Ψa,χ(γν) = − lim
ν→0+

Ψa,χ(γν),

and so we are done with the proof of Theorem 5.1.

��
To consider limit formulas for derivatives, let S(t1) denote the symmetric algebra

of t1. Denote by D → D̂ the automorphism of S(t1) determined by the map Y1 →
Y1 − n1α1(Y1)I of t1 into S(t1), where 2n1 is the odd integer given by χα1(z) =

(z/z)n1 = (z/ |z|)2n1 .
For γ1 = γ0 expY1 near γ0 define χα1(α1(γ1))1/2 to be χα1(exp 1

2α1(Y1)). Then
the function (germ)

Ψ̂a,χ(γ1) = χα1(α1(γ1))−1/2Ψa,χ(γ1)

is defined for G-regular γ1 near γ0 in T1(R) (recall the smooth extension from
strongly G-regular elements to all G-regular elements in Section 7). Moreover, this
function is odd:

Ψ̂a,χ(γw11 ) = −Ψ̂a,χ(γ1).

Lemma 10.1. For all D ∈ S(t1), we have that both limν→0− D̂Ψa,χ(γν) and
limν→0+ D̂Ψa,χ(γν) exist. If Dw1 = −D then

lim
ν→0−

D̂Ψa,χ(γν) = lim
ν→0+

D̂Ψa,χ(γν),

and if Dw1 = D then

lim
ν→0−

D̂Ψa,χ(γν) = − lim
ν→0+

D̂Ψa,χ(γν).

Proof. Existence of each of limits in (i) and (ii) follows from the basic estimates
(see Appendix). The twist D̂ of D was defined expressly to obtain the property

D̂Ψa,χ(γ0 expY1) = χα1(exp
1

2
α1(Y1)).DΨ̂a,χ(γ0 expY1).

Thus we have
lim
ν→0±

D̂Ψa,χ(γν) = lim
ν→0±

DΨ̂a,χ(γν).

The desired equations are then immediate from the oddness of Ψ̂a,χ. �

We may choose the χ′-datum χα′1 nontrivial. Because α
′
1 is real we define Ψ̂a′,χ′

by
Ψ̂a′,χ′(γ

′
1) = χα′1(α

′
1(γ′1))−1Ψa′,χ′(γ

′
1)

for G-regular γ′1 near γ0 in T
′
1(R). The Cayley transform s1 provides us with an

isomorphism D → D′ from S(t1) to S(t′1). We write D̂′ for the image of D′ under
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the automorphism given by Y ′1 → Y ′1 − zα′1(Y ′1)I, where z is the complex number
given by χα′1(x) = (sgnx)ε |x|z . Then for all D ∈ S(t1), we have that

lim
ν→0

D̂′Ψa′,χ′(γ
′
ν) = lim

ν→0
D′Ψ̂a′,χ′(γ

′
ν)

exists.

Lemma 10.2. If Dw1 = D then, for any s-compatible data set,

lim
ν→0+

D̂Ψa,χ(γν) = lim
ν→0

D̂′Ψa′,χ′(γ
′
ν).

Proof. For this we return to the formulas obtained by descent in Section 8, and
use Harish-Chandra descent for operators in the center of the universal enveloping
algebra of the complex Lie algebra of G as well, extending the arguments for Propo-
sition 4.5 of [S5] via results of Bouaziz (see Theorem 2.4.1 of [B1]). The formula
then follows by repeating the steps at the start of this section. �

This concludes then our extension of Theorem 5.1 to derivatives of Ψa,χ. The
extension applies, in particular, to the setting of Theorem 4.2.

11. Completion of proof of the main theorem

We recall once again that if

S(γ1) =
∑

δ,θ−conj
∆(γ1, δ)O

θ,$(δ, f),

then we have the normalized integral

Φ1(γ1) =
∣∣det(Ad(γ1)− I)h1/t1

∣∣1/2 S(γ1),

and the transform

Ψa,χ(γ1) = ∆a,χ(γ1)S(γ1).

Recall also that S(γ1), defined initially for strongly G-regular elements γ1, was
extended smoothly to all G-regular elements. Next, we extend S to a smooth
function around all regular elements in T1(R). Since ∆a,χ is nonvanishing and thus
smooth on the regular set in T1(R), we may replace S by Ψa,χ for this extension.
Assume that γ0 is regular in T1(R), so that (H1)γ0 = T1. If γ0 is not a norm then

Ψa,χ(γ1) = 0 for G-regular γ1 near γ0 in T1(R) by Lemma 6.1, and so S extends
trivially. Suppose now that γ0 is a T1-norm of δ0 ∈ G(R). We consider the case
that δ0 is θ-semiregular, by which we mean that Gθδ0 is of type A1. As before, we
denote by ±α0 the roots of T δ0 in Gθδ0 . If the root α0 is real or totally compact then
we follow our earlier descent arguments (and include derivatives) to see that Ψa,χ

extends smoothly around γ0. Suppose then that α0 is imaginary and not totally
compact. By passage to a stable θ-conjugate of δ0, we may assume that α0 itself is
noncompact. Again we rely on the earlier descent arguments, except that Lemma
9.6 is replaced by the following.

Lemma 11.1. In the present setting we have α∨0 (sT ) = −1, and then〈
inv(δ0(Y ), δ0(Y )(w)), κδ0(Y )

〉
= −

〈
inv(δ0(Y ), δ0(Y )(ww0)), κδ0(Y )

〉
.
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Proof. Since σα0 = −α0 we also have that σ(Nα∨) = −Nα∨, and thenNα∨(sT )2 =
1 since sT is Γ-invariant. Suppose α is of type R2. If Nα∨(sT ) = 1 then α1 is a
root of H1 and α1(γ0) = Nα(δ0)2 = 1 contradicting the regularity of γ0. Thus
Nα∨(sT ) = −1 is the only possibility. In fact, then the coroot β1 of 2(α∨)res is a
root of H1 and β1(γ0) = Nβ(δ0) = Nα(δ0) = ±1. Since β1(γ0) 6= 1 we must have
Nα(δ0) = −1, a contradiction since α is of type R2.We conclude that α cannot be of
type R2. Suppose α is of type R3. IfNα∨(sT ) = 1 then β1 is a root ofH1, where now
β1 denotes the coroot of

1
2 (α∨)res. This implies β1(γ0) = Nβ(δ0)2 = Nα(δ0)2 = 1

which contradicts the regularity of γ0. Thus Nα
∨(sT ) = −1 = α∨0 (sT ). Finally if α

is of type R1 then α∨0 (sT ) = Nα∨(sT ) = −1 since α1 cannot be a root of H1. �

The argument of Section 10.1 now shows that

lim
ν→0−

D̂Ψa,χ(γν) = + lim
ν→0+

D̂Ψa,χ(γν)

for all D ∈ S(t1). Thus Ψa,χ extends smoothly around γ0.
We have then that Ψa,χ extends smoothly around all regular elements γ0 in T1(R)

that are norms of θ-semiregular elements in G(R). Next, Ψa,χ extends to a smooth
function around all regular elements γ0 in T1(R) that are norms of θ-semisimple
elements in G(R). For this, Lemma 6.2 implies immediately that we may apply a
familiar principle of Harish-Chandra which we call semiregular is suffi cient ; see,
for example, Section 6 of Part I and Section 13 of Part II in [V], also Lemma 8.4.4.6
and Section 8.5 of [War]. We conclude then that Ψa,χ, and thus S itself, extends to
a smooth function on the full regular set of T1(R).
To finish the proof of the main theorem, Theorem 2.1, we check that S satisfies all

requirements of our characterization theorem for stable orbital integrals on H1(R),
i.e., properties I - IV of Theorem 12.1 with G = H1, g0 = 1. Recall that we use
Haar measures attached to invariant differential forms of highest degree defined
over R, as in [S5, Section 4] and [LS1, Section 1.4], and use provided inner twists or
R-isomorphisms to transport forms when needed (for example, in the formulation
of the property I ). We assume that the forms on g, h1 are products corresponding
to the Lie algebra decompositions g = zθ + (1 − θ)z + gder, h1 = z1 + h. Suppose
strongly G-regular γ1 is a norm of strongly θ-regular δ. We require that Haar
measures on Gθδ(R) and T1(R) be compatible in the following sense. First the
underlying forms are to respect gθδ = zθ + (gθδ ∩ gder), t1 = z1+ tH . Because the

constant
∣∣∣det(Int(δ) ◦ θ − I)Cent(gθδ ,g) / gθδ

∣∣∣ or, more simply, ∣∣det(θ∗ − I)t / tθ∗
∣∣ was

omitted from the normalizing factor ∆IV , we include it now by requiring that the
form on tH be obtained by transport of [det(θ∗ − I)t / tθ∗ ]−1 times the form on gθδ .
For the Haar measure on Cent(δ,G)(R) we extend that on Gθδ(R).
For III, it remains to consider Ψa,χ around a T1-norm γ0 annihilated only by real

or complex roots. Again we use the semiregular is suffi cient principle to assume
that the root is real and unique up to sign, and that both (H1)γ0 and G

θ
δ0
are of

Dynkin type A1. Then descent finishes the argument. As in Section 14 of [S1] for
the standard (untwisted) case, an alternative proof that Ψa,χ extends to an $1-
Schwartz function on T1(R)im−reg may be given via formulas for parabolic descent
(see [M], [S9]).
By Theorem 5.1 and its extension to derivatives, S satisfies IV under the ad-

ditional assumption that γ0 is G-semiregular. Our (stronger) statements of limit
formulas for transfer factors in Section 9 allow us to remove the assumption by an
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application of the semiregular is suffi cient principle, and then we are done with the
proof of the main theorem.

��

12. The general case: slightly twisted norms

Without the assumption at the beginning of Section 6, the norms of strongly
θ-regular elements in G(R) lie in a certain coset of H1(R) in H1(C), rather than in
H1(R) itself. This feature requires only a minor modification in the formulation of
transfer, as we will recall from Section 5.4 of [KS]. We consider arbitrary (G, θ, a$),
endoscopic data e and z-pair (H1, ξ1) (see Section 1).
We return to the first paragraph of Section 6. Recall that we work with the

variant m : G→ G∗ of the inner twist ψ defined by m(δ) = ψ(δ)g−1
θ . Without the

assumption of the first paragraph we have that

σ(m)(δ) = z(σ)u(σ)−1m(δ)θ∗(u(σ)),

where z(σ) is a 1-cochain of Γ in Z∗sc (as usual, we have used the same notation for
the image of z(σ) in G∗). The image of z(σ) in (Z∗sc)θ∗sc is a 1-cocycle zθ(σ). As in
(5.4) of [KS], zθ(σ) determines a 1-cocycle zH(σ) in the center ofH which we assume
splits in H (otherwise the transfer statement is empty). Let zH(σ) = h−1

0 σ(h0).
Then there is a 1-cocycle z1(σ) = h−1

1 σ(h1) in the center of H1 which projects to
zH(σ) under H1 → H. Write θ1 for the automorphism Int(h1). We replace H1(R)
by the coset H1(R)h1 in the formulation of transfer.
First we extend the definition of stable orbital integral to this setting and describe

a characterization theorem. Until after Theorem 12.1, we return to G as notation
for the group on which we consider orbital integrals. Since it is enough for our
purposes (i.e., for the case G = H1), we also assume G quasi-split over R and
with simply-connected derived group. Then the complex points of centralizers of
semisimple elements are connected and there are no totally compact imaginary
roots.
Fix an element g0 in G(C) such that σ(g0)−1g0 is central, so that θ = Int(g0)

lies in Gad(R) and G(R)g0 lies in the inverse image of Gad(R) under the projection
G→ Gad. There will be no harm in assuming that θ preserves the pair (Bspl, Tspl),
where Bspl, Tspl are from a chosen R-splitting of G. Then g0 lies in the maximal
torus Tspl of the splitting. There is also no harm in assuming g0 lies in Gder. Then
σ(g0)−1g0 = z(σ) lies in the center Zder = Zsc of Gder = Gsc.
Let γ ∈ G(R)g0 ⊂ G(C). Then Cent(γ,G) is defined over R since σ(γ)−1γ =

σ(g0)−1g0 = zσ. Suppose γ is regular semisimple, so that Tγ = Cent(γ,G) is a
maximal torus defined over R. If γ = γ′g0, then right translation by g0 maps
bijectively the Int(g0)-twisted conjugacy class of γ′ to the G(R)-conjugacy class
of γ. It also maps the intersection of G(R) with the Int(g0)-twisted conjugacy
class of γ′ in G(C) to the intersection of G(R)g0 with the conjugacy class of γ in
G(C). We will call this last set the stable conjugacy class of γ (again since Gder is
simply-connected). The G(R)-conjugacy classes in the stable conjugacy class of γ
are parametrized by untwisted D(Tγ), as for the case γ ∈ G(R).
Let T be a maximal torus over R in G. Then T contains an element γ in G(R)g0

if and only if zσ splits in H(Γ, Tder) = H(Γ, Tsc). In that case, T (R)γ also lies in
G(R)g0 and moreover T (R)γ = T ∩ G(R)g0. Write T (g0) for the collection of all
such T. Clearly, Tspl ∈ T (g0) and the set of regular semisimple elements in G(R)g0
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is the union over T ∈ T (g0) of the (open, dense) regular set (T ∩ G(R)g0)reg in
T ∩ G(R)g0. Suppose T ∈ T (g0), γ0 ∈ T ∩ G(R)g0 is semiregular and α(γ0) = 1,
where α is an imaginary root of T . On replacing γ0 by a stable conjugate we may
assume that α is noncompact, i.e., that Cent(γ0, G) is split modulo center. If T ′

is a maximally split maximal torus over R in Cent(γ0, G) then clearly T ′ ∈ T (g0).
It then follows that if T ∈ T (g0) and s is any Cayley transform relative to an
imaginary root α of T then T s ∈ T (g0). Also, if γ0 ∈ T ∩ G(R)g0 is semiregular
and α(γ0) = 1 then (γ0)s ∈ T s∩G(R)g0.We denote by (T ∩G(R)g0)im−reg the set
of all elements in T ∩G(R)g0 such that α(γ0) 6= 1, for all imaginary roots α of T .
Let S(γ, dtγ , dg) be a complex-valued function defined for regular semisimple γ

in G(R)g0, and Haar measures dtγ on T γ(R) = Cent(γ,G)(R), dg on G(R). Write
Φ for the normalized version of S :

Φ(γ, dtγ , dg) =
∣∣det(Ad(γ)− I)g/tγ

∣∣1/2 S(γ, dtγ , dg).

Since it is useful for our application, we assume that there is a central torus Z1 and
character $1 on Z1(R) such that

S(z1γ, dtγ , dg) = $1(z1)−1S(γ, dtγ , dg),

for all z1 ∈ Z1(R), regular semisimple γ in G(R)g0, and all dtγ , dg.
Consider the following properties (I) - (IV).
• (I) S is invariant under stable conjugacy.
This means that if w ∈ G(C) is such that γw = w−1γw lies in G(R)g0 and dtγw

is obtained from dtγ by transport under w, then

S(γw, dtγw , dg) = S(γ, dtγ , dg).

• (II) S transforms under change of measures according to the rule

S(γ, λdtγ , µdg) =
µ

λ
S(γ, dtγ , dg).

Here λ, µ are positive real numbers.
Next, let T ∈ T (g0). For γ in (T ∩ G(R)g0)reg and fixed Haar measures dt, dg

on T (R), G(R) respectively, set ST (γ) = S(γ, dt, dg) and ΦT (γ) = Φ(γ, dt, dg).
• (III) ΦT is a $1-Schwartz function on (T ∩G(R)g0)reg and extends to a $1-

Schwartz function on (T ∩G(R)g0)im−reg.
Here the notion of $1-Schwartz function is clear since T (R)γ0 lies in the inverse

image of Tad(R) in T (C). The final property concerns behavior at the imaginary
walls. It is simpler to state if we assume (I), (III). Suppose T ∈ T (g0), γ0 ∈
T ∩G(R)g0 is semiregular and α(γ0) = 1, where α is an imaginary root of T . Let
s be a Cayley transform for α (in the sense of Section 3), and fix s-compatible
a-data, χ-data for T, T s = T ′ (we again use ′ in place of s in notation). The Haar
measure on T ′(R) is to be obtained by transport under s from that on T (R) in
our earlier sense (Section 8). We have defined the generalized Weyl denominator
∆a,χ(γ) for γ ∈ T (R). Notice that ∆a,χ(γ) depends on the image of γ under
the natural map T → Tad rather than on γ itself. We may therefore extend the
definition of ∆a,χ to the inverse image of Tad(R) in T (C) and so to T (R)γ0. We
also extend ∆a′,χ′ to T ′(R)γ′0. Thus we may define the transforms Ψa,χ,Ψa′,χ′

on (T (R)γ0)reg, (T
′(R)γ′0)reg respectively, as before. For ν real and nonzero, set

γν = exp(νaαα
∨).γ0 and γ′ν = exp(νaα′α

′∨).γ′0. Denote by w the Weyl reflection
for α. To a differential operator D in S(t) attach D′ in S(t′) and define the twists
D̂, D̂′ as in Section 10.
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• (IV) If Dw = D then

lim
ν→0+

D̂Ψa,χ(γν) = lim
ν→0

D̂′Ψa′,χ′(γ
′
ν).

With the assumption of (I), (III) there will be no harm in assuming in (IV) that
α is noncompact and that the Cayley transform comes from the simply-connected
cover SL(2) of Cent(γ0, G). Then γ′0 = γ0. Also, the argument of Section 10, along
with (I) and (III), shows that if Dw = ±D then

lim
ν→0−

D̂Ψa,χ(γν) = ∓ lim
ν→0+

D̂Ψa,χ(γν).

Suppose now that f is a $1-Schwartz function on G(R)g0 (again the notion is
clear, or see Appendix). Then the stable orbital integrals

SO(γ, f) = SO(γ, f, dtγ , dg)

=
∑

γ′∈ D(Tγ)

∫
Tγ′ (R)\G(R)

f(g−1γ′g)
dg

dtγ

transform by $−1
1 under translation by Z1(R) and satisfy (I) - (IV). A proof of this

requires only a very minor variant of the standard argument (see the next proof or
Appendix for more general results). Extension of our main theorem to the present
setting rests on the converse theorem:

Theorem 12.1. Suppose S transforms by $−1
1 under translation by Z1(R) and

satisfies (I) - (IV). Then there exists f ∈ C(G(R)g0, $1), such that

S(γ, dtγ , dg) = SO(γ, f, dtγ , dg)

for all regular semisimple γ in G(R)g0, and all dtγ , dg. If also S vanishes off the
orbits of some set Z1(R)B, where B is a bounded subset of the regular semisimple
set of G(R)g0, then f may be chosen in C∞c (G(R)g0, $1).

Proof. To find f in C(G(R)g0, $1) we prove an analog of Lemma 4.8 of [S5] in
which f is constructed satisfying a weaker condition, and then finish by using the
inductive argument for the proof of Theorem 4.7 in [S5]. Assume T ∈ T (g0).
Then an argument shows that we may replace g0 by an element of G(R)g0 ∩ T if
necessary and assume g0 ∈ T. It is now straightforward to extend the wave packet
construction in the proof of Lemma 4.8 to G(R)g0, and thus find the desired f
in C(G(R)g0, $1). To pass to a C∞c -function when the support is appropriate, we
reduce to Bouaziz’s characterization theorem on Gad(R). �

Finally, the extension of Theorem 2.1 requires a recasting of the norm correspon-
dence and transfer factors. This again is straightforward (and described in Section
5.4 of [KS]). First, for the norm correspondence we consider strongly G-regular
elements γ1 of H1(R)h1, assuming such elements exist, and strongly θ-regular el-
ements δ of G(R). Then γ1 is a norm of δ if the θ-conjugacy class of δ in G(C)
is the image (under the canonical map) of the conjugacy class of γ1 in H1(C).
Let T1 = Cent(γ1, H1), a maximal torus over R in H1. Then there are toral data
(T1 → Tθ∗ , g) as in Section 6 for which δ∗ = gm(δ)θ∗(g)−1 has the property that
N(δ∗) is the image of γ1 under T1 → Tθ∗ . The cochain v(σ) in Tsc now has the extra
term z(σ) from Zsc, but that does not affect the assertions of the lemmas in Section
6 when we now take semisimple γ0 in H1(R)h1 instead of H1(R). Nor does it af-
fect the definition of the relative term ∆III in transfer factors, since (z(σ)−1, z(σ))
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represents the identity element of the torus U of Section 4.4 of [KS]. The results
of Sections 6, 7 and 9 thus apply. After adjusting the definition of Trans(f) and
Transc(f), we conclude then:

Theorem 12.2. The assertions of the main theorem (Theorem 2.1) and corollary
(Corollary 2.2) remain true in the general setting of Section 6.

13. Appendix: Harish-Chandra Schwartz functions

We return to the setting of Section 1, where fθ is a smooth function on G(R)θ.
As pointed out by a referee, θ is the product of an inner automorphism defined over
R and an automorphism of finite order also defined over R (see remark near the end
of Section 6). We may further assume that the inner automorphism is of the form
Int(g), where g ∈ Gsc(R). There will be no harm then in assuming that θ itself
is of finite order. Following [HCI], let V = exp v, where v is the maximal R-split
subalgebra of the Lie algebra z(R) of Z(R), so that we have G(R) as a direct product
(1− θ)V.V θ.◦G(R), where θ acts as automorphism of each factor. Then G(R)θ is a
direct product (1−θ)V.G1, where G1 = V θ.◦G(R)θ; G1 embeds smoothly as an open
subset of the Lie group V θ.◦G(R)o 〈θ〉 to which the results of [B1] apply. We will
start with the space C(G(R)θ,$) where we require fθ to transform by $−1 under
the twisted conjugacy action of V since we will need such a space for the twisted
orbital integrals. Thus we require fθ(vθ(v)−1gθ) = fθ(vgθv

−1) = $(v)−1fθ(gθ) for
v ∈ V, g ∈ G(R) (since we assume a nonempty norm correspondence, the character
$ is trivial on V θ, the kernel of the action). Call fθ a $-Schwartz function if
the restriction of fθ to G1 is Schwartz in the Harish-Chandra sense [HCI]: the
functions σ and Ξ appearing in Harish-Chandra’s seminorms are well-defined on
G1 (see Sections 3.4, 3.5 of [B1]). We write C(G(R)θ,$) for the Fréchet space of
all such functions equipped with the Harish-Chandra seminorms. If O is open in
G(R)θ and invariant under translation by (1− θ)V, we define C(O, $) analogously.
It is clear also how to define the space C(G(R)θ) of (purely) Schwartz functions on
G(R)θ.
We need a twisted analogue of Theorem 16.1 of [HCI] which asserts that f → ′Ff

is a well-defined continuous map on the appropriate Schwartz spaces. To shorten
the presentation (but also make it clumsier than necessary), we take our (θ,$)-
twisted transform to depend on the endoscopic group also, or more precisely on
endoscopic data and z-pair. To use pieces of the transfer factors in the definition,
we will start with familiar constructions on G(R) and then translate to G(R)θ.
Fix a strongly θ-regular element δ0 of G(R) with norm γ0 in H1(R), along with
toral data, a-data and χ-data associated with the torus Cent(γ0, H1). It will be
enough for our purposes to define a transform Ψδ0

f on the θ-regular elements δ in
Gθδ0(R)0δ0, although extension to a larger set is easy. If δ = expY.δ0 then we set
γ1 = expYH .γ0 (see Section 6), and define

Ψδ0
f (δ) = ∆III(γ0, δ0; γ, δ).∆num

II (δ).Φθ,$(δ, f).

We have omitted the term ∆I since fixed toral data and a-data guarantee that
∆I is a constant that plays no role here. The term ∆num

II (from Section 9) is a
twisted version of the Weyl denominator of Section 3. The presence of the constant

∆III(γ0, δ0; γ, δ) ensures that if g ∈ G(R) then Ψ
g−1δ0θ(g)
fθ

(g−1δθ(g)) = Ψδ0
fθ

(δ),
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provided we follow the usual conventions in the choice of Haar measures. If we re-
place δ0 by (strongly) θ-regular δ

′
0 in G

θ
δ0

(R)0δ0 we obtain a translate of Ψδ0
fθ
which

does not matter for the Schwartz properties we seek (for translation-invariance
arguments, see, for example, Section 8.5 of [War]). To pass to G(R)θ, we set
Φ$(δθ, fθ) = Φθ,$(δ, f) and Ψδ0

fθ
(δθ) = Ψδ0

f (δ) for all regular δθ in Conn(δ0θ) =

Gθδ0(R)0δ0θ, a connected component of Cent(δ0θ,G(R)θ). It is now routine to define
Conn(δ0θ)im−reg. Our assertion is that Theorem 16.1 of [HCI] together with the
work of Bouaziz already cited implies that fθ → Ψδ0

fθ
is a well-defined continuous

mapping from C(G(R)θ) (or from C(G(R)θ,$)) to C(Conn(δ0θ)im−reg, $). Theo-
rem 16.1 is proved in [V] following Harish-Chandra’s original argument (the final
steps are in Part II, Section 12). An alternative argument not dependent on the
construction of discrete series characters has been given by Wallach (see Chapter
7 of [Wall]). Since an analogue for the otherwise needed discrete series result has
not yet appeared, we follow step by step the arguments of [Wall]. In particular, the
crucial Lemma 7.4.3 extends to our setting by preparation from Sections 1 - 3 of
[B1]. This is enough to finish the argument.
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