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1 Introduction

Consider a network of processors modeled by an undirected n-vertex graph G = (V, E). Assume
that the communication in the network is synchronous, i.e., occurs in discrete pulses, called rounds.
Suppose also that there is a designated vertex s ∈ V , called source, that generates a message µ.
On each round of the communication each processor that knows the message µ is allowed to send
it to all its neighbors. Note that a processor can either send the message µ to all of them or not
send µ at all, but it can transmit to no strict subset of its set of neighbors. Furthermore, only a
processor that receives the message from precisely one neighbor in a certain round is considered
to be informed in this round. The intuition is that processors, that receive a message from more
than one neighbor in the same round, get it corrupted. The radio broadcast problem requires to
compute a schedule with minimal number of rounds that delivers a message from the source to all
the other processors in the network.

The radio broadcast is a basic primitive in distributed computing and computer communication
theory, and is used as a building block for various more complicated tasks in these areas (see,
e.g., [ABLP91, ABLP92, BGI91, CK85, CK87, CK2-85, CW87, GVF87, GM95, KGBK78, KP02,
SC82]).

Let rad(G, s) be the largest distance between the source s and any other vertex in the graph
G. Bar-Yehuda et al. [BGI91] and Gaber and Mansour [GM95] have shown that for any graph
G and vertex s in G, a radio broadcast that was originated from the source s can be completed
in O(min{rad(G, s) + log5 n, (rad(G, s) + log n) log n}) rounds. On the other hand, Alon et al.
[ABLP91] have shown that for any r = 2, 3, . . ., there is an infinite family of graphs of radius r,
on which the radio broadcast requires rad(G, s) + Ω(log2 n) rounds. While the aforementioned
upper bound of [BGI91] can be interpreted as a (randomized) O(log2 n)-approximation algorithm
for the problem, to the best of our knowledge, no lower bound on its hardness of approximation
was known prior to the current paper. (A deterministic O(log2 n)-approximation algorithm for
the problem was devised in [CW87]; the exact version of the problem is known to be NP-hard
even when restricted to disc graphs [CK85, GPM03].) However, an evidence of its hardness was
recently discovered by Bar-Yehuda [B01]. It is shown there that for any c > 0 the existence of
a (c · log n)-approximation algorithm for the radio broadcast problem implies an existence of an
algorithm that colors any 3-colorable graph with O(nc) colors. The latter is considered to be hard
for small c, and the best known upper bound on the required number of colors is O(n3/14), due to
Blum and Karger [BK97].

We show that the problem is Ω(log n)-inapproximable unless NP ⊆ BPTIME(nO(log log n))
(see Theorem 6.5), showing, in particular, that it is unlikely that the reduction of [B01] may ever
be used to prove a polylogarithmic upper bound on the number of colors that are required to
color any 3-colorable graph. We note that the multiplicative Ω(log n)-inapproximability that we
establish holds only for the general case of the radio broadcast problem, that is the case when the
instances that admit a schedule with only a constant number of rounds are allowed. Indeed, an
approximation algorithm with only a constant multiplicative ratio, but with an additive error term
of O(log5 n) for the radio broadcast problem was devised in [GM95]. It follows from their result
that there exists an algorithm that provides a constant approximation guarantee for the restriction
of the problem to the set of instances for which any admissible schedule requires ω(log5 n) rounds.
On the other hand, it follows from our result that unless NP ⊆ BPTIME(nO(log log n)), the additive
o(log n) approximation for the radio broadcast problem is impossible, even when the problem is
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restricted to the set of instances for which all admissible schedules require at least polynomial in
n number of rounds.

2 Preliminaries

2.1 The radio broadcast problem

Let G = (V, E) be an unweighted undirected graph. For a vertex x ∈ V , let ΓG(x) = {u ∈ V |
(x, u) ∈ E} denote the set of neighbors of the vertex x in the graph G.

For a subset R ⊆ V of vertices, the set of vertices that are informed by R, denoted I(R), is
I(R) = {v | ∃!x ∈ R s.t. v ∈ ΓG(x)} (the notation ∃!x stands for “there exists a unique x”). For
a singleton set R = {x}, I(R) = I({x}) = I(x) = ΓG(x). In other words, a set R informs a vertex
v if v has exactly one neighbor in R.

A sequence of vertex sets Π = (R1, R2, . . . , Rq), q = 1, 2, . . ., is called a radio broadcast schedule
(henceforth, schedule) if Ri+1 ⊆

⋃i
j=1 I(Rj) for every i = 1, 2, . . . , q− 1. Intuitively, the vertices of

the set Ri send the message on round i. The condition Ri+1 ⊆
⋃i

j=1 I(Rj) means that the vertices
that send a message in a certain round were informed in one of the previous rounds.

The vertex set of the schedule Π, denoted V (Π), is V (Π) =
⋃

R∈Π R. The set of vertices
informed by a schedule Π, denoted I(Π), is I(Π) =

⋃

R∈Π I(R).
An instance of the radio broadcast problem G is a pair (G = (V, E), s), where G is a graph,

and s ∈ V is a vertex. Given a graph G = (V, E) and a vertex s ∈ V , a schedule Π is admissible
with respect to the instance (G, s), if R1 = {s} and V = I(Π). The length of the schedule
Π = (R1, R2, . . . , Rq) is |Π| = q. The goal of the radio broadcast problem is to compute an
admissible schedule Π of minimal length.

For any schedule Π = (R1, R2, . . . , Rq), the set Ri is called the ith round of Π, i = 1, 2, . . . , q.

2.2 The MIN-REP problem

The MIN-REP problem was introduced in [K98]. This problem is a variant of the Label-Cover
problem (see, e.g., [AL96]), and it is equivalent to the symmetric Label-Cover problem (see, e.g.,
[DK99]).

Its input consists of a bipartite graph G = (V1, V2, E), and two partitions Ṽ1 and Ṽ2 of V1 and
V2 respectively, into disjoint unions of subsets, Vj =

⋃

X∈Vj
X, for j = 1, 2. Denote n = |V1|+ |V2|.

An instance M as above induces a bipartite supergraph G̃ = (Ṽ1, Ṽ2, Ẽ) with Ẽ(M) = Ẽ =
{(A, B) ∈ Ṽ1 × Ṽ2 | a ∈ A, b ∈ B, (a, b) ∈ E}. In other words, the vertices of the supergraph are
the sets that belong to one of the partitions, and there is a superedge between a pair of sets (A, B)
if and only if the graph G contains an edge between some pair of vertices (a, b), with a ∈ A and
b ∈ B. It is convenient to visualize the supergraph with the sets A ∈ Ṽ1 on the left-hand side, and
the sets B ∈ Ṽ2 on the right-hand side.

Let Ṽ = Ṽ1 ∪ Ṽ2 denote the vertex set of the supergraph.
A pair of vertices x1, x2 ∈ V1 ∪ V2 is called a matching pair with respect to a superedge ẽ =

(A, B) ∈ Ẽ (henceforth, ẽ-m.p.) if (x1, x2) ∈ E ∩ (A×B), where A×B stands for the set of pairs
{(x1, x2) | x1 ∈ A, x2 ∈ B}.
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A subset C ⊆ V1∪V2 of vertices is said to cover a superedge ẽ = (A, B) if it contains an ẽ-m.p..
A subset C that covers all the superedges is called an admissible solution for the instance M of
the MIN-REP problem. A subset C ⊆ V1 ∪V2 that satisfies |C ∩X| = 1 for every X ∈ Ṽ is called
a MAX-cover.

An instanceM of the MIN-REP problem is called a YES-instance if there exists a MAX-cover
that covers all the superedges. Such a MAX-cover is called a proper MAX-cover.

An instanceM of the MIN-REP problem is called a t-NO-instance, for some number t > 1, if
for any subset C ⊆ V1 ∪ V2 such that |C| ≤ (|Ṽ1|+ |Ṽ2|) · t, there exists a superedge ẽ ∈ Ẽ that is
not covered by C.

Intuitively, in a YES-instance there is a way to select one vertex from each supervertex in
such a way that the resulting set C of vertices will cover all the superedges. In contrast, in a
t-NO-instance the set C has to contain at least t vertices per supervertex on average in order to
cover all the superedges.

We next impose an additional restriction on the instances of the MIN-REP problem. Specifi-
cally, for every superedge ẽ = (A, B) ∈ Ẽ, for every vertex b ∈ B there exists exactly one vertex
a ∈ A, denoted ẽ(b), such that (a, b) ∈ E. This property is henceforth called the star property.

The star property implies that for every superedge ẽ = (A, B) ∈ Ẽ, the graph E(ẽ) induced
by A ∪ B is a collection of vertex-disjoint stars (a star is a tree of depth 1). The head of the star
is the unique vertex that belongs to the intersection of the vertex set of the star with the set A.
The other vertices are called the leaves of the star. Two vertices b1, b2 ∈ B are said to belong to
different stars with respect to the superedge ẽ if ẽ(b1) 6= ẽ(b2); otherwise, they are said to belong
to the same star with respect to the superedge ẽ. See Figure 1 for an example of an instance of
the MIN-REP problem that obeys the star property. In this example the vertices a and b form a
matching pair with respect to the superedge ẽ = (A1, B1), but the vertices a′ and b do not form a
matching pair with respect to the superedge ẽ.

Theorem 2.1 [R98] No polynomial time algorithm may distinguish between YES-instances and
log10 n-NO-instances of the MIN-REP problem unless NP ⊆ DPTIME(nO(log log n)), even when
the instances of the MIN-REP problem satisfy the star property.

The constant 10 is arbitrary, and its effect is hidden by the O-notation in the complexity-theoretic
assumption.

3 The reduction

Next we describe our randomized reduction from the MIN-REP problem to the radio broadcast
problem, that shows that the approximability threshold for the latter is Ω(log n). This reduction
is a based on the reduction of Lund and Yannakakis [LY94] from the maximization variant of the
Label-Cover problem to the Set-Cover problem (see, e.g., [AL96]).

Consider an instance M = (G, Ṽ1, Ṽ2), with G = (V1, V2, E) of the MIN-REP problem.
The instance G = (s, Ĝ), Ĝ = (V̂ , Ê) of the radio broadcast problem is formed in the following

way.
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Figure 1: Supervertices are depicted by large circles, and vertices are depicted by small black circles.

Edges are depicted by solid lines, and superedges are depicted by dashed lines. Observe that for every

superedge (Ai, Bj), the set Ai ∪Bj forms a collection of vertex-disjoint stars.

The vertex set V̂ :

1. The set V1: This set contains one copy x̄ for every vertex x ∈ V1 ∪ V2. Let V̄ = V̄1 ∪ V̄2

denote the set of these copies. Thus, each set A and B in Ṽ1 ∪ Ṽ2 has a copy set Ā and B̄
in V̄ . We will also use the notation A = copy(Ā) to denote the relation between the sets A
and Ā.

2. The vertex set V2: For every superedge ẽ = (A, B) ∈ Ẽ, the set V2 contains L = n2 ground
sets M j

ẽ of size M = n each. Let M̂ẽ =
⋃L

j=1 M j
ẽ denote the union of all ground sets that

correspond to the same superedge ẽ.

3. The source s: The vertex set of the graph Ĝ contains one additional vertex, designated as
a source, and denoted s.

Therefore, the vertex set V̂ is defined by V̂ = {s} ∪ V1 ∪V2, with V1 = V̄1 ∪ V̄2, V2 =
⋃

ẽ∈Ẽ M̂ẽ,

M̂ẽ =
⋃L

j=1 M j
ẽ , |M j

ẽ | = n for every ẽ ∈ Ẽ, j = 1, 2, . . . , L.

The edge set Ê:

1. The source s is connected to all of the vertices of V1.
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2. For every vertex ā ∈ Ā and for every superedge ẽ ∈ Ẽ that is incident to the supervertex
A, and for every j = 1, 2, . . . , L, the vertex ā is connected to a random half Hj

ẽ(a) of M j
ẽ .

Specifically, the set Hj
ẽ(a) is chosen uniformly at random from the collection of all the subsets

H of the set M j
ẽ that have cardinality |M j

ẽ |/2, and for different vertices a these choices are
independent.

3. All the vertices b̄ that satisfy ẽ(b) = a are connected to all the vertices of the complementary
half of the set M j

ẽ , that is, the set Hj
ẽ(b) = M j

ẽ \Hj
ẽ(a).

4. In addition, all the vertices b̄ that satisfy ẽ(b) = a are connected independently at random
to all the vertices of a random half Qj

ẽ(b) of the set Hj
ẽ(a). Analogously to the choice of

Hj
ẽ(a), the set Qj

ẽ(b) is chosen uniformly at random from the collection of all the subsets of
Hj

ẽ(a) of cardinality |Hj
ẽ(a)|/2.

Intuitively, every vertex ā ∈ Ā “chooses” a random half of the vertices of the ground set M j
ẽ

and connects to them. All the leaves of the star of ā are connected to all the vertices of the
complementary half of the ground set. In addition, each leaf in the star of a “chooses” at random
half of the neighbors of ā. Thus, each vertex b̄ ∈ B̄ is actually connected to a randomly chosen
three quarters of the vertices of the ground-set M j

ẽ ; to all the non-neighbors of the vertex ā, and
to one half of its neighbors. In contrast, each ā ∈ Ā is connected to exactly half of M j

ẽ .
See Figure 2 for an illustration. In this example the vertices a, b1, b2 belong to the same star

in G, with the vertex a serving as the head of the star, and b1, b2 serving as its leaves. This star is
a part of the subgraph induced by the superedge ẽ. The set M j

ẽ in this example consists of eight
vertices, v1, v2, . . . , v8. The vertex a is connected to all the vertices of a random half of the set
M j

ẽ , and in this example this random half consists of the vertices v1, v2, v3 and v4. Both vertices
b1 and b2 are connected to all the vertices of the complementary half of the set M j

ẽ , that is, to the
vertices v5, v6, v7 and v8. In addition, the vertex b1 is connected to all the vertices of a random
half of the set of the neighbors of a, and in this example this half consists of the vertices v1 and
v2. The vertex b2 is also connected to all the vertices of a random half of the set of neighbors of
a, and in this example this half consists of the vertices v1 and v3.

Let m = O(n2) denote the number of superedges in G̃. Let V = V1∪V2 = V̂ \{s}. The number
of vertices in the graph Ĝ is |V̂ | = 1 + |V| = 1 + n + m · L · n = O(n5).

We remark that the bipartite graph (V1,V2, Ē) is similar to the graph that is constructed by
the reduction of Lund and Yannakakis [LY94]. The latter reduction is used there to prove the
logarithmic inapproximability of the Set-Cover problem. However, there are two differences. First,
in [LY94] only one set M̂ẽ is formed for every superedge ẽ, instead of L copies of it, as it is in our
reduction. Second, and probably more important difference, is the introduction of the sets Qj

ẽ(b).
In the reduction to the Set-Cover problem for every b ∈ V2, the vertex b̄ is connected in M̂ẽ only
to the vertices of Hẽ(b). In our reduction, in addition to Hẽ(b), the vertex b̄ is connected to a
random half Qẽ(b) of the set Hẽ(a).

Remark about Notation: We use bars to denote copies of the vertices of the original graph,
tildes to denote supervertices and superedges of the supergraph G̃ that is a part of the instance
M of the MIN-REP problem, and hats for the vertex sets and edgesets of the graph Ĝ that is
returned by our reduction.
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v4v3 v5 v6 v7 v8

Figure 2: The dashed lines correspond to the edges of the graph G. The solid lines correspond to the

edges of the graph Ĝ. The wide solid lines indicate various partitions of the set M j
ẽ = {v1, . . . , v8}.

4 Intuition: YES-instance

To provide some intuition of the reduction, we next analyze its behavior on a YES-instanceM of
the MIN-REP problem.

Consider a YES-instance M = (G, Ṽ1, Ṽ2), G = (V1, V2, E) of the MIN-REP problem, and the
instance G = (s, Ĝ) of the radio broadcast problem that is obtained out of M via our reduction.
We show that there is a short schedule for G.

Lemma 4.1 There exists (with probability 1) an admissible schedule Π for G of length 3.

Proof: As M is a YES-instance of the MIN-REP problem, there exists a proper MAX-cover C
forM. Recall that such a cover contains exactly one vertex from every supervertex from Ṽ1 ∪ Ṽ2.

We next show that the schedule Π = (R1 = {s}, R2 = C̄ ∩ V̄1, R3 = C̄ ∩ V̄2) satisfies the
requirements of the lemma.

First, I({s}) = ΓĜ(s) = V1. In other words, all the vertices of V1 are informed after the first
round. It remains to argue that every vertex v ∈ V2 is informed either by the second or by the
third rounds of the schedule Π.

As V2 =
⋃

ẽ∈Ẽ M̂ẽ, it follows that there exists a superedge ẽ = (A, B) ∈ Ẽ such that v ∈ M̂ẽ =
⋃L

j=1 M j
ẽ . Hence v ∈M j

ẽ for some j = 1, 2, . . . , L. As C is a proper MAX-cover forM, it contains
some ẽ-m.p. a ∈ C ∩ A, b ∈ C ∩ B such that (a, b) ∈ E. Note that as (a, b) ∈ E, a ∈ A, b ∈ B, it
follows that a = ẽ(b). Hence M j

ẽ = Hj
ẽ(a) ∪Hj

ẽ(b).
Since R2 = C̄ ∩ V̄1, and C is a MAX-cover, the vertex ā is the only vertex of Ā ∪ B̄ that

transmits on round 2, and, analogously, since R3 = C̄ ∩ V̄2, the vertex b̄ is the only vertex of
Ā ∪ B̄ that transmits on round 3. Therefore, no collision occurs, and M j

ẽ = Hj
ẽ(a) ∪ Hj

ẽ(b) =
I({ā}) ∪ I({b̄}) ⊆ I(R2) ∪ I(R3) ⊆ I(Π), completing the proof.

Remark: Note that since the vertices of V̄1 and V̄2 share many common neighbors in V2, it
may happen that no admissible schedule with less than three rounds exists.
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5 Analysis of the construction

All the probabilities in this section are with respect to the sample space that is determined by all
possible random choices of the neighborhoods of the vertices of the vertex set V̄ of the graph Ĝ.
Notation: In the sequel, for simplicity of notation, we say that x N v, if the vertices x and v
are not connected, that is, if (x, v) 6∈ Ê. Similarly, we say that X AN v if no vertex in the set X
is connected to v. We also say that X AC v if all the vertices of the set X are connected to the
vertex v. Finally, we say that x C v if x and v are connected, that is, if (x, v) ∈ Ê.
Additionally, for a set B′ ⊆ V1, let heads(B′) be the set of all star heads of B′, namely,

heads(B′) = {ā | b̄ ∈ B′, a = ẽ(b)}.

Remark: Throughout the sequel, we assume that n is sufficiently large whenever necessary. All
the logarithms are over the base 2 unless specified otherwise.

5.1 Positive and negative witnesses of a schedule

Consider a schedule Π = (R̃1, R̃2, . . . , R̃q), and let Ri = R̃i ∩ (Ā ∪ B̄) (recall that the superedge
ẽ = (A, B) is fixed). In what follows we derive a sufficient condition that guarantees that the
schedule Π does not inform the vertex v.

To this end we define two disjoint subsets NΠ, PΠ ⊆ Ā ∪ B̄ of elements called the sets of
negative and positive witnesses for the schedule Π, respectively. We than show that if a vertex v
is connected to no negative witness, but is connected to all the positive witnesses, then the vertex
v is necessarily not informed by the schedule Π. Furthermore, we show that for any schedule Π,
there exist relatively small witness sets.

The set NΠ of negative witnesses is defined as follows. If the schedule Π contains no round R
that contains only one single element (i.e., R = {x} for some vertex x; such a round is called a
singleton round), then the set NΠ of negative witnesses is empty. Otherwise, the set NΠ is defined
by Procedure Neg Witness described below.

Procedure Neg Witness

Input: schedule Π;

1. Set Π′ ← Π;

2. Do

Choose a singleton round R = {x} of the schedule Π′, and add the vertex x into NΠ; Remove
all the occurrences of the vertex x from the schedule Π′;
Until Π′ contains no singleton rounds.

3. Return(NΠ, Π′);

Let Π′ be the schedule that is returned by Procedure Neg Witness. Observe that every
round in this schedule contains at least two vertices. Choose two arbitrary vertices xi, yi, from
each non-empty round i and add them to the set PΠ of positive witnesses.

In the next lemma we analyze the properties of the sets of positive and negative witnesses.

Lemma 5.1
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1. NΠ ∩ PΠ = ∅.

2. |NΠ| ≤ |Π| = q.

3. |PΠ| ≤ 2 · q.

4. If (NΠ AN v) and (PΠ AC v), that is, none of the elements in NΠ is connected to v but all
the elements in PΠ are connected to v, then the vertex v is not informed by Π.

Proof: Claim 1 is immediate. For Claims 2 and 3 note that each time an element x is added to
the set NΠ, a singleton round R = {x} of the schedule Π′ becomes empty. Therefore, the size of
NΠ is at most q. Note also that |Π′| ≤ |Π| = q. Hence, |PΠ| = 2 · |Π′| ≤ 2q.

To prove Claim 4, let Π0 denote the sub-schedule of the schedule Π that contains only rounds
that were emptied during the execution of Procedure Neg Witness, and, consequently, do not
appear in the schedule Π′. Let Π′′ = Π\Π0 denote the complementary subschedule of Π. Note
also that for every round R in Π0, R ⊆ NΠ. Hence, the condition (NΠ AN v) implies that the
subschedule Π0 does not inform the vertex v.

In addition, recall that any round in the schedule Π′ contains at least two vertices that belong
to the set PΠ of positive witnesses. Assuming that all the positive witnesses are connected to v, it
follows that every round of the schedule Π′ contains at least two elements that are connected to v.
Hence, under this assumption, the schedule Π′ does not inform the vertex v, and, therefore, the
subschedule Π′′ informs v neither. Since neither Π0 nor Π′′ inform v, it follows that the schedule
Π does not inform v, proving the claim.

5.2 Basic properties

In this section we state and prove several basic properties of our reduction.

Rounds i = 2, 3, . . .: Observe that after round 1, all the vertices of the set V1 are informed.
Hence, without loss of generality, assume that R1 = {s}, and for i = 2, 3, . . ., Ri ⊆ V1.

Dependencies in the construction: Observe that the events {x C v} and {y C v} for two
vertices x, y ∈ V1 and a vertex v ∈ V2 are not necessarily independent. For example, if the vertex
x = ā is the head of a star, and the vertex y = b̄ is a leaf of the same star, then if the head x is
not connected to v, then the leaf y is necessarily connected to v.

On the other hand, if two vertices b̄1, b̄2 belong to different stars in G, by construction, all the
events that involve b̄1 and b̄2 are independent. Events that involve b̄ depend only on the events
that involve the head of the star of b, and the other leaves in the same star as b.

Finally, suppose that the vertices b̄′ and b̄′′ belong to the same star (i.e., a′ = ẽ(b′) = ẽ(b′′)). If
the edge (ā′, v) belongs to Ê, then the events {b̄′ C v} and {b̄′′ C v} are independent. (This follows
from Step 4 of the construction of the edge set Ê.) To summarize,

Corollary 5.2 Fix a superedge ẽ = (A, B), an index j = 1, 2, . . . , L, and a vertex v ∈M j
ẽ .

1. Suppose that the vertices b1, b2 ∈ B belong to two different stars in E(ẽ). Then the events
{b̄1 C v} and {b̄2 C v} are independent.
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2. Let a1, a2 ∈ A. The events {ā1 C v} and {ā2 C v} are independent.

3. The separation principle: Let B′ ⊆ B and suppose that the event {heads(B′) AN v} oc-
curs. Then each vertex in B′ is connected or not connected to v independently with probability
1/2.

Definition 5.3 For a superedge ẽ = (A, B), and an index j = 1, 2, . . . , L, and (ẽ, j)-history H is
a set of events of the form {x C v} or {x N v}, where x ∈ Ā∪ B̄, and v ∈ M j

ẽ . The (ẽ, j)-history
H is said to be independent of the subset C ⊆ Ā ∪ B̄, if there exists no pair of vertices x ∈ C,
v ∈ M j

ẽ such that {x C v} ∈ H or {x N v} ∈ H.

In the next lemma we analyze the probability that all the vertices of a given subset are con-
nected to a fixed vertex v.

Lemma 5.4 Fix a superedge ẽ = (A, B), and an index j = 1, 2, . . . , L. Let B′ ⊆ B be a subset of
vertices, and H be an (ẽ, j)-history that is independent of the subset B′. Let v be a vertex in M j

ẽ .
Then IP(B̄′ AC v | H) ≥ 1

2|B
′| , and IP(B̄′ AN v | H) ≤ 1

2|B
′| .

Proof: Fix some vertex b ∈ B′. Let a = ẽ(b). By construction, if ā is not connected to v then
b̄ is connected to v with probability 1. Otherwise, by the separation principle, regardless of the
history, the vertex b̄ is connected to v with probability 1/2. Hence, IP(b̄ C v | H) ≥ 1/2 and
IP(b̄ N v | H) ≤ 1/2.

Now, the lemma follows from parts 1 and 3 of Corollary 5.2.

We next analyze the probability that when all the vertices of a fixed set X transmit in the
same round, a fixed vertex v becomes informed. The following lemma provides an upper bound
on the probability of this event. This upper bound is useful mostly when the set X has large
cardinality.

Lemma 5.5 For a subset X ⊆ A ∪ B, an index j = 1, 2, . . . , L, a superedge ẽ = (A, B), and a
vertex v ∈M j

ẽ ,

IP(v ∈ I(X̄)) ≤
|X|

2|X|−1
.

Proof: Recall that v ∈ I(X̄) if and only if there exists a unique vertex x̄ ∈ X̄ that is connected
to v. For a fixed vertex x̄ ∈ X̄, let XA = (X̄ \ {x̄}) ∩ Ā, and XB = (X̄ \ {x̄}) ∩ B̄. Note that
XA ∪XB = X̄\{x̄}, and XA ∩XB = ∅. By Bayes formula,

IP((x̄ C v) and ((X̄\{x̄}) AN v)) ≤ IP((XB ∪XA) AN v) =

IP((XB AN v) and (XA AN v)) = IP((XB AN v) | (XA AN v)) · IP(XA AN v) .

Observe that IP(XA AN v) = 1
2|XA| . Let H denote the singleton set {(XA AN v)}. Note that the

(ẽ, j)-history H is independent of the subset XB. Thus, by Lemma 5.4,

IP(XB AN v | H) = IP((XB AN v) | (XA AN v)) ≤
1

2|XB |
.

Hence, altogether,

IP((x C v) and ((X̄\{x̄}) AN v)) ≤
1

2|XA|+|XB|
=

1

2|X|−1
.

The statement of the lemma now follows by union-bound.
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A basic lemma: As was discussed above, we are going to define a set P of positive wit-
nesses and a set N of negative witnesses, and will be interested in the probability of the event
{(P AC v) and (N AN v)}.

Lemma 5.6 Let N, P ⊆ Ā ∪ B̄, N ∩ P = ∅ be two disjoint subsets of Ā ∪ B̄. Suppose also that
N ∪ P contains no ẽ-m.p.. Then

IP((N AN v) and (P AC v)) ≥
1

4|N |+|P |
.

Proof: Let NA = N ∩ Ā, NB = N ∩ B̄, PA = P ∩ Ā and PB = P ∩ B̄. Let A′ = heads(NB ∪ PB).
Observe that as N ∪ P contains no ẽ-m.p., it follows that (PA ∪ NA) ∩ A′ = ∅. Note that by
Corollary 5.2(2), IP(A′ AN v) = 1

2|A
′| . Hence,

IP((N AN v) and (P AC v)) ≥ IP((N AN v) and (P AC v) and (A′ AN v))

= IP((N AN v) and (P AC v) | (A′ AN v)) · IP(A′ AN v)

=
IP((N AN v) and (P AC v) | (A′ AN v))

2|A′|
.

Note that heads(PB) ⊆ A′, and so the condition (A′ AN v) implies the condition (heads(PB)AN v).
In turn, by the construction, the latter condition implies the condition (PB AC v). Recall also that
PA∪PB = P . Hence IP(((N AN v) and (P AC v)) | (A′ AN v)) = IP(((N AN v) and (PA AC v)) |
(A′ AN v)).

Recall that PA ∩A′ = ∅, PA ∩N = ∅, and that the set PA ∪N contains no ẽ-m.p.. Hence,

IP(((N AN v) and (PA AC v)) | (A′ AN v)) = IP((N AN v) | (A′ AN v)) · IP(PA AC v)

=
IP((N AN v) | (A′ AN v))

2|PA|
.

Since N = NA ∪ NB, and NA ∩ A′ = ∅, and NA ∪ A′ ⊆ Ā (and, therefore, contains no ẽ-m.p.), it
follows that

IP((NA AN v) and (NB AN v) | (A′ AN v)) = IP((NB AN v) | (A′ AN v)) · IP(NA AN v)

=
IP((NB AN v) | (A′ AN v))

2|NA|
.

Hence

IP(((N AN v) and (PA AC v)) | (A′ AN v))

2|A′|
=

IP((NB AN v) | (A′ AN v))

2|A′|+|NA|+|PA|
.

Finally, by the separation principle (Corollary 5.2(3)), IP((NB AN v) | (A′ AN v)) = 1
2|NB | . It

follows that

IP((N AN v) and (P AC v)) ≥
1

2|A′|+|NA|+|PA|+|NB|
.

Since |A′| = |heads(PB∪NB)| ≤ |PB|+|NB|, it follows that |A′|+|NA|+|PA|+|NB| ≤ 2(|P |+|N |),
completing the proof.
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5.3 Main lemmas

In this section we analyze the probabilities of existence of schedules that inform all the vertices of
M̂ẽ, and prove several lemmas that will be most useful in the analysis of our reduction.

Lemma 5.7 For a superedge ẽ ∈ Ẽ, let Π be a schedule of length q ≤ log n/30, such that the set
V (Π) contains no ẽ-m.p.. For a vertex v ∈ M̂ẽ, the probability that the schedule Π does not inform
v is at least 1/n1/5.

Proof: Let PΠ and NΠ be the sets of positive and negative witnesses of Π, respectively. By
Lemmas 5.6 and 5.1, the probability for that Π does not inform v is at least

(

1

4

)|NΠ|+|PΠ|

≥
(

1

4

)3q

≥ n1/5,

proving the claim.

Definition 5.8 For a superedge ẽ = (A, B), a round R in a schedule Π is called large (resp.,
small) with respect to ẽ, if |R ∩ (Ā ∪ B̄)| > 20 log n, (resp., |R ∩ (Ā ∪ B̄)| ≤ 20 logn). The
subschedule of the schedule Π that contains only large (resp., small) rounds with respect to the
superedge ẽ is denoted L(Π, ẽ) (resp., S(Π, ẽ)). When the second parameter ẽ can be deduced from
the context, we omit it from this notation.

(The constant 20 in the above definition is somewhat arbitrary.) The next lemma states that
large rounds are unlikely to be of any help to the broadcast.

Lemma 5.9 For a schedule Π of length O(logn), a superedge ẽ ∈ Ẽ, and a vertex v ∈ M̂ẽ,
IP(v ∈ I(L(Π, ẽ))) = O( log n

n19 ).

Proof: Let R be a round in the schedule L(Π) = L(Π, ẽ). By Lemma 5.5, the probability that

the vertex v is informed by R is at most |R|
2|R|−1 < n

220·log n = 1
n19 . Since |L(Π)| ≤ |Π| = O(log n), by

union-bound, the probability that v belongs to I(L(Π)) is O( log n
n19 ).

For a superedge ẽ, a schedule Π is called ẽ-proper if the vertex set V (S(Π, ẽ)) contains no
ẽ-m.p..

Lemma 5.10 For a superedge ẽ, and an ẽ-proper schedule Π of length at most log2 n/30, and a

vertex v ∈ M̂ẽ, IP(v 6∈I(Π)) ≥ 1/2

n1/5 .

Proof: Note that IP(v ∈ I(Π)) = IP(v ∈ I(L(Π))) + IP(v ∈ I(S(Π))). By Lemma 5.9, IP(v ∈
I(L(Π))) = O( log n

n19 ). Since the set V (S(Π)) contains no ẽ-m.p., Lemma 5.7 is applicable. Hence

IP(v ∈ I(S(Π))) ≤ 1− 1
n1/5 . Hence IP(v ∈ I(Π)) ≤ 1− 1

n1/5 + O( log n
n19 ) ≤ 1− 1/2

n1/5 .

We next compute the probability that a fixed ẽ-proper schedule Π informs all the vertices of
the set M̂ẽ.

Lemma 5.11 Let Π be an ẽ−proper schedule of length at most log2 n/30, and j = 1, 2, . . . , L be
an index. Then

IP(M j
ẽ ⊆ I(Π)) ≤ 1−

1/2

n1/5
.
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Proof: For a fixed vertex v ∈M j
ẽ , by Lemma 5.10, IP(v ∈ I(Π)) ≤ 1− 1/(2 · n1/5). Observe that

the event (M j
ẽ ⊆ I(Π)) is contained in the event (v ∈ I(Π)), and, thus, the lemma follows.

We conclude that

Lemma 5.12 The probability that a fixed ẽ-proper Π of length at most log2 n/30 informs all the
vertices of M̂ẽ is at most exp(−n9/5).

Proof: Recall that M̂ẽ =
⋃

j M j
ẽ . By Lemma 5.11, and the fact that events {M j

ẽ ⊆ I(Π)} and

{M j′

ẽ ⊆ I(Π)} for j 6= j′ are independent, it follows that

IP(Mẽ ⊆ I(Π)) ≤
(

1−
1

n1/5

)n2

= O(exp(−n9/5)) .

We next strengthen the previous lemma, and show that not only a fixed ẽ-proper schedule is
unlikely to inform all the vertices of the set M̂ẽ, but that with high probability there is no ẽ-
proper schedule that informs all the vertices of the set M̂ẽ. In other words, even if an ẽ-proper
schedule Π is chosen by the adversary, it is still unlikely to be able to inform all the vertices of
the set M̂ẽ.

Definition 5.13 For a subset R ⊆ V1, and a superedge ẽ = (A, B) ∈ Ẽ, let R|ẽ = R ∩ (Ā ∪ B̄)
denote the projection of the round R on the superedge ẽ. For a schedule Π = (R1, R2, . . . , Rq),
and a superedge ẽ, let Π|ẽ = (R1|ẽ, R2|ẽ, . . . , Rq|ẽ) denote the projection of the schedule Π on the

superedge ẽ. For a collection Π̂ of schedules, and a superedge ẽ, let Π̂|ẽ = {Π|ẽ | Π ∈ Π̂} denote
the projection of the collection Π̂ on the superedge ẽ.

Let Π̂(ẽ) be the collection of all ẽ-proper schedules of length at most O(log n).

Note that for a schedule Π ∈ Π̂(ẽ), and a round R ∈ Π, the projection R|ẽ is a subset of the
set Ā ∪ B̄, and |Ā ∪ B̄| ≤ n. Thus,

|{R|ẽ | R ∈ Π, Π ∈ Π̂(ẽ)}| ≤ 2|Ā∪B̄| ≤ 2n .

Since for every schedule Π ∈ Π̂(ẽ), |Π| = O(logn), it follows that

|(Π̂(ẽ))|ẽ| ≤ 2O(n·log n) . (1)

Lemma 5.14 Let ẽ ∈ Ẽ be a superedge, and Π̂(ẽ) be a collection of schedules defined above. Then

IP(∃Π ∈ Π̂ s.t. M̂ẽ ⊆ I(Π)) ≤ 2−Ω(n9/5) .

Proof: Note that

IP(∃Π ∈ Π̂(ẽ) s.t. M̂ẽ ⊆ I(Π)) = IP(∃Π ∈ (Π̂(ẽ))|ẽ s.t. M̂ẽ ⊆ I(Π))

By union-bound,

IP(∃Π ∈ (Π̂(ẽ))|ẽ s.t. M̂ẽ ⊆ I(Π)) ≤ |((Π̂(ẽ))|ẽ)| · max
Π∈(Π̂(ẽ))|ẽ

{

IP(M̂ẽ ⊆ I(Π))
}

(2)

≤ |((Π̂(ẽ))|ẽ)| · max
Π∈Π̂(ẽ)

{

IP(M̂ẽ ⊆ I(Π))
}

.
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By Lemma 5.12, for every Π ∈ Π̂(ẽ), IP(M̂ẽ ⊆ I(Π)) ≤ e−n9/5

. The statement of the lemma follows
now from (1) and (2).

Next we argue that the probability that there exists an admissible short schedule Π and a
superedge ẽ such that Π is an ẽ-proper schedule is very small. Formally, let Π̂ =

⋃

ẽ∈Ẽ Π̂(ẽ).

Corollary 5.15 With probability at most 2−Ω(n9/5), the collection Π̂ contains no admissible sched-
ules for the instance G of the radio broadcast problem. I.e., IP(∃Π ∈ Π̂ s.t. V2 ⊆ I(Π)) ≤

2−Ω(n9/5).

Proof: By union-bound, and since for every superedge ẽ, M̂ẽ ⊆ V2,

IP(∃Π ∈ Π̂ s.t. V2 ⊆ I(Π)) ≤
∑

ẽ∈Ẽ

IP(∃Π ∈ Π̂(ẽ) s.t. V2 ⊆ I(Π))

≤
∑

ẽ∈Ẽ

IP(∃Π ∈ Π̂(ẽ) s.t. M̂ẽ ⊆ I(Π)) .

By Lemma 5.14, each term of this sum is at most 2−Ω(n9/5). The lemma follows since there are
|Ẽ| = O(n2) terms.

6 Analysis of the reduction

The case when the original instanceM of the MIN-REP problem is a YES-instance was analyzed
in Section 4. We next analyze the case when M is a NO-instance.

Consider a NO-instanceM of the MIN-REP problem, and the instance G of the radio broadcast
problem that is obtained from M via our reduction. In this section we show that with high
probability there is no admissible short schedule for G.

Definition 6.1 For a supervertex X ∈ Ṽ1∪ Ṽ2, a round R of a schedule Π is said to be important
with respect to the supervertex X, if it is small with respect to some superedge ẽ = (X, Y ) that
is adjacent to the supervertex X. Let ImpΠ (X ) denote the set of rounds of Π that are important
with respect to the supervertex X.

For a supervertex X and a schedule Π, the subcover CX,Π of X that is induced by Π is defined
by CX,Π =

⋃

R∈Imp
Π

(X ) copy(R) ∩ X̄ . The cover CΠ of M that is induced by the schedule Π is the
union of the subcovers of all the supervertices, i.e., CΠ =

⋃

X∈Ṽ1∪Ṽ2
CX,Π.

Lemma 6.2 With probability at least 1 − 2−Ω(n9/5), for every admissible schedule Π of length at
most log n

30
for the instance G of the radio broadcast problem, the cover CΠ induced by the schedule

Π is an admissible solution for the instance M of the MIN-REP problem.

Proof: Consider a set Φ of admissible schedules for G of length at most log n
30

. Note that Φ is a

random variable. Consider the set Ψ of schedules Π of length at most log n
30

that satisfy that CΠ

is an admissible solution for M. Observe that the set Ψ is fixed, and does not depend on the
random coins. Our objective is to prove that IP(Φ ⊆ Ψ) ≥ 1−2−Ω(n9/5). Let Υ denote the set of all
possible schedules Π. Consider a schedule Π that belongs to Υ \Ψ. Then there exists a superedge
ẽΠ = ẽ = (A, B) that is not covered by the induced cover CΠ. In other words, the set CA,Π ∪CB,Π
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contains no ẽ-m.p.. By definition, CA,Π ∪ CB,Π = (A ∪ B) ∩
⋂

R∈(Imp
Π

(A)∪Imp
Π

(B)) copy(R). Note
that the set (ImpΠ (A)∪ ImpΠ (B)) contains all the rounds of Π that are small with respect to the
superedge ẽ = (A, B), i.e., S(Π, ẽ) ⊆ (ImpΠ (A) ∪ ImpΠ (B)). Since the set CA,Π ∪ CB,Π contains
no ẽ-m.p., neither does the subschedule S(Π, ẽ), and so the schedule Π is weakly ẽ-proper. Hence,
by definition of the collection Π̂(ẽ) of schedules (see Def. 5.13), if Π ∈ (Υ\Ψ)∩Φ then necessarily
Π ∈ Π̂(ẽ) = Π̂(ẽΠ). In other words, (Υ \Ψ) ∩ Φ ⊆

⋃

ẽ∈Ẽ Π̂(ẽ) = Π̂. By Corollary 5.15,

IP(∃Π ∈ (Υ \Ψ) ∩ Φ s.t. V2 ⊆ I(Π)) ≤ IP(∃Π ∈ Π̂ s.t. V2 ⊆ I(Π)) ≤ 2−Ω(n9/5) .

By definition of the set Φ, all the schedules in Φ are admissible. Hence

IP((Υ \Ψ) ∩ Φ 6= ∅) = IP(∃Π ∈ (Υ \Ψ) ∩ Φ s.t. V2 ⊆ I(Π)) ≤ 2−Ω(n9/5) ,

and so IP(Φ ⊆ Ψ) ≥ 1− 2−Ω(n9/5), as required.

Lemma 6.3 For every admissible schedule Π of length at most log n
30

for the instance G of the radio

broadcast problem, the cover CΠ induced by the schedule Π has cardinality O(log2 n) · (|Ṽ1|+ |Ṽ2|)
(with probability 1).

Proof: Consider some supervertex X ∈ Ṽ1∪ Ṽ2. It is sufficient to prove that |CΠ∩X| = O(log2 n).
Note that CX,Π = CΠ∩X. Recall that |Π| = O(log n). Consider some round R0 ∈ Π. Note that it
is sufficient to prove that |copy(R0 )∩CΠ | = O(log n). If round R0 is not important with respect to
the supervertex X then copy(R0 )∩CX ,Π = ∅. Otherwise, there exists a superedge ẽ = (X, Y ) ∈ Ẽ
that is adjacent to the supervertex X and such that the round R0 is small with respect to ẽ. Hence
|copy(R0 ) ∩X | ≤ |copy(R0 ) ∩ (X ∪Y )| = O(log n), completing the proof.

Corollary 6.4 Consider a NO-instance M of the MIN-REP problem, and the instance G of the
radio broadcast problem that is obtained from M via our reduction. With probability at least
1− 2−Ω(n9/5), there exists no admissible schedule of length at most log n

30
for G.

Proof: By Lemma 6.2, with probability at least 1 − 2−Ω(n9/5), Φ ⊆ Ψ. However, by definition of
Ψ and by Lemma 6.3, for any schedule Π ∈ Ψ, the induced cover CΠ is an admissible solution for
the instance M of the MIN-REP problem, and it has cardinality O(log2 n) · (|Ṽ1| + |Ṽ2|). Since
M is log10 n-NO-instance of the MIN-REP problem, the set Ψ is empty. Hence, with probability
at least 1− 2−Ω(n9/5), the set Φ is empty as well.

Theorem 6.5 There exists a positive real universal constant c > 0 such that the radio broadcast
problem is c · log n-inapproximable unless NP ⊆ BPTIME(nO(log log n)).

Proof: Lemma 4.1 and Corollary 6.4 show that our reduction trasforms YES-instances of the MIN-
REP problem into instances of the radio broadcast problem that admit schedules of length 3, and
log10 n-NO-instances of the MIN-REP problem into instances of the radio broadcast problem for
which with overwhelming probability any admissible schedule is of length Ω(log n). It is easy to
see that the reduction can be implemented in (probabilistic) polynomial time, and that the size
of the obtained instance of the radio broadcast problem is at most polynomial in the size of the
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original instance of the MIN-REP problem. Hence, the statement of the theorem follows from
Theorem 2.1.

Finally, note that our proof can be easily modified to show that for any positive integer r =
2, 3, . . ., there is a set of instances G = (s, Ĝ) with rad(Ĝ, s) = r that either have an admissible
schedule of length r + 1 or satisfy that any admissible schedule for them is of length r + Ω(log n),
and such that it is hard to distinguish between instances of these two types. This generalization
is achieved by adding a path of length r, (s, s1, s2, . . . , sr) to the construction, and connecting sr

to all the vertices of V1 (instead of connecting s to all the vertices of V1).
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