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Abstract

In Source Location (SL) problems the goal is to select a minimum cost source
set S ⊆ V such that the connectivity (or flow) ψ(S, v) from S to any node
v is at least the demand dv of v. In many SL problems ψ(S, v) = dv if
v ∈ S, so the demand of nodes selected to S is completely satisfied. In a
variant suggested recently by Fukunaga [7], every node v selected to S gets
a “bonus” pv ≤ dv, and ψ(S, v) = pv + κ(S \ {v}, v) if v ∈ S and ψ(S, v) =
κ(S, v) otherwise, where κ(S, v) is the maximum number of internally disjoint
(S, v)-paths. While the approximability of many SL problems was seemingly
settled to Θ(ln d(V )) in [20], for his variant on undirected graphs Fukunaga
achieved ratio O(k ln k), where k = maxv∈V dv is the maximum demand. We
improve this by achieving ratio min{p∗ ln k, k} · O(ln k) for a more general
version with node capacities, where p∗ = maxv∈V pv is the maximum bonus.
In particular, for the most natural case p∗ = 1 we improve the ratio from
O(k ln k) to O(ln2 k). To derive these results, we consider a particular case
of the Survivable Network (SN) problem when all edges of positive cost form a
star. We obtain ratio O(min{lnn, ln2 k}) for this variant, improving over the
best ratio known for the general case O(k3 lnn) of Chuzhoy and Khanna [3].

In addition, we show that directed SL with unit costs is Ω(log n)-hard
to approximate even for 0, 1 demands, while SL with uniform demands can
be solved in polynomial time. Finally, we obtain a logarithmic ratio for
a generalization of SL where we also have edge-costs and flow-cost bounds
{bv : v ∈ V }, and require that the minimum cost of a flow of value dv from
S to every node v is at most bv.
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1. Introduction

In Source Location (SL) problems, the goal is to select a minimum cost
source set S ⊆ V such that the connectivity from S to any node v is at
least the demand dv of v. Formally, the generic version of this problem is as
follows.

Source Location (SL)
Instance: A graph G = (V,E) with node-costs c = {cv : v ∈ V }, con-
nectivity demands d = {dv : v ∈ V }, and a source connectivity function
ψ : 2V × V → Z+, where Z+ denotes the set of non-negative integers.
Objective: Find a minimum cost source node set S ⊆ V such that
ψ(S, v) ≥ dv for every v ∈ V .

Several source connectivity functions ψ appear in the literature. To avoid
considering many cases, we suggest two generic types, that include previous
particular cases.

Definition 1.1. An integer set-function f on a groundset U is submodular if
f(A)+f(B) ≥ f(A∩B)+f(A∪B) for all A,B ⊆ U , and f is non-decreasing
if f(A) ≤ f(B) for all A ⊆ B ⊆ U .

Definition 1.2. Let G = (V,E) be a graph with node-capacities {qu : u ∈ V }.
For S ⊆ V and v ∈ V the (S, v)-q-connectivity λqG(S, v) is the maximum
number of edge-disjoint paths from S \ {v} to v in G such that every node
u ∈ V is an internal node in at most qu paths. Given connectivity bonuses
{pu ≥ qu : u ∈ V }, the (S, v)-(p, q)-connectivity λp,qG (S, v) is defined by:
λp,qG (S, v) = pv + λqG(S, v) if v ∈ S, and λ

p,q
G (S, v) = λqG(S, v) otherwise.

We will say that a source connectivity function ψ(S, v) is submodular if for
every v ∈ V , the function fv(S) = ψ(S, v) is submodular and non-decreasing;
ψ(S, v) is survivable if it is of the type ψ(S, v) = λp,qG (S, v). The concept
of q-connectivity is essentially “mixed connectivity” (the case qu ∈ {0, k})
introduced by Frank, Ibaraki, and Nagamochi [5], while (p, q)-connectivity
combines it with the connectivity function introduced recently by Fukunaga
[7] (the case q ≡ 1). The case of arbitrary node capacities includes additional
connectivity versions compared to [7], e.g., the edge-connectivity case.
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It is not hard to see that every survivable source connectivity function
ψ(S, v) is submodular (see Section 4), but the inverse is not true in general.
This gives only two types of SL problems.

Submodular SL: The connectivity function ψ(S, v) is submodular.
Survivable SL: The connectivity function ψ(S, v) is survivable.

We list four source connectivity functions that appear in the literature.
All of them are submodular, and three of them are also survivable. Given an
SL instance let k = maxv∈V dv denote the maximum demand, and in the case
of Survivable SL let p∗ = maxu∈V pu denote the maximum connectivity bonus
and q∗ = minu∈V qu denote the minimum node capacity. In what follows
assume that 1 ≤ qu ≤ pu ≤ k for all u ∈ V , and thus 1 ≤ p∗ ≤ k and
1 ≤ q∗ ≤ k holds.

1. λ-SL: λG(S, v) is the maximum number of pairwise edge-disjoint (S, v)-
paths if v /∈ S and λG(S, v) =∞ otherwise.
This is Survivable SL with pu = qu = k for every u ∈ V .

2. κ-SL: κ(S, v) is the maximum number of (S, v)-paths no two of which
have a common node in V \(S∪v) if v /∈ S, and κ(S, v) =∞ otherwise.

3. κ̂-SL: κ̂(S, v) is the maximum number of (S, v)-paths no two of which
have a common node in V \ {v} if v /∈ S, and κ̂(S, v) =∞ otherwise.
This is Survivable SL with pu = k and qu = 1 for every u ∈ V .

4. κ′-SL: κ′(S, v) = κ̂(S, v) if v /∈ S and κ′(S, v) = pv + κ̂(S \ {v}, v) if
v ∈ S.
This is Survivable SL with qu = 1 for every u ∈ V .

The known approximability status of SL problems with source connectiv-
ity functions λ, κ, κ̂, κ′, is summarized in Table 1; see also a survey in [16].
The approximability of λ, κ, κ̂-SL problems was settled to O(ln d(V )) in [20]
(where d(V ) =

∑

v∈V dv), while Fukunaga [7] showed that undirected κ′-SL
admits ratio O(k ln k). We prove the following.

Theorem 1.3. Submodular SL admits ratio O(ln d(V )). Undirected Survi-

vable SL admits ratio min{p∗ ln k, k} · O(ln(k/q∗)); furthermore, if q∗ = k
(this is the edge-connectivity case) then the ratio is exactly k.

Theorem 1.3 has several consequences. While ratioO(ln(d(V )) was known
for source connectivity functions λ,κ, κ̂ [20], our proof of a more general result
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c,d λ (p, q ≡ k) κ

Undirected Directed Undirected Directed

GC,GD Θ(ln d(V )) [2, 20] Θ(ln d(V )) [2, 20] Θ(ln d(V )) [2, 20] Θ(ln d(V )) [2, 20]
GC,UD in P [1] O(ln d(V )) [2] O(ln d(V )) [2] O(ln d(V )) [2]
UC,GD in P [1] O(ln d(V )) [2] O(ln d(V )) [2] O(ln d(V )) [2]
UC,UD in P [22] in P [10] O(ln d(V )) [2] O(ln d(V )) [2]

κ̂ (p ≡ k, q ≡ 1) κ
′ (q ≡ 1)

GC,GD Θ(ln d(V )) [20] Θ(ln d(V )) [20] O(ln d(V )) [7] O(ln d(V )) [7]
O(k ln k) [7] O(k ln k) [7]

GC,UD in P [17] in P [17]
UC,GD O(ln d(V )) [20] O(ln d(V )) [20]

O(k) [9]
UC,UD in P [17] in P [17]

Table 1: Previous approximation ratios and lower bounds for SL problems. GC and UC
stand for general and uniform costs, GD and UD stand for general and uniform demands,
respectively.

is simpler and shorter than the proof of each particular case. For undirected
graphs, the second part of Theorem 1.3 implies that Survivable SL problems
admit ratio O(k ln(k/q∗)) if p∗ ≥ k/ ln k (e.g., p∗ = k in λ-SL and κ̂-SL), and
ratio O(p∗ ln k ln(k/q∗)) if p∗ < k/ ln k (e.g., κ′-SL with p∗ = 1). In the case
of λ-SL we have q∗ = k which implies ratio exactly k. We note that ratio
k for λ-SL can be achieved by decomposing the problem into k problems
with demands in {0, ℓ}, ℓ = 1. . . . , k; each of these problems can be solved
in polynomial time. However, this algorithm is just a particular case of our
algorithm.

Summarizing, we get the following results for connectivity functions λ, κ′.

Corollary 1.4. λ-SL admits ratio k and κ′-SL admits ratio O(p∗ ln2 k).

To prove Theorem 1.3, we consider the following known problem.

Survivable Network (SN)
Instance: A graph G = (V,E) with edge-costs {ce : e ∈ E} and node
capacities {qu : u ∈ V }, and connectivity requirements r = {rsv : sv ∈ D}
on a set D of demand edges on V .
Objective: Find a min-cost subgraph G′ of G such that λqG′(s, v) ≥ rsv for
every sv ∈ D.
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Let k = maxsv∈D rsv denote the maximum requirement. For q ≡ k we
get the edge-connectivity version which admits ratio 2 due to Jain [11], while
for q ≡ 1 we get the node-connectivity version. SN admits a folklore ratio
O(|D|), and for directed graphs no better ratio is known. Undirected SN

admits ratios O (k3 log n) [3] for edge-costs, and O
(

k4 log2 n
)

for node-costs

[18, 23], and has an Ω(max{{k1/4, |D|1/6}) approximation lower bound [14].
We consider the following particular case of SN, studied previously in [13, 7].

Star-SN: the set F of edges in E of positive cost is a star with center a.

The Star-SN problem was defined in [13], where it was shown to admit
ratio O(lnn) for unit edge-costs. The study of this problem in [13] is moti-
vated by the observation that directed SN instances when (V, F ) is a complete
graph with unit edge costs (so called Connectivity Augmentation problem) can
be reduced to Star-SN with a loss of a factor of 2 in the approximation ra-
tio. Fukunaga [7] observed that κ′-SL is a special case of Star-SN. Hence the
Star-SN problem is important, as it generalizes several well known problems,
and it is also a particular interesting case of the SN problem. Our results
for Star-SN, summarized in the following theorem, substantially improve over
the best known ratios for SN. These results are of independent interest, as
they show that Star-SN admits much better ratios than general SN.

Theorem 1.5. Star-SN admits approximation ratios O(lnn) for directed
graphs, and O(min{lnn, ln k ln(k/q∗)}) for undirected graphs.

We further study SL problems and prove the following.

Theorem 1.6. Directed Survivable SL for k = 1 and unit costs is Ω(log n)-
hard to approximate. Directed/undirected κ′-SL with uniform demands and
with p ≡ 1 can be solved in polynomial time.

Finally, we consider the following generalization of Survivable SL. Given
an instance of Survivable SL and edge-costs c = {ce : e ∈ E}, let µp,q

G (S, v)
denote the minimum cost of an edge set F ⊆ E such that λp,q(V,F )(S, v) ≥ dv,

where µp,q
G (S, v) =∞ if no such edge set F exists (namely, if λp,qG (S, v) < dv).

Survivable SL with Flow-Cost Bounds

Instance: As in Survivable SL, but in addition we are also given edge-costs
{ce : e ∈ E} and flow-cost bounds {bv ≤ c(E) : v ∈ V }.
Objective: As in Survivable SL, with an additional constraint µp,q

G (S, v) ≤
bv for every v ∈ V .
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Theorem 1.7. Survivable SL with Flow-Cost Bounds admits approximation
ratio H(d(V )) +H(nc(E)− b(V )).

2. Relations between SL and SN problems

To explain the relation between SL and SN problems it would be con-
venient to consider the augmentation version of the SN problem, with ar-
bitrary connectivity functions and allowing node-costs. Given a function
w = {wu : u ∈ U} on a groundset U and U ′ ⊆ U , let w(U ′) =

∑

u∈U ′ wu. If
w is a cost function on U and I is an edge-set on U , then the cost (or the
node-costs) w(I) of I is the cost of the set of the endnodes of I. Formally,
we define the problem we need as follows.

Network Augmentation (NA)
Input: A graph G = (V,E), an edge-set F on V , a cost function c on F or
on V , connectivity requirements r = {rsv : sv ∈ D} on a set D of demand
edges on V , and a family {fsv : 2F → Z+ : sv ∈ D} of connectivity
functions.
Output: A min-cost edge-set I ⊆ F such that fsv(I) ≥ rsv for every
sv ∈ D.

Note that here the connectivity functions fsv(I) differ from the source
connectivity functions in SL problems. As in the case of SL problems, we
consider two types of NA problems:

Submodular NA: connectivity functions fsv(I) are submodular and non-
decreasing.
Survivable NA: connectivity functions are fsv(I) = λqG+I(s, v).

SN is a particular case of Survivable NA when E = ∅, but for edge-costs
the problems are equivalent. Here a survivable connectivity function may not
be submodular; indeed, we will obtain a logarithmic ratio for Submodular NA,
while Survivable NA has a polynomial approximation threshold. To see this,
consider the following simple example: V = {s, u, v}, E = ∅, F = {su, uv},
and f(I) = fsv(I) = λ(V,I)(s, v) is just the edge connectivity function. Let
A = {su} and B = {sv}. Then f(A) = f(B) = 0 and f(A ∪ B) = 1, and
the submodular inequality in Definition 1.1 does not hold. However, we will
show that if F is a star, then in the case of directed graphs every survivable
connectivity function is submodular.
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Let Rooted NA be a particular case of NA when D is a star with center
s. As we shall see, SL is equivalent to the node-costs version of the following
particular case of both Star-NA and Rooted NA.

Centered-NA: D,F are both stars with a common center s.

Fukunaga [7] made an important observation that κ′-SL is equivalent (via
an approximation ratio preserving reduction) to Survivable Centered-NA with
edge-costs and q ≡ 1. Here we further observe the following. For an edge-
set/graph J let δJ(X) denote the set of edges in J from X to V \X.

Lemma 2.1. For both directed and undirected graphs, Survivable SL is equiv-
alent to Survivable Centered-NA with node-costs such that δG(s) = ∅ and
c(s) = 0.

Proof. Given a Survivable SL instance construct a Survivable Centered-NA

instance as follows: add to G a new node s of cost 0, and for every v ∈ V set
rsv = dv and put pv edges from s to v into F . Conversely, given a Survivable

Centered-NA instance construct a Survivable SL instance as follows. Remove
s from G, and for every v ∈ V set pv to be the number of edges in F from
s to v and dv = rsv. In both directions, it is easy to see that S is a solution
to the Survivable SL instance, if, and only if, the edge set I of all edges in F
from s to S is a solution to the Survivable Centered-NA instance, and clearly
I and S have the same node-cost.

It is not hard to see that for Survivable Star-NA, approximation ratio ρ
for directed graphs implies ratio ρ for undirected graphs. This is achieved
by a standard reduction of bidirecting the edges of the undirected instance,
removing the directed edges entering the center a, and solving the problem
on the obtained directed instance. The same reduction works for Submodular

Star-NA problems. We omit the somewhat standard proof details.
The best known ratios for Survivable NA are O(k3 log n) for edge-costs [3],

and O
(

k4 log2 n
)

for node-costs [18, 23]. The best known ratio for Survivable
Rooted NA are O(k log k) for edge-costs [18] and O (k2 log n) for node-costs
[18, 23], and no better ratios were known even for Survivable Centered-NA, see
[7] where ratio O(k log k) for undirected Survivable Centered-NA was deduced
in two ways: from the ratio O(k log k) for Survivable Rooted NA [18], and via
iterative rounding. Our results for Star-NA, that imply Theorems 1.3 and
1.5, are summarized in the following three statements.
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Let H(j) denote the jth Harmonic number. The following lemma says
that Submodular Star-NA problems admit approximation ratio that is loga-
rithmic in terms of certain parameters α and β. These parameters are the
maximum total increase (namely, the sum of the increases) in connectivity
of all pairs in D as a result of taking a single edge (the parameter α) or a
single node (the parameter β) to the solution.

Lemma 2.2. For directed graphs, Submodular NA with edge costs admits ra-
tio H(α), and Submodular Star-NA with node costs admits ratio H(β), where

α = max
e∈F

∑

sv∈D

[min{fsv({e}), rsv} − fsv(∅)]

β = max
z∈V

∑

sv∈D

[min{fsv(δF (z)), rsv} − fsv(∅)] .

The next lemma says that Survivable Star-NA is a particular case of Sub-
modular Star-NA, and thus the previous lemma can be applied. Moreover, the
lemma bounds the parameters α and β as above in terms of the Survivable

Star-NA instance ingredients r, D, and F .

Lemma 2.3. For directed graphs, any Survivable Star-NA problem is a Sub-

modular NA problem, for which α ≤ |D| and β ≤ min{r(D), p∗|D|} holds,
where here p∗ denotes the maximum number of parallel edges in F .

The above two lemmas imply ratio no better than O(ln |D|) = O(lnn) for
Survivable Star-NA. The next theorem, which is our main technical contribu-
tion, says that for undirected graphs we can achieve ratio roughly O(p∗ ln2 k),
which may be much better that O(lnn) if the maximum requirement k =
maxsv∈D rsv and the maximum number p∗ of parallel edges in F are small.

Theorem 2.4. Undirected Survivable Star-NA admits ratio O(ln k ln(k/q∗))
for edge-costs and min{p∗ ln k, k} · O(ln(k/q∗)) for node-costs; furthermore,
in the case of node costs and q∗ = k the ratio is exactly k.

The above three statements imply Theorem 1.5; they also imply Theo-
rem 1.3, when combined with Lemma 2.1.

Our ratios for Star-NA and SL are summarized Table 2.
We briefly mention the techniques we use to prove these statements.

Lemma 2.2 is essentially an easy application of the greedy algorithm of
Wolsey [24] for the Submodular Cover problem. Parts of Lemma 2.3 were
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submodular survivable

directed undirected directed undirected

Star-NA H(α) H(α) H(|D|) H(|D|)
(edge-costs) O(ln k ln(k/q∗))
Star-NA H(β) H(β) H(min{r(D), p∗|D|}) H(min{r(D), p∗|D|})

(node-costs) min{p∗ ln k, k} ·O(ln(k/q∗))
SL H(d(V )) H(d(V )) H(min{d(V ), p∗|V |}) H(min{d(V ), p∗|V |})

min{p∗ ln k, k} ·O(ln(k/q∗))

Table 2: Approximation ratios for Star-NA and SL problems proved in this paper.

implicitly proved in [13], but our proof is both more general and substan-
tially simpler. Our main technical contribution is Theorem 2.4. To prove
this theorem, we consider the augmentation version of Survivable Star-NA

with edge-costs where the goal is to increase the connectivity by one between
the pairs in D. Using LP-scaling we show that ratio ρ for the augmentation
version implies ratio O(ρ ln k) for the edge-costs version of the general prob-
lems, and ratio min{p∗ ln k, k} ·O(ρ) for the node-costs version. Then we de-
sign an O(ln(k/q∗))-approximation algorithm for the augmentation version.
This is achieved by formulating the augmentation problem as a Biset-Family

Edge-Cover problem, reducing the later problem to the problem of finding a
minimum cost vertex cover in a hypergraph, and using a theorem from [19]
to show that the maximum degree in the obtained hypergraph is O

(

(k/q∗)2
)

.

3. Directed Submodular NA problems (Lemma 2.2)

All graphs in this and the next sections are assumed to be directed. To
prove Lemma 2.2 we use a result due to Wolsey [24] about a performance of
a greedy algorithm for submodular covering problems. In a generic covering
problem we are given by a value oracle two set functions on a groundset U :
a cost-function c : 2U → R and a progress function g : 2U → Z. The goal
is to find S ⊆ U of minimum cost such that g(S) = g(U). The Submodular

Cover problem is a special case when the function g is submodular and non-
decreasing, and c(S) =

∑

v∈S c(v) for some c : U → R
+. Wolsey [24] proved

that then, the greedy algorithm, that starts with S = ∅ and as long as
g(S) < g(U) repeatedely adds to A an element u ∈ U \ S with maximum
g(S∪{u})−g(S)

cu
, has approximation ratio H (maxu∈U g({u})− g(∅)).
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We start with the case of edge-costs. Then the function g is defined in
the same way as in [13, 20]: U = F and for I ⊆ F

g(I) =
∑

sv∈D

min{fsv(I), rsv}.

It is not hard to verify that g is non-decreasing, and that I is a feasible
solution to an NA instance if and only if g(I) = g(F ) = r(D). Also, for any
e ∈ F

g({e})− g(∅) =
∑

sv∈D

[min{fsv({e}), rsv} − fsv(∅)] .

We show that g is submodular. It is known (c.f. [21]) that if h is submod-
ular, then min{h, r} is submodular for any constant r. Thus the function
hsv(I) = min{fsv(I), rsv} is submodular. As a sum of submodular functions
is also submodular, we obtain that g is submodular.

Now let us consider node-costs. For S ⊆ V let FS denote the set of edges
in F from a to S, and let f ′

sv(S) = fsv(FS). We have U = V and for S ⊆ V
let

g′(S) =
∑

sv∈D

min{f ′
sv(S), rsv} .

As in the edge-costs case, it is not hard to verify that g′ is non-decreasing
and that S is a feasible solution to an NA instance if and only if g′(S) =
g′(V ) = r(D). Also, for any z ∈ V

g′({z})− g′(∅) =
∑

sv∈D

[min{fsv(δF (z)), rsv} − fsv(∅)] .

We show that g′ is submodular. We claim that the submodularity of f(I)
implies that f ′(S) is submodular. This is not true in general, but holds if F
is a star, and hence for Star-NA instances. More precisely, it is not hard to
verify the following statement, that finishes the proof of Lemma 2.2.

Lemma 3.1. Let (V, F ) be a graph and let f be a submodular set function on
F . If F is a star with center a, then the set function f ′(S) = f(FS) defined
on V \ {a} is also submodular.

Proof. Let A,B ⊆ V \ {a}. It is easy to see that since F is a star then

FA ∩ FB = FA∩B FA ∪ FB = FA∪B .
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Thus by the definition of f ′ and the submodularity of f we have

f ′(A) + f ′(B) = f(FA) + f(FB) ≥ f(FA ∩ FB) + f(FA ∪ FB)

= f(FA∩B) + f(FA∪B) = f ′(A ∩ B) + f ′(A ∪ B) .

4. Survivable Star-NA is a Submodular NA problem (Lemma 2.3)

We start by showing that in the case of edge-costs, directed Survivable

Star-NA is a particular case of Submodular NA. Let s, v ∈ V and let f : 2F → Z

be defined by f(I) = λqG+I(s, v), I ⊆ F . It is easy to see that f is non-
decreasing and we prove that if F is a star then f is submodular. For that,
we use the following known characterization of submodularity, c.f. [21]:
A set-function f on F is submodular if, and only if

f(I0 ∪ {e}) + f(I0 ∪ {e
′}) ≥ f(I0) + f(I0 ∪ {e, e

′}) ∀I0 ⊂ F, e, e′ ∈ F \ I0

Let us fix I0 ⊆ F . Revising our notation to G ← G + I0, F ← F \ I0, and
denoting h(I) = f(I0 ∪ I)− f(I0), we get that f is submodular if, and only
if

h({e}) + h({e′}) ≥ h({e, e′}) ∀e, e′ ∈ F .

In our setting, F is a star and h(I) = λqG+I(s, v)− λ
q
G(s, v) is the increase in

the (s, v)-q-connectivity as a result of adding I to G. Thus 0 ≤ h(I) ≤ |I|
for any I ⊆ F , so 0 ≤ h({e, e′}) ≤ 2. If h({e, e′}) = 0, then we are done; if
h({e, e′}) = 1, then we need to show that h({e}) = 1 or h({e′}) = 1; and if
h({e, e′}) = 2, then we need to show that h({e}) = 1 and h({e′}) = 1. We
prove the following general statement, that implies the above; it says that if
an augmenting edge set I is a star that increases the st-connectivity by h,
then there are h edges in I that cover all minimum st-cuts, and thus each of
these edges increases the st-connectivity by 1.

Lemma 4.1. Let G = (V,E) be a directed graph with node capacities {qv :
v ∈ V }, let I be a set of edges on V disjoint to E such that I is a star with
center a, let s, t ∈ V , and let h = λqG+I(s, t)− λ

q
G(s, t). Then there is J ⊆ I

of size |J | ≥ h such that λqG+{e}(s, t) = λqG(s, t) + 1 for every e ∈ J .

Proof. Since we consider directed graphs, it is sufficient to prove the lemma
for the case of edge-connectivity. For that, apply the following standard
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reduction that eliminates node capacities: replace every v ∈ V \ {s, t} by
two nodes vin, vout connected by qv parallel edges from vin to vout and replace
every uv ∈ E∪ I by an edge from uout to vin. Hence we will prove the lemma
for the edge connectivity function λ.

Let us say that S ⊆ V is tight if s ∈ S, t /∈ S, and |δG(S)| = λG(s, t),
namely, if δG(S) is a minimum st-cut. Let F be the family of tight sets. By
Menger’s Theorem F is non-empty. It is also known that F is a ring family,
namely, the intersection of all the sets in F is nonempty, and if X, Y ∈ F
then X ∩ Y,X ∪ Y ∈ F . Thus F has a unique inclusion-minimal set Smin

and a unique inclusion-maximal set Smax, and Smin ⊆ Smax holds.
Let J = {av ∈ I : a ∈ Smin, v ∈ V \ Smax} be the set of edges in I that

go from Smin to V \ Smax. Each edge in J covers all members in F , hence by
Menger’s Theorem λG+{e}(s, t) = λG(s, t) + 1 for every e ∈ J .

It remains to prove that |J | ≥ h. We claim that since I is a star, then
λG+I(s, t) ≤ λG(s, t) + |J |, hence |J | ≥ λG+I(s, t) − λG(s, t) = h. Note that
from Menger’s Theorem we have

λG+I(s, t) ≤ λG(s, t) + |δI(Smin)| λG+I(s, t) ≤ λG(s, t) + |δI(Smax)|

The first inequality implies that if δI(Smin) = ∅, then λG+I(s, t) = λG(s, t),
and thus we are done. Else, we must have a ∈ Smin. In this case J = δI(Smax),
since I is a star. Then the second inequality implies λG+I(s, t) ≤ λG(s, t)+|J |,
as claimed.

Note that Lemma 4.1 does not hold if I is an arbitrary edge set. To
see this, consider the following example (this is the example given at the
beginning of Section 2): V = {s, u, t}, E = ∅, and I = {su, ut}. Then
h = λG+I(s, t)− λG(s, t) = 1− 0 = 1, but λG+{e}(s, t) = 0 for every e ∈ I.

We now bound the parameters α and β. The bound β ≤ r(D) is obvious,
while the other bounds on α and β follow from the simple observation that
for any s, v ∈ V , the set-function on F defined by f(I) = λqG+I(s, v) has the
following properties: f({e}) ≤ 1 for any e ∈ F and f(δF (z)) ≤ |δF (z)| ≤ p∗

for any z ∈ V .
The proof of Lemma 2.3 is now complete.

5. Undirected Survivable Star-NA (Theorem 2.4)

All graphs in this and the next section are assumed to be undirected. We
start by considering the edge-costs case, and then will show that it implies
the node-costs case by reductions. We need several definitions.
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Definition 5.1. An ordered pair A = (A,A+) of subsets of a groundset V
is called a biset if A ⊆ A+; A is the inner part and A+ is the outer part
of A, and ∂A = A+ \ A is the boundary of A. An edge e covers a biset A
if it has one endnode in A and the other in V \ A+. For a biset A and an
edge-set/graph J let δJ(A) denote the set of edges in J covering A.

Given an instance of Survivable NA and a biset A on V , let the requirement
of A be r(A) = max{ruv : uv ∈ δD(A)} if δD(A) 6= ∅ and r(A) = 0 otherwise.
By the q-connectivity version of Menger’s Theorem (c.f. [12]), I ⊆ F is a
feasible solution to an Survivable NA instance if, and only if, |δI(A)| ≥ h(A)
for every bisets A on V , where h is a biset-function defined by

h(A) = max{r(A)− (q(∂A) + |δG(A)|), 0} (1)

Let Ph denote the polytope of “fractional edge-covers” of h, namely,

Ph =
{

x ∈ R
F : x (δF (A)) ≥ h(A) ∀ biset A on V, 0 ≤ xe ≤ 1 ∀e ∈ F

}

.

Let τ(h) denote the optimal value of a standard LP-relaxation for edge cover-
ing h by a minimum cost edge set, namely, τ(h) = min

{
∑

e∈F cexe : x ∈ Ph

}

.
As an intermediate problem, we consider Survivable NA instances when

we seek to increase the connectivity by 1 for every uv ∈ D, namely, when
ruv = λqG(u, v) + 1 for all uv ∈ D.

D-Survivable NA (the edge-costs version)
Input: A graph G = (V,E) with node-capacities {qv : v ∈ V }, an edge
set F on V , a cost function c on F , and a set D of demand edges on V .
Output: Find a min-cost edge-set I ⊆ E such that λqG+I(u, v) ≥ λqG(u, v)+
1 for all uv ∈ D.

Given a D-Survivable NA instance, let us say that a biset A is tight if
h(A) = 1, where h is defined by (1). The D-Survivable NA problem is equiva-
lent to the problem of finding a minimum cost edge-cover of the biset family
F = {A : h(A) = 1} of tight bisets. Thus the following generic problem
includes the D-Survivable NA problem.

Biset-Family Edge-Cover

Input: A graph (V, F ) with edge-costs and a biset family F on V .
Output: Find a min-cost F -cover I ⊆ F .

13



For a biset-family F let τ(F) denote the optimal value of a standard
LP-relaxation for edge covering F by a minimum cost edge set, namely,
τ(F) = τ(h) where h is defined by h(A) = 1 if A ∈ F and h(A) = 0
otherwise.

The following statement considers the approximation factor invoked by
applying the so called “backward augmentation” method due to [8]. Some
parts of this staement are known, but we will provide a proof for completeness
of exposition.

Proposition 5.2. Suppose that D-Survivable Star-NA with edge-costs ad-
mits a polynomial time algorithm that computes a solution of cost at most
ρ(k)τ(F), where F is the family of tight bisets. Then Survivable Star-NA

admits a polynomial time algorithm that computes a solution I such that:

• For edge-costs, c(I) ≤ τ(h) ·
∑k

ℓ=1
ρ(ℓ)

k−ℓ+1
, where h is defined by (1).

• For node-costs, c(I) ≤ opt ·
∑k

ℓ=1 ρ(ℓ) ·min
{

p∗

k−ℓ+1
, 1
}

.

Proof. We start with the edge-costs case. Consider the following sequential
algorithm. Start with I = ∅. At iteration ℓ = 1, . . . , k, add to I and remove
from F an edge-set Iℓ ⊆ F that increases by 1 the q-connectivity of G + I
on the set of demands

Dℓ = {sv : λqG+I(s, v) = r(s, v)− k + ℓ− 1, sv ∈ D} ,

by covering the corresponding biset-family Fℓ using the ρ-approximation al-
gorithm. After iteration ℓ, we have λqG+I(s, v) ≥ r(s, v)−k+ℓ for all sv ∈ D.
Consequently, after k iterations λqG+I(s, v) ≥ r(s, v) holds for all sv ∈ D, thus
the computed solution is feasible. The approximation ratio follows from the
following two observations.

(i) c(Iℓ) ≤ ρ(ℓ) · τ(Fℓ). This is so since λ(s, v) ≤ ℓ− 1 for every sv ∈ Dℓ,
hence the maximum requirement at iteration ℓ is at most ℓ.

(ii) τ(Fℓ) ≤
τ(h)

k−ℓ+1
. To see this, note that if A ∈ Fℓ and x ∈ Ph then

x(δ(A)) ≥ k − ℓ + 1, by Menger’s Theorem. Thus x/(k − ℓ + 1) is
a feasible solution for the LP-relaxation for edge-covering Fℓ, of value
c · x/(k − ℓ+ 1).
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Consequently, c(I) =
∑k

ℓ=1 c(Iℓ) ≤
∑k

ℓ=1 ρ(ℓ) ·
τ(h)

k−ℓ+1
= τ(h) ·

∑k
ℓ=1

ρ(ℓ)
k−ℓ+1

.
Now let us consider the case of node-costs. Then we convert node-costs

into edge-costs by assigning to every edge e = av the cost c′(e) = c(v). Let
opt′ denote the optimal solution value of the edge-costs instance obtained.
Clearly, opt ≤ opt′ ≤ p∗ · opt. Note that any inclusion minimal solution to
a D-Survivable NA instance has no parallel edges. This implies that c(Iℓ) ≤
ρ(ℓ) · opt and that c(Iℓ) = c′(Iℓ). The latter implies c(Iℓ) = c′(Iℓ) ≤ ρ(ℓ) ·
opt′

k−ℓ+1
≤ ρ(ℓ)·opt· p∗

k−ℓ+1
, and the statement for the node-costs case follows.

In the next section we prove the following theorem, that together with
Proposition 5.2 finishes the proof of Theorem 2.4.

Theorem 5.3. Undirected D-Survivable Star-NA with edge-costs admits a
polynomial time algorithm that computes a solution I of cost τ(F)·O(ln(k/q∗)).

Furthermore, if D is a star then c(I) ≤ τ(F) ·H
(

2
⌊

k−1
q∗

⌋

+ 1
)

.

6. Proof of Theorem 5.3

Recall that D-Survivable NA reduces to Biset-Family Edge-Cover with F
being the family of tight bisets; in the case of rooted requirements, when D
is a star with center s, it is sufficient to cover the biset-family

F s = {A ∈ F : s ∈ V \ A+} .

Biset-families arising from Survivable NA instances have some special
properties, that are summarized in the following definitions.

Definition 6.1. The intersection and the union of two bisets A,B is defined
by A ∩ B = (A ∩ B,A+ ∩ B+) and A ∪ B = (A ∪ B,A+ ∪ B+). The biset
A \ B is defined by A \ B = (A \B+, A+ \B). We write A ⊆ B and say that
B contains A if A ⊆ B and A+ ⊆ B+. Let CF denote the inclusion-minimal
bisets in F .

Definition 6.2. Two bisets A,B covered by an edge-set D are D-independent
if for any xx′, yy′ ∈ D such that xx′ covers A and yy′ covers B, {x, x′}∩∂B 6=
∅ or {y, y′} ∩ ∂A 6= ∅; otherwise, A,B are D-dependent. We say that a
biset family F is D-uncrossable if D covers F and if for any D-dependent
A,B ∈ F the following holds:

A ∩ B,A ∪ B ∈ F or A \ B,B \ A ∈ F . (2)
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Similarly, given a set T ⊆ V of terminals, we say that A,B are T -independent
if A ∩ T ⊆ ∂B or if B ∩ T ⊆ ∂A, and A,B are T -dependent otherwise. We
say that F is T -uncrossable if T covers the set-family of the inner parts of
F , and if (2) holds for any T -dependent A,B ∈ F .

A biset-family F is symmetric if A ∈ F implies (V \A+, V \A) ∈ F . We
will use the the following statement, that was implicitly proved in [19].

Lemma 6.3 ([19]). The family F of tight bisets is symmetric and D-uncros-
sable; if D is a star with leaf-set T then {A ∈ F : s /∈ A+} is T -uncrossable.

For a biset-family F let γF = max{|∂A| : A ∈ F} denote the maximum
size of the boundary of a biset in F . Note that if F is the family of tight
bisets then γF ≤ (k − 1)/q∗. Given an instance of Biset-Family Edge-Cover,
we will assume that the family C of the inclusion members of F can be
computed in polynomial time. We note that for F being the family of tight
bisets, this step can be implemented in polynomial time, c.f. [19]. Under
this assumption, we prove the following generalization of Theorem 5.3.

Theorem 6.4. For edge/node-costs, Biset-Family Edge-Cover with F being a
star admits a polynomial time algorithm that computes a cover I of F such
that:

(i) c(I) ≤ H
(

(4γC + 1)2
)

· τ(F) if F is symmetric and D-uncrossable.

(ii) c(I) ≤ H(2γC + 1) · τ(F) if F is T -uncrossable and a ∈ V \X+ for all
A ∈ F .

In the rest of this section we prove Theorem 6.4.

Definition 6.5. A set U ⊆ V of nodes is a C-transversal of a hypergraph
(set-family) C on V if U intersects every set in C; if C is a biset-family
then U should intersect the inner part of every member of C. Given node
costs {cv : v ∈ V }, let t∗(C) denote the minimum value of a fractional C-
transversal, namely:

t∗(C) = min{
∑

v∈V

cvxv : x(C) ≥ 1 ∀C ∈ C, x(v) ≥ 0 ∀v ∈ V } .

In [19], the following is proved.
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Theorem 6.6 ([19]). let C be the family of the inclusion members of a biset
family F . Then the maximum degree in the hypergraph {C : C ∈ C} is at
most:

(i) (4γC + 1)2 if F is D-uncrossable.

(ii) 2γC + 1 if F is T -uncrossable.

Given a hypergraph (V, C) with node-costs, the greedy algorithm com-
putes in polynomial time a C-transversal U ⊆ V of cost c(U) ≤ H(∆(C))t∗(C),
where ∆(C) is the maximum degree of the hypergraph (c.f. [15]).

The following statement is obvious.

Lemma 6.7. If an edge-set I covers a biset-family F then the set of endnodes
of I is a transversal of F .

Lemma 6.8. Let F be a biset family on V and I a star with center a on a
transversal U ⊆ V of F . Then I covers F in each one of the following cases.

(i) F is symmetric and a /∈ Γ(A) for all A ∈ F .

(ii) a ∈ V \ A+ for all A ∈ F .

Proof. Let A ∈ F . Then a ∈ A or a ∈ V \ A+. If a ∈ V \ A+, then since U
is a transversal of C, there is u ∈ U ∩ A. If a ∈ A, then if F is symmetric,
then there u ∈ U ∩ (V \ X+). In both cases, there is an edge au ∈ I, and
this edge covers A.

The algorithm as in Theorem 6.4, for both edge-costs and node-costs is
as follows, where in the case of node-costs we may assume that the cost of a
is zero.

1. For every v ∈ V \ {a}, let ev be the minimum-cost edge incident to
v, and in the case of edge-costs define node-costs cv = mine∈δF (v) ce
if δF (v) 6= ∅, and cv =∞ otherwise.

2. Let C be the family of the inclusion members of F . With node-
costs {cv : v ∈ V }, compute a transversal U of C of cost c(U) ≤
H(∆(C))t∗(C).

3. Return I = {ev : v ∈ U}.

The solution computed is feasible by Lemma 6.8. The approximation
ratio follows from Theorem 6.6 and Lemma 6.7.

This concludes the proof of Theorem 5.3, and thus also the proof of
Theorem 2.4 is now complete.
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7. Proof of Theorem 1.6

Note that in the reduction in Lemma 2.1 we have the following.

• Uniform demands dv = k for all v ∈ V in Survivable SL correspond to
requirements rsv = k for all v ∈ V \ {s} in Survivable Centered-NA.

• κ′-SL with p ≡ 1 corresponds to Survivable Centered-NA with edge costs.

• Unit node-costs in Survivable SL correspond to unit node-costs in Sur-

vivable Centered-NA.

Directed Rooted Survivable NA with edge-costs and requirements rsv = k
for all v ∈ V \{s} can be solved in polynomial time [6]; this implies that also
undirected Survivable Centered-NA with edge-costs and requirements rsv = k
for all v ∈ V \ {s} can be solved in polynomial time. Thus the same holds
for κ′-SL with p ≡ 1 and uniform demands.

Frank [4] showed that directed Survivable Centered-NA with δG(s) = ∅
and k = 1 is NP-hard. Using a slight modification of his reduction we can
show that the problem is in fact Set-Cover hard to approximate, and thus is
Ω(log n)-hard to approximate. Given an instance of Set-Cover, where a family
A of sets needs to cover a set B of elements, construct the corresponding
directed bipartite graph G′ = (A∪B,E ′), by putting an edge from every set
to each element it contains. The graph G = (V,E) is obtained from G′ by
adding M copies of B, connecting A to each copy in the same way as to B,
and adding a new node s. Let F = {sv : v ∈ V }, c(e) = 1 for every e ∈ F ,
and rsv = 0 if v ∈ A and rsv = 1 otherwise. It is easy to see that if I ⊆ F is a
feasible solution to the obtained Survivable Centered-NA instance, then either
I corresponds to a feasible solution to the Set-Cover instance, or |I| ≥ M .
The Ω(log n)-hardness follows for M large enough, say |M | = (|A|+ |B|)2,
and |A| = |B|. Since for k = 1 all connectivity functions of Survivable NA are
equivalent, we get Ω(log n) hardness for directed Survivable NA with k = 1
and unit costs.

8. Survivable SL with Flow-Cost Bounds (Theorem 1.7)

Survivable SL with Flow-Cost Bounds is a special case of the following
generalization of the Submodular Cover problem, where we have two progress
functions:

f(S) =
∑

v∈V

min{λp,qG (S, v), dv} and g(S) =
∑

v∈V

min{−µp,q
G (S, v),−bv}. (3)
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It is easy to see that S is a feasible solution to Submodular SL with Flow-Cost

Bounds if and only if both

f(S) = f(V ) =
∑

v∈V

dv and g(S) = g(V ) = −
∑

v∈V

bv .

For f, g defined by (3) we have maxu∈U f({u}) − f(∅) ≤ d(V ), but note
that maxu∈U g({u}) − g(∅) = ∞ may hold. The function f is submodular
since for any v ∈ V the function fv(S) = λp,qG (S, v) is submodular, as can
be deduced from Lemmas 3.1 and 2.3. The function g is submodular since
for any v ∈ V the function gv(S) = λp,qG (S, v) is submodular; this is proved
in [2] for the case of edge-connectivity, and the proof for (p, q)-connectivity
is similar. Also, both functions are non-decreasing and admit a polynomial
time value oracle.

Double Submodular Cover

Instance: A groundset V with costs {cv : v ∈ V } and submodular non-
decreasing functions f : 2V → Z and g : 2V → Z∪{−∞} given by a value
oracle.
Objective: Find S ⊆ V of minimum cost such that f(S) = f(V ) and
g(S) = g(V ).

There are several natural approaches to solve the Double Submodular Cover

problem using the greedy algorithm of Wolsey [24]. One is to apply the greedy
algorithm with the function f+g. Another possibility is to solve two instances
of Submodular Cover, one with function f and the other with function g,
returning the union of the solutions Sf and Sg computed. However, in both
cases the ratio may be unbounded if g(∅) = −∞, which may happen for g
defined by (3).

The idea is to compute Sf and then to compute Sg for the residual prob-
lem. Note that for f, g defined by (3) we have the following property: if
f(Sf ) = f(U) then g(S) ≥ −n · c(E) for any S ⊇ Sf . Therefore, the fol-
lowing approach works. We take the set Sf into our solution, and consider
the residual Submodular Cover problem with groundset V \ Sf and the set
function h(S) = g(Sf ∪ S), S ⊆ V \ Sf . The function h is submodular if g
is. Note that for g defined by (3), maxu∈U h({u}) − h(∅) ≤ n · c(E) − b(V ),
and we get approximation ratio

H

(

max
v∈V

f({v})− f(∅)

)

+H

(

max
v∈V

h({v})− h(∅)

)

≤ H(d(V ))+H(nc(E)−b(V )) .
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Clearly, the approach described can be generalized to the case when we
have many non-decreasing submodular functions, under the assumption that
there exists an ordering f1, f2, . . . of the functions such that for any i, if
fj(S) = f(U) for every j ≤ i, then fj+1(S

′) 6= −∞ for any S ′ ⊇ S.
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