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APPROXIMATION ALGORITHMS FOR
MINIMUM-TIME BROADCAST *

GUY KORTSARZ AND DAVID PELEG

Abstract. This paper deals with the problem of broadcasting in minimum time in the tele-
phone and message-passing models. Approximation algorithms are developed for arbitrary graphs as
well as for several restricted graph classes.

In particular, an O(vfvT)-additive approximation algorithm is given for broadcasting in general
graphs, and an O(log n/ log log n) (multiplicative) ratio approximation is given for broadcasting in
the open-path model. This also results in an algorithm for broadcasting on random graphs (in the
telephone and message-passing models) that yields an O(log n/ log log n) approximation with high
probability.

In addition, the paper presents a broadcast algorithm for graph families with small separators
(such as chordal, k-outerplanar, bounded-face planar, and series-parallel graphs), with approximation
ratio proportional to the separator size times log n. Finally, an efficient approximation algorithm is
presented for the class of graphs representable as trees of cliques.
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1. Introduction.

1.1., Minimum-time broadcast. One of the most important efficiency mea-
sures of a communication network is the speed by which it delivers messages between
communicating sites. Therefore, much of the research in this area concentrates on
developing techniques for minimizing message delay.

This work concerns efficient algorithms for broadcast in a communication network.
The network is modeled by a connected graph and assumes the telephone communica-
tion model (cf. [HHL88]). In this model messages are exchanged during calls placed
over edges of the network. A round is a series of calls carried out simultaneously: Each
round is assumed to require one unit of time, so round t begins at time t- 1 and ends
at time t. A vertex may participate in at most one call during a given round, however,
there are no limitations on the amount of information that can be exchanged during
a given call. At a given round, if a call is placed over an edge e, we say that e is active
in this round, otherwise it is idle. The set of rules governing the activation of edges
at each round is called a schedule.

A broadcasting problem refers to the process where a distinguished vertex v orig-
inates a message M that has to become known to all other processors. The efficiency
of a broadcast scheme is usually measured by the number of time units it takes to
complete the broadcast. Given a scheme S for broadcasting in a graph G, denote the
broadcasting time from v using S by b(v, G, S). Define b(v, G), the broadcast time of
a vertex v in G, as the minimum time for broadcasting a message originating at v in
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402 GUY KORTSARZ AND DAVID PELEG

G, i.e.,
G) G,

We denote it simply by b(v) when the context is clear. We denote

b(G) mvax{b(v
Given a network G (V, E) and an originator u, the minimum broadcast time (MBT)
problem is to broadcast the message from u to the rest of the vertices in b(u) time
units. This problem has received considerable attention in the literature. For example,
broadcasting in trees is studied in [SCH81], and broadcasting in grid graphs is studied
in [FH78]. For a comprehensive survey on the subject of gossiping and broadcasting
see [HHL88].

The MBT problem in general graphs is Ne-complete (cf. [GJ79]) and, thus, is
unlikely to be solved exactly. However, several approaches toward coping with the
MBT problem have been considered in the literature. A dynamic programming for-
mulation for determining b(v) and a corresponding broadcast scheme for an arbitrary
vertex v are proposed in [SW84]. Since the exact algorithm is not efficient for large
networks, several heuristics are presented in [SW84] for achieving a broadcast scheme
with good performance.

Note that at each round, the informed vertices transmit the message outside to the
uninformed vertices. Since calls are placed along nonadjacent edges, the set of active
edges at each round constitutes a matching between the informed and the uninformed
vertices. In general it may be preferable to transmit the message first to vertices with
certain properties, e.g., to vertices whose degrees are maximal among the uninformed
vertices and thus are likely to be able to inform a large number of vertices. Thus the
approach of [SW84] is based on assigning weights to the vertices and looking for a
matching that also maximizes the sum of the weights of the vertices. The drawback
of such a heuristic approach is that it provides no guarantee on the performance of
the algorithm.

Consequently, in this paper we consider approximation schemes for broadcast,
namely, algorithms that may not give an exact solution but still give a solution that
is guaranteed to be "not too far" from the optimum.

1.2. Related communication models and primitives. Most of our results
in what follows are formulated for the broadcast operation in the telephone model.
However, a number of these results apply directly, or with minor changes, to some other
related communication primitives and models. Let us now introduce these alternate
models and primitives.

A generalization of broadcast that we consider is to assume the set V0 of informed
vertices at the beginning of the run need not consist of a single vertex but can be an
arbitrary subset of V. Denote this problem by SMBT, and denote the time needed to
broadcast from V0 by b(Vo, G) or b(Vo). As mentioned in [GJ79], SMBT is NP-complete
even for k 4 where k is the bound on the time for completing the broadcast.

Another important and well-studied communication primitive is the gossip oper-
ation. A gossip problem refers to the process of message dissemination, where each
vertex v originates a message my and all messages have to become known to all ver-
tices. The problem of performing the gossip primitive in minimum time is called the
minimum gossip time (MGT) problem. The problem of efficient gossiping has also
received considerable attention, mainly in the telephone model. For example, the pa-
pers [HMS72], [FP80] concern gossiping on the complete graph and on grid graphs,
respectively.
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APPROXIMATION ALGORITHMS FOR MINIMUM-TIME BROADCAST 403

Let us now turn to alternative communication models. Several generalizations of
the telephone model appear in the literature. In [Far80], Farley suggests reconsidering
the assumption that a vertex may call only neighboring vertices. Farley defines a
possible variant of the model using long-distance calls, called the open-path model. In
the open-path model, communication is carried along vertex disjoint paths. At each
round, an informed member v may call an uninformed vertex u on an (arbitrarily
long) path, adding u to the set of informed vertices. Two paths corresponding to
two different pairs must be vertex disjoint. We note the time needed to complete the
broadcast from a distinguished vertex v in the graph G in the open-path model, by
bop(V, G) (or bop(V)). We also denote

The problem of broadcasting from a vertex v in bop(V, G) time units is referred to in
what follows as OMBT.

In fact, Farley defines a second "long-distance" variant named the open-line
model. This model is similar to the open-path model, except that the paths used
in a communication round need only be edge disjoint. This model is less interesting
for our purposes, since the problem of approximating broadcast in this model is es-
sentially solved up to logarithmic factors. This is because, as shown in [Far80], the
open-line model enables broadcast from an arbitrary vertex in [log n] time units.

Another common model of communication is the message-passing model, which
is based on the assumption that a processor may send at most one fixed-size message
in each time step, along one of its outgoing edges, but the communication pattern
need not be a "matching." That is, it is possible that Vl sends a message to v2 while
during the same round v2 sends a message to v3.

1.3. Contributions. In what follows we consider approximation schemes for
broadcast (and some related primitives). Formally, we call an algorithm A for broad-
casting on a family of graphs " a k-approximation scheme if for every G E 9r and
vertex v E V,

b(v, a, A) <_ k b(v, a).

We say that a scheme S has a (k, M)-approximation ratio if

b(v, G, S) <_ k b(v, G) + k’.

A ratio is k-additive if it is an (O(1), k)-approximation ratio.
In this paper, we give approximation schemes for broadcast on several networks

classes and analyze their approximation ratio.
The next two sections are dedicated to preparing the background for our approx-

imation algorithms. Section 2 introduces the basic notions and definitions concerning
transmission schedules and broadcast. Next, 3 presents some of our main technical
tools. Specifically, it defines the minimum weight cover (MWC) problem and its close
variant named the minimum vertex weight cover (MVWC) problem and provides a
pseudopolynomial algorithm for solving them. The usefulness of this algorithm for
handling transmission scheduling problems is demonstrated via a "toy example" of
the bipartite edge scheduling (BES) problem. The MWC algorithm is used in virtually
all our subsequent approximations for MBT.

In 4 we turn to approximations for the broadcast problem itself. To motivate
the need for approximations, we examine three heuristics proposed in [SW84] for the
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404 GUY KORTSARZ AND DAVID PELEG

MBT problem, analyze their behavior on the wheel graph (see Fig. 2), and show that
their output solution could be away from the optimum by a factor as high as v/ (on
the n-vertex wheel). We then give an approximation algorithm for general n-vertex
graphs with an O(v/-)-additive ratio.

Next, we show that in the open-path model, the OMBT problem has an approxi-
mation algorithm on arbitrary n-vertex graphs with a (multiplicative) approximation
ratio O(log n/log log n). This algorithm has the additional desirable property that it
solves the MBT problem (in the original telephone model) on random graphs (taken
from the class Gn,p) and yields an approximation ratio O(log n/loglogn) with high
probability.

Section 5 presents an approximation scheme for broadcasting on graphs enjoy-
ing small separators, with approximation ratio (n)-logn for graph families with
separators of size (n) (on n-vertex graphs). In particular, this algorithm yields
an O(log n) approximation for chordal and O(1)-separable n-vertex graphs (including
series-parallel graphs and k-outerplanar graphs for fixed k) and an O(nl/4/v/logn)
approximation for n-vertex bounded-face planar graphs.

Finally, in 6 we consider a special family of graphs called trees of cliques, gener-
alizing trees, and give an approximation scheme for broadcasting on such graphs with
additive-O(log2 n) ratio.

Our results for the broadcast operation carry over to the gossip operation as well.
To see this, note that in the telephone model, any scheme for broadcast can be used
to perform the gossip operation. This is done as follows. First, fix a root vertex v
and perform a convergecast operation (which is the opposite primitive to broadcast),
collecting all the messages from the rest of the vertices to v, using the broadcast
scheme in reverse. Then v, knowing all the information, performs a broadcast of the
combined message. It follows that our results for MBT hold for MGT as well.

Although we formulate our statements in the telephone model, virtually all our
results for broadcast hold also for the message-passing model, since as far as the
broadcast operation is concerned, these two models are equivalent in power. (This is
no longer the case for more involved operations, such as gossip.)

2. Preliminaries.

2.1. Graph definitions. Throughout this paper we use the following terminol-
ogy to describe the behavior of the network. Our network is represented by a graph
G (V, E), and we denote the number of vertices of a graph G by n and the number
of edges by m.

Given a graph G (V, E) and two vertices v, w E V, we denote the number
of edges in a shortest path between v and w by dist(v, w). We denote Diam(v)
max{dist(v, w)}. The diameter of the graph G is Diam(G)- maxv{Diam(v)}.

A cluster in a graph G is a subset V of the vertices such that the subgraph induced
by V is connected. Two clusters V, V are said to be disjoint if V 3 V --0. Two
disjoint clusters C1 and C2 are said to be independent if there is no edge connecting
a vertex of C1 to a vertex of C2.

DEFINITION 2.1. Let G (V, E) be a graph, and let S c V be a subset of the
vertices. A subtree T (V, E of G rooted at a distinguished vertex vo is a shortest
paths tree (SPT) leading from v0 to S iff S C_ V1, each path from vo to vi S in T is
a shortest path in G, and every leaf of T belongs to S. Denote an SPT leading from a
vertex vo to a set S by SPT(vo, S).

We now state the definition of a control graph of a subset V0 C_ V, in a graph
G (V, E). This definition will be useful in most of our approximation algorithms.
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APPROXIMATION ALGORITHMS FOR MINIMUM-TIME BROADCAST 405

DEFINITION 2.2. Suppose that the clusters (i.e., connected components) formed
when extracting Vo from the graph G are (C1,..., Ck}. The control graph of Vo in
G is a bipartite graph Dvo,G (V1, V2, A), where V1 V0, V2 (C1,..., Ck), and A
contains an edge (v, Ci) iff there is an edge between v and some vertex of Ci in G.

2.2. Schedules and broadcast.
DEFINITION 2.3. Given a graph G (V,E), two edges el,e2 E E are called

adjacent iff they share exactly one vertex and nonadjacent otherwise. A subset of
edges E E is an independent set (of edges) iff every two edges el, e2 E are
nonadjacent.

Fact 2.4. At each round t, the set of active edges is independent.
The MBT problem is formally defined as follows. Let v0 V be a distinguished

vertex. A broadcast from v0 is a sequence

{V0} V0, El, V1, E2, Ek, Vk V

such that for 1 _< _< k, the following hold.
1. C_ V and Ei C_ E.
2. Each edge in Ei has exactly one end point in k-l.
3. The set Ei is an independent set of edges.
4. Y -1 J (v "(u, v) E}.
In this case we say that the broadcast is performed in k time units. The MBT

problem concerns looking for the minimal k such that broadcasting in k time units is
possible, for a given graph G and vertex v0. This k.is denoted b(v0, G).

For any connected graph G of n vertices and originator u, b(u) >_ [log n ,1 since
in each time unit the number of informed vertices can at most double. Another simple
lower bound for b(v) for an arbitrary v is b(v) >_ Diam(v), since a vertex may only
send information to a neighboring vertex at each round. An example of a graph for
which b(G) [log n is gn, the complete graph of n vertices.

In any connected graph G, a broadcast from a vertex u determines a spanning tree
rooted at u. The parent of a vertex v is the vertex w that transmitted the message to
v. Clearly, one may assume that such a vertex is unique. Even when using an arbitrary
spanning tree, it is clear that at each step the set of informed vertices grows by at least
one. Thus for each network G, b(G) _< n- 1. We cannot always improve upon this
result. For example, in Sn, the star of n vertices, the broadcast time is b(Sn) n- 1.
We summarize this discussion as follows.

Fact 2.5.
1. For every graph G (V, E) and vertex v V, [log n <_ b(v) <_ n- 1.
2. b(gn [log n
3. b(Sn) n 1.
4. For every graph G- (V, E) and vertex v V, b(v, G) >_ Diam(v).
Note that Fact 2.5 holds in the open-path model as well, except of course for

claim 4; we cannot argue that bop(G) _> Diam(G).
3. The minimum-weight cover problem. The MWC problem is a basic tool

we use in our approximation algorithms for MBT. In this section we define the problem
and provide a solution for it.

3.1. The problem. In order to describe the MWC problem we need some pre-
liminary definitions. Let G (V1, V2, A,w) be a bipartite graph with bipartition

All logs in this paper are taken to base 2.
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406 GUY KORTSARZ AND DAVID PELEG

(V1, V2), edge set A, a weight function w A H Z+ on the edges, and no isolated
vertices. A feasible solution to the MWC problem is a control function F V2 -- V1,
where F(v2) vl implies (vl, v2) E A. Each vertex vl E V1 is called a server, and
each vertex v2 V2 is called a customer. If F(v2) Vl we say that Vl controls (or
dominates) V2.

We adopt the following notational convention.
DEFINITION 3.1. Consider a bipartite graph G (V1, V2, A,w) as above and a

control function F. For each server v V1, we denote the clients dominated by v by
T)I (v),..., T)k(v) and the edges connecting them to v by e (v, T)(v)). Furthermore,
we assume (without loss of generality) that these vertices are ordered so that w(e) >_

i.
The weight of F is defined as

W(F) max{max{/+ w(e)}}.
vEV1

The MWC problem is now defined as follows. Given a bipartite graph G
(V1, V2, A, w) as above, determine a control function F" V2 V1 whose weight
is minimal. We call this function F the minimum control function for G (or just the
minimal function).

It is important to note that in all the applications to the MWC problem given in
this paper, the weights satisfy w(e) <_ n. Thus, in order to use this problem as a basic
auxiliary tool for the study of MBT, a pseudopolynomial solution for it will suffice.

A special variant of the MWC problem arises when for each v2 V2 the weights of
the edges entering v2 are identical. In this case, we might as well associate the weight
with v2 itself. We call this variant of the problem the MVWC problem. If all the
weights are identical (thus without loss of generality all the weights are 0), a solution
only needs to minimize the maximal number of vertices dominated by a single vertex
of V1, i.e., minimize the size of the largest inverse image of F; hence, it is possible to
use the modified weight function

w’(F)- max I{v2 e V2"F(v2)- Vl}l.
vl EV1

3.2. An algorithm for MWC. This subsection presents a pseudopolynomial
solution to the MWC problem. The algorithm is based on a procedure FLOW, which
given an instance G (V1, V2, A,w) and a positive integer j, checks if there exists a
control function F for G of weight )4;(F) _< j. This procedure is then used to search
for the minimum control function by going over the possible j values.

The solution method employed by Procedure FLOW for this problem involves flow
techniques. Specifically, the procedure constructs a modified flow graph j based on
G and j, with the property that G has a control function F with weight 1/V(F) _< j iff
it is possible to push IV21 units of flow from the source to the sink on (j.

The graph G is modified by Procedure FLOW into ( as follows. Create a source
vertex s and a sink vertex t. Notice that for the function F to be of weight j, a server v
cannot dominate a customer u such that w(v, u) >_ j. Assume that wv is the maximal
weight that is less than or equal to j 1 of an edge incident to v E V1. Duplicate v
into wv + 1 different copies and arrange the copies in an arbitrary order vl,..., vv+1.
For vl, the first copy of v, create a directed edge (s, Vl) with capacity j -w. and a
directed edge (vl, u) with capacity 1, from Vl to every customer u V2 such that
(v, u) A. For v the ith copy of v, _> 2, create a directed edge (s, v) with capacity 1
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APPROXIMATION ALGORITHMS FOR MINIMUM-TIME BROADCAST 407

e f g h i_ V2

A B C D

FIG. 1. A bipartite graph G with its weights, and the corresponding flow graph 3.

and a directed edge (v, u) with capacity 1 to all the customers u such that (v, u) E A
and w(v, u) _< wv i + 1. Finally create for each customer u E V2 a directed edge (u, t)
with capacity 1. See Fig. 1 for an example of a graph G and the associated flow graph

PROCEDURE FLOW
Input: a graph G (V, E) and an integer j.

Construct the flow graph (j.1.

2. Compute the maximal flow on (j from s to t.

Since there are exactly IV21 edges entering t and each of them is of capacity 1,
the maximal flow from s to t cannot exceed IV21. We now claim the following lemma.

LEMMA 3.2. Consider an MWC problem on a given graph G and the correspond-
ing flow graph j constructed by procedure FLOW for some integer j. Then the max-

imal flow from s to t on j is IV21 iff there exists a control function F for G such
that )IV(F) <_ j. Furthermore, the required control function F for G can be computed
efficiently from the flow assignment for j.

Proof. For the first direction, we assume that there exists an integral flow function
for Gj with I1/1 flow units entering t and show how to (efficiently) construct the
required control function F.

Let us note that since each edge pointing from a vertex v2 V2 to t has capacity
1 and all the edges entering v2 have capacity 1 as well, only a single edge entering v2

may carry positive flow of one unit. Hence since the total flow is IV21, one such edge
must exist for each vertex v2 V2. Consequently, define F(v2) Vl such that Vl is
the vertex for which the flow through (vl, v2) is 1.

We need to show that this definition of F meets the requirement, namely, W(F) <_
j. This is shown as follows. Note that since the total flow entering all the copies of
a vertex v V1 does not exceed j, each server of V1 may dominate no more than j
customers in V2. For every server v V1 and integer m, denote the number of v’s
customers Tl(v) such that w(e) >_ m by rm(v); alternatively, recalling that the edges
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408 GUY KORTSARZ AND DAVID PELEG

e are ordered in nonincreasing weight order, we have

r.(v) max{/ w(e’) > m}.

We argue the following.
CLAIM 3.3. rm(V) <_ j--re.
Proof. Consider first the value m wv. Since only the first copy of v can dominate

vertices u such that w(v, u) Wv, v does not dominate more than j -wv such vertices.
Now consider m < Wv. Note that only the copies number 2, 3,..., wv m + 1 can

aid in increasing the value of rm(V), each by at most 1. Thus rm(V)

_
j --Wv + (Wv

m+ 1-2)+ 1 =j-m. D
COROLLARY 3.4. Every 1

_
i

_
k satisfies i

_
j- w(e).

Proof. Let m w(e). By the last claim, rm(v) <_ j m, so it remains to show
that i <_ rm(v). This follows readily from the definition of rm(v).

The remainder of the proof of this direction follows in a straightforward way from
Definition 3.1" since by the last corollary max/{/+ w(e’)}

_
j for every j, it follows

that Via(F) <_ j as well.
To prove the other direction, assume that there exists a control function F for

G such that 142(F)

_
j. Thus each server dominates no more than j customers, and

furthermore v does not dominate more than j- customers whose corresponding
weights are i or larger. We now use F to define a flow function for the flow graph Gj
as follows.

Consider a server v. As before, order its customers T)i(v),..., Tk(V) by nonin-
creasing weights of their edges. Augment the flow through vl, the first copy of v,
by j -Wv, adding a flow of 1 from VI to each of )1 (V),..., )j--wv (V). The weight of
the next client of v, namely, T)j_v+l(v), is smaller than Wv, and therefore there is
a directed edge from the second copy, v2, to that vertex. Thus it is still possible to
augment the flow by 1 through v2. In a similar way, it is possible to continue this pro-
cess and augment the flow by k through all of v’s clients, {/)(v),..., T)k(v)}. Since
this is true for any server, it follows that in total, a maximal flow of IV21 can be
attained.

The minimum weight control function itself can now be found by using procedure
FLOW within a binary search on the possible range of j values. Formally, we do the
following.

PROCEDURE MWC
1. Start with j -- min{w(e)} + 1 and j2 -- max{w(e)} +2. repeat

(a) j - 2
(b) Apply Procedure FLOW to G with j.
(c) If the maximal flow is

/* hence there exists a control function F of weight j */
then set j - j, else set j2 - j.
until j j2 _< jl + 1.

3. Return the minimum control function F corresponding to the maximal flow
computed on (yl.

Clearly, when this process terminates, we are left with a minimum control function
F, whose weight is 14;(F) jl for the value of j upon termination.

The flow computation is performed for at most a polynomial number of times.
Note, however, that a vertex may be duplicated in a number of copies that can equal
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APPROXIMATION ALGORITHMS FOR MINIMUM-TIME BROADCAST 409

the maximal number in the input; hence the solution is not strongly polynomial in
the input. To summarize, we have established the following.

THEOREM 3.5. There exists a pseudopolynomial algorithm for solving the MWC
problem.

Since MVWC is a special case of MWC, we can deduce the following corollary.
COROLLARY 3.6. There exists a pseudopolynomial algorithm MVWC for solving

the MVWC problem.

3.3. The bipartite edge scheduling problem. Before embarking on our main
task of approximating broadcast problems, let us first try to demonstrate the way in
which the MWC algorithm can be used for this purpose. To do that, we introduce
a model problem called the BES problem, which will serve as an illustrative example
for the usefulness of MWC.

The BES problem is defined as follows. Assume that we are given a bipartite
graph G (V1, V2,A) where the vertices of V1 know an initiation message that
must be broadcast to the vertices of V2. That is, the initial set of informed vertices is

V1. Again, call each vertex in V a server and each vertex in V2 a customer.
Further suppose that each customer v2 6 V2 has a task tv. to perform. The

customer must first receive the initiation message before it can start performing
its task. Moreover, the length of the task tv. (i.e., the time it takes v2 to complete
it) depends upon the source of the initiation message, namely, which vertex of V
transmits the message to v2. Formally, for each edge e (v, v2) 6 A there is a weight
w(e) 6 Z+, such that if v2 receives the initiation message from Vl, then it takes
w(e) time units for v2 to complete the task t., starting from the arrival time of the
message.

The BES problem is to minimize the completion time of the entire process, namely,
the time by which every vertex in V2 completes its job. The bipartite vertex scheduling
(BVS) problem is the variant of BES in which every vertex v’ 6 V2 has entering edge
weights that are identical (and hence can be thought of as vertex weights, w(v’)).

To see the relationship between the BES problem and the previously discussed
MWC problem, note that MWC is in fact the main component in solving the problem,
since once a control function F is defined for the graph G, it is intuitively most efficient
for each server v to send the initiation message along its edges in nonincreasing order
of weights. It is therefore easy to see that the following (pseudopolynomial) procedure
will be optimal for BES.

ALGORITHM BES
1. Apply Procedure MWC to compute a minimal control function F for G.
2. Every server v E V1 sends the initiation message to its clients T)(v),...,

7)k(v) in this order.
/* recall that clients are ordered by nonincreasing edge weights */

3. Each customer v E V2 starts performing its task immediately after it is in-
formed.

Fact 3.7. Algorithm BES optimally schedules any BES instance.
Since BVS is a special case of BES, we can deduce the following corollary.
COROLLARY 3.8. There exists an optimal pseudopolynomial algorithm for BVS.
Example. In order to demonstrate the relevance of the BES for broadcasting, let

us consider the following restricted variant of SMBT. Let V0 be the base set of an
SMBT instance. Suppose that when extracting V0 from the graph, the remainder of
the graph becomes disconnected and breaks into k (connected) clusters C1,..., Ck.

D
ow

nl
oa

de
d 

11
/1

2/
14

 to
 1

65
.2

30
.1

00
.1

97
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



410 GUY KORTSARZ AND DAVID PELEG

FIG. 2. The wheel of nine vertices.

Furthermore, suppose that every cluster Ci contains a representative vertex vi, such
that every vertex v E V0 is either connected to vi or not connected to any vertex of Ci.
Finally, assume that we can optimally compute the broadcast times b(vi, Ci) for every
cluster Ci (e.g., when the clusters Ci are, for example, trees or grids or of logarithmic
size).

Intuitively, we can view this variant of the broadcasting problem as a special
case of the BVS problem, as follows. Form the control graph Dvo,G of V0 in G as in
Definition 2.2. Define the weight w(Ci) on a vertex Ci E V2 as the time required by the
representative vertex, vi, for broadcast in Ci. Now apply the BVS algorithm to this
graph, taking V1 to be the base set and V2 to be the collection of clusters {C1,..., Ck }
and regarding the task of each vertex Ci in V2 as performing broadcast in the cluster
by the representative vertex vi. Since in each of the clusters only the representative
vertex is connected to the "outside world," the vertices outside the cluster cannot
aid in this internal broadcast process; hence, the vertex weights on V2 are defined
appropriately.

It is straightforward to show that the solution to the BVS problem yields exactly
the minimum broadcast time from V0. Further, note that since the vertex weights in
this problem represent broadcast times in a cluster of the graph, it follows from Fact
2.5 that they are no larger than n- 1, and hence the BVS instance can be solved
polynomially.

4. Approximating broadcast in general graphs. In this section we give an
approximation scheme for broadcasting in general graphs, both in the telephone model
and in the open-path model. We begin by motivating the need for approximation
schemes for broadcasting.

4.1. The heuristic approach. In this subsection we demonstrate the fact that
the natural heuristics proposed in [SW84] might be inadequate in some simple cases.
The example considered is a wheel, i.e., a cycle of n- 1 vertices numbered 1,..., n- 1,
arranged by increasing order of indices, with an extra vertex v0 connected to all the
vertices in the cycle (Fig. 2). Let us first give tight bounds on the minimum broadcast
time from v0.

LEMMA 4.1. In the n-vertex wheel, b(vo) O(v).
Proof. First let us show that b(vo) (v/). Assume that the broadcast takes

k time units. The vertex v0 can inform up to k different vertices. Therefore there is
a .vertex w whose distance on the ring from the vertices directly informed by v0 is at
least [[(n- 1)/k/2J. Thus the time for informing w is at least [(n- 1)/k/2J + 1.
The minimum broadcast time is achieved when [[(n- 1)/k/2J + 1 k, in which case
k _> v/(n- 1)/2, yielding the desired lower bound on the broadcast time.

To prove that b(vo) O(x/-), note that if v0 informs all vertices whose index
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APPROXIMATION ALGORITHMS FOR MINIMUM-TIME BROADCAST 411

is congruent to 1 mod[v/n- 1 and then these cycle vertices inform the rest of the
ertices, the total time for broadcasting is no more than 3. [v/n- 1/2 + 1 time
units.

Now consider the following three heuristics suggested in [SW84] for MBT. The
first heuristic is based on defining, for a set of vertices V c_ V,

D(V’)- E d(v).
vEV

At each round i, select from all possible maximum matchings between the set of
informed vertices and the set of uninformed vertices, a matching satisfying that the
set V/ C_ V \ of "receiving" end vertices in the matching has maximal Da(V). Let
us describe a possible broadcast scenario. At the first round, v0 delivers the message
to the vertex 1. At round 2, v0 calls n- 1 and 1 calls 2. It is easy to see that starting
from the third round one can choose a maximal matching that enlarges the set of
informed vertices by 3 at each round. For example, at the third round v0 may call
n- 3, n- 1 calls n- 2, 2 calls 3, and so on. Note that the above scenario conforms with
the given heuristic, since the degree of all the vertices in the wheel (except v0) is 3.
Thus using this heuristic, it might take (n) time units to complete the broadcasting.

A second heuristic approach suggested in [SW84] is the following. Define the
eccentricity of a set V C V to be

Dist(V’) E Diam(v).
vEV

Choose, among all the possible maximal matchings, a matching for which the eccen-
tricity of the set of newly informed vertices is maximal. In a way similar to that above,
it is easy to see that there are cases in which this approach leads to a broadcast time
of (n). The last heuristic suggested in [SW84] is a combination of the former two,
and it, too, may lead to an (n) broadcast scheme.

It follows that, for this example, all of these heuristics may yield broadcast times
that ar.e (V) times worse than optimal. We do not know whether this ratio is

guaranteed by any of the three heuristics.

4.2. Approximating MBT. In this subsection we consider approximation
schemes for broadcasting in general graphs. By Fact 2.5, the scheme that chooses
an arbitrary broadcast tree is at worst an (n- 1)/[log n approximation scheme. We
improve upon this approximation ratio and present an algorithm that guarantees an

O(v)-additive ratio.
The method used for the approximation is based on dividing the set of vertices

into clusters of size [v/ and broadcasting separately on those clusters. Let us start
by describing the various tools used by the algorithm. At the heart of our scheme is
the following decomposition lemma.

LEMMA 4.2. The set of vertices of any graph G (V, E) can be (polynomially)
decomposed into two sets of clusters .4 and B, such that 1,41 <_ V/d, the clusters in
4 U B are pairwise disjoint, (J 4) (J B) V, the size of each cluster C’ E .4 is

IC’l [V/, the size of each cluster C’ e B is bounded by IC’l <_ v, and the clusters
in B are pairwise independent.

Proof. The proof the lemma follows by direct construction. Let us next present
the decomposition procedure. The algorithm maintains three different sets of clusters
A, B, and C.
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412 GUY KORTSARZ AND DAVID PELEG

PROCEDURE DECOMPOSE
1. At the start C - {V}, J[ +-- 0, B - 0.
2. repeat

(a) Choose a cluster C in C and an arbitrary (connected) subcluster C’ of C
such that IC’l [x/-].

(b) Remove C’ from C, and set j[ j[ U {C’}.
/* Now C \ C’ is composed of several independent clusters. */
Add the clusters {C"" C" c_ C \ C’, IC"l- [v]} to A.
Add the clusters {C"" C"C_ C \ C’, IC"l > [v/-]} to C.
Add the remaining clusters in C \ C to B.

until C 0.

It is clear from the construction that all the clusters in ,4 have exactly
vertices. Thus the number of clusters in j[ cannot exceed v/. It is also clear that the
number of vertices in each cluster in B is no more than vf.

To prove that the clusters in B are independent, it is sufficient to claim that at
each stage, all the clusters of B t2 C are such. The proof is by induction on the stage
number. At the basis B C and the claim follows vacuously. Now assume that
after stage all the clusters in C and B are pairwise independent. In the next stage
we exclude a subset of vertices from some cluster C E C; thus the remaining vertices
decompose into independent clusters. The clusters added to B and C are a subset of
those clusters; thus the claim follows by this fact and the induction hypothesis.

Note that the construction of Procedure DECOMPOSE in the proof of Lemma 4.2
allows us to find such a decomposition in O(E. v) time, since checking which are
the newly formed clusters at each stage takes O(E) time.

Our next tool exploits the use of a minimum control function for broadcast. Let
G (V, E) be a graph and V c V subset of the vertices. Form the control graph of
V in G, Dv,,G (V1, V2, A), as in Definition 2.2. Let the weight of each edge be 0.
In this scenario we claim the following.

LEMMA 4.3. Let F be a minimum control function for Dy,,c. Then 14;(F)
(V’,).

Proof. Consider an optimal communication scheme S from V on G. For every
cluster Ci V, choose one of the vertices that is among the first to transmit the
message to a vertex in Ci. Since the clusters Ci are pairwise independent, such a
vertex is in V for each i. The above determines a function F from V to V1.

Consider an arbitrary vertex v V. If v dominates j clusters, then there is a
cluster Ci V such that v transmits the message to Ci in the jth round (or later). By
the way F’ was chosen, j <_ b(V’, G). Thus by definition, 1/Y(F’) _< b(V’, G). However,
the weight of F satisfies 142(F) _< 14;(F’). The proof follows.

Our final tool involves broadcasting on a tree. Recall that given a tree T
(V1, E) and a vertex v V it is easy to compute the optimal scheme for broadcasting
on T from v [SCH81]. Let us call the optimal scheme for broadcasting in a tree the
OT scheme.

In the next lemma we use a shortest paths tree SPT(v, 5’) rooted at a vertex v and
leading to a set S of vertices (see Definition 2.1). Note that it is easy to construct such
a tree in time polynomial in IEI using a shortest path tree algorithm; simply construct
a shortest path tree T spanning all the.graph vertices, and iteratively exclude from it
each leaf not belonging to S, until no such leaf exists.

LEMMA 4.4. Transmitting a message from a vertex v to a subset V C_ V, IVI
of the graph, can be performed in no more than 1 + Diam(v) time units.
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APPROXIMATION ALGORITHMS FOR MINIMUM-TIME BROADCAST 413

Proof. Construct an arbitrary tree SPT(v, V) rooted at v and leading to the
vertices of V. Use the OT scheme to broadcast the message to all the members of the
tree. Consider any leaf u. We would like to show that u gets the message within the
specified time bounds. This is done by "charging" each time unit elapsing until u gets
the message to a distinct vertex of the tree and then bounding the number of charges.

Consider the situation immediately after an ancestor v of u receives the message.
The vertex v is currently the lowest ancestor of u that knows the message. Thereafter
v starts delivering the message to its children. When v delivers the message to a child
whose subtree T does not include u, choose arbitrarily a leaf in T and charge this
time unit to the leaf. When v delivers the message to the ancestor of u, charge this
time unit to v.

Note that at every time unit we charge a single vertex, on account of u, and
thus the total number of units charged is exactly the time before the message reaches
u. Also note that no leaf is charged twice and that u is not charged. Finally note
that every ancestor of u (except u itself) is charged once. Thus the time it takes the
message to reach u is bounded by Diam(v) plus the number of leaves in T beside u.
Since each leaf is a member of V, the proof follows.

We are now ready to combine the three tools discussed in the above lemmas into
an algorithm, named APPROx_MBT, for approximate broadcast on general graphs.

ALGORITHM APPROx_MBT

Input: a graph G (V, E) and a distinguished vertex v0 E V.
1. Decompose the vertices of V into two sets of clusters j[ and B using Procedure
DECOMPOSE of Lemma 4.2.

2. Choose for each cluster C in j[ a single representative vertex vc. Let R denote
the set of representatives, R {vcIC fit}.

3. Transmit the message from v0 to all the vertices of R by choosing an arbitrary
tree SPT(v0, R) leading from v to R and applying the OT scheme to the tree.

4. Choose for each cluster C ,4 an arbitrary spanning tree rooted at its repre-
sentative vc, and broadcast (in parallel) in the clusters of ,4 according to the
OT scheme.

5. Construct the bipartite control graph Dvo,G where V0 ([J Ji)U{v0 }. Compute
a minimum control function F on DVo,G using Procedure MWC. Assume that
a vertex v dominates clusters C1,..., Ck B. Choose for each Ci an arbitrary
vertex vi Ci connected to v, and deliver the message from v to Vl,... vk
(in arbitrary order). This is done in parallel for all the dominating vertices
of V0.

6. Choose for each cluster in/3 an arbitrary spanning tree rooted at an informed
vertex, and transmit the message in parallel to all the vertices in the clusters
of 13 using the OT scheme in each cluster.

THEOREM 4.5. The broadcast time of Algorithm APPROx_MBT from a vertex vo
in a graph G is bounded by 3. / + Diam(v0) + b(vo) time units.

Proof. By Lemmas 4.4 and 4.2 the time it takes to complete stage 2 is bounded
by v 1 + Diam(v). The fact that each cluster in 4 has exactly [v/-] vertices
and Fact 2.5 imply that stage 3 takes no more than x/ time units. By Lemma 4.3,
14;(F) _< b(([.J ji)U {v0}) _< b(v0); thus stage 4 takes no more than b(vo) time units.
Finally, the fact that the clusters in B are of size no larger than vf implies that stage
5 takes no more than v 1 time units.
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414 GUY KORTSARZ AND DAVID PELEG

The ratio guaranteed by the theorem is O(x/)-additive. Consequently, whenever
the broadcast time of a network is (vf), e.g., in the wheel of n vertices, the scheme
of Algorithm APPROx_MBT is a constant approximation scheme. For example, for
each network whose diameter is at least v/-, the above is a 5 approximation scheme.
However, in the general case, the optimal broadcasting scheme may achieve time that
is close to [log n. Thus, in the general case our method is a (3. x/-/[logn + 2)-
approximation scheme and also an O(v//Diam(G))-approximation scheme. In order
to improve upon this it may be necessary to achieve, say, a good approximation scheme
for networks of "small" diameter.

4.3. Broadcasting in the open-path model. Let us turn to the open-path
communication model. Algorithm APPROx_MBT can be generalized to give a good
approximation scheme for the open-path broadcasting problem. It is easy to see that
Lemma 4.3 holds even in the open-path model.

LEMMA 4.6. Let T be a tree rooted at v, with up to k leaves. Then it is possible
to broadcast a message from the root v to all the vertices of the tree in the open-path
model, in no more than 2. k + log n time units.

Proof. We first recall the following fact, proven in [Far80].
Fact 4.7 [Far80]. Broadcasting in the open model on a path of m vertices can be

completed in [log rn time units.
To prove Lemma 4.6 we give a two-stage procedure. In the first stage we proceed

in the following recursive fashion. As soon as a vertex v is informed, it checks if the
subtree Tv, rooted at it contains a vertex of degree at least 3, i.e., with at least two
children. If no such vertex exists (i.e., the subtree Tv, is a path), then v does nothing.
Otherwise, assume that the highest such vertex in the tree rooted at v is v’. That is,
the subtree Tv, is composed of a path connecting v to v’, plus the subtree T,, (note
that possibly v" v). Then v makes a long-distance call to all the children of v’, in
arbitrary order.

It is easy to see that when this first stage is finished, the tree can be decomposed
into a union of disjoint paths where for each path, one end vertex knows the message.
During the second stage, each informed end vertex of each path informs the rest of
the vertices in the path as in Fact 4.7.

In analyzing the delays occurring before a message reaches a leaf u, we separate
our analysis to the first and second stages. This first stage is handled by a charging
rule somewhat similar to that used in the proof of Lemma 4.4. Note that at each
time step t, there is a unique ancestor low(u, t) of u that is responsible for it, namely,
the lowest ancestor currently holding the message. At time step t, low(u, t) sends the
message to some child v" of a vertex v with at least two children. If u does not belong
to the subtree Tv,,, charge a delay to an arbitrary leaf in Tv,,. When the message is
sent to a child v of a vertex v such that v" is a ancestor of u, charge the delay to
v. Note that only leaves and vertices with degree at least 3 are charged, and none of
them is charged more than once. The number of vertices of degree 3 or higher is no
more than k- 2; hence, the total delay in stage 1 is bounded by 2. k- 2.

In the second stage the broadcast takes place along vertex disjoint paths, each
with no more than n vertices. Hence by Fact 4.7 this stage can be completed in [log n
time units. In total, the communication delay is bounded by 2. k- 2 + [log n. [:]

This discussion motivates the following approach for approximating OMBT. First
we define sets of representatives, {R1,...,Rf}, where RI V IRfl

_
log/t, and

f

_
log n/log log n. To each set Rj and vertex v E Rj there is a corresponding tree

Tv, containing at least [log n] vertices of Rj-1. The trees corresponding to different
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APPROXIMATION ALGORITHMS FOR MINIMUM-TIME BROADCAST 415

vertices in Rj are vertex disjoint.
The main algorithm operates in f stages. The first stage informs the vertex set

Rf. The algorithm then proceeds to inform the sets Rj in reverse order of indices, i.e.,
at the end of stage i, the message is known by the set Rf-i+l, and the goal of the
next stage is for Ri-i+l to inform RI-i.

We next present Procedure CHOOSE_REP, whose task is to choose the sets Ri of
representatives and the corresponding trees Tiv, v E Ri. After that, we give the main
algorithm that uses Procedure CHOOSE_REP to approximate OMBT.

Throughout the execution of Procedure CHOOSE_REP we extract trees from G.

PROCEDURE CHOOSE_REP
Input: A graph G (V, E) and a distinguished vertex vo E V.

1. RI+-V,iI.
2. repeat

c {v}, +-0.
(b) while C # 0 do:

(i) Choose cluster A C. Select [log n] vertices in AR arbitrarily, except
that if v0 A, take v0 as one of them. Let the chosen vertices be
v,..., V[og ], such that we set v v0 if v0 A. Select in A a subtree
T/ leading from v to {v,..., Vog] }.

(ii) Extract T/" from A.
(iii) Set C - C A {B: B is a connected component of A \ T’,

r og l}.
end-while

(e) For every tree T obtained in stage (b), add its root
(4) +- +
until IRil _< rlogn].

Let us first state the following properties of Procedure CHOOSE_REP. The proof
follows directly from the algorithm.

CLAIM 4.8. Let the number of stages in Procedure CHOOSE_REP be f. Then
1. voR,
2. IRiI <_ n/ log n, and
3. f _< (log n/log log n).
We now proceed to define the main algorithm. Throughout the algorithm we

maintain a set R of informed vertices that equals R for some j. The point is that j
decreases by one in each iteration, thus at the end R R V.

ALGORITHM APPROx_OMBT
Input: A graph G (V, E) and a distinguished vertex v0 E V.

1. Apply Procedure CHOOSE_REP on G and v0. Assume that the sets of repre-
sentatives are {R1,..., RI}.

2. Choose an arbitrary tree leading from v0 to the other vertices of Rf, and inform
all the vertices in RI using the scheme suggested in the proof of Lemma 4.6.

3. R-RI,i f.
4. repeat

(a) Each vertex u Ri informs (in parallel) all the vertices in T/u using the
scheme suggested in the proof of Lemma 4.6.

(b) Let G G \ [.JeR T/- Let C,..., Cs denote the clusters in the graph
induced by G.
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416 GUY KORTSARZ AND DAVID PELEG

(c) The vertices (.JT inform a vertex vj in C, for each 1 < j < s, using a
minimum control function computed by Procedure MWC, as in step 5 of
Algorithm APPROx_MBT.

(d) Choose for each j, a tree TLj leading from vy to the vertices in Ri-1 3 C.
(e) The vertices vy inform the vertices of TLy using the scheme of Lemma 4.6.
(f) R - Ri-1, i -- i- 1.
until i- 1.

It is clear from the algorithm that when stage 4(e) of Algorithm APPROx_OMBT
is completed, all the vertices of Ri- know the message. It follows that at the end all
the vertices are informed.

THEOREM 4.9. Algorithm APPROx_OMBT is a O(log n/ log log n) approximation
scheme for OMBT.

Proof. By the definition of Procedure CHOOSE_REP, IRfl < log n. Thus it follows
by this fact and Lemma 4.6 that step 2 of Algorithm APPrtox_OMBT takes O(log n)
time units. Let us now analyze the communication time of stages 4(a) to 4(e) for a fixed
i. Since for every u e Ri, every leaf in T belongs to Ri-1 and IT 3Ri- [log HI, it
follows that the number of leaves in T/ is bounded by [log HI; thus, by Lemma 4.6 the
communication time of informing the vertices ofT in step 4(a) is bounded by O(log n)
time units. In step 4(c) the vertices in JT inform a vertex of each clusters C. It
follows by a similar argument to Lemma 4.3 that the number of time units is bounded
by bop(V0). Finally, it follows from step (b) of Procedure CHOOSE_REP that for every
j, C N Ri-1 < log n; thus, by Lemma 4.6, step 4(e) takes no more than O(log n) time
units. Summarizing, for a fixed i, the communication complexity of the scheme is
bounded by O(bop(Vo) + log n) O(bop(Vo)). By Claim 4.8, f < log n/log log n. Hence
the desired result follows. [3

Let us remark that we choose trees with [log n] leaves since this is the only
lower bound known on the broadcasting time. If, however, it is known that for some
particular family of input instances the broadcast time is bounded below by Hik for
some k smaller than log n/loglogn, then it is possible to construct trees with Hik

leaves and get an O(k)-approximation scheme for k < log n/log log n.

4.4. Broadcasting on random graphs. The method of Algorithm
APPROx_OMBT can be used to deal with the MBT problem as well. However, at
each stage, broadcasting in a tree T may take O(log n + h(T)) time units, where h(T)
is the height of T. Since the diameter of a subcluster of a graph G may largely increase,
this may not be a good approximation scheme in the worst case.

However, it is instructive to consider the behavior of Algorithm APPROx_OMBT
on random inputs. Let us consider a random graph G E Gn,p. The graph consists of
n vertices, where for each pair of vertices v, w E V, the edge (v, w) E is drawn with
probability p, where p is constant, 0 < p < 1. It is well known that the diameter of each
vertex-induced subcluster of Gp,n is bounded by O(log n) with high probability [Bo185].
For such graphs the scheme of Algorithm APPROx_MBT yields only an O(v/-/log n)-
approximation ratio. In contrast, Algorithm APPROx_OMBT is an O(log n/log log n)-
approximation scheme for random graphs with high probability.

COROLLARY 4.10. There exists a polynomial algorithm that broadcasts on a ran-
dom graph G Gn,p in no more then O(log n/log log n). b(G) time units with high
probability.

5. Separator-based strategies for broadcasting. An important method for
dealing with optimization problems on graphs is the divide-and-conquer approach
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APPROXIMATION ALGORITHMS FOR MINIMUM-TIME BROADCAST 417

[AHU74]. The idea is to find a small set of vertices whose removal splits the graph into
connected components of roughly equal size and then to solve the problem recursively
by handling each of the components separately. Unfortunately, general graphs do not
necessarily have small separators. However, some important families of graphs do.
The notion of a separator is formalized in the following definition.

DEFINITION 5.1 Let 99(n) be a nondecreasing function, and let y and p be fixed
numbers such that 0 < p < 1.

1. A graph G (V, E) has a (p, y)-separator if there exists a set S c V such that
the removal of S leaves no connected component of size greater than p.n, and

2. A graph G (V,E) is (p, v(n))-separable /f every vertex-induced subgraph
G’ c G of n’ vertices has a (p, (n’))-separator.

Given a (p, (u))-separable graph, denote the corresponding separator of every
subgraph G by sep(GI). This section examines the idea of using the separability
property of a graph in order to achieve fast approximation schemes for broadcasting.

5.1. Broadcasting schemes for separable graphs. In order to develop a
separator-based broadcasting scheme, we first need to generalize Lemma 4.3. Suppose
that a graph G contains a set V0 of informed vertices. Denote the clusters created
when extracting V0 from the graph by C1,..., Ck. Choose for each Ci an arbitrary
nonempty subset C c Ci. We can use the fact that in broadcasting it is necessary
to inform the vertices of C to achieve a lower bound on the best possible time for
broadcasting. As before, we use Procedure MWC developed in 3.2. Let us first define
a MWC instance B’ MWC(V0, {Ci,..., C}) as follows.

1. Form the control graph DVo,G of V0 in G.
2. Put weights on the edges as follows. For an arbitrary vertex v E V0 connected

to a vertex in Ci, choose a vertex v E Ci connected to v that is closest to the set C.
Attach a weight dVc =- dist(v’, C) to the edge (v, Ci).
(Note that in Lemma 4.3 the construction is similar, except that we choose as subset

C Ci, for every i.) We make the following claim.
LEMMA 5.2. If F is a minimal control function for B, then )IV(F)

_
b(Vo, G).

Proof. First we argue the following technical claim, implicitly used also in
[SCH81].

CLAIM 5.3. Let di,ti Z+, for 1 <_ <_ k, such that dk <_ d_ <_ <_ d, and
the t ’s are all distinct. Then maxi{i + di } _< max{ti + d}.

To any communication scheme from a base set V0 such that IV01 > 1, there is a
corresponding spanning forest of G, where each tree in the forest is rooted at a vertex
v of V0 and represents the set of edges that carried the message from v (i.e., the nodes
of the tree are those that received their copy of the message along a path originating
at v). Assume that S is an optimal communication scheme for broadcasting from the
base set V0. Denote the forest corresponding to S by ’. Every vertex v V0 that
sends the message to some vertex in one of the Ci clusters roots a tree T. ’. Let
us define a function F’ {C1,..., Ck} Vo as follows. Pick a vertex w C that
is among the first in C to receive the message (breaking ties arbitrarily). Suppose
that w E Tv; then set F(C) v. Now consider a vertex v V0 that dominates a
nonempty set of clusters. Say that v controls Ci (i.e., F’(Ci) v), and assume that
ui is the (unique) child of v in Tv that is an ancestor of wi. Clearly, we can assume
that ui Ci.

Say that v sends the message to ui at time ti. The time that passes before ui can
inform any vertex in C (specifically w) is at least d(u, C), thus by the fact that w
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418 GUY KORTSARZ AND DAVID PELEG

is one of the first vertices in C that received the message, ti + dist(u, Ci) _< b(V0, G),
thus t + dv < b(V0, G) and so

m.ax(t + d } <_ b(Vo, G).

Thus from Claim 5.3 we deduce that

m.ax{i + dvc } <- b(Vo G)

Since this holds for every vertex, we conclude 1/V(F’) <_ b(Vo, G). Since F is a minimum
control function,

Note that we can use an algorithm similar to Algorithm BES of 3.3 to establish
the following fact.

Fact 5.4. In the above scenario, it is possible to inform at least one vertex in C,
for every i, in no more than kV(F) time units.

It is possible to use Fact 5.4 in order to construct schemes for broadcasting from
a distinguished vertex v in a graph with a "small" separator. Let G be a (p, o(n)}-
separable graph. Throughout the run, the set V0 will denote the set of already informed
vertices.

ALGORITHM APPROX_SEP
1. v0 - {v}.
2. Construct a separator sep(G) for G.
3. Build an arbitrary tree SPT(v, sep(G)) (V1, El) rooted at v and leading to

the members of sep(G). Broadcast the message to the vertices of the tree using
the OT scheme.

4. Vo +-- go u V1.
5. Repeat

(a) Assume the clusters formed when extracting V0 from the graph are C1,...,
Ca. Each Ci has a separator sep(Ci) C UC U.--U C where C{ C{
C sep(Ci)’sl are connected components.
repeat
(i) For each i pick the lowest index j(i) that has not been chosen yet (for

i).
(ii) Build the instance B’ MWC(V’, C{ j()" 1 _< i _< k}) of the MWC

problem, as described.
(iii) Compute a minimum control function F for B’ using Procedure MWC.
(iv) Send the message to at least one vertex of C(i) for every i and j, using

the minimal function F and the scheme suggested in Fact 5.4.
until the C’s clusters are exhausted for every i and j.

(b) For every and j, broadcast (in parallel) the message within C using the
best known scheme for C. (If no good known scheme exists for the kind of

graph C is, broadcast using an arbitrary tree.)
(c) V0 - Vo U sep(C1) U... U sep(Ck).
Until V0 V.

It is easy to see that when Algorithm APPROX_SEP terminates, all the vertices
in V are informed.

LEMMA 5.5. On a (p, o(n))-separable graph, Algorithm APPROX_SEP terminates

the broadcast process from a vertex v in O(log n) o(n) b(v) time units.
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APPROXIMATION ALGORITHMS FOR MINIMUM-TIME BROADCAST 419

Proof. Clearly, the number of times the external loop is performed, is bounded
by O(log n). Stage 3 takes no more than (G)+ Diam(v) time units. We next must
bound the number of times that the internal loop is performed. Note that this number
is bounded by the maximal number of connected components of the separator sep(C)
of any of the clusters C. Further, note that after the external loop has been executed i
times, the size of any separator of any cluster C is bounded by (p. n) < 99(n). Thus,
the number of connected components in the graph induced by Sep(C) is also bounded
by 99(n). Thus every internal loop is carried out for no more than 99(n) times.

Next we bound the maximal time taken by each iteration of the internal loop.
By Lemma 5.2 and Fact 5.4, each execution of the repeat loop of stages 5(a)(i)-(iii)
takes no more than b(V0, G) < b(v, G) time units. Thus the total time spent in stages
5(a)(i)-(iii) (which is no more than the number of external loops times the number of
internal loops times the maximum time taken by an execution of an internal stage) is
bounded by O(log n). q(n), bop(V).

We now bound the number of time units spent in step 5(b). After the external
loop took place times, the size of the separator and, hence, the size of every connected
component of a separator are bounded by (p. n) < (n). Thus this is also a bound
on the time spent in step 5(b), for a fixed i. Summing up this bound for every i, we
conclude that the total time spent in step 5(b) is bounded by

<i<:O(log n)

q(p n) < 0(99(n). log n).

Thus, in total, the broadcast time is bounded by O(log n). (n). b(v, G). D
Further, it can be shown that if we can assure that every separator sep(C) is

connected and b(sep(C)) < k for some integer k < (n), then the bound is improved
to

(1) O0og k).

THEOREM 5.6. Algorithm APPROX_SEP i8 an O(logn). q(n)-approximation
scheme over (p, q(n))-separable graphs.

5.2. Applications. In this subsection we give some examples of graph families
for which Algorithm APPROX_SEP can be applied. The first example is that of chordal
graphs. A chord in a cycle of at least four vertices is an edge connecting two vertices
that are not adjacent in the cycle. A chordal graph is a graph with the property that
every cycle of four vertices or more has a chord. The following theorem is shown in

[GRE84] regarding chordal graphs.
THEOREM 5.7 [GRE84]. Every n-vertex chordal graph G contains a (polynomially

computable) maximal clique C, such that if the vertices in C are deleted from G, every
connected component in the graph induced by any of the remaining vertices is of size
at most n/2.

An O(IEI)-time algorithm for finding a separating clique that satisfies the condi-
tion of the theorem is also given in [GRE84].

Thus chordal graphs always have separating sets that are connected (and more-

over, are cliques). Since it is possible to broadcast a message in a clique of m vertices
in [logm time units, it follows from (1) that the time needed to broadcast in a chordal
graph using the scheme of Algorithm APPROX_SEP is no more than

log n. (b(v, G) + [log hi) + Diam(v).
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420 GUY KORTSARZ AND DAVID PELEG

Consequently, Algorithm APPROX_SEP is a (2logs / 1)-approximation scheme for
broadcasting in chordal graphs.

COROLLARY 5.8. There exists a polynomial (2logs + 1)-approximation scheme
for broadcasting on chordal graphs.

A second example is the family of a c-separable graphs, consisting of graphs for
which (n) c for some constant c. These graphs were considered, for instance, in
[FJ90]. It follows from Theorem 5.6 that Algorithm APPROX_SEP is an O(logn)-
approximation scheme for broadcasting in such graphs.

We now present two examples of O(1)-separable graph families. The class of
k-outerplanar graphs is defined as follows. Consider a plane embedding of a planar
graph. The nodes on the exterior face are termed layer 1 nodes. For > 1, the layer
i nodes are those that lie on the exterior face of the embedding resulting from the
deletion of all layer j nodes, j < i. A plane embedding is k-outerplanar if it contains
no node with layer number larger than k. A planar graph is k-outerplanar if it has a
k-outerplanar embedding. A graph is called outerplanar if it is a 1-outerplanar graph,
i.e., a graph that can be embedded in the plane such that all the vertices lie on one
face [Har69].

In [FJ90], Frederickson and Janardan show that any k-outerplanar graph is

(2/3, 2. k)-separable. An O(n)-time algorithm to find the separator is given in [FJ90].
Thus Algorithm APPROX_SEP can be used to broadcast in a k-outerplanar graph
achieving an O(k log n)-approximation scheme. Thus we have the following theorem.

THEOREM 5.9. There exists an O(k log n)-approximation scheme for broadcasting
on a k-outerplanar graph.

COROLLARY 5.10. There exists a polynomial O(log n)-approximation scheme for
broadcasting on the family of outerplanar graphs.

The third example is the well-known family of series-parallel graphs. Two edges
in a graph are in "series" if they are the only edges incident to a node and "parallel" if
they join the same pair of nodes. The definition of a series-parallel graph is recursive.
First, an edge is a series-parallel graph. Next, the graph obtained by replacing any
edge in a series-parallel graph either by two series edges (adding a vertex) or by two
parallel edges is series-parallel. In IFJ90] it is shown that every series-parallel graph
is (2/3, 2)-separable and the separator can be found in O(n) time. Thus Algorithm
APPROX_SEP is a polynomial O(log n)-approximation algorithm for broadcasting on
a series-parallel graph.

THEOREM 5.11. There exists a polynomial O(logn)-approximation scheme for
broadcasting on a series-parallel graph.

The last example is of the family of bounded-face planar graphs. The size of a face
of a planar graph is the number of vertices in the face, counting multiple visits when
traversing the boundary (cf. [Mi86]). The following theorem is shown in [Mil86].

THEOREM 5.12 [MilS6]. Every planar graph with bounded-face size is (2/3,
O(v/-))-separable, and the separator can be chosen to be a simple cycle or a single
vertex.

A linear time algorithm to find the separating cycle or vertex is also given in

[Mil86]. We use this to derive the following theorem.
THEOREM 5.13. There exists an O(n/a/x/logn)-approximatiou scheme for

broadcasting on bounded-face planar graphs.
Proof. Use the algorithm of [Mil86] to compute the separators needed for Algo-

rithm APPROX_SEP. At each step of Algorithm APPROX_SEP, if the separator is a
cycle, instead of broadcasting to all the vertices of the cycle separator, choose arbi-
trarily a "starting" vertex in the cycle and give it an index 1, while giving indices to
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APPROXIMATION ALGORITHMS FOR MINIMUM-TIME BROADCAST 421

FIG. 3. A tree of cliques (TOC) G. The large circles represent the vertices of the correspond-

ing tree T(G).

the rest of the vertices in increasing order, according to their clockwise position.
Broadcast the message to every vertex whose index is congruent to 1 mod In14.

v/log, in every separating cycle. The number of recipients of the message in each
cycle is O(nl/4/x/logn). This is done as in Algorithm APPROX_SEP by using the
technique for MWC problems. After the corresponding cycle vertices get the message,
they can clearly inform the rest of the cycle vertices in no more than O(nl/4. v/log n)
time units. Finally note that informing the vertices of the first cycle, i.e., the cycle
separator of the graph itself, can be done in similar way. The broadcast time using
this scheme is no more than

lg3/2n

(()i Ttl/4 ) lga/2n

12)i0 b(v) -- ni/4V/lOgn
i=1

/log n
i=1

+ O(nl/av/logn) + Diam(G) O(nl/a/v/iogn b(v).

This is slightly better than the result given for general graphs in Theorem 4.5 (in the
worst case).

6. Broadcasting in a tree of cliques. In this section we present a broadcast
scheme for graphs that are in a "tree of clusters" form. We illustrate this method
by giving an approximation scheme for a special kind of graph family called trees of
cliques, generalizing the family of trees.

6.1. Trees of cliques.
DEFINITION 6.1 (see Fig. 3). A graph G (V, E) is a tree of cliques (TOC) if
1. the vertex set V can be decomposed into a disjoint union of sets C,..., Ck

such that each Ci induces a clique (i.e., a complete graph) in G, and
2. the auxiliary graph T(G) (,) whose vertices are {C1,..., Ck} and

whose edges are

/-- {(Ci, Cy) there is an edge (vi, vj) E E, for vi e Ci, vj Cy }

is a tree.
To broadcast a message from a vertex v in a TOC, we use the following idea. In

order to deliver the message between vertices of different cliques (i.e., from cliques to
their clique children), we use the techniques developed for MVWC problems. It follows
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422 GUY KORTSARZ AND DAVID PELEG

that the total broadcast complexity spent while delivering a message between cliques
is bounded by O(b(v)). We can achieve an efficient method, since there is an efficient
method for message delivery in a clique. We then develop an alternative method for
delivering the message inside the cliques. In this method, every vertex participates
in the message delivery in its clique only for a small (fixed) number of rounds and is
thus free sooner to help in sending the message down the tree to its clique children.
Using this method we establish some improved bounds in restricted cases.

6.2. The broadcast scheme. Let G be a TOC. The notions of child, parent,
height, and so on are defined in G as in the tree T(G); specifically, the parent of a
clique C is denoted by p(C), the height of a rooted TOC G is denoted by h(G), the
subtree rooted at a given clique C is denoted by Gc, and T(G)c is defined accordingly.

Let G be a rooted TOC. The parent index, PI(C), of a nonroot clique C in G is
defined to be the number of vertices in C that are connected to at least one vertex
in the parent clique p(C). The parent index of the root is defined to be 1. Similarly
the child index, CI(C), of a nonleaf clique C is the number of vertices in C that are
connected to at least one of the vertices of the children of C.

A TOC G is parent c-restricted if it is possible to root G at a clique C such that
PI(C) <_ c for every clique C. Note that the fact that a TOC is parent c-restricted
does not preclude the possibility that every vertex in P(C) will have an arbitrarily
large (total) number of adjacent vertices in the clique children. A child c-restricted
TOC is defined similarly. Note that if a TOC is child c-restricted, there are no more
than c vertices in p(C) that can inform the vertices in its clique children. It follows
that it seems easier to approximate the broadcast problem on a TOC if it is child
c-restricted than if it is parent c-restricted.

We next give a broadcast scheme on a TOC. We assume that the clique partition
of the TOC is given. Before presenting the approximation algorithm, let us give
two definitions. The first definition is of the rank of a clique C in a rooted TOC
G. This definition induces a definition of a controlling vertex F(C) of C, such that
F(C) E p(C), for any nonroot clique C. Recall that for a clique C in the tree, Tc is
the subtree rooted by C.

DEFINITION 6.2. Define rank(C) 0 for a leaf C in G. Define inductively the
rank of a nonleaf clique C in T(G) as follows.

1. Form the control graph DC,Tc (V1, V2,A) of C in T(G)c.
2. Compute recursively the ranks of the children of C.
3. Set rank(C) I/Y(F), where F is the minimal function with respect to the

MVWC problem resulting by the construction of step 1 taking the weight of a clique
child vertex C’ to be w(C’) rank(C’).

4. Define (C’) F(C’), for every child C’ of C.
This definition of rank tries to capture the minimal degrees needed for the cliques

to control their clique children. It also identifies those vertices that dominate children
cliques in the TOC. Denote

Dom(C) {w e C" there exists a child Ci of C such that F(Ci) w}.

Our second definition concerns the degree of cliques in the TOC and attempts to
capture the number of vertices there are in a subtree rooted at a clique C.

DEFINITION 6.3. Let G be a rooted TOC. The degree of a leafC in G is deg(C)
O. The degree of a nonleaf clique C in T(G) is defined recursively as follows:

1. Compute the degrees of C’s children in G.
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APPROXIMATION ALGORITHMS FOR MINIMUM-TIME BROADCAST 423

2. Let C1,..., Ck denote C’s children in G, ordered by nonincreasing degrees,
i.e., deg(Ci) _> deg(Ci+l) for every i.

3. Define deg(C)= maxi{[log[i/PI(C)])] + deg(Ci)}.
Let us now describe a scheme called the Fibonacci method, for message dissemi-

nation within a clique. In this scheme we try to save time in informing the vertices
within the clique so that a vertex will be able to start sooner to deliver the message
to its clique children. Let vl,..., Vk be k vertices in a clique C. We assume that
C contains an informed vertex vo. Our goal is to broadcast the message from vo to
{vl,..., v}. This is done as follows:

1. In the first two steps, vo sends the message to vl and v2.
2. Now define a delivery scheme for vi, _> 2, as follows: each vertex vi spends

the first two rounds after it gets the message on delivering the message within
the clique. The delivery scheme prefers vertices Vm with lower index. In each
round j, the vertices that are required to participate in the delivery within
the clique in this round send the message to the next lowest index vertices
among {vl,..., Vk} that did not get the message yet.

For instance, in round 3, vl and v2 send the message to v3 and va; in round 4,
vl, v2, v3, va send the message to v5, v6, v7, v8; and in round 5, v2,..., v8, send the
message to V9,..., V15.

Let G be a TOC, and let Co be a clique in G and v0 E Co a distinguished vertex.
The goal is to broadcast the message from v0 to all the vertices in G. We next give
two recursive approximation algorithms for the problem.

Input:
1.

ALGORITHM APPROX_TOC2a
A TOC G and a root clique Co and an informed vertex v0 E Co.
Compute ranks and define a dominating vertex (Ci) C for any clique chil-
dren Ci of any clique C G G as indicated by Definition 6.2, using Algorithm
MVWC.

2. As soon as a clique C contains an informed vertex v G C, v sends the message
to all the vertices in the clique C, using an optimal procedure for the clique.

3. Each vertex w G Dom(C) starts sending the message to a single arbitrary
vertex in each of the cliques it controls. The delivery is performed in nonin-
creasing order of ranks; i.e., if rank(C’) > rank(C"), then w sends the message
to a vertex in C before it sends it to a vertex in C".

Next, let us modify Algorithm APPROx_TOC2a to get Algorithm APPROx_TOCb.
Instead of delivering the message within the clique using all the vertices through the
entire process, as done in step 2 of Algorithm APPROX_TOC2a, we use the Fibonacci
delivery scheme. Thus in Algorithm APPROx_TOC2b step 2 is replaced by the follow-
ing step:

2. Let C be a clique in G containing an informed vertex v E C. Assume that
Dom(C) {vl,..., vk}. For every vertex vi, let Cmax(Vi) be the clique dom-
inated by vi with maximal degree. Assume without loss of generality that
for every i, deg(Cmax(Vi)) >_ deg(Cmax(Vi+l)). Apply the Fibonacci delivery
method within the clique, from the informed vertex v to {Vl,..., vk }.

It is easy to see that when the execution of this modified version of Algorithm
APPROx-TOC2a terminates, every clique contains at least one informed vertex (how-
ever, not necessarily all the vertices in all the cliques are informed, since in any clique
a vertex is informed only if it controls a nonempty set of children cliques). Thus
to terminate the broadcast, in every clique the informed vertices deliver (in paral-
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424 GUY KORTSARZ AND DAVID PELEG

lel) the message to the rest of the vertices in the clique, using the optimal delivery
procedure for the clique. We call this modified version of the algorithm Algorithm
APPROX_TOC2D.

6.3. The broadcast complexity of the scheme. We now analyze the broad-
cast complexity of the scheme. Before stating the next claim, which speaks about
the Fibonacci delivery method, recall the sequence of Fibonacci numbers defined as
follows: Zl z2 1, zi+2 zi+l + zi for >_ 1 (cf. [HW56]).

LEMMA 6.4. Let C be a clique, and suppose that v, Vl,..., vk E C and v uses the
Fibonacci method to send a message to Vl,..., vk. Then i rounds after vl receives the
message from v, there are exactly zi+2 informed vertices in (vl,..., v).

Proof. The claim holds for 1, 2, and 3 by a direct inspection. Now
assume it is true for _> 3 and that at times i- 2, i- 1, and the number of informed
vertices in (Vl,..., vk} is zi, zi+l, and zi+2, respectively.

The number of vertices that delivered the message only once within the clique
is Zi+l -zi. The number of vertices that have not yet broadcast the message at
all is zi+2 Zi+l. Thus the total number of informed vertices in the next round is

Zi+2 2F (Zi+2 Zi+l) -- (Zi-{-i Zi) Zi+2 - Zi+l Zi+3. D
Let us now study the time needed to inform k vertices Vl,..., vk in the Fibonacci

method. Since zi (((1 + v/)/2) -((1 v)/2)i)/vf (cf. [HW56]),

zi >_ ((1 + 1

Thus the number of rounds before vi is informed in the Fibonacci scheme is no greater
than [1.441. log i + 2.

We now make the following claim.
LEMMA 6.5. For any tree of cliques G (V, E) rooted at a clique Co, rank(C0) _<

Proof. We prove the lemma by induction on the height of the TOC. If h(T(G)) 0
the claim holds trivially since rank(C) 0. Assume the claim for height k. Consider a
tree of height k + 1. Assume that the children of Co in T(G) are C1,..., Cl. Consider
an optimal scheme S for broadcasting from the base set C. For each clique Ci choose
a vertex vi E V that is among the first vertices that transmit the message to a vertex
in Ci. Since the clusters Ci are independent, all of the selected vertices vi are in Co.
We have defined a function F from the children of C to the vertices of C. Denote the
subtree corresponding to Ci by Ti and the corresponding subgraph of G by Gi.

Assume that v is first to deliver the message to the cliques C,...,C, that
Ft(C) v for every i, and without loss of generality that the cliques C are ar-
ranged by nonincreasing order of ranks. Further, assume that v delivers the message
to a vertex in C at time ti. We claim that

m.ax{ti + b(C, Gi)} <_ b(C, G),

since ti is the first time that a subset of the vertices of C receive the message. There-
after they must deliver the message to the rest of the vertices of Gi, and this clearly
takes at least b(C, G) time units. Since h(G)

_
k for every i, by the induction

hypothesis,

m.ax{ti + rank(C)} _< b(C, G).
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APPROXIMATION ALGORITHMS FOR MINIMUM-TIME BROADCAST 425

By Lemma 5.3,

m.ax{i + rank(C)}

_
b(C, G).

Since this is true for any vertex v, ld;(F’)

_
b(C, G). Thus it follows from Definition

3.1 plus the fact that rank(C0) is the weight of the minimal function that rank(C)

_
b(Co,

LEMMA 6.6. Let G be a TOC rooted at Co and vo a vertex in Co. Then deg(C)

_
Proof. Consider an optimal scheme S for broadcasting from v in G. At the first

round to where a vertex of a clique C in G receives the message, there are at most
q- PI(C) informed vertices in C. Note that the vertices of Tc, cannot receive the
message through any alternative route other than via the vertices adjacent to p(C);
it follows by the doubling argument of Fact 2.5(1) that for any > q, it will take at
least [log(1/q)] rounds until/ vertices of Tc, are informed. Suppose that C has
children C1,..., Cz ordered by nonincreasing order of degrees. For any l, 1 _< <_ j,
the first time that all the first cliques C1,..., Cz contain an informed vertex is at
least to + [log 1/q]. The rest of the proof follows in a straightforward way by induction
on h(G).

We are ready to analyze the complexity of the broadcast scheme. Let us divide
the delays encountered by a message before it reaches a vertex in some leaf clique C
into the following two possible types:

1. Delays encountered when a predecessor clique C" of C delivers the message
to another subtree rather than the one containing C, and

2. Delays encountered by the message when it is being broadcast within a prede-
cessor clique of C.

We bound delays of the first type by proving the following (where v0 is the
originator of the message.)

LEMMA 6.7. There are no more than b(vo)- d(Co, C) delays of the first type,
where d(C0, C’) is the distance between Co and C’ in the tree T(G).

Proof. The proof follows by Lemma 6.5 and straightforward induction on

(T()).
We now consider second-type delays. Let us first analyze the number of such

delays in Algorithm APPROX_TOC2a. In this case, the number of type 2 delays en-
countered by a message before it reaches a leaf C is bounded by i [log Ci], where
C is the ith clique in the path connecting C and p(C’) in T(G). If there are h cliques
in the path, then the number of type 2 delays is bounded by h. log(n/h).

Since both log n and h are lower bounds on the broadcast time, the worst case
is when h log n, and in this case the number of type 2 delays is bounded by log n.
(log n log log n). Thus we have the following theorem.

THEOREM 6.8. Algorithm APPROx_TOC2 is an additive log n- (log n-log log n)-
approximation scheme for broadcasting in a TOC.

Let us now analyze the situation in Algorithm APPROX_TOC2b. Let C1,..., Ct
be the children of C, ordered by nonincreasing order of degrees, and let Dom(C)
{Vl,..., vk}. Assume without loss of generality that the vertices vi are ordered such
that deg(Cm(vi)) _> deg(Cmx(Vi+)) for every i. Since Ci is dominated by one of
the first vertices, the number of type 2 delays encountered by the message before it
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426 GUY KORTSARZ AND DAVID PELEG

is sent to Ci is no more than

1 + [1.441. log/] + 2 + 2 (1.441. log/] [1.441. logPI(Ci))
+ + 5

0
PI(C) + O(log PI(C)).

Thus the next claim follows from Lemma 6.6 and by induction on h(G). Suppose
that the ith clique in the path in T(G) from the root to a leaf C is Ci.

CLAIM 6.9. The number of second-type delays encountered by the message before
it reaches C in Algorithm APPPox_TOC2b is bounded by

For example, consider a parent c-restricted TOC G for a constant c. It follows
that Algorithm APPROx_TOC2b is a constant approximation scheme for broadcasting
in such a TOC. (If the goal is to broadcast the message from a vertex v that is not in
C, where C is the clique that determines the fact that G is c-restricted, simply deliver
the message to a vertex v in C, by a shortest path, and then use the APPROx_TOC2b
scheme to broadcast from v. The fact that b(v) and b(v’) differ by at most Diam(G)
guarantees that the scheme is still an O(log c)-approximation scheme.) As one can
easily check, the scheme is also an O(log c)-approximation scheme in the case of a
child c-restricted TOC. We summarize this discussion in the following theorem.

THEOREM 6.10. Algorithm APPROx_TOC2b is a min{O(logcl),O(logc2)}-
approximation scheme for broadcasting in a child cl-restricted, parent c2-restricted
TOC.

Note that similar methods can be used to broadcast in a more general class of
a "tree of clusters" graphs as long as there exists a fast approximation scheme for
broadcasting in the clusters.

Note added in proof. Recently, a new approximation algorithm was presented
for the minimum broadcast time problem [R94]. That algorithm has (multiplicative)
approximation ratio O(log2 n/ log log n). Hence the new algorithm improves on the
result of Theorem 4.5 for graphs whose broadcast time is O(vlog logn/log2 n) or
smaller. For graphs with larger broadcast time, our x/-additive algorithm still yields
better approximation.
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