
A mixed AI-OR heuristic for the minimum shift design problem

Luca Di Gaspero∗ and Johannes G̈artner † and Guy Kortsarz ‡ and Nysret Musliu§ and Andrea Schaerf¶ and Wolfgang

Abstract

We study the minimum shift design prob-
lem (MSD) that arose in a commercial shift
scheduling software project: Given a collec-
tion of shifts and workforce requirements for
a certain time interval, we look for a mini-
mum cardinality subset of the shifts together
with an optimal assignment of workers to this
subset of shifts such that the deviation from
the requirements is minimum. This problem is
closely related to the minimum edge-cost flow
problem (MECF ), a network flow variant that
has many applications beyond shift schedul-
ing. We show thatMSD reduces to a spe-
cial case ofMECF . We give a logarithmic
hardness of approximation lower bound. In the
second part of the paper, we present practical
heuristics forMSD . First, we describe a local
search procedure based on interleaving differ-
ent neighborhood definitions. Second, we de-
scribe a new greedy heuristic that uses a min-
cost max-flow (MCMF ) subroutine, inspired
by the relation between theMSD andMECF

problems. The third heuristic consists of a
serial combination of the other two. An ex-
perimental analysis on structured random in-
stances shows that our new heuristics clearly
outperform an existing commercial implemen-
tation and highlights the respective merits of
the heuristics for different performance param-
eters.
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1 Introduction

The minimum shift design problem (MSD ) concerns se-
lecting which work shifts to use, and how many people to
assign to each shift, in order to meet prespecified staffing
requirements.

TheMSD problem arose in a project at Ximes Inc, a
consulting and software development company special-
izing in shift scheduling. The goal of this project was,
among others, producing a software end-product called
OPA (short for ‘OPerating hours Assistant’).HIDE?
[ OPA was introduced mid 2001 to the market and has
since been successfully sold to end-users besides of be-
ing heavily used in the day to day consulting work
of Ximes Inc at customer sites (mainly European, but
Ximes recently also won a contract with the US min-
istry of transportation). OPA has been optimized for
“presentation”-style use where solutions to many vari-
ants of problem instances are expected to be more or
less immediately available for graphical exploration by
the audience. Speed is of crucial importance to allow
for immediate discussion in working groups and refine-
ment of requirements. Without quick answers, under-
standing of requirements and consensus building would
be much more difficult. ] OPA and the underlying
heuristics have been described in[Gärtneret al., 2001;
Musliu et al., ].

The staffing requirements are given forh days, which
usually span a small multiple of a week, and are valid
for a certain amount of time ranging from a week up
to a year, typically consisting of several months (in the
present paper, we disregard the problem of connecting
several such periods, though this is handled in OPA).
Each dayj is split into n equal-size smaller intervals,
calledtimeslots, which can last from a few minutes up to
several hours. The staffing requirement for theith times-
lot (i = 0, . . . , n− 1) on dayj ∈ {0, . . . , h− 1} starting
at ti, namely[ti, ti+1), is fixed. HIDE? [ As usual,tn+i

is equal toti of the following day.] For everyi andj
we are given an integer valuebi,j representing the num-
ber of persons needed at work from timeti until time
ti+1 on dayj, with cyclic repetions afterh days. Ta-
ble 1 shows an example of workforce requirements with
h = 7, in which, for conciseness, timeslots with same



Start End Mon Tue Wen Thu Fri Sat Sun
06:00 08:00 2 2 2 6 2 0 0
08:00 09:00 5 5 5 9 5 3 3
09:00 10:00 7 7 7 13 7 5 5
10:00 11:00 9 9 9 15 9 7 7
11:00 14:00 7 7 7 13 7 5 5
14:00 16:00 10 9 7 9 10 5 5
16:00 17:00 7 6 4 6 7 2 2
17:00 22:00 5 4 2 2 5 0 0
22:00 06:00 5 5 5 5 5 5 5

Table 1: Sample workforce requirements.

Shift type Possible start times Possible length
M (morning) 06:00 – 08:00 7h – 9h
D (day) 09:00 – 11:00 7h – 9h
A (afternoon) 13:00 – 15:00 7h – 9h
N (night) 22:00 – 24:00 7h – 9h

Table 2: Typical set of shift types.

requirements are grouped together (adapted from a real
call-center).

When designing shifts, not all starting times are fea-
sible, neither is any length allowed. The input thus also
includes a collection ofshift types. A shift type has mini-
mum and maximum start times, and mimimum and max-
imum length. Table 2 shows a typical example of the set
of shift types. Each shiftIs,l with starting timets with
s ∈ {0, . . . , n−1} and lengthl, belongs to a type, i.e., its
length and starting times must necessarily be inside the
intervals defined by one type. The shift types determine
them available shifts. Assuming a timeslot of length 15
minutes, there arem = 324 different shifts belonging to
the types of Table 2. The type of shiftI is denoted by
T (I).

The goal is to decide how many personsxj(Is,l) are
going to work in each shiftIs,l each dayj so thatbi,j

people will be present at time[ti, ti+1) for all i andj.
Many of the shifts are never used, hence for an unused
shift I, xj(I) = 0 for all j.

Let Iti
be the collection of shifts that includeti. A

feasible solution givesh numbersxj(I) to each shiftI =

Is,l so thatpi,j
def
=

∑

I∈Iti

xj(I) = bi,j , namely, the
number of workers present at timeti for all values ofi ∈
{0, . . . , n− 1} for all daysj ∈ {0, . . . , h− 1}meets the
staffing requirements. This constraint is usually relaxed
such that small deviations are allowed.

HIDE? [ Note that a better fit of the requirements
might sometimes be achieved by looking for solutions
covering more than one cycle ofh days. Since this could
easily be handled by extending the proposed heuristics
or, even simpler, by repeating the requirements for a cor-
responding number of times, additionally is only very
seldomly considered in practice, and theoretically adds
nothing to the problem, we do not consider it in this pa-
per. ]

We now discuss the quality of solutions, i.e. theob-
jective functionto minimize. When we allow small de-
viations to the requirements, there are three main objec-
tive components. The first and second are, naturally, the

Start Length Mon Tue Wen Thu Fri Sat Sun
06:00 8h 2 2 2 6 2
08:00 8h 3 3 3 3 3 3 3
09:00 8h 2 2 2 4 2 2 2
14:00 8h 5 4 2 2 5
22:00 8h 5 5 5 5 5 5 5

Table 3: A solution for the problem of Table 1.

staffing excess and shortage, namely, the sumsex
def
=

∑

i,j(max(0, pi,j−bi,j)) andsh
def
=

∑

i,j(max(0, bi,j−

pi,j)). The third component is the number of shifts se-
lected. Once a shift is selected (at least one person works
in this shift during any day) it is not really important how
many people work at this shift nor on how many days the
shift is reused. However, it is important to have only
few shifts as they lead to schedulesHIDE? [ that have
a number of advantages , e.g., if one tries to keep teams
of persons together. Such teambuilding may be neces-
sary due to managerial or qualification reasons. While
teams are of importance in many but not all schedules,
there are further advantages of fewer shifts. With fewer
shifts, schedules are easier to design (with or without
software support, see[Musliuet al., 2002]). Fewer shifts
also make such schedules] easier to read, check, manage
and administer; each of these activities being a burden in
itself. HIDE? [ In practice, a number of further optimiza-
tion criteria clutters the problem, e.g., the average num-
ber of working days per week = duties per week. This
number is an extremly good indicator with respect to how
difficult it will be to develop a schedule and what quality
that schedule will have. The average number of duties
thereby becomes the key criterion for working conditions
and is sometimes even part of collective agreements, e.g.,
setting 4.81 as the maximum. Fortunately, this and most
further criteria can easily be handled by straigthforward
extensions of the heuristics described in this paper and
add nothing to the complexity ofMSD . We therefore
concentrate on the three main criteria mentioned at the
beginning of this paragraph.]

In summary, we look for an assignmentxj(I) to all
the possible shifts that minimizes an objective function
composed by a weighted sum ofex , sh and the number
of used shifts, in which the weights depend on the in-
stance. HIDE? [ Note that, in practice, we use a more
general weighted linear combination to take care of the
three main as well as the other criteria, where weights
can interactively be adjusted by the user.]

A typical solution for the problem from Table 1 that
uses 5 shifts is given in Table 3. Note that there is a
shortage of 2 workers every day from 10h–11h that can-
not be compensated without having more shortage or ex-
cess. Also note that using less than 5 shifts leads to more
shortage or excess.

In Section 2 we show a relation ofMSD to the mini-
mum edge-cost flow (MECF ) problem (listed as [ND32]
in [Garey and Johnson, 1979]). In this problem the edges
in the flow network have a capacityc(e) and a fixed usage
costp(e). The goal is to find a maximum flow function



f (obeying the capacity and flow conservation laws) so
that the cost

∑

e:f(e)>0 p(e) of edges carrying non-zero
flow is minimized.

This problem is one of the more fundamental flow
variants with many applications. A sample of these ap-
plications include optimization of synchronous networks
HIDE? [ (minimizing the number of connections with
registers) ] (see[Leiserson and Saxe, 1991]), source-
location (see[Arata et al., 2000]), transportation (see
HIDE? [ [Equi et al., 1997; ?; Goethe-Lundgren and
Larsson, 1994; Magnanti and Wong, 1984]), schedul-
ing (for] [Equi et al., 1997; Goethe-Lundgren and Lars-
son, 1994; Magnanti and Wong, 1984]), scheduling (for
example, trucks or manpower, see[Equi et al., 1997;
Lau, 1996]), routing (see[Hochbaum and Segev, 1989]),
and designing networks (for example, communication
networks with fixed cost per link used, e.g., leased
communication lines, seeHIDE? [ [?; ?; ?; Hochbaum
and Segev, 1989;?; Kim and Pardalos, 1999;?; Mag-
nanti and Wong, 1984]).] [Hochbaum and Segev, 1989;
Kim and Pardalos, 1999]).

HIDE? [ We prove that a restricted version ofMSD is
equivalent to a restricted variant ofMECF defined as
follows.] TheUDIF (infinite capacities flow on a DAG)
problem restricts theMECF problem as follows:

1. Every edge not touching the sink or the source has
infinite capacity. We call an edgeproper if it does
not touch the source of the sink. Non-proper edges,
namely edges touching the source or the sink, have
no restriction. Namely, they have arbitrary capaci-
ties.

2. The costs of proper edges is 1. The cost of edges
touching the source or sink is zero.

3. The underlying flow network is a DAG (directed
acyclic graph).

4. The goal is, as in the general problem, to find a
maximum flowf(e) over the edges (obeying the ca-
pacity and flow conservation laws) and among all
maximum flows to choose the one minimizing the
cost of edges carrying non-zero flow. Hence, in this
case, minimize thenumberof proper edges carry-
ing nonzero flow (namely, minimizing|{e : f(e) >
0, e is proper}|).

HIDE? [ We prove that a special case ofMSD is
equivalent toUDIF . Thus, a hardness of approxima-
tion result forUDIF carries over toMSD . Indeed, we
prove a logarithmic lower bound on the approximation
of UDIF and thus ofMSD .]

HIDE? [

1.1 Results and organization of this paper

We show that a special case ofMSD is equivalent to
UDIF . We give a logarithmic hardness of approximation
lower bound for theUDIF problem (and thus forMSD)
under the assumptionP 6= NP .

[experimental analysis of algorithms] ][] ws

Related work
Flow-related work: It is well known that finding a
maximum flow minimizing

∑

e p(e)f(e) is a polynomial
problem, namely, the well known min-cost max-flow
problem (see, e.g.,[Papadimitriou and Steiglitz, 1982]).

Krumke et al [Krumke et al., 1998] studied the ap-
proximability ofMECF . They show that, unlessNP ⊆
DTIME(nO(log log n)), for any ǫ > 0 there can be no
approximation algorithm on bipartite graphs with a per-
formance guarantee of(1 − ǫ) lnF , and also provide
anF−ratio approximation algorithm for the problem on
general graphs, whereF is the flow value.[Carr et al.,
2000] point out aβ(G) + 1 + ǫ approximation algorithm
for the same problem whereβ(G) is the cardinality of the
maximum size bond ofG, a bond being a minimal cardi-
nality set of edges whose removal disconnects a pair of
vertices with positive demand.

A large body of work is devoted to hard variants of
the maximum flow problem. For example, the non-
approximability of flows with priorities was studied in
[Bellare, 1993]. In [Garg et al., 1997] a 2−ratio ap-
proximation is given for the NP-hard problem of mul-
ticommodity flow in trees. The same authors[Garget
al., 1996] study the related problem of multicuts in gen-
eral graphs. The special case of multicommodity flow,
namely finding many disjoint paths (or path maximiz-
ing some profit function) is studied in[Guruswamiet al.,
1999] and[Srinivasan, 1997]. For more such results see
the compendium[Crescenzi and Kann, 1994].

Heuristic work on fixed charge network flow prob-
lems was done inHIDE? [ [?; ?; ?; ?; ?; ?; Goethe-
Lundgren and Larsson, 1994; Holmberg and Hellstrand,
1998; Hochbaum and Segev, 1989;?; Khang and Fuji-
wara, 1991; Kim and Pardalos, 1999;?; ?] .] [Holm-
berg and Hellstrand, 1998; Khang and Fujiwara, 1991;
Kim and Pardalos, 1999].

In [Evenet al., 2002] the hardness result for the Min-
imum Edge Cost Flow Problem (MECF ) is improved.
This paper proves thatMECF does not admit a2log1−ǫ n-
ratio approximation, for every constantǫ > 0, un-
less NP ⊆ DTIME (npolylogn) . The same paper
also presents a bi-criteria approximation algorithm for
UDIF , essentially giving annǫ approximation for the
problem for everyǫ.
Work on shift scheduling: There is a large body on
shift scheduling problems (see[Laporte, 1999] for a re-
cent survey). The larger body of the work is devoted
to the case where the shifts are already chosen and
what is needed is to allocate the resources to shifts, for
which network flow techniques have, among others, been
applied (see[Bartholdi et al., 1980; Balakrishnan and
Wong, 1990; Lau, 1996]).

Heuristics for the selection of shifts that bear some
similarity to MSD have been studied by[Thompson,
1996]. [Bartholdiet al., 1980] note that a problem simi-
lar toMSD where the requirement to minimize the num-
ber of selected shift is dropped and there are linear costs
for understaffing and overstaffing can be transformed



into a min-cost max-flow problem and thus efficiently
solved.

The relation between consecutive ones inrows ma-
trices and flow, and, moreover, the relation of these
matrices shortest and longest path problems on DAGs
were first given in[Veinott and Wagner, 1962]. In
[Hochbaum, 2000] optimization problems on c1 matri-
ces (on columns) are studied. For problems on circular
ones matrices and further references see[Bartholdiet al.,
1980] and[Hochbaum, 2000].

The only paper that, to our knowledge, deals exactly
with MSD is [Musliu et al., ]. In Section 4, we will
compare our heuristics in detail to the commercial OPA
implementation described in[Musliu et al., ] by applying
them to the benchmark instances used in that paper.

2 Theoretical results
To simplify the theoretical analysis ofMSD , we restrict
MSD instances in this section to instances whereh = 0,
that is, workforce requirements are given for a single day
only, and no shifts in the collection of possible shifts span
over two days, that is, each shift starts and ends on the
same day. We also assume that for the evaluation func-
tion, weights for excess and shortage are equal and are
so much larger than weights for the number of shifts that
the former always take precedence over the latter. This
effectively gives priority to the minimization of devia-
tion, thereby only minimizing the number of shifts for
all those feasible solutions already having minimum de-
viation.

It is useful to describe the shifts via 0 and 1 matrices
with theconsecutive onesproperty. We say that a matrix
A obeys the consecutive ones (c1) property if all entries
in the matrix are either0 or1 and all the1 in each column
appear consecutively.

A columnstarts(respectivelyends) at i if the topmost
1 entry in the column (respectively, the lowest1 entry in
the column) is in rowi. A column with a single 1 entry in
theith place both starts and ends ati. The row in which
a columni starts (respectively, ends) is denoted byb(i)
(respectivelye(i)).

We give a formal description ofMSD via c1 matri-
ces as follows. The columns of the matrix correspond to
shifts. We are given a system of inequalities:A · x ≥
b with x ∈ Zn, x ≥ 0, whereA is ann×m, c1 matrix,
andb is a vector of lengthn of positive integers. Onlyx
vectors meeting the above constraints are feasible. The
optimization criteria is represented as follows. LetAi be
theith row inA. Let |x|1 denote theL1 norm of x.
Input: A, b whereA has the c1 property (in the columns)
and thebi are all positive.
Output: A vectorx > 0 with the following properties.

1. The vectorx minimizes|Ax− b|1
2. Among all vectors minimizing|Ax−b|1, x has min-

imum number of non-zero entries.

Claim 1 The restricted noncyclic variant ofMSD where
a zero deviation solution exists (namely,Ax∗ = b admits

a solution),h = 1 and all shifts start and finish on the
same day, is equivalent to theUDIF problem.

The proof can be found in Appendix A, followed by an
explanation of how shortage and excess can be handled
by a small linear adaptation of the network flow problem.
This effectively allows to find the minimum (weigthed)
deviation from the workforce requirements (without con-
sidering minimization of the number of shifts) by solving
a min-cost max-flow (MCMF ) problem, an idea that will
be reused in Section 3.2.

We next prove that unlessP = NP , there is some
constantc < 1 such that approximatingUDIF within
c lnn−ratio is NP-hard.

Since the case of zero excessMSD is equivalent to
UDIF (see Claim 1), similar hardness results follow for
this problem as well.

Theorem 2.1 There is a constantc < 1 so that approxi-
mating theUDIF problem withinc lnn is NP-hard.

We use a reduction from Set-Cover. The detailed proof
is given in Appendix B.

3 Practical heuristics
We present two practical heuristics. First, we describe
a local search procedure based on interleaving different
neighborhood definitions. Second, we describe a new
greedy heuristic that uses a min-cost max-flow (MCMF )
subroutine, inspired by the relation between theMSD

andMECF problems.HIDE? [ The third heuristic con-
sists of a serial combination of the other two.]

3.1 Local Search Heuristic Solver
Our first solver is fully based on the local search
paradigm[Aarts and Lenstra, 1997]. In order to describe
it, we first define the search space and the strategy for
generating an initial solution. Afterwards, we describe a
set of neighborhood relations for the exploration of the
search space and the search strategies.

Search space and initial solution
We consider as a stateS for MSD a set of shifts
{I1, I2, . . .}with their staff assigned. The shifts of a state
are split into two kinds:

• Activeshifts: non-zero staff is assigned to it, that
is, at least one employee is assigned to the shift at
some day.
• Inactiveshifts: they have no employees for all days

in the week. This kind of shifts does not contribute
to the solution and to the objective function, and its
role is explained in Section 3.1.

The initial solution is built in a random way. For each
shift type, we create a fixed number of random distinct
active and inactive shifts. For the active ones, we assign
for each day a random number of employees. In details,
the parameters needed to build a solution are the number
of active and inactive shifts for each shift type and the
range of the number of employees per day to be assigned
to each random active shift.



For example, in the experimental session described be-
low, we build a solution with 4 active and 2 inactive shifts
per type, with 1 to 3 employees per day per shift for the
active shifts. If the shift type has less than 6 shifts, we
reduce the shifts accordingly, starting from inactive ones.

Neighborhood exploration
Local search methods rely on the definition of neighbor-
hood relation, which is the core feature for the explo-
ration of the search space. The neighborhood of a solu-
tion S is the set of solutions which are obtained applying
a set of local perturbations, calledmoves, onS.

In this work we consider three different neighborhood
relations. The way these relations are employed during
the search is thoroughly explained in Section 3.1. In the
following, we formally describe each neighborhood re-
lation by means of the attributes needed to identify a
move, the preconditions for its applicability, the effects
of the move and, possibly, some rules for handling spe-
cial cases.

ChangeStaff (CS): The staff of a shift is increased or
decreased by one employee

Attributes: 〈I, j, a〉, whereI ∈ S, j ∈ {1..7} is a
day,a ∈ {↑, ↓}.

Preconditions: If a =↓ thenxj(I) > 0.
Effects: if a =↑ then xj(I) = xj(I) + 1, else

xj(I) = xj(I)− 1
Special cases:if I is an inactive shift (anda =↑,

by precondition),I becomes active and a new
random distinct inactive shift (if a distinct shift
exists) is inserted for the typeT (I).

ExchangeStaff (ES): One employee in a given day is
moved from one shift to another one of the same
type.

Attributes: 〈I1, I2, j〉, whereI1, I2 ∈ S, andj ∈
{1..7}.

Preconditions: xj(I1) > 0, T (I1) = T (I2).
Effects: xj(I1) = xj(I1) − 1 and xj(I2) =

xj(I2) + 1.
Special cases:If I2 is an inactive shift,I2 becomes

active and a new random distinct inactive shift
(if a distinct shift exists) is inserted for the type
T (I1) (equal toT (I2)). If the move makesI1

inactive, thenI1 is removed from the current
state.

ResizeShift (RS): The length of the shift is increased
or decreased by 1 time-slot, either on the left-hand
side or on the right-hand side.

Attributes: 〈I, l, p〉, whereI ∈ S, l ∈ {↑, ↓}, and
p ∈ {←,→}.

Preconditions: The shift obtained fromI by the
application of the move must belong toT (I).

Effects: If l =↑ the shiftI is enlarged by 1 times-
lot, if l =↓ it is shrunk by 1 timeslot. Ifp =←
the action identified byp is performed on the
left-hand side ofI, if p =→ it takes place to
the right-hand side.

In a previous work, Musliuet al. [Musliu et al., ]
define many neighborhood relations for this problem in-
cludingCS, ES, and a variant ofRS. In this paper, in-
stead, we restrict ourselves to the above three relations
for the following two reasons.

First, CS andRS represent the most atomic changes,
so that all other move types can be built as chains of
moves of these types. For example anES move can be
obtained by a pair ofCS moves that decreases one em-
ployee from a shift and assigns him/her in the same day
to the other shift.

Secondly, even thoughES is not a basic move type,
we employ it because it turned out to be very effective for
the search, especially in joint action with the concept of
inactive shift. In fact, the move that passes one employee
from a shift to a similar one makes a very small change to
the current state, allowing thus for fine grain adjustments
that could not be found by the other move types.

Inactive shifts allow us to insert new shifts and to move
staff between shifts in a uniform way. This approach
limits the creation of new shifts only to the current inac-
tive ones, rather than considering all possible shifts be-
longing to the shift types (which are many more). The
possibility of creating any legal shift is rescued if we
insert as many (distinct) inactive shifts as compatible
with the shift type. Experimental results, though, show
that there is a trade-off between computational cost and
search quality which seems to have its best compromise
in having 2 inactive shifts per type.

Search strategies
We experimented with three different meta-heuristics,
namely hill climbing, tabu search and simulated anneal-
ing. The one that gave best results is tabu search, and in
this work we report only the results with tabu search.

A full description of tabu search is out of the scope of
this paper and we refer to[Glover and Laguna, 1997] for
a general introduction. We later in this section describe
its specialization to our problem.

Differently from Musliuet al. [Musliuet al., ], that use
tabu search as well, we use the three neighborhood re-
lations selectively in various phases of the search, rather
than exploring the overall neighborhood at each iteration.

In details, we combine the neighborhood relationsCS,
ES, andRS, according to the following scheme made of
compositions and interleaving. That is, our algorithm in-
terleaves three different tabu searchrunnersusing theES
alone, theRS alone, and the union of the two neighbor-
hoodsCS andRS, respectively.

HIDE? [ the following neighborhoods:

• theES alone
• theRS alone
• the union of the two neighborhoodsCS andRS

]
The runners are invoked sequentially and each one

starts from the best state obtained from the previous one.
The overall process stops when a full round of all of them
does not find an improvement. Each single runner stops



when it does not improve the current best solution for a
given number of iterations (calledidle iterations).

The reason for using limited neighborhood relations is
not related to the saving of computational time, which
could be obtained in other ways, for example by clever
ordering of promising moves. The main reason, instead,
is the introduction of a certain degree ofdiversificationin
the search. In fact, certain move types would be selected
very rarely in a full-neighborhood exploration strategy,
even though they could help to escape from local min-
ima. For example, a runner that uses all three neigh-
borhood relations together would almost never perform
a CS move that worsens the objective function, simply
because it can always find anES move that worsen it by
a smaller amount, although theCS move could lead to a
more promising region of the search space. This intuition
is supported by the experimental analysis that shows the
our results are much better than those in[Musliu et al., ].

HIDE? [ This composite solver is further improved
by performing a few changes on the final state of each
runner, before handing it over as the initial state of the
following runner. In details, we make the following two
adjustments:

• Identical shifts are merged into one. When the pro-
cedure appliesRS moves, it is possible that two
shifts become identical. This situation is not de-
tected by the runner at each move, because it is a
costly operation, and is therefore left to this inter-
runner step.
• Inactive shifts are recreated. That is, the current

inactive shifts are deleted, and new distinct ones are
created at random in the same quantity. This step,
again, is meant to improve the diversification of the
search algorithm.

]
For all three runners, the size of the tabu list is kept

dynamic by assigning to each move a number of tabu
iterations randomly selected within a given range. The
ranges vary for the three runners, and they are selected
experimentally.HIDE? [ The ranges are roughly sug-
gested by the cardinality of the different neighborhoods,
in the sense that a larger neighborhood deserves a longer
tabu tenure.] If a move is in the tabu list, itsinverseis ex-
cluded from the neighborhood exploration. The inverse
of a move is the move that applied in the state obtained
from the application of the first one inS leads back toS.
According to the standard aspiration criterium defined in
[Glover and Laguna, 1997], the tabu status of a move is
dropped if it leads to a state better than the current best
found.

HIDE? [ As already mentioned, each runner stops
when it has performed a fixed number of iterations with-
out any improvement (calledidle iterations). ] Tabu
lengths and idle iterations are selected once for all, and
the same values are used for all instances. The selection
turned out to be robust enough for all tested instances,
and it is shown in Table 4.

HIDE? [ The first set on experiments show the time

Parameter CS RS ES+RS
Tabu range 10-20 5-10 20-40 (ES)

5-10 (RS)
Idle iterations 300 300 2000

Table 4: Tabu search parameter settings

needed for reaching the best solution that is known. The
time necessary to run one trial of the algorithm varies
between 1 and 30 seconds, depending on the instance
and on the single run. In this first test, the solver is ran
several times with new initial states, until it gets to the
best solution that is known.]

3.2 GreedyMCMF

Based on the equivalence of the (non-cyclic)MSD prob-
lem toUDIF , a special case of theMECF problem for
which no efficient algorithm is known (see Section 2),
and the relationship of the latter with theMCMF prob-
lem for which efficient algorithms are known, we pro-
pose a new greedy heuristicGreedyMCMF() that uses a
polynomial min-cost max-flow subroutineMCMF(), as
shown in pseudocode in Table 5. It is based on the ob-
servation that theMCMF subroutine can easily compute
the optimal staffing with minimum (weighted) deviation
when slack edges have associated costs corresponding,
respectively, to the weights of shortage and excess. Note
that it is not able to simultaneously minimize the number
of shifts that are used.

However, as theMCMF() subroutine cannot consider
cyclicity, we must first perform a preprocessing step that
determines a good split-off time where the cycle ofh
days should be broken. This is done by callingMCMF()
with different starting times chosen between 5:00 and
8:00 on the first day of the cycle. All possibilities in this
interval are tried while eliminating all shifts that span
the chosen starting point when translating fromMSD

to the network flow instances. The number of possi-
bilities depends on the length of the timeslots of the in-
stance, e.g., when the timeslots last 30 minutes,MCMF()
will be called with starting times 5:00, 5:30, 6:00, 6:30,
7:00, 7:30, and 8:00 in the morning of the first day. The
starting point with the smallest cost as determined by
MCMF() is used as the split-off time for the rest of the
calls to MCMF() in GreedyMCMF. This method has
shown to provide adequate results in practice, which can
be explained by the observation that there is usually a
complete exchange of workforce between 5 and 8 a.m.
on Monday mornings.

The greedy heuristic then removes all shifts that did
not contribute to theMSD instance corresponding to
the current flow computed withMCMF(). It randomly
chooses one shift (without repetitions) and tests whether
removal of this shift still allows theMCMF() to find a
solution with the same deviation. If this is the case, that
shift is removed and not considered anymore, otherwise
it is left in the set of shifts used to build the network flow
instances, but will not be considered for removal again.

Finally, when no shifts can be removed anymore with-



GreedyMCMF(SetOfAllAllowedShifts,
WorkforceRequirements):

/* Preprocessing step: where to break cyclicity? */
SplitOffTime =

FindBestSplitOffTime(SetOfAllAllowedShifts,
WorkforceRequirements)

/* Greedy part with MCMF subroutine */
FlowInstance =

MSD2Flow(SetOfAllAllowedShifts,
WorkforceRequirements,
SplitOffTime)

BestFlowSoFar = MCMF(FlowInstance)
MSD Solution =

ShiftsAndWorkforceIn(BestFlowSoFar)
MinCostSoFar = MSD Eval(MSD Solution)
Shifts = ShiftsInUseIn(MSD Solution)
TriedShifts = {}

REPEAT
ShiftToBeTried =
UniformlyChooseAShiftFrom(Shifts - TriedShifts)

ShiftsMinus1 = Shifts - {ShiftToBeTried}
FlowInstance =
MSD2Flow(ShiftsMinus1,

WorkforceRequirements,
SplitOffTime)

CurrentFlow = MCMF(FlowInstance)
MSD Solution =
ShiftsAndWorkforceIn(CurrentFlow)

CurrentCost = MSD Eval(MSD Solution)
IF CurrentCost < MinCostSoFar THEN
MinCostSoFar = CurrentCost
BestFlowSoFar = CurrentFlow
Shifts = ShiftsInUseIn(MSD Solution)

ENDIF
TriedShifts = TriedShifts ∪ {ShiftToBeTried}

UNTIL Shifts - TriedShifts = {}

/* Postprocessing step to recover cyclicity */
MSD Solution =

ShiftsAndWorkforceIn(BestFlowSoFar)

REPEAT
MSD Solution1 = MSD Solution
MSD Solution =
BestOfExchangeStaffNeighborhood(MSD Solution1)

UNTIL
MSD Eval(MSD Solution) ≥
MSD Eval(MSD Solution1)

RETURN MSD Solution
Table 5: Greedy heuristic with min-cost max-flow sub-
routine.

out increasing the deviation, a final postprocessing step
is made to restore cyclicity. It consists of a simple re-
pair step made by a fast hill-climbing runner that uses the
ES neighborhood relation (see Section 3.1). The runner
selects at each iteration the best neighbor, with a ran-
dom tie-break in case of same cost. It stops as soon as it
reaches a local minimum, i.e., when it does not find any
improving move.

As ourMCMF() subroutine, we use CS2 version 3.91,
an efficient implementation of a scaling push-relabel al-
gorithm[Goldberg, 1997], slightly edited to be callable
as a library.

4 Computational results
In this section, we first describe the instances used for
our experimental analysis, then we illustrate the perfor-
mance parameters that we want to highlight, and finally
we show the results.

4.1 Instances description
The instances consist of three different sets, each con-
taining thirty randomly generated instances. Instances
were generated in a structured way to ensure that they
look as similar as possible to real instances while allow-
ing the construction of arbitrarily difficult instances.

Set 1 contains the 30 instances that where investigated
and described in[Musliu et al., ]. They vary in their
complexity and we mainly include them to be able to
compare the new heuristics with the results reported in
[Musliu et al., ] for the commercial OPA implementa-
tion. These instances were basically generated by con-
structing feasible solutions with some random elements
as they usually appear in real instances, and then tak-
ing the resulting staffing numbers as workforce require-
ments. This implies that a very good solution with zero
deviation from workforce requirements is known. Note
that our heuristics could find even better solutions for
several of the instances, so these constructed solutions
may be suboptimal. Nevertheless, we refer in the follow-
ing to the best solutions we could come up with for these
instances as ‘best known’ solutions for them.

Set 2 contains similar instances to Set 1, but here the
‘best known’ solutions of instances 1 to 10 were con-
structed to feature 12 shifts, those of instances 11 to 20
to feature 16 shifts, and those of instances 21 to 30 to
feature 20 shifts. This allows us to study the relation be-
tween the number of shifts in the ‘best known’ solutions
and the running times of the heuristics.

While knowing these ‘best known’ solutions eases the
evaluation of the proposed heuristics, it also might form
a biased preselection towards instances where zero devi-
ation solutions exist for sure, thereby letting all or some
of the heuristics behave in ways that are unusual for in-
stances for which no such solution can be constructed.
The remaining set is therefore composed of instances
where with high likelihood solutions without deviations
do not exist:

Set 3 contains instances without ‘best known’ solu-
tions. They were constructed with the same random in-
stance generator as the two previous sets but allowing the
constructed solutions to contain invalid shifts that deviate
from normal starting times and lengths by up to 4 times-
lots. The number of shifts is similar to those in Set 2,

1 c© 1995 – 2001 IG Systems, Inc.,
http://www.avglab.com/andrew/soft.html



i.e., instances 1 to 10 feature 12 shifts (invalid and valid
ones) etc. This construction ensures that it is unlikely
that zero deviation solutions exist for these instances. It
might also be of interest to see whether a significant dif-
ference in performance for some of the heuristics can be
recognized compared to Set 2, which would provide evi-
dence that the way Sets 1 and 2 were constructed consti-
tuted a bias for the heuristics.

Set 4 contains four groups of 3 instances each, where
the first instances in each of the four groups do corre-
spond to different basic real or randomly generated in-
stances. The second instances in each group are almost
equivalent to the first, the difference being that the length
of their timeslots are halfed. The third instance in each
group also is almost equivalent to the first, the differ-
ence being that the workforce requirements are doubled.
Group 1 corresponds a rather complicated real instance
provided for comparison purposes to the randomly gen-
erated ones. The first instances in Groups 2, 3, and 4 are
equal to instances 5, 20, and 22, respectively, of Set 3,
and thus roughly correspond to increasingly difficult in-
stances. The choice of these instances from Set 3 was
done randomly from each of the three kind of parame-
ter sets (12, 16, and 20 valid and invalid shifts) of Set
3. HIDE? [ We believe that other instances of Set 3 will
yield similar results to the ones we report below and that
these results are thus more or less representative for the
different paramter sets.]

All sets of instances are available in self-describing
text files from http://www.dbai.tuwien.ac.
at/proj/Rota/benchmarks.html . A detailed
description of the random instance generator used to con-
struct them can be found in[Musliu et al., ].

4.2 Experimental setting

We made two types of experiments, aiming at two differ-
ent performance parameters:

1. median time necessary to reach the best known so-
lution,

2. median value obtained within a time bound.

Our experiments have been run on different machines.
The running times have been normalized according to
the DIMACS netflow benchmark2 to the times of a PC
equipped with a 1.5GHz AMD Athlon processor with
384 MB ram running Linux Red Hat 7.1 and gcc ver-
sion 2.96 (calibration timings on that machine for above
benchmark: t1.wm: user 0.030 sec t2.wm: user 0.360
sec). Because of the normalization from another machine
running MS Windows NT and using MS Visual Basic,
the reported running times should be taken as indicatory
only.

We experiment with the following three heuristic
solvers:

H1 The local search procedure repeated several times
starting from different (random) initial solutions.

2ftp://dimacs.rutgers.edu/pub/netflow/benchmarks/c

The procedure is stopped when the time granted in
elapsed or the best solution is reached.

H2 GreedyMCMF() is called repeatedly until the stop-
ping criterion is reached. Since the selection of
the next shift to be removed in the main loop of
GreedyMCMF() is done randomly, we call the ba-
sic heuristic repeatedly and use bootstrapping as de-
scribed in[Johnson, 2002] to compute expected val-
ues for the computational results (counting the pre-
processing step only once for each instance since it
computes the same split-off time for all runs).

H3 The two solvers are combined using the solutions
delivered by H2 as initial states for H1 trials. In or-
der to maintain diversification, we exploit the non-
determinism of H2 to generate many different so-
lutions. The initial state of each trial of H1 is ran-
domly selected among those states. IS THIS TRUE
AT THE MOMENT?

4.3 Computational results
Median time necessary to reach the best known
solution
Table 6 shows the median times (in seconds) needed by
our heuristics to reach the best known solution out of 10
trials for data Set 1. The first two columns show the in-
stance number and its best known cost, the third column
shows the cost of the best solution found in[Musliu et
al., ]. The dash symbol denotes that the best known so-
lution could not be found.

First notice that our solvers produce results much bet-
ter than the solver of OPA. In fact, H1 always finds
the best solution, H2 in 21 cases, and H3 in 29 cases,
whereas OPA finds the best solution only in 17 instances.
The table also shows that H1, although it finds the best
solution, is always much slower than H2, and generally
slower than H3 as well.

To show how heuristics scale up, we show the perfor-
mances for our solvers within 10 seconds time for Sets
1 and 2, grouped based on their size. The X axis of Fig-
ure 1 reports the number of shifts in the best known so-
lution, and the results on instances of equal number are
averaged. The Y axis shows the difference of the average
cost to the best cost divided by the best cost. This figure
shows that for short runs H1 is clearly inferior to H2 and
H3, which are comparable.

The above experiments show that H1 is superior in
reaching the best known solution, but it requires more
time that H2.

Results on Set 3 and further tests on real life exam-
ples confirm these trendsHIDE? [ and are omitted for
brevity].

Median value obtained within a time bound
[INSERT GRAPHICS FROM XLS FILE (GNU-
PLOT?). Examples=Instances, Solv=H.] [] ws

Tables??-?? show the results of the median values
from 10 independent runs obtained by each heuristic
[(including the commercial OPA software)]on the in- []ws



Inst. Opt [Musliu et al., ] H1 H2 H3
1 480 480 3.67 0.07 1.05
2 300 390 16.78 — 31.47
3 600 600 7.39 0.12 1.63
4 450 1170 124.00 — 86.89
5 480 480 4.59 0.15 1.06
6 420 420 2.54 0.06 0.62
7 270 570 9.15 1.30 6.24
8 150 180 42.50 — 13.26
9 150 225 12.15 4.09 8.08
10 330 450 98.00 4.70 131.85
11 30 30 1.64 0.21 0.85
12 90 90 6.18 0.26 3.85
13 105 105 6.56 0.30 3.79
14 195 390 470.94 — 98.75
15 180 180 0.86 0.04 0.40
16 225 375 174.00 — 340.23
17 540 1110 544.00 — 218.25
18 720 720 6.79 1.86 6.44
19 180 195 31.22 — 39.11
20 540 540 12.14 0.11 1.70
21 120 120 6.23 0.29 2.17
22 75 75 3.56 0.38 3.46
23 150 540 16.41 3.45 9.05
24 480 480 2.74 0.11 1.22
25 480 690 770.89 — —
26 600 600 7.63 1.52 6.47
27 480 480 4.17 0.07 2.33
28 270 270 5.36 1.41 3.60
29 360 390 35.50 — 9.19
30 75 75 2.67 0.27 1.95

Table 6: Times to best for Set 1
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Figure 1: Results for 10 seconds bound

stances of Set 4 within a time bound of 100 seconds.

[For the moment, I do not discuss instances 1-3 as
there seem to be problems with the data for H2, and
the results in the graph for H3 for instances 1-3 are
for sure incorrect due to a calculation error on our
side that will be corrected soon.][] ws

[I also do not discuss H3 for the other graphs,
see my comments in the accompanying mail as of
2003/1/6.][] ws

One thing to notice is that H2 is clearly superior to
H1. [I hope that we will also be able to report that The

solver H3 has the good qualities of both, and therefore
it can be considered the best general-purpose solver.] [] ws

[There are a number of more detailed comments
(halfed intervals vs double workforce vs original in-
stances; scaling for 12, 16, and 20 valid and invalid
shifts, plus examples 1-3; random instances vs real
instances) that can be made, but I want to wait for
the data of the new H3 and the corrected values for
instances 1-3]. [] ws

[Add some comment on time to best known versus
time limited with optimum not known w.r.t. John-
son’s remarks on this topic.] [] ws

[Add Luca’s experimental results from 2003/1/6:
I’ve just finished performing the analysis of the

data and I’ve found out some surprising behavior.
First of all I fully answer to your initial question: ”I
could find an adapted better solution with the Inter-
valDivided instance only in the third random exam-
ple in the data set by employing Solver 3”. This result
could be found in 7 cases out of 30 runs.

However, by employing a Mann-Withney test, we
cannot reject the hypothesis that the two samples of
results are equal, i.e., the algorithm run on the In-
tervalDivided insance is in the same slot of results as
the algorithm run on the original one. For this rea-
son I’ve started some additional experiments to look
more in detail if the optimal solution can be reached
also on the original instance.

This behavior is typical of Solver 3. In fact, also in
the RealLife example, Solver 3 on the IntervalDivided
solution can found the best-known solution in 4 out
of 30 cases, while on the plain instance this solution
cannot be found at all.

My feeling is that Solver 3 on the IntervalDivided
instances has more freedom to move (i.e., it can make
smaller steps toward a good solution), but I do not
have any evidence of this feeling at present.

Finally, both the solvers run on the DoubleDuties
instances perform poorly, and in most cases the best
solutions found cannot be adapted to the original in-
stance. ] [] Luca

[Maybe we could try to prove that no better solu-
tion than in the original instance can exist in the in-
stances with intervals halfed and the ones with dou-
bled workforce requirements.] [] *

[Add OPA timings (with and without GUI) with
values in the figures. Add some sentences (above?)
on these results compared to the Heuristics.] [] Nysret

[Note any other anomalies that need explanation,
try to explain them.] [] *

5 Conclusions

TheMSD is an important scheduling problem that needs
to be solved in many industrial contexts. We provided
complexity results for it and designed a set of heuris-
tics based both on these theoretical results and on local
search procedures.



The heuristics have being compared both in terms of
ability to reach good solutions and in quality reached
in fast runs. For this problem, speed is of crucial im-
portance to allow for immediate discussion in working
groups and refinement of requirements. Without quick
answers, understanding of requirements and consensus
building would be much more difficult.

In practice, a number of further optimization criteria
clutters the problem, e.g., the average number of work-
ing days per week. This number is an extremly good in-
dicator with respect to how difficult it will be to develop
a schedule and what quality that schedule will have. The
average number of duties thereby becomes the key crite-
rion for working conditions and is sometimes even part
of collective agreements. Fortunately, this and most fur-
ther criteria can easily be handled by straigthforward ex-
tensions of the heuristics described in this paper and add
nothing to the complexity ofMSD . We therefore con-
centrate on the three main criteria described in this paper.
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A The relation betweenMSD and UDIF

We state in the following the proof of Claim 1, followed by an explanation of how shortage and excess can be handled
by a small linear adaptation of the network flow problem.

Proof. We are following here a path similar to the one in\cite{H-2000} in order to get this equivalence. See also,
e.g.,\cite{AMO-93}.

Note that in the special case whenAx = b has a feasible solution, by the definition ofMSD the optimumx∗ satisfies
Ax∗ = b. LetT denote the matrix:

T =





















1 −1 0 0 0 0
0 1 −1 0 0 · · · 0
0 0 1 −1 0 0

...
. . .

...
0 0 0 1 −1 0
0 0 0 · · · 0 1 −1
0 0 0 0 0 1





















The matrixT is a quadratic matrix which is regular. In fact,T −1 is the upper diagonal matrix with 1 along the diagonal
and above, with all other elements equal 0.

As T is regular the two sets of feasible vectors forAx = b and forT · Ax = T b are equal. The matrixF = T A
is a matrix with only (at most) two nonzero entries in each column: one being a 1 and the other being a−1. In fact,
all columnsi in A create a column inF = T A with exactly one−1 entry and exactly one1 entry except for columns
i with 1 in the first row (namely, so thatb(i) = 1). These columns leave one1 entry in rowe(i), namely, in the row
columni ends. Call these columns thespecialcolumns.

The matrixF can be interpreted as a flow matrix (see for example\cite{BKP-98}). Columnj of the matrix is
represented by an edgeej. We assign a vertexvi to each rowi. Add an extra vertexv0.

An edgeej with Fij = 1 andFkj = −1 goes out ofvk into vi. Note that the existence of this column inF implies
the existence inA of a column of ones starting at rowk + 1 (and notk) and ending at rowj.

In addition, for all special rowsi ending ate(i), we add an edge fromv0 into ve(i). Add an edge of capacityb1 from
s to v0. Let b̄ = T b. The b̄ vector determines the way all vertices (exceptv0) are joined to the sinkt and sources.
If b̄i > 0 then there is an edge fromvi to t with capacitȳbi. Otherwise, if̄bi < 0, there is an edge froms to vi with
capacity−b̄i. Vertices with̄bi = 0 are not joined to the source or sink. All edges not touching the source or sink have
infinite capacity.

Note that the addition of the edge froms into v0 with capacityb1 makes the sum of capacities of edges leaving the
source equal to the sum of capacities of edges entering the sink. A saturating flow is a flow saturating all the edges
entering the sink. It is easy to see that if there exists a saturating flow, then the feasible vectors for the flow problem
are exactly the feasible vectors forFx = b̄. Hence, these are the same vectors feasible for the originalset of equations
Ax = b.

As we assumed thatAx = b has a solution, there exists a saturating flow, namely, thereis a solution saturating all
the vertex-sink edges (and, in our case, all the edges leaving the source are saturated as well). Hence, the problem is
transformed into the following question: GivenG, find a maximum flow inG and among all maximum flows find the
one that minimizes the number of proper edges carrying non-zero flow.

The resulting flow problem is in fact aUDIF problem. The networkG is a DAG (directed acyclic graph). This
clearly holds true as all edges go fromvi to vj with j > i. In addition, all capacities on edges not touching the sink or
source are infinite (see the above construction).

On the other hand, given aUDIF instance with a saturating flow (namely, where one can find a flow function
saturating all the edges entering the sink) it is possible tofind an inverse function that maps it to anMSD instance.
TheMSD instance is described as follows.

Assume that thevi are ordered in increasing topological order. Given the DAGG, the corresponding matrixF is
defined by taking the edge-vertices incidence matrix ofG. As it turns out, we can find a c1 matrixA so thatT A = F .
Indeed, for any columnj with non-zeros in rowsq, p with q < p, necessarily,Fqj = −1 andFpj = 1 (if there is a
columnj that does not contain anFqj = −1, setq = 0). Hence, add toA the c1 column with 1 from rowsq + 1 to p.

We note that the restriction of the existance of a flow saturating the flow along edges enteringt is not essential. It is
easy to guarantee this as follows. Add a new vertexu to the network and an edge(s, u) of capacity

∑

(v,t) c(v, t)− f∗

(wheref∗ is the maximum flow value). By definition, the edge(s, u) has cost0. Add a directed edge fromu to every
sourcev. This makes a saturating flow possible, at the increase of only 1 in the cost.

It follows that in the restricted case whenAx = b has feasible solutions theMSD problem is equivalent toUDIF .



To understand how this can be used to also find solutions toMSD instances where no zero deviation solution exists,
we need to explain how to find a vectorx so thatAx ≥ b and|Ax − b|1 is minimum. WhenAx = b does not have
a solution, we introducen dummy variablesyi. Theith inequality is replaced byAix − yi = bi, namely,yi is set to
the difference betweenAix andbi (andyi ≥ 0). Let−I be the negative identity matrix, namely, the matrix with all
zeros except−1 in the diagonal entries. Let(A;−I) be theA matrix with−I to its right and let(x; y) be the column
of x followed by they variables. The above system of inequalities is representedby (A;−I)(x; y) = b. Multiplying
the inequality byT (whereT is the0, 1 and−1 matrix defined above) gives(F ;−T )(x; y) = T b = b̄. The matrix
(F ;−T ) is a flow matrix. Its corresponding graph is the graph ofF with the addition of an infinite capacity edge from
vi into vi−1 (i = 1, . . . , n). Call these edges they edges. The edges originally inG are called thex edges. The sum
∑

i yi clearly represents the excessL1 norm |Ax − b|1. Hence, we give a costC(e) = 1 to each edge corresponding
to ayi. We look for a maximum flow minimizing

∑

i C(e)f(e), namely, a min-cost max-flow solution. As we may
assume w.l.o.g. that all time intervals[ti, ti+1) (i = 1, . . . , n) have equal length, this gives the minimum possible
excess. Shortage can be handled in a similar way.

B A hardness result forUDIF and MSD

We next prove Theorem 2.1:

Proof. We prove a hardness reduction for UDIF under the assumptionP 6= NP . We use a reduction from Set-Cover.
We need a somewhat different proof than\cite{KNSWR-98} to account for the extra restriction imposed byUDIF .
For our purposes it is convenient to formulate the set cover problem as follows. The set cover instance is an undirected
bipartite graphB(V1, V2, A) with edges only crossing betweenV1 andV2. We may assume that|V1| = |V2| = n.
We look for a minimum sized setS ⊆ V1 so thatN(S) = V2 (namely, every vertex inV2 has a neighbor inS). If
N(S) = V2 we say thatS coversV2. We may assume that the given instance has a solution. The following is proven
in \cite{RS-97}.

Theorem B.1 There is a constantc < 1 so that approximating Set-Cover withinc lnn is NP-hard.

We prove a similar result forUDIF and thus forMSD .
Let B(V1, V2, E) be the instance of the set cover problem at hand so that|V1| = |V2| = n. Add a sources and a

sink t. Connects to all the vertices ofV2 with capacity one edges. Direct all the edges ofB from V2 to V1. Now,
createn2 copiesV i

1 of V1 and for convenience denoteV1 = V 0
1 . For eachi ∈ {0, . . . , n2 − 1}, connect in a directed

edge the copyvi
1 ∈ V i

1 of eachv1 ∈ V1 to the copyvi+1
1 ∈ V i+1

1 of v1 in V i+1
1 . Hence, a perfect matching is formed

between contiguousV i
1 via the copies of thev1 ∈ V1 vertices. The vertices ofV n2

1 are all connected tot via edges
of capacityn. Note that by definition, all other edges (which are edges touching neither the source nor the sink) have
infinite capacity.

It is straightforward to see that the resulting graph is a DAGand that the graph admits a flow saturating the source
edges, and can be made to saturate the sink edges as describedbefore.

We now inspect the properties of a “good” solution. LetS be the set of verticesS ⊆ V1 so that for every vertex
v2 ∈ V2 there exists a vertexs ∈ S such that edge(v2, s) carries positive flow.

Note that for everyv2 ∈ V2 there must be such an edge for otherwise the flow is not optimal. Further note that the
flow units enteringS must be carried throughout the copies ofS in all of theV i

1 setsi ≥ 1 using the matching edges as
this is the only way to deliver the flow intot. Hence, the number of proper edges in the solution is exactlyn2 · |S|+n.
Then term comes from then edges touching the vertices ofV2.

Further, note thatS must be a set cover ofV2 in the original graphB. Indeed, every vertexv2 must have a neighbor
in S. Finally, note that it is indeed possible to get a solution with n2 ·s∗+n edges wheres∗ is the size of the minimum
set cover using an optimum set coverS∗ as described above. Since all the matching edges have infinite capacities, it
is possible to deliver tot then units of flow regardless of how the coverS is chosen. The following properties end the
proof: The number of verticesn′ in the new graph isO(n3). In addition, the additive termn is negligible for large
enoughn in comparison ton2 · |S| whereS is the chosen set cover. Hence, the result follows forc < 1/3 < 1.

C Further ideas
The GreedyMCMF heuristic could be made even more efficient bynoting that usually only very few edges change
from one call to the next call of theMCMF() subroutine. We currently call theMCMF() subroutine each time from
scratch. However, CS2\cite{Goldberg97} supports a variant that recomputes an optimal flow more efficiently after a
change in costs. It might thus prove worthwhile to track changes in the flow instance and recompute only those parts
that are necessary, thus speeding up theMCMF() calls in the heuristics.

An idea for a promising heuristic might also be to integrate theMCMF() subroutine more directly in the local search
procedure instead of just calling them serially one after the other as in the third variant of our heuristics.
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Figure 2: Schematic illustration of the reduction from the Set-Cover problem to the UDIF problem.

Another simple heuristic that very naturally (in the doublesense of the word) suggests itself might be to combine
the MCMF() subroutine (together with the postprocessing step described in Section 3.2 that reestablishes cyclicity)
with a genetic algorithm type of optimization heuristic. Indeed, the genetic code could consist merely of a bitvector of
all possible shifts, possibly ordered by their starting times. The phenotype would then consist of the shifts and number
of staff as computed by theMCMF() subroutine followed by the postprocessing step, applied only to the subset of
shifts that have their bits set to 1. Optimization could thenbe done with the usual crossover and mutation operators
on populations of solution candidates, with selection being based probabilistically on the scores of the phenotype
solution candidates. Initial populations could contain random bitvectors as well as shifts selected by single runs of the
heuristics described in this paper.

We also tried to apply PPRN3, a library for nonlinar network flow problems described in\cite{Castro96} to our
instances instead of callingMCMF but got only unsatisfactory results as this package cannot correctly deal with fixed
charge style nonlinearities. Other software specializingon MECF type problems or aiming at more general integer
constraint problems might yield better results.

3http://www-eio.upc.es/˜jcastro/pprn.html
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