
A greedy approximation algorithm forthe group Steiner problemChandra Chekuri � Guy Even y Guy Kortsarz zJuly 7, 2005Abstra
tIn the group Steiner problem we are given an edge-weighted graph G = (V;E;w) and msubsets of verti
es fgigmi=1. Ea
h subset gi is
alled a group and the verti
es in Si gi are
alledterminals. It is required to �nd a minimum weight tree that
ontains at least one terminal fromevery group.We present a poly-logarithmi
 ratio approximation for this problem when the input graphis a tree. Our algorithm is a re
ursive greedy algorithm adapted from the greedy algorithmfor the dire
ted Steiner tree problem [21, 8℄. This is in
ontrast to earlier algorithms that arebased on rounding a linear programming based relaxation for the problem [14, 25℄. We answerin positive a question posed in [14℄ on whether there exist good approximation algorithms forthe group Steiner problem that are not based on rounding linear programs. For every �xed
onstant " > 0, our algorithm gives an O((logPi jgij)1+" � logm) approximation in polynomialtime. As pointed out in [14℄, approximation algorithms on trees
an be extended to arbitraryundire
ted graphs by probabilisti
ally approximating the graph by a tree [1, 2, 11℄. This resultsin an additional multipli
ative fa
tor of O(log jV j) in the approximation ratio, where jV j is thenumber of verti
es in the graph. The approximation ratio of our algorithm on trees is slightlyworse than the ratio of O(log(maxi jgij) � logm) provided by the LP based approa
hes [14, 25℄.

�Bell Labs, 600 Mountain Ave., Murray Hill, New Jersey 07974, USA. E-mail:
hekuri�resear
h.bell-labs.
omyDepartment of Ele
tri
al-Engineering, Tel-Aviv University, Israel. E-mail:guy�eng.tau.a
.ilzComputer S
ien
es Department, Rutgers University - Camden. E-mail:guyk�
amden.rutgers.edu

1 Introdu
tionThe Steiner tree problem is among the fundamental problems in network design. The input to theSteiner tree problem is an undire
ted edge-weighted graph G = (V;E;w) and a set of terminalsT � V . The obje
tive is to �nd a minimum weight tree T that spans the terminals in T . TheSteiner tree problem is known to be NP-hard [13℄ and also APX-hard [5℄. In this paper we
onsiderthe group Steiner problem whi
h is a generalization of the Steiner tree problem. The input to thisproblem also
onsists of an edge-weighted graph G = (V;E;w), however instead of a single set ofterminals we are given a
olle
tion of possibly interse
ting subsets of verti
es fgigi. Ea
h subset giis
alled a group. The obje
tive is to �nd a minimum weight tree that
ontains at least one vertexfrom ea
h group. Throughout, we denote the number of groups by m, the number of terminalsj [mi=1 gij by n, the sum of the group sizesPmi=1 jgij by s, and the size of the largest group maxi jgijby N .The group Steiner problem was introdu
ed by Rei
h and Widmayer [23℄ motivated by appli-
ations to wire routing with multi-port terminals in physi
al VLSI design. See [14℄ for additionalreferen
es to this problem. The problem is of interest not only be
ause of its appli
ations butalso be
ause of its relation to the Steiner tree problem in both undire
ted and dire
ted graphs.The sear
h for good approximation algorithms for this problem has inspired new te
hni
al ideas[14, 19, 20, 25℄.The group Steiner problem is a stri
t generalization of the Steiner tree problem, and in [14℄it is shown that very spe
ial
ases of the group Steiner problem are harder to approximate thanthe Steiner tree problem: in parti
ular it is shown that the set
over problem
an be redu
ed inan approximation preserving way to the group Steiner problem on star graphs. From the hardnessof approximating set
over [12, 22℄, it follows that the group Steiner problem on stars, and hen
etrees, is NP-hard to approximate to within a fa
tor better than
 lnm for some
onstant
, or to afa
tor better than (1 � o(1)) lnm unless NP � DTIME(nlog log n). In re
ent work, Halperin andKrauthgamer [16℄ improved the hardness of approximation. They showed that for every � > 0, thegroup Steiner problem on trees is hard to approximate to within a fa
tor better than
(log2��m),unless NP problems
an be solved by quasi-polynomial time Las-Vegas algorithms.In terms of upper bounds, the �rst sub-linear approximation ratio for this problem was anO(pm) ratio given by Bateman et al. [4℄. Garg et al. [14℄ improved this substantially and obtainedthe �rst poly-logarithmi
 approximation ratio for this problem. They gave an O(logN logm)approximation algorithm for the problem on trees based on an elegant randomized rounding of thenatural linear programming relaxation for the problem. It should be mentioned that their algorithma
hieves a ratio of O(minfh; logNg logm) on trees of height1 h. They extended their algorithm fortrees to general undire
ted graphs by using Bartal's [1, 2℄ probabilisti
 approximation of a �nitemetri
 by tree metri
s. Using the best possible probabilisti
 approximation obtained in [11℄, theapproximation ratio for the group Steiner problem on general graphs is O(logN logm log jV j) wherejV j is the number of verti
es in G. Zosin and Khuller [25℄ a
hieved similar results in a later paper;they also use the natural LP relaxation, however their algorithm is dual based and is substantiallydi�erent from the primal based algorithm in [14℄. In [6℄ the algorithm of [14℄ is derandomized to givea deterministi
 algorithm a
hieving the same approximation ratio. Note that the approximationratio for trees is almost mat
hed by the hardness fa
tor in [16℄.Approximation algorithms for the group Steiner problem have been obtained through a di�erentdire
tion by redu
ing it to the dire
ted Steiner tree problem. The dire
ted Steiner tree problem isa generalization of the Steiner tree problem to dire
ted graphs and is de�ned as follows. We are1The height of a rooted tree is the maximum number of edges along a simple path from the root to a leaf.1

given an edge-weighted dire
ted graph G = (V;A), a set of terminals T � V and a spe
ial vertexr 2 V
alled the root. The obje
tive is to �nd a minimum weight out-tree T rooted at r in whi
h rhas a dire
ted path to every terminal. The dire
ted group Steiner problem is also de�ned similarlyas a generalization of the group Steiner problem: we are given a root in addition to the groupsand the goal is to �nd a min-weight tree su
h that there is a dire
ted path from the root to atleast one vertex of ea
h group. It is an easy observation that the dire
ted Steiner tree problemand the dire
ted group Steiner problem are equivalent. For the dire
ted Steiner tree problem, the
urrent best known approximation algorithm is by Charikar et al. [8℄. They gave an algorithm thatgiven an integer parameter i � 1, a
hieves an O(i3m1=i)-approximation2 and has a running timeof O(ni). Hen
e, for any �xed ", an O(m") approximation
an be obtained in polynomial time.More interestingly, an O(log3m) approximation
an be obtained in quasi-polynomial time (i.e.,O �nlogm� time) giving strong eviden
e for the
onje
ture that the problem has a poly-logarithmi
approximation ratio. These results
arry over to the group Steiner problem. We note that thealgorithm in [8℄ is based on a greedy framework [24, 21, 8℄.Our Results: The two known poly-logarithmi
 approximation algorithms for the group Steinerproblem are both based on rounding a solution to the linear programming relaxation [14, 25℄. In[14℄ the following question is asked: is there a \
ombinatorial" poly-logarithmi
 approximationalgorithm for the group Steiner problem? By
ombinatorial they imply an algorithm that is notbased on solving an LP relaxation. In this paper we answer their question and give su
h analgorithm for trees. For any �xed " > 0, the approximation ratio obtained by our algorithm isO(1"�log log n � (log n)1+" � logm) whi
h is only slightly worse than the ratio of O(logN logm) given in[14, 25℄. Following [14℄, an approximation algorithm on trees allows us to obtain an approximationalgorithm for general graphs: the input graph is approximated probabilisti
ally by tree metri
s[2, 7, 11℄. Given an input graph, the algorithm in [11℄ produ
es a tree su
h that the expe
teddistan
e between any pair of verti
es in the tree is at most O(log jV j) times the distan
e betweenthe pair in the graph. We simply run our algorithm on this tree. The algorithm in [11℄ is randomized.It
an be derandomized by using ideas from [7℄. We refer the reader to [7, 11℄ for more details.Even and Kortsarz [9℄
laimed an approximation algorithm for the group Steiner problem ontrees with an approximation ratio of O(log2 n= log log n). The analysis presented in [9℄
ontains anerror. We rely on some of the methods used in [9℄: the greedy framework [24, 21, 8℄, geometri
sear
h, and avoiding low
overage trees. The greedy algorithms in [21, 8℄ run in quasi-polynomialtime to obtain a poly-logarithmi
 ratio. In this paper we use several te
hni
al ideas to redu
e therunning time to be polynomial when the input graph is a tree. Some of our ideas are relevant forthe dire
ted Steiner tree problem. It is our belief that further ideas along these lines may yield apolynomial time algorithm with a poly-logarithmi
 ratio for the dire
ted Steiner tree problem.Te
hniques: Our algorithm follows the greedy methodology of [21, 8℄. The density of a partialsolution F is the ratio of the weight of F divided by the number of groups
overed by F . If analgorithm guarantees a partial solution with density at most � times the density of the optimal tree,then this algorithm
an be used iteratively to �nd a tree that
overs all groups and the resultingapproximation ratio will be O(� logm).Given a tree of height h, the algorithm in [8℄ yields a partial solution with density O(h) timesthe density of the optimal tree. However, the running time of the algorithm is exponential inh. Obtaining polynomial running time requires modi�
ations that redu
e both the exponent (i.e.2In [8℄, a ratio of O(i2m1=i) is
laimed but this relied on an erroneous lemma in [24℄. The lemma in [24℄, when�xed (see [17℄), results in a worsening of the approximation ratio
laimed in [8℄.2

the height) and the base (i.e. number of iterations, number of demand values per iteration, andnumber of
hildren per node). We a

omplish this using several ideas. The �rst of these involveprepro
essing the input tree to satisfy
ertain height and degree requirements.� Height redu
ing transformation: for any � we give a transformation that redu
es the heightof the tree to O(log� n) while in
urring a multipli
ative fa
tor of O(�) in the weight of theoptimal solution.� Degree redu
ing transformation: given a parameter � � 3 we redu
e the maximum degree ofthe tree to � + 1 while (additively) in
reasing the height of the tree by O(log�=2 n) and notin
reasing the weight of the optimal solution.By
hoosing � = log" n and � = log n we obtain a tree with height O(1" logn= log logn) andmaximum degree O(log n). Further, we are guaranteed that there is a solution in this tree of weightat most O(log" n) times the weight of an optimal solution in the input tree.Finally, the greedy algorithm is modi�ed so as to redu
e the number of re
ursive
alls by usinggeometri
 sear
h and avoiding sub-trees that
over few groups. These modi�
ations
ombined withthe prepro
essing mentioned above result in a polynomial time algorithm. Although our algorithmruns in polynomial time, it is not eÆ
ient. Our goal is to investigate the greedy approa
h to thisproblem and we have not made mu
h e�ort to
hoose the best possible parameters to optimize therunning time.Our height redu
tion pro
edure is non-trivial and we use it to obtain an algorithm for trees.However, for arbitrary graphs our �rst step is to redu
e the graph to a tree via probabilisti
approximation. The trees returned by the algorithms in [1, 2, 7, 11℄ are HSTs (hierar
hi
ally wellseparated) and height redu
tion for these stru
tured trees that a
hieves the same bounds as ourpro
edure is straightforward. For an example of this latter kind of height redu
tion, see Bartal,Charikar, and Raz [3℄.Organization Se
tion 2
ontains the formal problem de�nition and useful notation for the restof the paper. In Se
tion 3 we present our greedy algorithm with geometri
 sear
h and analyze itsperforman
e. We show that the running time of the algorithm is polynomial for trees with heightand degree appropriately bounded. The height and degree redu
ing transformations are presentedin Se
tions 4 and 5. We
on
lude in Se
tion 6 with some remarks.2 PreliminariesProblem Formulation The group Steiner problem restri
ted to trees is de�ned as follows. Theinput
onsists of (i) a rooted tree T = (V;E) with a root r, (ii) non-negative edge weights w(e),and (iii) a
olle
tion of vertex subsets fgigi. The subsets gi are referred to as groups and verti
esin [igi are referred to as terminals. A group gi is
overed by a subtree T 0 = (E0; V 0) if gi \ V 0 6= �.A
over of the groups is a tree T 0 that
overs every group and
ontains the root r. The goal is to�nd a minimum weight
over.Note that we
onsider a rooted version of the group Steiner problem. This is not a restri
tionsin
e the unrooted version and the rooted version are polynomially equivalent (i.e., if no root isspe
i�ed, simply run the algorithm jV j times ea
h time with a di�erent node assigned as the root).A tree T 0 � T is z-
over if it
overs at least z groups. We
onsider also the problem of �ndinga minimum weight z-
over. 3

Notation and De�nitions The input to our problem is a rooted tree. A
hild-parent and anan an
estor-des
endant relation is naturally indu
ed over the verti
es. The parent of a non-rootnode v is denoted by p(v). The subtree rooted at a node v is denoted by Tv. Let e = (u; v) be anedge where u is the parent of v. The subtree indu
ed by the edge (u; v) is the tree Tv [f(u; v)g,namely, the tree Tv in addition to the edge (u; v) and the node u. We denote the subtree indu
edby the edge (u; v) by T(u;v). We denote the set of leaves of a tree T by L(T).Let m denote the number of groups, n = j [mi=1 gij denote the number of terminals, and s =Pmi=1 jgij denote the sum of the group sizes. Note that s might be signi�
antly greater than n, andtherefore, s is used to measure the input length.Let n(T 0) denote the number of terminals in T 0. For a rooted subtree Tu, we denote n(Tu)simply by nu. The number of groups
overed by T 0 is denoted by m(T 0). The sum of the edgeweights in a subtree T 0 is denoted by w(T 0). The density of a subtree tree T 0 is de�ned as
(T 0) 4= w(T 0)m(T 0) :The height of a tree is the maximum number of edges along a simple path from the root to aleaf. The height of a tree T is denoted by h(T).We interpret every subtree T 0 that
ontains the root r as a partial
over, that is, T 0
oversa subset of the groups. A partial
over transforms a problem instan
e into a residual problem.The residual problem is obtained by de
laring all the terminals in the groups
overed by T 0 to benonterminals. (Weights of edges in T 0
ould be zeroed in the residual problems, but the analysiswe present does not bene�t by this, so we keep the edge weights un
hanged.) Observe that if T �
overs the groups in T , then T �
overs the groups in every residual problem. Hen
e the weight ofan optimal solution to the residual problem is no greater than the weight of an optimal solution tothe initial problem.Prepro
essing. We prepro
ess the tree so that the total number of nodes is O(n) and every nodeis a terminal as follows:1. Eliminate every nonterminal leaf. Obviously, this does not a�e
t the set of feasible solutions.Hen
e, we may assume that every leaf is a terminal.2. Eliminate every nonterminal interior node v of degree two. This is done by repla
ing thelength two path p = x-v-y that traverses v by a new edge (x; y). The weight of the new edgeis w(x; v)+w(v; y). Hen
e, we may assume that every interior node has at least two
hildren,and therefore, the number of nodes is O(n).3. Add a new dummy group that
ontains all the nodes. Obviously, this does not a�e
t the setof feasible solutions.We remark that if one is not interested in the distin
tion between n and s, then prepro
essing
an make the groups disjoint. Simply hang new terminals from every old terminal v so that there isone new terminal per group that v belongs to. This redu
tion insures that the groups are disjointat the
ost of in
reasing n so that it equals s.Finally, by s
aling edge weights, we may assume that, for every edge e, w(e) > 0 implies thatw(e) > 1.
4

Faithful trees. Consider a tree T rooted at r. Every subset of nodes S � V (T) indu
es a subtreeT [S℄
onsisting of the union of all the paths in T from the root r to the nodes in S.The setting for the de�nition of faithful trees is as follows. Let A and B be two rooted trees.Let � : V (A) ! V (B) be a fun
tion (non ne
essarily one-to-one) that maps the nodes of A tothose of B. In this mapping, A will be the original tree and B will be the height redu
ed tree.For S � V (A), we denote the image of S by �(S). The preimage of S0 � �(V (A)) is denoted by��1(S0). We map the group Steiner instan
e on A to that in B in a straightforward way as follows.For every group gi � V (A), we de�ne the group g0i � V (B) by g0i = �(gi).Fa
t 2.1 If S � V (A)
overs gi in A then �(S)
overs g0i in B. Similarly, if S0 � �(V (A))
oversg0i in B then ��1(S0)
overs gi in A.We denote the edge weight fun
tion of a tree T by wT .De�nition 2.2 The tree B is an �-faithful representation of the tree A if there is a mapping� : V (A)! V (B) su
h that the following two
onditions hold:1. For every S � V (A), wB(B[�(S)℄) � � � wA(A[S℄).2. For every S0 � �(V (A)), wA(A[��1(S0)℄) � wB(B[S0℄).The following
laim summarizes the approximation preserving properties of �-faithful trees.Claim 2.3 Let B denote an �-faithful representation of A. A �-approximate z-
over in B indu
esan � � �-approximate z-
over in A.Proof: Let � : V (A)! V (B) denote the mapping to prove that B is an �-faithful representationof A. Let S1 be a minimum weight z-
over in A. Let S01 = �(S1). From Fa
t 2.1, it follows that S01is a z-
over in B. From �-faithfulness of �, we have that wB(B[S01℄) � � �wA(A[S1℄). Let S02 be a �-approximate z-
over in B. Sin
e S01 is a z-
over in B, wB(B[S02℄) � � �wB(B[S01℄). Let S2 = ��1(S02).Again, from Fa
t 2.1, S2 is a z-
over in A. From faithfulness, we have that wA(A[S2℄) � wB(B[S02℄).Putting together, we have that S2 is a z-
over in A and wA(A[S2℄) � � � � �wA(A[S1℄). Sin
e S1 isa minimum weight z-
over in A, the
laim follows. 2Transformations. As dis
ussed in Se
tion 1, we prepro
ess the input tree to redu
e its heightand degree before applying our greedy algorithm. The height of a rooted tree is the maximumnumber of edges along a simple path from the root to a leaf. We summarize the properties of thesetransformations in the following
laims that are proved in Se
tions 4 and 5.Claim 2.4 Let � > 1. There exists a linear time algorithm that, given a rooted tree T with nnodes,
omputes an O(�)-faithful representation T 0 of T su
h that h(T 0) = O(log� n).Claim 2.5 Let � � 3. There exists a linear time algorithm that, given a rooted tree T with nnodes,
omputes a 1-faithful representation T 0 of T su
h that: h(T 0) � h(T) + blog�=2 n
 and everynode has at most �
hildren.
5

3 A Re
ursive Greedy Algorithm with Geometri
 Sear
hIn this se
tion we present our re
ursive greedy algorithm whi
h is similar to the greedy algorithmsin [21, 8℄. The main di�eren
e is that we use geometri
 sear
h to redu
e the number of re
ursive
alls. Together with the height and degree redu
ing transformations, this yields a polynomialrunning time. To motivate and explain our modi�
ation, we �rst des
ribe the algorithm in [8℄ forthe dire
ted Steiner tree problem, spe
ializing it to the
ase of the group Steiner problem on trees.The notation and des
ription are only super�
ially di�erent from those in [8℄.3.1 Greedy Algorithm from [8℄Algorithm GS gets as input, a subtree Tr0 rooted at r0, edge weights w(e), groups of terminalsfgigi, and a
overing demand z0. To simplify notation, we refer to the input as a pair (Tr0 ; z0). Thealgorithm
omputes a z0-
over of Tr0 .A listing of Algorithm GS appears as Algorithm 1. The stopping
ondition of the algorithm iswhen the input subtree
onsists of a single leaf, in whi
h
ase the subtree is returned as the
over.Here we use the assumption that every leaf is a terminal (see prepro
essing in Se
tion 2). Whenthe input subtree is not a single leaf, the algorithm �nds a z0-
over by adding augmenting trees,one by one, until a z0-
over is found. The variable zres equals the residual demand, namely, thenumber of groups that still need to be
overed. The residual tree T res is the tree obtained from Tr0by removing the terminals of groups that have been already
overed. The while-loop in lines 3-7iterates while the union of the augmenting trees found so far is not a z0-
over. Ea
h iteration ofthe while loop
onsists of three stages: re
ursion, sele
tion, and update. In line 4, the algorithm is
alled re
ursively for all the subtrees hanging from
hildren of r0 and for all demand values z00 inthe range [1; zres℄. The tree
omputed by GS(Tu; z00) is denoted by Cu;z00 . In line 5, an augmentingtree, Taug, is sele
ted as follows. For every tree Cu;z00 , the weight of the edge (r0; u) is added tothe weight of Cu;z00 , and Taug is pi
ked to be a tree of lowest density among these trees. In line 6updating takes pla
e. The sele
ted augmenting tree Taug is added to the
over found so far3, andthe residual demand zres and residual tree T res are updated. When the residual demand is zero,the union of the augmenting trees is a z0-
over, and the algorithm returns this
over.The following two lemmas adapted from [8℄ summarize the analysis of the above algorithmwhi
h yields an O(h(Tr0) logm) approximation in time O(nO(h(Tr0))).Lemma 3.1 The running time of Algorithm GS is bounded by O((� �m2)O(h)), where h = h(Tr0)and � is the maximum degree of Tr0.Let opt(T resr0 ; zres) denote a min-weight zres-
over in T resr0 . The following lemma shows thatthe density of Taug is at most h(Tr0) times the density of opt(T resr0 ; zres). Note that augmentingtrees are
omputed only if r0 is not a leaf. If r0 is a leaf, then the density of Tr0 is zero, and isobviously optimal.Lemma 3.2
(Taug) � h(Tr0) �
(opt(T resr0 ; zres)):3The algorithm
ould redu
e the
ost of the edges in Taug to zero after adding Taug to the
over. There does notseem to be a way to use this to improve the analysis.
6

Algorithm 1 GS(Tr0 ; z0) - A re
ursive greedy algorithm for the Group Steiner Problem.1: stopping
ondition: if r0 is a leaf then return (Tr0).2: Initialize:
over ;, zres z0, and T res Tr0 .3: while zres > 0 do4: re
urse: for every u 2
hildren(r0) and every z00 2 [1; zres℄Cu;z00 GS(T resu ; z00):5: sele
t: (pi
k the lowest density tree)Taug min-density�Cu;z00 [f(r0; u)g j u 2
hildren(r0) & z00 2 [1; zres℄	 :6: update:(a)
over
over [Taug.(b) zres zres �m(Taug).(
) remove all groups
overed by Taug from T res.7: end while8: return (
over).3.2 Geometri
 sear
hWe now present the Modi�ed-GS Algorithm. The modi�
ations redu
e the number of re
ursive
alls per
hild of r0 in ea
h iteration as well as the number of iterations. The in
rease in theapproximation ratio
aused by these modi�
ations is
onstant.A listing of the Modi�ed-GS-algorithm is given as Algorithm 2. The new or modi�ed lines areunderlined. The main
hange is in Line 4 where the re
ursive
alls are with demand values that arepowers of (1+�) in the range [1deg(r0)�(1+ 1�)�(1+�) � zres; zres℄. This
hange is referred to as geometri
sear
h sin
e the demands are only powers of (1 + �). Small subtrees are avoided in the sense thatthe demand value is at least 1deg(r0)�(1+ 1�)�(1+�) �zres. The se
ond
hange is that the algorithms storesas
overh the �rst partial
over that
overs at least z0=h(Tr0) groups. This modi�
ation is used inthe proof of Lemma 3.4 instead of the simulation argument in the proof of Lemma 3.2. The �nal
over that is returned is either
over or
overh, depending on whi
h has a smaller density. Notethat if
overh is returned in the topmost
all of Modi�ed-GS, then one needs to invoke Modi�ed-GSagain on the residual tree until a full
over is
omputed.The proofs of the following two lemmas appear at the end of this se
tion.Lemma 3.3 Let � be the maximum degree of the tree Tr0 and let � = �(1 + 1=�)(1 + �). Therunning time of Modi�ed-GS(Tr0 ; z0) is O(n�h(Tr0)) where � = � � h(Tr0) � log z0 � � � log1+� �. Ifh(Tr0) = O(logn= log log n), � = O(log n) and 1 � 1=� = O(log n), then the running time ispolynomial in n and in m.The following lemma proves that if 1=� � h(Tr0), the modi�
ations a�e
t the density of theaugmentation tree only by a
onstant fa
tor.Lemma 3.4
(Taug) � (1 + �)2h(Tr0) � h(Tr0) �
(opt(T resr0 ; zres)):7

Algorithm 2 Modi�ed-GS(Tr0 ; z0) - Modi�ed GS Algorithm (uses geometri
 sear
h).1: stopping
ondition: if r0 is a leaf then return (Tr0).2: Initialize:
over ;, zres z0, and T res Tr0 .3: while zres > 0 do4: re
urse: for every u 2
hildren(r0) andfor every z00 power of (1 + �) in [1deg(r0)�(1+ 1�)�(1+�) � zres; zres℄Cu;z00 Modi�ed-GS(Tu; z00):5: sele
t: (pi
k the lowest density tree)Taug min-density�Cu;z00 [f(r0; u)g	 :6: update:(a)
over
over [Taug.(b) zres zres �m(Taug).(
) remove all groups
overed by Taug from T res.(d) if �rst time m(
over) � z0=h(Tr0) then
overh
over.7: end while8: return (lowest density tree 2 f
over;
overhg).We obtain the following theorem from the above two lemmas.Theorem 3.5 Let I be an instan
e of the group Steiner problem on a tree T of height O(log n= log log n)and maximum degree O(log n). Then Modi�ed-GS runs in polynomial time in n �m and gives anO(h(T) logm)-approximation.Proof: Choose � = 1=h(T) in Modi�ed-GS. For this
hoi
e of � and the bounds on the height anddegree of T it follows from Lemma 3.3 that Modi�ed-GS runs in time polynomial in n and m.From Lemma 3.4, we obtain that
(Taug) � (1+1=h(T))2h(T) �h(T)�
(opt(T res; zres)). Therefore
(Taug) � e2h(T)
(opt(T res; zres)). It follows that we obtain an O(h(T) logm) approximation. 2Corollary 3.6 There is a polynomial time non LP-based O(1" � 1log log n �(log n)1+"�logm)-approximationalgorithm for the group Steiner problem on trees.Proof: Use Claim 2.4 with � = log" n to redu
e the height of the input tree to O(log n= log logn)and use Claim 2.5 with � = log n to redu
e the maximum degree of the tree to O(log n) while stillkeeping the height O(log n= log logn). These transformations worsen the approximation ratio bya multipli
ative fa
tor of O(log" n). Applying the algorithm Modi�ed-GS to the transformed treegives the desired result. 2Now we prove Lemmas 3.3 and 3.4.Proof of Lemma 3.3: Let t(h; z) denote the running time of Modi�ed-GS on a tree of heighth and with z terminals. The re
urren
e relation for t(h; z) is obtained by bounding the number of8

re
ursive
alls in Modi�ed-GS. In line 4 ea
h
hild of r0 is
alled with at most log1+� � values ofz00 sin
e we do a geometri
 sear
h with powers of (1+�) in the range [zres=�; zres℄. Hen
e the totalnumber of
alls in line 4 is � � log1+� �. A
all to Modi�ed-GS with a
overing requirement of z0returns a tree with either z0 groups or z0=h(Tr0) groups. Hen
e in every iteration of the while loopin line 3, zres is redu
ed by at least a fa
tor of (1 � 1=(�h(Tr0)). Hen
e the number of iterationsof the while loop is at most �h(Tr0) log z0. Let � be the total number of re
ursive
alls. From theabove we
an bound � by �h(Tr0) log z0 ��log1+� �.For ea
h re
ursive
all, the amount of pro
essing required to
ompute the density of the returnedtree and remove the
overed groups is linear in s =Pi jgij. Hen
e we
an write a re
urren
e relationfor t(h; z0) as t(h; z0) � �t(h� 1; z0) +
s for some
onstant
. From this we obtain t(h; z0) �
s�h.When 1=�, �, and h(Tr0) are O(log n) it is easy to verify that � is poly-logarithmi
 in s (or,equivalently, in n and m). If h(Tr0) is O(log n= log log n) it follows that �h(Tr0) is polynomial in nand m. 2Proof of Lemma 3.4: The proof is by indu
tion on the height of Tr0 . The indu
tion basis forh(Tr0) = 1 follows from the fa
t that the density of Taug is optimal. This follows simply by the fa
tthat Taug is an edge to a
losest leaf.The indu
tion step is proved as follows. Let fu1; u2; : : : ; ukg denote the set of
hildren of r0.Let Q� = opt(T resr0 ; zres). De
ompose Q� into the trees Q�(r0;u1) [Q�(r0;u2) [� � �Q�(r0;uk). Re
all thatQ�(r0;ui) is the tree Q�ui together with the edge (r0; ui).We distinguish between subtrees that
over a large number of groups and those that
over few.A subtreeQ�(r0;ui) is bad ifm(Q�(r0;ui)) < zresdeg(r0)�(1+1=�) ; otherwise it is good. Observe that the union ofall bad subtrees
overs at most zres=(1+1=�) groups. Hen
e the union of all good subtrees, denotedby Q�big,
overs at least zres=(1 + �) groups. It follows that
(Q�big) �
(Q�) � (1 + �). By a simpleaveraging argument it also follows that the density of at least one of the good subtrees is at most
(Q�big). Without loss of generality, assume that Q�(r0; u1) is good and that
(Q�(r0; u1)) �
(Q�big).It follows that
(Q�(r0;u1)) �
(Q�big) � (1 + �) �
(Q�): (1)Let z�i = m(Q�(r0;ui)), namely, z�i is the number of groups
overed by Q�(r0;ui). Let z1 denote theintegral power of (1 + �) su
h that z1 � z�1 < (1 + �) � z1. Note that z1 is in the range of powers of(1 + �)
onsidered in Line 4 (in fa
t, this is why the threshold between bad and good subtrees isdivided by an extra fa
tor of (1+�)). Consider the exe
ution of Cu1;z1 Modi�ed-GS(T resu1 ; z1) inLine 4. The tree Cu1;z1 is in
rementally
onstru
ted from a sequen
e of augmenting trees, denotedby fR1; R2; : : :g. Let i denote the smallest integer su
h thatm([j�iRj) � z1h(Tr0) : (2)By the de�nition of i, it follows that
overh = [j�iRj in the exe
ution of Modi�ed-GS(T resu1 ; z1).Observe that, during all the iterations of the while loop in whi
h Cu1;z1 is
omputed, the subtreeQ�u1 is a
over that
overs the residual demand. This implies that the weight of a min-weight
overof the residual demand is not greater than w(Q�u1). Moreover, the residual demand when Rj is
omputed, for j � i, is at least z1 � z1=h(Tr0). Therefore, the indu
tion hypothesis when applied
9

to Rj , for j � i, implies
(Rj) � (1 + �)2h(Tu1) � h(Tu1) � w(Q�u1)z1 � z1=h(Tr0)= (1 + �)2h(Tr0)�2 � (h(Tr0)� 1) � w(Q�u1)z1 � z1=h(Tr0) (using h(Tu1) = h(Tr0)� 1)= (1 + �)2h(Tr0)�2 � h(Tr0) � w(Q�u1)z1 : (3)
Sin
e
([j�iRj) � maxj�i
(Rj), it follows that
([j�iRj) � (1 + �)2h(Tr0)�2 � h(Tr0) � w(Q�u1)z1 : (4)Sin
e Taug is sele
ted to be a tree of min-density among
over and
overh in the exe
ution ofModi�ed-GS(T resu1 ; z1), it follows that
(Taug) � w([j�iRj) + w(r0; u1)m([j�iRj)(by Eqs. 4 & 2) � (1 + �)2h(Tr0)�2 � h(Tr0) � w(Q�u1)z1 + w(r0; u1)z1=h(Tr0)(sin
e z�1 � z1(1 + �)) � (1 + �)2h(Tr0)�2 � h(Tr0) � w(Q�u1)z�1=(1 + �) + h(Tr0) � w(r0; u1)z�1=(1 + �)� (1 + �)2h(Tr0)�1 � h(Tr0) � w(Q�u1) + w(r0; u1)z�1(by de�nition) = (1 + �)2h(Tr0)�1 � h(Tr0) �
(Q�(r0;u1))(by Eq. 1) � (1 + �)2h(Tr0) � h(Tr0) �
(Q�):This proves the lemma. 24 Height redu
ing transformationIn this se
tion we present a height redu
ing transformation that proves Claim 2.4. The transforma-tion produ
es a redu
ed height tree re
ursively as follows. Given a rooted tree T , a spe
ial subtreeQ � T ,
alled an �-de
omposition, is found. The subtree Q is a pre�x of T (i.e., the root of T isalso the root of Q and the leaves of Q may be internal verti
es of the original tree T). Looselyspeaking, the subtree Q indu
es a partition of T into subtrees that have 1=� as many nodes as thewhole tree. The subtree Q is substituted by an O(�)-faithful representation Q0 of Q. This O(�)-representation is a height-3 tree with the same root and leaf-set. This pro
edure is then appliedre
ursively to the subtrees rooted at the leaves of Q. Namely, as a leaf u in Q roots a subtree Tuin T , we re
ursively repeat this modi�
ation in Tu. The redu
tion by a fa
tor of � in the numberof terminals per three levels redu
es the height to 3 � log� n. Sin
e every �-de
omposition is substi-tuted by an O(�)-faithful representation, the penalty in
urred by this transformation is O(�). We
hoose � = log" n to redu
e the height to O(log n= log logn) so that the re
ursive greedy algorithmruns in polynomial time. Interestingly, setting � to a
onstant redu
es the height to O(log n) whilein
urring only a
onstant (multipli
ative) penalty. Our transformation runs in linear time.10

4.1 �-de
ompositionsLoosely speaking, an �-de
omposition of a tree Tr is a partition of Tr into � sub-trees, ea
h subtree
ontaining nr=� terminals. However, su
h a partition may not be possible;
onsider, for example,the
ase when Tr is a star. We therefore need to deal with the situation that there are many \light"des
endants.Let u denote a des
endant of r. Let � > 1. A node u is �-light with respe
t to Tr if nu � nr=�.A node u is �-heavy with respe
t to Tr if nu > nr=�. A node u is minimally �-heavy if u is �-heavyand v is �-light, for every
hild v of u. A node u is maximally �-light if u is �-light and p(u) is�-heavy. We �x � upfront and hen
e, for ease of notation, we refer to �-heavy nodes as heavy andto �-light nodes as light.De�nition 4.1 A subtree Q � Tr is an �-de
omposition of Tr if r 2 Q and every leaf of Q ismaximally �-light.De�nition 4.2 The skeleton of an �-de
omposition Q is the subtree sk(Q) � Q indu
ed by all the�-heavy nodes in Q.Returning to the example in whi
h Tr is a star, note that in this
ase Q = Tr is an �-de
omposition of Tr, and the skeleton is simply sk(Q) = frg. An �-de
omposition of Tr is easy to
ompute: explore the subtree Tr via depth �rst sear
h stopping the exploration of a node's
hildrenif it is a maximally light node.Note that every leaf in a skeleton is maximally �-heavy, and therefore, the number of leaves inthe skeleton at most �. We refer to the edges in Q that are in
ident to light leaves as the
u� ofQ. Every edge of an �-de
omposition Q is either an edge in the skeleton sk(Q) or an edge in the
u� of Q, but not both.4.2 Promotion of �-de
ompositionsIn this se
tion we des
ribe how the height redu
ing transformation substitutes an �-de
ompositionQ of Tr by a tree Q0 of height 3. We also des
ribe a mapping � from the nodes of Q to those in Q0whi
h will be used to establish the O(�)-faithfulness of the transformation.Bran
hes. A bran
h is a maximal subpath in sk(Q) between two bran
hing points (i.e., nodeswith at least two
hildren). There are at most (2��1) bran
hes sin
e there are at most � leaves insk(Q). To avoid in
lusion of bran
hing points in multiple bran
hes, we assume that (ex
ept for theroot) a bran
hing point belongs to the bran
h above it. The root belongs to one of the bran
hesthat emanate from the root.Bun
hes. Fix a bran
h B of sk(Q). Denote the endpoint of B
loser to the root of Q by v. Formbun
hes B0; B1; B2 : : : of verti
es along B as follows. The �rst bun
h B0 is de�ned as follows:B0 4= fu 2 B j w(path(v; u)) = 0g:For every positive integer i, the i'th bun
h, denoted by Bi, is de�ned as follows:Bi 4= fu 2 B j w(path(v; u)) 2 [2i�1; 2i)g:Re
all that nonzero edge weights are at least 1, so there are no verti
es between B0 and B1. Sin
ethe start-vertex v of a bran
h B belongs to the bran
h above it, v does not belong to the bun
hB0. 11

Promotion. We now
reate a height-3 tree Q0 whi
h has the same number of leaves as Q bypromoting bun
hes in bran
hes as follows. Figure 1 depi
ts the promotion of bun
hes along a singlebran
h. Intuitively, a path from r to a light leaf ` is divided into 3 parts. The �rst part is the pathfrom r to v, the start-vertex of the bun
h of `. The se
ond part is the path from v to p(`) 2 B,and the third part is the edge (p(`); `). This path is repla
ed with a path of length 3; the weightof �rst and last edges in this path equals the weight of the
orresponding part in path(r; `). Theweight of the middle edge is a power of two and approximates the weight of path(v; p(`)).For every bran
h B, the following subtree is
onstru
ted. Let r0 denote the root of Q0. Add anode v(B) in Q0, that
orresponds to v, and an edge (r0; v(B)). The edge (r0; v(B)) is given weightequal to the weight of the path from r to v. The bun
hes Bi are promoted as follows. For everynon-empty bun
h Bi, add a new node bi and an edge (v(B); bi). For every leaf ` 2 L(Q) hangingfrom a node in Bi, we
reate a leaf `0 2 L(Q0) that hangs from bi. Weights are assigned as follows:(a) w(v(B); b0) = 0, if Bi is not empty, (b) w(v(B); bi) 2i, for every i > 0 su
h that Bi is notempty, and (
) w(bi; `0) w(p(`); `), for every leaf ` hanging from a vertex in Bi.The mapping � maps the nodes V (Q) to V (Q0) as follows. The root of Q is mapped to theroot of Q0. For a bran
h B, all the nodes in Bi are mapped to the node bi. Every leaf ` 2 L(Q) ismapped to its
ounterpart `0 2 L(Q).
3

5

6
4

1
2

3

1

2
9

1
2

4

8
7

4
2

3

}
}

8
32

1 3
5 2 6

4 1
2 3

64

33

} 128

v

w(path(r′, v))

r′

B3

B5

B6

b6b5b3

v(B)

B7

b7Figure 1: Promotion of bun
hes along a single bran
h. Depth of light leaves after promotion isthree.4.3 The transformationThe height redu
ing transformation pro
eeds as follows. If r is a leaf, then it returns a
opy ofTr. Otherwise, an �-de
omposition Q is
omputed. A height 3 subtree Q0 is
reated from Q. Thetransformation is then applied re
ursively to the leaves of Q and they are atta
hed appropriatelyto Q0. The mapping � is de�ned in every step of the re
ursion as des
ribed above.4.4 Analysis of the height redu
ing transformationLet T 0 denote the tree resulting when the height redu
ing transformation is applied to the tree T .In this se
tion we prove that h(T 0) is O(log� n) and that T 0 is an O(�)-faithful representation ofT . Consider a single promotion step applied to an �-de
omposition Q � T . Promotion substitutesQ by a tree Q0 of depth 3. It follows that the height h(n) of a redu
ed tree with n terminals satis�esthe re
urren
e h(n) � 3 + h(n=�). This yields the following
laim.Claim 4.3 h(T 0) � 3 � log� n. 12

The following proves the faithfulness of the height redu
ing transformation.Claim 4.4 T 0 is an O(�)-faithful representation of T .Proof: Let Q1; Q2; : : : ; Qk � T denote the sequen
e of �-de
ompositions
omputed during theheight redu
tion transformation. By de�nition, the edge sets of subtrees in this sequen
e partitionthe edge set of T into disjoint sets. Let Q0i denote the height-3 subtree of T 0 that is used to promoteQi. By de�nition, the edge sets of fQ0igi also partition the edge set of T 0 into disjoint parts. Thetransformation is lo
al in the sense that �(V (Qi)) = V (Q0i).We say that a node v 2 V (T) is a border point if it belongs to more than one subtree Qi. Notethat v is a border point i� it is a light leaf in one Qi and a root of another Qj.Consider a set of verti
es S � V (T). We may assume that S
ontains all the border pointsin T [S℄. Namely, we add all border points in T [S℄ to S, and this does not a�e
t T [S℄. LetSi = S \ V (Qi), S0 = �(S), and S0i = �(Si). It follows thatwT (T [S℄) = kXi=1 wQi(Qi[Si℄)wT 0(T 0[S0℄) = kXi=1 wQ0i(Q0i[S0i℄):The same de
omposition holds if S0 � �(V (T)) and S = ��1(S0). Hen
e, it suÆ
es to prove thatQ0i is an O(�)-faithful representation of Qi, for every 1 � i � k.For this purpose we
onsider a single �-de
omposition Q rooted at r and its height-3 substituteQ0. The main issue in proving that Q0 is an O(�)-faithful representation of Q is that we havea separate subtree in Q0 for every bran
h in Q. This means that if there are several bran
hes\below" an edge e, then w(e) is
ounted multiple times. Lu
kily, the number of bran
hes is O(�),so the in
rease in weight
an be bounded by O(�). However, we also have multiple
ounting withinea
h bran
h sin
e bun
hes are
onne
ted separately. Here we utilize the fa
t that weights of edges(v(B); bi) double, and hen
e they are dominated by the heaviest edge. We now provide a rigorousproof.Consider a single bran
h B, and use the notation used in the des
ription of the promotion ofbun
hes along a single bran
h. Let B+ denote B together with the light leaves hanging from it.We fo
us now on SB = S \B+ and S0B = �(SB). Assume that SB is not empty (and therefore S0Bis also not empty). We
laim thatwQ(Q[SB ℄) � wQ0(Q0[S0B℄) � 4 � wQ(Q[SB ℄): (5)Let u 2 B denote the \deepest" node in Q[SB ℄ and let v be start node of B. The subtree Q[SB ℄
onsists of three types of edges: (i) edges along the path from the root r to v, (ii) edges alongthe path from v to u, and (iii) edges from nodes in B to light leaves in B+. We therefore rewritewQ(Q[SB ℄) as follows:wQ(Q[SB ℄) = wQ(path(r; v)) + wQ(path(v; u)) + X`2SB\L(B+)wQ(p(`); `): (6)Let i denote the index of the bun
h that u belongs to (i.e., u 2 Bi). The subtree Q0[S0B ℄
onsists ofthree types of edges: (i) the edge (r0; v(B)) whose weight equals wQ(path(r; v)), (ii) edges (v(B); bj)whose weight is 2j , and (iii) edges from nodes in bun
h nodes bj to leaves. We know that bi 2 Q0[S0B ℄13

sin
e u 2 Bi. Hen
e, edges of the se
ond type
ontribute at least 2i. The bun
h nodes bj in Q0[S0B ℄are a subset of fb1; : : : ; big. Hen
e, the edges of the se
ond type
ontribute at most Pij=1 2j . Itfollows that wQ0(Q0[S0B ℄) � wQ(path(r; v(B))) + iXj=1 2j + X`02S0B\�(L(B+))wQ0(p(`0); `0) (7)wQ0(Q0[S0B ℄) � wQ(path(r; v(B))) + 2i + X`02S0B\�(L(B+))wQ0(p(`0); `0): (8)Note that the
ontribution of edges of the third type in Q[SB℄ and Q0[S0B ℄ is identi
al. It followsthat the only di�eren
e between wQ(Q[SB ℄) and the bounds on wQ0(Q0[S0B℄) in the rewriting aboveis in the middle terms. Sin
e u 2 Bi, it follows that 2i�1 � wQ(path(v; u)) < 2i, and Equation 5follows.We are now ready to
omplete the proof of the O(�)-faithfulness of Q0. Sin
e ea
h bran
h B ismapped to a separate subtree in Q0, it follows thatwQ0(Q0[S0℄) =XB wQ0(Q0[S0B℄): (9)By Equation 5, the term PB wQ0(Q0[S0B ℄) is bounded by 4 �PB wQ(Q[SB ℄). Sin
e there are atmost (2� � 1) bran
hes, it follows that PB wQ0(Q0[S0B℄) = O(�) � maxBfwQ(Q[SB ℄)g. However,maxBfwQ(Q[SB ℄)g � wQ(Q[S℄). It follows thatwQ0(Q0[S0℄) � O(�) � wQ(Q[S℄):This
ompletes the �rst part of the proof.To prove the se
ond part, we
onsider a set of terminals S0 � �(V (Q)) and de�ne S = ��1(S0).We need to show that wQ(Q[S℄) � w(Q0[S0℄):By Eq. 9 and Eq. 5, it follows thatwQ0(Q0[S0℄) �XB wQ(Q[SB ℄):However, PB wQ(Q[SB ℄) � wQ(Q[S℄), and the
laim follows. 25 Degree redu
ing transformationIn this se
tion we present a degree redu
ing transformation that proves Claim 2.5. Given a rootedtree T and an integer � � 3, the transformation produ
es a 1-faithful representation �(T) of T .The rooted tree �(T) satis�es: (a) ea
h node in �(T) has at most �
hildren, and (b) the height of�(T) is at most h(T) + dlog�=2 ne.Given a tree T rooted at u and a parameter �, the tree �(T) is
onstru
ted re
ursively as follows.If u is a leaf, then the algorithm returns u. Otherwise, the subtree indu
ed by the edges betweenu and its
hildren is lo
ally transformed as follows. Let v1; v2; : : : ; vk denote the
hildren of u.1. The �-heavy
hildren vi of u (i.e., su
h that nvi � nu=�) are not
hanged; the edges (u; vi)are kept and their weight is not modi�ed. 14

2. The �-light
hildren of u are grouped arbitrarily into minimal bun
hes su
h that ea
h bun
h(ex
ept perhaps for the last) is �-heavy. Note that the number of leaves in ea
h bun
h (ex
eptperhaps for the last bun
h) is in the interval [nu=�; 2nu=�). For every bun
h B, a new nodeb is
reated. An edge (u; b) is added as well as edges between b and the
hildren of u in B.The edge weights are set as follows: (a) w(u; b) 0, and (b) w(b; vi) w(u; vi).After the lo
al transformation, let v01; v02; : : : ; v0j be the new
hildren of u. Some of these
hildrenare the original
hildren and some are the new verti
es introdu
ed in the bun
hing. The tree �(T)is obtained by re
ursively pro
essing the subtrees Tv0i , for 1 � i � j, in essen
e repla
ing Tv0i by�(Tv0i). Note that after pro
essing, the number of
hildren of u is at most � be
ause the subtreesfTv0igi partition the nodes of V (Tu) � fug and ea
h tree ex
ept, perhaps one, is �-heavy. There
ursion is applied to ea
h subtree Tv0i , and hen
e �(T) will satis�es the degree requirement, as
laimed. The 1-faithfulness of �(T) follows from the fa
t that the \shared" edges (u; b), that were
reated for bun
hing together �-light
hildren of u, have zero weight.We now bound the height of �(T). Given a tree of height h and n nodes let
(h; n) be theheight of the tree that results when the above pro
edure is applied. From the re
ursive pro
edure,we have that h(�(T)) = 1 + maxji=1 h(�(Tv0i)). If v0i
orresponds to a �-heavy
hild of u, thenh(Tv0i) � h(T) � 1 and n(Tv0i) � n. If v0i is formed by bun
hing together �-light
hildren of u thennv0i < 2nu=� and h(Tv0i) � h(T). Therefore
(h; n) satis�es the following re
urren
e:
(h; n) � (0 if h = 01 +maxf
(h� 1; n);
(h; b2n�
g) otherwise.It follows that the height of �(T) is bounded by h(T) + blog�=2 n
, as required.6 Con
lusionsWe
on
lude the paper with a few remarks.An approximation algorithm for the
overing Steiner problem on trees: The
overingSteiner problem generalizes the group Steiner problem; in addition to the graph and groups we aregiven an integer demand di for every group gi and the goal is to
over, for ea
h i, at least di terminalsfrom gi. In the 12 -group Steiner problem the input is the same as in the group Steiner problem, butthe goal is to
ompute a minimum-weight tree
ontaining a terminal from at least half the groups.Poly-logarithmi
 approximation algorithms for the
overing Steiner problem are given in [19, 20℄and these algorithms rely on solving an LP relaxation for the problem. In [10℄ a simple randomizedpro
edure is applied to show that a � ratio approximation for the 12 -group Steiner problem
anbe used to approximate the
overing Steiner problem within � log(Pi di). Our algorithm for thegroup Steiner problem on trees
an be used to derive an O((log n)1+") approximation algorithmfor the 12 -group Steiner problem on trees and hen
e, O(log2+� n) ratio algorithm for the
overingSteiner problem on trees. It
an also be used to obtain an O(log3+� n) ratio for the
overing Steinerproblem on graphs, using [11℄. Thus we obtain an algorithm that does not rely on solving linearprograms.On improving the log2 n ratio: Our algorithm
an be modi�ed to give an O(log2 n= log logn)ratio algorithm for the group Steiner problem on trees whi
h would slightly improve upon the bestknown ratio [14, 25℄. The main idea is to guess all the minimally log n-heavy nodes in the optimum15

solution. We note however that the algorithm would run in quasi-polynomial time. One should
ontrast this result with the re
ent
(log2�� n) hardness of approximation for this problem [16℄where " > 0 is any �xed
onstant. The hardness of approximation does not pre
lude a polynomialtime algorithm that a
hieves an O(log2 n= log log n) ratio.Currently the only way to get a poly-logarithmi
 approximation for the group Steiner problemon graphs is to �rst redu
e it to the tree
ase. This redu
tion in
urs a logarithmi
 fa
tor in theapproximation ratio. Is it possible to avoid this redu
tion and work dire
tly with graphs? Thiswould improve the ratio by a logarithmi
 fa
tor.Dire
ted Steiner tree problem: Currently there is no poly-logarithmi
 approximation ratio forthe dire
ted Steiner tree problem that runs in polynomial time (the algorithm in [8℄ runs in quasi-polynomial time). Geometri
 sear
h and height redu
tion
an be applied to dire
ted a
y
li
 graphs(DAGs). However there is no degree redu
ing transformation for DAGs that has the same propertiesas those for trees. We believe that with some more sophisti
ated ideas, the greedy algorithm
anbe adapted to give a polynomial time poly-logarithmi
 approximation for the dire
ted Steiner treeproblem.Height redu
tion: The height redu
ing transformation presented in this paper loses only a
onstant fa
tor to redu
e the height of the tree to O(log n). On the other hand, the redu
tionpro
edure of Zelikovsky [24, 17℄ loses an
(log n) fa
tor to a
hieve a similar redu
tion. The analysisin [8℄ relies on height redu
tion and hen
e it might appear that a logarithmi
 fa
tor
an be savedby using the transformation from this paper. However, the transformation in this paper requiresan expli
it tree and does not seem to be adequate for the algorithm and analysis in [8℄.A
knowledgments Chandra Chekuri thanks Moses Charikar for useful dis
ussions, in parti
ularon the degree redu
ing transform.Referen
es[1℄ Y. Bartal. Probabilisti
 approximation of metri
 spa
es and its algorithmi
 appli
ations. Pro
.of FOCS, 184-93, 1996.[2℄ Y. Bartal. On approximating arbitrary metri
s by tree metri
s. Pro
. of STOC, 1998.[3℄ Y. Bartal, M. Charikar, D. Raz. Approximating min-sum k-
lustering in metri
 spa
es. Pro
.of STOC, 2001.[4℄ C. D. Bateman and C. S. Helvig and G. Robins and A. Zelikovsky. Provably good routing tree
onstru
tion with multi-port terminals. Pro
. of ACM/SIGDA International Symposium onPhysi
al Design , 1997.[5℄ M. M. Bern and P. Plassmann. The Steiner problem with edge lengths 1 and 2. Inform.Pro
ess. Lett, 32, 171-176, 1989.[6℄ M. Charikar, C. Chekuri, A. Goel, and S. Guha. Rounding via trees: deterministi
 approxi-mation algorithms for group Steiner trees and k-median. Pro
. of STOC, 1998.[7℄ M. Charikar, C. Chekuri, A. Goel, S. Guha, and S. Plotkin. Approximating a �nite metri
 bysmall number of trees. Pro
. of FOCS, 1998.16

[8℄ M. Charikar, C. Chekuri, T. Cheung, Z. Dai, A. Goel, S. Guha and M. Li. ApproximationAlgorithms for dire
ted Steiner Problems. Journal of Algorithms, 33, p. 73-91, 1999.[9℄ G. Even and G. Kortsarz. An approximation algorithm for the Group Steiner Problem. Pro
.of SODA, 2002.[10℄ G. Even, G. Kortsarz, and W. Slany. On Network Design Problems: Fixed Cost Flows andthe Covering Steiner Problem. Pro
. of SWAT, 2002.[11℄ J. Fak
haroenphol, S. Rao, and K. Talwar. A tight bound on approximating arbitrary metri
sby tree metri
s. Pro
. of STOC, pp. 448-455, 2003.[12℄ U. Feige. A threshold of lnn for approximating set
over. Journal of the ACM, 45:634-652,1998.[13℄ M.R. Garey and D.S. Johnson. Computers and Intra
tability: A Guide to the Theory ofNP-Completeness. W.H. Freeman and Company, 1979.[14℄ N. Garg and G. Konjevod and R. Ravi, A polylogarithmi
 approximation algorithm for theGroup Steiner tree problem. Journal of Algorithms, 37, 66-84, 2000. Preliminary version inPro
. of SODA, 253{259, 1998.[15℄ E. Halperin, G. Kortsarz, R. Krauthgamer, A. Srinivasan, and N. Wang. Integrality ratio forGroup Steiner Trees and Dire
ted Steiner Trees. Pro
. of SODA, 2003.[16℄ E. Halperin and R. Krauthgamer, Polylogarithmi
 inapproximability. Pro
. of STOC, 585-594,2003.[17℄ C. H. Helvig, G. Robins, and A. Zelikovsky. Improved approximation s
heme for the groupSteiner problem. Networks, 37(1):8{20, 2001.[18℄ D. Johnson. Approximation algorithms for
ombinatorial problems. J. of Comput. SystemS
i., 9, 256-278, 1974.[19℄ G. Konjevod and R. Ravi, An Approximation Algorithm for the Covering Steiner Problem.Pro
. of SODA, 338{334, 2000.[20℄ G. Konjevod, R. Ravi, and A. Srinivasan. Approximation Algorithms for the Covering SteinerProblem. Random Stru
tures and Algorithms 20, pages 465{482, 2002.[21℄ G. Kortsarz and D. Peleg. Approximating the Weight of Shallow Steiner Trees. Dis
reteApplied Math, vol 93, pages 265-285, 1999.[22℄ R. Raz and S. Safra. A Sub-Constant Error-Probability Low-Degree test and a Sub-ConstantError-Probability PCP Chara
terization of NP. Pro
. of STOC, 1997.[23℄ G. Rei
h and P. Widmayer. Beyond Steiner's problem: A VLSI oriented generalization.Pro
. of Graph-Theoreti
 Con
epts in Computer S
ien
e (WG-89), LNCS volume 411, pages196-210, 1990.[24℄ A. Zelikovsky. A series of approximation algorithms for the a
y
li
 dire
ted Steiner tree prob-lem. Algorithmi
a, 18: 99-110, 1997.[25℄ L. Zosin and S. Khuller. On dire
ted Steiner trees. Pro
. of SODA, 2002.17

