
A greedy approximation algorithm forthe group Steiner problemChandra Chekuri � Guy Even y Guy Kortsarz zJuly 7, 2005AbstratIn the group Steiner problem we are given an edge-weighted graph G = (V;E;w) and msubsets of verties fgigmi=1. Eah subset gi is alled a group and the verties in Si gi are alledterminals. It is required to �nd a minimum weight tree that ontains at least one terminal fromevery group.We present a poly-logarithmi ratio approximation for this problem when the input graphis a tree. Our algorithm is a reursive greedy algorithm adapted from the greedy algorithmfor the direted Steiner tree problem [21, 8℄. This is in ontrast to earlier algorithms that arebased on rounding a linear programming based relaxation for the problem [14, 25℄. We answerin positive a question posed in [14℄ on whether there exist good approximation algorithms forthe group Steiner problem that are not based on rounding linear programs. For every �xedonstant " > 0, our algorithm gives an O((logPi jgij)1+" � logm) approximation in polynomialtime. As pointed out in [14℄, approximation algorithms on trees an be extended to arbitraryundireted graphs by probabilistially approximating the graph by a tree [1, 2, 11℄. This resultsin an additional multipliative fator of O(log jV j) in the approximation ratio, where jV j is thenumber of verties in the graph. The approximation ratio of our algorithm on trees is slightlyworse than the ratio of O(log(maxi jgij) � logm) provided by the LP based approahes [14, 25℄.
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1 IntrodutionThe Steiner tree problem is among the fundamental problems in network design. The input to theSteiner tree problem is an undireted edge-weighted graph G = (V;E;w) and a set of terminalsT � V . The objetive is to �nd a minimum weight tree T that spans the terminals in T . TheSteiner tree problem is known to be NP-hard [13℄ and also APX-hard [5℄. In this paper we onsiderthe group Steiner problem whih is a generalization of the Steiner tree problem. The input to thisproblem also onsists of an edge-weighted graph G = (V;E;w), however instead of a single set ofterminals we are given a olletion of possibly interseting subsets of verties fgigi. Eah subset giis alled a group. The objetive is to �nd a minimum weight tree that ontains at least one vertexfrom eah group. Throughout, we denote the number of groups by m, the number of terminalsj [mi=1 gij by n, the sum of the group sizesPmi=1 jgij by s, and the size of the largest group maxi jgijby N .The group Steiner problem was introdued by Reih and Widmayer [23℄ motivated by appli-ations to wire routing with multi-port terminals in physial VLSI design. See [14℄ for additionalreferenes to this problem. The problem is of interest not only beause of its appliations butalso beause of its relation to the Steiner tree problem in both undireted and direted graphs.The searh for good approximation algorithms for this problem has inspired new tehnial ideas[14, 19, 20, 25℄.The group Steiner problem is a strit generalization of the Steiner tree problem, and in [14℄it is shown that very speial ases of the group Steiner problem are harder to approximate thanthe Steiner tree problem: in partiular it is shown that the set over problem an be redued inan approximation preserving way to the group Steiner problem on star graphs. From the hardnessof approximating set over [12, 22℄, it follows that the group Steiner problem on stars, and henetrees, is NP-hard to approximate to within a fator better than  lnm for some onstant , or to afator better than (1 � o(1)) lnm unless NP � DTIME(nlog log n). In reent work, Halperin andKrauthgamer [16℄ improved the hardness of approximation. They showed that for every � > 0, thegroup Steiner problem on trees is hard to approximate to within a fator better than 
(log2��m),unless NP problems an be solved by quasi-polynomial time Las-Vegas algorithms.In terms of upper bounds, the �rst sub-linear approximation ratio for this problem was anO(pm) ratio given by Bateman et al. [4℄. Garg et al. [14℄ improved this substantially and obtainedthe �rst poly-logarithmi approximation ratio for this problem. They gave an O(logN logm)approximation algorithm for the problem on trees based on an elegant randomized rounding of thenatural linear programming relaxation for the problem. It should be mentioned that their algorithmahieves a ratio of O(minfh; logNg logm) on trees of height1 h. They extended their algorithm fortrees to general undireted graphs by using Bartal's [1, 2℄ probabilisti approximation of a �nitemetri by tree metris. Using the best possible probabilisti approximation obtained in [11℄, theapproximation ratio for the group Steiner problem on general graphs is O(logN logm log jV j) wherejV j is the number of verties in G. Zosin and Khuller [25℄ ahieved similar results in a later paper;they also use the natural LP relaxation, however their algorithm is dual based and is substantiallydi�erent from the primal based algorithm in [14℄. In [6℄ the algorithm of [14℄ is derandomized to givea deterministi algorithm ahieving the same approximation ratio. Note that the approximationratio for trees is almost mathed by the hardness fator in [16℄.Approximation algorithms for the group Steiner problem have been obtained through a di�erentdiretion by reduing it to the direted Steiner tree problem. The direted Steiner tree problem isa generalization of the Steiner tree problem to direted graphs and is de�ned as follows. We are1The height of a rooted tree is the maximum number of edges along a simple path from the root to a leaf.1



given an edge-weighted direted graph G = (V;A), a set of terminals T � V and a speial vertexr 2 V alled the root. The objetive is to �nd a minimum weight out-tree T rooted at r in whih rhas a direted path to every terminal. The direted group Steiner problem is also de�ned similarlyas a generalization of the group Steiner problem: we are given a root in addition to the groupsand the goal is to �nd a min-weight tree suh that there is a direted path from the root to atleast one vertex of eah group. It is an easy observation that the direted Steiner tree problemand the direted group Steiner problem are equivalent. For the direted Steiner tree problem, theurrent best known approximation algorithm is by Charikar et al. [8℄. They gave an algorithm thatgiven an integer parameter i � 1, ahieves an O(i3m1=i)-approximation2 and has a running timeof O(ni). Hene, for any �xed ", an O(m") approximation an be obtained in polynomial time.More interestingly, an O(log3m) approximation an be obtained in quasi-polynomial time (i.e.,O �nlogm� time) giving strong evidene for the onjeture that the problem has a poly-logarithmiapproximation ratio. These results arry over to the group Steiner problem. We note that thealgorithm in [8℄ is based on a greedy framework [24, 21, 8℄.Our Results: The two known poly-logarithmi approximation algorithms for the group Steinerproblem are both based on rounding a solution to the linear programming relaxation [14, 25℄. In[14℄ the following question is asked: is there a \ombinatorial" poly-logarithmi approximationalgorithm for the group Steiner problem? By ombinatorial they imply an algorithm that is notbased on solving an LP relaxation. In this paper we answer their question and give suh analgorithm for trees. For any �xed " > 0, the approximation ratio obtained by our algorithm isO( 1"�log log n � (log n)1+" � logm) whih is only slightly worse than the ratio of O(logN logm) given in[14, 25℄. Following [14℄, an approximation algorithm on trees allows us to obtain an approximationalgorithm for general graphs: the input graph is approximated probabilistially by tree metris[2, 7, 11℄. Given an input graph, the algorithm in [11℄ produes a tree suh that the expeteddistane between any pair of verties in the tree is at most O(log jV j) times the distane betweenthe pair in the graph. We simply run our algorithm on this tree. The algorithm in [11℄ is randomized.It an be derandomized by using ideas from [7℄. We refer the reader to [7, 11℄ for more details.Even and Kortsarz [9℄ laimed an approximation algorithm for the group Steiner problem ontrees with an approximation ratio of O(log2 n= log log n). The analysis presented in [9℄ ontains anerror. We rely on some of the methods used in [9℄: the greedy framework [24, 21, 8℄, geometrisearh, and avoiding low overage trees. The greedy algorithms in [21, 8℄ run in quasi-polynomialtime to obtain a poly-logarithmi ratio. In this paper we use several tehnial ideas to redue therunning time to be polynomial when the input graph is a tree. Some of our ideas are relevant forthe direted Steiner tree problem. It is our belief that further ideas along these lines may yield apolynomial time algorithm with a poly-logarithmi ratio for the direted Steiner tree problem.Tehniques: Our algorithm follows the greedy methodology of [21, 8℄. The density of a partialsolution F is the ratio of the weight of F divided by the number of groups overed by F . If analgorithm guarantees a partial solution with density at most � times the density of the optimal tree,then this algorithm an be used iteratively to �nd a tree that overs all groups and the resultingapproximation ratio will be O(� logm).Given a tree of height h, the algorithm in [8℄ yields a partial solution with density O(h) timesthe density of the optimal tree. However, the running time of the algorithm is exponential inh. Obtaining polynomial running time requires modi�ations that redue both the exponent (i.e.2In [8℄, a ratio of O(i2m1=i) is laimed but this relied on an erroneous lemma in [24℄. The lemma in [24℄, when�xed (see [17℄), results in a worsening of the approximation ratio laimed in [8℄.2



the height) and the base (i.e. number of iterations, number of demand values per iteration, andnumber of hildren per node). We aomplish this using several ideas. The �rst of these involvepreproessing the input tree to satisfy ertain height and degree requirements.� Height reduing transformation: for any � we give a transformation that redues the heightof the tree to O(log� n) while inurring a multipliative fator of O(�) in the weight of theoptimal solution.� Degree reduing transformation: given a parameter � � 3 we redue the maximum degree ofthe tree to � + 1 while (additively) inreasing the height of the tree by O(log�=2 n) and notinreasing the weight of the optimal solution.By hoosing � = log" n and � = log n we obtain a tree with height O(1" logn= log logn) andmaximum degree O(log n). Further, we are guaranteed that there is a solution in this tree of weightat most O(log" n) times the weight of an optimal solution in the input tree.Finally, the greedy algorithm is modi�ed so as to redue the number of reursive alls by usinggeometri searh and avoiding sub-trees that over few groups. These modi�ations ombined withthe preproessing mentioned above result in a polynomial time algorithm. Although our algorithmruns in polynomial time, it is not eÆient. Our goal is to investigate the greedy approah to thisproblem and we have not made muh e�ort to hoose the best possible parameters to optimize therunning time.Our height redution proedure is non-trivial and we use it to obtain an algorithm for trees.However, for arbitrary graphs our �rst step is to redue the graph to a tree via probabilistiapproximation. The trees returned by the algorithms in [1, 2, 7, 11℄ are HSTs (hierarhially wellseparated) and height redution for these strutured trees that ahieves the same bounds as ourproedure is straightforward. For an example of this latter kind of height redution, see Bartal,Charikar, and Raz [3℄.Organization Setion 2 ontains the formal problem de�nition and useful notation for the restof the paper. In Setion 3 we present our greedy algorithm with geometri searh and analyze itsperformane. We show that the running time of the algorithm is polynomial for trees with heightand degree appropriately bounded. The height and degree reduing transformations are presentedin Setions 4 and 5. We onlude in Setion 6 with some remarks.2 PreliminariesProblem Formulation The group Steiner problem restrited to trees is de�ned as follows. Theinput onsists of (i) a rooted tree T = (V;E) with a root r, (ii) non-negative edge weights w(e),and (iii) a olletion of vertex subsets fgigi. The subsets gi are referred to as groups and vertiesin [igi are referred to as terminals. A group gi is overed by a subtree T 0 = (E0; V 0) if gi \ V 0 6= �.A over of the groups is a tree T 0 that overs every group and ontains the root r. The goal is to�nd a minimum weight over.Note that we onsider a rooted version of the group Steiner problem. This is not a restritionsine the unrooted version and the rooted version are polynomially equivalent (i.e., if no root isspei�ed, simply run the algorithm jV j times eah time with a di�erent node assigned as the root).A tree T 0 � T is z-over if it overs at least z groups. We onsider also the problem of �ndinga minimum weight z-over. 3



Notation and De�nitions The input to our problem is a rooted tree. A hild-parent and anan anestor-desendant relation is naturally indued over the verties. The parent of a non-rootnode v is denoted by p(v). The subtree rooted at a node v is denoted by Tv. Let e = (u; v) be anedge where u is the parent of v. The subtree indued by the edge (u; v) is the tree Tv [ f(u; v)g,namely, the tree Tv in addition to the edge (u; v) and the node u. We denote the subtree induedby the edge (u; v) by T(u;v). We denote the set of leaves of a tree T by L(T ).Let m denote the number of groups, n = j [mi=1 gij denote the number of terminals, and s =Pmi=1 jgij denote the sum of the group sizes. Note that s might be signi�antly greater than n, andtherefore, s is used to measure the input length.Let n(T 0) denote the number of terminals in T 0. For a rooted subtree Tu, we denote n(Tu)simply by nu. The number of groups overed by T 0 is denoted by m(T 0). The sum of the edgeweights in a subtree T 0 is denoted by w(T 0). The density of a subtree tree T 0 is de�ned as(T 0) 4= w(T 0)m(T 0) :The height of a tree is the maximum number of edges along a simple path from the root to aleaf. The height of a tree T is denoted by h(T ).We interpret every subtree T 0 that ontains the root r as a partial over, that is, T 0 oversa subset of the groups. A partial over transforms a problem instane into a residual problem.The residual problem is obtained by delaring all the terminals in the groups overed by T 0 to benonterminals. (Weights of edges in T 0 ould be zeroed in the residual problems, but the analysiswe present does not bene�t by this, so we keep the edge weights unhanged.) Observe that if T �overs the groups in T , then T � overs the groups in every residual problem. Hene the weight ofan optimal solution to the residual problem is no greater than the weight of an optimal solution tothe initial problem.Preproessing. We preproess the tree so that the total number of nodes is O(n) and every nodeis a terminal as follows:1. Eliminate every nonterminal leaf. Obviously, this does not a�et the set of feasible solutions.Hene, we may assume that every leaf is a terminal.2. Eliminate every nonterminal interior node v of degree two. This is done by replaing thelength two path p = x-v-y that traverses v by a new edge (x; y). The weight of the new edgeis w(x; v)+w(v; y). Hene, we may assume that every interior node has at least two hildren,and therefore, the number of nodes is O(n).3. Add a new dummy group that ontains all the nodes. Obviously, this does not a�et the setof feasible solutions.We remark that if one is not interested in the distintion between n and s, then preproessingan make the groups disjoint. Simply hang new terminals from every old terminal v so that there isone new terminal per group that v belongs to. This redution insures that the groups are disjointat the ost of inreasing n so that it equals s.Finally, by saling edge weights, we may assume that, for every edge e, w(e) > 0 implies thatw(e) > 1.
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Faithful trees. Consider a tree T rooted at r. Every subset of nodes S � V (T ) indues a subtreeT [S℄ onsisting of the union of all the paths in T from the root r to the nodes in S.The setting for the de�nition of faithful trees is as follows. Let A and B be two rooted trees.Let � : V (A) ! V (B) be a funtion (non neessarily one-to-one) that maps the nodes of A tothose of B. In this mapping, A will be the original tree and B will be the height redued tree.For S � V (A), we denote the image of S by �(S). The preimage of S0 � �(V (A)) is denoted by��1(S0). We map the group Steiner instane on A to that in B in a straightforward way as follows.For every group gi � V (A), we de�ne the group g0i � V (B) by g0i = �(gi).Fat 2.1 If S � V (A) overs gi in A then �(S) overs g0i in B. Similarly, if S0 � �(V (A)) oversg0i in B then ��1(S0) overs gi in A.We denote the edge weight funtion of a tree T by wT .De�nition 2.2 The tree B is an �-faithful representation of the tree A if there is a mapping� : V (A)! V (B) suh that the following two onditions hold:1. For every S � V (A), wB(B[�(S)℄) � � � wA(A[S℄).2. For every S0 � �(V (A)), wA(A[��1(S0)℄) � wB(B[S0℄).The following laim summarizes the approximation preserving properties of �-faithful trees.Claim 2.3 Let B denote an �-faithful representation of A. A �-approximate z-over in B induesan � � �-approximate z-over in A.Proof: Let � : V (A)! V (B) denote the mapping to prove that B is an �-faithful representationof A. Let S1 be a minimum weight z-over in A. Let S01 = �(S1). From Fat 2.1, it follows that S01is a z-over in B. From �-faithfulness of �, we have that wB(B[S01℄) � � �wA(A[S1℄). Let S02 be a �-approximate z-over in B. Sine S01 is a z-over in B, wB(B[S02℄) � � �wB(B[S01℄). Let S2 = ��1(S02).Again, from Fat 2.1, S2 is a z-over in A. From faithfulness, we have that wA(A[S2℄) � wB(B[S02℄).Putting together, we have that S2 is a z-over in A and wA(A[S2℄) � � � � �wA(A[S1℄). Sine S1 isa minimum weight z-over in A, the laim follows. 2Transformations. As disussed in Setion 1, we preproess the input tree to redue its heightand degree before applying our greedy algorithm. The height of a rooted tree is the maximumnumber of edges along a simple path from the root to a leaf. We summarize the properties of thesetransformations in the following laims that are proved in Setions 4 and 5.Claim 2.4 Let � > 1. There exists a linear time algorithm that, given a rooted tree T with nnodes, omputes an O(�)-faithful representation T 0 of T suh that h(T 0) = O(log� n).Claim 2.5 Let � � 3. There exists a linear time algorithm that, given a rooted tree T with nnodes, omputes a 1-faithful representation T 0 of T suh that: h(T 0) � h(T ) + blog�=2 n and everynode has at most � hildren.
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3 A Reursive Greedy Algorithm with Geometri SearhIn this setion we present our reursive greedy algorithm whih is similar to the greedy algorithmsin [21, 8℄. The main di�erene is that we use geometri searh to redue the number of reursivealls. Together with the height and degree reduing transformations, this yields a polynomialrunning time. To motivate and explain our modi�ation, we �rst desribe the algorithm in [8℄ forthe direted Steiner tree problem, speializing it to the ase of the group Steiner problem on trees.The notation and desription are only super�ially di�erent from those in [8℄.3.1 Greedy Algorithm from [8℄Algorithm GS gets as input, a subtree Tr0 rooted at r0, edge weights w(e), groups of terminalsfgigi, and a overing demand z0. To simplify notation, we refer to the input as a pair (Tr0 ; z0). Thealgorithm omputes a z0-over of Tr0 .A listing of Algorithm GS appears as Algorithm 1. The stopping ondition of the algorithm iswhen the input subtree onsists of a single leaf, in whih ase the subtree is returned as the over.Here we use the assumption that every leaf is a terminal (see preproessing in Setion 2). Whenthe input subtree is not a single leaf, the algorithm �nds a z0-over by adding augmenting trees,one by one, until a z0-over is found. The variable zres equals the residual demand, namely, thenumber of groups that still need to be overed. The residual tree T res is the tree obtained from Tr0by removing the terminals of groups that have been already overed. The while-loop in lines 3-7iterates while the union of the augmenting trees found so far is not a z0-over. Eah iteration ofthe while loop onsists of three stages: reursion, seletion, and update. In line 4, the algorithm isalled reursively for all the subtrees hanging from hildren of r0 and for all demand values z00 inthe range [1; zres℄. The tree omputed by GS(Tu; z00) is denoted by Cu;z00 . In line 5, an augmentingtree, Taug, is seleted as follows. For every tree Cu;z00 , the weight of the edge (r0; u) is added tothe weight of Cu;z00 , and Taug is piked to be a tree of lowest density among these trees. In line 6updating takes plae. The seleted augmenting tree Taug is added to the over found so far3, andthe residual demand zres and residual tree T res are updated. When the residual demand is zero,the union of the augmenting trees is a z0-over, and the algorithm returns this over.The following two lemmas adapted from [8℄ summarize the analysis of the above algorithmwhih yields an O(h(Tr0) logm) approximation in time O(nO(h(Tr0))).Lemma 3.1 The running time of Algorithm GS is bounded by O((� �m2)O(h)), where h = h(Tr0)and � is the maximum degree of Tr0.Let opt(T resr0 ; zres) denote a min-weight zres-over in T resr0 . The following lemma shows thatthe density of Taug is at most h(Tr0) times the density of opt(T resr0 ; zres). Note that augmentingtrees are omputed only if r0 is not a leaf. If r0 is a leaf, then the density of Tr0 is zero, and isobviously optimal.Lemma 3.2 (Taug) � h(Tr0) � (opt(T resr0 ; zres)):3The algorithm ould redue the ost of the edges in Taug to zero after adding Taug to the over. There does notseem to be a way to use this to improve the analysis.
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Algorithm 1 GS(Tr0 ; z0) - A reursive greedy algorithm for the Group Steiner Problem.1: stopping ondition: if r0 is a leaf then return (Tr0).2: Initialize: over ;, zres  z0, and T res  Tr0 .3: while zres > 0 do4: reurse: for every u 2 hildren(r0) and every z00 2 [1; zres℄Cu;z00  GS(T resu ; z00):5: selet: (pik the lowest density tree)Taug  min-density�Cu;z00 [ f(r0; u)g j u 2 hildren(r0) & z00 2 [1; zres℄	 :6: update:(a) over over [ Taug.(b) zres  zres �m(Taug).() remove all groups overed by Taug from T res.7: end while8: return (over).3.2 Geometri searhWe now present the Modi�ed-GS Algorithm. The modi�ations redue the number of reursivealls per hild of r0 in eah iteration as well as the number of iterations. The inrease in theapproximation ratio aused by these modi�ations is onstant.A listing of the Modi�ed-GS-algorithm is given as Algorithm 2. The new or modi�ed lines areunderlined. The main hange is in Line 4 where the reursive alls are with demand values that arepowers of (1+�) in the range [ 1deg(r0)�(1+ 1� )�(1+�) � zres; zres℄. This hange is referred to as geometrisearh sine the demands are only powers of (1 + �). Small subtrees are avoided in the sense thatthe demand value is at least 1deg(r0)�(1+ 1� )�(1+�) �zres. The seond hange is that the algorithms storesas overh the �rst partial over that overs at least z0=h(Tr0) groups. This modi�ation is used inthe proof of Lemma 3.4 instead of the simulation argument in the proof of Lemma 3.2. The �nalover that is returned is either over or overh, depending on whih has a smaller density. Notethat if overh is returned in the topmost all of Modi�ed-GS, then one needs to invoke Modi�ed-GSagain on the residual tree until a full over is omputed.The proofs of the following two lemmas appear at the end of this setion.Lemma 3.3 Let � be the maximum degree of the tree Tr0 and let � = �(1 + 1=�)(1 + �). Therunning time of Modi�ed-GS(Tr0 ; z0) is O(n�h(Tr0)) where � = � � h(Tr0) � log z0 � � � log1+� �. Ifh(Tr0) = O(logn= log log n), � = O(log n) and 1 � 1=� = O(log n), then the running time ispolynomial in n and in m.The following lemma proves that if 1=� � h(Tr0), the modi�ations a�et the density of theaugmentation tree only by a onstant fator.Lemma 3.4 (Taug) � (1 + �)2h(Tr0 ) � h(Tr0) � (opt(T resr0 ; zres)):7



Algorithm 2 Modi�ed-GS(Tr0 ; z0) - Modi�ed GS Algorithm (uses geometri searh).1: stopping ondition: if r0 is a leaf then return (Tr0).2: Initialize: over ;, zres  z0, and T res  Tr0 .3: while zres > 0 do4: reurse: for every u 2 hildren(r0) andfor every z00 power of (1 + �) in [ 1deg(r0)�(1+ 1� )�(1+�) � zres; zres℄Cu;z00  Modi�ed-GS(Tu; z00):5: selet: (pik the lowest density tree)Taug  min-density�Cu;z00 [ f(r0; u)g	 :6: update:(a) over over [ Taug.(b) zres  zres �m(Taug).() remove all groups overed by Taug from T res.(d) if �rst time m(over) � z0=h(Tr0) then overh  over.7: end while8: return (lowest density tree 2 fover; overhg).We obtain the following theorem from the above two lemmas.Theorem 3.5 Let I be an instane of the group Steiner problem on a tree T of height O(log n= log log n)and maximum degree O(log n). Then Modi�ed-GS runs in polynomial time in n �m and gives anO(h(T ) logm)-approximation.Proof: Choose � = 1=h(T ) in Modi�ed-GS. For this hoie of � and the bounds on the height anddegree of T it follows from Lemma 3.3 that Modi�ed-GS runs in time polynomial in n and m.From Lemma 3.4, we obtain that (Taug) � (1+1=h(T ))2h(T ) �h(T )�(opt(T res; zres)). Therefore(Taug) � e2h(T )(opt(T res; zres)). It follows that we obtain an O(h(T ) logm) approximation. 2Corollary 3.6 There is a polynomial time non LP-based O(1" � 1log log n �(log n)1+"�logm)-approximationalgorithm for the group Steiner problem on trees.Proof: Use Claim 2.4 with � = log" n to redue the height of the input tree to O(log n= log logn)and use Claim 2.5 with � = log n to redue the maximum degree of the tree to O(log n) while stillkeeping the height O(log n= log logn). These transformations worsen the approximation ratio bya multipliative fator of O(log" n). Applying the algorithm Modi�ed-GS to the transformed treegives the desired result. 2Now we prove Lemmas 3.3 and 3.4.Proof of Lemma 3.3: Let t(h; z) denote the running time of Modi�ed-GS on a tree of heighth and with z terminals. The reurrene relation for t(h; z) is obtained by bounding the number of8



reursive alls in Modi�ed-GS. In line 4 eah hild of r0 is alled with at most log1+� � values ofz00 sine we do a geometri searh with powers of (1+�) in the range [zres=�; zres℄. Hene the totalnumber of alls in line 4 is � � log1+� �. A all to Modi�ed-GS with a overing requirement of z0returns a tree with either z0 groups or z0=h(Tr0) groups. Hene in every iteration of the while loopin line 3, zres is redued by at least a fator of (1 � 1=(�h(Tr0 )). Hene the number of iterationsof the while loop is at most �h(Tr0) log z0. Let � be the total number of reursive alls. From theabove we an bound � by �h(Tr0) log z0 ��log1+� �.For eah reursive all, the amount of proessing required to ompute the density of the returnedtree and remove the overed groups is linear in s =Pi jgij. Hene we an write a reurrene relationfor t(h; z0) as t(h; z0) � �t(h� 1; z0) + s for some onstant . From this we obtain t(h; z0) � s�h.When 1=�, �, and h(Tr0) are O(log n) it is easy to verify that � is poly-logarithmi in s (or,equivalently, in n and m). If h(Tr0) is O(log n= log log n) it follows that �h(Tr0 ) is polynomial in nand m. 2Proof of Lemma 3.4: The proof is by indution on the height of Tr0 . The indution basis forh(Tr0) = 1 follows from the fat that the density of Taug is optimal. This follows simply by the fatthat Taug is an edge to a losest leaf.The indution step is proved as follows. Let fu1; u2; : : : ; ukg denote the set of hildren of r0.Let Q� = opt(T resr0 ; zres). Deompose Q� into the trees Q�(r0;u1) [Q�(r0;u2) [ � � �Q�(r0;uk). Reall thatQ�(r0;ui) is the tree Q�ui together with the edge (r0; ui).We distinguish between subtrees that over a large number of groups and those that over few.A subtreeQ�(r0;ui) is bad ifm(Q�(r0;ui)) < zresdeg(r0)�(1+1=�) ; otherwise it is good. Observe that the union ofall bad subtrees overs at most zres=(1+1=�) groups. Hene the union of all good subtrees, denotedby Q�big, overs at least zres=(1 + �) groups. It follows that (Q�big) � (Q�) � (1 + �). By a simpleaveraging argument it also follows that the density of at least one of the good subtrees is at most(Q�big). Without loss of generality, assume that Q�(r0; u1) is good and that (Q�(r0; u1)) � (Q�big).It follows that (Q�(r0;u1)) � (Q�big) � (1 + �) � (Q�): (1)Let z�i = m(Q�(r0;ui)), namely, z�i is the number of groups overed by Q�(r0;ui). Let z1 denote theintegral power of (1 + �) suh that z1 � z�1 < (1 + �) � z1. Note that z1 is in the range of powers of(1 + �) onsidered in Line 4 (in fat, this is why the threshold between bad and good subtrees isdivided by an extra fator of (1+�)). Consider the exeution of Cu1;z1  Modi�ed-GS(T resu1 ; z1) inLine 4. The tree Cu1;z1 is inrementally onstruted from a sequene of augmenting trees, denotedby fR1; R2; : : :g. Let i denote the smallest integer suh thatm([j�iRj) � z1h(Tr0) : (2)By the de�nition of i, it follows that overh = [j�iRj in the exeution of Modi�ed-GS(T resu1 ; z1).Observe that, during all the iterations of the while loop in whih Cu1;z1 is omputed, the subtreeQ�u1 is a over that overs the residual demand. This implies that the weight of a min-weight overof the residual demand is not greater than w(Q�u1). Moreover, the residual demand when Rj isomputed, for j � i, is at least z1 � z1=h(Tr0). Therefore, the indution hypothesis when applied
9



to Rj , for j � i, implies(Rj) � (1 + �)2h(Tu1 ) � h(Tu1) � w(Q�u1)z1 � z1=h(Tr0)= (1 + �)2h(Tr0 )�2 � (h(Tr0)� 1) � w(Q�u1)z1 � z1=h(Tr0) (using h(Tu1) = h(Tr0)� 1)= (1 + �)2h(Tr0 )�2 � h(Tr0) � w(Q�u1)z1 : (3)
Sine ([j�iRj) � maxj�i (Rj), it follows that([j�iRj) � (1 + �)2h(Tr0)�2 � h(Tr0) � w(Q�u1)z1 : (4)Sine Taug is seleted to be a tree of min-density among over and overh in the exeution ofModi�ed-GS(T resu1 ; z1), it follows that(Taug) � w([j�iRj) + w(r0; u1)m([j�iRj)(by Eqs. 4 & 2) � (1 + �)2h(Tr0 )�2 � h(Tr0) � w(Q�u1)z1 + w(r0; u1)z1=h(Tr0)(sine z�1 � z1(1 + �)) � (1 + �)2h(Tr0 )�2 � h(Tr0) � w(Q�u1)z�1=(1 + �) + h(Tr0) � w(r0; u1)z�1=(1 + �)� (1 + �)2h(Tr0 )�1 � h(Tr0) � w(Q�u1) + w(r0; u1)z�1(by de�nition) = (1 + �)2h(Tr0 )�1 � h(Tr0) � (Q�(r0;u1))(by Eq. 1) � (1 + �)2h(Tr0 ) � h(Tr0) � (Q�):This proves the lemma. 24 Height reduing transformationIn this setion we present a height reduing transformation that proves Claim 2.4. The transforma-tion produes a redued height tree reursively as follows. Given a rooted tree T , a speial subtreeQ � T , alled an �-deomposition, is found. The subtree Q is a pre�x of T (i.e., the root of T isalso the root of Q and the leaves of Q may be internal verties of the original tree T ). Looselyspeaking, the subtree Q indues a partition of T into subtrees that have 1=� as many nodes as thewhole tree. The subtree Q is substituted by an O(�)-faithful representation Q0 of Q. This O(�)-representation is a height-3 tree with the same root and leaf-set. This proedure is then appliedreursively to the subtrees rooted at the leaves of Q. Namely, as a leaf u in Q roots a subtree Tuin T , we reursively repeat this modi�ation in Tu. The redution by a fator of � in the numberof terminals per three levels redues the height to 3 � log� n. Sine every �-deomposition is substi-tuted by an O(�)-faithful representation, the penalty inurred by this transformation is O(�). Wehoose � = log" n to redue the height to O(log n= log logn) so that the reursive greedy algorithmruns in polynomial time. Interestingly, setting � to a onstant redues the height to O(log n) whileinurring only a onstant (multipliative) penalty. Our transformation runs in linear time.10



4.1 �-deompositionsLoosely speaking, an �-deomposition of a tree Tr is a partition of Tr into � sub-trees, eah subtreeontaining nr=� terminals. However, suh a partition may not be possible; onsider, for example,the ase when Tr is a star. We therefore need to deal with the situation that there are many \light"desendants.Let u denote a desendant of r. Let � > 1. A node u is �-light with respet to Tr if nu � nr=�.A node u is �-heavy with respet to Tr if nu > nr=�. A node u is minimally �-heavy if u is �-heavyand v is �-light, for every hild v of u. A node u is maximally �-light if u is �-light and p(u) is�-heavy. We �x � upfront and hene, for ease of notation, we refer to �-heavy nodes as heavy andto �-light nodes as light.De�nition 4.1 A subtree Q � Tr is an �-deomposition of Tr if r 2 Q and every leaf of Q ismaximally �-light.De�nition 4.2 The skeleton of an �-deomposition Q is the subtree sk(Q) � Q indued by all the�-heavy nodes in Q.Returning to the example in whih Tr is a star, note that in this ase Q = Tr is an �-deomposition of Tr, and the skeleton is simply sk(Q) = frg. An �-deomposition of Tr is easy toompute: explore the subtree Tr via depth �rst searh stopping the exploration of a node's hildrenif it is a maximally light node.Note that every leaf in a skeleton is maximally �-heavy, and therefore, the number of leaves inthe skeleton at most �. We refer to the edges in Q that are inident to light leaves as the u� ofQ. Every edge of an �-deomposition Q is either an edge in the skeleton sk(Q) or an edge in theu� of Q, but not both.4.2 Promotion of �-deompositionsIn this setion we desribe how the height reduing transformation substitutes an �-deompositionQ of Tr by a tree Q0 of height 3. We also desribe a mapping � from the nodes of Q to those in Q0whih will be used to establish the O(�)-faithfulness of the transformation.Branhes. A branh is a maximal subpath in sk(Q) between two branhing points (i.e., nodeswith at least two hildren). There are at most (2��1) branhes sine there are at most � leaves insk(Q). To avoid inlusion of branhing points in multiple branhes, we assume that (exept for theroot) a branhing point belongs to the branh above it. The root belongs to one of the branhesthat emanate from the root.Bunhes. Fix a branh B of sk(Q). Denote the endpoint of B loser to the root of Q by v. Formbunhes B0; B1; B2 : : : of verties along B as follows. The �rst bunh B0 is de�ned as follows:B0 4= fu 2 B j w(path(v; u)) = 0g:For every positive integer i, the i'th bunh, denoted by Bi, is de�ned as follows:Bi 4= fu 2 B j w(path(v; u)) 2 [2i�1; 2i)g:Reall that nonzero edge weights are at least 1, so there are no verties between B0 and B1. Sinethe start-vertex v of a branh B belongs to the branh above it, v does not belong to the bunhB0. 11



Promotion. We now reate a height-3 tree Q0 whih has the same number of leaves as Q bypromoting bunhes in branhes as follows. Figure 1 depits the promotion of bunhes along a singlebranh. Intuitively, a path from r to a light leaf ` is divided into 3 parts. The �rst part is the pathfrom r to v, the start-vertex of the bunh of `. The seond part is the path from v to p(`) 2 B,and the third part is the edge (p(`); `). This path is replaed with a path of length 3; the weightof �rst and last edges in this path equals the weight of the orresponding part in path(r; `). Theweight of the middle edge is a power of two and approximates the weight of path(v; p(`)).For every branh B, the following subtree is onstruted. Let r0 denote the root of Q0. Add anode v(B) in Q0, that orresponds to v, and an edge (r0; v(B)). The edge (r0; v(B)) is given weightequal to the weight of the path from r to v. The bunhes Bi are promoted as follows. For everynon-empty bunh Bi, add a new node bi and an edge (v(B); bi). For every leaf ` 2 L(Q) hangingfrom a node in Bi, we reate a leaf `0 2 L(Q0) that hangs from bi. Weights are assigned as follows:(a) w(v(B); b0) = 0, if Bi is not empty, (b) w(v(B); bi)  2i, for every i > 0 suh that Bi is notempty, and () w(bi; `0) w(p(`); `), for every leaf ` hanging from a vertex in Bi.The mapping � maps the nodes V (Q) to V (Q0) as follows. The root of Q is mapped to theroot of Q0. For a branh B, all the nodes in Bi are mapped to the node bi. Every leaf ` 2 L(Q) ismapped to its ounterpart `0 2 L(Q).
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b7Figure 1: Promotion of bunhes along a single branh. Depth of light leaves after promotion isthree.4.3 The transformationThe height reduing transformation proeeds as follows. If r is a leaf, then it returns a opy ofTr. Otherwise, an �-deomposition Q is omputed. A height 3 subtree Q0 is reated from Q. Thetransformation is then applied reursively to the leaves of Q and they are attahed appropriatelyto Q0. The mapping � is de�ned in every step of the reursion as desribed above.4.4 Analysis of the height reduing transformationLet T 0 denote the tree resulting when the height reduing transformation is applied to the tree T .In this setion we prove that h(T 0) is O(log� n) and that T 0 is an O(�)-faithful representation ofT . Consider a single promotion step applied to an �-deomposition Q � T . Promotion substitutesQ by a tree Q0 of depth 3. It follows that the height h(n) of a redued tree with n terminals satis�esthe reurrene h(n) � 3 + h(n=�). This yields the following laim.Claim 4.3 h(T 0) � 3 � log� n. 12



The following proves the faithfulness of the height reduing transformation.Claim 4.4 T 0 is an O(�)-faithful representation of T .Proof: Let Q1; Q2; : : : ; Qk � T denote the sequene of �-deompositions omputed during theheight redution transformation. By de�nition, the edge sets of subtrees in this sequene partitionthe edge set of T into disjoint sets. Let Q0i denote the height-3 subtree of T 0 that is used to promoteQi. By de�nition, the edge sets of fQ0igi also partition the edge set of T 0 into disjoint parts. Thetransformation is loal in the sense that �(V (Qi)) = V (Q0i).We say that a node v 2 V (T ) is a border point if it belongs to more than one subtree Qi. Notethat v is a border point i� it is a light leaf in one Qi and a root of another Qj.Consider a set of verties S � V (T ). We may assume that S ontains all the border pointsin T [S℄. Namely, we add all border points in T [S℄ to S, and this does not a�et T [S℄. LetSi = S \ V (Qi), S0 = �(S), and S0i = �(Si). It follows thatwT (T [S℄) = kXi=1 wQi(Qi[Si℄)wT 0(T 0[S0℄) = kXi=1 wQ0i(Q0i[S0i℄):The same deomposition holds if S0 � �(V (T )) and S = ��1(S0). Hene, it suÆes to prove thatQ0i is an O(�)-faithful representation of Qi, for every 1 � i � k.For this purpose we onsider a single �-deomposition Q rooted at r and its height-3 substituteQ0. The main issue in proving that Q0 is an O(�)-faithful representation of Q is that we havea separate subtree in Q0 for every branh in Q. This means that if there are several branhes\below" an edge e, then w(e) is ounted multiple times. Lukily, the number of branhes is O(�),so the inrease in weight an be bounded by O(�). However, we also have multiple ounting withineah branh sine bunhes are onneted separately. Here we utilize the fat that weights of edges(v(B); bi) double, and hene they are dominated by the heaviest edge. We now provide a rigorousproof.Consider a single branh B, and use the notation used in the desription of the promotion ofbunhes along a single branh. Let B+ denote B together with the light leaves hanging from it.We fous now on SB = S \B+ and S0B = �(SB). Assume that SB is not empty (and therefore S0Bis also not empty). We laim thatwQ(Q[SB ℄) � wQ0(Q0[S0B℄) � 4 � wQ(Q[SB ℄): (5)Let u 2 B denote the \deepest" node in Q[SB ℄ and let v be start node of B. The subtree Q[SB ℄onsists of three types of edges: (i) edges along the path from the root r to v, (ii) edges alongthe path from v to u, and (iii) edges from nodes in B to light leaves in B+. We therefore rewritewQ(Q[SB ℄) as follows:wQ(Q[SB ℄) = wQ(path(r; v)) + wQ(path(v; u)) + X`2SB\L(B+)wQ(p(`); `): (6)Let i denote the index of the bunh that u belongs to (i.e., u 2 Bi). The subtree Q0[S0B ℄ onsists ofthree types of edges: (i) the edge (r0; v(B)) whose weight equals wQ(path(r; v)), (ii) edges (v(B); bj)whose weight is 2j , and (iii) edges from nodes in bunh nodes bj to leaves. We know that bi 2 Q0[S0B ℄13



sine u 2 Bi. Hene, edges of the seond type ontribute at least 2i. The bunh nodes bj in Q0[S0B ℄are a subset of fb1; : : : ; big. Hene, the edges of the seond type ontribute at most Pij=1 2j . Itfollows that wQ0(Q0[S0B ℄) � wQ(path(r; v(B))) + iXj=1 2j + X`02S0B\�(L(B+))wQ0(p(`0); `0) (7)wQ0(Q0[S0B ℄) � wQ(path(r; v(B))) + 2i + X`02S0B\�(L(B+))wQ0(p(`0); `0): (8)Note that the ontribution of edges of the third type in Q[SB℄ and Q0[S0B ℄ is idential. It followsthat the only di�erene between wQ(Q[SB ℄) and the bounds on wQ0(Q0[S0B℄) in the rewriting aboveis in the middle terms. Sine u 2 Bi, it follows that 2i�1 � wQ(path(v; u)) < 2i, and Equation 5follows.We are now ready to omplete the proof of the O(�)-faithfulness of Q0. Sine eah branh B ismapped to a separate subtree in Q0, it follows thatwQ0(Q0[S0℄) =XB wQ0(Q0[S0B℄): (9)By Equation 5, the term PB wQ0(Q0[S0B ℄) is bounded by 4 �PB wQ(Q[SB ℄). Sine there are atmost (2� � 1) branhes, it follows that PB wQ0(Q0[S0B℄) = O(�) � maxBfwQ(Q[SB ℄)g. However,maxBfwQ(Q[SB ℄)g � wQ(Q[S℄). It follows thatwQ0(Q0[S0℄) � O(�) � wQ(Q[S℄):This ompletes the �rst part of the proof.To prove the seond part, we onsider a set of terminals S0 � �(V (Q)) and de�ne S = ��1(S0).We need to show that wQ(Q[S℄) � w(Q0[S0℄):By Eq. 9 and Eq. 5, it follows thatwQ0(Q0[S0℄) �XB wQ(Q[SB ℄):However, PB wQ(Q[SB ℄) � wQ(Q[S℄), and the laim follows. 25 Degree reduing transformationIn this setion we present a degree reduing transformation that proves Claim 2.5. Given a rootedtree T and an integer � � 3, the transformation produes a 1-faithful representation �(T ) of T .The rooted tree �(T ) satis�es: (a) eah node in �(T ) has at most � hildren, and (b) the height of�(T ) is at most h(T ) + dlog�=2 ne.Given a tree T rooted at u and a parameter �, the tree �(T ) is onstruted reursively as follows.If u is a leaf, then the algorithm returns u. Otherwise, the subtree indued by the edges betweenu and its hildren is loally transformed as follows. Let v1; v2; : : : ; vk denote the hildren of u.1. The �-heavy hildren vi of u (i.e., suh that nvi � nu=�) are not hanged; the edges (u; vi)are kept and their weight is not modi�ed. 14



2. The �-light hildren of u are grouped arbitrarily into minimal bunhes suh that eah bunh(exept perhaps for the last) is �-heavy. Note that the number of leaves in eah bunh (exeptperhaps for the last bunh) is in the interval [nu=�; 2nu=�). For every bunh B, a new nodeb is reated. An edge (u; b) is added as well as edges between b and the hildren of u in B.The edge weights are set as follows: (a) w(u; b) 0, and (b) w(b; vi) w(u; vi).After the loal transformation, let v01; v02; : : : ; v0j be the new hildren of u. Some of these hildrenare the original hildren and some are the new verties introdued in the bunhing. The tree �(T )is obtained by reursively proessing the subtrees Tv0i , for 1 � i � j, in essene replaing Tv0i by�(Tv0i). Note that after proessing, the number of hildren of u is at most � beause the subtreesfTv0igi partition the nodes of V (Tu) � fug and eah tree exept, perhaps one, is �-heavy. Thereursion is applied to eah subtree Tv0i , and hene �(T ) will satis�es the degree requirement, aslaimed. The 1-faithfulness of �(T ) follows from the fat that the \shared" edges (u; b), that werereated for bunhing together �-light hildren of u, have zero weight.We now bound the height of �(T ). Given a tree of height h and n nodes let (h; n) be theheight of the tree that results when the above proedure is applied. From the reursive proedure,we have that h(�(T )) = 1 + maxji=1 h(�(Tv0i)). If v0i orresponds to a �-heavy hild of u, thenh(Tv0i) � h(T ) � 1 and n(Tv0i) � n. If v0i is formed by bunhing together �-light hildren of u thennv0i < 2nu=� and h(Tv0i) � h(T ). Therefore (h; n) satis�es the following reurrene:(h; n) � (0 if h = 01 +maxf(h� 1; n); (h; b2n� g) otherwise.It follows that the height of �(T ) is bounded by h(T ) + blog�=2 n, as required.6 ConlusionsWe onlude the paper with a few remarks.An approximation algorithm for the overing Steiner problem on trees: The overingSteiner problem generalizes the group Steiner problem; in addition to the graph and groups we aregiven an integer demand di for every group gi and the goal is to over, for eah i, at least di terminalsfrom gi. In the 12 -group Steiner problem the input is the same as in the group Steiner problem, butthe goal is to ompute a minimum-weight tree ontaining a terminal from at least half the groups.Poly-logarithmi approximation algorithms for the overing Steiner problem are given in [19, 20℄and these algorithms rely on solving an LP relaxation for the problem. In [10℄ a simple randomizedproedure is applied to show that a � ratio approximation for the 12 -group Steiner problem anbe used to approximate the overing Steiner problem within � log(Pi di). Our algorithm for thegroup Steiner problem on trees an be used to derive an O((log n)1+") approximation algorithmfor the 12 -group Steiner problem on trees and hene, O(log2+� n) ratio algorithm for the overingSteiner problem on trees. It an also be used to obtain an O(log3+� n) ratio for the overing Steinerproblem on graphs, using [11℄. Thus we obtain an algorithm that does not rely on solving linearprograms.On improving the log2 n ratio: Our algorithm an be modi�ed to give an O(log2 n= log logn)ratio algorithm for the group Steiner problem on trees whih would slightly improve upon the bestknown ratio [14, 25℄. The main idea is to guess all the minimally log n-heavy nodes in the optimum15



solution. We note however that the algorithm would run in quasi-polynomial time. One shouldontrast this result with the reent 
(log2�� n) hardness of approximation for this problem [16℄where " > 0 is any �xed onstant. The hardness of approximation does not prelude a polynomialtime algorithm that ahieves an O(log2 n= log log n) ratio.Currently the only way to get a poly-logarithmi approximation for the group Steiner problemon graphs is to �rst redue it to the tree ase. This redution inurs a logarithmi fator in theapproximation ratio. Is it possible to avoid this redution and work diretly with graphs? Thiswould improve the ratio by a logarithmi fator.Direted Steiner tree problem: Currently there is no poly-logarithmi approximation ratio forthe direted Steiner tree problem that runs in polynomial time (the algorithm in [8℄ runs in quasi-polynomial time). Geometri searh and height redution an be applied to direted ayli graphs(DAGs). However there is no degree reduing transformation for DAGs that has the same propertiesas those for trees. We believe that with some more sophistiated ideas, the greedy algorithm anbe adapted to give a polynomial time poly-logarithmi approximation for the direted Steiner treeproblem.Height redution: The height reduing transformation presented in this paper loses only aonstant fator to redue the height of the tree to O(log n). On the other hand, the redutionproedure of Zelikovsky [24, 17℄ loses an 
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