
Generalized Submodular Cover Problems andApplicationsJudit Bar-Ilan � Guy Kortsarz y David Peleg zOctober 28, 1998AbstractThe greedy approach has been successfully applied in the past to produce logarith-mic ratio approximations to NP-hard problems under certain conditions. The problemsfor which these conditions hold are known as submodular cover problems.The current paper1 extends the applicability of the greedy approach to wider classesof problems. The usefulness of our extensions is illustrated by giving new approximatesolutions for two di�erent types of problems. The �rst problem is that of �nding thespanning tree of minimum weight among those whose diameter is bounded by D. Alogarithmic ratio approximation algorithm is given for the cases of D = 4 and D = 5.This approximation ratio is also proved to be the best possible, unless P = NP . Thesecond type involves some (known and new) center selection problems, for which newlogarithmic ratio approximation algorithms are given. Again, it is shown that the ratiomust be at least logarithmic unless P = NP .Keywords: NP-hard problems, greedy approximation, submodular covers.
�School of Library, Archive and Information Studies, The Hebrew University, Jerusalem 91904, Israel.Part of this work was carried out while the author was with the Department of Applied Mathematics andComputer Science at the Weizmann Institute of Science.yDepartment of Computer Science, The Open University of Israel, Ramat Aviv, Israel. Part of this workwas carried out while the author was with the Department of Applied Mathematics and Computer Scienceat the Weizmann Institute of Science.zThe Norman D. Cohen Professorial Chair of Computer Sciences, Department of Applied Mathematicsand Computer Science, The weizmann Institute of Science, Rehovot 76100, Israel. Supported in part by aWalter and Elise Haas Career Development Award and by a grant from the Israel Science Foundation.1A preliminary version of this paper has appeared as an extended abstract in Proc. 4th Israel Symp. onthe Theory of Computing and Systems, Jerusalem, Israel, June 1996.



1 IntroductionGreedy approximation algorithms for various NP -hard problems were proposed in [Joh74,Lov75, Chv79]. A more general framework for using greedy algorithms for approximationwas proposed in [Dob82] and [Wol82].The general approximation method introduced in [Wol82] applies to submodular-coverproblems. A submodular-cover problem is described in the following way. Let U be acollection of elements and f : 2U 7! Z, an integral, nondecreasing and submodular function.A (positive integral) cost is associated with every element of U , and the optimal feasiblesolution to the problem is a subset S� of U with minimum cost such that f(S�) = f(U).Intuitively, the entire universe U is a \cover" and the function f(S) measures the extent ofwhich S is close to being a cover as well. That is, f measures how close S is to covering thesame amount U covers. Now, adding a new element to S increases the amount S covers, i.e.,increases f . Intuitively, the function f is non-increasing and submodular if there is someindependence among the \cover-increment" of elements outside S. Namely, for every twoelements u; v 2 U n S, the contribution to f of u and v together is no greater than the sumof their separate contributions. More formally, f(S [fu; vg) � f(S [fug)+ f(S[fvg). Seealso De�nition 2.1 and the discussion thereafter.It is proved in [Wol82] that for a submodular-cover problem, the greedy approach yieldsa logarithmic ratio approximation algorithm. In particular, this method deals with theweighted set-cover problem, including variants with load bounds on the vertices.The current paper extends this method in two ways. Section 3 deals with two-phaseapplications of Wolsey's method, with two di�erent submodular functions used in the twophases. Then, Section 4 studies algorithms that apply the greedy procedure a number oftimes successively.Section 5 presents a number of new applications to our techniques. One major class ofapplications concerns logarithmic ratio approximations for some known and new multicenterselection and allocation problems. Three examples are given in the paper for this class ofapplications. The �rst problem in that class is the average cost center problem, which gen-eralizes (the dual of) the k-median problem (cf. [CK98]). The second example is the faulttolerant center selection problem, generalizing a variant studied in [BKP93]. A third exampleconcerns capacitated facility location problems, which again generalize facility location prob-lems studied in the literature. In all of these cases, the generalized problems discussed herewere not given approximation algorithms in the past, to the best of our knowledge. More-over, for all of these problems, it is also shown that the result is apparently near-optimal, inthe sense that unless P = NP , the approximation ratio must be logarithmic.One last application discussed in the paper, taken from a di�erent domain, concerns theproblem of �nding the spanning tree of minimum weight among those whose diameter is1



bounded by D. A logarithmic-ratio approximation is given for this problem for D = 4 andD = 5. (The case D = 4 is given some applications in the area of information retrieval in[BK90, BK91]. There, shallow trees are used to e�ciently compress a collection of bits; theshorter the resulting tree, the faster the process of deciphering the message.) Again, it isshown that the approximation ratio for this problem must be 
(logn), unless P = NP .This result was recently generalized, using specialized techniques, to give a polynomialtime approximation algorithm of ratio O(logn) for any constant D, and an algorithm ofratio O(n�), for any �xed 0 < � < 1, for general D [KP97].2 Preliminaries2.1 FrameworkWe start by introducing some de�nitions and notations that will be used in what follows.Let U be a �nite set. From now on we only consider integral valued nonnegative functionsf : U 7! Z.De�nition 2.1 The function f is1. nondecreasing if f(S) � f(T ) for all S � T � U ,2. submodular if f(S) + f(T ) � f(S [ T ) + f(S \ T ) for all S; T � U .Notation 2.2 Given a set U , a function f , a subset S � U and an element x 2 U , denote� �f (S; x) = f(S [ fxg)� f(S) and� �f (S) = maxx2Uf�f(S; x)g:Using this notation, one can express the above two properties in a di�erent but equivalentway, as follows. Given a set U and a nonnegative integral function f : 2U :7! Z, we say thatf obeys the improvement independence (II) axiom if the following holds.(II) [Improvement Independence]For every pair of subsets S; T � U ; S � T , Pu2TnS �f (S; u) � f(T )� f(S).Clearly, if f is nondecreasing, then restricting Axiom (II) to S; T such that S � T causes noloss of generality. The following theorem and its proof can be found, e.g., in [NW88].Theorem 2.3 (cf. [NW88]) A function f is submodular and nondecreasing if and only ifit obeys Axiom (II). 2



The next theorem can also be found in [NW88]. For this theorem, denote U = fu1; : : : ; ung.Theorem 2.4 (cf. [NW88]) Let f and f 0 be two submodular functions on U , and letrj; 1 � j � n, be nonnegative integers, c a nonnegative real and k a real number. Then thefollowing are also submodular on U :� f1(S) = f(S) + f 0(S),� f2(S) = c � f(S),� f3(S) = minff(S); kg,� f4(S) = Pui2S ri.We remark that this theorem is only used in this paper with integral c and k. Let us describemore formally the framework of submodular-cover problems. The input to a submodular-cover problem consists of a �nite set U = fu1; : : : ; ung and a nondecreasing submodularfunction f : 2U 7! Z. There is a nonnegative cost ci associated with each element ui 2 U .We de�ne the cost of a subset S � U as c(S) = Pui2S ci. The subsets S s.t. f(S) = f(U) arereferred to as the feasible sets, or feasible solutions. An optimal solution to a submodular-cover problem P is a feasible set S� such that c(S�) is minimum.The idea behind the greedy algorithm for submodular-cover problems is to start fromsome initial given set (usually, the empty set) and gradually add elements until attainingfeasibility. The element picked in each iteration is the \locally optimal" one in terms of itsgain-to-weight ratio, namely, the element maximizing �f(S; ui)=ci.The following theorem is proved in [Wol82].Theorem 2.5 [Wol82] Let P be a submodular-cover problem, and let S� be an optimalsolution for P . Then the greedy algorithm produces a feasible set S with approximation ratioc(S)=c(S�) � ln(�f(;)) + 1.2.2 The family ILP f of programsWe next describe a family of linear minimization problems called ILP f . These are problemsof the following form.min nXi=1 cixis.t. A�z � �b; where �z = �x; �y; �x = (x1; : : : ; xn); �y = (y1; : : : ; yq);xi 2 f0; 1g; 0 � yj � 
j; for 1 � i � n; 1 � j � q;where �b consists of m integers (which w.l.o.g. may be assumed to be nonnegative), ci > 0for every i, the coe�cients of the xi variables in the m� (n+ q) matrix A are positive, andthe m� q submatrix Aq of the last q columns in A is a \
ow matrix" (also called \incidence3



matrix"). Namely, the coe�cients of each yj in Aq are 0, except for one row containing 1 andone row containing -1. The yj variables represent the arcs and the matrix rows represent thevertices. The 1 (resp, -1) entry in the column corresponding to yj represents the end (resp.,start) vertex of the arc. The restriction 0 � yj � 
j is the capacity constraint for the arccorresponding to yj.Our analysis for the quality of the greedy approximation algorithm on ILP f directlyextends the ideas of [Wol82]. For an instance of the ILP f problem, de�ne the correspondingsubmodular function, similar to the one used in [Wol82] for the bounded load set cover. LetAi be the ith row in the matrix A. De�ne a universe U = fu1; : : : ; ung of n elements. Assigneach element ui a cost coe�cient ci Since each xi is a 0 � 1 variable, there is a one to onecorrespondence between vectors �x and subsets S � U of U (i.e., S consists of the elementsui 2 U for which xi = 1.) Hereafter, we denote by �xS the characteristic incidence vectorcorresponding to the set S � U .Recall that in the formulation of ILP f , �z = �x; �y, i.e., �z is the concatenation of the �x and�y vectors. For a �xed vector �xS corresponding to a subset S � U , and some assignment �Yfor the variables �y, let �z = �xS; �Y andf1(�z) =Xi minfAi � �z; big;and denote f2(S) = max�Y ff1(�z)g:It is clear that if a feasible solution for the ILP f program exists at all, then f2(U) = Pi bi,and therefore, a subset S for which f2(S) = f2(U) is a feasible solution to the ILP f program.A bound on the approximation ratio of the greedy algorithm on ILP f follows fromTheorem 2.5 since f2 is submodular and nondecreasing. We are not aware of a reference toan explicit proof of submodularity for precisely this function f2 in the literature, althoughthe proof follows a well-understood path. For completeness, we provide a proof of this factin the appendix.Letting Bmax = maxf1;maxifbigg, we have the following result.Lemma 2.6 The ILP f problem has an O(log(mBmax)) approximation algorithm.For future reference, recall the relation of the above de�ned function f2 to 
ow theory.Suppose that, given S, we plug into the above inequalities the values of �xS corresponding toS. After rearranging the inequalities, each bj is replaced with some b0j � bj (this follows sincethe coe�cients of the xj are nonnegative). This leaves us with a maximum 
ow instance.Indeed, construct the following directed 
ow graph G(A; S). Add a vertex vj for eachrow j. Add a source s and a sink t. If a variable yi appears with positive sign in row j, andwith negative sign in row k, add an arc emanating from vk to vj. Each vertex vj for which4



b0j > 0 is connected with an arc to t of capacity b0j. Also, add an arc from s to each vertex vjwith b0j < 0, with capacity �b0j. To compute f2(S), we simply compute the maximum 
owin G(A; S). This maximum 
ow function sets values for the variables yj, according to the
ow on the respective arcs. (A minor subtlety is that a feasible �y vector does not necessarilycorrespond to a 
ow function in G(A; S). Rather, it may correspond to an excessive 
owfunction, where the amount of 
ow entering each vertex may exceed the amount of 
owleaving this vertex. Nevertheless, since in f2 we gain nothing by putting more than bi unitsof 
ow over an arc with capacity bi entering the sink, an excessive 
ow can be converted intoa legal 
ow with the same f2 value.)Finally, we observe that while the logarithmic approximation ratio obtained for ILP f mayseem rather weak, it is asymptotically the best achievable, assuming P 6= NP . Moreover,virtually the same happens for all the problems considered throughout the rest of this paper.Most of these hardness results on approximability easily follow from [RS97], which provesa hardness result for the set cover and dominating set problems. The set cover problem canbe described as follows. We are given an undirected bipartite graph G(X; Y; E) where theedges cross from X to Y . The goal is to choose a minimum subset W � X, such that everyvertex in Y has a neighbor in W . In the dominating set problem, the input is an undirectedgraph G(V;E). The goal is to choose the smallest subset W � V such that every vertexv 2 V nW has a neighbor in W .The following theorem is proven in [RS97], strengthening two similar theorems in [LY94,Fei96], which were given under somewhat weaker complexity assumptions.Theorem 2.7 [RS97] There exists a constant c < 1 such that the set cover and dominatingset problems admit no c � lnn-ratio approximation, unless P = NP .Clearly, our program ILP f extends the set cover problem. Hence we have the following.Corollary 2.8 There exists a constant c < 1 such that the ILP f problem admits no c � lnm-ratio approximation algorithm, unless P = NP .3 Two-phase greedy algorithmsThis section considers a class of linear minimization problems denoted ILP c. This class isan extension of the class ILP f , which is no longer directly within the above scheme. Weprovide the �rst general approximation algorithm for problems in this class, based on twophases of greedy selection, using two di�erent submodular functions.The class ILP c consists of programs of the ILP f form with the additional 
ow-cost
5



inequality nXj=1 rjxj � qXj=1 ljyj + � � 0; (1)for nonnegative rj and lj, 1 � j � n and 1 � j � q. The above inequality has a \
ow-cost"interpretation, namely, the coe�cient lj is the cost of the arc corresponding to yj. For �xedxi, this inequality bounds the cost of the 
ow function.More precisely, let (L2) denote the instance of the ILP c program at hand and by (L1)the ILP f program obtained from (L2) by eliminating the 
ow-cost inequality. De�ne the
ow graph G(A; S) for (L1) as in the previous section. The 
ow-cost inequality (1) requiresthat P ljyj, which is exactly the 
ow-cost in G(A; S), be bounded by some �0. For �xedS (and therefore for �xed incidence vector �xS), denote by G(A; S; �l) the max-
ow min-costinstance corresponding to the ILP c program. (This is the 
ow graph G(A; S) extended byadding the 
ow-cost coe�cients lj on the arcs.)Let Bmax = maxjfbjg and Lmax = maxjfljg in the instance. Start with some feasiblesolution S0 � U for (L1). Let Ŷ be an assignment of values that maximizes the 
ow inG(A; S0), namely, f1(�xS0 ; Ŷ ) = f2(S0). Let Ymax = maxifŶig. Since the maximum possible
ow in G(S;A) is bounded by m �Bmax, we may assume that this assignment Ŷ satis�esYmax � mBmax: (2)Since S0 is feasible for (L1), there exists for S0 an assignment �Y for the �y variables such thatthe inequalities A � (�xS0 ; �Y ) � �b are satis�ed. However, it may be impossible to satisfy the
ow-cost inequality with S0. We therefore need to extend S0 to a larger set S[S0, for whichit is possible to satisfy the 
ow-cost inequality as well.De�ne a new universe U0 = U n S0. Now, for every set S � U0, let �z = �xS[S0; �y, andde�ne f3(S) = maxyj f�X ljyjgs.t. A�z � �b:Intuitively, once plugging the �xS[S0 values in ILP c, one gets a max-
ow min-cost instanceG(A; S; �l). Since S0 is a solution to (L1), and S0 � S[S0, we know that there is an assignmentŶ of values for the �y variables, such that for ẑ = �xS[S0 ; Ŷ , A � ẑ � �b. In terms of 
ow, thismeans that one can chose a 
ow function on the corresponding 
ow graph, so as to saturateall the arcs entering the sink. Among all the �Y vectors maximizing the 
ow (and therefore,among the 
ow functions saturating all the arcs entering the sink), we look for the oneminimizing the 
ow-cost. In summary, in f3(S) we compute a max-
ow min-cost function.Now, further de�ne for any set S � U0f4(S) = minfXxj2S rjxj + f3(S);��g:6



Note that if there is a feasible solution at all, then f4(U0) = ��. Also note, that if S � U0satis�es f4(S) = ��, then S0 [ S (with the �Y vector achieving the minimum for f3) is afeasible solution to (L2), since the 
ow-cost inequality is also satis�ed.It follows from the above discussion that it is possible to use the greedy method forapproximating ILP c in two phases, as follows. First, greedily �nd a feasible solution S0 for(L1), and then extend it in U0 (using the greedy algorithm again) into a feasible solution for(L2) using the above function f4.Let us now estimate the resulting approximation ratio. Let S� be an optimal solution for(L2) and c(S�) its cost. Since the cost of the optimal solution for the corresponding program(L1) is no greater than c(S�), the next corollary follows from Lemma 2.6.Corollary 3.1 The solution S0 provided by the �rst phase of the Algorithm for (L1) satis�esc(S0) � (ln(mBmax) + 1)c(S�).In order to show that the greedy algorithm is e�cient for the second phase, we must provethat f4 is nondecreasing and submodular. First, note that f3 is nondecreasing since addingmore elements to a set S, may only decrease the 
ow-cost (note also that rj � 0). Also,it follows from Theorem 2.4 that for proving submodularity of f4, it su�ces to prove thatf3(S) is submodular. The submodularity of f3 can be proven via standard 
ow properties.For completeness, the proof is given in the appendix.Note, that by Inequality (2) we may bound �f4(;) from above by qYmaxLmax � qmBmaxLmax.Thus the bound stated next on the ratio for the two phase greedy algorithm follows from[Wol82] (note that q = O(m2)).Corollary 3.2 The ILP c problem has an O(logm + logM) ratio approximation, where Mis the maximum integer in the instance.4 Multiple applications of the greedy procedureThis section introduces an extended class of linear optimization problems, denoted ILP s, andshows how to approximate it using multiple application of the greedy procedure combinedvia a binary elimination procedure.The programs of ILP s are of the following form.min nXi=1 cixi + qXj=1 ljyjs.t. A�z � �b; where �z = �x; �y; �x = (x1; : : : ; xn); �y = (y1; : : : ; yq);lj � 0; xi 2 f0; 1g; 0 � yj � 
j; for 1 � i � n; 1 � j � q;and where A is a 
ow matrix as characterized before, and ci, 1 � i � n and lj, 1 � j � q7



are nonnegative.Note that by imposing a 
ow-cost bound on P ljyj, one gets the following ILP c program.min nXi=1 cixi (3)s.t. A�z � �b; where �z = �x; �y; �x = (x1; : : : ; xn); �y = (y1; : : : ; yq);qXj=1 ljyj � Q;xi 2 f0; 1g; yj 2 Z+; for 1 � i � n; 1 � j � q:It is easy to see that by performing a sequential search on the possible values of Q, it ispossible to obtain a good approximation for ILP s. However, this procedure will not bepolynomial in the input size. The solution is to use a binary elimination procedure, to bedescribe next.For any solution S for the ILP s problem denoteF1(S) = nXi=1 cixi and F2(S) = qXj=1 ljyj :Let F (S) = F1(S) + F2(S) denote the ILP s objective function value for S. The proceduremaintains two bounds Qhigh � Qlow on the value of Pj ljyj; and the search is conducted inthe interval (Qlow; Qhigh). It is possible to start the search with, say, the largest possibleinterval, namely, Qmax = q �m �Bmax � Lmax and Qmin = 0. Throughout the search, we keeptrack of the best solution S (the solution with minimum F (S)) encountered so far, and atthe end output the best S.The crucial step in the resulting algorithm, named AlgorithmMulti-Phase, is the ruleby which we choose between the upper and lower half intervals in the search, as the new 
ow-cost bound, since it is essential to show that we cannot considerably minimize the objectivefunction, searching in the intervals eliminated by the search.Let us de�ne a binary search rule as follows.1. Compute program (3) with Qmid as the 
ow-cost bound.Let S be the resulting solution.2. If F1(S) � Qmid then continue the search in the upper half interval.3. Else (F1(S) < Qmid) choose the lower half interval.Let us now analyze the approximation ratio of Algorithm Multi-Phase. As before, let S�be the optimal solution for the ILP s program.8



Lemma 4.1 Consider an iteration of Algorithm Multi-Phase producing a solution S forILP s. Assume that F1(S) � Qmid and that F2(S�) � Qmid. ThenF (S) = F1(S) + F2(S) � O(logM m) � F (S�):Proof: Let ~P denote the ILP c instance resulting by setting the 
ow-cost bound Q to be Qmidin the linear program (3). By the restriction on the 
ow-cost introduced in this program, itfollows that the solution S of the algorithm in the i'th iteration satis�esF2(S) � Qmid : (4)Let ~c be the value of the objective function in an optimal ILP c solution for ~P . It followsfrom Corollary 3.2 that F1(S) � ~c �O(log(Mm)): (5)Since F2(S�) � Qmid by the assumption of the lemma, it follows that S� is a feasible solutionfor ~P as well, and the value it achieves for the objective function is F1(S�), so the optimalsolution for ~P satis�es ~c � F1(S�): From this and Eq. (5) we have F1(S) � F1(S�) �O(log(Mm)): Consequently, we conclude by Eq. (4), the assumption that F1(S) � Qmid �F2(S) and the fact that F2(S) � 0 for every S, thatF (S�) �O(log(Mm)) � F1(S�) �O(log(Mm)) � F1(S) � (F1(S) +Qmid)=2 � F (S)=2;and the desired claim follows.Lemma 4.2 Consider an iteration of Algorithm Multi-Phase. Let S be the solution pro-duced by this iteration, and let Qmid be the bound imposed. Assume that F1(S) � Qmid.Further assume that F2(S�) � Qmid. Then F (S) � 2 � F (S�).Proof: By the assumption of the claim, both inequalities F1(S) � Qmid and F2(S) � Qmidhold. The lemma now follows asF (S�) � F2(S�) � Qmid � (F1(S) + F2(S))=2 = F (S)=2:Combining Lemmas 4.1 and 4.2 we conclude that for every solution S 0 in the range ruledout by the search, F2(S 0) is within a factor of O(log(Mm)) from F (S) for the current bestS. Thus either F2(S�) is in an interval that the search ruled out, in which case we are ina \good" situation, or F2(S�) equals one of the two (consecutive) numbers Qhigh; Qlow, ofthe �nal interval. In this later case, these numbers can be used as cost-bounds directly. Insummary, we have the following theorem.Theorem 4.3 Algorithm Multi-Phase requires polynomial time, and yields O(logM +logm)-approximation for ILP s. 9



5 ApplicationsThe �nal section illustrates some applications of the generalized methods presented in theprevious sections. In all the coming problems, matching upper and lower bounds are provedfor the approximation ratio, under the assumption that P 6= NP . (At times, we need tomake the additional assumption that various weights involved in the problem de�nition arepolynomial in the number of inequalities.)5.1 The average cost centers (Center(sum)) problemThe input to this problem is a weighted complete graph with V = f1; : : : ; ng, a cost functionci on the vertices, a weight function w on the arcs, and bounds U and Lj for 1 � j � n. Thenumber ci represents the cost of establishing and maintaining a center at the site representedby the vertex, and the weights wij represent the cost of communication between vertices, ortheir physical distance, etc. Some of the weights may be 1. The requirement is to choosea minimum cost set of centers. Each noncenter vertex has to be served by a \su�cientlyclose" center, i.e., a center for which the corresponding arc weight is bounded by some weightbound �. We also need to bound the number of clients served by a single center j by Lj,and the total weight of the (chosen) center-clients arcs by U .We de�ne a variable yij i� wij � �. For every 1 � i; j � n; let yji = 1 if j is the centerserving i, and let xi = 1 if i is chosen as a center. The appropriate ILP c problem is:min nXi=1 cixis.t Xj yji � 1; for 1 � i � n;Ljxj �Xi yji � 0; for 1 � j � n;U �Xj;i yji � wij � 0yji; xi 2 f0; 1g; for 1 � i; j � n:Indeed, this program �ts the ILP c framework. All the coe�cients of the �x variables arepositive. Also, except for the 
ow-cost inequality U � Pj;i yji � wij � 0, each variable yjiappears in one row with the coe�cient 1 (in the constraintPj yji � 1 corresponding to i) andin one other row with the coe�cient �1 (in the constraint Ljxj �Pi yji � 0 correspondingto j.)Corollary 5.1 Let M be the maximum integer appearing in the Center(sum) problem.Then the two-phase algorithm yields an O(logn+ logM) approximation for it.10



Note that this problem generalizes the dominating set problem. Indeed, any instanceG(V;E) of the dominating set problem can be transformed into an instance of theCenter(sum)problem as follows. Take the complete graph G(V; V � V ), put costs ci = 1 on the vertices,unit weights on the edges corresponding to E, and weight1 on the \nonedges" (V �V )nE.Finally set Li = n and U =1. Clearly, a solution for the resulting Center(sum) problemis also a solution for the dominating set problem. Hence relying on Theorem 2.7 we haveCorollary 5.2 There exists a constant c < 1 such that the Center(sum) problem admitsno c � lnn-ratio approximation, unless P = NP .Related problems: This problem belongs to the class of multicenter (or k-center) prob-lems (cf. [HS86]), but it di�ers from the original k-center problem in a number of ways. First,it measures the total (rather than maximum) distance between clients and their servers, hencein that respect it resembles the k-median problem (cf. [CK98]). Secondly, it is dual to theclassical problem, in that instead of assuming a �xed bound on the number (or cost) of thecenter and optimizing the distances, it assumes a bound on the distances and optimizes thecost. Finally, our variant also allows us to impose a balancing condition on the loads of thecenters, similar to the load-balanced version of [BKP93] for the classical k-center problem.A variant of this ILP program, without the 
ow-cost inequality U �Pj;i yji �wij � 0, hasalready appeared in [Wol82]. In our extension, the 
ow-cost inequality bounds the total costof the center-client arcs.5.2 The fault tolerant center selection problemConsider the following fault-tolerant variant of the center problem. Given a directed graph,G(V;E) and a set S � V of \clients", choose a set of centers of minimum cost, such thatevery noncenter which is also in S, will have at least k arc- (or vertex-) disjoint paths fromthe center vertices. Also, we want to bound the total cost of the path arcs.For simplicity, denote V = f1; : : : ; ng. Let us �rst reformulate the requirement of theproblem as follows. Consider a single �xed client v 2 S. Given the set C of centers, in orderto get k arc-disjoint paths from C to v one needs to select a subset Ev � E of the arcs, suchthat there are at least k arcs of Ev entering v, and also, for every j =2 C, the number of arcsof Ev entering j should be at least equal to the number of arcs of Ev leaving j. The existenceof such Ev is clearly equivalent to the existence of k appropriate disjoint paths from C to v.The ILP c program we write for this problem has the following form.min nXi=1 cixis.t. kxv +Xi yviv � k; for v 2 S;11



nxj +Xi yvij �Xi yvji � 0; for 1 � v; j � n; v 6= j:Xij wijyvij � U;yvij; xi 2 f0; 1g; for 1 � i; j � n:The interpretation of this program is the following. The variable xv is set to 1 if and only ifv is chosen as a center. The variables yvij correspond to the graph arcs hi; ji and to v. Oneway of interpreting this is that there is a copy Gv of the graph for every v. The variable yvijcorresponds to the edge hi; ji in the copy Gv. For a vertex v 2 S, the set of variables yvij setto 1, should induce in G a subset Ev as explained above, i.e., a subset Ev inducing in G agraph G(V;Ev) in which there are k arc-disjoint vertices from the set of centers to v.Now, the �rst type of inequality states that v 2 S is a center or there are at least k arcsof Ev entering v. The second inequality says that the number of arcs of Ev entering a vertexj is at least as large as the number of arcs of Ev leaving j. In both types, the �rst term isintroduced in order to take care of vertices belonging to the set of centers (vertices v 2 S forwhich xv = 1).A slight variant of this program will solve also the case where the paths are required tobe vertex-disjoint.It is easy to see that the above program is in ILP c form. Speci�cally, all the coe�cientsof the x variables are positive. Also, the matrix restricted to the �y variables is a 
ow matrix,since each variable yvij indeed appears in one row (the row corresponding to j and v) withcoe�cient +1 and in another row (the one corresponding to i and v) with coe�cient �1.Corollary 5.3 The two-phase algorithm yields an approximation algorithm with ratio O(ln(kn)+log(M)) for the fault-tolerant center problem.It is easily seen that this problem generalizes the set cover problem. Given G(X; Y; E)an instance of the set cover problem, a corresponding instance of the fault-tolerant centerselection problem can be constructed as follows. Direct all the edges from X to Y . Give allthe Y vertices cost 1, and all the vertices in X unit cost. Let S = Y and k = 1. Clearly, asolution for the above problem is equivalent to a solution for the set cover problem. Hencerelying on Theorem 2.7 again we haveCorollary 5.4 There exists a constant c < 1 such that the fault-tolerant center selectionproblem admits no c � lnn-ratio approximation, unless P = NP .Related problems: The vertex-disjoint variant of the problem, for the restricted casewithout edge weights and without the 
ow-cost constraintPij wijyvij � U , was �rst describedin [BKP93], and given a (slightly weaker) O(k � logn)-ratio approximation algorithm. Thegeneralized variant presented here, allowing us to place also a bound on the total cost of thepaths used in the solution, has not been studied in the past.12



5.3 Capacitated facility location problemsThis problem deals with a number of facilities that are supposed to serve customers \cheaply".Each customer has a demand bi (which is a nonnegative integral number) for the productgenerated by the facilities. The cost of satisfying a unit demand of customer j from a facilityat i is costi;j (the costs may be 1). It may happen that several centers must deal with asingle customer in order to satisfy the demand. We denote by yi;j the number of units of theproduct given by i to j. The cost of establishing and maintaining a center at vi is ci. Givena set S and an assignment function determining yi;j the total cost corresponding to S isc(S) = Xi2S ci + Xi2S; j2�S yi;j � costi;j:We also wish to bound the load on each center.We formulate the above constraints as the following ILP s program. The variable xi is 1if a facility is located at vertex i. The load bound on each center i is Li (which may be 1).min nXi=1 cixi +Xi;j yij � costi;j (6)s.t. Xi yi;j � bj; for 1 � j � n;Li � xi � nXj=1 yi;j � 0; for 1 � i � n;xi 2 f0; 1g; yij 2 Z+; for 1 � i; j � n:We have the following corollary.Corollary 5.5 The capacitated facility location problem can be approximated with ratioO(logM + logn), where n is the number of vertices and M is the largest weight.Clearly, this problem too is a generalization of the dominating set problem, and hencewe haveCorollary 5.6 There exists a constant c < 1 such that the capacitated facility locationproblem admits no c � lnn-ratio approximation, unless P = NP .Related problems: This problem is a variant of the usual (uncapacitated) facility locationproblem, in which there are no loads, and Li = n for all i (see, for example, [NW88, GM84]).There has been some previous work on approximations for some uncapacitated variantsof the problem, which are somewhat simpler to handle. In particular, an O(logn) algorithmis given for the uncapacitated problem in [Hoc82]. In addition, considerable amount ofresearch has been devoted to the metric case of the problem, in which the weights obeythe triangle inequality. A 3:16-ratio approximation algorithm for the uncapacitated metric13



facility location problem is presented in [STA97]. For references to previous work on theseproblems (as well as to some work on the related k-median problem) see [KPR98].To the best of our knowledge, our paper gives the �rst logarithmic approximation for thecapacitated version of the problem.5.4 Low-diameter minimum spanning treesOur �nal application for the extended scheme is for the following problem. Given an undi-rected n-vertex graph G = (V;E) with a (nonnegative) weight function w on the edges,and a parameter D, we look for the minimum weight spanning tree among the trees withdiameter bounded by D (the diameter is measured by the number of edges, i.e., the edgesare thought of as having length 1). Call a tree with a diameter bounded by D a D-diametertree, and denote this problem by D �MST . We consider the cases D = 4 and D = 5. In a4-diameter tree, there must be a vertex rooting a tree of height at most 2. Thus a (rooted)3-layered spanning tree is required with minimum weight. We provide a logarithmic ratioapproximation algorithm for the 4 �MST and 5 �MST problems (the 3 �MST case istrivial). We also give a matching lower bound (up to constants).First, we use Theorem 2.7 to prove a lower bound for the approximability of the problem.Claim 5.7 There exists a constant c < 1 such that the 4 �MST problem has no c � lnnapproximation, unless P = NP .Proof: We show that a �-ratio approximation algorithm for 4 � MST implies a �-ratioapproximation algorithm for the dominating set problem. Let G(V;E) be an instance of thedominating set problem where jV j = n. Add three new vertices, a; b; c. Connect a to all thevertices in G, with edge weights n3, connect a to b and b to c, with edge weights 1. Give allthe edges in G weight n. Denote the resulting graph by ~G.We make use of the following two observations.Observation 1: Given a dominating set of size s� in G we can construct in ~G a 4-diameterspanning tree with weight s�n3 + (n� s�)n+ 2.Observation 2: Given a 4-diameter spanning tree for ~G, with weight bounded by sn3 +o(n3), where s � n � 1, then a is the root, and the tree has no more than s + 1 vertices inlayer 1 (where the root is on layer 0).Observation 2 is justi�ed by noting that the vertex c cannot be the root of the 3 layeredspanning tree, and neither do the vertices of G. Moreover, if b is the root, we must use all then3-weight edges connecting a to G, making the weight greater than n4 > (n�1)n3+o(n3) �sn3 + o(n3), assuming n is su�ciently large. Also, if there are more than s vertices in layer1, other than b, then there are at least s + 1 vertices of G in layer 1, forcing the weight to14



be at least (s+ 1)n3 > sn3 + o(n3) for su�ciently large n.Now, assume that we can approximate the 4�MST problem with approximation ratio�. Denote the size of the minimum dominating set in G by s�. Throughout, we assume thats� < (n � 1)=�. (If this is not the case, then any dominating set we output is within thedesired ratio �.)Denote the tree resulting from the assumed approximation by T . Denote the minimumweight 4� diameter tree in ~G by T � . Let T1 be a 4� diameter spanning tree with weightbounded by s�n3 +�(n(n� s�)) (see observation 1). Thusw(T ) � �w(T �) � �w(T1) = �(s�n3 +�(n(n� s�))):It follows from Observation 2 that the set of layer one vertices in T is a dominating setin G of size bounded above by �s�, which in turn implies an � approximation algorithm forthe dominating set problem.We now match this hardness result (up to constants) by a positive result, showing how to�t the 4�MST problem into our ILP s scheme. We �rst introduce a procedure that allowsus to deal only with edge-weights that are polynomial in n. Let the edges be sorted bynondecreasing weights, and let Ei = fe1; : : : ; eig and wi = w(ei). Let Gi be a graph inducedby the edges Ei. Let j be the �rst index for which Gj contains a tree of diameter 4. Thenthe problem admits a solution with cost bounded by (n� 1)wj, so clearly all edges heavierthan (n�1)wj are unnecessary. Also, the weight of the edges lighter than wj=n can be madezero, as in any possible spanning tree their total weight is less than wj, hence ignoring theirweight altogether will make no di�erence so long as we are interested in a logarithmic ratioapproximation. Consequently, we note that the weights can now be scaled (by dividing themby wj) so that the maximum weight be bounded by O(n2). This makes all the numbers inthe input polynomial in the number of vertices.In the approximation we make use of the following procedure Shallow-MST(v1) (forV = fv1; : : : ; vng, and weights wij � 0, where wii = 0, for every i), which approximates thebest solution when v1 is taken as the root the tree.Procedure Shallow-MST(v1)1. Assign the neighbors vi of v1 cost ci = w1i, and the non-neighbors of v1 cost ci =1.2. Write the following program:min nXi=2 cixi +Xi;j yijwijs.t. nXi=2 yij � 1; for 2 � j � n;15



(n� 1) � xi � nXj=2 yi;j � 0; for 2 � i � n;xi; yij 2 f0; 1g; for 2 � i; j � n:and approximate it using Multi-Phase. (Note that we have a variable yii for everyi. Also, if xi = 1, we can set yii to be 1, at no cost).3. Place the vertices vj for which xj = 1 in layer 1 of the tree.4. Place the remaining vertices in layer 2, and connect each of them to a vertex in layer1 according to the yij values.To approximate the 4 �MST problem, we apply procedure Shallow-MST(v1) n times,once for every vertex vi (serving as v1), and output the best tree.Note that we can also bound the number of children of any vertex except the root by anydesired bound L (and thus, we \almost" deal with the bounded-degree 4 �MST problem)and get the same ratio.It is straightforward to show that the above procedure �nds a tree whose total weight isO(logn + logW ) away from the optimum (where W is the maximum edge weight). Thus,since by the above transformation, the edge-weights are polynomial in the number of vertices,we haveCorollary 5.8 The best polynomial time approximation algorithm for the 4�MST problemhas ratio �(logn).A similar approximation algorithm follows for the case D = 5. In a 5-diameter tree, there aretwo adjacent centers. These are the two end-vertices v and w of the middle edge e = (v; w)in any (length-5) diameter in the tree. Once we know this edge, we can contract its twovertices into some super-vertex u, of degree deg(v) + deg(w) � 2. We then give each edge(z; u) the minimum of the two weights w((z; v)); w((z; w)). Once this is done, the problemis transformed into the 4-diameter case with u as the root. It is only needed to �nd the best4-diameter tree rooted at u, and then de-contract the edge e appropriately. Note that weadd w(e) = w((v; w)) to the weight of the tree.Thus, the following simple procedure gives the desired logarithmic ratio approximation.Go over the edges one by one. For each edge ei = (vi; wi) contract the edge ei and get a super-vertex ui. Approximate the 4�MST problem, with ui as the chosen root, using procedureShallow-MST(ui). Let Ti be the resulting tree in the approximation. Compute the sumSi = w(Ti) +w(ei). Let j be the index achieving the minimum for this sum. De-contract ejappropriately, and return the resulting tree.Related problems: The problem discussed here is listed as [ND4] in [GJ79]. It has notbeen given an approximation algorithm before. The current result was recently generalized,16
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AppendixIn the appendix we prove axiom (II) for f2 of Subsection 2.2 and for f3 of Section 3.A Proof of Axiom (II) for f2An assignment �Y to the �y variables is said to be optimal for S if f1(�xS; �Y ) = f2(S). Forevery set S � U , let YS be the set of optimal assignments for S.Claim A.1 Consider sets S; T � U such that S � T . There exists an assignment �Y S whichis optimal for both S and T , namely, such that �Y S 2 YS \ YT .Proof: Given two assignments �Y and �Y 0, let hit( �Y ; �Y 0) = Pi jYi� Y 0i j. Let �Y S and �Y T betwo assignments minimizing hit( �Y S; �Y T ), where the minimum is taken over all assignmentpairs ( �Y S; �Y T ) such that �Y S 2 YS and �Y T 2 YT . We establish the claim by proving that�Y S is optimal also for T .Consider some 1 � i � q, and let j and k be the rows in which yi appears in positive andnegative signs, respectively. Notice that if Y Ti > Y Si then clearlyAj � (xS; �Y S) � bj and Ak � (�xS; �Y S) � bk;since otherwise, increasing Y Si by 1 would decrease hit( �Y S; �Y T ) conserving the optimalityof �Y S (and also, of course, conserving the capacity constraints, since Y Si + 1 � Y Ti .) Thismeans, for example, that in the inequality of Aj, although Aj �(�xS; �Y T ) > Aj �(�xS; �Y S), it doesnot help to increase f2(S) when switching from �Y S to �Y T , since already Aj � (�xS; �Y S) � bj:Similarly, if Y Ti < Y Si thenAj � (xS; �Y S) � bj and Ak � (�xS; �Y S) � bk:It follows that for every j,minfAj � (�xS; �Y S); bjg � minfAj � (�xS; �Y T ); bjg ;because in any coordinate where �Y S and �Y T di�er, the change in T does not help to increase(and may only decrease) f2(S). From that, it immediately follows thatminfAj � (�xT ; �Y S); bjg � minfAj � (�xT ; �Y T ); bjg;since the left term in the minimum was increased by the same amount on each side. By thede�nition of f2, it follows that �Y S is optimal for T , completing the proof.i



Next we prove axiom (II) for f2, relying on Claim A.1. Indeed, consider two �xed setsS; T � U such that S � T . It is necessary to show thatXu2TnS�f2(S; u) � f2(T )� f2(S): (7)By Claim A.1, and noting thatf2(S [ fug) = max�Y ff1(�xS[fug; �Y )g � f1(�xS[fug; �Y S) ;it follows that for establishing inequality (7), it su�ces to prove thatXu2TnS �f1(�xS[fug; �Y S)� f1(�xS; �Y S)�or, that the function g(�x) = f1(�x; �Y S) is submodular. Partitioning A into sub-matricesÂ; �A where Âm�n (respectively, �Am�q) consists of the �rst n (resp., last q) columns of A,and letting �h denote the vector of �xed nonnegative numbers �h = �A � �Y S, we get thatg(�x) = PiminfÂi � �x + hi ; big, hence its submodularity is immediate from Theorem 2.4,since all the coe�cients in A are positive. (See also [Dob82].)B Proof of Axiom (II) for f3In proving axiom (II) for f4, it is easier to rely on the connection of f4 to 
ow. We start bygiving some standard but necessary decomposition properties of 
ow.Consider the ILP c program. Let S; T � U , S � T . Fix corresponding max-
ow min-costassignments �Y S and �Y T to the �y variables for S and T . That is, �Y S and �Y T are max-
owmin-cost assignments to the arcs of the corresponding directed 
ow graphs G(A; S; �l) andG(A; T; �l). Given an arc e, denote by Y S(e) (resp., Y T (e)) the 
ow in e in the �Y S (resp.,�Y T ) assignment.De�ne the following directed residual graph R that relies on the connection between�Y S and �Y T . Let R( �Y T ; �Y S) = (V;A), where V = fvi j 1 � i � mg corresponds to thematrix rows as described in the 
ow interpretation of (L1). The graph R contains an arce = hv1; v2i 2 A, if there exists an arc e0 touching both v1 and v2 in the original 
ow graphG(A; S) (hence in G(A; T ) as well) and one of the following two cases holds:� The arc is e0 = hv1; v2i and Y T (e) > Y S(e), or� The arc is e0 = hv2; v1i and Y T (e) < Y S(e).
ii



In either case, we associate with every e a label de = jY T (e)�Y S(e)j. As before, assume with-out loss of generality that �Y T and �Y S are two optimal (i.e., max-
ow min-cost) assignmentsminimizing the sum of labels in the graph,hit( �Y T ; �Y S) =Xe de :Lemma B.1 R( �Y T ; �Y S) is acyclic.Proof: For the sake of contradiction, assume the existence of a cycle(v0; v1); (v1; v2); : : : ; (vp�1; v0)in R( �Y T ; �Y S). Let ei be the original arc between vi and v(i+1)modp in the 
ow graph. Letus modify �Y T as follows. For every i, if Y T (ei) > Y S(ei), reduce the 
ow through e in�Y T by 1, and if the Y T (ei) < Y S(ei), augment the 
ow through e in �Y T by 1. Call theresulting assignment function �Y 0. Note that the 
ow balance in �Y 0 at every vertex in thegraph remains unchanged after the above modi�cation. We prove that the 
ow-cost hasnot changed too, or, that the net change D in 
ow-cost satis�es D = 0. Indeed, D cannotbe negative because of the optimality of �Y T . Furthermore, assuming D is positive leads tocontradiction, as it implies that �Y S was not optimal, since the inverse change along the cycleis available for �Y S.It follows that �Y 0 is also a max-
owmin-cost function forG(A; S). However, hit( �Y T ; �Y 0) <hit( �Y T ; �Y S). This is a contradiction.We now de�ne a decomposition procedure for R( �Y T ; �Y S). Iteratively identify a collectionP of paths in the residual graph, each carrying one 
ow unit and bringing �Y S \closer" to�Y T . Each iteration operates as follows. By Lemma B.1. the residual graph of �Y S and �Y T isacyclic. Consequently, the jth iteration selects a directed path Pj from some source vertexsj (with in-degree 0) to a sink vertex tj (with out-degree 0). Thereafter, the 
ow is changedalong Pj, and the labels in R = R( �Y T ; �Y S) are changed accordingly (deleting zero-labeledarcs) and Pj is added to P. This process continues until exhausting the arcs of R. Denotethe set of sources encountered by the decomposition procedure by Vs = fv j v = sj for somejg, and the set of sinks by Vt, we have the following claim.Claim B.2 A vertex v 2 Vs is never a sink during any iteration of the decomposition pro-cedure. Likewise, a vertex v 2 Vt is never a source in any iteration.Proof: Assume the contrary. If v became a sink before it was a source, it is impossible thatlater it will have a nonzero out-degree. Similarly, if v becomes a sink after it becomes asource, it is impossible that later on v will have a nonzero in-degree.For vi 2 Vs, let s(vi) denote the number of paths in P starting at vi. Similarly, for vj 2 Vt,let e(vj) be the number of paths of P ending at vj. Recall that �xing a speci�c assignmentfor �x in the original instance (L2) of the ILP c problem, can be thought of as resulting iniii



a modi�cation of the vector �b at the right hand side. This also results in a modi�cation ofthe 
ow graph, speci�cally, the number of 
ow units available for the vertices. Let �bS (resp.,�bT ) be the �b vector resulting from �xing the assignment �xS corresponding to S (resp., �xTcorresponding to T ). If bSi < 0 then in the 
ow graph of S, there is an arc from the sources to vi with capacity �bSi : We �rst prove some properties regarding vertices in Vs and Vt.Claim B.31. For every vj 2 Vt, bSj < 0 and the 
ow in S along the arc hs; vji is at least e(vj).2. For every vi 2 Vs, if bSi < 0 then the arc hs; vii is saturated, i.e., it carries bSi 
owunits.Proof: For proving part 1 of the claim, consider a vertex vj 2 Vt. the number of 
ow unitsentering vj in G(A; T ) is greater by e(vj) than in G(A; S). The extra 
ow units entering vjmust be balanced in T . Thus bSj < 0, and the arc hs; vji carries at least e(vj) 
ow units. Inthis case, the 
ow can be balanced by reducing the number of 
ow units entering vj from thesource. (Recall that we are dealing with 
ows S and T that saturate all the arcs enteringeach sink. Thus extra 
ow units cannot be balanced by increasing the number of 
ow unitsentering the sink. With that respect, recall that bTj < bSj .)For proving part 2 of the claim, assume the contrary holds. Select an arbitrary pathin P, leading from vi to some vertex vj 2 Vt, and augment the 
ow through this path by1. The balance at vi can be conserved by adding 1 to the 
ow entering vi through s. Thebalance through vj can also be conserved by decreasing the 
ow from s to vj (see part 1).Therefore, there exists a legal assignment �Y 0 where hit( �Y T ; �Y 0) < hit( �Y T ; �Y S). Moreover,as in the proof of Claim B.1 the net change in 
ow-cost is 0. This is contradiction.For v 2 Vs, denote by Path(vi) the subset of P consisting of the s(i) paths starting atvi. Denote by k(vi) the additional 
ow units that enter vi in T in comparison to S, that is,k(vi) = bSi � bTi .Lemma B.4 For every vi 2 Vs, the number of paths s(i) in Path(vi) satis�es s(i) � k(vi).Proof: Assume that we change the �Y S assignment to �Y T by iteratively augmenting the 
owthrough the paths of P. Note that whenever vi occurs as a middle vertex of some path duringthis process, the 
ow balance at vi remains unmodi�ed by this augmentation. Furthermore,each of the s(i) times that vi is a source, either the outgoing 
ow of vi is incremented by 1,or the incoming 
ow is decreased by 1. Thus in �Y T , s(i) additional 
ow units emanate fromvi. Those 
ow units cannot be balanced in G(S;A) using the source s (in the case bSi < 0) asindicated by part 2 of Claim B.3, as the arc hs; vii is saturated. Nor can they be balanced inG(A; S) by reducing the 
ow from vi to the sink, since we are dealing with 
ows saturatingall the arcs entering the sink. It follows that in T , additional 
ow units are available for vi,namely, k(i) = bSi � bTi � s(i), as required. iv



We now complete the description of the decomposition. Assume w.l.o.g that T n S =fx1; : : : ; xlg. Thus, adding xj to S results in making aij additional 
ow units available forvi, where aij is the coe�cient of xj on the ith row of A. Clearly,nXj=1 aij = k(i); (8)and hence s(i) � nXj=1 aij : (9)De�ne for every vi a function fi : Path(vi) 7! T n S that arbitrarily assigns to every xj nomore than aij paths. (This is possible because of Lemma B.4 and (9)). DenoteP(xj) = fp 2 P j fi(p) = xj for some ig:Note that if xj is added to S, one possibility for trying to reduce the 
ow is to make allthe changes along the jP(xj)j paths of P(xj), since for every i, aij additional 
ow units areavailable for vi. It follows from part 1 of Claim B.3 that the 
ow can also be conserved in therespective vertices of Vt. Let �0(xj) denote the total change in f4 caused by these changes.Clearly, �(S; xj) � �0(xj) : (10)Furthermore, Xj �0(xj) = f3(T )� f3(S) ; (11)since after the changes along all the paths of P, the 
ow function S is converted into the
ow function T . Thus we conclude from Eq. (10) and (11) thatXj �(S; xj) � f3(T )� f3(S);which establishes Axiom (II) for f3.
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