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1 IntroductionA basic problem in network design is given a graph G to �nd its minimum cost subgraph thatsatis�es given connectivity requirements (see [14, 8] for surveys). A fundamental problem inthis area is the survivable network design problem: �nd a cheapest spanning subgraph suchthat for every pair of nodes (u; v), there are at least kuv internally disjoint paths from uto v, where kuv is a nonnegative integer (requirement) associated with the pair (u; v); twopaths are internally disjoint if they do not have any internal node in common. No e�cientapproximation algorithm for this problem is known. However, for undirected graphs, whenthe paths are required only to be edge disjoint, an approximation algorithm that producesa solution at most twice the value of an optimal was given by Jain [12]. Henceforth, unlessstated otherwise, we consider node connectivity only.A �-approximation algorithm for a minimization problem is a polynomial time algorithmthat produces a solution of value no more than � times the value of an optimal solution;� is called the approximation ratio of the algorithm. A particular important case of thesurvivable network design problem is the problem of �nding a cheapest k-node connectedspanning subgraph, that is the case when kuv = k for every node pair (u; v). For undirectedgraphs this problem is NP-hard for k = 2 (for k = 1 it is the minimum spanning treeproblem) and for directed graphs it is NP-hard for k = 1. For both directed and undirectedgraphs, there is a simple 2k-approximation algorithm, see for example [3].For undirected graphs, the following results were known. Ravi and Williamson [21]claimed a 2H(k)-approximation algorithm, where H(k) = 1 + 12 + � � � + 1k , but the proofwas found to contain an error, see [22]. A d(k + 1)=2e-approximation algorithms are knownfor k � 5; see [16] for k = 2, [2] for k = 2; 3, and [7] for k = 4; 5. For metric costs and karbitrary, Khuller and Raghavachari [16] gave a �2 + 2(k�1)n �-approximation algorithm (seealso a 3-approximation algorithm in [3]).We extend and generalize some of these algorithms, and unify ideas from [16], [2, 7], [3],and [13] to show further improvements. Among our results are:(i) For arbitrary costs, a k-approximation algorithm for undirected graphs and a (k + 1)-approximation algorithm for directed graphs;(ii) For metric costs, a (2 + k�1n )-approximation algorithm for undirected graphs and a(2 + kn)-approximation algorithm for directed graphs;For undirected graphs and k = 6; 7, we further improve the approximation ratio from kto d(k + 1)=2e = 4, and give a fast 3-approximation algorithm for k = 4.2



Recently, Cheriyan et. al. [4] gave a 6H(k)-approximation algorithm for undirectedgraphs with n � 6k2, where n is the number of vertices of the input graph. In [5] the sameauthors suggest an iterative rounding O( npn�k)-approximation algorithm for both directedand undirected graphs. For a combinatorial O(pn ln k)-approximation algorithm see [15].Another particular case of the survivable network design problem is the (undirected)multiroot problem, where pairwise node requirements are de�ned by single node requirements;that is, requirements ku for every node u are given, and the aim is to �nd a minimum-costsubgraph that contains maxfku; kvg internally disjoint paths between every pair of nodes u; v.A graph (directed or undirected) is said to be k-outconnected from a node r if it containsk internally disjoint paths from r to any other node; such node r is usually referred as theroot. It is easy to see that a subgraph is a feasible solution to the multiroot problem if andonly if it is ku-outconnected from every node u. Given an instance of the multiroot problem,we use q to denote the number of nodes u with ku > 0, and k = max ku is the maximumrequirement. Observe that the (undirected) min-cost k-connected subgraph problem is aspecial case of the multiroot problem when ku = k for every node u.Directed and undirected one root problems were considered long ago. For directed graphs,Frank and Tardos [10] showed that the problem of �nding a k-outconnected spanning sub-graph of minimum cost is solvable in polynomial time; a faster algorithm is due to Gabow[11]. As was observed by Khuller and Raghavachari in [16], this implies a 2-approximationalgorithm for the (undirected) one root problem, as follows. First, replace every undirectededge e of G by the two antiparallel directed edges with the same ends and of the same cost ase. Then compute an optimal k-outconnected from r subdigraph and output its underlying(undirected) simple graph. The algorithm can be implemented in O(k2n2m) time using thealgorithm of [11].For the multiroot problem, a 2q-approximation algorithm follows by applying the abovealgorithm for each root and taking the union of the resulting q subgraphs. The approximationguarantee 2q of this algorithm is tight for q � k, see [3]. For metric costs and k arbitrary,Cheriyan et. al. [3] gave a 3-approximation algorithm. For metric costs and k = 2, it canbe shown that the problem is equivalent to that of �nding a 2-connected subgraph. For thelatter, there is a 3=2-approximation algorithm, see [9]. We consider the case of metric costs,and improve for 3 � k � 7 the approximation ratio from 3 to 2 + b(k�1)=2ck < 2:5.This paper is organized as follows. Section 2 contains preliminary results and de�nitions.Sections 3 and 4 present algorithms for arbitrary and metric costs, respectively. Section 5shows a 4-approximation algorithm for k 2 f6; 7g, and Section 6 shows a fast 3-approximationalgorithm for k = 4. Section 7 considers the metric multiroot problem with k � 7.3



2 De�nitions and preliminary resultsAll the graphs (directed or undirected) in the paper are assumed to be simple (i.e., withoutloops and parallel edges). An edge from u to v is denoted by uv. For an arbitrary graph H,V (H) denotes the node set of H, and E(H) denotes the edge set of H. Let G = (V;E) be agraph. For any set of edges and nodes U = E 0 [ V 0 we denote by G� U (resp., G+ U) thegraph obtained from G by deleting U (resp., adding U), where deletion of a node impliesalso deletion of all the edges incident to it. For a nonnegative cost function c on the edges ofG and a subgraph G0 = (V 0; E 0) of G we use the notation c(G0) = c(E 0) = Pfc(e) : e 2 E 0g.For S; T � V let �(S; T ) = �G(S; T ) denote the set of edges in G going from S to T .For X � V we denote by �(X) = �G(X) the set fv 2 V nX : uv 2 E for some u 2 Xg ofneighbors of X. Let X� = X�G = V n (X [ �(X)) denote the \node complement" of X in G.It is well known that the function j�(�)j is submodular, that is for any X; Y � V holds:j�(X)j+ j�(Y )j � j�(X \ Y )j+ j�(X [ Y )j: (1)Two sets X; Y � V cross (or X crosses Y ) if X \ Y 6= ; and neither X � Y nor Y � X.We say that U � V covers a collection C of subsets of V if X \ U 6= ; for every X 2 C.We say that X � V is l-tight if j�(X)j = l and X� 6= ; (i.e., if j�(X)j = l and jXj �jV j � l � 1); such X is an l-core if it does not contain any other l-tight set. A graph G isk-(node)-connected if for any pair of its nodes there are k internally disjoint paths from onenode to the other. By Menger's Theorem, G is k-connected if and only if jV (G)j � k + 1and there are no l-tight sets with l � k � 1 in G.For an undirected graph G, we say that U � V is an l-cover if U covers all the l0-coreswith l0 � l. Note that if U is an l-cover, then for any l0-tight set X with l0 � l holds:X \ U 6= ; and X� \ U 6= ;. Thus if jV (G)j � l + 2, then by adding to G the edge setE 0 = fuv : u 6= v 2 Ug of a complete graph on U we obtain an (l + 1)-connected graph.An edge e of a graph G is said to be critical w.r.t. property P if G satis�es property P ,but G� e does not. The following theorem is due to Mader.Theorem 2.1 (Mader,[17]) In a k-connected undirected graph, any cycle in which everyedge is critical w.r.t. k-connectivity contains a node of degree k.Theorem 2.1 implies that if j�(v)j � k � 1 for every v 2 V (G), and if F is an inclusionminimal edge set such that G+F is k-connected, then F is a forest (if not, then F containsa cycle C of critical edges, but every node of this cycle is incident to 2 edges of C and to atleast k � 1 edges of G, contradicting Mader's Theorem). This implies:4



Corollary 2.2 Let U be a (k � 1)-cover in an undirected graph G, and let E 0 = fuv : u 6=v 2 Ug. Then G + E 0 is k-connected. Moreover, if j�(v)j � k � 1 for every v 2 V , and ifF � E 0 is an inclusion minimal edge set such that G+F is k-connected, then jF j � jU j � 1.The following property of k-outconnected undirected graphs is from [2].Lemma 2.3 ([2]) Let G be an undirected graph which is k-outconnected from r, and let Sbe an l-tight set in G. Then jS \ �(r)j � k� l + 1, and if l � k� 1 then jS \ �(r)j � 2 andr 2 �(S). Thus G is (k � b j�(r)j2 c+ 1)-connected.Corollary 2.4 Let G be an undirected graph which is k-outconnected from r. Then �(r)�vis a (k � 1)-cover in G for any v 2 �(r).Throughout the paper, for an instance of a problem, we will denote by G the input graph,and by opt the value of an optimal solution; n denotes the number of nodes in G, and mthe number of edges in G. We assume that G contains a feasible solution; otherwise ouralgorithms can be easily modi�ed to output an error.For the min-cost k-connected subgraph problem, we can assume that G is a completegraph, and that c(e) � opt for every edge e of G. Indeed, let G = (V;E) be a k-connectedspanning subgraph of G and let st 2 E. Let Fst be the edge set of cheapest k internallydisjoint paths from s to t in G. Then (G� st)+Fst is k-connected and, clearly, c(Fst) � opt.Note that Fst as above can be found in O(n logn(m + n logn)) time by a min-cost k-owalgorithm of [20] (the node version), and ow decomposition.The main idea of most of our algorithms is to �nd a certain subgraph of G of low costand with a small cardinality (k � 1)-cover or augmenting edge set. For undirected graphs,such a subgraph is found by using the following two modi�cations of the 2-approximationalgorithm for the one root problem. Each one of these modi�cations outputs a subgraph ofG of cost � 2opt (here opt is the optimal cost of a k-connected spanning subgraph of G) anda (k � 1)-cover U of the subgraph.The �rst modi�cation is from [16], and we use it for the case of metric costs. Let Grbe a graph constructed from G by adding an external node r and connecting it by edges ofcost 0 to an arbitrary set R of at least k nodes in G. We compute a k-outconnected fromr subgraph Gr of Gr using the 2-approximation algorithm above, and output G = Gr � r.As was shown in [16], c(G) � 2opt. By Lemma 2.3 R is a (k � 1)-cover of G. We shall referto this modi�cation as the External Outconnected Subgraph Algorithm (EOCSA). It can beimplemented in O(k2n2m) time using the algorithm of [11].The second modi�cation is from [2, 7]. It �nds a subgraph G and a node r such that: G is5



k-outconnected from r, j�G(r)j = k, and c(G) � 2opt. The time complexity of the algorithmis O(k2n3m) for the deterministic version, and O(k2n2m logn) for the randomized one. Weshall refer to the deterministic version as the Outconnected Subgraph Algorithm (OCSA), andfor the randomized version as the Randomized Outconnected Subgraph Algorithm (ROCSA).3 Min-cost k-connected subgraphs3.1 Undirected graphs with arbitrary costsThis section deals with undirected graphs only. It is not hard to get a k-approximationalgorithm for the min-cost k-connected subgraph problem as follows. We execute OCSA(or ROCSA) to compute a corresponding root r and a subgraph G of G. Let v 2 �G(r) bearbitrary, and let R = �G(r) n v. Recall that, by Corollary 2.4, R is a (k � 1)-cover in G.We then �nd an edge set F as in Corollary 2.2, so G+F is k-connected and F is a forest onR. Finally, we replace every edge st 2 F by a cheapest set Fst of k internally disjoint pathsbetween s and t in G. By [2], c(G) � 2opt. Since jRj = k � 1 then jF j � k � 2. Thus thecost of the output subgraph is at most 2opt+ (k � 2)opt = kopt.We can get a slightly better approximation ratio by executing OCSA and then iterativelyincreasing the connectivity by 1 until it reaches k.Let G be an l-connected graph, jV (G)j � l + 2. We say that an l-tight set X is smallif jXj � bn�l2 c. Clearly, if X is l-tight, then at least one of X;X� is small. Thus G is(l + 1)-connected if and only if it has no small l-tight sets. The following lemma is wellknown, e.g., see [13, Lemma 1.2].Lemma 3.1 Let X; Y be two intersecting small l-tight sets in an l connected graph G. Then(i) X \ Y is a small l-tight set;(ii) X [ Y , (X [ Y )� are both l-tight, and at least one of them is small.Corollary 3.2 In an l-connected graph G, no small l-tight set crosses a small l-core. Thusany two distinct small l-cores are disjoint.Let �̂l(G) denote the number of small l-cores in G. Note that G is (l + 1)-connected ifand only if �̂l(G) = 0. Let us call an edge e reducing for G if �̂l(G+ e) � �̂l(G)� 1.Lemma 3.3 Let R be a cover of all small l-cores in an l-connected graph G. If R is not anl-cover, then there is a reducing edge for G. 6



Proof: Let R be a cover of all small l-cores in G. If R is not an l-cover, then there is anl-core T such that T \ R = ;. Note that T cannot be small, thus T � is small. Let S � T �be an arbitrary l-core. Consider the collection D of all (inclusion) maximal small l-tight setscontaining S. Note that T � 2 D. By Lemma 3.1 (ii) and the maximality of the sets in D,exactly one of the following holds: (i) jDj = 1 (so D = fT �g), or (ii) jDj � 2, and the unionof any two sets from D is an l-tight set which is not small.If case (i) holds, then any edge e = st where s 2 S and t 2 T is reducing for G, sincein G + st there cannot be a small l-tight set containing S. Assume therefore that case (ii)holds. Let L be a set in D crossing with T �. Then, by Lemma 3.1 (i), L� \ T is tight andsmall, implying L� \ T \ R 6= ;. This contradicts our assumption that T \R = ;. 2Corollary 3.4 Any l-connected graph can be made (l+1)-connected by adding �̂l(G) edges.Proof: If G has no reducing edge, we �nd an l-cover R of size �̂l(G) by picking a node fromevery small l-core. By Lemma 3.3, R is an l-cover, and, by Corollary 2.2, we can �nd a forestF on R such that G + F is (l + 1)-connected. Else, we �nd and add a reducing edge, andrecursively apply the same process on the resulting graph. 2Theorem 3.5 For the problem of making a (k�1)-connected graph G k-connected by addinga min-cost edge set there exists a �2 + bk2c�-approximation algorithm with time complexityO(k2n3m) deterministic (using OCSA) and O(k2n2m logn) randomized (using ROCSA).Proof: At the �rst phase we reset the edge cost of edges of G to zero, and execute OCSA:let H be the output graph, r the corresponding root, and R = �H(r). Now, consider thegraph J = H + G, and let l = k � 1. Note that �̂l(J) � bk=2c, since every l-tight set inH, and thus in J , contains at least two nodes from R, and jRj = k. At the second phasewe make J k-connected by adding an edge set F as in Lemma 3.3, with l = k � 1. Now,c(J) + c(F ) � 2opt+ bk=2copt. The analysis of the time complexity is straightforward. 2One can get an approximation ratio slightly better than k by sequentially applying aug-mentation steps as above. That is, we execute OCSA, and from l = dk=2e + 1 to k � 1increase the connectivity by 1. At every iteration, �̂l(G) � b kk�l+1c, where G denotes thecurrent graph. By Corollary 3.4, G can be made (l + 1)-connected by adding �̂l(G) edges.The following lemma implies that increasing the number of internally disjoint paths betweens and t from l to l + 1 costs at most optk�l .Lemma 3.6 Let G be a subgraph of a graph G containing l internally disjoint paths from sto t, s; t 2 V (G). For an integer p let F p � I = E(G) � E(G) be an optimal edge set suchthat G+ F p contains l + p internally disjoint paths from s to t. Then c(F 1) � 1pc(F p).7



Proof: One can view G as a min-cost ow network with source s and sink t where all edgesand nodes have unit capacity (the costs are determined by the costs of the edges in I, whilethe edges in E have cost zero). Apply the following standard two stage reduction. First,replace every undirected edge e by two opposite directed edges with the same ends and thesame capacity and cost as e, to get a directed network. Second, apply a standard conversionof node capacities to edge capacities: replace every node v 2 V � fs; tg by the two nodesv�; v+ connected by the edge v�v+ having the same capacity as v and cost zero, and redirectthe heads of the edges entering v to v� and the tails of the edges leaving v to v+.In the new network, let ~F p be a min-cost (l + p)-ow. Using ow decomposition, itis not hard to see that c(~F p) = c(F p). In particular, c(~F 0) = c(F 0) = 0. Now considerthe (fractional) (l + 1)-ow 1p ~F p + �1� 1p� ~F 0 which has cost 1pc(~F p) = 1pc(F p). Since thecapacities are integral, there must be an integral (l + 1)-ow ~F 1 of at most the same cost,which proves the lemma. 2Lemma 3.6 implies that the approximation ratio of our algorithm is:I(k) = 2 + k�1Xl=d k2 e+1 $ kk � l + 1% 1k � l = 2 + b k2 c�1Xj=1 1j $ kj + 1% :It is easy to check that I(k) < k for k � 7, but limk!1 I(k)k = 1.Theorem 3.7 For the problem of making a k0-connected graph k-connected there existsan I(k � k0)-approximation algorithm with time complexity O(k2n3m) deterministic (usingOCSA) and O(k2n2m logn) randomized (using ROCSA).3.2 Directed graphs with arbitrary costsLet us say that a directed graph is k-inconnected to r if it contains k internally disjoint pathsfrom any its node to r. Our algorithm is as follows.1. Choose an arbitrary set R = fr1; : : : ; rkg � V of k nodes, and for i = 1; : : : ; k, computea min-cost k-outconnected from ri subgraph Gi = (V; Fi) of G.2. Construct a graph Gr by adding to G an external node r, and edges rir of cost 0,i = 1; : : : ; k.Compute a minimum cost k-inconnected to r spanning subgraph Gr of Gr.3. Output H = (Gr + F )� r, where F = Ski=1 Fi.8



Theorem 3.8 There exists a (k+1)-approximation algorithm with time complexity O(k2n2m)for the directed min-cost k-connected subgraph problem.Proof: We need to show that the output graphH is k-connected and that c(H) � (k+1)opt.IfH is not k-connected, then,H has an l-tight set S with l < k. SinceH is k-outconnectedfrom any node that belongs to R, we must have S \R = ;. Thus, S is also l-tight in Gr [F .We obtain a contradiction since then Gr cannot contain k internally disjoint paths from anynode s 2 S to r.We now prove the approximation ratio. Clearly, c(Fi) � opt, i = 1; : : : ; k; thus c(F ) �kopt. It remains to show that c(Gr) � opt. Let G� be an optimal k-connected spanningsubgraph of G. Extend G� to a spanning subgraph G�r of Gr by adding to G� the node rand the edges rir of cost 0, i = 1; : : : ; k. It is easy to see that G�r is k-inconnected to r.Therefore, c(Gr) � c(G�r) = c(G�) = opt. 24 Metric k-connected subgraph problem4.1 Undirected graphs with metric costsIn this section we consider the metric min-cost k-connected subgraph problem. We present amodi�cation of the �2 + 2(k�1)n �-approximation algorithm of Khuller and Raghavachari [16]to achieve a slightly better approximation guarantee of �2 + k�1n �.Here is a short description of the algorithm of [16]. An l-star is a tree with l nodes andl� 1 leaves; a node s is a center of the star if all the other nodes in the star are leaves. Notethat a min-cost subgraph of G which is l-star with center v can be computed in O(ln) time,and the overall cheapest l-star in O(ln2) time. The algorithm of [16] �nds the node set R ofa cheapest k-star, executes EOCSA, and adds to the graph G calculated the edge set E 0 asin Corollary 2.2 (that is, all the edges with both endnodes in R that are not in G). In [16]it is shown that c(E 0) � 2(k�1)n .In our algorithm, we make a slightly di�erent choice of R, and add an extra phase ofremoving from E 0 the noncritical edges (that is we add an edge set F as in Corollary 2.2).We show that for our choice of R, c(F ) � k�1n . We use the following lemma:Lemma 4.1 Let J be a complete graph on a node set R with node weights w(v) � 0, v 2 R,and edge weights w(uv) = w(u) + w(v), u; v 2 R. If F is a forest on R thenw(F ) � (jRj � 2)maxfw(v) : v 2 Rg+Xfw(v) : v 2 Rg:9



Proof: Let s 2 R be a node satisfying w(s) = maxfw(v) : v 2 Rg. Among all forests F onR for which w(F ) is maximal, let F � be one with the maximum number of edges incident tos. We claim that F � is a star centered at s and thus for any forest F on R holds:w(F ) � w(F �) =Xfw(s) + w(v) : v 2 R � sg = (jRj � 2)w(s) +Xfw(v) : v 2 Rg:If not, then there is a node v 6= s, such that v is either an isolated node of F �, or v is a leafof F � with uv 2 F � and u 6= s. In both cases, (F � � uv) + sv is a forest of the weight atleast c(F �), but with more edges incident to s than F �; this contradicts our choice of F �. 2In our algorithm, we start by choosing the cheapest (k + 1)-star Jk+1. Let v0 be itscenter, and let its leaves be v1; : : : ; vk. Denote w0 = w(v0) = 0 and wi = w(vi) = c(v0vi),i = 1; : : : ; k. Without loss of generality, assume that w1 � w2 � � � � � wk. Since the costsare metric, c(vivj) � w(vivj) = wi + wj, 0 � i 6= j � k. Let us delete vk from the star. Thisresults in a k-star Jk, and let R be its node set. For such R, let G be the subgraph of Gcalculated by EOCSA. Recall that R is a (k � 1)-cover in G. Let F be an edge set as inCorollary 2.2, so G+F is k-connected, and F is a forest. The algorithm will output G+F .All this can be implemented in O(k2n2m) time.Let us analyze the approximation ratio. By [16], c(H) � 2opt. We claim that c(F ) �k�1n opt. Indeed, similarly to [16], using the metric cost assumption it is not hard to showthat c(Jk+1) = Pfw(v) : v 2 Rg+wk � 2nopt. Thus, by our choice of Jk, wk�1 = maxfw(v) :v 2 Rg � 1nopt. Using this, the metric costs assumption, and Lemma 4.1 we get:c(F ) = Xfc(vivj) : vivj 2 Fg �Xfwi + wj : vivj 2 Fg �� (k � 2)wk�1 +Xfw(v) : v 2 Rg � (k � 2)wk�1 + (2nopt� wk) �� (k � 3)wk�1 + 2nopt � k � 3n opt+ 2nopt = k � 1n opt:Theorem 4.2 There exists a (2+k�1n )-approximation algorithm with time complexity O(k2n2m)for the undirected metric min-cost k-connected subgraph problem.4.2 Directed graphs with metric costsIn this section we consider directed graphs only. We say that a pair (R�; R+) is an l-coverin a directed graph G if R� covers all the l0-tight sets in G and R+ covers all the l0-tightsets in the graph obtained from G by reversal of its arcs, for any l0 � l. It is easy to seethat if (R�; R+) is a (k � 1)-cover in G, and E 0 = fuv : u 2 R�; v 2 R+g, then G + E 0 isk-connected. 10



A v ! l-star is a directed tree rooted at v, with l nodes and l� 1 leaves; a v  l-star isa graph which reversal of its edges results in a v ! l-star. Let v be a node of G. Among allsubdigraphs of G which are v ! l-stars (resp., v  l-stars), let X�l (v) (resp., X+l (v)) be acheapest one. Our algorithm for directed graphs is as follows:1. Find a node v0 for which c(X�k+1(v)) + c(X+k+1(v)) is minimal, and set u0 = v0.Let R� = fv1; : : : ; vkg be the leaves of J�k+1 = X�k+1(v0), and R+ = fu1; : : : ; ukg bethe leaves of J+k+1 = X+k+1(u0), where c(v0vi) � c(v0vi+1) and c(uiu0) � c(ui+1u0),i = 1; : : : ; k � 1.Set J�k = X�k+1(v0)� vk, J+k = X+k+1(v0)� uk.2. Add a node r to G and edges vir; rui of the cost 0, i = 0; : : : ; k � 1, obtaining a graphGr. Compute two spanning subgraphs of Gr: an optimal k-outconnected from r, sayG�r , and an optimal k-inconnected to r, say G+r ;3. The graph G + E 0 is k-connected, where G = (G�r + G+r ) � r and E 0 = fuv : u 2R�; v 2 R+g.Output H = G + F , where F � E 0, and all the edges in F are critical w.r.t. k-connectivity in H.The following directed counterpart of Lemma 2.3 implies that the pair (R�; R+) is a(k � 1)-cover in G, and thus the algorithm correctly outputs a k-connected graph H.Lemma 4.3 Let Gr be k-inconnected to r, let R = fv 2 V : r 2 �(v)g, and let S be anl-tight set in Gr such that r =2 S. If r 2 �(S) then jS \Rj � k � l + 1, and if r =2 �(S) thenl � k. Thus R covers all the l-tight sets in Gr � r, l � k � 1.Proof: Let s 2 S, and consider a set of k internally disjoint paths from s to r. LetR0 = fv1; : : : ; vkg � R be the nodes of these paths preceding r. If r 2 �(S), then at mostl � 1 nodes from R0 may not belong to S; this implies jR \ Sj � jR0 \ Sj � k � (l � 1).Clearly, if r =2 �(S) and l < k there cannot be k internally disjoint paths from s to r, byMenger's Theorem. The last statement is obvious. 2Let us analyze the approximation ratio, using the notation as in the algorithm. Similarlyto the proof of Theorem 3.8, one can show that c(G) � c(G�r ) + c(G+r ) � 2opt.We claim that c(F ) � knopt. Construct a bipartite graph J = (A;B;E(J)) with weightson the nodes as follows. The node parts are A = fu0; : : : ; uk�1g and B = fv0; : : : ; vk�1g. Thenode weights are w(ui) = c(u0ui), w(vj) = c(v0vj) and w(u0) = w(v0) = 0. To every directededge e = uivj with ui 2 R�; vj 2 R+ naturally corresponds an undirected edge e0 = uivj11



with ui 2 A; vj 2 B. Moreover, since the costs are metric, for any ui 2 R� and vj 2 R+ wehave c(uivj) � w(vivj) = w(ui) + w(vj).We need some de�nitions and facts to continue. An even length sequence of edges C =(v1v2; v3v2; v3v4; : : : ; v2q�1v2q; v1v2q) of a directed graph G is called an alternating cycle; thenodes v1; v3; : : : ; v2q�1 are C-out nodes, and v2; v4; : : : ; v2q are C-in nodes.Theorem 4.4 (Mader,[18]) In a k-connected directed graph, any cycle C in which everyedge is critical w.r.t. k-connectivity contains a C-in node of indegree k, or a C-out node ofoutdegree k.Theorem 4.4 implies that if the indegree and the outdegree of every node in V (G) is atleast k � 1, and if F is an inclusion minimal edge set such that G + F is k-connected, thenF contains no alternating cycle. Note that F � fuv : u 2 R�; v 2 R+g has no alternatingcycle if and only if the corresponding edge set F 0 in J is a forest. We also need the followingdirected counterpart of Lemma 4.1 (the proof is omitted):Lemma 4.5 Let J = (A;B;E(J)) be a complete bipartite directed graph with nonnegativenode weights w(v) � 0, v 2 A [ B, and edge weights w(ab) = w(a) + w(b), a 2 A; b 2 B. IfF � E(J) is a forest, thenw(F ) � (jBj � 1)maxfw(a) : a 2 Ag+(jAj � 1)maxfw(b) : b 2 Bg+Xfw(v) : v 2 A[Bg:Let us set wi = w(ui)+w(vi), i = 0; : : : ; k. Similarly to [16], one can show that c(J�k+1+J+k+1) � 2nopt. Thus, wk�1 � 1nopt, by our choice of J�k ; J+k . Now, similarly to the undirectedcase we get: c(F ) = Xfc(vivj) : vivj 2 Fg �Xfwi + wj : vivj 2 Fg �� (k � 1)wk�1 + k�1Xi=0 wi � (k � 1)wk�1 + (2nopt� wk) �� (k � 2)wk�1 + 2nopt � k � 2n opt+ 2nopt = knopt:Theorem 4.6 There exists a �2 + kn�-approximation algorithm with time complexity O(k2n2m)for the directed metric min-cost k-connected subgraph problem.5 Min-cost 6,7-connected subgraphsThis section presents our algorithms for the min-cost 6; 7-connected (undirected) subgraphproblems. The algorithm itself is simple, and the main di�culty is to show that for k = 6; 712



we can make the output graph of OCSA k-connected by adding an edge set F with jF j � 2.A similar approach was used previously in [7] for k = 4; 5 with jF j � 1:Lemma 5.1 ([7],Lemma 4.5) Let G be a graph which is k-outconnected from r, k 2 f4; 5g.If j�G(r)j = k, then there exists a pair of nodes s; t 2 �G(r) such that G+ st is k-connected.In fact, Lemma 5.1 can be deduced from Lemma 2.3 and the following lemma:Lemma 5.2 ([13],Lemma 3.2) Let G be an l-connected graph such that the maximumnumber of pairwise disjoint l-cores in G is exactly 2. Then the family of l-cores of G consistsof two disjoint sets S; T � V (G), and for any l-tight set Z of G either S � Z and T � Z�or T � Z and S � Z�.Our algorithm for k = 6; 7 is based on the following Lemma:Lemma 5.3 Let G be k-outconnected from r, k 2 f6; 7g. If j�G(r)j 2 f6; 7g then thereexists two pairs of nodes fs1; t1g; fs2; t2g � �G(R) such that G+ fs1t1; s2t2g is k-connected.Proof: Let G be as in the lemma, and k 2 f6; 7g. In the proof, let the default subscript ofthe functions � be G. For convenience, let us denote R = �(r). Note that, by Lemma 2.3,G is (k� 2)-connected, and that if S is (k� 2)-tight and X is (k� 1)-tight then jS \Rj � 3,jX \Rj � 2, and r 2 �(S) \ �(X). In particular, since jRj � 7, we have:Proposition 5.4 If S and T are two disjoint (k� 2)-tight sets then any (k� 1)- or (k� 2)tight set intersects at least one of S; T .In what follows, note that in any graph G = (V;E) for any two sets X; Y � V holds:j�(X)j+ j�(Y )j � j�(X� \ Y )j+ j�(X \ Y �)j (2)j�(X \ Y )j � j�(X)� Y �j+ j�(Y ) \Xj: (3)We now establish several properties of (k � 1)- and (k � 2)-cores for a graph G as inLemma 5.3 using inequalities (1), (2), and (3).Lemma 5.5 Let S be a (k � 2)-core and let X be an arbitrary (k � 1)-tight set crossing S.Then at least one of the following holds:� X \ S is (k � 1)-tight and X� \ S� is (k � 2)-tight; or� X \ S� is (k � 2)-tight and X� \ S is (k � 1)-tight.13



Proof: If X� \ S� = (X [ S)� 6= ; then j�(X [ S)j � k � 2. By the minimality of S,j�(X \ S)j � k � 1. Using inequality (1) we obtain(k � 1) + (k � 2) = j�(X)j+ j�(S)j � j�(X \ S)j+ j�(X [ S)j � (k � 1) + (k � 2):If X \S�; X�\S 6= ; then j�(X \S�)j � k�2. By the minimality of S, j�(X�\S)j � k�1.Then using (2) we obtain(k � 1) + (k � 2) = j�(X)j+ j�(S)j � j�(X \ S�)j+ j�(X� \ S)j � (k � 2) + (k � 1):In both cases, equality holds everywhere, and the claim of the lemma holds.Assume now that X� \ S� = ;. Then X� \ S 6= ;, since otherwise X� is a (k � 1)-tightset disjoint to both S; S�, contradicting Proposition 5.4. Thus we must have X�\S 6= ; andX \ S� = ;. Thenj�(X)� S�j = j�(X)j � jS�j � j�(X)j � jS� \ Rj � (k � 1)� 3:Since j�(S)j = k � 2 � 5, then j�(S) \Xj � 2 or j�(S) \X�j � 2. If j�(S) \Xj � 2 thenby (3) j�(X \ S)j � j�(X)� S�j+ j�(S) \Xj � (k � 4) + 2 = k � 2:This contradicts the minimality of S. The contradiction for the case jX� \ �(S)j � 2 isobtained similarly. 2Combining the last lemma with Proposition 5.4 we obtain:Corollary 5.6 If G is not (k � 1)-connected, then any (k � 1)-core either contains exactlyone (k � 2)-core, or is contained in such a core.Lemma 5.7 Let X; Y be (k � 1)-cores that cross. Then exactly one of the following holds:(i) at least one of the sets X \ Y , X \ Y �, X� \ Y , or X [ Y is (k � 2)-tight, or(ii) G is (k�1)-connected, X\Y is k-tight, and the only (k�1)-cores in G are X; Y;X�; Y �.Proof: Assume X� \ Y � = (X [ Y )� 6= ; (see Fig. 1(a)). Then j�(X [ Y )j � k� 2, and, bythe minimality of X, j�(X \ Y )j 6= k � 1. Now, by (1):j�(X \ Y )j+ j�(X [ Y )j � j�(X)j+ j�(Y )j = 2k � 2;which implies that j�(X \ Y )j = k � 2 or j�(X [ Y )j = k � 2.14
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Figure 1: Illustration to the proof of Lemma 5.7Similar argument applies with (2) for the case when both X \ Y �; X� \ Y are nonemptyand gives for this case that j�(X \ Y �)j = k � 2 or that j�(X� \ Y )j = k � 2.Assume therefore that X� \ Y � = ;, and that at least one of X� \ Y;X \ Y � is alsoempty. Without loss of generality let us consider the case X \ Y � = ; (see Fig. 1(b)). ThenY � � �(X). Since jY � \Rj � 2, we must have j�(X)� Y �j � k � 3.Now, assume that X \ Y is not (k � 2)-tight. Then, by the minimality of Y , we musthave j�(X \ Y )j � k. Applying inequality (3) we getk � j�(X \ Y )j � j�(X � Y �)j+ j�(Y ) \Xj � (k � 3) + j�(Y ) \Xj;so j�(Y ) \Xj � 3. This impliesj�(Y ) \X�j = (k � 1)� j�(Y ) \Xj � j�(Y ) \ �(X)j � (k � 1)� 3� 1 � 2:Now, if X� \ Y is not (k � 2)-tight, then X� \ Y = ;. Otherwise, applying (3) on X� andY we get a contradiction to the minimality of Y :j�(X� \ Y )j � j�(X�)� Y �j+ j�(Y ) \X�j � j�(X)� Y �j+ j�(Y ) \X�j � (k � 3) + 2:From the previous discussion we conclude, that if the �rst case of the lemma does nothold, then the following holds (see �g 1(c)): all the three sets X \ Y �; X� \ Y;X� \ Y �are empty; jX�j = jY �j = 2, and thus X�; Y � � R and X�; Y � are (k � 1)-cores; andj�(Y )\Xj = j�(X)\Y j = 3 and thus jXj � 4 and jY j � 4. (Note that then also k = 7 and�(Y ) \ �(X) = frg.) From that it is easy to see that �(X� [ Y �) = �(X \ Y ), so X� [ Y �is k-tight. We now prove that then the second case of the lemma must hold.First, let us show that G is (k � 1)-connected. If not, then by Corollary 5.6, there is a(k � 2)-core S containing X�. Using Lemma 5.5 and Proposition 5.4, it is not hard to seethat we must have S = X� [ Y �. This is a contradiction, since j�(X� [ Y �)j = k.15



Second, we prove that if Z is a (k�1)-core in G then Z is one of X; Y;X�; Y �. Otherwise,Z crosses at least one ofX; Y;X�; Y �. Since G is (k�1)-connected, case (i) of the lemma doesnot hold, and we conclude that jZ�j = 2. But then Z� crosses at least one of X; Y;X�; Y �,and, by the previous discussion, we must have jZ�j � 4, which is a contradiction. 2We now are ready to �nish the proof of Lemma 5.3.Assume �rst that G is (k � 1)-connected. We will show that then there is a (k � 1)-cover U � R with jU j � 3. Then, the statement is a straightforward consequence fromCorollary 2.2. Recall that the maximum number of pairwise disjoint cores in G is at most 3.Thus, if no two (k� 1)-cores cross, then picking one node in R from every (k� 1)-core givesa (k�1)-cover as required. If there exists a pair X; Y of (k�1)-cores that cross, then we arein case (ii) of Lemma 5.7. In particular, X \Y is k-tight, thus by Lemma 2.3 X \Y \R 6= ;.Then U = fx; y; zg, where x 2 X� \R, y 2 Y � \R, and z 2 X \ Y \R is a (k� 1)-cover asrequired.Assume now that G is not (k � 1)-connected. Let S; T be the (k � 2)-cores in G (as inLemma 5.2). Let S (resp., T ) denote all the (k� 1)-cores contained in S (resp., in T ). Notethat there are at most two disjoint sets in S, and that, by Lemma 5.7, for any two sets in Sthat cross, their union is S. A similar statement holds for T .Lemma 5.8 Let C be a collection of subsets of S containing at most two disjoint subsets,and let U cover C. If for any X; Y 2 C that cross holds X [ Y = S, then there is U 0 � Uwith jU 0j � 2 that covers C.Proof: It is su�cient to prove the statement under the assumption that any two sets in Ceither disjoint or cross. The proof is by induction on jCj. For jCj � 3 the statement is clear.Assume now that jCj � 4. Let X1; X2; X3 2 C be arbitrary. Then any two of X1; X2; X3cross. Let Z = X1 \ X2 \ X3, and let X 2 C n fX1; X2; X3g. By the assumption of thelemma, (Xi \Xj) n Z � X for i 6= j = 1; 2; 3, implying S n Z � X. Now, if U n Z 6= ;, letu 2 U nZ. Then u covers all the sets in C except of exactly one of X1; X2; X3. Let v 2 U bea node that covers the set not covered by u. Then fu; vg is a cover as required. If U � Z,then let C 0 = C n fX1; X2; X3g. Note that C 0 satis�es the conditions of the lemma. By theinduction hypothesis, C 0 has a cover U 0 as in the lemma. But then U 0 also covers C, and theproof is complete. 2By Lemma 5.8, there is a pair fs1; s2g 2 R that covers S, and there is a pair ft1; t2g 2 Rthat covers T .Lemma 5.9 The graph G+ fs1t1; s2t2g is k-connected.16



Proof: It is straightforward to see (via Lemma 5.2) that adding the edges s1t1; s2t2 adds atleast 2 neighbors to any (k � 2)-tight set. We will show that adding these edges also addsat least 1 neighbor to any (k� 1)-tight set Z. If Z contains one of S; T and Z� contains theother, then the claim is straightforward. Else, by Corollary 5.6, Z or Z� is contained in oneof S; T , say Z � S. Then T � Z�, and the claim again follows. 2The proof of Lemma 5.3 is done. 2Two pairs fs1; t1g; fs2; t2g as in Lemma 5.3 can be found in O(m) time, e.g., by exhaustivesearch. Combining this and Lemma 5.3 we obtain:Theorem 5.10 For k = 6; 7, there exists a 4-approximation algorithm for the min-cost k-connected subgraph problem. The time complexity of the algorithm is O(n3m) deterministic(using OCSA) and O(n2m logn) randomized (using ROCSA).6 Fast algorithm for k = 4In this section we present a 3-approximation algorithm for k = 4 with complexity O(n4).This improves the previously best known time complexity O(n5) [7]. Let us call a subset Rof nodes of a graph G k-connected if for every u; v 2 R there are k internally disjoint pathsbetween u and v in G. The following Theorem is due to Mader.Theorem 6.1 ([19]) Any graph on n � 5 nodes with minimal degree at least k, k � 2,contains a k-connected subset R with jRj = 4.It is known that the problem of �nding a min-cost spanning subgraph with minimaldegree at least k is reduced to the weighted b-matching problem. Using the algorithm ofAnstee [1] for the latter problem, such a subgraph can be found in O(n2m) time. We usethese observations to obtain a 3-approximation algorithm for k = 4 as follows. The algorithmhas two phases. At phase 1, among the subgraphs of G with minimal degree 4, we �nd anoptimal one, say G. Then, we �nd in G a 4-connected subset R with jRj = 4. At phase 2,we execute EOCSA on R, and let F be its output. Finally, the algorithm will output G+F .Theorem 6.2 There exists a 3-approximation algorithm for the min-cost 4-connected sub-graph problem, with time complexity O(n2m + nT (n)) = O(n4), where T (n) is the timerequired for multiplying two n� n-matrices.Proof: The correctness follows from Theorem 6.1, Lemma 2.3 (i), and Corollary 2.2. To seethe approximation ratio, recall that c(F ) � 2opt, and note that c(G) � opt.17



We now prove the time complexity. The complexity of each step, except of �nding a4-connected subset in G is O(n2m). Let us show that �nding a 4-connected subset can bedone in O(n2m+n(T (n)) time. Using the Ford-Fulkerson max-ow algorithm, we constructin O(n2m) time the graph J = (V;E 0), where (s; t) 2 E 0 if and only if there are 4 internallydisjoint paths between s and t in G. Now, R is a 4-connected subset in G if and only if thesubgraph induced by R in J is a complete graph. Thus, �nding R as above is reduced to�nding a complete subgraph on 4 nodes in J . This can be implemented as follows. Observethat R = fs; u; v; wg induces a complete subgraph in J if and only if fu; v; wg form a trianglein the subgraph induced by �J(s) in J . It is known that �nding a triangle in a graph isreduced to computing the square of the incidence matrix of the graph. The best known timebound for that is O(n2:376) [6], and the time complexity follows. 27 Metric multiroot problem: cases k � 7In this section we consider the metric-cost multiroot problem. Note that here G is a completegraph, and every edge in G has cost at most opt=k. This is since any feasible solutioncontains at least k edge disjoint paths between any two nodes s and t, and, by the metriccost assumption, each one of these paths has cost � c(st). For k � 7, we give an algorithmwith approximation ratio 2 + b(k�1)=2ck < 2:5. This improves the previously best knownapproximation ratio 3 [3]. Our algorithm combines some ideas from [3], [2, 7], and someresults from the previous section.Splitting o� two edges ru; rv means deleting ru and rv and adding a new edge uv.Theorem 7.1 ([3],Theorem 17) Let G = (V;E) be a graph which is k-outconnected froma root node r 2 V , and suppose that j�G(r)j � k + 2 and every edge incident to r is criticalw.r.t. k-outconnectivity from r. If G is not k-connected, then there exists a pair of edgesincident to r that can be split o� preserving k-outconnectivity from r.Consider now an instance of a metric cost multiroot problem, and let r be a node with themaximum requirement k. As was pointed in [3], Theorem 7.1 implies that we can producea spanning subgraph G of G, such that G is k-outconnected from r, c(G) � 2opt, and: G isk-connected, or j�G(r)j 2 fk; k + 1g. To handle the cases k = 5; 7, we show that by addingone edge, we can reduce the case j�(r)j = k + 1 to the already familiar case j�(r)j = k.Lemma 7.2 Let G = (V;E) be k-outconnected from a root node r 2 V , let R = �G(r), andlet rx be critical w.r.t. k-outconnectivity from r. If jRj � k + 1, then there exists a nodey 2 R such that (G� rx) + xy is k-outconnected from r.18



Proof: Let G = (V;E) be a graph which is k-outconnected from a root node r 2 V .Following [3], for X � V � r let g(X) = j�G�r(X)j + jX \ Rj. It is easy to see that G isk-outconnected from r if and only if g(X) � k for every X � V � r. Let us say that a setX � V � r is critical if g(X) = k. Thus, rx is critical w.r.t. k-outconnectivity from r if andonly if there is a critical set containing x. In [3, Lemma 6] was shown that:The intersection and union of two intersecting critical sets are both critical. Thus for everycritical edge rx there is unique maximal critical set containing x.Now, assume that rx is critical w.r.t. k-outconnectivity from r, and letX be the maximalcritical set containing x. We claim that if R \ X� 6= ; then for any y 2 R \ X� holds:(G� rx)+xy is k-outconnected from r. Indeed, if (G� rx)+xy is not k-outconnected fromr, then there is a critical set X 0 with x 2 X 0, y 2 �(X 0). But then we must have X 0 � X.As a consequence, we must have y 2 X + �(X), contradicting that y 2 X�.Now, suppose jRj � k + 1. We claim that then R \X� 6= ;. Else, R � X [ �(X). Butthen we must have g(X) � jRj � k + 1, contradicting that g(X) = k. 2Lemma 7.3 Let G be a graph which is k-outconnected from r, 3 � k � 7, and suppose thatj�G(r)j 2 fk; k + 1g. Then there is an edge set F � fuv : u 6= v 2 �G(r)g such that: G+ Fis k-connected and jF j � b(k � 1)=2c.Proof: For k � 4, this is a straightforward consequence from Lemmas 2.3 and 5.2. Fork = 6 this is a consequence from Lemma 5.3. For k = 5; 7, it can be easily deduced usingLemma 7.2 and: Lemma 5.1 for k = 5, or Lemma 5.3 for k = 7. 2Using Lemma 7.3 and the fact that for every s; t 2 V holds c(st) � opt=k, we deduce:Theorem 7.4 For the metric cost multiroot problem with 3 � k � 7, there exists a (2 +b(k�1)=2ck )-approximation algorithm with time complexity O(n3m).References[1] R. P. Anstee: A polynomial time algorithm for b-matchings: an alternative approach,Information Processing Letters 24, 1987, 153{157.[2] V. Auletta, Y. Dinitz, Z. Nutov, and D. Parente, A 2-approximation algorithm for�nding an optimum 3-vertex connected spanning subgraph, Journal of Algorithms 32,1999, 21{30. 19
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