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Abstract

Power optimization is a central issue in wireless network design. Given a graph

with costs on the edges, the power of a node is the maximum cost of an edge incident

to it, and the power of a graph is the sum of the powers of its nodes. Motivated by

applications in wireless networks, we consider several fundamental undirected network

design problems under the power minimization criteria. Given a graph G = (V, E)

with edge costs {c(e) : e ∈ E} and degree requirements {r(v) : v ∈ V }, the Minimum-

Power Edge-Multi-Cover (MPEMC) problem is to find a minimum-power subgraph G

of G so that the degree of every node v in G is at least r(v). We give an O(log n)-

approximation algorithms for MPEMC, improving the previous ratio O(log4 n). This is

used to derive an O(log n + α)-approximation algorithm for the undirected Minimum-

Power k-Connected Subgraph (MPkCS) problem, where α is the best known ratio for the

min-cost variant of the problem. Currently, α = O
(

log k · log n
n−k

)

which is O(log k)

unless k = n − o(n), and is O(log2 k) = O(log2 n) for k = n − o(n). Our result shows

that the min-power and the min-cost versions of the k-Connected Subgraph problem

are equivalent with respect to approximation, unless the min-cost variant admits an

o(log n)-approximation, which seems to be out of reach at the moment.
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1 Introduction

1.1 Motivation and problems considered

Wireless networks are studied extensively due to their wide applications. The power con-

sumption of a station determines its transmission range, and thus also the stations it can

send messages to; the power typically increases at least quadratically in the transmission

range. Assigning power levels to the stations (nodes) determines the resulting communi-

cation network. Conversely, given a communication network, the power required at v only

depends on the farthest node that is reached directly by v. This is in contrast with wired

networks, in which every pair of stations that need to communicate directly incurs a cost.

An important network property is fault-tolerance, which is often measured by minimum de-

gree or node-connectivity of the network. Such power minimization problems were vastly

studied. See for example [1, 2, 7, 12, 13, 4, 3, 8, 14] for a small sample of papers in this area.

The first problem we consider is finding a low power network with specified lower bounds

on node degrees. The second problem is the Min-Power k-Connected Subgraph problem. We

devise approximation algorithms for these problems, improving significantly the previously

best known ratios.

Definition 1.1 Let G = (V, E) be a graph with edge-costs {c(e) : e ∈ E}. For v ∈ V , the

power p(v) = pG(v) of v in G (w.r.t. c) is the maximum cost of an edge in G incident to v.

The power of the graph is the sum of the powers of its nodes.

Unless stated otherwise, graphs are assumed to be undirected and simple. Let G = (V, E)

be a graph. For X ⊆ V , ΓE(X) = ΓG(X) = {u ∈ V − X : v ∈ X, vu ∈ E} is the set of

neighbors of X in G, δE(X) = δG(X) is the set of edges from X to V − X in G, and

dE(X) = |δE(X)| is the degree of X in G. Let G = (V, E ; c) be a network, that is, (V, E) is a

graph and c is a cost function on E . Let n = |V |. Sometimes, we write G = (V, E) and refer

to G as a graph. Given a network G = (V, E ; c), we seek to find a low power communication

network, that is, a low power subgraph G = (V, E) of G that satisfies some property.

Definition 1.2 Given a requirement function r on V , we say that a graph G = (V, E) (or

that E) is an r-edge cover if dG(v) ≥ r(v) for every v ∈ V .

Minimum-Power Edge-Multi-Cover (MPEMC):

Instance: A network G = (V, E ; c) and degree requirements {r(v) : v ∈ V }.

Objective: Find a min-power subgraph G of G so that G is an r-edge cover.

A graph is k-connected if it contains k internally-disjoint uv-paths for all u, v ∈ V .

2



Minimum-Power k-Connected Subgraph (MPkCS):

Instance: A network G = (V, E ; c), and an integer k.

Objective: Find a minimum-power k-connected spanning subgraph G of G.

1.2 Related Work

Results on MPEMC: The Minimum-Cost Edge-Multi-Cover problem is essentially the funda-

mental b-Matching problem, which is solvable in polynomial time, c.f., [5]. The previously best

known approximation ratio for the min-power variant MPEMC was min{rmax +1, O(log4 n)}

due to [7], where rmax = maxv∈V r(v) denotes the maximum requirement.

Results on connectivity problems: Minimum-cost connectivity problems were studied

extensively, see surveys in [10] and [11]. The currently best known approximation ratio for

the Minimum-Cost k-Connected Subgraph (MCkCS) problem is α = O
(

log k · log n
n−k

)

[15],

which is O(log k) for all k but k = n− o(n), and is O(log2 k) = O(log2 n) for k = n − o(n).

For further results on other minimum-power connectivity problems, among them problems

on directed graphs see [2, 7, 13, 12, 8, 14]. The following statement from [7], which first part

was observed independently in [8], relates the power and cost variants.

Theorem 1.1 ([7, 8])

(i) If there exists an α-approximation algorithm for MCkCS and a β-approximation algo-

rithm for MPEMC then there exists a (2α + β)-approximation algorithm for MPkCS.

(ii) If there exists a ρ-approximation algorithm for MPkCS then there exists a (2ρ + 1)-

approximation for MCkCS.

1.3 Our Results

The previous best approximation ratio for MPEMC was min{rmax + 1, O(log4 n)} [7]. We

prove:

Theorem 1.2 Undirected MPEMC admits an O(log n)-approximation algorithm.

The previously best known ratio for MPkCS was O(α + log4 n) [7], where α is the best

ratio for MCkCS. From Theorems 1.2 and 1.1 we get:
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Theorem 1.3 MPkCS admits an O(α+log n)-approximation algorithm, where α is the best

ratio for MCkCS. Thus unless k = n − o(n), MPkCS admits an O(logn)-approximation

algorithm, and for k = n− o(n) the approximation ratio is O(log2 n).

Theorem 1.3 implies that the min-cost and the min-power variants of the k-Connected

Subgraph problem are equivalent with respect to approximation, unless the min-cost variant

admits a better than O(logn)-approximation; the latter seems to be out of reach at the

moment.

2 Approximating MPEMC

Let opt denote the optimal solution value of a problem at hand. The most natural heuristic

for approximating MPEMC is as follows. Guess opt (more precisely, using binary search, guess

an almost tight lower bound τ on opt). Cover some fraction of the total requirements within

budget opt, and iterate. Proposition 2.1 below shows that this strategy fails. Suppose that

we are given an instance of MPEMC and a budget P and our goal is to solve the ”budgeted

coverage” version of MPEMC: find an edge set I ⊆ E so that p(I) ≤ P and the amount of

requirement
∑

v∈V min{dI(v), r(v)} covered by I is maximum. We show that this problem

is at least as hard as the Densest k-Subgraph problem: given a graph G = (V, E) and an

integer k, find a subgraph of G with k nodes that has the maximum number of edges. The

best known approximation ratio for Densest k-Subgraph is roughly n−1/3 [6], and in spite of

numerous attempts to improve it, this ratio holds for over 12 years. We prove:

Proposition 2.1 If there exists a ρ-approximation algorithm for the budgeted coverage ver-

sion of MPEMC with unit costs, then there exists a ρ-approximation algorithm for Densest

k-Subgraph.

Proof: Given an instance G = (V, E), k of Densest k-Subgraph, define an instance (G, r, P ) of

budgeted coverage version of MPEMC with unit costs as follows: r(v) = k − 1 for all v ∈ V

and P = k. Then the problem is to find a node subset U ⊆ V with |U | = k so that the

number of edges in the subgraph induced by U in G is maximum. The later is the Densest

k-Subgraph problem. 2

2.1 Reduction to bipartite graphs

We will show an O(log n)-approximation algorithm for (undirected) bipartite MPEMC where

G = (A + B, E) is a bipartite graph and r(a) = 0 for every a ∈ A (so, only the nodes in B
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may have positive requirements). The following statement shows that getting an O(logn)-

approximation algorithm for the bipartite MPEMC is sufficient.

Lemma 2.2 If there exists a ρ-approximation algorithm for bipartite MPEMC then there

exists a 2ρ-approximation algorithm for general MPEMC.

Proof: Given an instance (G = (V, E), c, r) of MPEMC, construct an instance (G′ = (A +

B, E ′), c′, r′) of bipartite MPEMC as follows. Let A = {av : v ∈ V } and B = {bv : v ∈ V } (so

each of A, B is a copy of V ) and for every uv ∈ E add two edges: auav and avau each with

cost c(uv). Also, set r′(bv) = r(v) for every bv ∈ B and r′(av) = 0 for every av ∈ A. Given

F ′ ⊆ E ′ let F = {uv ∈ E : aubv ∈ F ′ or avbu ∈ F ′} be the edge set in E that corresponds to

F ′. Now compute an r′-edge cover E ′ in G′ using the ρ-approximation algorithm and output

the edge set E ⊆ E that corresponds to E ′, namely E = {uv ∈ E : aubv ∈ E ′ or avbu ∈ E ′}.

It is easy to see that if F ′ is an r′-edge cover then F is an r-edge cover. Furthermore, if

for every edge in F correspond two edges in F ′ (|F ′| = 2|F |), then F is an r-edge cover if,

and only if, F ′ is an r′-edge cover. The later implies that opt′ ≤ 2opt, where opt and opt′ is

the optimal solution value to G, c, r and G′, c′, r′, respectively. Consequently, E is an r-edge

cover, and pE(V ) ≤ pE′(A + B) ≤ ρ · opt′ ≤ 2ρ · opt. 2

2.2 An O(log n)-approximation for bipartite MPEMC

We prove that bipartite MPEMC admits an O(log n)-approximation algorithm. The residual

requirement of B w.r.t. an edge set J is defined by rJ(B) =
∑

v∈V max{r(b)− dJ(b), 0}.

Lemma 2.3 For bipartite MPEMC there exists a polynomial time algorithm that given an

integer τ either establishes that τ < opt or returns an edge set J ⊆ E such that the following

holds:

pJ(V ) ≤ 4τ (1)

rJ(B) ≤ 3r(B)/4 (2)

Note that if τ < opt then the algorithm may return an edge set J that satisfies (1) and

(2); if the algorithm declares ”τ < opt” then this is correct. An O(log n)-approximation

algorithm for the bipartite MPEMC easily follows from Lemma 2.3:

While r(B) > 0 do

- Find the least integer τ so that the algorithm in Lemma 2.3 returns

an edge set J so that (1) and (2) holds (note that τ − 1 < opt).

- E ← E + J , E ← E − J , r ← rJ .

End While
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The least integer τ as above can be found in polynomial time using binary search in the

range [0, . . . , p(G)] as follows. Suppose that our current search range is [ℓ, . . . , L]. Assuming

L − ℓ ≥ 2 (if L − ℓ ∈ {0, 1} there are at most 2 values to check), we check the value

τ = ⌊(ℓ+L)/2⌋. We continue the search in the range [⌊(ℓ + L)/2⌋+ 1, . . . , L] if the algorithm

as in Lemma 2.3 establishes that τ < opt, and in the range [ℓ, . . . , ⌊(ℓ + L)/2⌋] otherwise.

At the end the algorithm returns a solution for τ and establishes that τ − 1 ≤ opt. Thus

τ = O(opt). The number of iterations is O(log r(B)), and at every iteration an edge set of

power at most O(opt) is added. Thus the algorithm can be implemented to run in polynomial

time, and has approximation ratio O(log r(B)) = O(log(n2)) = O(log n). Therefore all that

remains is proving Lemma 2.3.

2.3 Proof of Lemma 2.3

Definition 2.1 Let τ be an integer, let R = r(B) =
∑

b∈B r(b). An edge ab ∈ E , b ∈ B, is

dangerous if c(ab) ≥ 2 · τ · r(b)/R. Let I be the set of non-dangerous edges in E .

Lemma 2.4 pI(B) ≤ 2 · τ .

Proof: Note that pI(b) ≤ 2 · τ · r(b)/R for every b ∈ B. Thus:

pI(B) =
∑

b∈B

pI(b) ≤
∑

b∈B

(2τ · r(b)/R) =
2τ

R

∑

b∈B

r(b) = 2τ .

2

Lemma 2.5 Suppose that τ ≥ p(E) for a feasible solution E. Then J = E ∩ I covers at

least R/2 of the total requirement, namely, rJ(B) ≤ R− R/2 = R/2.

Proof: Let F = E−I be the set of dangerous edges in E, and let D = {b ∈ B : dF (b) > 0}.

We claim that r(D) ≤ R/2, implying that J = E−F covers at least R/2 of the requirement.

Our claim that r(D) ≤ R/2 follows from the following sequence of inequalities:

τ ≥ p(E) ≥
∑

b∈D

pF (b) ≥
∑

b∈D

(2τ · r(b)/R) =
2τ

R

∑

b∈D

r(b) =
2τ

R
r(D) .

2

Lemmas 2.4 and 2.5 imply that we may ignore the dangerous edges and still be able to

cover within power τ a fraction of 1/2 of the total requirement. If τ = O(opt), then once

dangerous edges are ignored, the algorithm does not need to take the power incurred in B

into account, as the total power of B w.r.t. all the non-dangerous edges is 2τ = O(opt).

6



Therefore, the problem we want to solve is similar to the bipartite MPEMC, except that we

want to minimize the power of A only. Formally:

Instance: A bipartite graph G = (A + B, I) with edge-costs {c(e) : e ∈ I}, requirements

{r(b) : b ∈ B}, and a budget τ = P .

Objective: Find J ⊆ I with pJ(A) ≤ P and
∑

b∈B min{dJ(b), r(b)} maximum.

Note that in the above graph we assume that the dangerous edges were removed

In order to represent all possible power choices for a node a ∈ A, we built the following

bipartite graph Ĝ = (Â, B, Ê). For every node a ∈ A and every edge e ∈ δG(a) add a node

ae into Â and give it cost c(e). Not all of δG(a) is added into Ê but only edges ab so that

c(ab) ≤ c(e). Intuitively, a choice of ae implies a choice of power c(e) for v. Hence it can

reduce the demand only of nodes b so that c(ab) ≤ c(e). We assume τ ≥ opt (and may get

a contradiction). Thus we discard any a′
e′ so that c(e′) > τ .

We treat the problem as a set-coverage problem. We apply the well known set-coverage

algorithm on Ĝ (see [9]), except that we stop once the cost exceeds τ . We later show that

the distinction between power and cost is not important here, as we run the algorithm on

Ĝ.

For a node ae, let E(ae) be the edges of ae in the original graph G, namely, E(ae) = {e′ ∈

δG(a) | c(e′) ≤ c(e)}. We denote by coverJ(ae) = rJ(A)− rJ∪E(ae)(A). In the next algorithm

we say that ae is the best ratio node if coverJ(ae)/c(e) is the largest over all a′
e′ nodes.

Procedure GREEDY(Ĝ(V̂ , Ê))

1. J ← ∅; S ← ∅

2. While c(S) ≤ τ do

(a) Select the best ratio node ae and add it to S

(b) c(S)← c(S) + c(e)

(c) J ← J ∪E(ae)

3. Return J

Let the final S be S = {a1
e1

, . . . , ak
ek
} (where the nodes were chosen in this order).

Claim 2.6 pJ(A) ≤ c(S) =
∑k

i=1 c(ei)

Proof: Fix a node a. Let e′ be the maximum cost edge so that E(ae′) ∩ J 6= ∅. Note that

by the definition of Ĝ and E(ae), for every e′′ 6= e′ so that E(ae′′) ∩ J 6= ∅, E(ae′′) ⊆ E(ae′).

7



Thus at the end of the algorithm δG(a) ∩ J = E(ae′). This means that the contribution

of a to pJ(A) is c(e′). In contrast, all the copies of a contribute their cost to c(S) (and in

particular c(e′)). The claim follows. 2

Lemma 2.7 If τ ≥ opt the power added by the greedy algorithm is at most 2τ , while the

demand covered by the algorithm is at least r(B)/4

Proof: By Claim 2.6, in order to prove pJ(A) ≤ 2 · τ , it is enough to show that c(S) ≤ 2 · τ .

Before E(ak
ek

) is added into J , the cost of c(S) was at most τ . Since c(ek) ≤ τ , the first part

of the claim follows.

We now bound from below the coverage of J . Note that even though the dangerous edges

were removed, by Lemmas 2.4 and 2.5 there exists a set J ′ (in G) that can cover r(B)/2

demand so that pJ ′(A) ≤ opt. If the set J output by the algorithm, satisfies at least r(B)/4

of the demand covered by J ′, we are done. Else, at least r(B)/4 demand that can be satisfied

by J ′ remains uncovered at the end of the run of the algorithm. Clearly, pJ ′(A) ≤ opt ≤ τ ,

while J ′ will reduce the demand by r(B)/4. Going back to Ĝ, J ′ corresponds to a collection

S ′ = {ae} of nodes, whose sum of costs equals pJ ′(A) and the sum
∑

ae∈S′ coverJ(ae) is at

least the coverage of J ′ namely, at least r(B)/4. By a simple averaging argument, at the

end of the run of the algorithm there exists a node ae so that coverJ(ae)/c(e) ≥ r(B)/(4τ).

Let Ji be the edges in the partial solution before E(ai
ei
) is added into J . Then clearly, this

implies that for every i:

coverJi
(ai

ei
)

c(ei)
≥

r(B)

4pJ ′(A)
≥

r(B)

4τ
. (3)

We bound from below the coverage as follows:

k
∑

i=1

coverJi
(ai

ei
) =

k
∑

i=1

c(ei) ·
coverJi

(ai
ei
)

c(ei)
≥

k
∑

i=1

c(ei)
r(B)

4τ
≥

r(B)

4
.

The last two inequalities follows from Inequality (3) and from the fact that
∑k

i=1 c(ek) ≥ τ

by the algorithm. Note that if the set J does not satisfy the coverage lower bound r(B)/4

as stated in the lemma, by the above discussion we just proved that τ < OPT . 2

Lemma 2.3 directly follows from Lemma 2.4 and Lemma 2.7.
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