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A mixed AI-OR heuristic for the minimum shift design problem

Abstract

We study the minimum shift design prob-
lem (MSD) that arose in a commercial shift
scheduling software project: Given a collec-
tion of shifts and workforce requirements for
a certain time interval, we look for a mini-
mum cardinality subset of the shifts together
with an optimal assignment of workers to this
subset of shifts such that the deviation from
the requirements is minimum. This problem is
closely related to the minimum edge-cost flow
problem (MECF), a network flow variant that
has many applications beyond shift schedul-
ing. We show thatMSD reduces to a spe-
cial case of MECF. We give a logarithmic
hardness of approximation lower bound. In the
second part of the paper, we present practical
heuristics forMSD. First, we describe a local
search procedure based on interleaving differ-
ent neighborhood definitions. Second, we de-
scribe a new greedy heuristic that uses a min-
cost max-flow (/CMF') subroutine, inspired
by the relation between th&/SD and MECF
problems. The third heuristic consists of a
serial combination of the other two. An ex-
perimental analysis on structured random in-
stances shows that our new heuristics clearly
outperform an existing commercial implemen-
tation and highlights the respective merits of
the heuristics for different performance param-
eters.
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1 Introduction

The minimum shift design problend{SD) concerns se-
lecting which work shifts to use, and how many people to
assign to each shift, in order to meet prespecified staffing
requirements.

The MSD problem arose in a project at Ximes Inc, a
consulting and software development company special-
izing in shift scheduling. The goal of this project was,
among others, producing a software end-product called
OPA (short for ‘OPerating hours AssistantHIDE?

[ OPA was introduced mid 2001 to the market and has
since been successfully sold to end-users besides of be-
ing heavily used in the day to day consulting work
of Ximes Inc at customer sites (mainly European, but
Ximes recently also won a contract with the US min-
istry of transportation). OPA has been optimized for
“presentation”-style use where solutions to many vari-
ants of problem instances are expected to be more or
less immediately available for graphical exploration by
the audience. Speed is of crucial importance to allow
for immediate discussion in working groups and refine-
ment of requirements. Without quick answers, under-
standing of requirements and consensus building would
be much more difficult.] OPA and the underlying
heuristics have been described[®artneret al, 2001;
Musliu et al, ].

The staffing requirements are given fodays, which
usually span a small multiple of a week, and are valid
for a certain amount of time ranging from a week up
to a year, typically consisting of several months (in the
present paper, we disregard the problem of connecting
several such periods, though this is handled in OPA).
Each dayj is split into n equal-size smaller intervals,
calledtimeslots which can last from a few minutes up to
several hours. The staffing requirement for itietimes-
lot (4 =0,...,n—1)ondayj € {0,...,h— 1} starting
att;, namely[t;, t;1+1), is fixed. HIDE? [ As usualt,,
is equal tot; of the following day.] For every: and;j
we are given an integer vale; representing the num-
ber of persons needed at work from tirfieuntil time
t;+1 on dayj, with cyclic repetions afteh days. Ta-
ble 1 shows an example of workforce requirements with
h = 7, in which, for conciseness, timeslots with same



Start End Mon Tue Wen Thu Fri Sat Sun Start Length Mon Tue Wen Thu Fri Sat Sun
06:00 08:00 2 2 2 6 2 0 O 06:00 8h 2 2 2 6 2

08:00 09:00 5 5 5 9 5 3 3 08:00 8h 3 3 3 3 3 3 3

09:00 10:00 7 7 7 183 7 5 5 09:00 8h 2 2 2 4 2 2 2

10:00 11:00 9 9 9 15 9 7 7 14:00 8h 5 4 2 2 5

11:00 14:00 7 7 7 183 7 5 5 22:00 8h 5 5 5 5 5 5 5

14:00 16:00 10 9 7 9 10 5 5

16:00 17:00 7 6 4 6 7 2 2 Table 3: A solution for the problem of Table 1.
17:00 22:00 5 4 2 2 5 0 O _ def
22:00 06:00 5 5 5 5 5 5 5 staffing excess and shortage, namely, the sams=

S, (max(0, pi j —bi ;) andsh € 37, (max(0, by, ; —

_ . . : pi,j)). The third component is the number of shifts se-
Shifttype  Possible start times Possible length lected. Once a shift is selected (at least one person works

Table 1. Sample workforce requirements.

'\D" ((;normng) 88588 - 2288 ;E - 82 in this shift during any day) it is not really important how
A éaftlg)rnoon) 13:00 — 15:00 Th_on many people work at this shift nor on how many days the
N (night) 22:00 — 24:00 7h — oh shift is reused. However, it is important to have only
few shifts as they lead to scheduldtDE? [ that have
Table 2: Typical set of shift types. a number of advantages , e.g., if one tries to keep teams

of persons together. Such teambuilding may be neces-

requirements are grouped together (adapted from a reghry due to managerial or qualification reasons. While
call-center). teams are of importance in many but not all schedules,

When designing shifts, not all starting times are fea-there are further advantages of fewer shifts. With fewer
sible, neither is any length allowed. The input thus alsoshifts, schedules are easier to design (with or without
includes a collection ddhift types A shift type has mini-  software support, sddusliuet al, 2009). Fewer shifts
mum and maximum start times, and mimimum and max-also make such schedulesasier to read, check, manage
imum length. Table 2 shows a typical example of the setand administer; each of these activities being a burden in
of shift types. Each shiff,; with starting timet, with itself. HIDE? [ In practice, a number of further optimiza-
s €{0,...,n—1}andlength, belongsto atype, i.e., its tion criteria clutters the problem, e.g., the average num-
length and starting times must necessarily be inside theer of working days per week = duties per week. This
intervals defined by one type. The shift types determingnumber is an extremly good indicator with respect to how
them available shifts. Assuming a timeslot of length 15 difficult it will be to develop a schedule and what quality
minutes, there are: = 324 different shifts belonging to  that schedule will have. The average number of duties
the types of Table 2. The type of shiftis denoted by  thereby becomes the key criterion for working conditions
T1). and is sometimes even part of collective agreements, e.g.,

The goal is to decide how many persang/, ;) are  setting 4.81 as the maximum. Fortunately, this and most
going to work in each shiff, ; each dayj so thatb; ;  further criteria can easily be handled by straigthforward
people will be present at timg;, ¢;,,) for all i andj.  extensions of the heuristics described in this paper and
Many of the shifts are never used, hence for an unuseddd nothing to the complexity dfZSD. We therefore

shift I, z;(I) = 0 for all j. concentrate on the three main criteria mentioned at the
Let Z;, be the collection of shifts that includg. A beginning of this paragraph.
feasible solution gives numbersz; (I) to each shiff = In summary, we look for an assignmen(I) to all

I, so thatp; def > ier, zi(I) = bij, namely, the the possible shifts that minimizes an objective function

number of workers present at timgfor all values ofi € composed .by a.weighted sum @f sh-and the number_
{0,...,n—1} forall days;j € {0,...,h— 1} meets the of used shifts, in which the weights depend on the in-

staffing requirements. This constraint is usually relaxecStance. HIDE? [Note that, in practice, we use a more
such that small deviations are allowed. general weighted linear combination to take care of the
HIDE? [ Note that a better fit of the requirements three main as well as the other criteria, where weights

might sometimes be achieved by looking for solution£@n interactively be adjusted by the uger.

covering more than one cycle bfdays. Since this could A typical solution for the problem from Table 1 that
easily be handled by extending the proposed heuristic§ises 5 shifts is given in Table 3. Note that there is a
or, even simpler, by repeating the requirements for a cor-shortage of 2 workers every day from 10h—-11h that can-
responding number of times, additionally is only very not be compensated without having more shortage or ex-
seldomly considered in practice, and theoretically addscess. Also note that using less than 5 shifts leads to more
nothing to the problem, we do not consider it in this pa- Shortage or excess.

per.] In Section 2 we show a relation dfSD to the mini-

We now discuss the quality of solutions, i.e. thiee  mum edge-cost flowl ECF) problem (listed as [ND32]
jective functionto minimize. When we allow small de- in [Garey and Johnson, 19[J9In this problem the edges
viations to the requirements, there are three main objedn the flow network have a capacitye) and a fixed usage
tive components. The first and second are, naturally, theostp(e). The goal is to find a maximum flow function



[] ws

f (obeying the capacity and flow conservation laws) soRelated work

that Fhe 995§3e:f<e>>op<e) of edges carrying non-zero o related work: It is well known that finding a
flow is minimized. maximum flow minimizing}",_ p(e) f (e) is a polynomial
This prOblem is one of the more fundamental flow pr0b|em’ name|y' the well known min-cost max-flow
variants with many applications. A sample of these approblem (see, e.glPapadimitriou and Steiglitz, 1082
plications include optimization of synchronous networks  krumke et al [Krumke et al, 199 studied the ap-
HIDE? [(minimizing the number of connections with proximability of MECF. They show that, unles§P C
registers)] (see[Leiserson and Saxe, 1991 source-  pprAfE(nCesloen) for anye > 0 there can be no
location (seelArata et al, 2000), transportation (see  45roximation algorithm on bipartite graphs with a per-
HIDE? [[Equi et al, 1997; ?; Goethe-Lundgren and  formance guarantee dfi — ¢)In F, and also provide
Larsson, 1994; Magnanti and Wong, 1984schedul- 4 p_ratio approximation algorithm for the problem on
ing (for] [Equiet al, 1997; Goethe-Lundgren and Lars- general graphs, whetk is the flow value.[Carr et al,
son, 1994; Magnanti and Wong, 19&45_chedullng (for 2000 point out a3(G) + 1 + ¢ approximation algorithm
example, trucks or manpower, sEgqui et al, 1997, o1 the same problem wherG) is the cardinality of the
Lau, 1996), routing (se¢Hochbaum and Segev, 1939 mayimum size bond oft, a bond being a minimal cardi-

and designing networks (for example, communicationy,gjity set of edges whose removal disconnects a pair of
networks with fixed cost per link used, e.g., leased, g tices with positive demand.

communication lines, sedIDE? [[?; ?; ?; Hochbaum A large body of work is devoted to hard variants of

and Segev, 198%; Kim and Pardalos, 19997, Mag- 6 maximum flow problem. For exam le, the non-
nanti and Wong, 1984] [Hochbaum and Segev, 1989; 5, oximability of flgws with priorities waps studied in
Kim and Pardalos, 1999 _ _ _ [Bellare, 1993 In [Garget al, 1997 a 2—ratio ap-
HIDE? [ We prove that a restricted version 85D is  proximation is given for the NP-hard problem of mul-
equivalent to a restricted variant df/ ECF defined as ticommodity flow in trees. The same authd@arg et
follows] The UDIF (infinite capacities flow on a DAG) = 5. 1994 study the related problem of multicuts in gen-
problem restricts thé/ECF' problem as follows: eral graphs. The special case of multicommaodity flow,

1. Every edge not touching the sink or the source hagamely finding many disjoint paths (or path maximiz-
infinite capacity. We call an edgmoperif it does ~ ing some proflt_functlon) is studied [Guruswamet al.,
not touch the source of the sink. Non-proper edges,lggq and[Srllnlvasan, 199]7 For more such results see
namely edges touching the source or the sink, havéhe compendiuriCrescenzi and Kann, 19p4
no restriction. Namely, they have arbitrary capaci- Heuristic work on fixed charge network flow prob-
ties. lems was done iHIDE? [[?; ?; ?; ?; ?; ?; Goethe-

2. The costs of proper edges is 1. The cost of edge undgren and Larsson, 1994; Holmperg and HeIIstrand,
touching the source or sink is zero. 998; Hochbaum and Segev, 1989 Khang and Fuji-

, ) , wara, 1991; Kim and Pardalos, 1992, ?].] [Holm-

3. The underlying flow network is a DAG (directed perg and Hellstrand, 1998; Khang and Fujiwara, 1991;
acyclic graph). Kim and Pardalos, 1999

4. The goal is, as in the general problem, to find a In [Evenet al, 2009 the hardness result for the Min-
maximum flowf (e) over the edges (obeying the ca- imum Edge Cost Flow Problem\{ECF) is improved.

€

pacity and flow conservation laws) and among allThjs paper proves that ECF does not admit o' -
maximum flows to choose the one minimizing the (4tig approximation, for every constaat > 0, un-
cost of edges carrying non-zero flow. Hence, in thisjggs NP C DTIME(nP°¥'gn)  The same paper
case, minimize theumberof proper edges carry- giso presents a bi-criteria approximation algorithm for
ing nonzero flow (namely, minimizinge : f(e) > yDIF, essentially giving am¢ approximation for the

0, e is propet|). problem for every.

HIDE? [We prove that a special case afSD is  Work on shift scheduling: There is a large body on
equivalent toUDIF. Thus, a hardness of approxima- Shift scheduling problems (séeaporte, 1999for a re-
tion result for UDIF carries over toMSD. Indeed, we Cent survey). The larger body of the work is devoted

prove a logarithmic lower bound on the approximation 0 the case where the shifts are already chosen and
of UDIF and thus of\/SD ] what is needed is to allocate the resources to shifts, for

HIDE? [ which network flow techniques have, among others, been
applied (sedBartholdi et al, 1980; Balakrishnan and
Wong, 1990; Lau, 1998.

Heuristics for the selection of shifts that bear some
We show that a special case 8fSD is equivalent to  similarity to MSD have been studied bjThompson,
UDIF. We give alogarithmic hardness of approximation 1994. [Bartholdiet al., 1980 note that a problem simi-
lower bound for theUDIF problem (and thus for/SD)  lar to MSD where the requirement to minimize the num-
under the assumptioR # NP. ber of selected shift is dropped and there are linear costs

[experimental analysis of algorithms] ] for understaffing and overstaffing can be transformed

1.1 Results and organization of this paper



into a min-cost max-flow problem and thus efficiently a solution),h = 1 and all shifts start and finish on the
solved. same day, is equivalent to tHéDIF problem.

_The relation between consecutive onesr_dws ma- The proof can be found in Appendix A, followed by an
trices and flow, and, moreover, the relation of these

X explanation of how shortage and excess can be handled
matrices shortest and longest path problems on DAGgy 3 small linear adaptation of the network flow problem.
were first given in[Veinott and Wagner, 1982 In  Tpig effectively allows to find the minimum (weigthed)
[Hochbaum, 200Doptimization problems on ¢1 matri- eyjiation from the workforce requirements (without con-
ces (on columns) are studied. For problems on circula

Sideri inimization of th ber of shifts) by solvi
ones matrices and further references[&=atholdiet al., al mei:rcgorsntlrr:?gf?olv(\)/ﬁM% M;)ngrnc:blzrn? zin Iidse)a %;?v\v/: |r|1 ¢
1980 and[Hochbaum, 2000 be reused in Section 3.2. ,

The only paper that, to our knowledge, deals exactly \ye next prove that unles8 = NP, there is some

with MSD is [Musliu et al, ]. In Section 4, we will  ¢onstant. < 1 such that approximating/DIF within
compare our heuristics in detail to the commercial OPA.},, ., _ratio is NP-hard.

implementation described [Musliu et al., ] by applying

- ; Since the case of zero exced&5D is equivalent to
them to the benchmark instances used in that paper.

UDIF (see Claim 1), similar hardness results follow for
this problem as well.

2 Theoretical results Theorem 2.1 There is a constant < 1 so that approxi-
To simplify the theoretical analysis dfSD, we restrict mating theUDIF problem withincln n is NP-hard.
MSD instances in thls.secnon to instances whle;e U, We use areduction from Set-Cover. The detailed proof
that is, workforce requirements are given for a single day i .anin A dix B
o ' . X given in Appendix B.

only, and no shifts in the collection of possible shifts span
over two days, that is, each shift starts and ends on th : g
same day. \>/Ve also assume that for the evaluation func3 Practical heuristics
tion, weights for excess and shortage are equal and ald/e present two practical heuristics. First, we describe
so much larger than weights for the number of shifts tha@ local search procedure based on interleaving different
the former always take precedence over the latter. Thigeighborhood definitions. Second, we describe a new
effectively gives priority to the minimization of devia- greedy heuristic that uses a min-cost max-flad({MF)
tion, thereby only minimizing the number of shifts for subroutine, inspired by the relation between tH&D
all those feasible solutions already having minimum de-and MECF problemsHIDE? [ The third heuristic con-
viation. sists of a serial combination of the other two.

It is useful to describe the shifts via 0 and 1 matrices _
with the consecutive onesroperty. We say that a matrix -+ Local Search Heuristic Solver
A obeys the consecutive ones (c1) property if all entriefour first solver is fully based on the local search
in the matrix are eithed or 1 and all thel in each column  paradign{Aarts and Lenstra, 1997In order to describe
appear consecutively. it, we first define the search space and the strategy for

A columnstarts(respectivelyends ati if the topmost ~ generating an initial solution. Afterwards, we describe a
1 entry in the column (respectively, the lowdsentry in ~ set of neighborhood relations for the exploration of the
the column) is in row. A column with a single 1 entryin ~ search space and the search strategies.
theith place both starts and endsiaifhe row in which

a column; starts (respectively, ends) is denotedhfy) We consider as a staté for MSD a set of shifts

(respectivelye(4)). . . ) :
We give a formal description o#SD via c1 matri- ;{é’\c{éiii 'ih}[(;’vgwoti?r:[jiaﬁ assigned. The shifts of a state

ces as follows. The columns of the matrix correspond to

Search space and initial solution

shifts. We are given a system of inequalitie$: = > e Active shifts: non-zero staff is assigned to it, that

bwith z € Z*, z > 0, whereA is ann x m, c1 matrix, is, at least one employee is assigned to the shift at

andb is a vector of length of positive integers. Only: some day.

vectors meeting the above constraints are feasible. The e Inactiveshifts: they have no employees for all days

optimization criteria is represented as follows. Ugtbe in the week. This kind of shifts does not contribute

theith row in A. Let|z|; denote thel.; norm of x. to the solution and to the objective function, and its

Input: A, bwhereA has the c1 property (in the columns) role is explained in Section 3.1.

and theb; are all positive. The initial solution is built in a random way. For each

Output: A vectorz > 0 with the following properties.  shift type, we create a fixed number of random distinct
1. The vector: minimizes|Az — bl active and inactive shifts. For the active ones, we assign

for each day a random number of employees. In details,
the parameters needed to build a solution are the number
of active and inactive shifts for each shift type and the
Claim 1 The restricted noncyclic variant dSD where  range of the number of employees per day to be assigned
a zero deviation solution exists (hamefy;* = b admits  to each random active shift.

2. Among all vectors minimizingdx —b|;,  has min-
imum number of non-zero entries.



For example, in the experimental session described be- In a previous work, Muslitet al. [Musliu et al, ]

low, we build a solution with 4 active and 2 inactive shifts define many neighborhood relations for this problem in-

per type, with 1 to 3 employees per day per shift for thecluding CS, ES, and a variant oRS. In this paper, in-

active shifts. If the shift type has less than 6 shifts, westead, we restrict ourselves to the above three relations

reduce the shifts accordingly, starting from inactive onesfor the following two reasons.

Neighborhood exploration First, CS andRS represent the most atpmic chal_wges,
_— . so that all other move types can be built as chains of

Local sear_ch method; rely on the definition of neighbor-, \ o< of these types. For exampleE® move can be

hood relation, which is the core feature for the explo- jp.-inaq by a pair oS moves that decreases one em-

ration of the search space. The neighborhood of a solu; : ; ; :
tion S is the set of solutions which are obtained applyinéﬂ%ieog?errsi;?m and assigns him/her in the same day

a set of local perturbations, calletbveson S. Secondly, even thougBS is not a basic move type,

In .th's work we consider thre_e different nelghborhoc_)dwe employ it because it turned out to be very effective for
relations. The way these relations are employed duringe search especially in joint action with the concept of
the sgarch is thoroughly expllamed In Se_ctlon 3.1.In thEinactive shift. In fact, the move that passes one employee
fol!owmg, we formally descr_|be each nelghbor_hood_ '®" from a shift to a similar one makes avery small change to
lation by means of the attributes needed to identify & o\ rrent state, allowing thus for fine grain adjustments
move, the precondltlor)s for its applicability, the.effects that could not be found by the other move types.
of the move and, possibly, some rules for handling spe-"" 5 iy shifts allow us to insert new shifts and to move

cial cases. staff between shifts in a uniform way. This approach
ChangeStaff (CS): The staff of a shift is increased or limits the creation of new shifts only to the current inac-

decreased by one employee tive ones, rather than considering all possible shifts be-
Attributes: (I, j,a), wherel € S, j € {1.7}is a longing to the shift types (which are many more). The
day,a € {’T ’l}- possibility of creating any legal shift is rescued if we

insert as many (distinct) inactive shifts as compatible
with the shift type. Experimental results, though, show
that there is a trade-off between computational cost and
search quality which seems to have its best compromise
in having 2 inactive shifts per type.

Preconditions: If a =] thenz;(I) > 0.

Effects: if a =1 thenx;(I) = =z;(I) + 1, else
zi(I) =x;(1) -1

Special casesif [ is an inactive shift (and =T,
by precondition)/ becomes active and a new
random distinct inactive shift (if a distinct shift Search strategies
exists) is inserted for the tygg(I). We experimented with three different meta-heuristics,

ExchangeStaff (ES): One employee in a given day is namely hill climbing, tabu search and simulated anneal-
moved from one shift to another one of the sameing. The one that gave best results is tabu search, and in

type. this work we report only the results with tabu search.
Attributes: (Iy, I, j), wherel,, I € S, andj € A full description of tabu search is out of the scope of

{1..7}. i) b I this paper and we refer {Glover and Laguna, 1997or
Preconditions: z;(I1) > 0, T(I;) = T(I2). ﬁSgSenee(;’izlﬁlzn;:%dnuglgz;‘ V:/gblfaetgr in this section describe
Effects: x;(I) = z;(I;) — 1 and z;(l,) = p p :

Differently from Musliuet al. [Musliuet al, ], that use
tabu search as well, we use the three neighborhood re-
lations selectively in various phases of the search, rather
than exploring the overall neighborhood at each iteration.

In details, we combine the neighborhood relati®$s
: . . ES, andRS, according to the following scheme made of

inactive, then/, is removed from the current compositions and interleaving. That s, our algorithm in-
_ s_tate. . terleaves three different tabu searahnersusing theES
ResizeShift (RS): The length of the shift is increased alone, theRS alone, and the union of the two neighbor-
or decreased b_y 1 time-sl(_)t, either on the left-hand,,qscs andRS, respectively.
side or on the right-hand side. HIDE? [ the following neighborhoods:
Attributes: (I,1,p), wherel € S,1 € {1,]}, and

Zj (IQ) + 1.

Special casesif I5 is an inactive shift/; becomes
active and a new random distinct inactive shift
(if a distinct shift exists) is inserted for the type
T(I1) (equal toT'(I2)). If the move maked;

o theES alone

p€{— —}
Preconditions: The shift obtained fronY by the y theRS_ alone .
application of the move must belong T ). e the union of the two neighborhoo@$ andRS
Effects: If [ =7 the shift] is enlarged by 1 times- ]
lot, if { =] itis shrunk by 1 timeslot. Ip =« The runners are invoked sequentially and each one

the action identified by is performed on the starts from the best state obtained from the previous one.
left-hand side off, if p =— it takes place to The overall process stops when a full round of all of them
the right-hand side. does not find an improvement. Each single runner stops



when it does not improve the current best solution for g Parameter | CS RS | ES+RS
given number of iterations (callédle iterationg. Taburange | 10-20| 5-10 | 20-40 ES)
The reason for using limited neighborhood relations is 5-10 RS)
not related to the saving of computational time, which| Idle iterations| 300 | 300 | 2000
could be obtained in other ways, for example by clever
ordering of promising moves. The main reason, instead, Table 4: Tabu search parameter settings
is the introduction of a ce_rtain degreediversificationn eeded for reaching the best solution that is known. The
the search. In fact, certain move types would be selectei,o ocassary to run one trial of the algorithm varies
very rarely in a full-neighborhood exploration strategy, yanveen 1 and 30 seconds, depending on the instance

even though they could help to escape from local min-y 4 o the single run. In this first test, the solver is ran
ima. For example, a runner that uses all three neigh

: several times with new initial states, until it gets to the
borhood relations together would almost never performy .« <oiution that is knowi
a CS move that worsens the objective function, simply '
because it can always find &% move that worsenitby 5 5 GreedyMCMF
a smaller amount, although tiéS move could lead to a
more promising region of the search space. This intuitiorBased on the equivalence of the (non-cychyD prob-
is supported by the experimental analysis that shows thiem to UDIF, a special case of th&/ ECF' problem for
our results are much better than thosftusliuetal,].  which no efficient algorithm is known (see Section 2),
HIDE? [ This composite solver is further improved and the relationship of the latter with téCMF prob-
by performing a few changes on the final state of eacem for which efficient algorithms are known, we pro-
runner, before handing it over as the initial state of the Pose a new greedy heuris@@reedyMCMF() that uses a
following runner. In details, we make the following two Polynomial min-cost max-flow subroutifdCMF(), as
adjustments: shown in pseudocode in Table 5. It is based on the ob-
servation that thé/CMF subroutine can easily compute
the optimal staffing with minimum (weighted) deviation
when slack edges have associated costs corresponding,
respectively, to the weights of shortage and excess. Note
3hat it is not able to simultaneously minimize the number
of shifts that are used.
) : . However, as théCMF() subroutine cannot consider
* Inactive shifts are recreated. That is, the current cycjicity, we must first perform a preprocessing step that
inactive shifts are dgleted, and new dls_,tlnct ones argjetermines a good split-off time where the cyclelof
created at random in the same quantity. This St€p4ays should be broken. This is done by callMGMF()
again, is meant to improve the diversification of the yith djfferent starting times chosen between 5:00 and
search algorithm. 8:00 on the first day of the cycle. All possibilities in this
interval are tried while eliminating all shifts that span
For all three runners, the size of the tabu list is keptthe chosen starting point when translating frdds D
dynamic by assigning to each move a number of tabudo the network flow instances. The number of possi-
iterations randomly selected within a given range. Thebilities depends on the length of the timeslots of the in-
ranges vary for the three runners, and they are selectegtance, e.g., when the timeslots last 30 minu#SMF()
experimentally. HIDE? [ The ranges are roughly sug- will be called with starting times 5:00, 5:30, 6:00, 6:30,
gested by the cardinality of the different neighborhoods,7:00, 7:30, and 8:00 in the morning of the first day. The
in the sense that a larger neighborhood deserves a longestarting point with the smallest cost as determined by
tabu tenurd. If a move is in the tabu list, itsiverseis ex- MCMF() is used as the split-off time for the rest of the
cluded from the neighborhood exploration. The inversecalls to MCMF() in GreedyMCMF. This method has
of a move is the move that applied in the state obtaine¢hown to provide adequate results in practice, which can
from the application of the first one ifi leads back tc. be explained by the observation that there is usually a
According to the standard aspiration criterium defined incomplete exchange of workforce between 5 and 8 a.m.
[Glover and Laguna, 199,7the tabu status of a move is on Monday mornings.
dropped if it leads to a state better than the current best The greedy heuristic then removes all shifts that did
found. not contribute to theMSD instance corresponding to
HIDE? [ As already mentioned, each runner stopsthe current flow computed witMCMF(). It randomly
when it has performed a fixed number of iterations with-chooses one shift (without repetitions) and tests whether
out any improvement (calleitile iterationy. ] Tabu removal of this shift still allows théICMF() to find a
lengths and idle iterations are selected once for all, angolution with the same deviation. If this is the case, that
the same values are used for all instances. The selectighift is removed and not considered anymore, otherwise
turned out to be robust enough for all tested instancest is left in the set of shifts used to build the network flow
and it is shown in Table 4. instances, but will not be considered for removal again.
HIDE? [The first set on experiments show the time Finally, when no shifts can be removed anymore with-

¢ |dentical shifts are merged into one. When the pro-
cedure applieRS moves, it is possible that two
shifts become identical. This situation is not de-
tected by the runner at each move, because it is
costly operation, and is therefore left to this inter-
runner step.



GreedyMCMF(SetOfAllAllowedShifts,
WorkforceRequirements):

/* Preprocessing step: where to break cyclicity? */
SplitOffTime =
FindBestSplitOffTime(SetOfAllAllowedShifts,
WorkforceRequirements)

/* Greedy part with MCMF subroutine */
Flowlnstance =
MSD2Flow(SetOfAllAllowedShifts,
WorkforceRequirements,
SplitOffTime)
BestFlowSoFar = MCMF(FlowlInstance)
MSD_Solution =
ShiftsAndWorkforceln(BestFlowSoFar)
MinCostSoFar = MSD_Eval(MSD_Solution)
Shifts = ShiftsInUseln(MSD_Solution)
TriedShifts = {}

REPEAT

ShiftToBeTried =
UniformlyChooseAShiftFrom(Shifts - TriedShifts)

ShiftsMinus1 = Shifts - {ShiftToBeTried}

Flowlnstance =
MSD2Flow(ShiftsMinus1,

WorkforceRequirements,
SplitOffTime)

CurrentFlow = MCMF(FlowlInstance)

MSD_Solution =
ShiftsAndWorkforceln(CurrentFlow)

CurrentCost = MSD_Eval(MSD_Solution)

IF CurrentCost < MinCostSoFar THEN
MinCostSoFar = CurrentCost
BestFlowSoFar = CurrentFlow
Shifts = ShiftsinUseln(MSD_Solution)

ENDIF

TriedShifts = TriedShifts U {ShiftToBeTried}

UNTIL Shifts - TriedShifts = {}

/* Postprocessing step to recover cyclicity */
MSD_Solution =
ShiftsAndWorkforceln(BestFlowSoFar)

REPEAT
MSD_Solution1 = MSD_Solution
MSD_Solution =

BestOfExchangeStaffNeighborhood(MSD_Solution1)

UNTIL
MSD_Eval(MSD_Solution) >
MSD_Eval(MSD_Solutionl)

RETURN MSD_Solution

As ourMCMF() subroutine, we use CS2 version3.9
an efficient implementation of a scaling push-relabel al-
gorithm[Goldberg, 199, slightly edited to be callable
as a library.

4 Computational results

In this section, we first describe the instances used for
our experimental analysis, then we illustrate the perfor-
mance parameters that we want to highlight, and finally
we show the results.

4.1 Instances description

The instances consist of three different sets, each con-
taining thirty randomly generated instances. Instances
were generated in a structured way to ensure that they
look as similar as possible to real instances while allow-

ing the construction of arbitrarily difficult instances.

Set 1 contains the 30 instances that where investigated
and described ifMusliu et al,, ]. They vary in their
complexity and we mainly include them to be able to
compare the new heuristics with the results reported in
[Musliu et al, ] for the commercial OPA implementa-
tion. These instances were basically generated by con-
structing feasible solutions with some random elements
as they usually appear in real instances, and then tak-
ing the resulting staffing numbers as workforce require-
ments. This implies that a very good solution with zero
deviation from workforce requirements is known. Note
that our heuristics could find even better solutions for
several of the instances, so these constructed solutions
may be suboptimal. Nevertheless, we refer in the follow-
ing to the best solutions we could come up with for these
instances as ‘best known’ solutions for them.

Set 2 contains similar instances to Set 1, but here the
‘best known’ solutions of instances 1 to 10 were con-
structed to feature 12 shifts, those of instances 11 to 20
to feature 16 shifts, and those of instances 21 to 30 to
feature 20 shifts. This allows us to study the relation be-
tween the number of shifts in the ‘best known’ solutions
and the running times of the heuristics.

While knowing these ‘best known’ solutions eases the
evaluation of the proposed heuristics, it also might form
a biased preselection towards instances where zero devi-
ation solutions exist for sure, thereby letting all or some
of the heuristics behave in ways that are unusual for in-

Table 5: Greedy heuristic with min-cost max-flow sub- Stances for which no such solution can be constructed.

routine.

The remaining set is therefore composed of instances
where with high likelihood solutions without deviations

out increasing the deviation, a final postprocessing ste

s _made to restore cyclici_ty. It CQnSiStS of a simple re- Set 3 contains instances without ‘best known’ solu-
pair step made by a fast hill-climbing runner that uses the; | o They were constructed with the same random in-

ES neighborhood relation (see Section 3.1). The runnegy, .o generator as the two previous sets but allowing the

selec;s at each iteration the best neighbor, with a ranzonstructed solutions to contain invalid shifts that devia
dom tie-break in case of same cost. It stops as soon as

ffom normal starting times and lengths by up to 4 times-

reache_s a local minimum, i.e., when it does not find @MYots. The number of shifts is similar to those in Set 2,
improving move.

Bo not exist:

1© 1995 — 2001 IG Systems, Inc.,
http://www.avglab.com/andrew/soft.html



i.e., instances 1 to 10 feature 12 shifts (invalid and valid The procedure is stopped when the time granted in
ones) etc. This construction ensures that it is unlikely elapsed or the best solution is reached.
that zero deviation solutions exist for these instances. | : .

. X o ..H2 GreedyMCMF() is called repeatedly until the stop-
][mght a'$° be fOf mterestfto See Wh(?tt?]err? S|gnt|f|cantd|t§- ping criterion is reached. Since the selection of
erence in performance for some of the heuristics canbe 0oyt shift to be removed in the main loop of

recognized compared to Set 2, which would provide evi- GreedyMCMF() is done randomly, we call the ba-
dence that the way Sets 1 and 2 were constructed consti- ¢ hauristic repeatedly and use bootstrapping as de-

tuted a bias for th? heuristics. (3 hwh scribed infJohnson, 20020 compute expected val-
Set 4 contains four groups of 3 instances each, where ;e for the computational results (counting the pre-
the first instances in each of the four groups do corre- processing step only once for each instance since it

spond to different basic real or randomly generated in- computes the same split-off time for all runs).
stances. The second instances in each group are almost

equivalent to the first, the difference being that the lengtiH3 The two solvers are combined using the solutions
of their timeslots are halfed. The third instance in each ~ delivered by H2 as initial states for H1 trials. In or-
group also is almost equivalent to the first, the differ-  der to maintain diversification, we exploit the non-
ence being that the workforce requirements are doubled. ~ determinism of H2 to generate many different so-
Group 1 corresponds a rather complicated real instance  lutions. The initial state of each trial of H1 is ran-
provided for comparison purposes to the randomly gen- ~ domly selected among those states. IS THIS TRUE
erated ones. The first instances in Groups 2, 3, and 4 are AT THE MOMENT?

equal to instances 5, 20, and 22, respectively, of Set 3 .
and thus roughly correspond to increasingly difficult in- -3 Computational results

stances. The choice of these instances from Set 3 wadedian time necessary to reach the best known

done randomly from each of the three kind of parame-solution

ter sets (12, 16, and 20 valid and invalid shifts) of SetTable 6 shows the median times (in seconds) needed by
3. HIDE? [We believe that other instances of Set 3 will our heuristics to reach the best known solution out of 10
yield similar results to the ones we report below and thattrials for data Set 1. The first two columns show the in-
these results are thus more or less representative for thetance number and its best known cost, the third column

different paramter setk. shows the cost of the best solution foundMusliu et

All sets of instances are available in self-describingal.,]. The dash symbol denotes that the best known so-
text files from http://www.dbai.tuwien.ac. lution could not be found.
at/proj/Rota/benchmarks.htmi . A detailed First notice that our solvers produce results much bet-
description of the random instance generator used to corter than the solver of OPA. In fact, H1 always finds
struct them can be found [Musliu et al,, ]. the best solution, H2 in 21 cases, and H3 in 29 cases,

whereas OPA finds the best solution only in 17 instances.

4.2 Experimental setting The table also shows that H1, although it finds the best

r.solution, is always much slower than H2, and generally
slower than H3 as well.

o To show how heuristics scale up, we show the perfor-
1. median time necessary to reach the best known sdmances for our solvers within 10 seconds time for Sets

lution, 1 and 2, grouped based on their size. The X axis of Fig-
2. median value obtained within a time bound. ure 1 reports the number of shifts in the best known so-
. . . lution, and the results on instances of equal number are
Our experiments have been run on different machines

The running times have been normalized according toaveraged. The Y axis shows the difference of the average

; cost to the best cost divided by the best cost. This figure
tehqeuilpj) thﬁ(ﬁtﬁ?ﬂfvgé)ﬁrz]cmg?k/ghﬁgi té)r?oecse(s);(?r Svih shows that for short runs H1 is clearly inferior to H2 and

: ; H3, which are comparable.
384 MB ram running Linux Red Hat 7.1 and gcc ver- . . -
sion 2.96 (calibration timings on that machine for above The above experiments show that H1 is superior in

benchmark: t1.wm: user 0.030 sec t2.wm: user 0_36(£each|ng the best known solution, but it requires more

sec)._ Because_of the normalizationfrom anc_)thermac_hin 'mF\,eetshjingr‘] Set 3 and further tests on real life exam-

running MS Wlnd_ows_ NT and using MS V|sua_l Basic, les confirm these trenH$DE? [ and are omitted for

the reported running times should be taken as indicator Vi

only. -
We experiment with the following three heuristic Median value obtained within a time bound

solvers: [INSERT GRAPHICS FROM XLS FILE (GNU-

H1 The local search procedure repeated several time8LOT?). Examples=instances, Solv=H.] 0 ws

starting from different (random) initial solutions.  Tables??-?? show the results of the median values
from 10 independent runs obtained by each heuristic

%ftp://dimacs.rutgers.edu/pub/netflow/benchmarks/c [(including the commercial OPA software)]on the in- [Jws

We made two types of experiments, aiming at two diffe
ent performance parameters:



[] ws

Inst.  Opt [Musliuetal, ] H1 H2 H3
1 480 480 3.67 0.07 1.05
2 300 390| 16.78 —  31.47
3 600 600 7.39 0.12 1.63
4 450 1170| 124.00 —  86.89
5 480 480 459 0.15 1.06
6 420 420 2.54 0.06 0.62
7 270 570 9.15 1.30 6.24
8 150 180| 42.50 — 13.26
9 150 225| 12.15 4.09 8.08
10 330 450| 98.00 4.70 131.85
11 30 30 1.64 0.21 0.85
12 90 90 6.18 0.26 3.85
13 105 105 6.56 0.30 3.79
14 195 390| 470.94 — 98.75
15 180 180 0.86 0.04 0.40
16 225 375| 174.00 — 340.23
17 540 1110| 544.00 — 218.25
18 720 720 6.79 1.86 6.44
19 180 195 31.22 — 39.11
20 540 540 12.14 0.11 1.70
21 120 120 6.23 0.29 2.17
22 75 75 3.56 0.38 3.46
23 150 540 16.41 3.45 9.05
24 480 480 2.74 0.11 1.22
25 480 690| 770.89 — —
26 600 600 7.63 1.52 6.47
27 480 480 4.17 0.07 2.33
28 270 270 536 1.41 3.60
29 360 390| 35.50 — 9.19
30 75 75 2.67 0.27 1.95

Table 6: Times to best for Set 1

15|

Percentage over best known

-0.5

Number of shifts

Figure 1: Results for 10 seconds bound

stances of Set 4 within a time bound of 100 seconds.

[For the moment, | do not discuss instances 1-3 as
there seem to be problems with the data for H2, and
the results in the graph for H3 for instances 1-3 are
for sure incorrect due to a calculation error on our
side that will be corrected soon.]

[I also do not discuss H3 for the other graphs,
see my comments in the accompanying mail as of
2003/1/6.]

solver H3 has the good qualities of both, and therefore
it can be considered the best general-purpose solver.][] ws

[There are a number of more detailed comments
(halfed intervals vs double workforce vs original in-
stances; scaling for 12, 16, and 20 valid and invalid
shifts, plus examples 1-3; random instances vs real
instances) that can be made, but | want to wait for
the data of the new H3 and the corrected values for
instances 1-3] [ ws

[Add some comment on time to best known versus
time limited with optimum not known w.r.t. John-
son’s remarks on this topic.] [] ws

[Add Luca’s experimental results from 2003/1/6:

I've just finished performing the analysis of the
data and I've found out some surprising behavior.
First of all | fully answer to your initial question: "I
could find an adapted better solution with the Inter-
valDivided instance only in the third random exam-
ple in the data set by employing Solver 3”. This result
could be found in 7 cases out of 30 runs.

However, by employing a Mann-Withney test, we
cannot reject the hypothesis that the two samples of
results are equal, i.e., the algorithm run on the In-
tervalDivided insance is in the same slot of results as
the algorithm run on the original one. For this rea-
son I've started some additional experiments to look
more in detail if the optimal solution can be reached
also on the original instance.

This behavior is typical of Solver 3. In fact, also in
the ReallLife example, Solver 3 on the IntervalDivided
solution can found the best-known solution in 4 out
of 30 cases, while on the plain instance this solution
cannot be found at all.

My feeling is that Solver 3 on the IntervalDivided
instances has more freedom to move (i.e., it can make
smaller steps toward a good solution), but | do not
have any evidence of this feeling at present.

Finally, both the solvers run on the DoubleDuties
instances perform poorly, and in most cases the best
solutions found cannot be adapted to the original in-
stance. ]

[Maybe we could try to prove that no better solu-
tion than in the original instance can exist in the in-
stances with intervals halfed and the ones with dou-
bled workforce requirements.] n*

[Add OPA timings (with and without GUI) with
values in the figures. Add some sentences (above?)
on these results compared to the Heuristics.]

[Note any other anomalies that need explanation,
try to explain them.] 0*

5 Conclusions

The MSD is an important scheduling problem that needs
to be solved in many industrial contexts. We provided
complexity results for it and designed a set of heuris-

One thing to notice is that H2 is clearly superior to tics based both on these theoretical results and on local

H1. [I hope that we will also be able to report that The

search procedures.

[] Luca

[] Nysret
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A The relation between MSD and UDIF

We state in the following the proof of Claim 1, followed by atpianation of how shortage and excess can be handled
by a small linear adaptation of the network flow problem.

Proof. We are following here a path similar to the one\itite{H-2000} in order to get this equivalence. See also,
e.g.,\cite{ AMO-93}.

Note that in the special case whénm = b has a feasible solution, by the definitiond®D the optimume* satisfies
Azx* = b. Let7 denote the matrix:

1 -1 0 0 0 0
0O 1 -1 0 O 0
0 0 1 -1 0 0
7T = :
0 0 0 1 -1 0
0 0 o --- 0 1 -1
10 O 0 0 0 1]

The matrix7 is a quadratic matrix which is regular. In fa@, ! is the upper diagonal matrix with 1 along the diagonal
and above, with all other elements equal O.

As T is regular the two sets of feasible vectors for = b and for7 - Az = 7b are equal. The matrif = T A
is a matrix with only (at most) two nonzero entries in eactluooh: one being a 1 and the other being & In fact,
all columnsi in A create a column itF = 7 A with exactly one—1 entry and exactly on& entry except for columns
¢ with 1 in the first row (namely, so thd{(:) = 1). These columns leave oneentry in rowe(:), namely, in the row
columns ends. Call these columns tepecialcolumns.

The matrixF can be interpreted as a flow matrix (see for exampiee{BKP-98}). Columnj of the matrix is
represented by an edge We assign a vertex; to each rowi. Add an extra vertexy.

An edgee; with F;; = 1 andF,; = —1 goes out ol into v;. Note that the existence of this columniimplies
the existence i of a column of ones starting at row+ 1 (and notk) and ending at rovy.

In addition, for all special rowsending ak(i), we add an edge fromy into v.(;. Add an edge of capacity from
stowg. Letb = Tb. Theb vector determines the way all vertices (exceptare joined to the sink and source.

If b; > 0 then there is an edge from to ¢ with capacityb,;. Otherwise, ifb; < 0, there is an edge fromto v; with
capacity—b;. Vertices withb;, = 0 are not joined to the source or sink. All edges not touchiegstburce or sink have
infinite capacity.

Note that the addition of the edge frofinto vy with capacityb; makes the sum of capacities of edges leaving the
source equal to the sum of capacities of edges enteringrke Ai saturating flow is a flow saturating all the edges
entering the sink. It is easy to see that if there exists aating flow, then the feasible vectors for the flow problem
are exactly the feasible vectors t6r: = b. Hence, these are the same vectors feasible for the origghaf equations
Azr =b.

As we assumed thatz = b has a solution, there exists a saturating flow, namely, tisesesolution saturating all
the vertex-sink edges (and, in our case, all the edges lgélvensource are saturated as well). Hence, the problem is
transformed into the following question: Givér find a maximum flow inG and among all maximum flows find the
one that minimizes the number of proper edges carrying eoo-ffow.

The resulting flow problem is in fact &DIF problem. The network: is a DAG (directed acyclic graph). This
clearly holds true as all edges go fragto v; with j > 4. In addition, all capacities on edges not touching the sink o
source are infinite (see the above construction).

On the other hand, given EDIF instance with a saturating flow (namely, where one can findwa filmction
saturating all the edges entering the sink) it is possiblintban inverse function that maps it to aASD instance.
The MSD instance is described as follows.

Assume that the, are ordered in increasing topological order. Given the DAGhe corresponding matrif¥ is
defined by taking the edge-vertices incidence matri& of\s it turns out, we can find a c1 matrikso that7 A = F.
Indeed, for any columri with non-zeros in rows, p with ¢ < p, necessarilyF,; = —1 andF,; = 1 (if there is a
columny that does not contain afR,; = —1, setg = 0). Hence, add to! the c1 column with 1 from rowg + 1 to p.

We note that the restriction of the existance of a flow saitugahe flow along edges enterings not essential. It is
easy to guarantee this as follows. Add a new veutéxthe network and an edge, u) of capacity)  ,, ;, c(v,t) — f*

(wheref* is the maximum flow value). By definition, the edgew) has cosb. Add a directed edge fromto every

sourcev. This makes a saturating flow possible, at the increase gfloim the cost.
It follows that in the restricted case whelx = b has feasible solutions theSD problem is equivalent t&/DIF.
U



To understand how this can be used to also find solutioA$36 instances where no zero deviation solution exists,
we need to explain how to find a vecterso thatAz > b and|Az — b|; is minimum. Whendz = b does not have
a solution, we introduce dummy variableg;. Theith inequality is replaced byi;x — y; = b;, namely,y; is set to
the difference betweed,;z andb; (andy; > 0). Let —I be the negative identity matrix, namely, the matrix with all
zeros except-1 in the diagonal entries. Létd; —I) be theA matrix with —TI to its right and le{z; ) be the column
of z followed by they variables. The above system of inequalities is represdmtéel; —I)(x; y) = b. Multiplying
the inequality byZ (where7 is the0, 1 and—1 matrix defined above) givesF; —7)(z;y) = 7b = b. The matrix
(F; —T) is aflow matrix. Its corresponding graph is the graptFokith the addition of an infinite capacity edge from
v; intov;—1 (¢ = 1,...,n). Call these edges theedges. The edges originally {# are called the: edges. The sum
>, yi Clearly represents the excess norm|Az — b|;. Hence, we give a cosi(e) = 1 to each edge corresponding
to ay,;. We look for a maximum flow minimizing -, C(e) f(e), namely, a min-cost max-flow solution. As we may
assume w.l.o.g. that all time intervdls, ¢;+1) (i = 1,...,n) have equal length, this gives the minimum possible
excess. Shortage can be handled in a similar way.

B A hardness result for UDIF and MSD
We next prove Theorem 2.1:

Proof. We prove a hardness reduction for UDIF under the assumptign/N P. We use a reduction from Set-Cover.
We need a somewhat different proof thesite{ KNSWR-98} to account for the extra restriction imposed GYIF.

For our purposes it is convenient to formulate the set coraslpm as follows. The set cover instance is an undirected
bipartite graphB(V1, V», A) with edges only crossing betweéh andV,. We may assume that; | = |Va| = n.

We look for a minimum sized se&& C 14 so thatN(S) = V, (namely, every vertex iz has a neighbor ir$). If
N(S) = V5 we say thatS coversV,. We may assume that the given instance has a solution. Tloeviod) is proven

in \cite{RS-97}.

Theorem B.1 There is a constant < 1 so that approximating Set-Cover withiin n is NP-hard.

We prove a similar result fot/ DIF and thus ford/SD.

Let B(V1, Vi, £) be the instance of the set cover problem at hand so|that= |V2| = n. Add a sources and a
sink t. Connects to all the vertices ol, with capacity one edges. Direct all the edges3dirom 15 to ;. Now,
createn? copiesVy’ of V; and for convenience denotg = V. For eachi € {0,...,n% — 1}, connect in a directed
edge the copy; € V; of eachw; € V; to the copywit! € Vi of vy in Vi1, Hence, a perfect matching is formed
between contiguouB; via the copies of the; € V; vertices. The vertices (i[lf'{l2 are all connected tovia edges
of capacityn. Note that by definition, all other edges (which are edgeshing neither the source nor the sink) have
infinite capacity.

It is straightforward to see that the resulting graph is a D#f@ that the graph admits a flow saturating the source
edges, and can be made to saturate the sink edges as debefited

We now inspect the properties of a “good” solution. IS%be the set of verticeS C V; so that for every vertex
vy € V4 there exists a vertexe S such that edgévs, s) carries positive flow.

Note that for every, € V; there must be such an edge for otherwise the flow is not optifwather note that the
flow units enterings must be carried throughout the copiesSah all of the V' setsi > 1 using the matching edges as
this is the only way to deliver the flow into Hence, the number of proper edges in the solution is exaétlyS| + n.
Then term comes from the edges touching the vertices &f.

Further, note tha$' must be a set cover &% in the original grapi3. Indeed, every vertex, must have a neighbor
in S. Finally, note that it is indeed possible to get a solutiothw? - s* 4+ n edges where* is the size of the minimum
set cover using an optimum set covr as described above. Since all the matching edges have énfagitacities, it
is possible to deliver to then units of flow regardless of how the cov&iis chosen. The following properties end the
proof: The number of vertices' in the new graph i€)(n?). In addition, the additive term is negligible for large
enoughn in comparison to:? - | S| whereS is the chosen set cover. Hence, the result follows:far1/3 < 1. O

C Further ideas

The GreedyMCMF heuristic could be made even more efficiemdiing that usually only very few edges change
from one call to the next call of theICMF() subroutine. We currently call tHRdCMF() subroutine each time from
scratch. However, CSgite{ Goldberg9¥ supports a variant that recomputes an optimal flow more effityi after a
change in costs. It might thus prove worthwhile to track ajemnin the flow instance and recompute only those parts
that are necessary, thus speeding upMIMF() calls in the heuristics.

An idea for a promising heuristic might also be to integraefMCMF() subroutine more directly in the local search
procedure instead of just calling them serially one afterdther as in the third variant of our heuristics.
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Figure 2: Schematic illustration of the reduction from tlet-Eover problem to the UDIF problem.

Another simple heuristic that very naturally (in the dousémse of the word) suggests itself might be to combine
the MCMF() subroutine (together with the postprocessing step destiiio Section 3.2 that reestablishes cyclicity)
with a genetic algorithm type of optimization heuristicd&ed, the genetic code could consist merely of a bitvector of
all possible shifts, possibly ordered by their startingegmThe phenotype would then consist of the shifts and number
of staff as computed by thRICMF() subroutine followed by the postprocessing step, applidg tanthe subset of
shifts that have their bits set to 1. Optimization could thendone with the usual crossover and mutation operators
on populations of solution candidates, with selection diased probabilistically on the scores of the phenotype
solution candidates. Initial populations could contaimd@am bitvectors as well as shifts selected by single runiseof t
heuristics described in this paper.

We also tried to apply PPRiNa library for nonlinar network flow problems described\cite{ Castro96 to our
instances instead of calling CMF but got only unsatisfactory results as this package carorotctly deal with fixed
charge style nonlinearities. Other software specializing/ECF type problems or aiming at more general integer
constraint problems might yield better results.

3http://www-eio.upc.es/ jcastro/pprn.html



Contents

1

O m > O

Introduction
1.1 Results and organization of this

Theoretical results

Practical heuristics

3.1 Local Search Heuristic Solver
3.2 GreedyMCMF. . ........

Computational results
4.1 Instances description . . . . .

4.2 Experimental setting . . . . ..

4.3 Computational results . . . . .
Conclusions

The relation betweenMSD and UDIF
A hardness result for UDIF and MSD

Further ideas

PAPEI . . . e e e

@_h'b

0o~ Y

12
13
13



