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1 Introduction

We survey approximation algorithms and hardness results for versions of the Generalized Steiner Network

(GSN) problem in which we seek to find a low cost subgraph (where the cost of a subgraph is the sum of the

costs of its edges) that satisfies prescribed connectivity requirements. These problems include the following

well known problems: min-cost k-flow, min-cost spanning tree, traveling salesman, directed/undirected

Steiner Tree, Steiner forest, k-edge/node-connected spanning subgraph, and others.

The type of problems we consider can be formally defined using the following unified framework. Let

G = (V,E) be a (possibly directed) graph and let S ⊆ V . The S-connectivity λS
G(u, v) of (u, v) in G is the

maximum number of uv-paths such that no two of them have an edge or a node in S − {u, v} in common.

Generalized Steiner Network (GSN)

Instance: A (possibly directed) graph G = (V, E) with costs {ce : e ∈ E} on the edges, a node subset S ⊆ V ,

and a nonnegative integer requirement function r(u, v) on V × V .

Objective: Find a minimum cost spanning (that is, on the same node set) subgraph G = (V,E) of G so that

λS
G(u, v) ≥ r(u, v) for all u, v ∈ V. (1)

Extensively studied particular choices of S are the edge- (S = ∅), the node- (S = V ), and the element-

(r(u, v) = 0 whenever u ∈ S or v ∈ S) GSN. For brevity, if r(u, v) is not specified, then r(u, v) = 0 by

default. We may assume that the input graph G is complete, by assigning infinite costs to “forbidden” edges.

Under this assumption, we categorize the edge costs as follows:
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• Augmentation Problems ({0, 1}-edge costs): here we are given a graph G0, and the goal is to find a

min-size augmenting edge set F of new edges (any edge is allowed) so that (1) holds for G = G0 + F .

• Min-Size Subgraph Problems ({1,∞}-edge costs, known also as ”uniform costs”): given a graph H

(formed by the edges of cost 1 of G) find a min-size spanning subgraph G of H so that (1) holds.

• Metric Costs: here we assume that the edge costs satisfy the triangle inequality.

• General (non-negative) Costs.

For each type of costs, we consider three types of requirements:

• Rooted (single source/sink) requirements: that is, there is s ∈ V so that if r(u, v) > 0 then: u = s for

directed graphs, and u = s or v = s for undirected graphs.

• Uniform requirements: r(u, v) = k for every pair u, v ∈ V .

The corresponding ”edge” and ”node” versions are the k-Edge-Connected Spanning Subgraph (k-ECSS)

and the k-(Node-)Connected Spanning Subgraph (k-CSS) problems.

• Arbitrary (non-negative) requirements.

In the capacitated GSN every edge e of G has a capacity u(e) and the costs are per unit of capacity (the

capacitated GSN is reduced in pseudopolynomial time to the uncapacitated GSN by replacing every edge

e with u(e) copies of e). For simplicity, we consider the uncapacitated case only, and in addition assume

that rmax = maxu,v∈V r(u, v) is bounded in a polynomial in n = |V |. However, most algorithms are easily

adjusted to get the same performance without these simplifying assumptions.

Many well known problems are particular cases of GSN. When there is only one pair (u, v) with r(u, v) > 0

we get the (uncapacitated) min-cost k-flow problem, which is solvable in polynomial time (cf., [9]). The

undirected 1-ECSS (and 1-CSS) is just the Minimum Spanning Tree problem; however, the directed 1-ECSS

(and 1-CSS) is NP-hard. The undirected/directed rooted GSN with r(u, v) ∈ {0, 1} is the extensively studied

Undirected/Directed Steiner Tree problem (cf., [29, 3]). The undirected GSN with r(u, v) ∈ {0, 1} is the

Steiner Forest problem which admits a 2-approximation algorithm. Several other well known problems

are also particular cases of GSN. In this survey we focus on algorithms for edge- and node-connectivity
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and rmax = maxu,v∈V r(u, v) arbitrary, although there are many interesting results for element-connectivity

[2, 7, 12, 44, 16], as well as for small requirements, e.g., [1, 3, 19, 12, 27, 35, 32, 48]. See also a previous survey

in [30]. We survey only approximation algorithms (for exact algorithms see [14, 15]), with the currently best

known approximation ratios. The following table summarizes the currently best known approximation ratios

and hardness results for edge/node-connectivity and uniform/general requirements.

c & r Edge-Connectivity Node-Connectivity

Undirected Directed Undirected Directed

{0, 1} & UR in P [49] in P [13] min{2, 1 + k2

2opt} [17, 22] in P [17]

{0, 1} & GR in P [13] Θ(log n) [37] Ω(2log1−ε n) [44] Ω(2log1−ε n) [44]

{1,∞} & UR 1 + 2/k [20, 5] 1 + 2/k [20] 1 + 1/k [5] 1 + 1/k [5]

{1,∞} & GR 2 [24] Ω(2log1−ε n) [10, 34] Ω(2log1−ε n) [34] Ω(2log1−ε n) [10, 34]

MC & UR 2 [33] 2 [33] 2 + (k − 1)/n [35] 2 + k/n [35]

MC & GR 2 [24] Ω(2log1−ε n) [10] O(log rmax) [8] Ω(2log1−ε n) [10]

GC & UR 2 [33] 2 [33] O(log k), n ≥ 2k2 [6] O(α · log2k) [36]

GC & GR 2 [24] Ω(2log1−ε n) [10] Ω(2log1−ε n) [34] Ω(2log1−ε n) [10]

Table 1: Approximation ratios and hardness results for GSN problems. MC and GC stand for metric and

general costs, UR and GR stand for uniform and general requirements, respectively. α = min
{

n
n−k ,

√
k

ln k

}
.

Small requirements: For node-GSN with {0, 1}-costs the following results are known. The problem

admits an O(rmax·log n)-approximation algorithm [37] (for S 6= V the approximation ratio in [37] is O(log n)).

For r(u, v) ∈ {0, 2} the problem is NP-hard and admits a 3/2-approximation algorithm [43]. For uniform

requirements r(u, v) = k for all u, v ∈ V the complexity status is not known for undirected graphs, but for

any fixed k an optimal solution can be computed in polynomial time [23]. For rooted uniform requirements

(in undirected graphs) the situation is similar [45]. For {1,∞}-costs and uniform requirements the following

approximation ratios are known: 5/4 for undirected 2-ECSS [27], 4/3 for undirected 2-CSS, and (π2/6 + ε)

for directed 1-CSS [32]. For metric costs, both 2-ECSS and 2-CSS admit a 3/2 approximation algorithm,

[19]. For undirected k-CSS with arbitrary costs and k ≤ 8 there are k/2-approximation algorithms [1, 35].
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Element-connectivity: Most approximation algorithms for node-connectivity can be extended to element-

connectivity, but in many cases better approximation ratios are possible. For general requirements and

general edge-costs undirected element-GSN admits a 2-approximation algorithm [12, 7]. For {0, 1}-costs the

problem is NP-hard (even for r(u, v) ∈ {0, 2}). For {0, 1}-costs the best known approximation ratios are

[44]: 7/4 for arbitrary requirements, and 3/2 for {0, 1, 2}- or {0, k}-requirements.

2 Preliminaries

We now define some notation. An edge from u to v is denoted by uv. A uv-path is a path from u to v. For

an arbitrary two sets A,B of nodes and edges (or graphs) A−B is the set (or graph) obtained by deleting

B from A, where deletion of a node implies also deletion of all the edges incident to it; similarly, A + B is

the set (graph) obtained by adding B to A. Let H be a (possibly directed) graph or an edge set on node set

V . For disjoint X, Y ⊆ V we denote by δH(X, Y ) the set {uv ∈ H : u ∈ X, v ∈ Y } of the edges in H from X

to Y and dH(X, Y ) = |δH(X, Y )|; for brevity, δH(X) = δH(X, V −X) and dH(X) = |δH(X)|. Let ΓH(X)

be the set {v ∈ V −X : uv ∈ H for some u ∈ X} of neighbors of X in H. We sometimes omit the subscripts

if they are clear from the context. Given a graph, we call the new edges that can be added to it links, to

distinguish them from the existing edges. Let opt denote the optimal solution value of an instance at hand.

Proposition 2.1 If there exists a ρ-approximation algorithm for the directed GSN then there exists a 2ρ-

approximation algorithm for the undirected GSN.

Proof: Given an instance I = (G, S, c, r) of an undirected GSN, obtain an instance I ′ = (G′, S, c′, r′) of a

directed GSN as follows. Replace every edge uv of G by the two opposite directed edges uv, vu having the

same cost as uv, and for every u, v ∈ V set r′(u, v) = r′(v, u) = r(uv). Then apply the ρ-approximation

algorithm on I ′ to compute a subgraph D′ of G′, and output its underlying graph G. It is easy to see that

G is a feasible solution for I. Furthermore, if H is an arbitrary subgraph of G, and H ′ is the corresponding

subgraph of G′, then c′(H ′) = 2c(H) and H is a feasible solution for I if and only if, H ′ is a feasible for I ′.

In particular, opt′ ≤ 2ρ · opt, where opt and opt′ denote the optimal solution value of I and I ′, respectively.

Thus c(G) ≤ c′(D′) = ρ · opt′ ≤ 2ρ · opt. 2
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Proposition 2.1 indicates that undirected problems cannot be much harder to approximate than the

directed ones; note that the reduction in the proof is ”cost-type preserving”.

We now briefly discuss some algorithms for rooted requirements (for additional literature see [3, 11, 15,

18, 45, 4]). A graph G = (V,E) is said to be k-outconnected from s if it contains k-internally disjoint sv-paths

for every v ∈ V −s; G is k-inconnected to s if it contains k-internally disjoint vs-paths for every v ∈ V −s (for

undirected graphs these two concepts are the same). When the paths are only required to be edge-disjoint,

we say that G is k-edge-outconnected from s or k-edge-inconnected to s, respectively. Particular important

cases of the rooted requirements are the k-Edge-Outconnected Subgraph (k-EOS) and the k-Outconnected

Subgraph (k-OS) problems, where r(s, v) = k for every v ∈ V . For directed graphs, both k-EOS and k-OS

can be solved in polynomial time, see [11] and [18], respectively. This implies:

Theorem 2.2 Underected k-EOS and k-OS admit a 2-approximation algorithm.

Proof: We prove the statement for k-OS; the proof for k-EOS is identical. The algorithm is as follows.

Replace every edge uv of G by the two opposite directed edges uv, vu having the same cost as uv. Then in

the obtained directed graph G′ with cost function c′ compute an optimal k-outconnected from s spanning

subgraph D′ of G′, and output its underlying graph G. It is easy to see that G is a feasible solution.

Furthermore, if H is an arbitrary subgraph of G, and H ′ is the corresponding subgraph of G′, then c′(H ′) =

2c(H) and H is k-outconnected from s if, and only if, H ′ is k-outconnected from s. In particular, opt′ ≤

2ρ · opt, where opt and opt′ denote the optimal solution value to G and G′, respectively. Thus c(G) ≤

c′(D′) = ρ · opt′ ≤ 2ρ · opt. 2

Theorem 2.2 is widely used for designing approximation algorithms for k-ECSS and k-CSS. For example,

it was observed in [33] that (a possibly directed) graph G = (V,E) is k-edge-connected if, and only if, G is

both k-edge-outconnected from s and k-edge-inconnected to s for some s ∈ V . This implies:

Theorem 2.3 Both directed and undirected k-ECSS admit a 2-approximation algorithm.

This method does not work directly for k-CSS, since a graph (digraph) which is k-outconnected from

s (and also k-inconnected to s) is usually not k-connected. However, many algorithms for k-CSS use an

extension of this method, see Sections 6 and 7.2.
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Definition 2.1 Let H = (V,E) be a (possibly directed) graph. X ⊆ V is an `-fragment (in H) if |ΓH(X)| ≤ `

and V − (X + ΓH(X)) 6= ∅. If H is undirected then T ⊆ V is an `-fragment transversal if T intersects

every `-fragment. If H is directed then a pair (T−, T+) with T−, T+ ⊆ V is an `-fragment transversal if T−

intersects every `-fragment in H and T+ intersects every `-fragment in the reverse graph of G.

When considering k-CSS we will assume that all the graphs are simple. It is well known that in this case,

a (directed or undirected) graph G = (V,E) is k-connected if, and only if, either G is a complete graph on

(k + 1) nodes or |V | ≥ k + 2 and G has no (k − 1)-fragments, cf., [25]. An edge e of a graph G is said to be

critical (with respect to k-connectivity) if G is k-connected but G − e is not. For k-CSS we repeatedly use

consequences of the following ”Critical Cycle Theorem” due to Mader [39].

Theorem 2.4 In a k-connected undirected graph H, any cycle of critical edges has a node v with dH(v) = k.

Corollary 2.5 Let T be a (k − 1)-fragment transversal in an undirected graph G0, and let E′ = {uv : u 6=

v ∈ T}. Then G0 + E′ is k-connected. Moreover, if |Γ(v)| ≥ k − 1 for every v ∈ V , and if F ⊆ E′ is an

inclusion minimal edge set such that G0 + F is k-connected, then F is a forest on T and thus |F | ≤ |T | − 1.

Proof: The first statement follows from Menger’s Theorem. For the second statement note that if F contains

a cycle C, then dG0+F (v) = dG0(v) + dF (v) ≥ k + 1 for every v ∈ C. This contradicts Theorem 2.4. 2

We now state the directed counterparts (also due to Mader [40]) of Theorem 2.4 and Corollary 2.5. An

even length sequence of directed edges C = (v1v2, v3v2, v3v4, . . . , v2q−1v2q, v1v2q) of a directed graph G is

called an alternating cycle; the nodes v1, v3, . . . , v2q−1 are C-out nodes, and v2, v4, . . . , v2q are C-in nodes.

Theorem 2.6 In a k-connected directed graph H, any alternating cycle C of critical edges contains a C-in

node whose indegree in H is k, or a C-out node whose outdegree in H is k.

Theorem 2.6 implies that if the indegree and the outdegree of every node in H is at least k − 1, and if

F is an inclusion minimal edge set such that H + F is k-connected, then F contains no alternating cycle.

One can associate with every directed graph J = (V, F ) an undirected bipartite graph J ′ = (V + V ′, F ′) by

adding a copy V ′ of V and replacing every edge uv ∈ F by the edge uv′. Mader proved [40] that J has no

alternating cycle if, and only if, J ′ is a forest.
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Corollary 2.7 Let (T−, T+) be a (k − 1)-fragment transversal in an directed graph G0, and let E′ = {uv :

u ∈ T−, v ∈ T+}. Then G0 + E′ is k-connected. Moreover, if the indegree and the outdegree of every node

v in G0 is at least k − 1, and if F ⊆ E′ is an inclusion minimal edge set such that G0 + F is k-connected,

then F has no alternating cycle and thus |F | ≤ |T−|+ |T+| − 1.

3 Edge-covers of set-functions and LP-relaxations

Theorem 3.1 (Generalized Menger’s Theorem) Let u, v be two nodes of a (directed or undirected)

graph G = (V,E) and let S ⊆ V . Then λS
G(u, v) = min{|C| : C ⊆ E + S − {u, v}, G− C has no uv-path} .

This formulation of Menger’s Theorem for S-connectivity is easily deduced from its original theorem by

standard constructions. Using Theorem 3.1, GSN can be formulated as a setpair-function edge-cover problem

as follows. (X ′, X ′′) ⊆ V × V is a setpair (of V ) if X ′ ∩X ′′ = ∅; if V − S ⊆ X ′ ∪X ′′ then (X ′, X ′′) is an

S-setpair. Let us extend the definition of r to setpairs as follows:

r(X ′, X ′′) = max{r(u, v) : u ∈ X ′, v ∈ X ′′} ∀ S-setpair (X ′, X ′′), X ′, X ′′ 6= ∅ (2)

and r(X ′, X ′′) = 0 otherwise. Let q be a function defined on setpairs of V by

q(X ′, X ′′) = max{r(X ′, X ′′)− (|V | − |X ′ ∪X ′′|), 0} ∀ setpair (X ′, X ′′) . (3)

Then (1) is equivalent to:

dG(X ′, X ′′) ≥ q(X ′, X ′′) ∀ setpair (X ′, X ′′) . (4)

It might be the case (e.g., in augmentation problems) that we are already given an initial graph G0 = (V,E0)

and we seek for a min cost/size set F of links so that (1) holds. In this case, let

p(X ′, X ′′) = max{q(X ′, X ′′)− dG0(X
′, X ′′), 0} ∀ setpair (X ′, X ′′) . (5)

Since F is a set of links (that is, of new edges), then (4) is equivalent to

dF (X ′, X ′′) ≥ p(X ′, X ′′) ∀ setpair (X ′, X ′′) . (6)

Let p(X ′, X ′′) be defined by (5). Let I = E −E0, and associate a variable xe with every link e ∈ I. Then we

get the following LP-relaxation for GSN that has an exponential number of constraints, but it can be solved

using the ellipsoid method, and, in many cases, more efficiently by max-flow techniques.
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min
∑

e∈I cexe (7)

s.t.
∑

e∈δI(X′,X′′) xe ≥ p(X ′, X ′′) ∀ setpair (X ′, X ′′) ⊆ V × V

0 ≤ xe ≤ 1 ∀e ∈ I

For directed k-OS an appropriate choice of p is: p(X ′, X ′′) = k − |V − (X ′ + X ′′)| if (X ′, X ′′) is a setpair

with s ∈ X ′ and X ′′ 6= ∅, and p(X ′, X ′′) = 0 otherwise. Frank and Tardos [18] proved that then (7) always

has an optimal solution which is integral. This can be used to show that:

Lemma 3.2 Let G0 be an `-outconnected from s subgraph of cost zero of a directed k-outconnected from s

graph G, ` < k. Then the minimum cost of an (` + 1)-outconnected spanning subgraph of G is at most 1
k−`

times the minimum cost of a k-outconnected from s spanning subgraph of G.

We now consider edge-connectivity problems. In this case S = ∅, and thus (X ′, X ′′) is an S-setpair if,

and only if, X ′′ = V −X ′; in particular, p(X ′, X ′′) > 0 implies X ′′ = V −X ′. Thus p can be considered as

a set-function on subsets of V , where its value on X is p(X, V −X). Similarly, r can be considered as a set

function where its value on X is r(X, V −X). Then (6) and (7) can be rewritten as:

dF (X) ≥ p(X) ≡ max{r(X)− dG0(X), 0} ∀ X ⊆ V. (8)

min
∑

e∈I cexe (9)

s.t.
∑

e∈δI(X) xe ≥ p(X) ∀ X ⊆ V

0 ≤ xe ≤ 1 ∀e ∈ I

Definition 3.1 A set function p is skew-supermodular (or weakly supermodular) if for every X, Y ⊆ V at

least one of the following holds:

p(X) + p(Y ) ≤ p(X ∩ Y ) + p(X ∪ Y ) (10)

p(X) + p(Y ) ≤ p(X − Y ) + p(Y −X) (11)

If (10) always holds whenever X ∩ Y 6= ∅ and X ∪ Y 6= V then p is crossing supermodular.
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Lemma 3.3 Let G0 = (V,E0) be a (possibly directed) graph, let r be a requirement function on V × V , and

let p(X) = r(X)− dG0(X) for all X ⊆ V .

(i) For undirected G0 p is skew-supermodular.

(ii) For both directed an undirected G0, if r(X) = k for all X ⊆ V then p is crossing supermodular.

The following concepts are used in Sections 5.2 and 7.1. Let x belong to a polyhedron P ⊆ Rm defined

by a system I of linear inequalities; an inequality in I is tight (for x) if it holds as equality for x. x ∈ P is a

basic solution for the system defining P if there exist a set of m tight inequalities from the system defining

P such that x is the unique solution for the corresponding equation system; that is, the corresponding m

tight equations are linearly independent. It is well known that if the problem min{c · x : x ∈ P} has an

optimal solution, then it has an optimal solution which is basic. Let x be an arbitrary basic solution for (9),

and consider the corresponding m tight linearly independent equations. We will be particularly interested

in ”fractional” solutions with 0 < xe < 1 for all e ∈ I; in this case, every tight equation is of the form∑
e∈I xe = p(X), and then we say that X is tight (for x). Let us say that a family of tight sets on V is

x-defining if x is the unique solution for {
∑

e∈δI(X) xe = p(X),∀X ∈ F}. A family F of sets is laminar if

for every A,B ∈ F , either A ∩ B = ∅, or A ⊆ B, or B ⊆ A. Part (i) of the following statement is from [24]

and part (ii) from [42].

Theorem 3.4 Let x be a basic feasible solution for (9) and assume that 0 < xe < 1 for all e ∈ I.

(i) If I is undirected and p is skew-supermodular then there exists an x-defining family which is laminar.

(ii) If I is directed and p is crossing supermodular, then there exists an x-defining family F and O ⊆ F

such that if I = {V −X : X ∈ F −O} then the family I +O is laminar.

4 Connectivity augmentation problems ({0, 1}-costs)

4.1 An O(log n)-approximation algorithm for arbitrary requirements

Here we present the result of [37] for the following problem (for surveys of the cases that are in P see [15, 16]):
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Connectivity Augmentation (CA):

Instance: A directed/undirected graph G0 = (V,E0), S ⊆ V , and a requirement function r(u, v) on V × V .

Objective: Find a minimum-size set F of links so that λS
G0+F (u, v) ≥ r(u, v) for all (u, v) ∈ V × V .

Theorem 4.1 CA admits an O(log n)-approximation algorithm except the case S = V for which there exists

an O(rmax · log n)-approximation algorithm.

For S 6= V the approximation ratio in Theorem 4.1 is tight since the problem has an Ω(lnn)-approximation

threshold [45] (for directed graphs even for rooted {0, 1}-requirements, see Theorem 8.2). For S = V , the

approximation ratio in Theorem 4.1 is tight for small requirements, but may seem weak if rmax is large.

However, a much better approximation algorithm might not exist; for S = V CA with r(u, v) ∈ {0, k}

(k = Θ(n)) cannot be approximated within 2log1−ε n for any ε > 0 unless NP ⊆ DTIME(npolylog(n)) [44].

We note that Theorem 4.1 is also unlikely to be extended to {0, 1,∞}-costs case, see Theorem 8.4.

The proof of Theorem 4.1 follows. We prove Theorem 4.1 for the directed case, and the statement for

the undirected CA follows from Proposition 2.1. Let F ′ be an arbitrary solution for an instance G0, S, r of

directed CA. Subdivide every edge in F ′ by a new node, and then identify all these new nodes into a node

s. The obtained graph satisfies the requirements between nodes in V , and the number of links incident to s

is 2|F ′|. If V − S 6= ∅, then by identifying s with some node v ∈ V − S we get that the links added form a

feasible solution for G0, S, r. This implies:

Corollary 4.2 For any solution F ′ for directed CA with S 6= V and any s ∈ V − S, there exists a solution

F with |F | ≤ 2|F ′| such that all the links in F are incident to s.

If S = V , we make rmax copies s1, . . . , srmax of s and of the links incident to s, choose arbitrary rmax

nodes {v1, . . . , vrmax}, and identify every si with vi. Again, it is easy to see that the new links added form a

feasible solution to the CA instance, and the number of links added is 2|F ′|rmax.

Given an instance G0, S, r for directed CA, let H0 = G0+s (note that s /∈ S). We say that a set F of links

incident to s is a feasible solution for H0 if H0 + F satisfies the S-connectivity requirements defined by r.

The H0-problem is to find a feasible solution for H0 of minimum size. We show an O(log n)-approximation

algorithm for the H0-problem. This is done by approximating the following two problems. Let H+
0 be
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obtained from H0 by adding rmax edges from s to every node in V , and H−
0 is obtained by adding rmax

edges from every node in V to s. A set F+ (F−) of links entering (leaving) s is a feasible solution for H+
0

(for H−
0 ) if H+

0 +F+ (if H−
0 +F−) satisfies the S-connectivity requirements defined by r. The H+

0 -problem

is to find a feasible solution for H0 of minimum size opt+, and the H−
0 problem is defined similarly.

Lemma 4.3 Let F+ and F− be a feasible solution for H+
0 and for H−

0 , respectively. Then F+ + F− is a

feasible solution for the H0 problem.

Lemma 4.4 The H+
0 -problem (and the H−

0 -problem) admits an O(log n)-approximation algorithm.

The algorithm for directed CA with S 6= V is as follows.

1. Using the algorithm from Lemma 4.4 find a solutions F+ for the H+
0 -problem and F− for the H−

0 -

problem, so that |F+| = O(log n) · opt+ and |F−| = O(log n) · opt−.

2. Let F = F+ + F−, and let H = H0 + F .

Obtain a graph G from H by identifying s with an arbitrary node in V − S.

The algorithm computes a feasible solution, by Corollary 4.2 and Lemma 4.3. The approximation ratio

is O(log n), by Lemma 4.4. To finish the proof of Theoren 4.1 it remains to prove Lemmas 4.3 and 4.4. We

need the following statement that stems from Menger’s Theorem.

Fact 4.5 λS
H(u, v) ≥ r(u, v) if, and only if, |Q|+ dH(X, Y ) ≥ r(u, v) for any partition X, Q, Y of the node

set of H with u ∈ X, v ∈ Y , and Q ⊆ S.

Proof of Lemma 4.3: Let H = H0 + F . Suppose to the contrary that there are u, v ∈ V so that

λS
H(u, v) < r(u, v). Then by Fact 4.5 there exists a partition X, Q, Y of V + s with u ∈ X, v ∈ Y , and

Q ⊆ S such that |C| < r(u, v) for C = Q + δH(X, Y ). Note that s /∈ C, so s ∈ X or s ∈ Y . If s ∈ X then

δH−(X, Y ) = δH(X, Y ), where H− = H−
0 + F−, so H− − C has no uv-path. Since |C| < r(u, v), we get

that λS
H−(u, v) < r(u, v), contradicting that F− is a feasible solution for H−

0 . The proof for the case s ∈ Y

is similar. 2

In the rest of this section we prove Lemma 4.4. We use a result due to Wolsey [50] about the performance

of the greedy algorithm for a certain type of covering problems. A Covering Problem is defined as follows:
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Instance: An integer non-decreasing function p given by an evaluation oracle on subsets of a groundset I.

Objective: Find F ⊆ I of minimum size so that p(F ) = p(I).

The Greedy Algorithm starts with F = ∅ and adds elements to the solution one after the other using

the following simple greedy rule. As long as p(F ) < p(I) it adds to F an element e ∈ I that has maximum

p(F +e)−p(F ); if this step can be performed in polynomial time, then the algorithm can be implemented in

polynomial time. Let ∆p = maxe∈I(p(e)− p(∅)), and for an integer k let H(k) be the kth harmonic number.

Theorem 4.6 ([50]) Suppose that for an instance of a covering problem

∑
e∈F2

(p(F1 + e)− p(F1)) ≥ p(F1 + F2)− p(F1) ∀F1, F2 ⊆ I, F1 ∩ F2 = ∅. (12)

Then the Greedy Algorithm produces a solution of cost at most H(∆p) times the optimal cost.

We formulate the H+
0 -problem as a covering problem and using Theorem 4.6 show that it admits an

O(log n)-approximation algorithm. The set I is obtained by taking rmax links from v to s for every v ∈ V .

We also need to define a function p on the subsets of I. For (u, v) ⊆ V × V and F+ ⊆ I, let q(F+, (u, v)) =

max{r(u, v)− λS
H+

0 +F+(u, v), 0} be the defficiency of (u, v) in H+
0 + F+. Let

q(F+) =
∑

(u,v)∈V×V

q(F+, (u, v))

be the total defficiency of H+
0 + F+. Then p(F+) = q(∅) − q(F+). In other words, p(F+) is the decrease

in the total defficiency as a result of adding F+ to H+
0 ; in the corresponding covering problem, the goal is

to find a minimum size F+ ⊆ I so that p(F+) = p(I) (that is, q(F+) = 0). Clearly, p is increasing. The

Greedy Algorithm can be implemented in polynomial time, as p(F+) can be computed in polynomial time

for any link set F+. Clearly, ∆p ≤ n2. We prove that (12) holds for p, and thus Theorem 4.6 implies that

the Greedy Algorithm produces a solution of size at most H(∆p) · opt+ ≤ H(n2) · opt+ = O(log n) · opt+.

Let F1, F2 ⊆ I be disjoint link sets. To simplify the notation, denote J = H+
0 + F1, F = F2, and denote

by ∆(F, (u, v)) the decrease in the defficiency of (u, v) as a result of adding F to J . Namely, ∆(F, (u, v)) is

obtained by subtracting the defficiency of (u, v) in J + F from the defficiency of (u, v) in J . Then (12) is

equivalent to: ∑
e∈F

∑
(u,v)∈V×V

∆(e, (u, v)) ≥
∑

(u,v)∈V×V

∆(F, (u, v)) .
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Consequently, it would be sufficient to show that:

∑
e∈F

∆(e, (u, v)) ≥ ∆(F, (u, v)) ∀(u, v) ∈ V × V . (13)

Let u, v ∈ V . If λS
J (u, v) ≥ r(u, v), then (13) is valid, since its both sides are zero. Note that λJ+F (u, v)−

λJ(u, v) ≥ ∆(F, (u, v)), while ∆(e, (u, v)) = λS
J+e(u, v)−λS

J (u, v) if λS
J (u, v) ≤ r(u, v)−1. Thus if λS

J (u, v) ≤

r(u, v)− 1, it would be sufficient to prove that for any link set F entering s:

∑
e∈F

(
λS

J+e(u, v)− λS
J (u, v)

)
≥ λJ+F (u, v)− λJ(u, v) ∀(u, v) ∈ V × V .

Let us say that X ⊆ V is (u, v)-tight (in J) if there exists a partition X, Q, Y of V with u ∈ X, v ∈ Y ,

and Q ⊆ S such that |Q|+ dJ(X, Y ) = λS
J (u, v). It is well known and easy to show that:

Fact 4.7 The intersection and union of two (u, v)-tight sets are also (u, v)-tight.

For u ∈ V let Xu be the unique minimal (u, v)-tight set in J . By Fact 4.5 and the definition of J ,

λS
J+e(u, v) − λS

J (u, v) = 1 if e connects Xu with s. Let t = λS
J+F (u, v) − λS

J (u, v). Then at least t links in

F must connect Xu with s. Thus, each one of these t links contributes 1 to
∑

e∈F

(
λS

J+e(u, v)− λS
J (u, v)

)
.

This finishes the proof of Lemma 4.4, and the proof of Theorem 4.1 is complete.

4.2 Augmenting a k-connected graph to be (k + 1)-connected

Recall that a simple graph is k-connected if there are k pairwise internally disjoint paths between every pair

of its nodes. We describe a version of Jordán’s algorithm [25, 26] from [38] for the following problem:

Instance: A k-(node) connected graph G.

Objective: Find a smallest set F of links so that the graph G + F is (k + 1)-connected.

The complexity status of this problem is a major open question in graph connectivity. Recall that a similar

problem for digraphs is solvable in polynomial time [19], and this implies a 2-approximation algorithm for

undirected graphs. Jordán’s algorithm computes an augmenting edge set with at most d(k − 1)/2e edges

over (a lower bound of) the optimum. The following property of k-fragments (cf., [25]) is used:

Lemma 4.8 Let X, Y be two intersecting k-fragments in a k-connected graph G. If V −(X+Y +Γ(X+Y )) 6=

∅ or if |V − (X + Y )| ≥ k, then X ∩ Y is also a k-fragment.
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It follows from Menger’s Theorem that G + F is (k + 1)-connected if, and only if, F has a link between

X and V − (X + Γ(X)) for every k-fragment X of G. Henceforth, let T be an arbitrary inclusion minimal

k-fragment transversal in G; such T can be computed in polynomial time using max-flow techniques.

Lemma 4.9 opt ≥ d|T |/2e. Furthermore, if |T | ≥ k + 2 then the minimal k-fragments are disjoint.

Proof: Let F(G) denote the family of inclusion minimal k-fragments of G. Clearly, |F(G)| ≥ |T |. We will

prove that opt ≥ d|F(G)|/2e. For that, it would be enough to show that |F(H + e)| ≥ |F(H)| − 2 for any

k-connected graph H and link e. If not, then there is a link e = uv and X, Y ∈ F(H) such that u ∈ X ∩ Y

and v ∈ V − (X + Y + Γ(X + Y )). By Lemma 4.8 X ∩ Y is also a k-fragment of H, contradicting the

minimality of X, Y . Now suppose that |T | ≥ k + 2. The minimality of T implies that for every u ∈ T there

exist Xu ∈ F(G) with |Xu∩T | = {u}. If the sets {Xu : u ∈ T} are pairwise disjoint, the statement is obvious.

Suppose therefore that there are Xu and Xv that intersect. If |T | ≥ k+2, then |V −(Xu∪Xv)| ≥ |T |−2 ≥ k,

and thus by Lemma 4.8 their intersection is also a k-fragment, contradicting the minimality of Xu, Xv. 2

Another lower bound on opt is as follows. For C ⊆ V the C-components are the connected components

of G−C and let b(C) denote the number of C-components; C is a k-separator of G if |C| = k and b(C) ≥ 2.

A k-separator C is a k-shredder if b(C) ≥ 3. All k-shredders separating two given nodes u, v can be found

using one max-flow computation, as follows. First, compute a set Π of k internally disjoint uv-paths, and

set P to be the the union of their nodes. Second, for every connected component X of G − (P − {u, v})

check whether Γ(X) is a k-shredder. The algorithm is correct since if C is a k-shredder so that u, v belong

to distinct C-components, then every C-component X with X ∩ {u, v} = ∅ is a connected component of

G− (P − {u, v}); this is so since C ⊆ P − {u, v} and X ∩ P = ∅. Indeed, any uv-path that contains a node

from X goes through C at least twice, and thus contains at least two nodes from C, but since |C| = |Π| and

the paths in P are internally disjoint this is not possible for a path from Π.

Let b(G) = max{b(C) : C ⊆ V, |C| = k}. If G + F is (k + 1)-connected then |F | ≥ b(G)− 1, since for any

k-separator C, F must induce a connected graph on the C-components. Combining with Lemma 4.9 gives:

opt ≥ max{d|T |/2e, b(G)− 1}. (14)
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Theorem 4.10 There exists a polynomial time algorithm that given a k-connected graph G = (V,E) finds

an augmenting edge set F with |F | ≤ opt + d(k − 1)/2e such that G + F is (k + 1)-connected. Moreover,

for any minimal k-fragment transversal T of G the following holds: |F | = max{d|T |/2e, b(G) − 1} = opt if

b(G) ≥ k + 1, and |F | ≤ d|T |/2e+ d(k − 1)/2e if b(G) ≤ k and |V | ≥ 2k + 1.

A link uv with u, v ∈ T is (G, T )-legal if T − {u, v} is a k-fragment transversal of G + uv. Intuitively,

whenever |T |/2 > b(G)− 1 the idea is to add a single link and reduce the size of the traversal by 2. One can

find a (G, T )-legal pair or determine that such does not exist in polynomial time using max-flow techniques.

The algorithm relies on the following key theorem (part (i) is from [38] and part (ii) is from [25]).

Theorem 4.11 Let T be a minimal k-fragment transversal of a k-connected graph G = (V,E). Then:

(i) If C is a k-shredder of G with b(C) = b(G) ≥ k + 1 and if X is a C-component with |T ∩ X| ≥ b(C)

then there exists a (G, T )-legal link e = uv with u, v ∈ X ∩ T .

(ii) If |V | ≥ 2k + 1 and |T | ≥ k + 3 then either b(G) = |T |, or there exists a (G, T )-legal link.

The case b(G) ≥ k + 1: Let C be a k-shredder with b(C) = b(G) ≥ k + 1. Then X ∩ C = ∅ for any

minimal tight set X, as otherwise it can be shown that X has a neighbor in every C-component, which gives

a contradiction k = |Γ(X)| ≥ b(C) ≥ k + 1. In particular, T ∩ C = ∅. Thus every minimal k-fragments is

contained in some C-component, and (by Lemma 4.8) the minimal k-fragments are pairwise disjoint. Let us

say that a link set F on T is a (C, T )-connecting cover if the following three conditions hold: (a) dF (v) ≥ 1

for every v ∈ T ; (b) every edge in F connects distinct C-components; (c) F induces a connected graph on

the C-components. Let max(C, T ) = max{|T ∩X| : X is a C-component}. In [38] it is proved:

Lemma 4.12 If b(C) ≥ k + 1 then any (C, T )-connecting cover is a feasible solution. Furthermore, an

optimal (C, T )-connecting cover of size max{d|T |/2e,max(C, T ), b(C)− 1} can be found in polynomial time.

The following algorithm finds an (optimal) augmenting edge set F of size max{d|T |/2e, b(G)− 1}.

Phase 1: While there exists a C-component X with |T ∩X| ≥ b(C) do:

Find a (G, T )-legal link uv with u, v ∈ X and set G← G + uv, T ← T − {u, v};

End While

Phase 2: Add to G a minimum size (C, T )-connecting cover.
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The condition in the loop of Phase 1 ensures that an appropriate (G, T )-legal link exists, by Theo-

rem 4.11(i). Consequently, the algorithm is correct, by Lemma 4.12. Let F1 and F2 be the link sets added

at Phases 1 and 2, respectively. We show that |F1| + |F2| = max{d|T |/2e, b(C) − 1} = opt. If F1 = ∅ then

max(C, T ) ≤ b(C) − 1, and thus by Lemma 4.12 |F | = |F2| = max{d|T |/2e, b(C) − 1}. Assume therefore

that F1 6= ∅. Let T2 be the set of nodes in T when Phase 2 starts. Clearly, |T2| = |T | − 2|F1|. We claim that

|F2| = d|T2|/2e and thus |F1|+ |F2| = |F1|+ d(|T | − 2|F1|)/2e = d|T |/2e = opt. To see that |F2| = d|T2|/2e,

note that there is a C-component X with |X ∩T2| ≥ b(C)−2, while |Y ∩T2| ≥ 1 for any other C-component

Y , so |T2| ≥ (b(C)− 2) + (b(C)− 1) = 2b(C)− 3. Consequently, |F2| = max{d|T2|/2e, b(C)− 1} = d|T2|/2e.

The case b(G) ≤ k: The following statement from [26] is used when |V | ≤ 2k.

Lemma 4.13 Let G be a k-connected graph with |V | ≤ 2k, and let F1 = {u1v1, . . . , ujvj} be a sequence

of links such that uivi is (Gi, Ti)-legal where for i = 1, . . . , j: G1 = G, T1 = T , Gi+1 = Gi + uivi and

Ti+1 = Ti−{ui, vi}. If |Tj+1| ≥ k+3 and if no (Gj+1, Tj+1)-legal link exists, then one can find in polynomial

time a link set F2 so that G + F1 + F2 is (k + 1)-connected and |F1|+ |F2| ≤ opt + d(k − 1)/2e.

Here is a description of the algorithm for the case b(G) ≤ k.

Phase 1: While |T | ≥ k + 3 and there exists a (G, T )-legal link uv do:

G← G + uv, F ← F + uv, T ← T − {u, v}.

End While

Phase 2: If |T | ≤ k + 2 add to G a forest on T as in Corollary 2.5;

Else (|V | ≤ 2k) add to G an augmenting edge set as in Lemma 4.13.

We now finish the proof of Theorem 4.10 for the case b(G) ≤ k. Let F1 and F2 be the link sets added

Phases 1 and 2, respectively. Let T2 be the set of nodes in T when Phase 2 starts. The case |T2| = 0 is

obvious, while |T2| = 1 is not possible. Assume therefore that |T2| ≥ 2. If |T2| ≤ k + 2 then:

|F1|+ |F2| = (|T | − |T2|)/2 + (|T2| − 1) = d|T |/2e+ d(|T2| − 1)/2e − 1 ≤ d|T |/2e+ d(k − 1)/2e .

If |T2| ≥ k + 3, then |V | ≤ 2k, by Theorem 4.11 (ii). The correctness of this case follows from Lemma 4.13.
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5 Min-Size k-connected Spanning Subgraphs ({1,∞}-costs)

5.1 Algorithm based on edge-covers

Here we consider simple graphs only and survey the results from [5] (see [20] for the case of multigraphs).

Theorem 5.1 Both directed and undirected min-size k-CSS admit a (1+1/k)-approximation algorithm. The

undirected min-size k-ECSS admits a (1 + 2/(k + 1))-approximation algorithm.

The proof of Theorem 5.1 relies on two lower bounds on the optimum. The first lower bound is as follows.

Let G = (V,E) be a graph and let n = |V |. Note that if G = (V,E) is k-edge-connected then dG(v) ≥ k

for every v ∈ V ; thus |E| ≥ kn/2 if G is undirected and |E| ≥ kn if G is directed. The same is true if G

is k-connected, since then G is also k-edge connected. This implies the following lower bound on opt for

min-size k-CSS and k-ECSS: opt ≥ kn/2 for undirected graphs and opt ≥ kn for directed graphs.

The above lower bound can be used to get a 2-approximation algorithm for both directed and undirected

k-CSS and k-ECSS. Let G be a minimally k-connected graph, that is G is k-connected, but G − e is not

k-connected for any edge e of G. If G is undirected then G has at most kn edges, by Corollary 2.5. Similarly,

if G is directed then G has at most 2kn edges, by Corollary 2.7. These bounds extend to edge-connectivity as

well. Thus by simply taking a minimally k-connected (k-edge-connected) graph we obtain a 2-approximation

algorithm, for the directed and undirected min-size k-CSS (k-ECSS).

One can improve on this using the following idea. For undirected graphs an edge set E0 on V is an `-edge

cover (of V ) if dE0(v) ≥ ` for every v ∈ V ; for directed graphs we require that both the indegree and the

outdegree of every node is at least `. For both directed and undirected graphs a minimum size `-edge cover

can be computed in polynomial time, since it is a complementary problem of the b-matching problem, cf.,

[9]. The algorithm for (both directed and undirected) min-size k-CSS is as follows.

Phase 1: Find a minimum size (k − 1)-edge cover E0 ⊆ E .

Phase 2: Find an inclusion minimal edge set F ⊆ E − E0 so that G0 + F is k-connected.

Clearly, |E0| ≤ opt. For undirected graphs |F | ≤ n−1 ≤ 2opt/k, while for directed graphs |F | ≤ 2n−1 ≤

2opt/k. Thus |F | ≤ 2opt/k for both directed and undirected graphs. Consequently, the size of the subgraph

computed by the algorithm is bounded by |E0|+ |F | ≤ opt + 2opt/k = opt(1 + 2/k).
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The following key theorem from [5] enables to improve the approximation ratio from 1 + 2/k to 1 + 1/k.

Theorem 5.2 Let G = (V,E) be an undirected graph with minimum degree ≥ k, and let E0 ⊆ E be a

minimum size (k − 1)-edge edge cover. If G is k-connected, or if G is bipartite, then |E| ≥ |E0|+ b|V |/2c.

Using the improved lower bound provided by Theorem 5.2 we get for undirected graphs:

|E0|+ |F | ≤ (opt− bn/2c) + (n− 1) ≤ opt + n/2 ≤ (1 + 1/k)opt .

For directed graphs, a similar analysis on the associated bipartite graph gives:

|E0|+ |F | ≤ (opt− b2n/2c) + (2n− 1) ≤ opt + (n− 1) ≤ (1 + 1/k)opt .

We now turn to the undirected min-size k-ECSS. For this case the algorithm is almost the same, but at

Phase 1 we find a minimum size k-edge-cover E0 ⊆ E (instead of a (k − 1)-edge cover). The proof of the

approximation ratio is based on the following statement from [5].

Theorem 5.3 Let G0 be an undirected graph of minimal degree ≥ k, and let F be an inclusion minimal

edge set so that G0 + F is k-connected. Then |F | ≤ kn/(k + 1).

The approximation ratio (1 + 2/(k + 1)) follows, since |F | ≤ 2opt/(k + 1) and thus |E0| + |F | ≤ opt +

2opt/(k + 1) = (1 + 2/(k + 1))opt. This completes the proof of Theorem 5.1.

5.2 LP-rounding algorithm for directed min-size k-ECSS

Theorem 5.4 Directed min-size k-ECSS admits a (1 + 2/k)-approximation algorithm.

The proof of Theorem 5.4 (due to [20]) follows. The algorithm computes a basic optimal solution y to

(9) with p(X) = k for all ∅ 6= X ⊂ V , and outputs G = (V,E) where E = {e : ye > 0}. Clearly, the derived

solution is feasible. Let us partition E into F = {e : 0 < ye < 1} and E0 = {e : ye = 1}. Let x be the

restriction of y to F . Let x(F ) =
∑

e∈F xe, and opt∗ = |E0|+ x(F ) be the optimal (fractional) value of (9).

Clearly, opt∗ ≥ kn and thus the approximation ratio ρ (and the integrality gap) is bounded by:

ρ =
|E0|+ |F |
|E0|+ x(F )

= 1 +
F − x(F )
E0 + x(F )

= 1 +
|F | − x(F )

opt∗
≤ 1 +

|F | − x(F )
kn

. (15)
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Let G0 = (V,E0). Then x is an optimal basic solution to (9) with p defined by (8). By Lemma 3.3 p

is crossing supermodular. By Theorem 3.4(ii) there exists an x-defining family F and O ⊆ F such that if

I = {V −X : X ∈ F−O} then the family I+O is laminar; each one of the families I,O consists from distinct

sets, but it might be that the same set belongs both to I and O. This implies a (1 + 4/k)-approximation

ratio: we claim that |F | = |I| + |O| ≤ 4n − 2, and thus by (15) the approximation ratio is bounded by

1+(4n−2)/kn ≤ 1+4/k. Indeed, |F | = |I|+ |O| since |F| = |I|+ |O| for the family F that is x-defining (if

a set of equations has a unique solution then the number of equations equals the number of variables). It is

well known that a laminar family (of distinct sets) on |V | has at size at most 2|V |− 1; thus |I|, |O| ≤ 2n− 1.

We describe the improved analysis of [20]. By (15), Theorem 5.4 will be proved if we show that:

|F | ≤ 2n + x(F ) . (16)

Let L be a laminar family. We say that X owns v in L if X is the smallest set in L that contains v.

Define φ(X) to be the sum of xe over all e = uv ∈ F so that X owns u and v in F = I +O.

Lemma 5.5 Let X ∈ I and suppose that X does not own any node in I. Then φ(X) is a positive integer.

Furthermore, if X ∈ I ∩ O then X owns some node in O.

Now, consider the contribution of every set X to both sides of (16). Sets X that own a node v either in

I or in O contribute at most 2n to |I| + |O| and this accounts for the 2n term in the r.h.s. If X ∈ I and

does not own a vertex in I nor in O then X ∈ I \ O and φ(X) ≥ 1, by Lemma 5.5. Such X contributes 1

to the l.h.s of (16) and at least 1 to its r.h.s.

6 Algorithms for k-CSS with metric costs

The first constant approximation ratio for undirected metric k-CSS is due to Khuller and Raghavachari [31].

We present a slightly improved version, as well as an algorithm for directed graphs from [35].

Theorem 6.1 ([35]) Undirected metric k-CSS admits a (2+ k−1
n )-approximation algorithm. Directed metric

k-CSS admits a (2 + k
n )-approximation algorithm.

We use the following lemma from [1], which is valid for both directed and undirected graphs.
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Lemma 6.2 Let X be an `-fragment of a k-inconnected to s graph H with s /∈ X and let T = {v ∈ V : s ∈

ΓH(v)}. If s ∈ ΓH(X) then |X ∩T | ≥ k− ` + 1, and if s /∈ ΓH(X) then ` ≥ k. Thus T is a (k− 1)-fragment

transversal of H − s.

Proof: Let v ∈ X, and consider a set of k internally disjoint vs-paths in H. Let T ′ = {v1, . . . , vk} ⊆ T be

the nodes of these paths preceding s. If s ∈ ΓH(X), then at most ` − 1 nodes from T ′ may not belong to

X; this implies |T ∩X| ≥ |T ′ ∩X| ≥ k − (` − 1). Clearly, if s /∈ T and ` < k there cannot be k internally

disjoint vs-paths, by Menger’s Theorem. The last statement follows from the simple observation that if X

is a (k − 1)-fragment of H − s but not of H, then X is a k-fragment of H with s ∈ ΓH(X). 2

6.1 Undirected graphs

A tree J on ` nodes with a designated center v is a v − `-star if every node of J distinct from v is a leaf.

Among all subdigraphs of G which are v−`-stars, let J`(v) be a cheapest one; clearly, J`(v) can be computed

in polynomial time. The algorithm for undirected graphs is as follows:

1. Find a node v0 for which c(Jk+1(v0)) is minimal.

Let {v1, . . . , vk} be the leaves of Jk+1 = Jk+1(v0), where c(v0vi) ≤ c(v0vi+1), i = 1, . . . , k − 1.

2. Set T = {v0, . . . , vk−1} (note that vk /∈ T ) and add a node s to G and edges {vs : v ∈ T} of the cost 0,

obtaining a graph Gs; compute a k-outconnected from s subgraph Hs of Gs using the 2-approximation

algorithm from Theorem 2.2.

3. By Lemma 6.2, T is a (k − 1)-fragment transversal of H = Hs − s.

Find a forest F on T as in Corollary 2.5 so that G = H + F is k-connected.

To bound the approximation ratio we use the following technical statement:

Lemma 6.3 Let T be a node set with node weights w(v) ≥ 0, v ∈ T . If F is a forest on T then

∑
uv∈F

(w(u) + w(v)) ≤ (|T | − 2)max
v∈T

w(v) +
∑
v∈T

w(v) .

The approximation ratio follows from the following two lemmas:
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Lemma 6.4 c(Hs) ≤ 2opt for the graph Hs computed at Step 2 of the algorithm.

Proof: Let G∗ be an optimal k-connected spanning subgraph of G. Extend G∗ to a spanning subgraph G∗
s

by adding to G∗ the node s together with edge set δGs
(s). It is easy to see that G∗

s is k-outconnected from

s, and clearly c(G∗
s) = c(G∗). Thus c(Hs) ≤ 2c(G∗

s) = 2c(G∗) = 2opt. 2

Lemma 6.5 c(F ) ≤ k−1
n opt holds for the forest F computed at Step 3 of the algorithm.

Proof: Denote w0 = w(v0) = 0 and wi = w(vi) = c(v0vi), i = 1, . . . , k, where w1 ≤ w2 ≤ · · · ≤ wk. Since the

costs are metric, c(vivj) ≤ wi+wj , 0 ≤ i 6= j ≤ k. We claim that c(Jk+1) = wk +
∑

v∈T w(v) ≤ 2
nopt. Indeed,

if G∗ is an optimal k-connected spanning subgraph of G, then
∑
{c(δG∗(v)) : v ∈ V } = 2c(G∗) = 2opt, and

thus there is a node v with c(Jk+1(v)) ≤ c(δG∗(v)) ≤ 2
nopt. By our choice of Jk+1, wk + wk−1 ≤ 2opt/n,

thus wk−1 = max{w(v) : v ∈ T} ≤ 1
nopt. Using this, the metric costs assumption, and Lemma 6.3 we get:

c(F ) ≤
∑

vivj∈F

(wi + wj) ≤ (k − 2)wk−1 +
∑
v∈T

w(v) ≤ (k − 3)wk−1 +
2
n

opt ≤ k − 3
n

opt +
2
n

opt =
k − 1

n
opt.

2

6.2 Directed graphs

A v → `-star is a directed tree rooted at v, with ` nodes and ` − 1 leaves; a v ← `-star is a graph which

reversal of its edges results in a v → `-star. Among all subdigraphs of G which are v → `-stars (resp.,

v ← `-stars), let J−` (v) (resp., J+
` (v)) be a cheapest one. The algorithm for directed graphs is as follows:

1. Find a node v0 for which c(J−k+1(v)) + c(J+
k+1(v)) is minimal, and set u0 = v0.

Let {v1, . . . , vk} be the leaves of J−k+1 = J−k+1(v0), and T+ = {u1, . . . , uk} be the leaves of J+
k+1 =

J+
k+1(u0), where c(v0vi) ≤ c(v0vi+1) and c(uiu0) ≤ c(ui+1u0), i = 1, . . . , k − 1.

2. Set T− = {v0, . . . , vk−1} and T+ = {u0, . . . , uk−1}. Add a node s to G and edges vis, sui of the

cost 0, i = 0, . . . , k − 1, obtaining a graph Gs. Compute two spanning subgraphs of Gs: an optimal

k-outconnected from s, say H−
s , and an optimal k-inconnected to s, say H+

s .

3. By Lemma 6.2 (T−, T+) is a (k − 1)-fragment transversal of H = (H−
s + H+

s )− s.

Find an edge set F ⊆ δG(T−, T+) without alternating cycles so that G = H + F is k-connected.
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The approximation ratio follows from the following directed counterparts of Lemmas 6.3, 6.4, and 6.5.

Lemma 6.6 Let A,B be disjoint node sets with nonnegative weights w(v) ≥ 0, v ∈ A + B. If F is a forest

on A + B so that every edge in F connects a node in A to a node in B then

∑
ab∈F

(w(a) + w(b)) ≤ (|B| − 1) max
a∈A

w(a) + (|A| − 1)max
b∈B

w(b) +
∑

v∈A+B

w(v) .

Lemma 6.7 c(H) ≤ c(H−
s ) + c(G+

s ) ≤ 2opt.

Lemma 6.8 c(F ) ≤ k
nopt.

7 General costs

7.1 A 2-approximation algorithm for undirected edge-GSN

The crucial property used by the algorithm of [24] is:

Theorem 7.1 For a skew-supermodular p, any basic solution x of (9) has an entry of value xe ≥ 1/2.

Given Theorem 7.1, a 2-approximation algorithm immediately follows. As long as G0 is not a feasible

solution (initially G0 = (V, ∅)), we repeatedly find a basic optimal solution x to (9) (for p defined by (8)

this can be done in polynomial time) and transfer the edge e with xe ≥ 1/2 from I = E − E0 to G0. Every

iteration reduces the optimum of (9) by at least ce/2, and increases the cost of G0 by ce. Hence, the total

cost of the solution over all iteration is at most twice the initial optimum of (9). We prove a weaker version

of Theorem 7.1; Theorem 7.1 can be proved by a slight refinement using parity arguments.

Claim 7.2 For a skew-supermodular p, any basic solution x of (9) has an entry of value xe ≥ 1/3.

Proof: Assume 0 < xe < 1 for all e ∈ I (for e ∈ I, if xe = 0 then e can be ignored, and if xe = 1 then we

are done). By Theorem 3.4, there exists an x-defining family L which is laminar.

In order to get a contradiction, assume that the statement is false. With every e = uv ∈ I associate

two endpoints eu ∼ u and ev ∼ v. The number of endpoints is thus 2m, where m = |I|. For A ∈ L, let

LA = {X ∈ L : X ⊆ A}. Under the assumption that xe < 1/3 for all e, we show that we are able to do
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the following. Given A ∈ L, we can assign every endpoint contained in A to a set in LA (every endpoint is

assigned to exactly one set) such that: A gets 4 endpoints, and any other set in LA gets at least 2 endpoints.

This implies that we are able to assign at least 2m+2 > 2m distinct endpoints to sets in L, a contradiction.

The proof is by induction on |LA|. The induction basis is |LA| = 1. In this case, dI(A) ≥ 4, since

p(A) ≥ 1 and since xe ≤ 1/3 for every e ∈ δI(A). Thus we can assign to A the 4 endpoints that belong to A

of the edges in δI(A) (these may be 4 “copies” of the same node).

Henceforth assume that |LA| ≥ 1. Let us say that B is a child of A if B is a maximal inclusion set in

L properly contained in A. By the induction hypothesis, for any child B of A, in LB we can assign the

endpoints contained in B such that: B gets 4 endpoints, and any other set in LB gets at least 2 endpoints.

In particular, we can assign the endpoints contained in A such that: A gets 0 endpoints, every child of A

gets 4 endpoints, and any other set in LA gets at least 2 endpoints. If A has at least 2 children, then by

transferring 2 endpoints from every child of A to A, we get an assignment as claimed.

The remaining case is when A has a unique child B. We again move 2 extra endpoints of B to A. We

show that there are at lest 2 endpoints in A − B, which we assign to A. If there is no endpoint in A − B

then δI(A) = δI(B) and thus the equations corresponding to A and to B are the same. This contradicts

that L is x-defining. A − B cannot contain exactly one endpoint, since then there is an edge e ∈ I so that

either δI(A) = δI(B) + e or δI(B) = δI(A) + e. Since A,B are tight this implies |r(A)− r(B)| = xe, which

is a contradiction, since |r(A)− r(B)| is an integer. 2

7.2 Approximation algorithm for k-CSS

Theorem 7.3 For k-CSS there exists an O( n
n−k ln2 k)-approximation algorithm for both directed and undi-

rected graphs, and an O(ln k)-approximation algorithm for undirected graphs with n ≥ 2k2.

The proof of Theorem 7.3 follows. The algorithm has k iterations. For ` = 0, . . . , k− 1, iteration ` starts

with an already computed `-connected spanning subgraph G = (V,E) of G (so edges of G have cost zero),

finds an augmenting edge set F such that G + F is (` + 1)-connected, and adds F to G.

We say that U ⊆ V is an `-cover of G if no `-separator of G contains U , that is, if U intersects the

set V − C for every `-separator C of G. Let U be an `-cover of G. Using the algorithm of [18] we find an
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augmenting edge set F so that G+F is (`+1)-connected of cost c(F ) ≤ 2|U |opt, as follows. For every s ∈ U

compute an edge set Fs of cost ≤ 2opt such that G + Fs is (` + 1)-outconnected from s (and also (` + 1)-

inconnected to s, for directed graphs), and set F = ∪s∈UFs to be the union of the computed edge sets. Note

however that Lemma 3.2 implies that c(Fs) ≤ 2|U |
k−` optk, where optk is the optimal value of LP-relaxation (7)

with p(X ′, X ′′) = k − (n− |X ′ + X ′′|). Thus for both directed and undirected graphs holds:

Proposition 7.4 Suppose that there is a polynomial algorithm that finds in any `-connected graph G on n

nodes an `-cover of G of size at most t(`, n). Then there exists a polynomial time algorithm that for instances

of the minimum k-connected spanning subgraph problem on n nodes finds a feasible solution of cost at most

optk · 2
∑k−1

`=0
t(`,n)
k−` = optk ·O(ln k ·max0≤`≤k−1 t(`, n)).

Theorem 2.2 follows by combining Proposition 7.4 with the following two theorems from [41] and [36],

respectively.

Theorem 7.5 Any undirected `-connected graph G with n ≥ 2`2 nodes has an `-cover of size 3.

Theorem 7.6 There exists a polynomial algorithm that given an `-connected (directed or undirected) graph

G with n ≥ ` + 2 nodes finds an `-cover of G of size O
(

n
n−` ln `

)
.

8 Hardness of approximation: three typical reductions

We illustrate three typical reductions for establishing approximation hardness of connectivity problems.

3-Partition (Strongly NP-complete [21], used for proving NP-hardness.)

Instance: A set A = {α1, . . . , α3m} of positive integers so that β =
∑3m

i=1 αi/m is an integer, and so that

β/4 ≤ α < β/2 for every α ∈ A.

Question: Can A be partitioned in to m sets A1, . . . ,Am so that each set sums to exactly β?

Kant and Bodlander [28] were the first to use the type of reductions described below for establishing that

the problem of augmenting a 1-connected graph to be 2-connected while preserving planarity is NP-hard.

We will describe a version from [43].

Theorem 8.1 The undirected node-connectivity augmentation problem with r(u, v) ∈ {0, 2} is NP-hard.
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Proof: 3-Partition is strongly NP-complete [21]. Therefore, it is enough to show a pseudo-polynomial time

reduction from 3-Partition to the problem in the theorem. Note that if the answer to 3-Partition is ”YES”,

then each Ai contains exactly three elements from A. We can assume that α ≥ 3 for every α ∈ A; otherwise,

we get an equivalent instance by increasing each α ∈ A by 2.

Here is the reduction. Given an instance A = {α1, . . . , α3m} of 3-Partition, construct an instance

(G0 = (V,E0), r) of the undirected node-connectivity augmentation problem with r(u, v) ∈ {0, 2} as follows.

Set V = A + B + {b1, . . . , bm} + {s} where |A| = |B| = mβ. Partition A into 3m sets A1, . . . , A3m where

|Ai| = αi for i = 1, . . . , 3m, and partition B into m sets B1, . . . , Bm of size β each. Let E0 = {vs : s ∈

V − B}+ ∪m
i=1{biv : v ∈ Bi}. The requirement function is defined by r(u, v) = 2 if u, v belong to the same

part Ai of A or to the same part Bj of B, and r(u, v) = 0 otherwise. We claim that the answer to 3-Partition

is ”YES” if, and only if, (G0, r) has a solution F of size mβ.

Suppose that the answer to 3-Partition is ”YES”, and that the corresponding parts of A are Ai =

{a3i−2, a3i−1, a3i}, i = 1, . . . ,m. Let Fi be an arbitrary perfect matching between A3i−2 + A3i−1 + A3i and

Bi. It is easy to see that F = ∪m
i=1Fi is a feasible solution for (G0, r) of size |F | = mβ.

If (G0, r) has a feasible solution F of size mβ, then F must be a perfect matching on A + B. Let

a′, a′′ ∈ Ai for some i. By the definition of r, H = (G + F )− s has a uv-path for any u, v ∈ Ai. Note that

a′a′′ /∈ F , as otherwise for a ∈ Ai − {a′, a′′} (such a exists since |Ai| ≥ 3) there cannot be a an aa′-path in

H. Let a′b′, a′′b′′ ∈ F . It is easy to see that then there is an a′a′′-path in (G + F )− s if, and only if, b′, b′′

belong to the same part Bj of B. It follows therefore that for any part Ai of A there exists a part Bj of B

so that ΓF (Ai) ⊆ Bj . Define Aj = {ai : ΓF (Ai) ⊆ Bj}. This gives a solution for the 3-Partition instance. 2

Set-Cover (Cannot be approximated within C lnn for some universal constant C < 1 even on instances

with |A| = |B|, unless P=NP [47]).

Instance: A bipartite graph J = (A + B, I) without isolated nodes.

Objective: Find A minimum size subset T ⊆ A such that ΓJ(T ) = B.

Theorem 8.2 The directed rooted edge-GSN augmentation (the case of {0, 1}-costs) with r(u, v) ∈ {0, 1}

cannot be approximated within C lnn for some universal constant C < 1, unless P=NP.
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Proof: Given an instance J = (A + B, I) for Set-Cover (with |A| = |B|) construct an instance G0 = (V,E0)

for directed rooted edge-GSN augmentation by directing the edges in J from A to B, adding a new node s,

and setting r(s, v) = 1 for every v ∈ B. Let F be a feasible solution for (G0, r) and let e = uv ∈ F . If u 6= s

then we replace e by the link sv, getting again a feasible solution. Then, if e = sv and v ∈ B, we replace

e by a link uv′ where v′ ∈ {a ∈ A : v ∈ Γ(a)} (such v′ exists, since J has no isolated nodes), getting again

a feasible solution. This implies that for any solution F ′ for the the obtained instance (G0, r) there exists

a solution F with |F | = |F ′| such that every edge in F connects s to some node in V − B = A. But for

such F , T ⊆ A is a solution for Set-Cover on J if, and only if, F = {sv : v ∈ T} is a solution for (G0, r).

Combined with the hardness result from [47], we get the statement. 2

MinRep (Cannot be approximated within O(2log1−ε n) for any ε > 0, unless NP ⊆ DTIME(npolylog(n)).)

Instance: A bipartite graph H = (A + B, I), and equitable partitions A of A and B of B.

Objective: Find a minimum size node set A′∪B′, where A′ ⊆ A and B′ ⊆ B, so that for any Ai ∈ A, Bj ∈ B

with δI(Ai, Bj) 6= ∅ there are a ∈ A′ ∩Ai, b ∈ B′ ∩Bj such that ab ∈ I.

Theorem 8.3 ([46]) MinRep on n nodes cannot be approximated within O(2log1−ε n) for any ε > 0, unless

NP ⊆ DTIME(npolylog(n)).

Theorem 8.4 ([10]) The directed edge-GSN with cost in {0, 1,∞} and r(u, v) ∈ {0, 1} cannot be approxi-

mated within O(2log1−ε n) for any fixed ε > 0, unless NP ⊆ DTIME(npolylog(n)).

Proof: Given an instance (H = (A + B, I),A,B) of MinRep construct an instance (G = (V,E0 + E1), r) of

directed edge-GSN as follows, where edges in E0 have cost 0 and edges in E1 have cost 1. Let I = {ij : Ai ∈

A, Bj ∈ B, δH(Ai, Bj) 6= ∅}. The graph G = (V,E0 + E1) is obtained from H as follows:

1. Add to H: a set {a1, . . . , a|A|, b1, . . . , b|B|} of |A| + |B| nodes, and for every ij ∈ I a pair of nodes

aij , bij (so a total number of nodes added to H is |A|+ |B|+ 2|I|). Thus

V = A + B + {a1, . . . , a|A|, b1, . . . , b|B|}+ {aij : ij ∈ I}+ {bij : ij ∈ I}.

2. For every ij ∈ I: connect aij to each of ai, aj , and connect each of bi, bj to bij . Thus

E0 = I + {aijai : ij ∈ I}+ {aijaj : ij ∈ I}+ {bibij : ij ∈ I}+ {bjbij : ij ∈ I} .
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The edges that can be added by cost 1 each are from ai to Ai or from Bj to bj , that is:

E1 = {aia : a ∈ Ai ∈ A}+ {bbj : b ∈ Bj ∈ B} .

The requirement function is defined by: r(aij , bij) = 1 for ij ∈ I and r(u, v) = 0 otherwise.

We claim that an edge set F ⊆ E1 is a feasible solution for (G, r) if, and only if, the end-nodes of F

contained in A + B is a feasible solution for the original MinRep instance. Note that there is a bijective

correspondence between edge sets F ⊆ E1 and subsets A′ + B′ of A + B, where A′ ⊆ A,B′ ⊆ B. Namely:

F = {aia : a ∈ Ai, 1 ≤ i ≤ |A|} ∪ {bjb : b ∈ Bj , 1 ≤ j ≤ |B|}.

Let A′ + B′ and F be such corresponding pair. Recall that A′ + B′ is a feasible solution for MinRep if for

every ij ∈ I there are a ∈ A′ ∩ Ai, b ∈ B′ ∩ Bj such that ab ∈ I. Note that for ij ∈ I there are such a, b if,

and only if, there is an aijbij-path aij , ai, a, b, bj , bij of the length 5 in (V,E0 + F ).

Since in the construction |V | = O(n2), where n = |A|+ |B|, Theorem 8.3 implies Theorem 8.4. 2

Theorem 8.4 easily extends to the case of {1,∞}-costs [34], and to metric costs (using metric completion).

For an extension to undirected graphs and to {0, 1}-costs of Theorems 8.2 and 8.4 see [45] and [34, 44],

respectively.

9 Open problems

• Determining the complexity status of the two undirected problems: augmenting a k-connected graph

to be (k + 1)-connected, and augmenting a k-outconnected graph to be (k + 1)-outconnected.

• Can one achieve a constant approximation ratio for undirected CA with rmax bounded by a constant?

Can one a achieve an approximation ratio O(n1−ε) for node CA?

• Improving hardness results or approximation ratios for k-CSS.

• Can one achieve an approximation ratio 2− ε for k-ECSS? (This is open even if k = 2 and G contains

a spanning tree of cost zero.)

• Can one achieve an approximation ratio better than 3/2 (e.g., 4/3) for metric 2-ECSS?
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