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Abstract

Given an edge-weighted directed graph G = (V,E) on n vertices and a set T = {t1, t2, . . . , tp} of p
terminals, the objective of the STRONGLY CONNECTED STEINER SUBGRAPH (p-SCSS) problem is to
find an edge set H ⊆ E of minimum weight such that G[H] contains a ti→ t j path for each 1≤ i 6= j≤ p.
The p-SCSS problem is NP-hard, but Feldman and Ruhl [FOCS ’99; SICOMP ’06] gave a novel nO(p)

algorithm.
In this paper, we investigate the computational complexity of a variant of 2-SCSS where we have

demands for the number of paths between each terminal pair. Formally, the 2-SCSS-(k1,k2) problem is
defined as follows: given an edge-weighted directed graph G=(V,E) with weight function ω : E→R≥0,
two terminal vertices s, t, and integers k1,k2 ; the objective is to find a set of k1 paths F1,F2, . . . ,Fk1
from s ; t and k2 paths B1,B2, . . . ,Bk2 from t ; s such that ∑e∈E ω(e) · φ(e) is minimized, where

φ(e) = max
{
|{i : i ∈ [k1], e ∈ Fi}| , |{ j : j ∈ [k2], e ∈ B j}|

}
. For each k ≥ 1, we show the following:

• The 2-SCSS-(k,1) problem can be solved in nO(k) time.
• A matching lower bound for our algorithm: the 2-SCSS-(k,1) problem does not have an f (k) ·no(k)

algorithm for any computable function f , unless the Exponential Time Hypothesis (ETH) fails.

Our algorithm for 2-SCSS-(k,1) relies on a structural result regarding the optimal solution followed
by using the idea of a “token game” similar to that of Feldman and Ruhl. We show with an example
that the structural result does not hold for the 2-SCSS-(k1,k2) problem if min{k1,k2} ≥ 2. Therefore
2-SCSS-(k,1) is the most general problem one can attempt to solve with our techniques. To obtain the
lower bound matching the algorithm, we reduce from a special variant of the GRID TILING problem
introduced by Marx [FOCS ’07; ICALP ’12].

1 Introduction

The STEINER TREE (ST) problem is one of the earliest and most fundamental problems in combinatorial
optimization: given an undirected edge-weighted graph G = (V,E) with edge weights ω : E → R+ and a
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set T ⊆V of terminals, the objective is to find a tree S of minimum weight ω(S) := ∑e∈S ω(e) which spans
all the terminals. The STEINER TREE problem is believed to have been first formally defined by Gauss
in a letter in 1836. In the directed version, called the DIRECTED STEINER TREE (DST) problem, we are
also given a root vertex r and the objective is to find a minimum size arborescence in the directed graph
which connects the root r to each terminal from T . An easy reduction from SET COVER shows that the DST
problem is also NP-complete.

Steiner-type of problems arise in the design of networks. Since many networks are symmetric, the di-
rected versions of Steiner type of problems were mostly of theoretical interest. However in recent years, it
has been observed [15] that the connection cost in various networks such as satellite or radio networks are
not symmetric. Therefore, directed graphs are the most suitable model for such networks. In addition, Ra-
manathan [15] also used the DST problem to find low-cost multicast trees, which have applications in point-
to-multipoint communication in high bandwidth networks. If we require two-way connectivity, then we
obtain a generalization of the DST problem known as the STRONGLY CONNECTED STEINER SUBGRAPH

(SCSS) problem. In the p-SCSS problem, given a directed graph G = (V,E) and a set T = {t1, t2, . . . , tp}
of p terminals the objective is to find a set H ⊆ E of minimum size such that G[H] contains a ti→ t j path
for each 1 ≤ i 6= j ≤ p. The best known approximation ratio in polynomial time for SCSS is |T |ε for any
ε > 0 due to Charikar et al. [2]. A result of Halperin and Krauthgamer [9] implies SCSS has no Ω(log2−ε n)-
approximation for any ε > 0, unless NP has quasi-polynomial Las Vegas algorithms.

The 2-SCSS-(k1,k2) Problem: We now define the following generalization of the 2-SCSS problem:

2-SCSS-(k1,k2)
Input : An edge-weighted digraph G = (V,E) with weight function ω : E → R≥0, two terminal
vertices s, t, and integers k1,k2
Question: Find a set of k1 paths F1,F2, . . . ,Fk1 from s ; t and k2 paths B1,B2, . . . ,Bk2 from t ; s

such that ∑e∈E ω(e) ·φ(e) is minimized where φ(e) = max
{
|{i : 1≤ i≤ k1,e ∈ Fi}| , |{ j : 1≤ j ≤

k2,e ∈ B j}|
}

.

Observe that 2-SCSS-(1,1) is the same as the 2-SCSS problem. The definition of the 2-SCSS-(k1,k2)
problem allows us to potentially choose the same edge multiple times, but we have to pay for each time we
use it in a path between a given terminal pair. This can be thought of as “buying disjointness” by adding
parallel edges. In large real-world networks, it might be more feasible to modify the network by adding
some parallel edges to create disjoint paths than finding disjoint paths in the existing network. Teixeira
et al. [16, 17] model path diversity in Internet Service Provider (ISP) networks and the Sprint network by
disjoint paths between two hosts. There have been several patents [8, 14] attempting to design multiple paths
between the components of Google Data Centers.

The 2-SCSS-(k1,k2) problem is a special case of the DIRECTED SURVIVABLE NETWORK DESIGN

(DIR-CAP-SNDP) problem [7] in which we are given an directed multigraph with weights and capaci-
ties on the edges, and the question is to find a minimum weight subset of edges that satisfies all pairwise
minimum-cut requirements. In the 2-SCSS-(k1,k2) problem, we do not require disjoint paths. As observed
in Chakrabarty et al. [1] and Goemans et al. [7], the DIR-CAP-SNDP problem becomes much easier to
approximate if we allow taking multiple copies of each edge.

1.1 Our Results and Techniques:

In this paper, we consider the 2-SCSS-(k,1) problem parameterized by k. Note that the sum of demands is
O(k). To the best of our knowledge, we are unaware of any non-trivial exact algorithms for a version of the
SCSS problem with demands between the terminal pairs. Our main algorithmic result is the following:
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Theorem 1.1. The 2-SCSS-(k,1) problem can be solved in nO(k) time.

Our algorithm proceeds as follows: In Section 2.1 we first show that there is an optimal solution for
the 2-SCSS-(k,1) problem which satisfies a structural property which we call as reverse-compatibility.
Then in Section 2.2 we introduce a “Token Game” (similar to that of Feldman and Ruhl [6]), and show
that it can be solved in nO(k). Finally in Section 2.3, using the existence of an optimal solution satisfying
reverse-compatibility, we give a reduction from the 2-SCSS-(k,1) problem to the Token Game which gives
an nO(k) algorithm for the 2-SCSS-(k,1) problem. This algorithm also generalizes the result of Feldman and
Ruhl [6] for 2-SCSS, since 2-SCSS is equivalent to 2-SCSS-(1,1). In Section 2.4, we show with an example
(see Figure 3) that the structural result does not hold for the 2-SCSS-(k1,k2) problem if min{k1,k2} ≥ 2.
Therefore, 2-SCSS-(k,1) is the most general problem that one can attempt to solve with our techniques.

Theorem 1.1 does not rule out the possibility that the 2-SCSS-(k,1) problem is actually solvable in
polynomial time. Our main hardness result rules out this possibility by showing that our algorithm is tight
in the sense that the exponent of O(k) is best possible.

Theorem 1.2. The 2-SCSS-(k,1) problem is W[1]-hard parameterized by k. Moroever, under the Exponen-
tial Time Hypothesis (ETH) of Impagliazzo and Paturi [10], the 2-SCSS-(k,1) problem cannot be solved in
f (k) ·no(k) time for any function f where n is the number of vertices in the graph.

To prove Theorem 1.2, we reduce from the GRID TILING problem formulated in the pioneering work of
Marx [11]:

k× k GRID TILING
Input : Integers k,n, and k2 non-empty sets Si, j ⊆ [n]× [n] where i, j ∈ [k]
Question: For each 1≤ i, j ≤ k does there exist a value si, j ∈ Si, j such that

• If si, j = (x,y) and si, j+1 = (x′,y′) then x = x′.
• If si, j = (x,y) and si+1, j = (x′,y′) then y = y′.

The GRID TILING problem has turned to be a convenient starting point for parameterized reductions for
planar problems, and has been used recently in various W[1]-hardness proofs on planar graphs [5, 12, 13].
Under the ETH, Chen et al. [3] showed that k-CLIQUE1 does not admit an algorithm running in time f (k) ·
no(k) for any function f . Marx [11] gave a reduction from k-CLIQUE to k× k GRID TILING. In Section 3,
we give a reduction from k× k GRID TILING to 2-SCSS-(k,1). Since the parameter blowup is linear, the
f (k) ·no(k) lower bound for GRID TILING from [11] transfers to 2-SCSS-(k,1). In fact, the reduction in [11]
from k-CLIQUE to k× k GRID TILING actually shows the hardness of a special case of the GRID TILING

problem where the sets are constructed as follows: given a graph G = (V,E) for the k-CLIQUE problem
with V = {v1,v2, . . . ,vn} we set Si,i = {( j, j) : 1 ≤ j ≤ n} for each i ∈ [k] and Si, f = {( j, `) : 1 ≤ j 6= ` ≤
n,(v j,v`) ∈ E} for each 1 ≤ i 6= f ≤ k. We call this as the GRID TILING* problem, and actually give a
reduction from this problem to 2-SCSS-(k,1). To the best of our knowledge, this is the first use of the
special structure of GRID TILING* in a W[1]-hardness proof.

In Appendix A we show that the edge-weighted and the vertex-weighted variants of 2-SCSS-(k1,k2) are
computationally equivalent. Henceforth we consider only the edge-weighted version of 2-SCSS-(k1,k2).

2 An nO(k)nO(k)nO(k) algorithm for 2-SCSS-(k,1)2-SCSS-(k,1)2-SCSS-(k,1)

In this section we describe an algorithm for the 2-SCSS-(k,1) problem running in nO(k) time where n is
the number of vertices in the graph. First in Section 2.1 we present a structural property called as reverse

1The k-CLIQUE problem asks whether there is a clique of size ≥ k?
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Figure 1: Let F be an s ; t path given by s→ u→ v→ w→ y→ z→ t and B be an t ; s path given
by t → y→ z→ u→ v→ s. The two paths P1 and P2 shown in blue are the maximal common sub-paths
between F and B. From Definition 2.1, it follows that F and B are path-reverse-compatible since B first sees
P2 and then P1.

compatibility for some optimal solution of this problem. Next we define a Token Game in Section 2.2 and
provide an nO(k) algorithm to solve the game. Finally, in Subsection 2.3 we present an algorithm that finds
the optimum solution of 2-SCSS-(k,1) in time nO(k) via a reduction to the Token Game problem.

2.1 Structural Lemma for Some Optimal Solution of 2-SCSS-(k,1)2-SCSS-(k,1)2-SCSS-(k,1)

For simplicity, we replace each edge e of the input graph G with k copies e1,e2, . . . ,ek, each having the same
weight as that of e. Let the new graph constructed in this way be G′. In G, different s ; t paths must pay
each time they use different copies of the same edge. We can alternately view this as the s ; t paths in G′

being edge-disjoint.

Definition 2.1. (path-reverse-compatible) Let F be a s ; t path and B be a t ; s path. Let {P1,P2, . . . ,Pd}
be the set of maximal sub-paths that F and B share and for all j ∈ [d], Pj is the j-th sub-path as seen
while traversing F. We say the pair (F,B) is path-reverse-compatible if for all j ∈ [d], Pj is the (d− j+1)-th
sub-path that is seen while traversing B, i.e., Pj is the j-th sub-path that is seen while traversing B backward.

See Figure 1 for an illustration of path-reverse-compatibility.

Definition 2.2. (reverse-compatible) Let F = {F1,F2, . . . ,Fr} be a set of s ; t paths and b be an t ; s
path. We say (F,B) is reverse-compatible, if for all 1≤ i≤ r the pair (Fi,B) is path-reverse-compatible.

The next lemma shows that there exists an optimum solution for 2-SCSS-(k,1) which is reverse-compatible.

Lemma 2.3. (structural lemma) There exists an optimum solution for 2-SCSS-(k,1) which is reverse-
compatible.

Proof. In order to prove this lemma, we first introduce the notion of rank of a solution for 2-SCSS-(k,1).
Later, we show that an optimum solution of 2-SCSS-(k,1) with the minimum rank is reverse-compatible.

Definition 2.4. (rank) Let F = {F1,F2, . . . ,Fk} be a set of paths from s ; t, and B be a path from t ; s. For
each i ∈ [k], let di be the number of maximal sub-paths that B and Fi share. The rank of (F,B) is given by

R(F,B) =
k

∑
i=1

di

Let (F,B) be an optimum solution of 2-SCSS-(k,1) with the minimum rank. Assume for the sake of
contradiction that (F,B) is not reverse-compatible, i.e., there exists some Fi ∈ F such that (Fi,B) is not path-
reverse-compatible. From Definition 2.1, this means that Fi and B share two maximal sub-paths u→ v and
x→ y, and at the same time Fi and B both contain u→ y sub-paths (see Figure 2).
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Figure 2: Let the u ; y sub-path of Fi be a u ; v ; w ; z ; x ; y and the u ; y sub-path of B be
u ; v ; q ; r ; x ; y. From Definition 2.1, it follows that Fi and B are not path-reverse-compatible since
they both first see u ; v and then see x ; y.

We replace the u→ y sub-path of B by the u→ y sub-path of Fi. On one hand, B shares all of the
u→ y sub-path with Fi. Thus, this change does not increase the weight of the network, therefore it remains
an optimum solution. On the other hand, by this change, the sub-paths u→ v and x→ y join. Hence, di

decreases by 1. Also, since the forward paths are edge-disjoint, after the change all other d j’s remain same
(for i 6= j) since B shares the whole u→ y sub-path with only Fi. Therefore, this change strictly decreases
the rank of the solution. Existence of an optimum solution with a smaller rank contradicts the selection of
(F,B) and completes the proof.

2.2 The Token Game

In the token game, we are given a graph G, a set of tokens T , vertices s and t, a set of movesM, and a cost
function Ĉ :M→ R. Each move m ∈M consists of a set of triples (ti,ui,vi) where ti ∈ T is a token, and
ui and vi are vertices of the graph. In order to apply a move m = {(t1,u1,v1),(t2,u2,v2), . . . ,(td ,ud ,vd)} to
a state of the game, each token ti should be on vertex ui for all 1 ≤ i ≤ d and after applying this move, for
every triple (ti,ui,vi) ∈ m token ti will be transported to the vertex vi. For each m ∈M, Ĉ(m) specifies the
cost of applying m to the game. Initially, all of the tokens are placed on vertex s. In each step, we apply a
move m ∈M to the game with cost Ĉ(m) and the goal is to transport all of the tokens to the vertex t with
minimum cost.

In the following, we present an algorithm to solve an instance 〈G,s, t,T ,M,Ĉ〉 of the Token game in
time O(n|T | · |M| · log(n|T |)), where n is the number of the vertices of G.

Lemma 2.5. (algorithm for Token Game) There exists an algorithm which solves the Token game in time
O(n|T ||M| log(n|T |)).

Proof. Let 〈v1,v2, . . . ,v|T |〉 denote a state of the game in which token ti is placed on vertex vi and G∗ be a
graph containing n|T | vertices, where each of its vertices corresponds to one state of the game. For every
state 〈v1,v2, . . . ,v|T |〉 of the game and every move m∈M which is applicable to 〈v1,v2, . . . ,v|T |〉, we add an
edge from vertex 〈v1,v2, . . . ,v|T |〉 of G∗ to vertex 〈v∗1,v∗2, . . . ,v∗|T |〉 with weight Ĉ(m), where 〈v∗1,v∗2, . . . ,v∗|T |〉
is the state of the game after applying m to 〈v1,v2, . . . ,v|T |〉.

In order to solve the game, we need to find a sequence of moves which transports all of the tokens
from s to t with the minimum cost. This is equivalent to finding the shortest path from vertex 〈s,s, . . . ,s〉
of G∗ to vertex 〈t, t, . . . , t〉 which can be determined with the Dijkstra algorithm. Since the running time
of the Dijkstra algorithm is |E(G∗)| log |V (G∗)|, we can find the optimum solution of the game in time
O(n|T ||M| log(n|T |)).
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2.3 Reduction to the Token Game

Here, we provide a reduction from the 2-SCSS-(k,1) problem to the Token game. As a consequence, we
show that one can use the presented algorithm in Subsection 2.2 to solve 2-SCSS-(k,1) in time O(nO(k)).

Let I = 〈G,s, t〉 be an instance of the 2-SCSS-(k,1). We reduce I to an instance Cor(I)= 〈G′,s′, t ′,T ,M,Ĉ〉
of the Token Game problem where G = G′, s = s′, t = t ′ and T is a set of k+1 tokens {F1,F2, . . . ,Fk,B}.
Furthermore,M and Ĉ are constructed in the following way:

• For every edge (u,v) ∈ E(G), we add k moves {(Fi,u,v)} toM for all 1≤ i≤ k. Cost of each move
is equal to the length of its corresponding edge in G.
• For every edge (u,v) ∈ E(G) with weight w, we add a move {(B,v,u)} toM with cost w.
• For every pair of vertices u and v in G, we add k moves {(Fi,u,v),(B,v,u)} toM for all 1 ≤ i ≤ k.

Cost of each move is equal to the distance of vertex v from vertex u in G.

Next we show that OPT(I) = OPT(Cor(I)), where OPT(I) and OPT(Cor(I)) stand for the optimum
solutions of I and Cor(I) respectively. We do this by the following two lemmas:

Lemma 2.6. For a given instance I of the 2-SCSS-(k,1) we have OPT(I)≥ OPT(Cor(I)).

Proof. After each move, the state of the game changes in one of the following ways:

1. A token Fi moves through an edge.
2. Token B moves through an edge in the backward direction.
3. Token B and a token Fi swap their positions.

Cost of each move of type 3 is equal to the weight of the shortest path from the position of Fi to the position
of B. Therefore, we assume that in these moves, token Fi moves to the position of B through the shortest
path and token B goes back to the position of Fi along the same path in the opposite direction. Note that,
token B always traverses the edges in the opposite direction, therefore we can assume that token B traverses
a path from t to s in the backward direction.

Let pi be the walk that token Fi traverses from s to t and q be the walk from t to s that B traverses in
backward direction. The total cost of the game is equal to

w(p1)+w(p2)+ . . .+w(pk)+w′

where w(pi) is the length of the path pi and w′ is the sum of all moves of type 2. Therefore we pay at least
max{ f ∗(e),b∗(e)} times the weight of each edge e where f ∗(e) and b∗(e) denote the number of occurrences
of e in {p1, p2, . . . , pk} and q, respectively. Thus, the cost of the game is at least C(p1, p2, . . . ,q), hence

opt(I)≤ opt(Cor(I))

Lemma 2.7. For a given instance I of the 2-SCSS-(k,1) we have OPT(I)≤ OPT(Cor(I)) .

Proof. In order to prove this lemma we use Lemma 2.3 which states there exists an optimal solution for I
which is reverse-compatible; Let it be (F1,F2, . . . ,FkB). We provide a solution for Cor(I) with the total cost
equal to C(F1,F2, . . . ,FkB).

Let {r1,r2, . . . ,rd} be the set of maximal sub-paths of B which are shared with paths F1,F2, . . . ,Fk.
Initially all of the tokens are placed on vertex s. While token B has not reached vertex t, we do the

following:
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Figure 3: Each black edge has weight 1, each red edge and each blue edge has weight 0.

• We move token B along the path B in the opposite direction with moves of type (2) until it arrives
at the end of a sub-path in {r1,r2, . . . ,rd} or reaches the vertex t. In the former case, let ri be the
sub-path that B is standing on its end and Fj be the path that shares ri with B. We move token F j to
the begining of the sub-path ri using moves of type (1) and swap the positions of the tokens B and
F j. In the latter case, we move each token Fi along the path Fi with moves of type (1) until it reaches
vertex t.

Since each pair of paths (Fi,B) is reverse-compatible, all of the tokens Fi traverse sub-paths r1,r2, . . . ,rd
with moves of type (3), therefore the total cost of the moves is

w(F1)+w(F2)+ . . .+w(Fk)+w(B)−w(b̂1)− . . .−w(b̂|B|)

where w(x) is the length of the path x. This is equal to C(F1,F2, . . . ,FkB). Therefore, we have opt(I) ≥
opt(Cor(I)).

Theorem 2.8. There exists an algorithm that solves the 2-SCSS-(k,1) in time O(nO(k)).

Proof. Let I be an instance of the 2-SCSS-(k,1). According to Lemmas 2.6 and 2.7, we have opt(I) =
opt(Cor(I)).

Since the number of moves inM isO(n2d), by Lemma 2.5 we can solve Cor(I) in timeO(n|T ||M| log(n|T |))
which isO(nO(k)). Let Fi be the path of token Fi and B be the path that token B traverses in the opposite di-
rection in an optimal solution of Cor(I). Since opt(I) = opt(Cor(i)), {F1,F2, . . . ,FkB} is an optimal solution
for I.

2.4 Structural Lemma fails for 2-SCSS-(k1,k2)2-SCSS-(k1,k2)2-SCSS-(k1,k2) when min{k1,k2} ≥ 2min{k1,k2} ≥ 2min{k1,k2} ≥ 2

Recall that in the 2-SCSS-(k1,k2) problem we want k1 paths from s ; t and k2 paths from t ; s. So, we
define a natural extension of Definition 2.1 to reverse-compatibility of a set of forward paths and a set of
backward paths as follows.

Definition 2.9. (general-reverse-compatible) Let F = {F1,F2, . . . ,Fk1} be a set of s ; t paths and B =
{B1,B2, . . . ,Bk2} be a set of t ; s paths. We say (F,B) is general-reverse-compatible, if for all 1 ≤ i ≤ k2,
(F,Bi) is reverse-compatible.

The following theorem shows that Lemma 2.3 does not hold for the 2-SCSS-(k1,k2) problem when
min{k1,k2} ≥ 2, i.e., Lemma 2.3 is in its most general form.

Theorem 2.10. There exists an instance of 2-SCSS-(2,2) in which no optimum solution is general-reverse-
compatible.
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Proof. Figure 3 illustrates an example of the 2-SSS(2,2) problem in which no optimal solution satisfies the
reverse compatibility condition. Let the weight of the black edges be 1, and weight of all the other edges be
0. Since we have edges of weight 0, we will henceforth only consider the paths which do not have vertices
repeating.

Let P1 be the path s→ u1→ u2→ . . .→ u9→ u10→ t and P2 be the path s→ v1→ v2→ . . .→ v9→ v10→
t. Note that P1 and P2 are edge-disjoint and have weight 11 each. We now give a solution of total weight 22:
take P1 and P2 as the two s ; t paths. For the two t ; s paths take P3 := t → v7→ v8→ u3→ u4→ s and
P4 := t → v9→ v10→ u1→ u2→ v1→ v2→ v3→ v4→ v5→ v6→ u5→ u6→ s. Since every black edge
is used exactly once in the outgoing path and incoming path, it is easy to verify that the total weight of this
solution is 22. Moreover, this solution is not general-reverse-compatible since the paths P1 and P3 do not
satisfy the path-reverse-compatibility condition (recall Definition 2.1).

Therefore, to prove the theorem, it is now enough to show that all other solutions have a weight at least
23. A simple observation is that any solution has weight at least 22 since the shortest path from s to t has
weight 11. Moreover, there are exactly two such s ; t paths of weight 11, viz. P1 and P2. Hence suppose
to the contrary that there is a solution, say S, of weight exactly 22. We now show that S must exactly be the
solution described in above paragraph. We first show the following lemma:

Lemma 2.11. Any t ; s path uses at least one black edge from each of P1 and P2.

Proof. Note that there are only two edges outgoing from t: a blue edge and a red edge. Suppose the first
edge on t ; s path is the red edge t→ v9. Then we must reach v10 since the only outgoing edge from v9 is
v9→ v10. From v10, we can either go back to t (and start the argument again) or the other option is to go to
u1 which forces the use of edge u1→ u2. So we have used v9→ v10 from P2 and u1→ u2 from P1.

Suppose the first edge on t ; s path is the blue edge t → v7. This forces the use of the edge v7 → v8
from P2 since it is the only outgoing edge from v7. From v8, we can either reach v9 (and the same argument
applies as in previous case) or u3. Reaching u3 forces the use of the edge u3 → u4 from P1 since it is the
only outgoing edge from u3.

Hence, in order to obtain a solution of weight exactly 22 we cannot take either P1 twice or P2 twice for
the choice of the two s ; t paths: since this itself gives a weight of 22, and the above claim implies a weight
of at least 1 from the “other” path. This shows the correctness of the following lemma:

Lemma 2.12. The two s ; t paths in S are exactly P1 and P2. Hence, to maintain a weight of exactly 22 it
follows that we cannot use any black edge twice in the t ; s paths in S.

Observe that we still need to choose two t ; s paths, say Q1 and Q2, in S. The following lemma shows
that S needs to use both the red edge and blue edge outgoing from t:

Lemma 2.13. Without loss of generality, the first edges of Q1 and Q2 are t→ v7 and t→ v9

Proof. Suppose not. Since the only two outgoing edges from t are the blue edge t → v7 and the red edge
t→ v9, it follows that the first edge of both Q1 and Q2 is the same (and is either t→ v7 or t→ v9). Suppose
the first edge of both Q1 and Q2 is t → v7 (the argument for the first edge being t → v9 is similar). Since
v7→ v8 is the only outgoing edge from v7, this implies that we must choose this edge in both Q1 and Q2.
Since the two s ; t paths in S are P1 and P2, this shows that the weight of S is at least 23.

Let us now consider the path Q1: it starts with the edge t→ v7. Since the only outgoing edges from v7,u3
are v7 → v8,u3 → u4 respectively it follows that Q1 contains the sub-path Q′1 := t → v7 → v8 → u3 → u4.
Similarly for Q2, the first edge being t → v9 implies that it contains the sub-path Q′2 := t → v9 → v10 →
u1 → u2. After this, Q2 cannot contain the edge u2 → u3 (since this would force it to also use the edge
u3→ u4, which was already used by Q1). Hence after Q′2, the path Q2 must follow the sub-path u2→ v1→
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v2 → v3 → v4 → v5 → v6. After reaching v6, the path Q2 has two choices: either use the edge v6 → v7
or v6 → v5. But it cannot use the edge v6 → v7 since that would force it to use the edge v7 → v8, which
was already used by Q1. Therefore, from v6 the path Q2 reaches u5 and is then forced to reach u6. At this
point Q2 has two choices: either continue from u6 to t (in which case we again apply the whole argument
starting from Lemma 2.13), or use the edge u6→ s of weight 0. Therefore we have that Q2 is exactly the
path P4 := t→ v9→ v10→ u1→ u2→ v1→ v2→ v3→ v4→ v5→ v6→ u5→ u6→ s. It remains to show
that the path Q1 is exactly P3. We know that Q1 contains the sub-path Q′1 := t→ v7→ v8→ u3→ u4. From
u4, there are two choices: either use the edge u4 → s of weight 0, or use the edge u4 → u5. However, in
the second choice, the next edge on Q2 must be u5 → u6. But this edge was already used by Q2 which
contradicts Lemma 2.13. This shows that Q1 is exactly the path P3 = t → v7→ v8→ u3→ u4→ s, which
completes the proof of the theorem.

3 f (k) ·no(k)f (k) ·no(k)f (k) ·no(k) Hardness for 2-SCSS-(k,1)2-SCSS-(k,1)2-SCSS-(k,1)

In this section we prove Theorem 1.2. We reduce from the GRID TILING problem (see Section 1.1 for
definition). Chen et al. [3] showed that for any computable function f , the existence of an f (k) · no(k)

algorithm for CLIQUE implies ETH fails. Marx [11] gave the following reduction which transforms the
problem of finding a k-CLIQUE into an instance of k× k GRID TILING as follows: For a graph G = (V,E)
with V = {v1,v2, . . . ,vn} we build an instance IG of GRID TILING

• For each 1≤ i≤ k, we have ( j, `) ∈ Si,i if and only if j = `.
• For any 1≤ i 6= j ≤ k, we have (`,r) ∈ Si, j if and only if {v`,vr} ∈ E.

It is easy to show that G has a clique of size k if and only if the instance IG of GRID TILING has a solution.
Therefore, assuming ETH, the following special case of k× k GRID TILING also cannot be solved in time
f (k) ·no(k) for any computable function f .

k× k GRID TILING*
Input : Integers k,n, and k2 non-empty sets Si, j ⊆ [n]× [n] where 1 ≤ i, j ≤ k
such that for each 1≤ i≤ k, we have ( j, `) ∈ Si,i if and only if j = `
Question: For each 1≤ i, j ≤ k does there exist a value γi, j ∈ Si, j such that

• If γi, j = (x,y) and γi, j+1 = (x′,y′) then x = x′.
• If γi, j = (x,y) and γi+1, j = (x′,y′) then y = y′.

Consider an instance of GRID TILING*. We now build an instance of edge-weighted 2-SCSS-(2k−1,1)
as shown in Figure 4. We consider 4k special vertices: (ai,bi,ci,di) for each i ∈ [k]. We introduce k2 red
gadgets where each gadget is an n×n grid. Let weight of each black edge be 4.

Definition 3.1. For each 1≤ i≤ k, an ai ; bi canonical path is a path from ai to bi which starts with a blue
edge coming out of ai, then follows a horizontal path of black edges and finally ends with a blue edge going
into bi. Similarly an c j ; d j canonical path is a path from c j to d j which starts with a blue edge coming out
of c j, then follows a vertically downward path of black edges and finally ends with a blue edge going into
d j.

For each 1 ≤ i ≤ k, there are n edge-disjoint ai ; bi canonical paths: let us call them P1
i ,P

2
i , . . . ,P

n
i

as viewed from top to bottom. They are named using magenta color in Figure 4. Similarly we call the
canonical paths from c j to d j as Q1

j ,Q
2
j , . . . ,Q

n
j when viewed from left to right. For each i ∈ [k] and ` ∈ [n]
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𝑐𝑐1 𝑐𝑐𝑘𝑘𝑐𝑐𝑗𝑗

𝑑𝑑1 𝑑𝑑𝑗𝑗 𝑑𝑑𝑘𝑘

Δ(𝑛𝑛𝑛𝑛 − 𝑛𝑛 + 1)

Δ(𝑛𝑛𝑛𝑛 − 1)

Δ𝑛𝑛𝑛𝑛

Δ 𝑛𝑛

Δ(𝑛𝑛 − 1)

Δ

Δ (𝑛𝑛𝑘𝑘 + 𝑛𝑛 − 𝑛𝑛𝑛𝑛)

Δ(𝑛𝑛𝑘𝑘 + 𝑛𝑛 − 𝑛𝑛𝑛𝑛 − 1)

Δ(𝑛𝑛𝑛𝑛 − 𝑛𝑛𝑛𝑛 + 1)

𝑃𝑃𝑖𝑖1

𝑃𝑃𝑖𝑖𝑛𝑛

𝑄𝑄𝑗𝑗1 𝑄𝑄𝑗𝑗𝑛𝑛

Δ

Δ 𝑛𝑛

2Δ

Δ (𝑛𝑛𝑛𝑛)

Δ(𝑛𝑛𝑛𝑛 − 𝑛𝑛 + 1)

Δ(𝑛𝑛𝑛𝑛 − 𝑛𝑛 + 2)

Δ𝑛𝑛𝑛𝑛

Δ𝑛𝑛𝑛𝑛

Δ𝑛𝑛𝑛𝑛
ΔΔ 𝑛𝑛

Δ 2Δ Δ 𝑛𝑛 Δ(𝑛𝑛𝑛𝑛 − 𝑛𝑛 + 1) Δ (𝑛𝑛𝑛𝑛)
Δ(𝑛𝑛𝑛𝑛 − 𝑛𝑛 + 2)

Δ(𝑛𝑛𝑛𝑛 − 𝑛𝑛 + 1)

Δ(𝑛𝑛𝑛𝑛 − 𝑛𝑛 + 2)

Δ(𝑛𝑛 − 1)Δ(𝑛𝑛𝑛𝑛 − 1)
Δ(𝑛𝑛𝑛𝑛 − 𝑛𝑛 + 1)

Δ(𝑛𝑛𝑛𝑛 − 𝑛𝑛 + 1)

Δ(𝑛𝑛𝑛𝑛 − 𝑛𝑛 + 2)

Δ (𝑛𝑛𝑛𝑛 − 𝑛𝑛𝑛𝑛 + 𝑛𝑛) Δ(𝑛𝑛𝑛𝑛 − 𝑛𝑛𝑛𝑛 + 1)

Δ (𝑛𝑛𝑛𝑛 − 𝑛𝑛𝑛𝑛 + 𝑛𝑛 − 1)

Figure 4: The instance of 2-SCSS-(k,1) created from an instance of Grid Tiling*.

we assign a weight of ∆(nk−ni+n+1−`),∆(ni−n+`) to the first, last edges of P`
i (which are colored blue)

respectively. Similarly for each j ∈ [k] and `∈ [n] we assign a weight of ∆(nk−n j+n+1−`),∆(n j−n+`)
to the first, last edges of Q`

j (which are colored blue) respectively. Thus the total weight of first and last blue
edges on any canonical path is exactly ∆(nk+ 1). The idea is to choose ∆ large enough such that in any
optimum solution the paths between the terminals will be exactly the canonical paths. We will see that
∆ = 7n6 will suffice for our reduction. Any canonical path uses two blue edges (which sum up to ∆(nk+1)),
(k+1) black edges not inside the gadgets and (n−1) black edges inside each gadget. Since the number of
gadgets that each canonical path visits is k and the weight of each black edge is 4, it follows that the total
weight of any canonical path is α = ∆(nk+1)+4(k+1)+4k(n−1).

Intuitively the k2 gadgets correspond to the k2 sets in the GRID TILING* instance. Let us denote the
gadget which is the intersection of the ai ; bi paths and c j ; d j paths by Gi, j. If i = j, then we call Gi, j as
a symmetric gadget; else we call it as a asymmetric gadget. We perform the following modifications on the
edges inside the gadget: (see Figure 4)

• Symmetric Gadgets: For each i ∈ [k], if (x,y) ∈ Si,i then we color green the vertex in the gadget Gi,i

which is the unique intersection of the canonical paths Px
i and Qy

i . Then we add a shortcut as shown in
Figure 5. The idea is if both the ai ; bi path and ci ; di path pass through the green vertex then the
ai ; bi path can save a weight of 2 by using the green edge and a vertical downward edge ((which is
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q
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2

2

u r

q

p

Figure 5: Let u,r be two consecutive vertices on the canonical path say P`
i . Let r be on the canonical path

Q`′
j and let p be the vertex preceding it on this path. If r is a green (respectively orange) vertex then we

subdivide the edge (p,r) by introducing a new vertex q and adding two edges (p,q) and (q,r) of weight
2. We also add an edge (u,q) of weight 2 (respectively 3). The idea is if both the edges (p,r) and (u,r)
were being used initially then now we can save a weight of 2 (respectively 1) by making the horizontal path
choose (u,q) and then we get (q,r) for free, as it is already being used by the vertical canonical path.

already being used by c j ; d j canonical path)) to reach the green vertex, instead of paying a weight
of 4 to use the horizontal edge reaching the green vertex.
• Aymmetric Gadgets: For each i 6= j ∈ [k], if (x,y)∈ Si, j then we color orange the vertex in the gadget

Gi,i which is the unique intersection of the canonical paths Px
i and Qy

i . Then we add a shortcut as
shown in Figure 5. The idea is if both the ai ; bi path and c j ; d j path pass through the green vertex
then the ai ; bi path can save a weight of 1 by using the orange edge of weight 3 followed by a
vertical downward edge (which is already being used by c j ; d j canonical path) to reach the orange
vertex, instead of paying a weight of 4 to use the horizontal edge reaching the green vertex.

From Figure 4, it is easy to see that each canonical path has weight equal to α .

3.1 Vertices and Edges not shown in Figure 4

The following vertices and edges are not shown in Figure 4 for sake of presentation:

• Add two vertices s and t.
• For each 1≤ i≤ k, add an edge (s,ci) of weight 0.
• For each 1≤ i≤ k, add an edge (di, t) of weight 0
• Add edges (t,ak) and (b1,s) of weight 0.
• For each 2 ≤ i ≤ k, introduce two new vertices ei and fi. We call these 2k− 2 vertices as bridge

vertices.
• For each 2≤ i≤ k, add a path bi→ ei→ fi→ ai−1. Set the weights of (bi,ei) and ( fi,ai−1) to be zero.
• For each 2≤ i≤ k, set the weight of the edge (ei, fi) to be W . We call these edges as connector edges.

The idea is that we will choose W large enough so that each connector edge is used exactly once in an
optimum solution for 2-SCSS-(k,1). We will see later that W = 53n9 suffices for our reduction.

We need a small technical modification: add one dummy row and column to the GRID TILING* instance.
Essentially, we now have a dummy index 1. So neither the first row nor the first column of any Si, j has any
elements in the GRID TILING* instance. That is, no green vertex or orange vertex can be in the first row or
first column of any gadget. Let

β = 2k ·α +W (k−1)− (k2 + k) (1)

We now prove two theorems which together give a reduction from GRID TILING* to 2-SCSS-(k,1).
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3.2 GRID TILING* has a solution⇒⇒⇒ 2-SCSS-(k,1)2-SCSS-(k,1)2-SCSS-(k,1) has a solution of weight≤ β≤ β≤ β

First we show the easy direction.

Theorem 3.2. GRID TILING* has a solution implies OPT for 2-SCSS-(k,1) is at most β .

Proof. For each 1 ≤ i, j ≤ k let si, j ∈ Si, j be the vertex in the solution of the GRID TILING* instance.
Therefore for every i ∈ k we know that each of the k vertices si,1,si,2, . . . ,si,k have the same x-coordinate, say
δi. Similarly for every j ∈ [k] each of the k vertices s1, j,s2, j, . . . ,sk, j has the same x-coordinate, say γ j. We
use the following path for the t ; s path in our solution:

• First use the edge (t,ak). This incurs weight 0.

• For each k≥ i≥ 2, use the canonical ai ; bi path Pδi
i followed by the path bi→ ei→ fi→ ai−1. This

way we reach a1. Finally use the canonical path Pδ1
1 to reach b1. The total weight of these edges is

α · k+W (k−1).
• Finally use the edge (b1,s) of weight 0.

Therefore, with a total weight of α · k+W (k− 1) we have a t ; s path. Since we have used all the k− 1
connector edges in the t ; s path, we can now use them for free in s ; t paths. In particular, we get k−1
s ; t paths given by s→ ei→ fi→ t for each 2 ≤ i ≤ k. Note that the total weight of these (k− 1) s ; t
paths is 0, since for each 2≤ i≤ k the edge (ei, fi) is obtained for free (since it was used in the t ; s path)
and both the edges (s,ei) and ( fi, t) have weight 0.

Now, for each j ∈ [k], we add the canonical c j ; d j path Qγ j
j . For each j ∈ [k], note that the edges

(s,c j) and (d j, t) have weight 0. Hence, for each j ∈ [k] we get a s ; t path whose weight is exactly
equal to α . However, now the canonical paths will encounter a green or orange vertex in each gadget
(depending on whether the gadget is symmetric or asymmetric). As shown in Figure 5, we can save 2 in
every symmetric gadget and 1 in every asymmetric gadget. Since number of symmetric gadgets is k and
number of asymmetric gadgets is (k2− k), we save a total weight of 2k+(k2− k) = (k2 + k).

Hence, the total weight of the solution is equal to
(

α · k+W (k−1)
)
+α · k− (k2 + k) = β .

3.3 2-SCSS-(k,1)2-SCSS-(k,1)2-SCSS-(k,1) has a solution of weight≤ β ⇒≤ β ⇒≤ β ⇒ GRID TILING* has a solution

We now prove the other direction which is more involved. First we show some preliminary lemmas:

Definition 3.3. For each i ∈ [k], let us call the set of gadgets {Gi,1,Gi,2, . . . ,Gi,k} as the gadgets of level i.

Lemma 3.4. In any optimum solution for 2-SCSS-(k,1), the t ; s path

• Must use all the k−1 connector edges
• Contains an ai ; bi path (which does not include any connector edge) for each i ∈ [k]

Proof. The only outgoing edge from t is (t,ak) and the only incoming edge into s is (b1,s). Hence, the t ; s
is essentially a path from ak ; b1. Since the edges in the gadgets are oriented downwards and rightwards,
the only way to reach a gadget of level i−1 from a gadget of level i is to go to the vertex bi and then use the
path bi→ ei→ fi→ ai−1. That is, we must use all the (k− 1) connector edges which are given by (ei, fi)
for each 2≤ i≤ k.

The above argument also implies that we have a ai ; bi path for each 2≤ i≤ k. Since the only coming
incoming edge into s is (b1,s) we must also have a a1 ; b1 path in the solution. Therefore, the t ; s path
contains an ai ; bi path for each i ∈ [k]. Suppose there is some i ∈ [k] such that the ai ; bi path used in the
t ; s path uses any connector edge. Since we have already used the connector edges to go from a gadgets
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of a certain level to gadgets of a level above it, we now need to pay again for this connector edge. Therefore,
the weight of the optimum solution is at least W (k−1)+W . We show below that this is greater than β .

β =W (k−1)+2k
(

∆(nk+1)+4(k+1)+4k(n−1)
)
− (k2 + k)

≤W (k−1)+2k
(

∆(nk+1)+4(k+1)+4k(n−1)
)

=W (k−1)+2k
(

7n6(nk+1)+4(k+1)+4k(n−1)
)

[Since ∆ = 7n6]

≤W (k−1)+2n
(

7n6(2n2)+4(2n)+4n2
)

[Since k ≤ n]

≤W (k−1)+2n
(

14n8 +8n8 +4n8
)

=W (k−1)+52n9

≤W (k−1)+53n9

=W (k−1)+W [Since W = 53n9]

Contradiction.

Lemma 3.5. In the optimum solution exactly k of the s ; t paths cannot use any connector edge.

Proof. We can get at most (k−1) s; t paths for free given by s→ ei→ fi→ t since all the (k−1) connector
edges have been used by the t ; s path. Let us call these paths as cheap paths. We now claim that optimum
solution uses all the (k−1) cheap paths. Suppose not. Let P be the s ; t path used in optimum instead of a
cheap path. Note that the only outgoing edges from s are to {c1,c2, . . . ,ck} and the only incoming edges into
t are from {d1,d2, . . . ,dk}. Moreover, the t ; s path in the optimum does not use any blue edge incident on
{c1,c2, . . . ,ck} or {d1,d2, . . . ,dk} since that either brings us back to t or we have already reached s. Hence,
P pays now at least two blue edges. Replacing P by a cheap path gives a solution of smaller weight than
optimum, which is a contradiction. Therefore, the optimum contains exactly (k−1) cheap s ; t paths.

Suppose there is another s ; t path uses a connector edge. Since there are exactly (k− 1) connector
edges, some connector edge is used by two different s ; t paths. Hence, the weight of the optimum solution
is ≥W (k−1)+W =Wk > β , which is a contradiction.

We call the s ; t paths described in Lemma 3.5 as expensive paths. Note that the only outgoing edges
from s are to {c1,c2, . . . ,ck} and the only incoming edges into t are from {d1,d2, . . . ,dk}. So, we can think
of the expensive paths as actually k paths from {c1,c2, . . . ,ck} to {d1,d2, . . . ,dk}. Since expensive edges do
not use any connector edge, the existence of a c j ; d` path implies `≥ j.

Definition 3.6. For each i ∈ [k], let λi,µi denote the number of ci ; di,ci ; {di+1,di+2, . . . ,dk} expensive
paths in the optimum solution.

We know that ∑
k
i=1 λi ≤ k and λ j ≥ 0 for each j ∈ [k].

Lemma 3.7. For each i ∈ [k], the sum of weights of blue edges incident on ai and bi on the ai ; bi path in
any optimum solution is at least ∆(nk+1).

Proof. From Lemma 3.4, for each i∈ [k] we know that any optimum solution contains an ai ; bi path which
does not include any connector edge, i.e., the edges of this ai ; bi path are contained among the gadgets
of level i. We must use at least one blue edge incident on ai and one blue edge incident on bi. Let the
blue edges incident on ai,bi be from the canonical paths P`

i ,P
`′
i . Since the edges in gadgets are oriented

downwards and rightwards, it follows that `′ ≥ `. Hence the sum of weights of the blue edges is given by
∆(nk−ni+n+1− `)+∆(ni−n+ `′) = ∆(nk+1)+(`′− `)≥ ∆(nk+1).
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Lemma 3.8. The sum of weights of the blue edges in any expensive path is at least ∆(nk+1), with equality
iff the path is canonical.

Proof. Suppose the expensive path is c j ; d` path. Since expensive paths do not use connector edges, we
have ` ≥ j. We consider two cases: ` = j and ` > j. Suppose ` > j. The minimum weights of any blue
edges incident on c j,d` are ∆(nk− n j+ 1),∆(n`− n+ 1) respectively. Hence, the sum of weights of these
edges is ∆(nk−n j+1)+∆(n`−n+1) = ∆(nk+1)+∆+∆(n(`− j−1))≥ ∆(nk+2).

If ` = j, then let the blue edges incident on c j,d j be from the canonical paths Qr
j,Q

r′
j . Since expensive

paths do not use connector edges, we have r′ ≥ r. The weight of blue edges incident on c j from canonical
path Qr

j is ∆(nk− n j + n+ 1− r) and the weight of the blue edge incident on d j from the canonical path
Qr′

j is ∆(n j−n+ r′). Hence, the sum of weights of these edges is ∆(nk−n j+n+1− r)+∆(n j−n+ r′) =
∆(nk+ 1)+∆(r′− r)) ≥ ∆(nk+ 1), with equality if and only if the path is canonical (recall an expensive
path does not use any connector edges).

Lemma 3.9. In any optimum solution, the weight of blue edges is at least 2k ·∆(nk+1) and the weight of
black edges is at least 2k

(
4(k+1)+4k(n−1)

)
Proof. From Lemma 3.7, we know that the sum of weights of blue edges incident on ai and bi on the ai ; bi

path in any optimum solution is at least ∆(nk+1) for each i∈ [k]. From Lemma 3.8, we know that the sum of
weights of the blue edges in any expensive path is at least ∆(nk+1). Moreover, these blue edges are incident
on some c j and d` for some k≥ `≥ j≥ 1. Hence, the total weight of blue edges is at least 2k ·∆(nk+1).

Lemma 3.10. In any optimum solution, the weight of black edges is at least 2k
(

4(k + 1) + 4k(n− 1)
)

,
without considering the savings via orange and green edges (see Figure 5).

Proof. From Lemma 3.4, we know that for each i ∈ [k] there is an ai ; bi path in the optimum solution
which does not include any connector edge. Hence, the edges of this ai ; bi paths are contained in the
gadgets of level i. Hence, we need to at least buy the set of horizontally right black edges which take us
from ai to bi. These black edges have weight 4(k+ 1)+ 4k(n− 1). Since the edges of the ai ; bi paths
are contained in the gadgets of level i and the sets of horizontally right black edges in gadgets of different
levels are disjoint, the total weight of horizontally right black edges is at least k

(
4(k + 1)+ 4k(n− 1)

)
.

Similarly, let c j ; d` be an expensive path for some `≥ j. Again, we need to at least buy at least the set of
vertically downward black edges which take us from c j to d`. These vertically downward black edges have
total weight 4(k+1)+4k(n−1). Even though two expensive paths may use the same vertically downward
edges, they are both to be used in s ; t paths and hence we must pay for them each time. Hence, the
total weight of the horizontally right black edges is at least k

(
4(k+ 1)+ 4k(n− 1)

)
. Combining the two

observations above, we get that the total weight of black edges (horizontally right and vertically downward)
in the optimum solution is 2k

(
4(k+1)+4k(n−1)

)
.

Lemma 3.11. Every expensive path is canonical, i.e., µ j = 0 for all j ∈ [k].

Proof. Suppose an expensive path is not canonical. Hence, from Lemma 3.8, the contribution of the blue
edges of this expensive path is ≥ ∆(nk+ 2). From Lemma 3.9, it follows that the contribution of the blue
edges to the optimum is at least 2k ·∆(nk+1)+∆.

Refer to Figure 5. Note that we can use each shortcut at most
(k+1

2

)
times, once for each pair of paths

that will meet at the orange or green vertex (note that there are total k+1 paths ). There are k ·n green edges
(n in each of the k symmetric gadgets). Since each green shortcut can save a weight of 2, we can save at most
2k ·n from the green edges. Note that in the asymmetric gadgets, there are no shortcuts along the diagonal.
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Hence, an asymmetric gadget can have at most (n2−n) orange edges. There are (k2−k) asymmetric gadgets
and we can save a weight of 1 from each orange edge. So, we can save at most (n2− n)(k2− k) from the
orange edges. Hence, total maximum saving is(

k+1
2

)(
2k ·n+(n2−n)(k2− k)

)
≤ 4k2

2
· (2n2 +n4) [Since k ≤ n]

≤ 2k2 · (3n4)

≤ 6n6

We now claim that the weight of our solution exceeds β , even if we allow this maximum possible saving.
Recall that we have weight of W (k−1) from the connector edges. Hence, the weight our optimum solution
is at least

OPT≥W (k−1)+2k ·∆(nk+1)+∆+2k
(

4(k+1)+4k(n−1)
)
−6n6

=W (k−1)+2k ·∆(nk+1)+2k
(

4(k+1)+4k(n−1)
)
+
(

∆−6n6
)

=W (k−1)+2k ·∆(nk+1)+2k
(

4(k+1)+4k(n−1)
)
+n6 [Since ∆ = 7n6]

>W (k−1)+2k ·∆(nk+1)+2k
(

4(k+1)+4k(n−1)
)

>W (k−1)+2k ·∆(nk+1)+2k(4(k+1)+4k(n−1))− (k2− k)
= β [From Equation 1]

Contradiction.

Note the shortcuts described in Figure 5 again bring the ai ; bi path back to the same horizontal canon-
ical path.

Definition 3.12. We call an ai ; bi path as an almost canonical path if it is basically a canonical path, but
can additionally take the small detour given by the green or orange edges in Figure 5. An almost canonical
path must however end on the same horizontal level on which it began.

Lemma 3.13. For each i ∈ [k], the optimum solution contains an almost canonical ai ; bi path .

Proof. Fix some i ∈ [k]. From Lemma 3.4, we know that the ai ; bi path in the optimum solution does not
include any connector edge, i.e., this path is completely contained in the gadgets of level i. Suppose to the
contrary that the ai ; bi path in the optimum solution is not canonical. From the orientation of the edges
in the gadgets of level i (rightwards and downwards), we know that there is a ai ; bi path in the optimum
solution that starts with the blue edge from P`

i and ends with a blue edge from P`′
i for some `′ > `. Hence,

the contribution of these blue edges is ∆(nk− ni+ n+ 1− `)+∆(ni− n+ `′) = ∆(nk + 1)+∆(`′− 1) ≥
∆(nk+ 1)+∆. Now, a similar argument as in Lemma 3.11 can be applied to show that the weight of this
optimal solution is greater than β . Contradiction.

Theorem 3.14. OPT for 2-SCSS-(k,1) is at most β implies the GRID TILING* instance has a solution.

Proof. By Lemma 3.11, we know that ∑
k
i=1 λi = k and λi ≥ 0 for each i ∈ [k]. We now claim that λi = 1 for

each i ∈ [k].
Let our optimum solution be X . By Lemma 3.11 and Lemma 3.13, we know that X contains

• An ai ; bi almost canonical path for every 1≤ i, j ≤ k.
• k canonical expensive paths.
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In addition, X contains (k−1) connector edges. For the moment let us forget the shortcuts we did in Fig-
ure 5. The weight of X , without considering the shortcuts from Figure 5, is equal to W (k−1)+2k

(
∆(nk+

1)+4(k+1)+4k(n−1)
)
= β +(k2+k). Therefore, we must have at a saving of≥ (k2+k) from the orange

and green shortcuts.
By Lemma 3.13, we know that for each i ∈ [k] there is exactly one ai ; bi path. Moreover it is almost

canonical. Recall that only the horizontal edges can save some weight (see Figure 5). Therefore, we can
use at most k green edges (one for each symmetric gadget). Each canonical expensive path can use (k−1)
orange edges; once for each of the (k−1) asymmetric gadget that it encounters along the way. Suppose we
use δ green edges for some δ ≤ k. Then the total saving is (k−1)∑

k
i=1 λi +2δ = k(k−1)+2δ . Since we

want the total saving to be at least k(k− 1)+ 2k, this forces δ ≥ k. But, we already know that δ ≤ k, and
hence δ = k. This forces that λi = 1 for each i ∈ [k] as follows: If any λi = 0, then we cannot use the green
edge in the symmetric gadget Gi,i. If any λi ≥ 2, then some other λ j = 0 (since ∑

k
i=1 λi = k) and we return

to previous case. Therefore, the total saving is exactly k(k−1)+2k
So, we have that for each j ∈ [k], there is a canonical c j ; d j path in X , say Qγ j

j . Further, X also
contains an ai ; bi almost canonical path for any i ∈ [k], say Pαi

i . The fact that we have a saving of at least
k(k− 1)+ 2k implies we have exactly one intersection in each symmetric gadget and each non-symmetric
gadget. By construction of the gadgets, it follows that

• γi = αi for each i ∈ [k]
• For each 1≤ i 6= j ≤ k there is an edge (αi,γ j).

That is, the set of values (αi,γ j) ∈ Si, j for each 1≤ i, j ≤ k form a solution for the GRID TILING* instance.

3.4 Proof of Theorem 1.2

Finally, we are now ready to prove Theorem 1.2 which is restated below:

Theorem 1.2 . The 2-SCSS-(k,1) problem is W[1]-hard parameterized by k. Moroever, under the ETH,
the 2-SCSS-(k,1) problem cannot be solved in f (k) ·no(k) time for any function f where n is the number of
vertices in the graph.

Proof. Theorem 3.2 implies the W[1]-hardness by giving a reduction which transforms the problem of k×k
GRID TILING* into an instance of 2-SCSS-(k,1) where we want to find k paths from s ; t and one path
from t ; s.

Chen et al. [3] showed for any function f an f (k)no(k) algorithm for CLIQUE implies ETH fails. Com-
posing the reduction of [11] from CLIQUE to GRID TILING*, along with our reduction from GRID TILING*
to 2-SCSS-(k,1), we obtain under ETH there is no f (k)no(k) algorithm for 2-SCSS-(k,1) for any function
f . This shows that the nO(k) algorithm for 2-SCSS-(k,1) given in Section 2 is optimal.

4 Conclusions

In this paper, for any k≥ 1 we studied the 2-SCSS-(k,1) problem and presented an algorithm which finds an
optimum solution in time nO(k), and that is asymptotically optimal under the ETH. This algorithm crucially
used the fact that there always exists an optimal solution for 2-SCSS-(k,1) that has the reverse-compatibility
property. However, we showed in Section 2.4 that the 2-SCSS-(k1,k2) problem need not always have an op-
timal solution which satisfies the general-reverse-compatibility property when min{k1,k2} ≥ 2. Therefore,

16



it remains an important challenging problem to find a similar structure and generalize our method to solve
the 2-SCSS-(k1,k2) problem.

Acknowledgements: We would like to thank DIMACS for its hospitality where a subset of the authors had
fruitful discussions on this problem.
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A Equivalence of Vertex-Weighted and Edge-Weighted Versions

Lemma A.1. The edge-weighted 2-SCSS-(k1,k2) and the vertex-weighted 2-SCSS-(k1,k2) are equivalent.

Proof. First, we show that every instance of the edge-weighted 2-SCSS-(k1,k2) can be reduced to an in-
stance of the vertex-weighted 2-SCSS-(k1,k2). Let G be an edge weighted graph. We replace each edge of
G with a path of length 2 such that the middle vertex weights is that of the corresponding edge. We leave
the weight of the other vertices to be zero. Clearly, this change preserves the weight of the paths.

Next, we provide a reduction from the vertex-weighted 2-SCSS-(k1,k2) to the edge-weighted 2-SCSS-
(k1,k2). Let G be a vertex-weighted graph. We replace each vertex v, with a pair of vertices (vin,vout) and
add an edge from vin to vout with weight equal to weight of v. We connect the incoming edges of v to vin and
the outcoming edges to vout . Again, this reduction preserves the weight of paths which completes the proof
of the lemma.
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