A note on two source location problems

Guy Kortsarz
Department of Computer Science, Rutgers, Camden, USA

guyk@crab.rutgers.edu.

Zeev Nutov
Computer Science Division, The Open University of Israel

nutov@openu.ac.il

Abstract

We consider Source Location (SL) problems: given a capacitated network G = (V| E),
cost ¢(v) and a demand d(v) for every v € V, choose a min-cost S C V so that A\(v,S) >
d(v) holds for every v € V, where A(v, S) is the maximum flow value from v to S. In the
directed variant, we have demands d”*(v) and d°*!(v) and we require A\(S,v) > d™(v)
and A(v,S) > d°“(v). Undirected SL is (weakly) NP-hard on stars with r(v) = 0 for
all v except the center. But, it is known to be polynomially solvable for uniform costs
and uniform demands. For general instances, both directed an undirected SL admit a
(In D+1)-approximation algorithms, where D is the sum of the demands; up to constant
this is tight, unless P=NP. We give a pseudopolynomial algorithm for undirected SL on
trees with running time O(|V|A3), where A = max,cy d(v). This algorithm is used to
derive a linear time algorithm for undirected SL with A < 3. We also consider the Single
Assignment Source Location (SASL) where every v € V' should be assigned to a single
node s(v) € S. While the undirected SASL is in P, we give a (In|V| + 1)-approximation
algorithm for the directed case, and show that this is tight, unless P=NP.

1 Introduction

Let G = (V, E) be a simple (possibly directed) graph with integral capacities {u(e) : e € E'};
we refer to the pair (G, u) as a network. Let n = |V| and m = |E|. Given a network, let A(v, 5)
denote the maximum flow value in the network from v to S, where A(v, S) = oo for v € S. We

consider the following Source Location (SL) problem: given a network (G, u), integral node
demands {d(v) : v € V'} and costs {c(v) : v € V'}, choose a minimum-cost subset of sources
S C V so that A(v,S) > d(v) for all v € V. In the directed variant, we have demands d*(v)
and d~(v) and we require A(S,v) > d*(v) and A(v,S) > d~(v) for all v € V. In the Single
Assignment Source Location (SASL) every v € V should be assigned to a single node s(v) € S
so that A(v, s(v)) > d(v) (A(s(v),v)) > d*(v) and A(v, s(v)) > d~(v) in the directed case) for
allv e V.

SL problems naturally arise in various applications. For example, given a network in which
nodes represent users, determine a location of servers so that each user v can communicate
with at least one server even if d(v) — 1 link failures occur. If the cost of locating a server
at v is ¢(v), our goal is to find the cheapest location to ensure the required reliability of

communication. This is a special case of SL where all edges have capacity 1.

A p-approximation algorithm for a minimization problem is a polynomial time algorithm
that produces a solution of value no more than p times the value of an optimal solution. We
say that an optimization problem is p-hard if, up to constants, an approximation ratio better
than p for it is not possible, unless P=NP. For example, a problem is Q(Inn)-hard if there
exists a constant B > 0 such that the problem cannot have a B In n-approximation algorithm,
unless P=NP. It is well known that the Set-Cover (SC) problem on a groundset of size n is
Q(Inn)-hard [10].

For SL problems the following results were known. Undirected SL is NP-hard even on
stars [2], but is polynomially solvable for uniform requirements or for uniform costs [13, 2].
Both directed and undirected SL admit a (1 + In D)-approximation algorithm [3] (see also
[11]), where D is the sum of the demands. It is easy to show that the directed case is at least
as hard as the Set-Cover problem (even for 0,1 demands), and thus is Q(In D)-hard. In [11]
it is shown in that the undirected SL is also 2(Inn)-hard, and that similar approximation
ratios and hardness results hold for the node-connectivity variant of the problem. A related
problem on digraphs with both uniform requirements and uniform costs is considered in [6, 4].
A variant when the flow demands should be satisfied simultaneously is studied in [1]. For the

case of node-connectivity demands see, c.f., [9, 11].

An edge from z to y is denoted by zy. For X CVlet §(X)={ay € F:z € X,y € V-X}
be the cut induced by X in G, and let u(6(X)) = X .c5(x) u(e) denote its capacity. SL problems
can be formulated as a covering problem. For X C V let d(X) = max,cx d(v) be the demand
of X (where d(0) = 0). For undirected SL, we say that X C V' is deficient if d(X) > u(d(X)).
By the Max-Flow-Min-Cut Theorem, S is a feasible solution to SL if, and only if, S covers

the family F of minimal deficient sets; |F| might be exponential in n even if G is a star (see

2]). We prove:

Theorem 1.1 There is an O(nA3?) time algorithm for undirected SL on trees, where A =

max,ey d(v).
A similar result was independently obtained in [11].

In practical applications the connectivity demands are usually rather small. While the

directed SL is Q(Inn)-hard even for A = 1, we use Theorem 1.1 to prove:
Theorem 1.2 Undirected SL with A < 3 can be solved in linear time.
Undirected SASL is polynomially solvable [12]. We consider the directed case and prove:

Theorem 1.3 Directed SASL admits a (Inn + 1)-approzimation algorithm, and it is Q(Inn)-
hard even if A = 1.

Theorems 1.1, 1.2, and 1.3 are proved in Sections 2, 3, and 4, respectively.

2 Proof of Theorem 1.1

To prove Theorem 1.1 we use dynamic programming. Throughout this section, assume that
G = T is a tree. Let s € V be an arbitrary node of T' designated as a root. The choice
of s induces a parent-child relation on V. Let T, denote the subtree of 7" induced by the
descendants of v. Let ch(v) denote the number of children of v. A node v is a leaf if ch(v) = 0.

The height h(v) of v is the number of edges in the longest path from v to a leaf in T,. The

leaves have height 0. We will assume some fixed order ay, ..., acu(v) of the children of every
node v in the tree. For a node v of T" with children ay, ..., acw and 0 < i < ch(v) let
T.=T,— Uj>iTo,; denote the subtree of T, induced by v and the subtrees of its first 4 children
ai,...,a; (where T? is the trivial tree containing only v).

The algorithm fills a 5-dimensional array Cfv,i,q, f,b] where v € V, 0 < i < ch(v),
0 <gq, f < R integers, and b € {0,1}. The interpretation is as follows. Let S’ = SNV (T}) be
the sources in T?. If T # T, then flow can reach T for “free” from T'\ T". Given ¢, f and b,
we look for the best feasible set S of sources under the following additional restrictions:
(i) Mv,S") = q and A(v, S — 5’) = f; namely, at least f flow units should arrive to v from
T\T!and S should be able to provide ¢ flow units to v.
(ii)) f b=1then v € S, and if b = 0 then v ¢ S.

Formally, to model f flow units arriving from “outside” of T into v let T7(f) be obtained

by adding to T a new node a and edge av with r(a) = ¢(a) = 0 and u(av) = f.

3

Figure 1: Decomposition of flow contributions.

The entry C|v,1,q, f,b] should store the optimum cost of a solution S to the problem on
T(f), so that:
(i) A(S —a,v) =¢, and (ii) b=1if v € S and b = 0 otherwise.

If such S does not exist, then Clv,i,q, f,b] = co. Clearly, the optimal solution value on T is:
min{ Cfs. ch(s).4,0,8]).
q,

The f entry is 0 since when i = ch[s] then 7! = T', and so the root can not get “outside flow”.

The array C' is filled by increasing height of nodes, starting from leaves. We have:
Clv,0,0, f, 1] = ¢(v) if f < d(v) (v becomes a source);
Clv,0,0, f,0] =0 1if f > d(v) (a is always a source);
C[v,0,0, f,0] = co otherwise (v ¢ S, a cannot satisfy the demand of v).

In particular, the rule above applies for leaves, since they have no children.

Assume now that the entries Clv, 7, q, f, b] have been computed for all 0 < j < i < ch(v)—1.
We show how to fill the C[v,i + 1, ¢q, f,b] entries. We have (see Fig. 1):

Clv,i+1,q, f,b] = min {C[v,i,¢', f',b] + Clait1, chlairr), ¢", f", 0] }, (1)

where the minimum is taken over " € {0,1} and all 0 < ¢/, ¢” < R such that:
¢ = ¢ +min{q", u(a;+10)}; (2)
f'=f+min{¢", u(ai1v)}; (3)

4

[=min{f + ¢, u(va;s1)}. (4)

The total flow reaching from outside 7*! into the root v is f. Let S’ = SN T! and
S =58nNnT,

Q41

possible flow ¢” from S” to a;y1. Given ¢',q”, then the cost over T} is C|v,i,q¢/, f',b] with

We enumerate over all possible ¢’: the flow from S’ to v, and all the

"= f+ min{q”,u(a;41v)}. This is because the tree rooted at a;y; is “external” to T. The
cost over Ty, is Cla;+1,ch(ai4q),q", f,0"] with f” = min{f + ¢, u(va;+1)}. Indeed, the
number of external flow units that can reach a;,; is the f external flow units plus ¢” from 5,

unless it exceeds the u(a;11v) capacity.

Hence, every entry is computable using previously computed entries. Once all the C' entries
are computed, it is easy to recover S. Given C', we use the following recursive algorithm. We
pick the smallest cost C[s, ch(s),q, f,b] over all q, f,b. Let ¢, f,b be the optimum triplet. If
b=1then s € S, and s € S otherwise.

We then use Equalities (2), (3) and (4) to define ¢, f', f”,0”. Then, recursively extend
S by running the algorithm on Cfv,i,¢’, f',b] and Cla;y1,ch(a;iy1),q”, f”,b"]. This ends the
description of the algorithm.

Let us now discuss the running time of the algorithm. At every iteration we have six
parameters 0 < ¢,¢.q¢", f, ', /" < A to determine for computing the minimum. However,
three parameters e.g., ¢, f, ¢" determine the others via equations (2), (3), and (4). We have
one iteration per edge of T', thus n — 1 iterations. Thus the total time complexity is O(nA?)

as claimed.

3 Proof of Theorem 1.2

We can assume that G is connected, and focus on the more complicated case A = 3. We
will show a 2-stage reduction from the case A = 3 to an equivalent problem on a tree with
capacities in {1,2}. It is known that for any integer k the relation R) on nodes of a graph
“(z,y) € Ri if Mz,y) > k7 is an equivalence. Its equivalence classes are called classes of
k-(edge)-connectivity, or k-classes for short. Recall that for SL a set X C V is deficient if
d(X) > u(6(X)).

Lemma 3.1 For any k > A, if a deficient set X intersects a k-class Y, then' Y C X.

Proof: Suppose to the contrary that thereis y € Y — X. Let x € Y N X. Then

u(0(X)) = Mz, y) = k > A = d(X),

(@

Figure 2: (a) G for k = 3 (bold edges have capacity 2); (b) 7 (dashed edges show removed
cycles).

contradicting that X is deficient. O

Lemma 3.1 implies that for any k£ > A, instead of considering the original network G, we
can consider the network G obtained from G by shrinking every k-class X of G into a single
node vy and setting d(vx) = d(X) and ¢(vy) = min,ex ¢(v). The corresponding quotient
mapping ¢ (v) = vx takes the nodes of a k-class X to the node vy. For a set S of sources
of G, the corresponding set S of sources of G is defined by choosing for every vy € & a node

u € X such that ¢(u) = ¢(vyx). We summarize the first stage of our reduction as follows:

Corollary 3.2 S is a feasible solution for G if, and only if, 1¥(S) is a feasible solution for G.
In particular, if S is an optimal solution for G, then choosing the cheapest node from every

k-class X with vx € § gives an optimal solution for G.

A connected graph is a cactus-tree if any two cycles in it have at most one node in common
(that is, every its block is an edge or a cycle). It is well known that for £ = 3 G is a cactus
tree, such that each its bridge has capacity in {1, 2}, and any its edge belonging to a cycle has
capacity 1 (see Fig. 2a). We note that the k-classes (and thus the corresponding graph G) can
be computed in n — 1 k-flow computations (thus in O(knm) time) using the Gomory-Hu cut
tree [5]; the complexity can be further reduced to O(k*n?) using sparse certificates. But for
k =3, G can be computed in linear time [7, Theorem 7.3.3]. The other parts of our reduction

can be also implemented in linear time.

We now describe how to solve the problem for the particular case when the input graph
is a cactus-tree as above and k = 3, by establishing a reduction to the tree case considered in

Section 2.

The second stage of our reduction is: construct from G a tree 7 by “implanting” instead
every cycle a star with edges having capacity 2 (see Fig. 2b); the center of each star is “empty”,
and has cost infinity and requirement 0. Let O denote the centers of the stars implanted. Note

that the nodes that are not in O and edges that are not incident to nodes in O are common

to G and to 7.

Lemma 3.3 Let S be a set of nodes of G and let v be a node of G that is not in S. Then

Ag(v,5) = Az (v, 5).

Proof: Consider the connected components Gi,...,G, of G — v that intersect S and the
corresponding connected components 7y, ..., 7, of T —v. Let S; = G;NS =T;,NS,i=1,...,q,
(the second inequality follows from the fact that SNO = 0). Tt is not hard to see that there is a
bridge (with capacity 1) that separates S; from v in G if and only if there is such a bridge in 7
thus in this case we must have Ag(v, S;) = A7 (v, S;) = 1. Otherwise, Ag(v, S;) = Ar(v, S;) = 2.
Hence

Ag(v,8;) = Ar(v,S;), i=1,...,q.

The claim follows, since clearly

q q

Ag(v,8) = XAg(v,S:), Ar(v,S)=>_Ar(v,5).

i=1 i=1

|

Corollary 3.4 S is a feasible solution for G if, and only if, S is a feasible solution for T not
containing any center of a star implanted. Thus S is an optimal solution for G if, and only
if, S is an optimal solution for T .

Corollary 3.4 implies that instead of solving the problem on G we can solve the problem
on 7. By Theorem 1.1, this can be done in O(n) time. Since the 3-classes can be found in
linear time, 7 can be constructed in linear time. Thus the overall time complexity is linear.
This finishes the proof of Theorem 1.2.

4 Proof of Theorem 1.3

Note that S C V is a feasible solution for directed SASL if, and only if, for every w € V' there
is s € S so that: if d™(w) > 0 then (s, w) > d™(w) and if d°“*(w) > 0 then A\(w, s) > d°“(w).
That is, for every w € V with max{d™(w),d***(w)} > 0, S intersects the set D,, defined as
follows. Let D" = {v € V : ANv,w) > d"™(w)}, D% ={v eV : AN(w,v) > d°(w)}. Then

D d"(w) > 0, d° (w) = 0
D, ={ Do d"(w) = 0,d° (w) > 0
Di*A Dot din(w) > 0,d7" (w) > 0

7

Thus for directed SASL the deficient sets are {D,, : w € V,max{d™(w),d”*(w)} > 0}}.
Clearly, the number of deficient sets is at most n, and they all can be computed using O(n?)

max-flow computations, hence in polynomial time.

Remark In the undirected case, the deficient sets are {D,, : w € V,d(w) > 0}, where
D, ={veV:Aw,v)>d(w)}, and they can be computed using n—1 max-flow computations
via the Gomory-Hu cut-tree [5]. Moreover, for undirected SASL the deficient sets are disjoint
[12]. This immediately implies a polynomial time algorithm: choose the cheapest source from

every deficient set.

For directed SASL the algorithm is as follows. We compute the the family F of the deficient
sets. Let 7* denote the optimal value of the LP-relaxation min{},cy c(v)x, @ Y ex Tw >
1 VX € F}. By a well known result of Lovész [8], the greedy algorithm (which repeatedly
removes the node that covers the maximum number of sets, together with these sets, until no
sets remain) computes a feasible solution S of size at most H(|F|)7* < (In|F| + 1)7*, where
H (k) denotes the kth Harmonic number. Since |F| < n, this gives an H (n)-approximation
algorithm for directed SASL.

Let I';(X) denote the set of neighbors of a node subset X in a graph J. To show that
directed SASL is O(Inn)-hard, we use the following well known formulation of the Set-Cover

problem:

Set-Cover (SC):
Input: A bipartite graph J = (A + B, I) without isolated nodes.
Output: A minimum size subset S C A such that I';(S) = B.

In this formulation, J is the incidence graph of sets and elements, where A is the family of sets
and B is the universe. Given an instance J = (A + B, I) for the SC, construct an instance for
directed SASL by directing the edges in J from B to A, and setting d°**(b) = 1 and d"(b) =0
for every b € B, and d"(a),d***(a) = 0 for every a € A. The cost of every node is 1. It is
straightforward to see that:

(i) for any feasible solution S’ , there exists a feasible solution S C A with |S| < |S’|, and
(ii) S C A is a feasible solution for G if, and only if, S is a feasible solution for SC on J.
Since SC is (Inn)-hard [10], the result follows.

Acknowledgments. We thank two anonymous referees for useful comments on a preliminary

version of this paper. The first author thank Joseph Cheriyan for helpful discussions.

References

1]

[10]

[12]

[13]

K. Andreev, C. Garrod, B. Maggs, and A. Meyerson. Simultaneous source location. In
APPROX 2004, pages 13-26, 2004.

K. Arata, S. Iwata, K. Makino, and S. Fujishige. Locating sources to meet flow demands
in undirected networks. J. of Algorithms, 42:54-68, 2002.

J. Bar-Ilan, G. Kortsarz, and D. Peleg. Generalized submodular cover problems and
applications. Theoretical Computer Science, 250:179-200, 2001.

M. Barész, J. Becker, and A. Frank. An algorithm for source location in directed graphs.
EGRES TR-2004-06, 2004.

R. Gomory and T. Hu. Multi-terminal network flows. SIAM J. Appl. Math., 9:551-570,
1961.

J. Heuvel and M. Johnson. Transversals of subtree hypergraphs and the source location
problem in digraph. CDAM Research Report LSE-CDAM-2004-10, 2004.

T.-H. Hsu. Graph augmentation and related problems: theory and practice. Ph. D.
Thesis, The Univ. of Texas at Austin, 1993.

L. Lovész. On the ratio of optimal integral and fractional covers. Discrete Math., 13:383—
390, 1975.

H. Nagamochi, T. Ishii, and H. Ito. Minimum cost source location problem with vertex-
connectivity requirements in digraphs. Information Processing Letters, 80(6):287-294,
2001.

R. Raz and S. Safra. A sub constant error probability low degree test, and a sub constant
error probability PCP characterization of NP. In Proc. 29th ACM Symp. on Theory of
Computing, pages 475-484, 1997.

M. Sakashita, K. Makino, and S. Fujishige. Minimum cost source location problems with
flow requirements. In LATIN, pages 769-780, 2006.

H. Tamura, M. Sengoku, S. Shinoda, and T. Abe. Some covering problems in location
theory on flow networks. IEICE Trans. Fund., E75-A:678-683, 1992.

H. Tamura, H. Sugawara, M. Sengoku, and S. Shinoda. Plural cover problem on undi-
rected flow networks. IEICE Trans. Fund., (J81-A):863-869, 1998. (In Japanese).

