Rutgers

Education and Employment Research Center

CTE Graduate Trends by Program: Visualized Instantly!

Marilyn Barger, Ph.D., P.E. Senior Educational Advisor, FLATE & FloridaMakes Co-PI: The Hidden Innovation Infrastructure

Rutgers, The State University of New Jersey

RUTGERS

Education and Employment Research Center

The Hidden Innovation Infrastructure: Understanding the Economic Development Role of Technician Education in the Changing Future of Work (also known as the HII project)

Rutgers, The State University of New Jersey

Agenda

- Welcome /Introductions
- HII Project overview

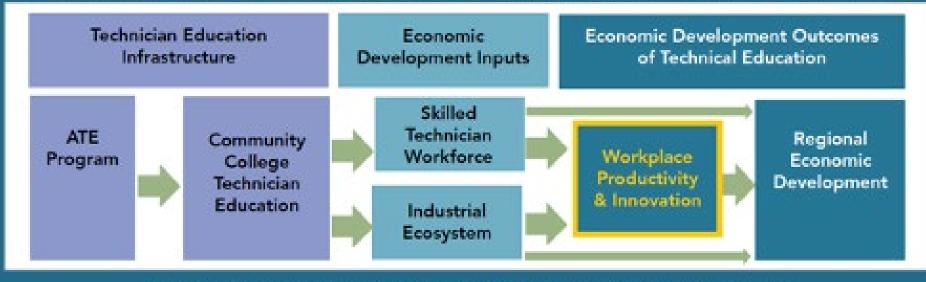
RUTGERS

- Early project findings and impacts
- Discussion Economic Impact of ATE programs
- Data Tool overview
- Data Tool hands on, with sharing discussion
- Overview of HII ATE Data Analysis (time permitting)
- Closing comments

Project Team

- PI: Michelle Van Noy (Rutgers EERC)
- Co-PI: Rene Edwards (Rutgers EERC)
- Co-PI: Marilyn Barger (FLATE-FloridaMakes)
- Co-PI: Bill Mabe
- Co-PI: Andrew Weaver (University of Illinois, Urbana-

Champaign)


Researchers: Rhada Biz and Daniel Douglas

Senior Program Coordinator: Tracy Cangiano

Conceptual Model

Conceptual Model of Technician Education and Economic Development

The project's researchers use this conceptual model to frame their analysis of ATE program impacts

on the innovation scosystem and regional economic development

Grantee Review

RUTGERS

interviews of ATECase studyinterviews of CC

_ _ _ _ **[**

of ATE

Case study interviews of CC manf, and partners
Administrative data analysis

The Role of Technician Education in Economic Development

TECHNICIAN EDUCATION INFRASTRUCTURE

- ATE Program support
- Skills development via technician education programs
- Business support & development, and regional engagement

ECONOMIC DEVELOPMENT OUTCOMES FROM TECHNICIAN EDUCATION

- Skilled Technician Workforce
- Innovation Ecosystem
- Workplace productivity and innovation increases
- Regional economic development

HII Key Activities

- Use multipronged approach to define the economic impact of ATE programs
- Analyze past and current ATE grants for economic development activities via interviews
- Review relevant national quantitative student and industry data
- Develop detailed community college case study "deep dives" of four regions

See the HII Project on page 119 of the 2022-2023 ATE Impact Book https://atecentral.net/impacts/book

TGERS

DISCUSSION

How does your program or programs interact with local or regional economic development?

What aspects of your work do you think supports economic development?

QUANTITATIVE ANALYSES Hidden Innovation Infrastructure

William F. Mabe, Jr., PhD

July 22, 2021

TECHNICIAN TRENDS: Technician Supply

DRIVING QUESTION

What are the trends in community college technician production since 1994?

TECHNICIAN PRODUCTION

DATA SOURCE

IPEDS and HUD CBSA to zip code crosswalk

TIME PERIOD

1994 - 2019

Interactive Data Visualization, allowing users to view trends in technician production at the national, state, and metro area levels

TECHNICIAN GRADUATES PER YEAR

- To allow users to view the evolution of technician production since 1995
- View national trends as well as trends by state and program
- Assist colleges and systems in identifying potential areas of skill needs

PURPOSE:

Easy to use web application displaying number of graduates per year

POPULATION

STUDENTS:

- Graduates Only
- Earners of degrees and certificates at various levels up to bachelor's level

PROGRAMS:

- Technician programs only (please see next slide)
- Four-digit Classification of Instructional Program (CIP) codes

TECHNICIAN PROGRAMS

Technician Program Criteria

INCLUSION:

A technician program that is NOT a healthcare program AND either: CONTAINS the word "technician" OR is in any of the following:

- CIP family 15 (Engineering/ Engineering-Related Technologies/Technicians),
- CID Comelly 11 (Colored

EXCEPT FOR:

Programs in the follow CIP families:

- Biological And Biomedical Sciences
- Parks, Recreation, Leisure, And Fitness Studies
- Homeland Security, Law

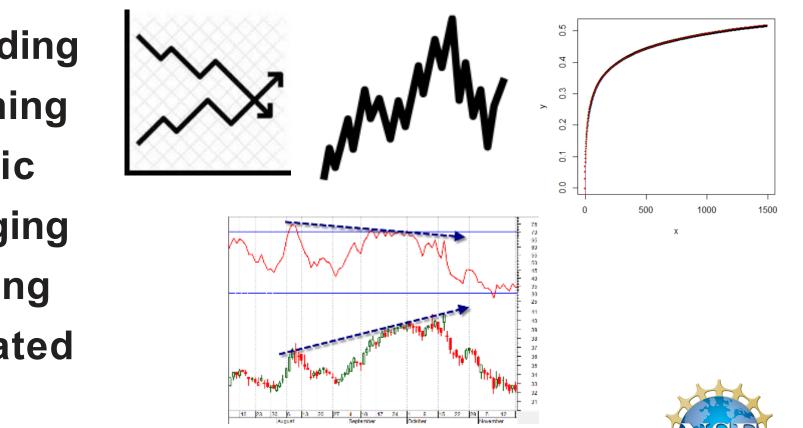
Enforcement, Firefighting and also six-digit CIPs for the following:

- · ApploRaterty/Uprotestativer.
- Shoeicesot and Leather
- Repair Science
- Deatsterwooking ares
- Determinary

FUNCTIONALITY

VIEWS:

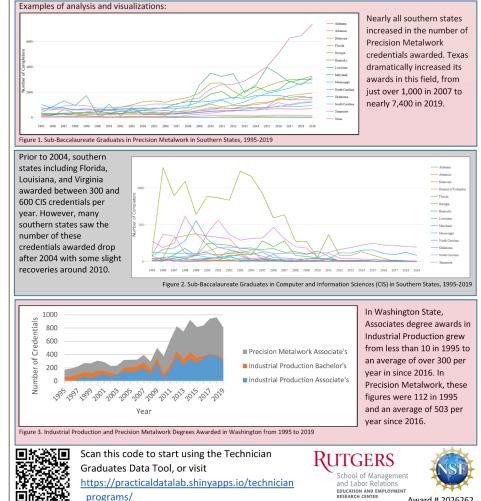
- National by year and program
 - Within a state by year and program
 - Within a program by year and state
 - Spreadsheet download


https://practicaldatalab.shinyapps.io/technician_programs

DATA PATTERNS

Expanding Declining Static Diverging Spiking Saturated

QUICK EXAMPLES


SAMPLE **ANAYSES**

Case Study Briefs for these 3 examples can be found here: https://sites.rutgers.edu/eerchii/publications/

The Technician Graduates Data Tool

A Product of The Hidden Innovation Infrastructure: Understanding the Economic Development Role of Technician Education in the Changing Future of Work Project

- Allows users to access public-use data on technician graduates spanning a 25-year period from 1995 to 2019. ٠ New data will be added as it becomes available.
- Users can visualize data for multiple technician programs at the national and state levels and compare trends for • a single program of study across states.

Award # 2026262

QUESTIONS? Let's Try it!

https://practicaldatalab.shinyapps.io/technician_programs

OVERVIEW OF HII ANALYSIS

DRIVING QUESTION		Does NSF funding of Advanced
		Technological Education (ATE)
		programs increase the number of technician graduates?
APPROACH	Leverage IPEDS data on the counts of ATE graduates by institution + Classification of Instructional Program (CIP) to count number of ATE program graduates	
	to gradu	e graduate counts per program (CIP) of ATE schools late counts in the same programs at schools that ver received ATE funding
DESIGN	Propensity score matching with difference-in-differences of the number of graduates per year	

RUTGERS

PROMISE AND LIMITATIONS OF DATA DRIVEN WORK ON ATE

PROMISE

Ability to identify broader trends in the technician workforce and labor market

Opportunity to offer at least preliminary answers to questions of interest about the ATE program

LIMITATIONS

The data sources are **imperfect** in many ways

The sample size is **small**

Selecting ATE grants that are likely to have an effect on employment presents challenges and will necessarily be imperfect

Confounding variables / selection challenges

LIMITATIONS OF ATE DATA

There are some limitations with the information that the ATE program collects from its grant applicants that make this analysis difficult to conduct.

- No systematic way to identify the technician educational programs and technician occupational fields in which students are being trained
- 2. No institution identifier
- 3. Inability to identify partner colleges
- 4. Inability to link related grant awards

QUESTIONS

Would you (or someone at your institution) use this data viz tool?

If so – how, for what?

Anything else that might be helpful?

Any comments on CIP number assignments?

Project Team Contacts

PI: Michelle Van Noy, <u>mvannoy@rutgers.edu</u> Co-PI: Renee Edwards, <u>r.edwards@rutgers.edu</u> Co-PI: Marilyn Barger, <u>marilyn.barger@flate.org</u> Co-PI: Bill Mabe, <u>billmabe@gmail.com</u> Co-PI: Andrew Weaver, <u>aweaver5@illinois.edu</u>

Visit our website:

http://smlr.rutgers.edu/eerc

https://sites.rutgers.edu/eerc-hii/

