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Abstract

We consider several fundamental network design problerasidtirected graphs with weights (costs) on
bothedges and nodedVe obtain the first poly-logarithmic approximation ratfos some classical problems
that have been studied in the edge-weighted setting. Our reaults are the following.

o An O(log® n) approximation for the Steiner forest problem.
e An O(logn) approximation for the single-sink non-uniform buy-atiboktwork design.

e An O(min(log® nlog D, log® nloglog n)) approximation for the node-weighted multicommodity non-
uniform buy-at-bulk network design, whefé = 3" ¢; is the total demand.

We believe that the problems and results are of interest brotin theoretical and practical points of view.
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1 Introduction

Network design problems involve finding a minimum cost (sabjwork that satisfies various properties, often
involving connectivity. Simple examples include spanrtiregs, Steiner trees, akeconnected subgraphs. These
problems are of fundamental importance in combinatoriihtipation and also arise in a number of applications
in computer science and operations research. The costjmicakpetwork design problem is some function of the
choseredges In this paper we consider network design problems withso@stweights) on botedgesandnodes

of the graph. We are motivated by both theoretical as wellrastjgal considerations. The node-weighted prob-
lems are a natural generalization of the edge weighted gmablweights on edges can be translated to weights
on nodes in an easy fashion). It is often possible to redue@ddle-weighted problem to a corresponding edge-
weighed problem, however this requires making the grapéctid. Problems on directed graphs are typically
more complex (harder to approximate for instance) than ties an undirected graphs and hence it is desirable
to work directly on node-weighted problems in undirectealpiis. Node weights also arise naturally in a number
of practical applications. For example, in telecommunices, expensive equipment such as routers and switches
are at the nodes of the underlying network and it is naturahdolel some of these problems as node-weighted
problems. Often, these node weights are translated inte wagghts in an approximate fashion since the edge-
weighted problems are better understood. Apart from thekwbKlein and Ravi [26] who gave a®(logn)
approximation algorithm for the node-weighted Steinee weoblem, and some subsequent results on variants of
this problem obtained by Guha et al. [18] and Moss and Ral2&jj fhere does not appear to be much literature
on node weighted variaritsin this paper we consider the node-weighted versions oeswell studied network
design problems and obtain the first non-trivial approxiomatlgorithms. We hope that our results will spur fur-
ther work. We now describe the problems we study and thetsesel obtain. The corresponding edge-weighted
problems are well studied.

Node-weighted Steiner forest: We are given an undirected graph= (V, E') and a non-negative cost function
c:V — RT onthe nodes of the graph. We are also gikerode pairssit1, soto, . . ., spt, and the goal is to find
a minimum cost subset of nodessuch that each paif;t; is connected in the subgragi A] induced byA.

Node-weighted Non-uniform Buy-at-Bulk: This problem generalizes the Steiner forest problem. Wejises
an undirected grapty and node pairs;t, sots, . . ., sty @s before. The pairs have non-negative demafds;
the demand for pais;t;. Each nodev € V has a monotone sub-additive real valued functipn R*™ — R™
associated with it. A feasible solution consists of a medtinmodity flow for the pairs in which; flow is routed
betweens; andt;. The cost of the flow i$ .y f.(z,) wherez, is the total flow that is routed through a node
v (We assume that a flow that originates at a nodgalso routed through). The objective is to find a feasible
routing (or flow) for the pairs that minimizes the cost. Weabbta single-sink (or equivalently single-source)
problem if all pairs share a common sink node, that is, thespaie of the formsty, sto, ..., st; with s as the
sink. We obtain ainiforminstance if there is a functiofi such that for each, f, = ¢, f for some cost function
c:V—=RT.

Results: We obtain the first poly-logarithmic approximation ratias the two problems we consider. These are
also the first non-trivial results for these problems.

e An O(log? h) approximation for the node-weighted Steiner forest pnob(@heorem 3.3).

e An O(log h) approximation and integrality gap for the node-weightewgks-sink buy-at-bulk network
design problem (Theorem 4.1). UnleBs= N P the ratio we obtain is tight up to a constant factor.

e An O(min(log® hlog D,log® hloglog h)) approximation for the multi-commodity buy-at-bulk protvle
whereD = ). ; is the total demand (Theorem 5.1).
Remark:

Our approximation for the Steiner forest is in fa@ts - logn) with 3 the best known approximation for the
budgeted coverage with node weights (BCNW) (see [18, 28])gra#ph G(V, E) with vertex costs and a set

There is literature on node capacitated routing problems ¢ésg. [9, 13, 21] for some recent works) but those usualiyaddnvolve
cost minimization.



T C V of terminals, and a budgée® are given. The goal is to choose a subté@ef G with budget at most
B maximizing the numbef@ N T'| of terminals in@. In [28] anO(logn) approximation is designed for this
problem. It is conjectured that the problem admitsC&ii) approximation. If the conjecture hold true, then our
algorithm can be used to derive &tlog n) approximation for the vertex-costs Steiner forest probl&wen the
case of all equal sinks, namely, the vertex costs Stéieeproblem is hard to approximate withirin n for some

c > 1 (see [26]). Therefore, it may be possible to use our algoritt derive an approximation algorithm that (if
P # N P)is optimal up to constants approximation

Related Work: Network design problems are of fundamental importance mkgoatorial optimization and there
is a vast literature on problems and results. We refer thaerda [30, 15] for classical results on polynomial time
algorithms and to [16, 23, 32, 24, 14] for results on appr@tion algorithms. Here we briefly discuss the known
results and techniques for some specific problems that aselglrelated to the problems we consider.

For the edge-weighted Steiner forest problef@ & 1/h)-approximation is known, first shown via a primal-
dual algorithm by Aggarwal, Klein and Ravi [1]. The primalal approach has been generalized to other connec-
tivity functions by Goemans and Williamson [16], and Jaid][@ave a2-approximation for a large class using
iterative rounding. The node-weighted version behavderéifitly. Klein and Ravi [26] showed, via an easy re-
duction from the set cover problem, that the node weighteth8t tree problem i€ (log h)-hard to approximate
unlessP = NP. They also obtained a matching approximation ratio usingeady merging algorithm. In a
subsequent work Guha et al. [18] showed that a natural LRatdta has arO(log h) integrality gap and used
this to prove arO(log? h) approximation for a quota version of the problem. Moss andaR&[28] improved
the ratio for the quota version t@(log 1) and also proved a stronger Lagrangian multiplier propestyttie LP
relaxation. Surprisingly no non-trivial result is knowrr the node-weighted Steiner forest problem.

The buy-at-bulk network design problem is motivated by etoies of scale that arise in a number of appli-
cations, most notably in telecommunications. This probiestudied as the fixed charge network flow problem
in operations research. Approximation algorithms, sigrivith the work of Salman et al. [29], have been of
much interest. All the known results are only for the edgégived problems. For the uniform case Awer-
buch and Azar [5] gave a reduction to the problem of approtimgaa finite metric via random tree metrics
and this results in a®(log n)-approximation using [12]. An improve@(1)-approximation is obtained for the
uniform single-sink case first by Guha, Meyerson and Munagala [1#] fuirther improvements and simplifi-
cations [31, 20]. A special case of the multicommodity flowsien, known as the rent-or-buy problem also
admits a constant factor approximation [19]. The non-unifoersions of the problem turn out to be harder.
For the single-sink case, Meyerson, Munagala and PlotkihdBtained arO(log h)-approximation. Their ran-
domized algorithm was derandomized via an LP relaxatior8]n For the multi-commodity problem the first
non-trivial result is due to Charikar and Karagiazova [6Jorbtained arO(log D exp(O(+y/log hloglogh)))-
approximation. Very recently, the authors of this paperamigd a first poly-logarithmic approximation [7].
The ratio obtained i) (min(log® h log D, log® hloglog h)). Andrews [3] showed af(log'/*~¢ n)-hardness
for the uniform case and afi(log!/?~¢ n)-hardness for the non-uniform case, both under the assomfitat
NP ¢ ZTIM E(nPoY°9(")) For the non-uniform single-sink case Chuzhoy et al. [1@p&d anQ(log log n)-
hardness of approximation under the assumptionsh&tZ DT IM E(n'°glogloen) We note that the inapprox-
imability results for the edge-weighted problems apphhitt node-weighted generalizations.

Techniques. The results in this paper build upon several ideas from ttede@ work we described above. For
the Steiner forest problem we use the greedy approach @aspy our earlier work [22] and use the algorithm
of Moss and Rabani [28] for the quota version of the Steinme piroblem as a black box. For the buy-at-bulk
problems, we use ideas from our recent work on the edge-tesighon-uniform buy-at-bulk problem [7] to
reduce a multi-commaodity problem to essentially a varidritsocorresponding single-sink problem. In [7] two
approaches, one based on a greedy algorithm, and the odezl ba an LP relaxation are used to solve the single-
sink problem. We obtain an algorithm for the single-sinkechyg building upon and generalizing ideas in several
papers [26, 27, 8].

Organization: Several technical details including the reduction of thg-atibulk problem to the two-cost net-
work design problem are described in Section 2. We start thighO (log? n)-approximation algorithm for the
node-weighted Steiner forest in Section 3. In Section 4, neegnt the) (log n)-approximation for node-weighted
non-uniform single-sink buy-at-bulk problem which is irgstingly tight (we currently lack such a tight result for



the edge-weighted case). Finally, we present approximatigorithm for node-weighted non-uniform multicom-
modity buy-at-bulk in Section 5.

2 Préiminaries

All graphs we consider are undirected. Nodes and verticesised interchangeably. As mentioned earlier, we
consider the settings in which bo#tdgesand verticeshave weights. However, we can easily transform this
settings into one in which only the vertices have weights Wlyds/iding every edge (i.e. replacing it with a
path of length 2) and giving the new vertex the weight equah&the weight of original edge. Using the same
transformation, it is easy to see we can reduce the edgditeeigersion of all the problems mentioned earlier to
the node-weighted.

Recall that in the node-weighted non-Uniform buy-at-butklgem, we are given an undirected gragh=
(V, E) on n vertices, a monotone sub-additive cost functipn: Rt — R*, and a set of, demand pairs
T = {sit1, sata, ..., sptn }, Whered; is the demand for pait;¢;. consists of which solution consists of a subgraph
G' = (V',E')with V' C V andE’ C G[V'] with non-zero flow and a routing of flow for each pairs;¢; in G'.
As shown in earlier works [4, 27, 7], we can approximate eactction f,, by a collection of simple piece-wise
linear functions of the forna + bz. Then for each vertex with cost functionf,, we create several copieso&ll
having the same set of neighborsweand each having one of the linear cost functians bz. This allows us to
reformulate the buy-at-bulk network design problem &s@costnetwork design problem, at a loss of factor 2 in
the approximation ratio. In this setting, an instance oferagtighted non-uniform multicommaodity buy-at-bulk
(NMC-BB) consists of a grapliy and demand pair$ = {sit1, sata, ..., sptn}. Eachs;, t; € V has a demand
5; > 0. We are given two separate functions V' — R*™ and/ : V — R™; we call ¢, and/, the costand
lengthof v, respectively. We think of, as the fixed cost of and/, as the incremental or flow-cost of The
goal is to find a minimum cost feasible solution where a fdasiblution consists of a subset of nodésC V
that includes all the terminals. The sub%&timplicitly specifies the induced subgragh = G[V’]. The cost of
the solution specified by’ is given as

h
(V) + ) 6 bar(sinti), 1)
i=1

wherec(V') = >~ .y ¢, andlg(u,v) is the shortest-node weighted path distance betweeandv in G'. If
all the sinks are the same we have the node-weighted noaromgingle-sink buy-at-bulk (NSS-BB) problem.
We are given an an undirected gragh= (V, E') with a designated root vertex a set of terminal§” C V, a
demand functiod : T U {r} — R™, a cost function: : V' — R, and a length functiod : V' — R*. A feasible
solution is a connected subgraphcontainingr and spanning all the terminals.

Our goal is to routé(¢) units of flow from each terminalto rootr. In the rest of the paper, we restrict our
attention to the two-cost network design formulation of NNBB and NSS-BB.

Our algorithms for the node-weighted Steiner forest ancengdighted non-uniform multicommodity buy-
at-bulk have a greedy structure; iteratively we try to findaatipl solution (a solution that connects/routes some
of the remaining pairs) at low density, where the densithésdost of the partial solution over the number of new
pairs it connects/routes. We will use the following basromhea in the analysis of these algorithms (see e.g., [25]).

Lemma 2.1 Suppose that an algorithm works in iterations and in iteyati it finds a partial solutionV; C
V that routes a new subséf, of the demands. LebPT be the cost of the optimum solution ang be the
number of unrouted demands at the tiijigs found. If for everyi, the cost of the partial solutiot[V;] over the

number of pairs it routes is at mog{n) - Ou—'?T, then the cost of the solution returned by the algorithm ismast
fn)-(Inn+1) - OPT.

3 Approximation Algorithm for Node-Weighted Steiner Forest

Recall that the instance of node-weighted Steiner foresttlpm consist of an undirected graph= (V, E), a
cost functionc : V. — R, and a collection of pairs of source-sinks= {(s1,t1),..., (sp,tn)} With s;,t; € V.
Let us first start with a definition which is basic to our algjom in this section.

3



In the (Rooted) Density node-weighted Steiner foeeblem, given an undirected gragh= (V, ), a cost
functionc : V — R*, arootr € V, and a set of terminal§ C V' containing the root, our goal is to find a tree
F rooted at such thady " . c(v)/|F N T|is minimized. Our main result of this section is the follogin

Theorem 3.1 Anca-approximation algorithm for the (rooted) density nodeigirted Steiner tree problem implies
an O(«log n)-approximation algorithm for node-weighted Steiner fogeblem.

The (rooted) density node-weighted Steiner tree is clossbted to the following Budget-constrained cov-
erage with node weights (BCNW) problem [28]. Given a nodégived graphG:, budgetB and setl” C V
of terminals, find a tree of cost at maBtthat contains the maximum possible number of terminals2&) &n
O(log n) ratio approximation is given for BCNW and conjectured th&NBN admits arO(1) ratio approxima-
tion.

Lemma 3.2 If there is ana-approximation for BCNW then there i2a-approximation for rooted density node-
weighted Steiner tree.

Proof. Let a be the best possible ratio approximation for BCNW. Givenratance of (rooted) density node-
weighted Steiner tree, we can guess (e.g. try all possitilesdor) the cosB for the optimal solution. Then we
remove all the vertices of distance more tharirom rootr. The best tree of budgéd? is approximately found
using thex-approximation for BCNW, and thenis joined with a path of cost at mo&t to an arbitrary vertex in
the computed tree. This affects the ratio by a factor of atti2os O

From Theorem 3.1, Lemma 3.2, and [28] which proves that tisead O (log n)-approximation for BCNW,
it follows that:

Theorem 3.3 There is anD(log? n)-approximation algorithm for the node-weighted Steineesb problem.

It is N P-hard to approximate the node-weighted Steiner forestlenolvithin a factor ofclog n for some
absolute constant > 0. Therefore, if the conjecture of [28] is true, our algorittuan be used to derive an
approximation ratio for the Steiner forest problem thatdsroal up to a constant factor. In the rest of this section
we prove Theorem 3.1. The following assumption is useful.

Assumption 3.4 Each source and sink has degree G.

The assumption is easily satisfied by hanging a degree otexwarcostO from each terminal and making this
set of new nodes to be the terminals.

The algorithm for Theorem 3.1 is a greedy algorithm whichsugleas from the greedy algorithm for mul-
ticommodity buy-at-bulk [7]. It runs in iterations and ugbe a-approximation algorithm for (rooted) density
node-weighted Steiner tree as a subroutine. We refer tatiisoutine by D-NWST. At each iteration, the algo-
rithm finds a partial solution that connects some of the teatsi(source-sink pairs) that are not already connected
using D-NWST. Then these newly connected terminals arevethoA partial solution is defined by a subset of
nodes and the subgraph induced by them. The density of thialaiution is the ratio of the cost of the partial
solution to the number of new pairs it connects. Let OPT beptimam solution for the remaining pairs (that are
not connected yet) anodPT be its cost. ClearlppPTis at most the cost of a global optimum solution since at any
given time we can add the vertices of the global optimum swiub cover all the remaining pairs. Assuming that
the density of every partial solution is at most« - oPT/h’), whereh' is the number of remaining pairs, using an
standard set-cover type analysis, this scheme yield3(ariog n) approximation for the node-weighted Steiner
forest problem.

The main procedure in our algorithm is a procedure calletdarhich finds a good density partial solution.
Each iteration of the algorithm makes a call to Partial watithe pairs are connected. Consider one such iteration
and let7’ be the set of remaining (not connected) pairs of the origimgthnce and’ = |7’|. The procedure
Partial works in rounds and each round contains two phasesces phase and sinks phase. In the sources phase
(which runs in iterations) we start from one of the remainsogirces, say, as the root and considertogether
with other remaining sources as terminals. In each itaratie try to find a low density Steiner tree rooted at
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s. We do this by calling the subroutine D-NWST. If the densifyttte tree returned by D-NWST is at most
8«.0PT/h’ then we contract all the nodes of that tree infset the cost of to zero (because we have already
paid for it), and continue with the next iteration. Sinceksithave degreg, sinks are never contracted irdan

the sources phase. Indeed, sinks cannot hegach any source and may be ignored in the source phase. If no
low density subtree can be found, the sources phase tesminat this stage, lek’ be the set of sources that are
contracted inta.

We define the set of terminalsto be the sinks that correspond to a sourc& inrNow we start the sinks phase
that like the sources phase runs in iterations. In eachiiberave call subroutine D-NWST with being the root
and the sinks i being the terminals to find the best density Steiner treeh Eate we find a tree, contract all
of its nodes intos and set the cost of to zero. We repeat this until we have at le@st/32 sinks corresponding
to the sources oK contracted intos. At the end if the density of the connected graph induced bystt of the
nodes contracted inte is small we return the set of nodes contracted ints the partial solution. Otherwise,
if the resulting tree has a too large density we (temporadigcard all the sources i and their corresponding
sinks and start over the next round of Partial restrictedoto-adiscarded pairs. A key claim we need to prove is
that before the set of non-discarded pairs turns empty, s@wepairs are covered. For a set of nodiedet 7'(F')
be the set of terminals if’ andc(F') denote the total cost of the nodesfin Let 7/ be the set of remaining (not
connected) pairs of the original instance. See Figure 2 ijpefsdix for the detailed description of this procedure.

Recall that OPT is a collection of disjoint trefs= {G1,...,G,}. Let T(G;) be the set of pairs routed in
G;. By deleting every tre€; whose density is larger th&opPT/1’/, we obtain:

Lemma 3.5 There is a collectios’ = {G4, ..., Gy } of disjoint trees ofS such that:
1. Together they contain at leasi’ /2] of the pairs

2. Density of eaclds; € S’ is at mosRopPT/h/.

We need a few definitions for the analysis of the algorithm.reetinS’ from which at most a fraction of
1/4 of the pairs are discarded by Partial is callegoad tree Note that a good tree may become bad during the
course of the algorithm as some of its source-sink pairsigeated. A source-sink pair is calledyaod pairif
it belongs to a good tree at the time the source is being cerexidby the algorithm. A source (sink) is a good
source (sink) if it belongs to a good pair. Others are called jpairs (or bad sources). Considér(the set of
nodes contracted intg) at the end of the sources-phase. One round of Partial isdcatjood roundif at least
a fraction of1/16 of the sources of; are from good pairs, i.eX contains at leastz/16] good sources. Other
rounds are called bad rounds.

Lemma 3.6 In every call to Partial, there is at least one good round lefall the pairs are discarded.

Proof. By way of contradiction, suppose that all the rounds are Inaktlze algorithm continues until all the pairs
are discarded by the procedure. kebe the number of pairs discarded in round his implies thaf . k; = 1.

By Lemma 3.5, the number of sources (pairs$ins at least /' /2]. Initially, all the sources i’ are good. By
definition, for every tre€7; € &', the first[|7 (G;)|/4] sources of7; that are discarded are good and then the rest
become bad sources. Therefore, the number of good souelseittome bad is at most 3 times the number of
good sources that are discarded. Therefore, the total nuoflg®od sources discarded and the number of good
sources that become bad is at mp3t4|k;/16] < |h'/4]. So using Lemma 3.5, there are at legst/4] > 1
good pairs left and so we cannot have discarded all the gdésce there must be a good round. O

From now on, we focus on a good round anddétC S’ be the set of good trees 6f that have at least one
vertex inV;. In the next lemma, the term “number of original sourceseérgfto the situation at the beginning
(before any source is discarded).

Lemma 3.7 For every treeG; € S”, if V contains a vertex ofy; thenV, contains at least half of the original
sources of7;.



Proof. By way of contradiction, assume that there is a tthec S” which has a vertex i but less than /2

of the sources of; are inV;. This means that by the end of last successful iterationeo§tiurces-phase, root
belongs ta=; and more thari|7 (G;)|/4] of the sources of; are still left (uncontracted intg). This is because
G, is agood tree and therefore at moiSt (G;)|/4] of them are discarded; thus at le@3t7 (G;)| /4] sources are
not discarded. As by assumption less th# of the sources of (G;) belong tos, more than |7 (G;)/4] do not
belong tos nor are discarded, and so are available for choice. Thus tha treel’; rooted ats and containing

at least[|7 (G;)|/4] (new) sources at cost at masiG;) (this can be obtained by selecting all the vertices and
edges ofG; not contracted int@). The density off; is at mostdc(G;) /|7 (G;)| < 80opPT/h’. Since D-NWST is
ana-approximation, in the last (unsuccessful) iteration @f $ources-phase we would have found a fregvith
density at mos8«.0PT/h’ and so the sources-phase should have not terminated, adiotion. |

Lemma 3.7 implies that; (at the end of sources-phase in a good round) contains ahkaéthe total number
of sources of all the trees i§f". Consider a good round and let= | X | be the number of sources contracted into
s in the sources-phase. dfV) is the cost of nodes i, after the sources-phase then

c(Vs) <8a -z -OPT/R. 2)

If in the sinks-phase we defing to consist of the rest of the vertices of the treessih) we can connect at
least[z/16] source-sink pairs (those good pairs whose sources &¢ usingV; U V;. Since the density of each
tree inS” is at mosopPT/h’ andz > |7 (S")|/2 (by Lemma 3.7), the total cost of the nodesStis

c(8") < 4x - opPT/H. (3)

Thus at the beginning of the sinks-phase, there exists aireaoted ats over the terminals irY” with cost
at moste(S”) and containing at least: /161 terminals, i.e. has density at magtorT/h’. We show below that
the sinks-phase finds a collection of Steiner trees rootedatr terminalsy” with a total number of terminals at
least[x/32] each of which has density at mds8« - oPT/1'.

Lemma 3.8 In a good round, at the end of the sinks-phasel&et V; induces a subgraph (partial solution) that
has density at moS84« - OPT/H/.

Proof. Suppose that we hawge > 1 iterations of the repeat loop in the sinks-phase and we firth&t trees
F}, ..., F/whose number of terminals arg, . . ., x,, respectively, wher®:, ;. ;i > [z/32]but)", ., @ <
[2/32]. We prove by induction that the density of eachif, . .. , [/ is at mostl28«.0PT/h/. By the discussion
above, at the beginning of the sinks-phase, there exiseé&twith density at most(S”)/[z/16] < 640PT/h/.
Because D-NWST is an-approximation, the density of! is at most64a - OPT/R/. For the induction step,
suppose we have found tre€d, ..., F/, for somel < i < ¢. So we have contracted all the vertices of these
trees intos. As ), ., =i < [x/32] andF; has at leasfx/16] (good) terminals ot’, there are at least: /32]
terminals of tred; left, and clearly these can be connected &b cost at most(S”). Thus, there is a Steiner tree
rooted ats with density at most(S”)/[x/32] < 1280pPT/h’. Hence,F; ™ has density at most28a - oPT/1/,
as wanted.

Since we repeat the sinks-phase until there are at [egs2] sinks corresponding to the sources X%f
contracted int®, at the end of sinks-phase, we have at IéagB2| pairs contracted inte. ThusV, U V; connect
at least[z/32] > 1 pairs. The total cost of the partial solution at the end oksiphase (i.e. cost df; U V}) is
at mostc(V;) plus the cost of the trees found in the sinks-phase. By Equ##): ¢(V;) < 8« -z - OPT/h’. The
cost of the trees found in the sinks-phase is at most(S”) which by Equation (3) is at modi - - OPT/h/.
Thus the total cost is at mo$R« - = - OPT/R' and because it has at ledst/32] pairs, the density is at most

(12 x 32)ac - OPT/H. O
Proof of Theorem 3.1. Follows from Lemma 3.8 and the fact that there is at least @oel gound in every call to
Partial (by Lemma 3.6), together with Lemma 2.1. O



4 Node-Weighted Non-Uniform Single-Sink Buy-at-Bulk

Recall that the instance to NSS-BB is an undirected gi@ph (V, E) with a designated root vertex a set of
terminalsT C V, a demand functiod : 7'U {r} — R™, a cost functior- : V' — R™, and a length function
¢:V — RT. Our main result of this section is:

Theorem 4.1 There is a deterministi© (log h)-approximation algorithm for NSS-BB whelgs the number of
terminals. In fact, we find a solution that is within a facto(log i) of the optimal solution to a standard LP
relaxation.

It is easy to see that if we have costs and lengths on Watind £ we can reduce this to the node-weighted case.
If for a vertexwv, c¢(v) = £(v) = 0 then we can add this vertex to any solution at no costs. Sbpuitloss of
generality, we may further assume that for every vettesitherc(v) > 0 or ¢(v) > 0. For technical reasons we
assume thai(r) is the largest demand am-) = ¢(r) = 0.

Since NSS-BB generalizes the node-weighted Steiner trieiehvihhas &2 (log n)-hardness [26] (via a simple
reduction from set-cover):

Corallary 4.2 NSS-BB has an approximability thresholda(flog n), unlessP = NP.

The algorithm for Theorem 4.1 uses ideas from the works offkdad Ravi [26], Guha et al. [18] and Chekuri
et al. [8] and Meyerson et al. [27]. In particular, we use thieler ideas from [26] and randomized merging from
[27].

A spideris a connected graph with at most one vertex of degree monehtfta So we can think of it as a tree
that consists of some paths all of which are sharing exactyya their end-points. Theenterof a spider is a
node from which there are edge-disjoint paths to the leakf®pider. So if the spider has a vertex of degree at
least three, its center is unique. Every leaf of a spider i@st terminal. The density of a spider is the ratio of its
total cost over the number of terminals in the union of it¥éssand its center, where the total cost depends on the
problem definition. For the problem of node-weighted Stefree (i.e. when we do not have a length function) the
total cost is just the sum of the weights of the nodes in theespiFor this problem, Klein and Ravi [26] showed
the existence of a decomposition of the optimum solution sptiders. Therefore, there is always an spider whose
density is no more than the density of the optimum (which édbst of the optimum over the total number of
terminals). They also show how to find a best density spideolynomial time. Given this tool in hand, we can
iteratively find the best density spider and contract allritbdes in that into a single node, until all the terminals
are contracted inte. Again, using a standard set-cover type analysis, thislyiahO (log n)-approximation for
the node-weighted Steiner tree. Given that the set-covebeaeduced to node-weighted Steiner tree problem,
we have arf)(log n)-hardness too; s6(logn) is the approximability threshold for node-weighted Steitnee.
Guha et al. [18] later showed that in fact the density of th&t density spider is no more than the density of the
optimumfractional solution.

Overview of the algorithm for NSS-BB: Our algorithm for Theorem 4.1 has a similar structure. Sineewill
compare the ratio of our algorithm against the optimum foaetl solution let us first formulate NSS-BB as an IP
for which we have the following LP relaxation. Foe T, let P, denotes the set of directed paths from rotd

t. We assume that the terminals are at distinct vertices anceti® NP, = () fort # t'. Forv € V, a variable
z(v) € [0,1] indicates whether is chosen in the solution or not. Fpre U, P; a variablef(p) € [0, 1] indicates
whetherp is used to connect a terminal to the root. We 43¢ to denotezvep ¢(v). The LP assigns fractional
capacities to vertices such that one unit of flow can be shifjgen each terminal to the root.

LP-NSS min }_ cy c(v) - 2(v) + 3 17 0(t) X pep, £(p) - f(P)

subject to: Zpemve;af(p) < z(v) veV, teT
pPEP: f p z 1 teT
z(v), f(p) = 0 veV, peUPy



Randomized Algorithm for node-weighted single-sink buy-at-bulk:

1. Compute a subgraghwhose density is no more than the best density spider.

o

2. For every terminal € I, choose to be a center with probability = 6(t)/ >, cp(r) 6(t'). Set the deman
of ¢ to be equal t&_, 4(t') and remove every other terminalke 7'(T") from the terminal sets. For
every non-center terminal i, connect it to the root via

3. Continue recursively (i.e. goto Step 1)

Figure 1: A randomized algorithm for NSS-BB

Let OPT" be the optimum solution to the above LP aveit* be its value. At every iteratiohof the algorithm
we will find a low density subgraph;. We show that we can find a subgraphwhose density is no more than
the density of best density spider in polynomial time, whbeedensity of a spider is its total cost over the number
of terminals in the union of its leaves and its center. Thel tobst of a spide§ with centers is:

c(s)+ Y (elpe) = els) +6(t) - €p)),

teT(S)

whereT'(S) is the set of terminals i&, and for everyt € T'(S), p; is the path betweetands with ¢(p;) and
¢(p;) being the sum of the costs and lengths of the nodes on thisreathectively. Then we prove that the density
of the best density spider is no more th@amr* over the total number of terminats Once we have a good density
subgraph’; (whose density is no more than the best density spider), maoraly pick one of the terminalsin
I'; as a center proportional to the demand of that terminal tadtes demands of the terminals Ity and “route”
all the demands of other terminalsIi to ¢ and remove them from the set of terminals. This is a modiboati
of an idea of [27]. We will later show how to do this step detimistically. Note that ifr € I';, because of
our technical assumption aboit), » will be the center. We prove that the cost of the LP solutioritos new
modified instance (with fewer terminals) is at mostt*. We repeat this process until all the demands are routed
to rootr. Finally, a set-cover type density analysis shows that ts of the solution obtained is at most an
O(log k) factor away from the optimum LP solution. For the ease of sitjum, first we present a randomized
version of the algorithm (see Figure 1).

Next lemma shows how to perform Step 1 of the algorithm ane&uppunds the cost of the subgraph we find.

Lemma4.3 Given an instance of NSS-BB we can find in polynomial time graphT" in Step 1 whose density
is no more than the density of best density spider.

Proof. We run the following for every node € V' as being the center of a spider. For every terminale T,

we compute its shortest path to the centevhere the weight function for every vertex(other than the center)
on the path to compute the weight of the patla(is) + d(¢) - £(v). Now order the terminals in non-decreasing
order of their shortest paths to the center. Without losseiegality assume that terminglhas thei'th shortest
distance which igl;. For everyl < j < h, we take the firsj terminals (according to the above ordering) as the

terminals in the best density spider witlterminals and its density iéc(s) + Z{zl di) /7. We pick the index

which minimizes this density and we return the subgrBphduced by the vertices of the union of these paths. It
is easy to see that the density of this graph is no more thagethsity of best density spider.
O

Let I; be the instance at the beginning of itieiteration of the algorithm; we use indéxo refer to the values
of the variables in iteration. So in iterationi, 7; will be the set of terminalsy; = |T;|, OPT; be the value of the
optimum LP for instancé;, I'; will be the best density subgraph found in Step 1, &ndiill be the best density
spider.

The following lemma is the key lemma in the analysis of ouodthm (the proof of this lemma is relatively
long and we defer it to Appendix A).



Lemma 4.4 For every iteration; > 1, the density of the best density spider is no more thary / ;.
Lemma4.5 For every iterationi > 1. E(OPT;, ;) < OPT;.

Proof. Let z}, f be an optimal feasible solution to the instange Since in instancd;;; only the value of
demands have changed;, f is also a feasible solution th;. We show that the expected cost of this solution
on/;, is the same asPT;. To do so, for every termindle T; leta(t) = > p, £(p) - f7(p). By this definition
OPT; = > ey c(v) - zf(v) + X e 6(t) - a(t). For every terminat ¢ Ty, its contribution to the total cost
remains unchanged. On the other hand, the expected cdidritaf the terminals of’; in the I; 1, is exactly

> ter, 0(t) - a(t). Since ther values have not changed, thereforg, f is a feasible solution fof;; with
expected value at mosiPT;. O

Proof of Theorem 4.1. Since at each iteration we aggregate some of the demandsnatterminal, at the end
we have a solution which routes all the demands to the roath&umore, the cost of routing the demands of the
terminals ofT’; to the center node selected is no more than twice the cdst tierefore, using Lemmas 4.3 and
4.4, the cost added to the solution at each iteratisrat mos2|7'(I';)| - OPT! /h;. Using linearity of expectation

and Lemma 4.5, the expected total cost of the solution is at ng.., 2|7°(T";)| - OPTk =OPT" > ;5 2|T B, ol —
O(log h).OPT".

We can make the decision of selecting the center in Step 2dlgorithm deterministic using the method of
conditional probabilities. Once we have found the bestithegsaphT’;, we consider each terminak T'(T';) as
being a potential center. Then using the solution to theeciltP we compute the cost of the modified LP which
is obtained by assumingbeing the center for re-routing in; (this can be easily done using the arguments given
in the proof of Lemma 4.5). We choose the termihal 7'(I';) which minimizes the LP cost as the center for this
iteration. O

5 Node-Weighted Non-Uniform Multicommodity Buy-at-Bulk

Our main result of this section is as follows.

Theorem 5.1 There is a polynomial time algorithm for NMC-BB with @fmin{log® h log D, log® h log log h})
approximation ratio, wheré is the number of pairs and is the sum of the demands of all pairsin

More specifically, our algorithm achieves &r{~(h?)log® h)-approximation wherey(n) is the worst case
upper bound on the distortion in embedding a finite metricigedl by an vertex weighted undirected graph
into a probability distribution over its spanning treesislknown thaty(n) = O(log? nloglog n) [11] and that
~v(n) = Qlogn) [2]. The proof of Theorem 5.1 borrows ideas from [7] on edggghited multicommodity
buy-at-bulk network (MC-BB) design. A main ingredient totain anO(log® hlog log h)-approximation ratio
is to use the integrality gap obtained in Theorem 4.1. We shsaw that using a greedy algorithm similar to
the one in [7] for MC-BB and also similar to the algorithm of&item 3.1 we can obtain ad(log® hlog D)-
approximation for NMC-BB. For this we develop a polyloganitic approximation algorithm for a variation of
the NSS-BB problem. This latter result is inspired by theknairKlein and Ravi [26] and our earlier work [22].

Overview of thealgorithms: The general structure of our algorithms is similar to theg&] for the MC-BB and
follow a greedy scheme in an iterative fashion. In eachfti@nave find a partial solution that connects a subset
of the pairs that remain at the beginning of the iteratione Thnnected pairs are then removed. dhasityof

the partial solution is the ratio of the total cost of the @hgolution to the number of pairs in the solution. We
prove that the density of the partial solution computed atye¥teration is a polylogarithmic factor away from
the density of the optimum solution. As in [7], a key ingredien our proof is to show thexistenceof a partial
solution with a very restricted structure, callgaiction-tree Given a subsetl of the pairs, a junction tree fof
rooted atr- is a treeT’ containing the end points of all pairs i such that the unique path connecting every pair
of A goes viar. The cost of the junction-tre€ is

Z Cy + Z 0i - (Up(rys;) + bp(r,t;)).

veV (T sit;€EA



In other words, the pairs id connect via the junction. Note that if the sedl andr are known, a junction-tree
is essentially an instance of the single-sink problem N&S\Be prove that given an instance of NMC-BB there
is always a low density partial solution that is a junctioget We give two different proofs; one achieves a better
bound (by a logarithmic factor) for the uniform demand ca$derthe other achieves a bound independenb of
for the general case. The problem of finding a low densitytjonetree is closely related to the density variation
of NSS-BB, called den-NSS-BB in which we want to find a solutigith minimum density i.e. the ratio of total
cost over the number of terminals spanned (v.s. the totdlasos SS-BB). We present two different methods
to compute a low density junction tree. For arbitrary densawe use an LP relaxation to solve the problem
approximately. In particular we use Theorem 4.1 and obtai®@og? h)-approximation for den-NSS-BB and
by a slight modification a similar ratio for finding the beshdiy junction-tree. For the case thatis polynomial
in h, we present greedyalgorithm, that is simple and efficient to implement. Pujftingether these ingredients
give us the poly-logarithmic approximation for NMC-BB.

5.1 Two Junction Tree Lemmas

In this section we present two lemmas about the existencanatipn trees. One works for arbitrary demand
functions and gives an upper bound@fy(h?) - OTPT). The other one (using a different proof technique) gives a
better bound for the case that the sum of demadndss polynomial inh.

Lemma5.2 (Junction tree lemma for arbitrary D) Given an instance of NMC-BB ah pairs there exists a
junction-tree of density) (v(h?) - OFT).

The proof of this lemma follows the same steps as Lemma 3:2].inr{ particular, we will need the following
two lemmas. We only give the sketch of the proof of the secoraas it is slightly different from that in [7].

Lemma5.3 Given an instance of NMC-BB di = (V, E) there is an optimum solutio®’ = (V' E’) such that
the number of vertices i@’ of degree more tha@ is at mostmin(n, h?).

Lemma5.4 Given an instance of NMC-BB aid = (V, E) there is anO(v(h?))-approximate solutiorG’ =
(V' E') such that’ is a forest.

Proof Sketch. Consider an optimum solutio’ = (V’, E’) to NMC-BB. Without loss of generality we assume
that G’ is connected (as we can do the following to each of its comgecomponent) and all vertices &f are

in our solution. The cost of the solution 8,y ¢(v) + S_1—, 8; - £ (s:, t;). We obtain a new graph” from

G’ on the same vertex and edge set except that the edges (inftdadvertices) have lengths. For each edge
e = uwv € G” assign a lengtlf(e) = (¢(u) + ¢(v))/2; now drop the costs and lengths on the vertices. An
observation that will be used soon is that for any path G”, the length of the path i&” is within factor two of
the length of the corresponding pathGh.

From the definition ofy(n), there is a probability distribution over the spanningsre&G” with the following
property: for any pair of verticesuv, their expected distance in a tree chosen from the disiibig at mosty(n)
times their distance iv”. Using linearity of expectation and the observation statbdve, this implies the
existence of a tre@' in G” such that the sum of the distances of the pairs times theiaddmin7" is no more
than~(n) times the sum of the distances of the pairs times their desiar@', i.e.

252‘ Ar(sisti) <v(n) - Z@' A (si, ti)-

Note that on the LHS/ is w.r.t. edge lengths v.s. on the RHgy is w.r.t. vertex lengths. SincE contains
all the vertices ofz”, andG” andG’ have the same vertex set, the fixed cost of vertices i at most the fixed
cost of vertices in our initial solution. Since the edge%'afre a subset of those (i’ and thus=’, the edge-length
of a path inT is within a factor 2 of the vertex-length of the correspomgdpath inG’. Therefore, the tree i’
corresponding t@" is anO(~(n))-approximation to the optimal solution. We can use Lemmad®igprove the
bound toy(h?) whenh is small compared ta. O

The proof of the following lemma follows similar steps as gieof of Lemma 3.4 in [7]. We skip the details.
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Lemma 5.5 (Junction tree lemma for ponnomialg/ bounded D) Given an instance of NMC-BB with unit de-
mands there is a junction-tree of densitylog - TPT). For the general case with total demaiiy] there exists

a junction-tree of densit(log h - 2PT).
5.2 Approximation Algorithmsfor Min-density Junction Tree

In this subsection we give ai(log? h)-approximation algorithm for den-NSS-BB and min-densitygtion tree.
Consider the following LP relaxation of den-NSS-BB. Forleserminalt;, we have an additional variabig that
indicates whethet; is chosen in the solution or note. We have normalized the sm; to 1.

LP-NSSD min 37,y c(v) - 2(v) + Y 1er 6(t) 3 pep, £(p) - £(p)

subject to: Sieryr = 1
szPt|UEp flp) < z(v) veV, teT
ver, f(P) = teT
x(v)af(p)7yt > 0 veV, peUP

Theorem 5.6 There is anD(log? h)-approximation for den-NSS-BB.
Corollary 5.7 There is anO(log? h)-approximation for computing min-density junction tree.

The reader is referred to Appendix A to see proofs of Theordmabd Corollary 5.7.
5.3 A Greedy Approximation Algorithmsfor Min-density Junction Tree

Here we describe the overview of an algorithm for NMC-BB wiittiio O(log® h - log D). The algorithm is
essentially the same as the greedy algorithm for MC-BB ingifd follows similar steps to the algorithm of
Theorem 3.1. In other words, it tries to find a partial solutwith good density at every iteration. We describe
briefly the general idea of the algorithm for MC-BB (from [@hd the differences with the one for NMC-BB.
The main ingredient in the greedy algorithm for MC-BB is apximation algorithm for the shallow-light trees
described here.

Shallow-light k-Steiner Tree (KSLT): The instance to shallow-ligtit-Steiner problem is a graghi(V, E), with

edge-weight functior : £ — R and edge-length functioh: £ — R ™, a collectionT of terminals containing

aroots, a numbelk, and a diameter bountl. The goal is to find ar-rootedk-Steiner tree that hakdiameter at

mostL, and among all such subtrees, find the one with mininatsost. A(p1, p2)-approximation algorithm for
the shallow-lightk-Steiner problem finds astrootedk-Steiner tree with diameter at mgst- L and cost at most
po - B with B being the optimum cost for faSteiner tree of diametdt. The algorithm in [7], uses the following
result from [22] for theedge-weightedersion of shallow-light trees:

Theorem 5.8 [22] There is an(O(log k), O(log® h))-approximation algorithm for the edge-weighted shallow-
light k£-Steiner tree problem which findska8-Steiner tree.

The algorithm for MC-BB follows steps similar to those of alighm of Theorem 3.1. The main procedure
which tries to find a good density partial solution has a sesHghase and sinks-phase and at each phase it finds
best-density trees rooted at a nadéor that purpose, it uses the algorithm of Theorem 5.8datsof D-NWST).

The analysis is similar to that of Theorem 3.1 but somewhatenmvolved (because here we have two weight
functionsc and?); we skip the details of the analysis from [7].

Our greedy algorithm for the NMC-BB follows the same paradidror that we need a node-weighted version
of Theorem 5.8. We define the node-weighted shallow-lighir®et trees similarly:

Node-weighted shallow-light k-Steiner tree (NKSLT): we have a grapltZ(V, E'), with node cost function

c:V — R and length functiorf : V' — R ™, a collectionT of terminals containing a roat, a numberk, and
a diameter bound.. The goal is to find as-rootedk-Steiner tree that hasdiameter at moskt, and among all
such subtrees, find the one with minimunsost.
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Lemma5.9 There is polynomial-time algorithm s.t. given an instance of NKSLT, findé &-Steiner tree with
diameter at mosO(log h - L) and cost at mosO (log® h - OPT) whereoPT the cost of an optimurk-Steiner
solution with diameter bound.

Using this lemma, an algorithm similar to the one for MC-BBegi anO(log® hlog D)-approximation for
NMC-BB. So what is left is to prove Lemma 5.9. This algorithioriows ideas from the algorithm of [22] for
(edge-weighted) shallow-light-Steiner trees (Theorem 5.8) and [26] for node-weighteih&tdree. Here we
briefly describe the similarities and differences. The atgm for Theorem 5.8 is a greedy algorithm that starts
from every terminal as a single-component. At every iterait tries to connect two components by a “cheap”
path. Once a path is found the two components are merged meto \We continue until we have a component
with at leastk /8 terminals. The exact definition of a cheap path is such thatamecharge the cost of the path to
the nodes in the two components merged and this cost shoatdbest a polylogarithmic factor of the optimum
density (there are some technical details that we omit h&fe algorithm for Lemma 5.9 has a similar structure.
The main difference is that at each iteration, instead ofifiitpé cheap path that connect two terminals (at good
density) we try to find a best density spider. The algorithmfifeding the best density spider is the same as the
one for Lemma 4.3. Once we have found a good density spidendaced to the density of the optimum) we
merge the components it spans. We continue this until theratdeast: /8 terminals in one component.
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Procedure Partial
Input: 7’ the set of remaining pairs to be connected
Output: A partial solution connecting at least one pairiof

Let7” «— 7'andh' = |7}
While7” # () Do

Let s be an arbitrary source "
LowDens « True; V, «— 0
Repeat /* The sources-phase starts /*
Find the best density trel; rooted ats with sources being the terminals
if ¢(Fy)/|T(Fs)| < 8a.0PT/R then
e Add all the vertices of; to V,
e Contract all ofF, into s and set the cost ofto zero.
else LowDens <« False
Until LowDens = False
Let X be set of sources ili; andY” be the sinks whose corresponding source Xin
V; < 0 and letr = | X|
Repeat /* The sinks-phase starts /*
Find the best density trel, rooted ats with the nodes i being the terminals.
Add all the vertices of} to V;
Contract all ofF; into s and set the cost afto zero.
Until (V; has at leasfz/32] sinks of the sources iX)
If density ofV; U V; is at most384« - OPT/A/ then returnV; U V;
else discard from7” all the pairs whose sources areXn

Figure 2: Procedure Partial that is called iteratively i@ thain algorithm for Theorem 3.1

A Omitted Proofs

Proof of Lemma 4.4. Consider some iteration> 1 of the algorithm and leR?; be the ratio of the best density
spidersS; (so the density of subgragdh is no more tharR;). For every terminat we compute a ball of radiuB;
with the center of in the following way. For each vertex we define the weight of to bec(v) + §(t) - £(v).
Now the distance of every vertexfrom ¢ is the sum of the weights of the nodes on the shortest path frton
using this weight function (countingtoo); we denote it bylist(v, t). A ball of radiusR; aroundt contains some
vertices fully and some vertices partially; for every verteand terminat;, 0 < VM, (v) < 1isthe fraction ofcost
of v and0 < o, (v) < 1is the fraction ofengthof v that belongs to ball of;. We will maintain the property:

Yo : Z Y, (v) < 1. (4)
t;€T

Also, whenevety, (v) > 0 we will haveo,, (v) = 1. All the nodesv with dist(v, ;) < R; are fully contained
in the ball of terminak;, denoted by, ;; so0y;; (v) = o, (v) = 1. First note that:

Claim A.1 If a vertexv fully belongs to a ballB;; (i.e. v, (v) = 1) then it cannot fully belong to any other ball
By, .

Proof. We prove this by way of contradiction. Assume thdtilly belongs to two balls3,; and B,, . Therefore,
if p; andp;, are the paths from; andt, to v respectively, thenlist(v,t;) = d(¢;) - (pj) + c(p;) < R; and
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dist(v, t) = 6(tx) - L(pr) +c(pr) < R;. WLOG assume thai(t;) < 6(t;) and consider the spider WhICh consist
of the path between; andt; with ¢, being the center. The densﬂy of this spider is at r@étt (U(pj) +
Upr) —L(v)) + c(pj) + c(pr) — c(v)] (we have subtractef{v) andc(v) because appears in both paths). Since
at least one of(v) or ¢(v) is positive, this ratio is strictly smaller tha®;, contradicting the assumption th&f is
the ratio of the best density spider.

O

Now we describe how the vertices that do not fully belong tp laall can partially be part of a ball. For a
terminalt; and vertexv that does not fully belong to any ball, suppose tfiat(v,?) > R; and letp,, , be the
shortest path from; to v. If the last vertex on the path before call it v, hasdist(u,t) < R; then we say ball
By, is within reach ofv andv will belong to this ball fractionally. We define this fractias follows. Assume
that ballsB, ..., By, (with centers,,,...,t,,) are the balls that are within reachaf Let dt (1<ji<k)

be the dlstance froml to the last vertex (before) on the shortest path frory,; to v; so dt < R;. Define
Pta;, = R, — d; 0y . In a sense, we could still continue on the shortest path ﬁ;prm v for up tOptaJ before the
distance becomeR;. If Pta; = §(ta;)-£(v) then we deflnertaj( v) =1; other\leeataj( v) = ptaj/((S(ta]) L(v)).

Claim A.2 For every vertex that is within reach of the ball&,, ,..., B

ap "

k k
U) Z Utaj (U) : 5(ta3) 2 Z ptaj .
=1 =1

Proof. By way of contradiction assume not. First consider thosmitelst,, for which Tta, (v) < 1. For
these Ot (v) - L(v) - 6(ta;) = Pta,- SO We can subtract them from both S|des. What remains ase tieomi-
nalst,, for which ot, ( ) = 1. For simplicity, let's assume that for &, , ..., ¢, we haveataj = 1. Then

the union of shortest paths frotg,’s to v forms a spider with center and total cost at mos{tzé‘?zl dtaj) +

( (v) +€(v )Zj 10(tq )) < Zle(dtaj + pr,;) = k- R;. Thus there is a spider with density smaller thign
a contradiction. |

Now we are ready to define the fractio,ﬂlj (v) of (cost of) vertexv that belongs to balBtaj (with center
tq;)- We define:

ta. — Otg. (U '5taj (v
= POl ) L)

Note that by this definition, if;, (v) <1 then;, (v) = 0and ifoy, = 1theny, (v) > 0. Itis not hard
to see that from Claims A.1 and A.2 it follows th@le Vi, (v) < 1. So we maintain Inequality (4) as wanted.

For consistency, if a vertex does not belong (fully or partially) to any ball we sgfv) = 0 for all terminalst.
Finally we note that a vertex that fully belongs to any baftmat fully or even partially belong to any other ball.

Now we proveoPT' > h; - R;. From this, the lemma follows immediately. To prove this, sf®w the
existence of a dual feasible solution with value at légst R;. Since the value of the dual solution is a lower
bound foroprT; the statement follows. Below is the dual program to LP-NSS:

DP-NSS max . y(t)
subject to: douerz(v) < oc(v) veV
y(t) - Zvep Zt(U) é 6(t) : E(p) p € Pt> teT
y(t),z(v) > 0 veV,teT

Consider the following solution to DP-NSS: ggt) = R, for all terminalst and for every vertex setz;(v) =
7¢(v)-c(v). We claim that this is a feasible solution to DP-NSS. Usingdipn (4), constrain} _, . z:(v) < c(v)
is never violated. Now we consider the other constraintst tLe T be an arbitrary terminal angd € P; an
arbitrary path.
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e Case 1:if all the vertices on pathy either fully belong toB; or do not belong taB; at all then for the
last vertexu on p that fully belongs taB; we must havelist(u,t) = R;. Otherwise either the next vertex
on the path partially belongs tB; (which contradicts our assumption) or the next vertex,i;n which
case pathp has distance strictly smaller thd®) and so forms a spider with density smaller than Thus

6(t) - €(p) + X pep 2t (V) = 6() Xpep s (w)=1 0t (V) - L(v) + 2o € pz(v) = R; = y(t), or equivalently
y(t) = 2vep 2(v) = 6(t) - £(p).

e case 2:Letu be the first vertex on path(from ¢ to r) with 0 < +(u) < 1. Note that all the vertices before
uonp fully belong toB;. Letd, =}, .. ()=1(c(v) +0¢(v) - 6(t) - £(v)). We should point out that for all
v’s considered in this sunay (v) = 1 (becausey(v) = 1), and thatd; < R; (because: partially belongs to
the ball oft). Letp — u denote the path with vertexu removed. Since; (u) - c(u) + oy (u)-0(t) - £(u) = py
(by definition of+;(u)) andd; + p; = R; we have:

5(t) - L(p) + Y u(v) = (5(t) p—u)+ Y zt(”v)> + (6(2) - L(u) + z¢(u))
> dt—i-at(u) (5(t) E(’U,) —i—’yt(u) c(u)
= di+py
= Ri=y(t).

Or equivalentlyy(t) — >, 2t(u) < 6(t) - £(p).

Hence, none of the constraints are violated and so thereeigsible solution to DP-NSS with valdg - R;.
This is also a lower bound fapT;. 0

Proof of Theorem 5.6. The proof is similar to that of Theorem 4.2 in [7]. The mainfelience is that here
we use Theorem 4.1. Consider an optimum solution to LP-NS8®obtain disjoint subsets of the terminals
T1,72,...,7, as follows. Letyn.c = max;y,. For0 < a < 2[logh], let7, = {t; | Ymax /2911 < Y, <
Ymax/2%}. Thusp = 1 + 2[log h] = O(logh). Itis easy to see that there is an indesuch thatztjeﬂ Y, =

Q(1/log h). From this we also have that/|7;| = O(log k). We now solve an NSS-BB instance @ We claim
that the resulting solution is ail(log? h)-approximation to den-NSS-BB. To prove this, debe the value of the
optimum solution to LP-NSSD on the given instance. Noteithae scale up, by a factor &+ /4., the given
optimum solution to LP-NSSD we obtain a feasible solutioh FeNSS on the terminal s&§. The cost of this
scaled solution to LP-NSS #+!a. Since the integrality gap of LP-NSS@log k) (by Theorem 4.1), we obtain
an integral solution that connects each termindljito the root such that cost of the solution(glog h) - 2°*a.
The density of this solution is therefo@(log h) - 2°*'a/|T,| which is O(log? h)a. Thus the integrality gap of
LP-NSSD isO(log? h) yielding the desired approximation. O

Proof of Corollary 5.7. Given an instance of NMC-BB, we consider each source or sr&ktarminal. Also, for
every pairs;, t; we add the following set of constraints to the LP-NS3D:= y,,. This ensures that either we
include both ofs; andt; in the tree or none of them. The rounding scheme in the prodhebrem 5.6 extends
to this LP and so we get afi(log? h)-approximation for the min-density junction tree problem. O
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