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Abstract

We consider several fundamental network design problems inundirected graphs with weights (costs) on
bothedges and nodes. We obtain the first poly-logarithmic approximation ratiosfor some classical problems
that have been studied in the edge-weighted setting. Our main results are the following.

• An O(log2 n) approximation for the Steiner forest problem.

• An O(log n) approximation for the single-sink non-uniform buy-at-bulk network design.

• An O(min(log3 n logD, log5 n log log n)) approximation for the node-weighted multicommodity non-
uniform buy-at-bulk network design, whereD =

∑

i
δi is the total demand.

We believe that the problems and results are of interest fromboth theoretical and practical points of view.
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1 Introduction
Network design problems involve finding a minimum cost (sub)network that satisfies various properties, often
involving connectivity. Simple examples include spanningtrees, Steiner trees, andk-connected subgraphs. These
problems are of fundamental importance in combinatorial optimization and also arise in a number of applications
in computer science and operations research. The cost in a typical network design problem is some function of the
chosenedges. In this paper we consider network design problems with costs (or weights) on bothedgesandnodes
of the graph. We are motivated by both theoretical as well as practical considerations. The node-weighted prob-
lems are a natural generalization of the edge weighted problems (weights on edges can be translated to weights
on nodes in an easy fashion). It is often possible to reduce the node-weighted problem to a corresponding edge-
weighed problem, however this requires making the graph directed. Problems on directed graphs are typically
more complex (harder to approximate for instance) than the ones in undirected graphs and hence it is desirable
to work directly on node-weighted problems in undirected graphs. Node weights also arise naturally in a number
of practical applications. For example, in telecommunications, expensive equipment such as routers and switches
are at the nodes of the underlying network and it is natural tomodel some of these problems as node-weighted
problems. Often, these node weights are translated into edge weights in an approximate fashion since the edge-
weighted problems are better understood. Apart from the work of Klein and Ravi [26] who gave anO(log n)
approximation algorithm for the node-weighted Steiner tree problem, and some subsequent results on variants of
this problem obtained by Guha et al. [18] and Moss and Rabani [28], there does not appear to be much literature
on node weighted variants1. In this paper we consider the node-weighted versions of some well studied network
design problems and obtain the first non-trivial approximation algorithms. We hope that our results will spur fur-
ther work. We now describe the problems we study and the results we obtain. The corresponding edge-weighted
problems are well studied.

Node-weighted Steiner forest: We are given an undirected graphG = (V,E) and a non-negative cost function
c : V →R+ on the nodes of the graph. We are also givenh node pairss1t1, s2t2, . . . , shth and the goal is to find
a minimum cost subset of nodesA such that each pairsiti is connected in the subgraphG[A] induced byA.

Node-weighted Non-uniform Buy-at-Bulk: This problem generalizes the Steiner forest problem. We aregiven
an undirected graphG and node pairss1t1, s2t2, . . . , shth as before. The pairs have non-negative demands;δi is
the demand for pairsiti. Each nodev ∈ V has a monotone sub-additive real valued functionfv : R+ → R+

associated with it. A feasible solution consists of a multi-commodity flow for the pairs in whichδi flow is routed
betweensi andti. The cost of the flow is

∑

v∈V fv(xv) wherexv is the total flow that is routed through a node
v (We assume that a flow that originates at a nodev is also routed throughv). The objective is to find a feasible
routing (or flow) for the pairs that minimizes the cost. We obtain a single-sink (or equivalently single-source)
problem if all pairs share a common sink node, that is, the pairs are of the formst1, st2, . . . , stk with s as the
sink. We obtain auniform instance if there is a functionf such that for eachv, fv = cvf for some cost function
c : V →R+.

Results: We obtain the first poly-logarithmic approximation ratios for the two problems we consider. These are
also the first non-trivial results for these problems.

• An O(log2 h) approximation for the node-weighted Steiner forest problem (Theorem 3.3).

• An O(log h) approximation and integrality gap for the node-weighted single-sink buy-at-bulk network
design problem (Theorem 4.1). UnlessP = NP the ratio we obtain is tight up to a constant factor.

• An O(min(log3 h log D, log5 h log log h)) approximation for the multi-commodity buy-at-bulk problem
whereD =

∑

i δi is the total demand (Theorem 5.1).

Remark:

Our approximation for the Steiner forest is in factO(β · log n) with β the best known approximation for the
budgeted coverage with node weights (BCNW) (see [18, 28]). AgraphG(V,E) with vertex costs and a set

1There is literature on node capacitated routing problems (see e.g. [9, 13, 21] for some recent works) but those usually donot involve
cost minimization.
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T ⊆ V of terminals, and a budgetB are given. The goal is to choose a subtreeQ of G with budget at most
B maximizing the number|Q ∩ T | of terminals inQ. In [28] anO(log n) approximation is designed for this
problem. It is conjectured that the problem admits anO(1) approximation. If the conjecture hold true, then our
algorithm can be used to derive anO(log n) approximation for the vertex-costs Steiner forest problem. Even the
case of all equal sinks, namely, the vertex costs Steinertreeproblem is hard to approximate withinc ln n for some
c > 1 (see [26]). Therefore, it may be possible to use our algorithm to derive an approximation algorithm that (if
P 6= NP ) is optimal up to constants approximation

Related Work: Network design problems are of fundamental importance in combinatorial optimization and there
is a vast literature on problems and results. We refer the reader to [30, 15] for classical results on polynomial time
algorithms and to [16, 23, 32, 24, 14] for results on approximation algorithms. Here we briefly discuss the known
results and techniques for some specific problems that are closely related to the problems we consider.

For the edge-weighted Steiner forest problem a(2 − 1/h)-approximation is known, first shown via a primal-
dual algorithm by Aggarwal, Klein and Ravi [1]. The primal-dual approach has been generalized to other connec-
tivity functions by Goemans and Williamson [16], and Jain [24] gave a2-approximation for a large class using
iterative rounding. The node-weighted version behaves differently. Klein and Ravi [26] showed, via an easy re-
duction from the set cover problem, that the node weighted Steiner tree problem isΩ(log h)-hard to approximate
unlessP = NP . They also obtained a matching approximation ratio using a greedy merging algorithm. In a
subsequent work Guha et al. [18] showed that a natural LP relaxation has anO(log h) integrality gap and used
this to prove anO(log2 h) approximation for a quota version of the problem. Moss and Rabani [28] improved
the ratio for the quota version toO(log h) and also proved a stronger Lagrangian multiplier property for the LP
relaxation. Surprisingly no non-trivial result is known for the node-weighted Steiner forest problem.

The buy-at-bulk network design problem is motivated by economies of scale that arise in a number of appli-
cations, most notably in telecommunications. This problemis studied as the fixed charge network flow problem
in operations research. Approximation algorithms, starting with the work of Salman et al. [29], have been of
much interest. All the known results are only for the edge-weighted problems. For the uniform case Awer-
buch and Azar [5] gave a reduction to the problem of approximating a finite metric via random tree metrics
and this results in anO(log n)-approximation using [12]. An improvedO(1)-approximation is obtained for the
uniform single-sink case first by Guha, Meyerson and Munagala [17] with further improvements and simplifi-
cations [31, 20]. A special case of the multicommodity flow version, known as the rent-or-buy problem also
admits a constant factor approximation [19]. The non-uniform versions of the problem turn out to be harder.
For the single-sink case, Meyerson, Munagala and Plotkin [27] obtained anO(log h)-approximation. Their ran-
domized algorithm was derandomized via an LP relaxation in [8]. For the multi-commodity problem the first
non-trivial result is due to Charikar and Karagiazova [6] who obtained anO(log D exp(O(

√
log h log log h)))-

approximation. Very recently, the authors of this paper obtained a first poly-logarithmic approximation [7].
The ratio obtained isO(min(log3 h log D, log5 h log log h)). Andrews [3] showed anΩ(log1/4−ǫ n)-hardness
for the uniform case and anΩ(log1/2−ǫ n)-hardness for the non-uniform case, both under the assumption that
NP 6⊆ ZTIME(npolylog(n)). For the non-uniform single-sink case Chuzhoy et al. [10] showed anΩ(log log n)-
hardness of approximation under the assumption thatNP 6⊆ DTIME(nlog log log n). We note that the inapprox-
imability results for the edge-weighted problems apply to their node-weighted generalizations.

Techniques: The results in this paper build upon several ideas from the related work we described above. For
the Steiner forest problem we use the greedy approach inspired by our earlier work [22] and use the algorithm
of Moss and Rabani [28] for the quota version of the Steiner tree problem as a black box. For the buy-at-bulk
problems, we use ideas from our recent work on the edge-weighted non-uniform buy-at-bulk problem [7] to
reduce a multi-commodity problem to essentially a variant of its corresponding single-sink problem. In [7] two
approaches, one based on a greedy algorithm, and the other based on an LP relaxation are used to solve the single-
sink problem. We obtain an algorithm for the single-sink case by building upon and generalizing ideas in several
papers [26, 27, 8].

Organization: Several technical details including the reduction of the buy-at-bulk problem to the two-cost net-
work design problem are described in Section 2. We start withthe O(log2 n)-approximation algorithm for the
node-weighted Steiner forest in Section 3. In Section 4, we present theO(log n)-approximation for node-weighted
non-uniform single-sink buy-at-bulk problem which is interestingly tight (we currently lack such a tight result for
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the edge-weighted case). Finally, we present approximation algorithm for node-weighted non-uniform multicom-
modity buy-at-bulk in Section 5.

2 Preliminaries
All graphs we consider are undirected. Nodes and vertices are used interchangeably. As mentioned earlier, we
consider the settings in which bothedgesand verticeshave weights. However, we can easily transform this
settings into one in which only the vertices have weights by subdividing every edge (i.e. replacing it with a
path of length 2) and giving the new vertex the weight equal tothe the weight of original edge. Using the same
transformation, it is easy to see we can reduce the edge-weighted version of all the problems mentioned earlier to
the node-weighted.

Recall that in the node-weighted non-Uniform buy-at-bulk problem, we are given an undirected graphG =
(V,E) on n vertices, a monotone sub-additive cost functionfv : R+ → R+, and a set ofh demand pairs
T = {s1t1, s2t2, . . . , shth}, whereδi is the demand for pairsiti. consists of which solution consists of a subgraph
G′ = (V ′, E′) with V ′ ⊆ V andE′ ⊆ G[V ′] with non-zero flow and a routing of flowδi for each pairsiti in G′.
As shown in earlier works [4, 27, 7], we can approximate each functionfv by a collection of simple piece-wise
linear functions of the forma + bx. Then for each vertexv with cost functionfv, we create several copies ofv all
having the same set of neighbors asv and each having one of the linear cost functionsa + bx. This allows us to
reformulate the buy-at-bulk network design problem as atwo-costnetwork design problem, at a loss of factor 2 in
the approximation ratio. In this setting, an instance of node-weighted non-uniform multicommodity buy-at-bulk
(NMC-BB) consists of a graphG and demand pairsT = {s1t1, s2t2, . . . , shth}. Eachsi, ti ∈ V has a demand
δi ≥ 0. We are given two separate functionsc : V → R+ andℓ : V → R+; we call cv andℓv the costand
lengthof v, respectively. We think ofcv as the fixed cost ofv andℓv as the incremental or flow-cost ofv. The
goal is to find a minimum cost feasible solution where a feasible solution consists of a subset of nodesV ′ ⊆ V
that includes all the terminals. The subsetV ′ implicitly specifies the induced subgraphG′ = G[V ′]. The cost of
the solution specified byV ′ is given as

c(V ′) +
h
∑

i=1

δi · ℓG′(si, ti), (1)

wherec(V ′) =
∑

v∈V ′ cv andℓG′(u, v) is the shortestℓ-node weighted path distance betweenu andv in G′. If
all the sinks are the same we have the node-weighted non-uniform single-sink buy-at-bulk (NSS-BB) problem.
We are given an an undirected graphG = (V,E) with a designated root vertexr, a set of terminalsT ⊆ V , a
demand functionδ : T ∪ {r} → R

+, a cost functionc : V → R
+, and a length functionℓ : V → R

+. A feasible
solution is a connected subgraphF containingr and spanning all the terminals.

Our goal is to routeδ(t) units of flow from each terminalt to rootr. In the rest of the paper, we restrict our
attention to the two-cost network design formulation of NMC-BB and NSS-BB.

Our algorithms for the node-weighted Steiner forest and node-weighted non-uniform multicommodity buy-
at-bulk have a greedy structure; iteratively we try to find a partial solution (a solution that connects/routes some
of the remaining pairs) at low density, where the density is the cost of the partial solution over the number of new
pairs it connects/routes. We will use the following basic lemma in the analysis of these algorithms (see e.g., [25]).

Lemma 2.1 Suppose that an algorithm works in iterations and in iteration i it finds a partial solutionVi ⊆
V that routes a new subsetTi of the demands. LetOPT be the cost of the optimum solution andui be the
number of unrouted demands at the timeVi is found. If for everyi, the cost of the partial solutionG[Vi] over the
number of pairs it routes is at mostf(n) · OPT

ui
, then the cost of the solution returned by the algorithm is atmost

f(n) · (ln n + 1) · OPT.

3 Approximation Algorithm for Node-Weighted Steiner Forest
Recall that the instance of node-weighted Steiner forest problem consist of an undirected graphG = (V,E), a
cost functionc : V → R

+, and a collection of pairs of source-sinksT = {(s1, t1), . . . , (sh, th)} with si, ti ∈ V .
Let us first start with a definition which is basic to our algorithm in this section.
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In the (Rooted) Density node-weighted Steiner treeproblem, given an undirected graphG = (V,E), a cost
functionc : V → R

+, a rootr ∈ V , and a set of terminalsT ⊆ V containing the rootr, our goal is to find a tree
F rooted atr such that

∑

v∈F c(v)/|F ∩ T | is minimized. Our main result of this section is the following.

Theorem 3.1 Anα-approximation algorithm for the (rooted) density node-weighted Steiner tree problem implies
anO(α log n)-approximation algorithm for node-weighted Steiner forest problem.

The (rooted) density node-weighted Steiner tree is closelyrelated to the following Budget-constrained cov-
erage with node weights (BCNW) problem [28]. Given a node-weighted graphG, budgetB and setT ⊆ V
of terminals, find a tree of cost at mostB that contains the maximum possible number of terminals. In [28] an
O(log n) ratio approximation is given for BCNW and conjectured that BCNW admits anO(1) ratio approxima-
tion.

Lemma 3.2 If there is anα-approximation for BCNW then there is a2α-approximation for rooted density node-
weighted Steiner tree.

Proof. Let α be the best possible ratio approximation for BCNW. Given an instance of (rooted) density node-
weighted Steiner tree, we can guess (e.g. try all possible values for) the costB for the optimal solution. Then we
remove all the vertices of distance more thanB from root r. The best tree of budgetB is approximately found
using theα-approximation for BCNW, and thenr is joined with a path of cost at mostB to an arbitrary vertex in
the computed tree. This affects the ratio by a factor of at most 2. 2

From Theorem 3.1, Lemma 3.2, and [28] which proves that thereis anO(log n)-approximation for BCNW,
it follows that:

Theorem 3.3 There is anO(log2 n)-approximation algorithm for the node-weighted Steiner forest problem.

It is NP -hard to approximate the node-weighted Steiner forest problem within a factor ofc log n for some
absolute constantc > 0. Therefore, if the conjecture of [28] is true, our algorithmcan be used to derive an
approximation ratio for the Steiner forest problem that is optimal up to a constant factor. In the rest of this section
we prove Theorem 3.1. The following assumption is useful.

Assumption 3.4 Each source and sink has degree1 in G.

The assumption is easily satisfied by hanging a degree one vertex of cost0 from each terminal and making this
set of new nodes to be the terminals.

The algorithm for Theorem 3.1 is a greedy algorithm which uses ideas from the greedy algorithm for mul-
ticommodity buy-at-bulk [7]. It runs in iterations and usesthe α-approximation algorithm for (rooted) density
node-weighted Steiner tree as a subroutine. We refer to thissubroutine by D-NWST. At each iteration, the algo-
rithm finds a partial solution that connects some of the terminals (source-sink pairs) that are not already connected
using D-NWST. Then these newly connected terminals are removed. A partial solution is defined by a subset of
nodes and the subgraph induced by them. The density of the partial solution is the ratio of the cost of the partial
solution to the number of new pairs it connects. Let OPT be an optimum solution for the remaining pairs (that are
not connected yet) andOPT be its cost. ClearlyOPT is at most the cost of a global optimum solution since at any
given time we can add the vertices of the global optimum solution to cover all the remaining pairs. Assuming that
the density of every partial solution is at mostO(α ·OPT/h′), whereh′ is the number of remaining pairs, using an
standard set-cover type analysis, this scheme yields anO(α log n) approximation for the node-weighted Steiner
forest problem.

The main procedure in our algorithm is a procedure called Partial which finds a good density partial solution.
Each iteration of the algorithm makes a call to Partial untilall the pairs are connected. Consider one such iteration
and letT ′ be the set of remaining (not connected) pairs of the originalinstance andh′ = |T ′|. The procedure
Partial works in rounds and each round contains two phases: sources phase and sinks phase. In the sources phase
(which runs in iterations) we start from one of the remainingsources, says, as the root and considers together
with other remaining sources as terminals. In each iteration we try to find a low density Steiner tree rooted at
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s. We do this by calling the subroutine D-NWST. If the density of the tree returned by D-NWST is at most
8α.OPT/h′ then we contract all the nodes of that tree intos, set the cost ofs to zero (because we have already
paid for it), and continue with the next iteration. Since sinks have degree1, sinks are never contracted intos in
the sources phase. Indeed, sinks cannot helps reach any source and may be ignored in the source phase. If no
low density subtree can be found, the sources phase terminates. At this stage, letX be the set of sources that are
contracted intos.

We define the set of terminalsY to be the sinks that correspond to a source inX. Now we start the sinks phase
that like the sources phase runs in iterations. In each iteration we call subroutine D-NWST withs being the root
and the sinks inY being the terminals to find the best density Steiner tree. Each time we find a tree, contract all
of its nodes intos and set the cost ofs to zero. We repeat this until we have at least|X|/32 sinks corresponding
to the sources ofX contracted intos. At the end if the density of the connected graph induced by the set of the
nodes contracted intos is small we return the set of nodes contracted intos as the partial solution. Otherwise,
if the resulting tree has a too large density we (temporarily) discard all the sources inX and their corresponding
sinks and start over the next round of Partial restricted to non-discarded pairs. A key claim we need to prove is
that before the set of non-discarded pairs turns empty, somenew pairs are covered. For a set of nodesF , letT (F )
be the set of terminals inF andc(F ) denote the total cost of the nodes inF . Let T ′ be the set of remaining (not
connected) pairs of the original instance. See Figure 2 in Appendix for the detailed description of this procedure.

Recall that OPT is a collection of disjoint treesS = {G1, . . . , Gℓ}. Let T (Gi) be the set of pairs routed in
Gi. By deleting every treeGi whose density is larger than2OPT/h′, we obtain:

Lemma 3.5 There is a collectionS ′ = {G1, . . . , Gℓ′} of disjoint trees ofS such that:

1. Together they contain at least⌈h′/2⌉ of the pairs

2. Density of eachGi ∈ S ′ is at most2OPT/h′.

We need a few definitions for the analysis of the algorithm. A tree inS ′ from which at most a fraction of
1/4 of the pairs are discarded by Partial is called agood tree. Note that a good tree may become bad during the
course of the algorithm as some of its source-sink pairs get discarded. A source-sink pair is called agood pairif
it belongs to a good tree at the time the source is being considered by the algorithm. A source (sink) is a good
source (sink) if it belongs to a good pair. Others are called bad pairs (or bad sources). ConsiderVs (the set of
nodes contracted intos) at the end of the sources-phase. One round of Partial is called agood roundif at least
a fraction of1/16 of the sources ofVs are from good pairs, i.e.X contains at least⌈x/16⌉ good sources. Other
rounds are called bad rounds.

Lemma 3.6 In every call to Partial, there is at least one good round before all the pairs are discarded.

Proof. By way of contradiction, suppose that all the rounds are bad and the algorithm continues until all the pairs
are discarded by the procedure. Letki be the number of pairs discarded in roundi. This implies that

∑

i ki = h′.
By Lemma 3.5, the number of sources (pairs) inS ′ is at least⌈h′/2⌉. Initially, all the sources inS ′ are good. By
definition, for every treeGi ∈ S ′, the first⌈|T (Gi)|/4⌉ sources ofGi that are discarded are good and then the rest
become bad sources. Therefore, the number of good sources that become bad is at most 3 times the number of
good sources that are discarded. Therefore, the total number of good sources discarded and the number of good
sources that become bad is at most

∑

i 4⌊ki/16⌋ ≤ ⌊h′/4⌋. So using Lemma 3.5, there are at least⌈h′/4⌉ ≥ 1
good pairs left and so we cannot have discarded all the pairs.Hence there must be a good round. 2

From now on, we focus on a good round and letS ′′ ⊆ S ′ be the set of good trees ofS ′ that have at least one
vertex inVs. In the next lemma, the term “number of original sources” refers to the situation at the beginning
(before any source is discarded).

Lemma 3.7 For every treeGi ∈ S ′′, if Vs contains a vertex ofGi thenVs contains at least half of the original
sources ofGi.
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Proof. By way of contradiction, assume that there is a treeGi ∈ S ′′ which has a vertex inVs but less than1/2
of the sources ofGi are inVs. This means that by the end of last successful iteration of the sources-phase, roots
belongs toGi and more than⌈|T (Gi)|/4⌉ of the sources ofGi are still left (uncontracted intos). This is because
Gi is a good tree and therefore at most⌊|T (Gi)|/4⌋ of them are discarded; thus at least⌈3|T (Gi)|/4⌉ sources are
not discarded. As by assumption less than1/2 of the sources ofT (Gi) belong tos, more than⌈|T (Gi)/4⌉ do not
belong tos nor are discarded, and so are available for choice. Thus, there is a treeFs rooted ats and containing
at least⌈|T (Gi)|/4⌉ (new) sources at cost at mostc(Gi) (this can be obtained by selecting all the vertices and
edges ofGi not contracted intos). The density ofFs is at most4c(Gi)/|T (Gi)| ≤ 8OPT/h′. Since D-NWST is
anα-approximation, in the last (unsuccessful) iteration of the sources-phase we would have found a treeFs with
density at most8α.OPT/h′ and so the sources-phase should have not terminated, a contradiction. 2

Lemma 3.7 implies thatVs (at the end of sources-phase in a good round) contains at least half the total number
of sources of all the trees inS ′′. Consider a good round and letx = |X| be the number of sources contracted into
s in the sources-phase. Ifc(Vs) is the cost of nodes inVs after the sources-phase then

c(Vs) ≤ 8α · x · OPT/h′. (2)

If in the sinks-phase we defineVt to consist of the rest of the vertices of the trees inS ′′, we can connect at
least⌈x/16⌉ source-sink pairs (those good pairs whose sources are inX) usingVs ∪Vt. Since the density of each
tree inS ′′ is at most2OPT/h′ andx ≥ |T (S ′′)|/2 (by Lemma 3.7), the total cost of the nodes inS ′′ is

c(S ′′) ≤ 4x · OPT/h′. (3)

Thus at the beginning of the sinks-phase, there exists a treeFt rooted ats over the terminals inY with cost
at mostc(S ′′) and containing at least⌈x/16⌉ terminals, i.e. has density at most64OPT/h′. We show below that
the sinks-phase finds a collection of Steiner trees rooted ats over terminalsY with a total number of terminals at
least⌈x/32⌉ each of which has density at most128α · OPT/h′.

Lemma 3.8 In a good round, at the end of the sinks-phase setVs ∪ Vt induces a subgraph (partial solution) that
has density at most384α · OPT/h′.

Proof. Suppose that we haveq ≥ 1 iterations of the repeat loop in the sinks-phase and we find Steiner trees
F 1

t , . . . , F q
t whose number of terminals arex1, . . . , xq, respectively, where

∑

1≤i≤q xi ≥ ⌈x/32⌉ but
∑

1≤i<q xi <

⌈x/32⌉. We prove by induction that the density of each ofF 1
t , . . . , F q

t is at most128α.OPT/h′. By the discussion
above, at the beginning of the sinks-phase, there exists a treeFt with density at mostc(S ′′)/⌈x/16⌉ ≤ 64OPT/h′.
Because D-NWST is anα-approximation, the density ofF 1

t is at most64α · OPT/h′. For the induction step,
suppose we have found treesF 1

t , . . . , F i
t , for some1 ≤ i < q. So we have contracted all the vertices of these

trees intos. As
∑

1≤i<q xi < ⌈x/32⌉ andFt has at least⌈x/16⌉ (good) terminals ofY , there are at least⌈x/32⌉
terminals of treeFt left, and clearly these can be connected tos at cost at mostc(S ′′). Thus, there is a Steiner tree
rooted ats with density at mostc(S ′′)/⌈x/32⌉ ≤ 128OPT/h′. Hence,F i+1

t has density at most128α · OPT/h′,
as wanted.

Since we repeat the sinks-phase until there are at least⌈x/32⌉ sinks corresponding to the sources ofX
contracted intos, at the end of sinks-phase, we have at least⌈x/32⌉ pairs contracted intos. ThusVs ∪ Vt connect
at least⌈x/32⌉ ≥ 1 pairs. The total cost of the partial solution at the end of sinks-phase (i.e. cost ofVs ∪ Vt) is
at mostc(Vs) plus the cost of the trees found in the sinks-phase. By Equation (2): c(Vs) ≤ 8α · x · OPT/h′. The
cost of the trees found in the sinks-phase is at mostα · c(S ′′) which by Equation (3) is at most4α · x · OPT/h′.
Thus the total cost is at most12α · x · OPT/h′ and because it has at least⌈x/32⌉ pairs, the density is at most
(12 × 32)α · OPT/h′. 2

Proof of Theorem 3.1. Follows from Lemma 3.8 and the fact that there is at least one good round in every call to
Partial (by Lemma 3.6), together with Lemma 2.1. 2
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4 Node-Weighted Non-Uniform Single-Sink Buy-at-Bulk
Recall that the instance to NSS-BB is an undirected graphG = (V,E) with a designated root vertexr, a set of
terminalsT ⊆ V , a demand functionδ : T ∪ {r} → R

+, a cost functionc : V → R
+, and a length function

ℓ : V → R
+. Our main result of this section is:

Theorem 4.1 There is a deterministicO(log h)-approximation algorithm for NSS-BB whereh is the number of
terminals. In fact, we find a solution that is within a factorO(log h) of the optimal solution to a standard LP
relaxation.

It is easy to see that if we have costs and lengths on bothV andE we can reduce this to the node-weighted case.
If for a vertexv, c(v) = ℓ(v) = 0 then we can add this vertex to any solution at no costs. So, without loss of
generality, we may further assume that for every vertexv, eitherc(v) > 0 or ℓ(v) > 0. For technical reasons we
assume thatδ(r) is the largest demand andc(r) = ℓ(r) = 0.

Since NSS-BB generalizes the node-weighted Steiner tree, which has aΩ(log n)-hardness [26] (via a simple
reduction from set-cover):

Corollary 4.2 NSS-BB has an approximability threshold ofΘ(log n), unlessP = NP.

The algorithm for Theorem 4.1 uses ideas from the works of Klein and Ravi [26], Guha et al. [18] and Chekuri
et al. [8] and Meyerson et al. [27]. In particular, we use the spider ideas from [26] and randomized merging from
[27].

A spideris a connected graph with at most one vertex of degree more than two. So we can think of it as a tree
that consists of some paths all of which are sharing exactly one of their end-points. Thecenterof a spider is a
node from which there are edge-disjoint paths to the leaves of the spider. So if the spider has a vertex of degree at
least three, its center is unique. Every leaf of a spider mustbe a terminal. The density of a spider is the ratio of its
total cost over the number of terminals in the union of its leaves and its center, where the total cost depends on the
problem definition. For the problem of node-weighted Steiner tree (i.e. when we do not have a length function) the
total cost is just the sum of the weights of the nodes in the spider. For this problem, Klein and Ravi [26] showed
the existence of a decomposition of the optimum solution into spiders. Therefore, there is always an spider whose
density is no more than the density of the optimum (which is the cost of the optimum over the total number of
terminals). They also show how to find a best density spider inpolynomial time. Given this tool in hand, we can
iteratively find the best density spider and contract all thenodes in that into a single node, until all the terminals
are contracted intor. Again, using a standard set-cover type analysis, this yields anO(log n)-approximation for
the node-weighted Steiner tree. Given that the set-cover can be reduced to node-weighted Steiner tree problem,
we have anΩ(log n)-hardness too; soΘ(log n) is the approximability threshold for node-weighted Steiner tree.
Guha et al. [18] later showed that in fact the density of the best density spider is no more than the density of the
optimumfractional solution.

Overview of the algorithm for NSS-BB: Our algorithm for Theorem 4.1 has a similar structure. Sincewe will
compare the ratio of our algorithm against the optimum fractional solution let us first formulate NSS-BB as an IP
for which we have the following LP relaxation. Fort ∈ T , letPt denotes the set of directed paths from rootr to
t. We assume that the terminals are at distinct vertices and hencePt ∩ Pt′ = ∅ for t 6= t′. Forv ∈ V , a variable
x(v) ∈ [0, 1] indicates whetherv is chosen in the solution or not. Forp ∈ ∪tPt a variablef(p) ∈ [0, 1] indicates
whetherp is used to connect a terminal to the root. We useℓ(p) to denote

∑

v∈p ℓ(v). The LP assigns fractional
capacities to vertices such that one unit of flow can be shipped from each terminalt to the root.

LP-NSS min
∑

v∈V c(v) · x(v) +
∑

t∈T δ(t)
∑

p∈Pt
ℓ(p) · f(p)

subject to:
∑

p∈Pt|v∈p f(p) ≤ x(v) v ∈ V, t ∈ T
∑

p∈Pt
f(p) ≥ 1 t ∈ T

x(v), f(p) ≥ 0 v ∈ V, p ∈ ∪tPt
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Randomized Algorithm for node-weighted single-sink buy-at-bulk:

1. Compute a subgraphΓ whose density is no more than the best density spider.

2. For every terminalt ∈ Γ, chooset to be a center with probabilityp = δ(t)/
∑

t′∈T (Γ) δ(t′). Set the demand
of t to be equal to

∑

t′∈T (Γ) δ(t′) and remove every other terminalt ∈ T (Γ) from the terminal sets. For
every non-center terminal inΓ, connect it to the root viat.

3. Continue recursively (i.e. goto Step 1)

Figure 1: A randomized algorithm for NSS-BB

Let OPT∗ be the optimum solution to the above LP andOPT∗ be its value. At every iterationi of the algorithm
we will find a low density subgraphΓi. We show that we can find a subgraphΓi whose density is no more than
the density of best density spider in polynomial time, wherethe density of a spider is its total cost over the number
of terminals in the union of its leaves and its center. The total cost of a spiderS with centers is:

c(s) +
∑

t∈T (S)

(c(pt)− c(s) + δ(t) · ℓ(pt)),

whereT (S) is the set of terminals inS, and for everyt ∈ T (S), pt is the path betweent ands with c(pt) and
ℓ(pt) being the sum of the costs and lengths of the nodes on this path, respectively. Then we prove that the density
of the best density spider is no more thanOPT∗ over the total number of terminalsh. Once we have a good density
subgraphΓi (whose density is no more than the best density spider), we randomly pick one of the terminalst in
Γi as a center proportional to the demand of that terminal to thetotal demands of the terminals inΓi and “route”
all the demands of other terminals inΓi to t and remove them from the set of terminals. This is a modification
of an idea of [27]. We will later show how to do this step deterministically. Note that ifr ∈ Γi, because of
our technical assumption aboutδ(r), r will be the center. We prove that the cost of the LP solution onthis new
modified instance (with fewer terminals) is at mostOPT∗. We repeat this process until all the demands are routed
to root r. Finally, a set-cover type density analysis shows that the cost of the solution obtained is at most an
O(log k) factor away from the optimum LP solution. For the ease of exposition, first we present a randomized
version of the algorithm (see Figure 1).

Next lemma shows how to perform Step 1 of the algorithm and upper bounds the cost of the subgraph we find.

Lemma 4.3 Given an instance of NSS-BB we can find in polynomial time a subgraphΓ in Step 1 whose density
is no more than the density of best density spider.

Proof. We run the following for every nodev ∈ V as being the centers of a spider. For every terminalt ∈ T ,
we compute its shortest path to the centers where the weight function for every vertexv (other than the center)
on the path to compute the weight of the path isc(v) + δ(t) · ℓ(v). Now order the terminals in non-decreasing
order of their shortest paths to the center. Without loss of generality assume that terminalti has thei’th shortest
distance which isdi. For every1 ≤ j ≤ h, we take the firstj terminals (according to the above ordering) as the

terminals in the best density spider withj terminals and its density is
(

c(s) +
∑j

i=1 di

)

/j. We pick the indexj

which minimizes this density and we return the subgraphΓ induced by the vertices of the union of these paths. It
is easy to see that the density of this graph is no more than thedensity of best density spider.

2

Let Ii be the instance at the beginning of theith iteration of the algorithm; we use indexi to refer to the values
of the variables in iterationi. So in iterationi, Ti will be the set of terminals,hi = |Ti|, OPT∗i be the value of the
optimum LP for instanceIi, Γi will be the best density subgraph found in Step 1, andSi will be the best density
spider.

The following lemma is the key lemma in the analysis of our algorithm (the proof of this lemma is relatively
long and we defer it to Appendix A).
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Lemma 4.4 For every iterationi ≥ 1, the density of the best density spider is no more thanOPT∗i /hi.

Lemma 4.5 For every iterationi ≥ 1: E(OPT∗i+1) ≤ OPT∗i .

Proof. Let x∗
i , f

∗
i be an optimal feasible solution to the instanceIi. Since in instanceIi+1 only the value of

demands have changed,x∗
i , f

∗
i is also a feasible solution toIi+1. We show that the expected cost of this solution

on Ii+1 is the same asOPT∗i . To do so, for every terminalt ∈ Ti let α(t) =
∑

p∈Pt
ℓ(p) · f∗

i (p). By this definition
OPT∗i =

∑

v∈V c(v) · x∗
i (v) +

∑

t∈Ti
δ(t) · α(t). For every terminalt 6∈ Γi, its contribution to the total cost

remains unchanged. On the other hand, the expected contribution of the terminals ofΓi in the Ii+1 is exactly
∑

t∈Γi
δ(t) · α(t). Since thex values have not changed, therefore,x∗

i , f
∗
i is a feasible solution forIi+1 with

expected value at mostOPT∗i . 2

Proof of Theorem 4.1. Since at each iteration we aggregate some of the demands intoone terminal, at the end
we have a solution which routes all the demands to the root. Furthermore, the cost of routing the demands of the
terminals ofΓi to the center node selected is no more than twice the cost ofΓi; therefore, using Lemmas 4.3 and
4.4, the cost added to the solution at each iterationi is at most2|T (Γi)| · OPT∗i /hi. Using linearity of expectation

and Lemma 4.5, the expected total cost of the solution is at most
∑

i≥1 2|T (Γi)| · OPT∗i
hi

= OPT∗
∑

i≥1
2|T (Γi)|

hi
=

O(log h).OPT∗.
We can make the decision of selecting the center in Step 2 of the algorithm deterministic using the method of

conditional probabilities. Once we have found the best density graphΓi, we consider each terminalt ∈ T (Γi) as
being a potential center. Then using the solution to the current LP we compute the cost of the modified LP which
is obtained by assumingt being the center for re-routing inΓi (this can be easily done using the arguments given
in the proof of Lemma 4.5). We choose the terminalt ∈ T (Γi) which minimizes the LP cost as the center for this
iteration. 2

5 Node-Weighted Non-Uniform Multicommodity Buy-at-Bulk
Our main result of this section is as follows.

Theorem 5.1 There is a polynomial time algorithm for NMC-BB with anO(min{log3 h log D, log5 h log log h})
approximation ratio, whereh is the number of pairs andD is the sum of the demands of all pairs inT .

More specifically, our algorithm achieves anO(γ(h2) log3 h)-approximation whereγ(n) is the worst case
upper bound on the distortion in embedding a finite metric induced by an vertex weighted undirected graph
into a probability distribution over its spanning trees. Itis known thatγ(n) = O(log2 n log log n) [11] and that
γ(n) = Ω(log n) [2]. The proof of Theorem 5.1 borrows ideas from [7] on edge-weighted multicommodity
buy-at-bulk network (MC-BB) design. A main ingredient to obtain anO(log5 h log log h)-approximation ratio
is to use the integrality gap obtained in Theorem 4.1. We alsoshow that using a greedy algorithm similar to
the one in [7] for MC-BB and also similar to the algorithm of Theorem 3.1 we can obtain anO(log3 h log D)-
approximation for NMC-BB. For this we develop a polylogarithmic approximation algorithm for a variation of
the NSS-BB problem. This latter result is inspired by the work of Klein and Ravi [26] and our earlier work [22].

Overview of the algorithms: The general structure of our algorithms is similar to those in [7] for the MC-BB and
follow a greedy scheme in an iterative fashion. In each iteration we find a partial solution that connects a subset
of the pairs that remain at the beginning of the iteration. The connected pairs are then removed. Thedensityof
the partial solution is the ratio of the total cost of the partial solution to the number of pairs in the solution. We
prove that the density of the partial solution computed at every iteration is a polylogarithmic factor away from
the density of the optimum solution. As in [7], a key ingredient in our proof is to show theexistenceof a partial
solution with a very restricted structure, calledjunction-tree. Given a subsetA of the pairs, a junction tree forA
rooted atr is a treeT containing the end points of all pairs inA such that the unique path connecting every pair
of A goes viar. The cost of the junction-treeT is

∑

v∈V (T )

cv +
∑

siti∈A

δi · (ℓT (r, si) + ℓT (r, ti)).
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In other words, the pairs inA connect via the junctionr. Note that if the setA andr are known, a junction-tree
is essentially an instance of the single-sink problem NSS-BB. We prove that given an instance of NMC-BB there
is always a low density partial solution that is a junction-tree. We give two different proofs; one achieves a better
bound (by a logarithmic factor) for the uniform demand case while the other achieves a bound independent ofD
for the general case. The problem of finding a low density junction-tree is closely related to the density variation
of NSS-BB, called den-NSS-BB in which we want to find a solution with minimum density i.e. the ratio of total
cost over the number of terminals spanned (v.s. the total cost as in SS-BB). We present two different methods
to compute a low density junction tree. For arbitrary demands we use an LP relaxation to solve the problem
approximately. In particular we use Theorem 4.1 and obtain an O(log2 h)-approximation for den-NSS-BB and
by a slight modification a similar ratio for finding the best density junction-tree. For the case thatD is polynomial
in h, we present agreedyalgorithm, that is simple and efficient to implement. Putting together these ingredients
give us the poly-logarithmic approximation for NMC-BB.
5.1 Two Junction Tree Lemmas

In this section we present two lemmas about the existence of junction trees. One works for arbitrary demand
functions and gives an upper bound ofO(γ(h2) · OPT

h ). The other one (using a different proof technique) gives a
better bound for the case that the sum of demandsD is polynomial inh.

Lemma 5.2 (Junction tree lemma for arbitrary D) Given an instance of NMC-BB onh pairs there exists a
junction-tree of densityO(γ(h2) · OPT

h ).

The proof of this lemma follows the same steps as Lemma 3.1 in [7]. In particular, we will need the following
two lemmas. We only give the sketch of the proof of the second one as it is slightly different from that in [7].

Lemma 5.3 Given an instance of NMC-BB onG = (V,E) there is an optimum solutionG′ = (V ′, E′) such that
the number of vertices inG′ of degree more than2 is at mostmin(n, h2).

Lemma 5.4 Given an instance of NMC-BB onG = (V,E) there is anO(γ(h2))-approximate solutionG′ =
(V ′, E′) such thatG′ is a forest.

Proof Sketch. Consider an optimum solutionG′ = (V ′, E′) to NMC-BB. Without loss of generality we assume
thatG′ is connected (as we can do the following to each of its connected component) and all vertices ofV ′ are
in our solution. The cost of the solution is

∑

v∈V ′ c(v) +
∑h

i=1 δi · ℓG′(si, ti). We obtain a new graphG′′ from
G′ on the same vertex and edge set except that the edges (insteadof the vertices) have lengths. For each edge
e = uv ∈ G′′ assign a lengthℓ(e) = (ℓ(u) + ℓ(v))/2; now drop the costs and lengths on the vertices. An
observation that will be used soon is that for any pathp ⊂ G′′, the length of the path inG′′ is within factor two of
the length of the corresponding path inG′.

From the definition ofγ(n), there is a probability distribution over the spanning trees ofG′′ with the following
property: for any pair of verticesuv, their expected distance in a tree chosen from the distribution is at mostγ(n)
times their distance inG′′. Using linearity of expectation and the observation statedabove, this implies the
existence of a treeT in G′′ such that the sum of the distances of the pairs times their demands inT is no more
thanγ(n) times the sum of the distances of the pairs times their demands inG′, i.e.

∑

i

δi · ℓT (si, ti) ≤ γ(n) ·
∑

i

δi · ℓG′(si, ti).

Note that on the LHS,ℓT is w.r.t. edge lengths v.s. on the RHS,ℓG′ is w.r.t. vertex lengths. SinceT contains
all the vertices ofG′′, andG′′ andG′ have the same vertex set, the fixed cost of vertices inT is at most the fixed
cost of vertices in our initial solution. Since the edges ofT are a subset of those inG′′ and thusG′, the edge-length
of a path inT is within a factor 2 of the vertex-length of the corresponding path inG′. Therefore, the tree inG′

corresponding toT is anO(γ(n))-approximation to the optimal solution. We can use Lemma 5.3to improve the
bound toγ(h2) whenh is small compared ton. 2

The proof of the following lemma follows similar steps as theproof of Lemma 3.4 in [7]. We skip the details.
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Lemma 5.5 (Junction tree lemma for polynomially bounded D) Given an instance of NMC-BB with unit de-
mands there is a junction-tree of densityO(log h · OPT

h ). For the general case with total demandD, there exists
a junction-tree of densityO(log h · OPT

D ).

5.2 Approximation Algorithms for Min-density Junction Tree

In this subsection we give anO(log2 h)-approximation algorithm for den-NSS-BB and min-density junction tree.
Consider the following LP relaxation of den-NSS-BB. For each terminalti, we have an additional variableyi that
indicates whetherti is chosen in the solution or note. We have normalized the sum

∑

t yt to 1.

LP-NSSD min
∑

v∈V c(v) · x(v) +
∑

t∈T δ(t)
∑

p∈Pt
ℓ(p) · f(p)

subject to:
∑

t∈T yt = 1
∑

p∈Pt|v∈p f(p) ≤ x(v) v ∈ V, t ∈ T
∑

p∈Pt
f(p) ≥ yt t ∈ T

x(v), f(p), yt ≥ 0 v ∈ V, p ∈ ∪tPt

Theorem 5.6 There is anO(log2 h)-approximation for den-NSS-BB.

Corollary 5.7 There is anO(log2 h)-approximation for computing min-density junction tree.

The reader is referred to Appendix A to see proofs of Theorem 5.6 and Corollary 5.7.
5.3 A Greedy Approximation Algorithms for Min-density Junction Tree

Here we describe the overview of an algorithm for NMC-BB withratio O(log3 h · log D). The algorithm is
essentially the same as the greedy algorithm for MC-BB in [7]and follows similar steps to the algorithm of
Theorem 3.1. In other words, it tries to find a partial solution with good density at every iteration. We describe
briefly the general idea of the algorithm for MC-BB (from [7])and the differences with the one for NMC-BB.
The main ingredient in the greedy algorithm for MC-BB is an approximation algorithm for the shallow-light trees
described here.
Shallow-light k-Steiner Tree (KSLT): The instance to shallow-lightk-Steiner problem is a graphG(V,E), with

edge-weight functionc : E →R+ and edge-length functionℓ : E → R+, a collectionT of terminals containing
a roots, a numberk, and a diameter boundL. The goal is to find ans-rootedk-Steiner tree that hasℓ-diameter at
mostL, and among all such subtrees, find the one with minimumc-cost. A(ρ1, ρ2)-approximation algorithm for
the shallow-lightk-Steiner problem finds ans-rootedk-Steiner tree with diameter at mostρ1 ·L and cost at most
ρ2 ·B with B being the optimum cost for ak-Steiner tree of diameterL. The algorithm in [7], uses the following
result from [22] for theedge-weightedversion of shallow-light trees:

Theorem 5.8 [22] There is an(O(log h), O(log3 h))-approximation algorithm for the edge-weighted shallow-
light k-Steiner tree problem which finds ak/8-Steiner tree.

The algorithm for MC-BB follows steps similar to those of algorithm of Theorem 3.1. The main procedure
which tries to find a good density partial solution has a sources-phase and sinks-phase and at each phase it finds
best-density trees rooted at a nodes. For that purpose, it uses the algorithm of Theorem 5.8 (instead of D-NWST).
The analysis is similar to that of Theorem 3.1 but somewhat more involved (because here we have two weight
functionsc andℓ); we skip the details of the analysis from [7].

Our greedy algorithm for the NMC-BB follows the same paradigm. For that we need a node-weighted version
of Theorem 5.8. We define the node-weighted shallow-light Steiner trees similarly:
Node-weighted shallow-light k-Steiner tree (NKSLT): we have a graphG(V,E), with node cost function

c : V → R+ and length functionℓ : V → R+, a collectionT of terminals containing a roots, a numberk, and
a diameter boundL. The goal is to find ans-rootedk-Steiner tree that hasℓ-diameter at mostL, and among all
such subtrees, find the one with minimumc-cost.
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Lemma 5.9 There is polynomial-time algorithmA s.t. given an instance of NKSLT, finds ak/8-Steiner tree with
diameter at mostO(log h · L) and cost at mostO(log3 h · OPT) whereOPT the cost of an optimumk-Steiner
solution with diameter boundL.

Using this lemma, an algorithm similar to the one for MC-BB gives anO(log3 h log D)-approximation for
NMC-BB. So what is left is to prove Lemma 5.9. This algorithm borrows ideas from the algorithm of [22] for
(edge-weighted) shallow-lightk-Steiner trees (Theorem 5.8) and [26] for node-weighted Steiner tree. Here we
briefly describe the similarities and differences. The algorithm for Theorem 5.8 is a greedy algorithm that starts
from every terminal as a single-component. At every iteration it tries to connect two components by a “cheap”
path. Once a path is found the two components are merged into one. We continue until we have a component
with at leastk/8 terminals. The exact definition of a cheap path is such that wecan charge the cost of the path to
the nodes in the two components merged and this cost should beat most a polylogarithmic factor of the optimum
density (there are some technical details that we omit here). The algorithm for Lemma 5.9 has a similar structure.
The main difference is that at each iteration, instead of finding a cheap path that connect two terminals (at good
density) we try to find a best density spider. The algorithm for finding the best density spider is the same as the
one for Lemma 4.3. Once we have found a good density spider (compared to the density of the optimum) we
merge the components it spans. We continue this until there are at leastk/8 terminals in one component.
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Procedure Partial
Input: T ′ the set of remaining pairs to be connected
Output: A partial solution connecting at least one pair ofT ′

Let T ′′ ← T ′ andh′ = |T ′|;

While T ′′ 6= ∅ Do

Let s be an arbitrary source inT ′′

LowDens← True; Vs ← ∅
Repeat /* The sources-phase starts /*

Find the best density treeFs rooted ats with sources being the terminals
if c(Fs)/|T (Fs)| ≤ 8α.OPT/h′ then

• Add all the vertices ofFs to Vs

• Contract all ofFs into s and set the cost ofs to zero.
else LowDens← False

Until LowDens = False

Let X be set of sources inVs andY be the sinks whose corresponding source is inX.

Vt ← ∅ and letx = |X|
Repeat /* The sinks-phase starts /*

Find the best density treeFt rooted ats with the nodes inY being the terminals.
Add all the vertices ofFt to Vt

Contract all ofFt into s and set the cost ofs to zero.

Until (Vt has at least⌈x/32⌉ sinks of the sources inX)

If density ofVs ∪ Vt is at most384α · OPT/h′ then returnVs ∪ Vt

else discard fromT ′′ all the pairs whose sources are inX.

Figure 2: Procedure Partial that is called iteratively in the main algorithm for Theorem 3.1

A Omitted Proofs
Proof of Lemma 4.4. Consider some iterationi ≥ 1 of the algorithm and letRi be the ratio of the best density
spiderSi (so the density of subgraphΓi is no more thanRi). For every terminalt we compute a ball of radiusRi

with the center oft in the following way. For each vertexv we define the weight ofv to bec(v) + δ(t) · ℓ(v).
Now the distance of every vertexv from t is the sum of the weights of the nodes on the shortest path fromv to t
using this weight function (countingv too); we denote it bydist(v, t). A ball of radiusRi aroundt contains some
vertices fully and some vertices partially; for every vertex v and terminaltj , 0 ≤ γtj (v) ≤ 1 is the fraction ofcost
of v and0 ≤ σtj (v) ≤ 1 is the fraction oflengthof v that belongs to ball oftj . We will maintain the property:

∀v :
∑

tj∈T

γtj (v) ≤ 1. (4)

Also, wheneverγtj (v) > 0 we will haveσtj (v) = 1. All the nodesv with dist(v, tj) ≤ Ri are fully contained
in the ball of terminaltj, denoted byBtj ; soγtj (v) = σtj (v) = 1. First note that:

Claim A.1 If a vertexv fully belongs to a ballBtj (i.e. γtj (v) = 1) then it cannot fully belong to any other ball
Btk .

Proof. We prove this by way of contradiction. Assume thatv fully belongs to two ballsBtj andBtk . Therefore,
if pj andpk are the paths fromtj and tk to v respectively, thendist(v, tj) = δ(tj) · ℓ(pj) + c(pj) ≤ Ri and
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dist(v, tk) = δ(tk) · ℓ(pk)+ c(pk) ≤ Ri. WLOG assume thatδ(tj) ≤ δ(tk) and consider the spider which consist
of the path betweentj andtk with tk being the center. The density of this spider is at most1

2 [δ(tj) · (ℓ(pj) +
ℓ(pk)− ℓ(v)) + c(pj) + c(pk)− c(v)] (we have subtractedℓ(v) andc(v) becausev appears in both paths). Since
at least one ofc(v) or ℓ(v) is positive, this ratio is strictly smaller thanRi, contradicting the assumption thatRi is
the ratio of the best density spider.

2

Now we describe how the vertices that do not fully belong to any ball can partially be part of a ball. For a
terminaltj and vertexv that does not fully belong to any ball, suppose thatdist(v, t) > Ri and letptj ,v be the
shortest path fromtj to v. If the last vertex on the path beforev, call it u, hasdist(u, t) < Ri then we say ball
Btj is within reach ofv andv will belong to this ball fractionally. We define this fraction as follows. Assume
that ballsBta1

, . . . , Btak
(with centersta1

, . . . , tak
) are the balls that are within reach ofv. Let dtaj

(1 ≤ j ≤ k)
be the distance fromtaj

to the last vertex (beforev) on the shortest path fromtaj
to v; so dtaj

< Ri. Define
ρtaj

= Ri − dtaj
. In a sense, we could still continue on the shortest path fromtaj

to v for up toρtaj
before the

distance becomesRi. If ρtaj
≥ δ(taj

) ·ℓ(v) then we defineσtaj
(v) = 1; otherwiseσtaj

(v) = ρtaj
/(δ(taj

) ·ℓ(v)).

Claim A.2 For every vertexv that is within reach of the ballsBta1
, . . . , Btak

:

c(v) + ℓ(v)

k
∑

j=1

σtaj
(v) · δ(taj

) ≥
k
∑

j=1

ρtaj
.

Proof. By way of contradiction assume not. First consider those terminals taj
for which σtaj

(v) < 1. For
these,σtaj

(v) · ℓ(v) · δ(taj
) = ρtaj

. So we can subtract them from both sides. What remains are those termi-
nals taj

for which σtaj
(v) = 1. For simplicity, let’s assume that for allta1

, . . . , tak
we haveσtaj

= 1. Then

the union of shortest paths fromtaj
’s to v forms a spider with centerv and total cost at most

(

∑k
j=1 dtaj

)

+
(

c(v) + ℓ(v)
∑k

j=1 δ(taj
)
)

<
∑k

j=1(dtaj
+ ρtaj

) = k · Ri. Thus there is a spider with density smaller thanRi,

a contradiction. 2

Now we are ready to define the fractionγtaj
(v) of (cost of) vertexv that belongs to ballBtaj

(with center
taj

). We define:

γtaj
(v) =

ρtaj
− σtaj

(v) · δ(taj
) · ℓ(v)

c(v)
.

Note that by this definition, ifσtaj
(v) < 1 thenγtaj

(v) = 0 and if σtaj
= 1 thenγtaj

(v) ≥ 0. It is not hard

to see that from Claims A.1 and A.2 it follows that
∑k

j=1 γtaj
(v) ≤ 1. So we maintain Inequality (4) as wanted.

For consistency, if a vertexv does not belong (fully or partially) to any ball we setγt(v) = 0 for all terminalst.
Finally we note that a vertex that fully belongs to any ball cannot fully or even partially belong to any other ball.

Now we proveOPT∗i ≥ hi · Ri. From this, the lemma follows immediately. To prove this, weshow the
existence of a dual feasible solution with value at leasthi · Ri. Since the value of the dual solution is a lower
bound forOPT∗i the statement follows. Below is the dual program to LP-NSS:

DP-NSS max
∑

t∈T y(t)

subject to:
∑

t∈T zt(v) ≤ c(v) v ∈ V
y(t)−∑v∈p zt(v) ≤ δ(t) · ℓ(p) p ∈ Pt, t ∈ T

y(t), zt(v) ≥ 0 v ∈ V, t ∈ T

Consider the following solution to DP-NSS: sety(t) = Ri for all terminalst and for every vertexv setzt(v) =
γt(v)·c(v). We claim that this is a feasible solution to DP-NSS. Using Equation (4), constraint

∑

t∈T zt(v) ≤ c(v)
is never violated. Now we consider the other constraints. Let t ∈ T be an arbitrary terminal andp ∈ Pt an
arbitrary path.
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• Case 1: if all the vertices on pathp either fully belong toBt or do not belong toBt at all then for the
last vertexu on p that fully belongs toBt we must havedist(u, t) = Ri. Otherwise either the next vertex
on the path partially belongs toBt (which contradicts our assumption) or the next vertex isr, in which
case pathp has distance strictly smaller thanRi and so forms a spider with density smaller thanRi. Thus
δ(t) · ℓ(p) +

∑

v∈p zt(v) = δ(t)
∑

v∈p,γt(v)=1 σt(v) · ℓ(v) +
∑

v ∈ pzt(v) ≥ Ri = y(t), or equivalently
y(t)−∑v∈p zt(v) ≥ δ(t) · ℓ(p).

• case 2:Let u be the first vertex on pathp (from t to r) with 0 < γt(u) < 1. Note that all the vertices before
u onp fully belong toBt. Letdt =

∑

v∈p,γt(v)=1(c(v)+σt(v) ·δ(t) · ℓ(v)). We should point out that for all
v’s considered in this sum,σt(v) = 1 (becauseγt(v) = 1), and thatdt < Ri (becauseu partially belongs to
the ball oft). Letp−u denote the pathp with vertexu removed. Sinceγt(u) ·c(u)+σt(u) ·δ(t) ·ℓ(u) = ρt

(by definition ofγt(u)) anddt + ρt = Ri we have:

δ(t) · ℓ(p) +
∑

v∈p

zt(v) =

(

δ(t) · ℓ(p− u) +
∑

v∈p−u

zt(v)

)

+ (δ(t) · ℓ(u) + zt(u))

≥ dt + σt(u) · δ(t) · ℓ(u) + γt(u) · c(u)

= dt + ρt

= Ri = y(t).

Or equivalentlyy(t)−∑u∈p zt(u) ≤ δ(t) · ℓ(p).

Hence, none of the constraints are violated and so there is a feasible solution to DP-NSS with valuehi · Ri.
This is also a lower bound forOPT∗i . 2

Proof of Theorem 5.6. The proof is similar to that of Theorem 4.2 in [7]. The main difference is that here
we use Theorem 4.1. Consider an optimum solution to LP-NSSD.We obtain disjoint subsets of the terminals
T1,T2, . . . ,Tp as follows. Letymax = maxt yt. For 0 ≤ a ≤ 2⌈log h⌉, let Ta = {tj | ymax/2

a+1 < ytj ≤
ymax/2

a}. Thusp = 1 + 2⌈log h⌉ = O(log h). It is easy to see that there is an indexb such that
∑

tj∈Tb
ytj =

Ω(1/ log h). From this we also have that2b/|Tb| = O(log h). We now solve an NSS-BB instance onTb. We claim
that the resulting solution is anO(log2 h)-approximation to den-NSS-BB. To prove this, letα be the value of the
optimum solution to LP-NSSD on the given instance. Note thatif we scale up, by a factor of2b+1/ymax, the given
optimum solution to LP-NSSD we obtain a feasible solution toLP-NSS on the terminal setTb. The cost of this
scaled solution to LP-NSS is2b+1α. Since the integrality gap of LP-NSS isO(log h) (by Theorem 4.1), we obtain
an integral solution that connects each terminal inTb to the root such that cost of the solution isO(log h) · 2b+1α.
The density of this solution is thereforeO(log h) · 2b+1α/|Tb| which isO(log2 h)α. Thus the integrality gap of
LP-NSSD isO(log2 h) yielding the desired approximation. 2

Proof of Corollary 5.7. Given an instance of NMC-BB, we consider each source or sink as a terminal. Also, for
every pairsi, ti we add the following set of constraints to the LP-NSSD:ysi

= yti . This ensures that either we
include both ofsi andti in the tree or none of them. The rounding scheme in the proof ofTheorem 5.6 extends
to this LP and so we get anO(log2 h)-approximation for the min-density junction tree problem. 2
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