Generalized Submodular Cover Problems and
Applications

Judit Bar-Ilan * Guy Kortsarz | David Peleg ?

October 28, 1998

Abstract

The greedy approach has been successfully applied in the past to produce logarith-
mic ratio approximations to NP-hard problems under certain conditions. The problems
for which these conditions hold are known as submodular cover problems.

The current paper! extends the applicability of the greedy approach to wider classes
of problems. The usefulness of our extensions is illustrated by giving new approximate
solutions for two different types of problems. The first problem is that of finding the
spanning tree of minimum weight among those whose diameter is bounded by D. A
logarithmic ratio approximation algorithm is given for the cases of D =4 and D = 5.
This approximation ratio is also proved to be the best possible, unless P = NP. The
second type involves some (known and new) center selection problems, for which new
logarithmic ratio approximation algorithms are given. Again, it is shown that the ratio
must be at least logarithmic unless P = N P.

Keywords: NP-hard problems, greedy approximation, submodular covers.

*School of Library, Archive and Information Studies, The Hebrew University, Jerusalem 91904, Israel.
Part of this work was carried out while the author was with the Department of Applied Mathematics and
Computer Science at the Weizmann Institute of Science.

tDepartment of Computer Science, The Open University of Israel, Ramat Aviv, Israel. Part of this work
was carried out while the author was with the Department of Applied Mathematics and Computer Science
at the Weizmann Institute of Science.

!The Norman D. Cohen Professorial Chair of Computer Sciences, Department of Applied Mathematics
and Computer Science, The weizmann Institute of Science, Rehovot 76100, Israel. Supported in part by a
Walter and Elise Haas Career Development Award and by a grant from the Israel Science Foundation.

LA preliminary version of this paper has appeared as an extended abstract in Proc. 4th Israel Symp. on
the Theory of Computing and Systems, Jerusalem, Israel, June 1996.

1 Introduction

Greedy approximation algorithms for various N P-hard problems were proposed in [Joh74,
Lov75, Chv79]. A more general framework for using greedy algorithms for approximation
was proposed in [Dob82] and [Wol82].

The general approximation method introduced in [Wol82] applies to submodular-cover
problems. A submodular-cover problem is described in the following way. Let U be a
collection of elements and f : 2“ +— Z, an integral, nondecreasing and submodular function.
A (positive integral) cost is associated with every element of U, and the optimal feasible
solution to the problem is a subset S* of U with minimum cost such that f(S*) = f(U).
Intuitively, the entire universe U is a “cover” and the function f(S) measures the extent of
which S is close to being a cover as well. That is, f measures how close S is to covering the
same amount U/ covers. Now, adding a new element to S increases the amount S covers, i.e.,
increases f. Intuitively, the function f is non-increasing and submodular if there is some
independence among the “cover-increment” of elements outside S. Namely, for every two
elements u,v € U \ S, the contribution to f of u and v together is no greater than the sum
of their separate contributions. More formally, f(SU{u,v}) < f(SU{u})+ f(SU{v}). See
also Definition 2.1 and the discussion thereafter.

It is proved in [Wol82] that for a submodular-cover problem, the greedy approach yields
a logarithmic ratio approximation algorithm. In particular, this method deals with the
weighted set-cover problem, including variants with load bounds on the vertices.

The current paper extends this method in two ways. Section 3 deals with two-phase
applications of Wolsey’s method, with two different submodular functions used in the two
phases. Then, Section 4 studies algorithms that apply the greedy procedure a number of
times successively.

Section 5 presents a number of new applications to our techniques. One major class of
applications concerns logarithmic ratio approximations for some known and new multicenter
selection and allocation problems. Three examples are given in the paper for this class of
applications. The first problem in that class is the average cost center problem, which gen-
eralizes (the dual of) the k-median problem (cf. [CK98]). The second example is the fault
tolerant center selection problem, generalizing a variant studied in [BKP93]. A third example
concerns capacitated facility location problems, which again generalize facility location prob-
lems studied in the literature. In all of these cases, the generalized problems discussed here
were not given approximation algorithms in the past, to the best of our knowledge. More-
over, for all of these problems, it is also shown that the result is apparently near-optimal, in
the sense that unless P = NP, the approximation ratio must be logarithmic.

One last application discussed in the paper, taken from a different domain, concerns the
problem of finding the spanning tree of minimum weight among those whose diameter is

bounded by D. A logarithmic-ratio approximation is given for this problem for D = 4 and
D = 5. (The case D = 4 is given some applications in the area of information retrieval in
[BK90, BK91]. There, shallow trees are used to efficiently compress a collection of bits; the
shorter the resulting tree, the faster the process of deciphering the message.) Again, it is
shown that the approximation ratio for this problem must be Q(logn), unless P = NP.

This result was recently generalized, using specialized techniques, to give a polynomial
time approximation algorithm of ratio O(logn) for any constant D, and an algorithm of
ratio O(n°), for any fixed 0 < € < 1, for general D [KP97].

2 Preliminaries

2.1 Framework

We start by introducing some definitions and notations that will be used in what follows.

Let U be a finite set. From now on we only consider integral valued nonnegative functions
f:uU— Z.

Definition 2.1 The function f is
1. nondecreasing if f(S) < f(T) for all SCT CU,
2. submodular if f(S)+ f(T) > f(SUT)+ f(SNT) forall S, T CU.

Notation 2.2 Given a set U, a function f, a subset S CU and an element v € U, denote

o Ap(S,z) = f(SU{x}) — f(S) and
o As(S) =max,ey {Af(S,2)}.

Using this notation, one can express the above two properties in a different but equivalent
way, as follows. Given a set U and a nonnegative integral function f : 2“ :— Z, we say that
f obeys the improvement independence (II) axiom if the following holds.

(II) [Improvement Independence]

For every pair of subsets S,7"C U, S CT, Suer\s Ap(S,u) > f(T) = f(S).

Clearly, if f is nondecreasing, then restricting Axiom (II) to S, T such that S C T causes no
loss of generality. The following theorem and its proof can be found, e.g., in [NW88§].

Theorem 2.3 (cf. [NWB88]) A function f is submodular and nondecreasing if and only if
it obeys Aziom (II). |

The next theorem can also be found in [NW88]. For this theorem, denote i = {uy, ..., u,}.

Theorem 2.4 (cf. [NW88]) Let f and f’ be two submodular functions on U, and let
ri, 1 <7 <mn, be nonnegative integers, c a nonnegative real and k a real number. Then the
following are also submodular on U:

o /1(S) = f(S)+ f'(5),

o fo(S) =c-f(95),
e f3(5) = min{f(5), k},
d f4(S) ulESri' |

We remark that this theorem is only used in this paper with integral ¢ and k. Let us describe
more formally the framework of submodular-cover problems. The input to a submodular-
cover problem consists of a finite set U = {uy,...,u,} and a nondecreasing submodular
function f : 2% + Z. There is a nonnegative cost ¢; associated with each element u; € U.
We define the cost of a subset S C U as ¢(S) = 3 ,,cs ¢i- The subsets S s.t. f(S) = f(U) are
referred to as the feasible sets, or feasible solutions. An optimal solution to a submodular-
cover problem P is a feasible set S* such that ¢(S*) is minimum.

The idea behind the greedy algorithm for submodular-cover problems is to start from
some initial given set (usually, the empty set) and gradually add elements until attaining
feasibility. The element picked in each iteration is the “locally optimal” one in terms of its
gain-to-weight ratio, namely, the element maximizing Af(S, u;)/c;.

The following theorem is proved in [Wol82].

Theorem 2.5 [Wol82] Let P be a submodular-cover problem, and let S* be an optimal
solution for P. Then the greedy algorithm produces a feasible set S with approrimation ratio

c(5)/e(57) <In(A;(@)) +1. 1

2.2 The family ILP/ of programs

We next describe a family of linear minimization problems called ILP/. These are problems
of the following form.

min Zcixi
i=1

st. Az >0b, where Z=2;7, T= (v1,..,20), T= (Y1, Yq),
.CL'ZE{O,].}, Ogy]_’YW fOI'].SZSTL,].S]Sq,

where b consists of m integers (which w.l.o.g. may be assumed to be nonnegative), ¢; > 0
for every i, the coefficients of the z; variables in the m X (n + ¢) matrix A are positive, and
the m x ¢ submatrix A, of the last ¢ columns in A is a “flow matrix” (also called “incidence

3

matrix”). Namely, the coefficients of each y; in A, are 0, except for one row containing 1 and
one row containing -1. The y; variables represent the arcs and the matrix rows represent the
vertices. The 1 (resp, -1) entry in the column corresponding to y; represents the end (resp.,
start) vertex of the arc. The restriction 0 < y; < «; is the capacity constraint for the arc
corresponding to y;.

Our analysis for the quality of the greedy approximation algorithm on ILP/ directly
extends the ideas of [Wol82]. For an instance of the I LP/ problem, define the corresponding
submodular function, similar to the one used in [Wol82] for the bounded load set cover. Let
A; be the ith row in the matrix A. Define a universe U = {uy,...,u,} of n elements. Assign
each element u; a cost coefficient ¢; Since each x; is a 0 — 1 variable, there is a one to one
correspondence between vectors Z and subsets S C U of U (i.e., S consists of the elements
u; € U for which z; = 1.) Hereafter, we denote by #° the characteristic incidence vector
corresponding to the set S C U.

Recall that in the formulation of ILP/, z = Z: 7, i.e., Z is the concatenation of the Z and
y vectors. For a fixed vector Z° corresponding to a subset S C U, and some assignment Y
for the variables 7, let 7 = ;Y and

fl(,?) = Zmln{Al . Z, bz},

and denote

(8) = max{ 1(2)}.

It is clear that if a feasible solution for the ILP/ program exists at all, then fo(U) = 3, b;,
and therefore, a subset S for which f,(S) = f,(U) is a feasible solution to the I L P/ program.

A bound on the approximation ratio of the greedy algorithm on ILP/ follows from
Theorem 2.5 since f, is submodular and nondecreasing. We are not aware of a reference to
an explicit proof of submodularity for precisely this function f in the literature, although
the proof follows a well-understood path. For completeness, we provide a proof of this fact
in the appendix.

Letting B,e = max{l, max;{b;}}, we have the following result.

Lemma 2.6 The ILP’ problem has an O(log(mByas)) approzimation algorithm. |

For future reference, recall the relation of the above defined function f; to flow theory.
Suppose that, given S, we plug into the above inequalities the values of Z° corresponding to
S. After rearranging the inequalities, each b; is replaced with some b; < b; (this follows since
the coefficients of the x; are nonnegative). This leaves us with a maximum flow instance.

Indeed, construct the following directed flow graph G(A,S). Add a vertex v, for each
row j. Add a source s and a sink ¢. If a variable y; appears with positive sign in row j, and
with negative sign in row &, add an arc emanating from vy to v;. Each vertex v; for which

b;- > () is connected with an arc to ¢ of capacity b;-. Also, add an arc from s to each vertex v,
with b < 0, with capacity —b}. To compute f>(S), we simply compute the maximum flow
in G(A,S). This maximum flow function sets values for the variables y;, according to the
flow on the respective arcs. (A minor subtlety is that a feasible 7 vector does not necessarily
correspond to a flow function in G(A,S). Rather, it may correspond to an excessive flow
function, where the amount of flow entering each vertex may exceed the amount of flow
leaving this vertex. Nevertheless, since in f; we gain nothing by putting more than b; units
of flow over an arc with capacity b; entering the sink, an excessive flow can be converted into
a legal flow with the same f, value.)

Finally, we observe that while the logarithmic approximation ratio obtained for I LP/ may
seem rather weak, it is asymptotically the best achievable, assuming P # NP. Moreover,
virtually the same happens for all the problems considered throughout the rest of this paper.

Most of these hardness results on approximability easily follow from [RS97], which proves
a hardness result for the set cover and dominating set problems. The set cover problem can
be described as follows. We are given an undirected bipartite graph G(X,Y, E) where the
edges cross from X to Y. The goal is to choose a minimum subset W C X, such that every
vertex in Y has a neighbor in W. In the dominating set problem, the input is an undirected
graph G(V, E). The goal is to choose the smallest subset W C V such that every vertex
v € V\ W has a neighbor in W.

The following theorem is proven in [RS97], strengthening two similar theorems in [LY94,
Fei96], which were given under somewhat weaker complexity assumptions.

Theorem 2.7 [RS97]| There exists a constant ¢ < 1 such that the set cover and dominating
set problems admit no c - Inn-ratio approximation, unless P = NP. |
Clearly, our program ILP/ extends the set cover problem. Hence we have the following.

Corollary 2.8 There exists a constant ¢ < 1 such that the ILP! problem admits no c¢-Inm-
ratio approxrimation algorithm, unless P = NP. |

3 Two-phase greedy algorithms

This section considers a class of linear minimization problems denoted ILP¢. This class is
an extension of the class ILP/, which is no longer directly within the above scheme. We
provide the first general approximation algorithm for problems in this class, based on two
phases of greedy selection, using two different submodular functions.

The class ILP¢ consists of programs of the ILP/ form with the additional flow-cost

inequality

n q

d_oriry =Y liyj+a >0, (1)
for nonnegative r; and [;, 1 < j <nand 1 <j <gq. The above inequality has a “flow-cost”
interpretation, namely, the coefficient [; is the cost of the arc corresponding to y;. For fixed
x;, this inequality bounds the cost of the flow function.

More precisely, let (L2) denote the instance of the ILP¢ program at hand and by (L1)
the ILP/ program obtained from (L2) by eliminating the flow-cost inequality. Define the
flow graph G(A, S) for (L1) as in the previous section. The flow-cost inequality (1) requires
that > (;y;, which is exactly the flow-cost in G(A,S), be bounded by some «'. For fixed
S (and therefore for fixed incidence vector Z°), denote by G(A, S,[) the max-flow min-cost
instance corresponding to the ILP¢ program. (This is the flow graph G(A, S) extended by
adding the flow-cost coefficients /; on the arcs.)

Let By = max;{b;} and L., = max;{l;} in the instance. Start with some feasible
solution Sy C U for (L;). Let Y be an assignment of values that maximizes the flow in
G(A, Sy), namely, fi(Z°°; f/) = f2(Sp). Let Yiuw = maxi{f/i}. Since the maximum possible
flow in G(S, A) is bounded by m - By, we may assume that this assignment Y satisfies

Ymaw S mBmaa:- (2)

Since S is feasible for (L), there exists for Sy an assignment Y for the 7 variables such that
the inequalities A - (25;Y) > b are satisfied. However, it may be impossible to satisfy the
flow-cost inequality with Sy. We therefore need to extend Sy to a larger set SU.Sy, for which
it is possible to satisfy the flow-cost inequality as well.

Define a new universe Uy = U \ Sp. Now, for every set S C Uy, let z = 7°V°°;§, and

define

A(S) = max(- L liy)
s.t. Az >b.

Intuitively, once plugging the z°°° values in I LP¢, one gets a max-flow min-cost instance
G(A,S,1). Since Sy is a solution to (L), and Sy C SUSy, we know that there is an assignment
Y of values for the 7 variables, such that for 2 = 75950 ¥, A- 2 > b. In terms of flow, this
means that one can chose a flow function on the corresponding flow graph, so as to saturate
all the arcs entering the sink. Among all the Y vectors maximizing the flow (and therefore,
among the flow functions saturating all the arcs entering the sink), we look for the one

minimizing the flow-cost. In summary, in f3(S) we compute a max-flow min-cost function.

Now, further define for any set S C U
f4(S) = min{ Z riz; + f3(S), —al.

z; €S

Note that if there is a feasible solution at all, then f,(Uy) = —«. Also note, that if S C U,
satisfies f4(S) = —a, then Sy U S (with the Y vector achieving the minimum for f3) is a
feasible solution to (Ls), since the flow-cost inequality is also satisfied.

It follows from the above discussion that it is possible to use the greedy method for
approximating I LP¢ in two phases, as follows. First, greedily find a feasible solution Sy for
(L1), and then extend it in Uy (using the greedy algorithm again) into a feasible solution for
(L2) using the above function fy.

Let us now estimate the resulting approximation ratio. Let S* be an optimal solution for
(L2) and ¢(S*) its cost. Since the cost of the optimal solution for the corresponding program
(L1) is no greater than ¢(S*), the next corollary follows from Lemma 2.6.

Corollary 3.1 The solution Sy provided by the first phase of the Algorithm for (L1) satisfies
c(So) < (In(mBypaz) + 1)e(S*). 1

In order to show that the greedy algorithm is efficient for the second phase, we must prove
that f, is nondecreasing and submodular. First, note that f3; is nondecreasing since adding
more elements to a set S, may only decrease the flow-cost (note also that r; > 0). Also,
it follows from Theorem 2.4 that for proving submodularity of f,, it suffices to prove that
f5(S) is submodular. The submodularity of f; can be proven via standard flow properties.
For completeness, the proof is given in the appendix.

Note, that by Inequality (2) we may bound Ay, (0) from above by ¢Y e Limaz < ¢mBmaz Limas-

Thus the bound stated next on the ratio for the two phase greedy algorithm follows from
[Wol82] (note that ¢ = O(m?)).

Corollary 3.2 The ILP° problem has an O(logm + log M) ratio approzimation, where M
15 the mazimum integer in the instance. |

4 Multiple applications of the greedy procedure

This section introduces an extended class of linear optimization problems, denoted I LP?, and
shows how to approximate it using multiple application of the greedy procedure combined
via a binary elimination procedure.

The programs of I LP?* are of the following form.

n q
min Z cr; + Z liy;
i=1 j=1
st. Az >b, where 2 =2y, T=(21,...,20), U= (Y1, Yq),

and where A is a flow matrix as characterized before, and ¢;, 1 <i <nandl;, 1 <j <gq

7

are nonnegative.

Note that by imposing a flow-cost bound on }_ [;y;, one gets the following I L P¢ program.

n
i—1
st. Az >0, where 2 =%;y, T= (21,...,2), §= (Y1,---,Yq),

LS

1

z;€{0,1}, y;€ 2% for1<i<n, 1<j<q.

<
Il

It is easy to see that by performing a sequential search on the possible values of @), it is
possible to obtain a good approximation for ILP?. However, this procedure will not be
polynomial in the input size. The solution is to use a binary elimination procedure, to be
describe next.

For any solution S for the I LP?* problem denote
- q
i=1 =

Let F(S) = F1(S) + F»(S) denote the ILP® objective function value for S. The procedure
maintains two bounds Qpign > Qiow on the value of 37, [;y;, and the search is conducted in
the interval (Qow, Qnign). It is possible to start the search with, say, the largest possible
interval, namely, Qmaz = ¢ ™M * Baz * Liae and Qi = 0. Throughout the search, we keep
track of the best solution S (the solution with minimum F(S)) encountered so far, and at
the end output the best S.

The crucial step in the resulting algorithm, named Algorithm MULTI-PHASE, is the rule
by which we choose between the upper and lower half intervals in the search, as the new flow-
cost bound, since it is essential to show that we cannot considerably minimize the objective
function, searching in the intervals eliminated by the search.

Let us define a binary search rule as follows.

1. Compute program (3) with @4 as the flow-cost bound.
Let S be the resulting solution.

2. If F1(S) > Qmiq then continue the search in the upper half interval.

3. Else (F1(S) < Qmiq) choose the lower half interval.

Let us now analyze the approximation ratio of Algorithm MULTI-PHASE. As before, let S*
be the optimal solution for the I LP?® program.

Lemma 4.1 Consider an iteration of Algorithm MULTI-PHASE producing a solution S for
ILP*. Assume that F1(S) > Qg and that F5(S*) < Q- Then

F(S) = Fy(S) + F>(S) < O(log M m) - F(S¥).

Proof: Let P denote the I LP¢ instance resulting by setting the flow-cost bound @Q to be Qg
in the linear program (3). By the restriction on the flow-cost introduced in this program, it
follows that the solution S of the algorithm in the 7’th iteration satisfies

Fy(S) < Qmia - (4)

Let ¢ be the value of the objective function in an optimal ILP¢ solution for P. It follows
from Corollary 3.2 that
F1(8) < - O(log(Mm)). (5)

Since F5(S*) < Qmig by the assumption of the lemma, it follows that S* is a feasible solution
for P as well, and the value it achieves for the objective function is F1(S*), so the optimal
solution for P satisfies ¢ < Fy(S*). From this and Eq. (5) we have F\(S) < Fy(S*) -
O(log(Mm)). Consequently, we conclude by Eq. (4), the assumption that Fi(S) > Quia >
F5(S) and the fact that F5(S) > 0 for every S, that

F(57) - O(log(Mm)) > Fi(S™) - O(log(Mm)) > F1(S) > (F1(S) + Qmia) /2 > F(5)/2,
and the desired claim follows. |

Lemma 4.2 Consider an iteration of Algorithm MULTI-PHASE. Let S be the solution pro-
duced by this iteration, and let Quia be the bound imposed. Assume that F1(S) < Qmid-
Further assume that F5(S*) > Qmiq. Then F(S) < 2. F(S*).

Proof: By the assumption of the claim, both inequalities Fi(S) < Quia and F2(S) < Qumia
hold. The lemma now follows as

F(S%) 2 F5(57) = Qmia = (F1(5) + F2(5))/2 = F(5)/2. 1

Combining Lemmas 4.1 and 4.2 we conclude that for every solution S’ in the range ruled
out by the search, F,(S’) is within a factor of O(log(Mm)) from F(S) for the current best
S. Thus either F,(S*) is in an interval that the search ruled out, in which case we are in
a “good” situation, or Fy(S*) equals one of the two (consecutive) numbers Qpigh, Qiow, Oof
the final interval. In this later case, these numbers can be used as cost-bounds directly. In
summary, we have the following theorem.

Theorem 4.3 Algorithm MULTI-PHASE requires polynomial time, and yields O(log M +
log m)-approzimation for ILP*. 1

5 Applications

The final section illustrates some applications of the generalized methods presented in the
previous sections. In all the coming problems, matching upper and lower bounds are proved
for the approximation ratio, under the assumption that P # NP. (At times, we need to
make the additional assumption that various weights involved in the problem definition are
polynomial in the number of inequalities.)

5.1 The average cost centers (CENTER(sum)) problem

The input to this problem is a weighted complete graph with V' = {1,...,n}, a cost function
¢; on the vertices, a weight function w on the arcs, and bounds U and L; for 1 < j <n. The
number ¢; represents the cost of establishing and maintaining a center at the site represented
by the vertex, and the weights w;; represent the cost of communication between vertices, or
their physical distance, etc. Some of the weights may be oo. The requirement is to choose
a minimum cost set of centers. Each noncenter vertex has to be served by a “sufficiently
close” center, i.e., a center for which the corresponding arc weight is bounded by some weight
bound p. We also need to bound the number of clients served by a single center j by L;,
and the total weight of the (chosen) center-clients arcs by U.

We define a variable y;; iff w;; < p. For every 1 < ¢,5 < n, let y;; = 1if j is the center
serving ¢, and let x; = 1 if 7 is chosen as a center. The appropriate I LP¢ problem is:

n
min Z C;T;
i=1

st Yy >1, for1<i<n,
i
Lyxy =Y y; >0, for 1 <j<n,
7

U—=> yji-wij >0
Jst
Yyji,» x; € {0,1}, for 1 < 4,5 <n.

Indeed, this program fits the I LP¢ framework. All the coefficients of the variables are
positive. Also, except for the flow-cost inequality U — 3, y;i - wi; > 0, each variable yj;
appears in one row with the coefficient 1 (in the constraint 7, y;; > 1 corresponding to i) and
in one other row with the coefficient —1 (in the constraint L;z; — >, y;; > 0 corresponding

to j.)

Corollary 5.1 Let M be the mazimum integer appearing in the CENTER(sum) problem.
Then the two-phase algorithm yields an O(logn + log M) approzimation for it. 1

10

Note that this problem generalizes the dominating set problem. Indeed, any instance
G(V, E) of the dominating set problem can be transformed into an instance of the CENTER(sum)
problem as follows. Take the complete graph G(V,V x V'), put costs ¢; = 1 on the vertices,
unit weights on the edges corresponding to E, and weight oo on the “nonedges” (V xV)\ E.
Finally set L; = n and U = oo. Clearly, a solution for the resulting CENTER(sum) problem
is also a solution for the dominating set problem. Hence relying on Theorem 2.7 we have

Corollary 5.2 There exists a constant ¢ < 1 such that the CENTER(sum) problem admits
no ¢ - lnn-ratio approximation, unless P = NP. |

Related problems: This problem belongs to the class of multicenter (or k-center) prob-
lems (cf. [HS86]), but it differs from the original k-center problem in a number of ways. First,
it measures the total (rather than maximum) distance between clients and their servers, hence
in that respect it resembles the k-median problem (cf. [CK98]). Secondly, it is dual to the
classical problem, in that instead of assuming a fixed bound on the number (or cost) of the
center and optimizing the distances, it assumes a bound on the distances and optimizes the
cost. Finally, our variant also allows us to impose a balancing condition on the loads of the
centers, similar to the load-balanced version of [BKP93] for the classical k-center problem.

A variant of this ILP program, without the flow-cost inequality U — 3=, ; y;; - wi; > 0, has
already appeared in [Wol82]. In our extension, the flow-cost inequality bounds the total cost
of the center-client arcs.

5.2 The fault tolerant center selection problem

Consider the following fault-tolerant variant of the center problem. Given a directed graph,
G(V,E) and a set S C V of “clients”, choose a set of centers of minimum cost, such that
every noncenter which is also in S, will have at least k arc- (or vertex-) disjoint paths from
the center vertices. Also, we want to bound the total cost of the path arcs.

For simplicity, denote V' = {1,...,n}. Let us first reformulate the requirement of the
problem as follows. Consider a single fixed client v € S. Given the set C of centers, in order
to get k arc-disjoint paths from C' to v one needs to select a subset E, C E of the arcs, such
that there are at least k arcs of E), entering v, and also, for every j ¢ C, the number of arcs
of F, entering j should be at least equal to the number of arcs of E, leaving j. The existence
of such F, is clearly equivalent to the existence of k appropriate disjoint paths from C' to v.
The ILP¢ program we write for this problem has the following form.

n
min Z CiT;
1=1

st. kx,+ Y yh >k, forvesS,
i

11

2 2

> wyyy; < U,

ij

i vi € 0,1}, for 1 <4, j < n.
The interpretation of this program is the following. The variable x, is set to 1 if and only if
v is chosen as a center. The variables y;; correspond to the graph arcs (7,7) and to v. One
way of interpreting this is that there is a copy G, of the graph for every v. The variable y;;
corresponds to the edge (7, j) in the copy G,. For a vertex v € S, the set of variables yi; set
to 1, should induce in G a subset F, as explained above, i.e., a subset F, inducing in G a
graph G(V, E,) in which there are k arc-disjoint vertices from the set of centers to v.

Now, the first type of inequality states that v € S is a center or there are at least k arcs
of F, entering v. The second inequality says that the number of arcs of E, entering a vertex
j is at least as large as the number of arcs of F, leaving j. In both types, the first term is
introduced in order to take care of vertices belonging to the set of centers (vertices v € S for
which z, = 1).

A slight variant of this program will solve also the case where the paths are required to
be vertex-disjoint.

It is easy to see that the above program is in /LP° form. Specifically, all the coefficients
of the x variables are positive. Also, the matrix restricted to the g variables is a flow matrix,
since each variable y;; indeed appears in one row (the row corresponding to j and v) with
coefficient +1 and in another row (the one corresponding to ¢ and v) with coefficient —1.

Corollary 5.3 The two-phase algorithm yields an approximation algorithm with ratio O(In(kn)+
log(M)) for the fault-tolerant center problem. 1

It is easily seen that this problem generalizes the set cover problem. Given G(X,Y, E)
an instance of the set cover problem, a corresponding instance of the fault-tolerant center
selection problem can be constructed as follows. Direct all the edges from X to Y. Give all
the Y vertices cost 0o, and all the vertices in X unit cost. Let S =Y and k£ = 1. Clearly, a
solution for the above problem is equivalent to a solution for the set cover problem. Hence
relying on Theorem 2.7 again we have

Corollary 5.4 There exists a constant ¢ < 1 such that the fault-tolerant center selection
problem admits no c - Inn-ratio approximation, unless P = NP. |

Related problems: The vertex-disjoint variant of the problem, for the restricted case
without edge weights and without the flow-cost constraint 25 Wijyi; < U, was first described
in [BKP93|], and given a (slightly weaker) O(k - logn)-ratio approximation algorithm. The
generalized variant presented here, allowing us to place also a bound on the total cost of the
paths used in the solution, has not been studied in the past.

12

5.3 Capacitated facility location problems

This problem deals with a number of facilities that are supposed to serve customers “cheaply”.
Each customer has a demand b; (which is a nonnegative integral number) for the product
generated by the facilities. The cost of satisfying a unit demand of customer j from a facility
at i is cost; ; (the costs may be oco). It may happen that several centers must deal with a
single customer in order to satisfy the demand. We denote by y; ; the number of units of the
product given by i to j. The cost of establishing and maintaining a center at v; is ¢;. Given
a set S and an assignment function determining y; ; the total cost corresponding to S is

c(S) = Zci + Z Yij + COSt; ;.
es i€S, jes
We also wish to bound the load on each center.

We formulate the above constraints as the following I LP? program. The variable x; is 1
if a facility is located at vertex i. The load bound on each center i is L; (which may be o).

n
min > cx; + > yij - costy (6)
i—1 ij

s.t. Zyi:j Z bj, for 1 S] S n,
[

n
Li-x;i = y;; >0, for 1 <i<n,
j=1
:L’z'E{O,l}, yijEZ-'_, for 1 <i,5 <n.

We have the following corollary.

Corollary 5.5 The capacitated facility location problem can be approximated with ratio
O(log M +logn), where n is the number of vertices and M 1is the largest weight. |

Clearly, this problem too is a generalization of the dominating set problem, and hence
we have

Corollary 5.6 There exists a constant ¢ < 1 such that the capacitated facility location
problem admits no c - Inn-ratio approximation, unless P = NP. |

Related problems: This problem is a variant of the usual (uncapacitated) facility location
problem, in which there are no loads, and L; = n for all i (see, for example, [NW88 GM84]).

There has been some previous work on approximations for some uncapacitated variants
of the problem, which are somewhat simpler to handle. In particular, an O(logn) algorithm
is given for the uncapacitated problem in [Hoc82]. In addition, considerable amount of
research has been devoted to the metric case of the problem, in which the weights obey
the triangle inequality. A 3.16-ratio approximation algorithm for the uncapacitated metric

13

facility location problem is presented in [STA97]. For references to previous work on these
problems (as well as to some work on the related k-median problem) see [KPR9S|.

To the best of our knowledge, our paper gives the first logarithmic approximation for the
capacitated version of the problem.

5.4 Low-diameter minimum spanning trees

Our final application for the extended scheme is for the following problem. Given an undi-
rected n-vertex graph G = (V, E) with a (nonnegative) weight function w on the edges,
and a parameter D, we look for the minimum weight spanning tree among the trees with
diameter bounded by D (the diameter is measured by the number of edges, i.e., the edges
are thought of as having length 1). Call a tree with a diameter bounded by D a D-diameter
tree, and denote this problem by D — M ST. We consider the cases D =4 and D = 5. In a
4-diameter tree, there must be a vertex rooting a tree of height at most 2. Thus a (rooted)
3-layered spanning tree is required with minimum weight. We provide a logarithmic ratio
approximation algorithm for the 4 — M ST and 5 — M ST problems (the 3 — M ST case is
trivial). We also give a matching lower bound (up to constants).

First, we use Theorem 2.7 to prove a lower bound for the approximability of the problem.

Claim 5.7 There exists a constant ¢ < 1 such that the 4 — M ST problem has no ¢ -Inn
approzimation, unless P = NP.

Proof: We show that a p-ratio approximation algorithm for 4 — M ST implies a p-ratio
approximation algorithm for the dominating set problem. Let G(V, E) be an instance of the
dominating set problem where |V| = n. Add three new vertices, a, b, c. Connect a to all the
vertices in (7, with edge weights n®, connect a to b and b to ¢, with edge weights 1. Give all

the edges in G weight n. Denote the resulting graph by G.

We make use of the following two observations.

Observation 1: Given a dominating set of size s* in G we can construct in G a 4-diameter
spanning tree with weight s*n® + (n — s*)n + 2.

Observation 2: Given a 4-diameter spanning tree for G, with weight bounded by sn® +
o(n?®), where s < n — 1, then a is the root, and the tree has no more than s + 1 vertices in
layer 1 (where the root is on layer 0).

Observation 2 is justified by noting that the vertex ¢ cannot be the root of the 3 layered
spanning tree, and neither do the vertices of G. Moreover, if b is the root, we must use all the
n3-weight edges connecting a to G, making the weight greater than n* > (n—1)n3+o(n3) >
sn® + o(n?), assuming n is sufficiently large. Also, if there are more than s vertices in layer

1, other than b, then there are at least s + 1 vertices of G in layer 1, forcing the weight to

14

be at least (s + 1)n® > sn® + o(n?) for sufficiently large n.

Now, assume that we can approximate the 4 — M ST problem with approximation ratio
p. Denote the size of the minimum dominating set in G by s*. Throughout, we assume that
s* < (n—1)/p. (If this is not the case, then any dominating set we output is within the
desired ratio p.)

Denote the tree resulting from the assumed approximation by 7. Denote the minimum
weight 4 — diameter tree in G' by T . Let T} be a 4 — diameter spanning tree with weight
bounded by s*n® + ©(n(n — s*)) (see observation 1). Thus

w(T) < pw(T7) < pw(Ti) = p(s™n’ + O(n(n — 57))).

It follows from Observation 2 that the set of layer one vertices in T is a dominating set
in G of size bounded above by ps*, which in turn implies an p approximation algorithm for
the dominating set problem. |

We now match this hardness result (up to constants) by a positive result, showing how to
fit the 4 — M ST problem into our I LP® scheme. We first introduce a procedure that allows
us to deal only with edge-weights that are polynomial in n. Let the edges be sorted by
nondecreasing weights, and let E; = {eq,...,e;} and w; = w(e;). Let G; be a graph induced
by the edges E;. Let j be the first index for which G; contains a tree of diameter 4. Then
the problem admits a solution with cost bounded by (n — 1)wj, so clearly all edges heavier
than (n—1)w; are unnecessary. Also, the weight of the edges lighter than w;/n can be made
zero, as in any possible spanning tree their total weight is less than w;, hence ignoring their
weight altogether will make no difference so long as we are interested in a logarithmic ratio
approximation. Consequently, we note that the weights can now be scaled (by dividing them
by w;) so that the maximum weight be bounded by O(n?). This makes all the numbers in
the input polynomial in the number of vertices.

In the approximation we make use of the following procedure SHALLOW-MST(v;) (for
V ={vy,...,v,}, and weights w;; > 0, where w;; = 0, for every 7), which approximates the
best solution when v; is taken as the root the tree.

Procedure SHALLOW-MST (v;)

1. Assign the neighbors v; of vy cost ¢; = wy;, and the non-neighbors of v; cost ¢; = co.

2. Write the following program:
n
min Z ciw; + Z YijWij
=2 irj

n
s.t. ZyijZI, for 2 < j <mn,
=2

15

n
(n—l)-xi—ZyiJEO, for 2 <i<n,
=2
Tiy Yij € {0,1}, for 2 < Z,] <n.

and approximate it using MULTI-PHASE. (Note that we have a variable y;; for every
i. Also, if x; = 1, we can set y; to be 1, at no cost).

3. Place the vertices v; for which z; = 1 in layer 1 of the tree.

4. Place the remaining vertices in layer 2, and connect each of them to a vertex in layer
1 according to the y;; values.

To approximate the 4 — M ST problem, we apply procedure SHALLOW-MST(v;) n times,
once for every vertex v; (serving as vy), and output the best tree.

Note that we can also bound the number of children of any vertex exzcept the root by any
desired bound L (and thus, we “almost” deal with the bounded-degree 4 — M ST problem)
and get the same ratio.

It is straightforward to show that the above procedure finds a tree whose total weight is
O(logn + log W) away from the optimum (where W is the maximum edge weight). Thus,
since by the above transformation, the edge-weights are polynomial in the number of vertices,
we have

Corollary 5.8 The best polynomial time approrimation algorithm for the 4— M ST problem
has ratio ©(logn). 1

A similar approximation algorithm follows for the case D = 5. In a 5-diameter tree, there are
two adjacent centers. These are the two end-vertices v and w of the middle edge e = (v, w)
in any (length-5) diameter in the tree. Once we know this edge, we can contract its two
vertices into some super-vertex u, of degree deg(v) + deg(w) — 2. We then give each edge
(z,u) the minimum of the two weights w((z,v)), w((z,w)). Once this is done, the problem
is transformed into the 4-diameter case with u as the root. It is only needed to find the best
4-diameter tree rooted at w, and then de-contract the edge e appropriately. Note that we
add w(e) = w((v,w)) to the weight of the tree.

Thus, the following simple procedure gives the desired logarithmic ratio approximation.
Go over the edges one by one. For each edge e; = (v;, w;) contract the edge e; and get a super-
vertex u;. Approximate the 4 — M ST problem, with u; as the chosen root, using procedure
SHALLOW-MST (u;). Let T; be the resulting tree in the approximation. Compute the sum
Si = w(T;) +w(e;). Let j be the index achieving the minimum for this sum. De-contract e;
appropriately, and return the resulting tree.

Related problems: The problem discussed here is listed as [ND4] in [GJ79]. It has not
been given an approximation algorithm before. The current result was recently generalized,

16

using specialized techniques, to larger values of D. In particular, it was given a polynomial
time approximation algorithm of ratio O(logn) for any constant D, and an algorithm of

ratio O(n

€), for any fixed 0 < € < 1, for general D [KP97].

Acknowledgement

We are grateful to the two anonymous referees for their helpful comments.

References

[BK90]

[BKO1]

[BKP93]

[ChvT79]

[CK98]

[Dob82]

[Fei96]

[GJT9]

[GMS84]

[Hoc82]

[HS86]

A. Bookstein and S.T. Klein. Construction of optimal graphs for bit-vector com-
pression. In Proc. 13th ACM SIGIR Conference, pages 327-342, 1990.

A. Bookstein and S.T. Klein. Compression of correlated bit-vectors. Information
Systems, 16:387-400, 1991.

J. Bar-llan, G. Kortsarz, and D. Peleg. How to allocate network centers. J. of
Algorithms, 15:385-415, 1993.

V. Chvatal. A greedy heuristic for the set-covering problem. Mathematics of
operations research, 4:233-235, 1979.

Pierluigi Crescenzi and Viggo Kann. A compendium of NP optimization prob-
lems. Technical report, Royal Institute of Technology, Stockholm, Sweden, 1998.
http://www.nada.kth.se/-viggo/problemlist /compendium.html.

G. Dobson. Worst case analysis of greedy heuristics for integer programming with
nonnegative data. Mathematics of Operations Research, 7:515-531, 1982.

U. Feige. A threshold of Inn for approximating set cover. In Proc. 28th ACM
Symp. on Theory of Computing, pages 314-318, 1996.

M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company, 1979.

M. Gondran and M. Minoux. Graphs and Algorithms. John Wiley and Sons, 1984.

D.S. Hochbaum. Heuristics for the fixed cost median problem. Mathematical
Programming, 22:148-162, 1982.

D. S. Hochbaum and D. B. Shmoys. A unified approach to approximation algo-
rithms for bottleneck problems. J. of the ACM, 33(3):533-550, July 1986.

17

[Joh74]

[KP97]

[KPROS]

[Lov75]

[LY4]

[NW88]

[RS97]

[STA97]

[Wol82]

D.S. Johnson. Approximation algorithms for combinatorial problems. J. of com-
puter and system sciences, 9:256-278, 1974.

G. Kortsarz and D. Peleg. Approximating shallow-light trees. In Proc. 8th ACM-
SIAM Symp. on Discrete Algorithms, pages 173182, 1997.

KPR-98. Analysis of local search heuristics for facility location problems. In Proc.
10th ACM-SIAM Symp. on Discrete Algorithms, pages 1-10, 1998.

L. Lovasz. On the ratio of integral and fractional covers. Discrete Mathematics,
13:383-390, 1975.

C. Lund and M. Yannakakis. On the hardness of approximating minimization
problems. J. of the ACM, 41:960-981, 1994.

G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. John
Wiley and Sons, 1988.

R. Raz and S. Safra. A sub constant error probability low degree test, and a sub
constant error probability PCP characterization of NP. In Proc. 29th ACM Symp.
on Theory of Computing, pages 475-484, 1997.

D.B. Shmoys, E. Tardos, and K. Aardal. Approximation algorithms for facility
location problems. In Proc. 29th Ann. ACM Symp. on Theory of Computing,
pages 265-274, 1997.

L. A. Wolsey. An analysis of the greedy algorithm for the submodular set covering
problem. Combinatorica, 2:385-393, 1982.

18

Appendix

In the appendix we prove axiom ([I) for f, of Subsection 2.2 and for f3 of Section 3.

A Proof of Axiom (/) for f,

An assignment Y to the 7 variables is said to be optimal for S if fi(z%;Y) = f(S). For
every set S C U, let Vs be the set of optimal assignments for S.

Claim A.1 Consider sets S, T C U such that S C T. There exists an assignment Y° which
is optimal for both S and T, namely, such that Y € YN V.

Proof: Given two assignments Y and Y’ let hit(Y,Y") = ¥,;|V; —Y/|. Let Y and Y7 be
two assignments minimizing hit(YS,YT), where the minimum is taken over all assignment
pairs (Y, Y7T) such that Y¥ € Ys and YT € Y. We establish the claim by proving that
Y is optimal also for T.

Consider some 1 <7 < ¢, and let j and k£ be the rows in which y; appears in positive and
negative signs, respectively. Notice that if Y/ > ;% then clearly

Aj - (2%Y%) > b; and Ag- (2°Y7) < by,

since otherwise, increasing Y;° by 1 would decrease hit(Y®, Y1) conserving the optimality
of Y9 (and also, of course, conserving the capacity constraints, since Y;¥ +1 < Y.) This
means, for example, that in the inequality of A;, although A;-(z%; YT) > A;-(z°; V), it does
not help to increase fy(S) when switching from Y to Y7, since already A; - (2°;Y®) > b;.

Similarly, if ;"' < Y;* then
Aj - (2%Y%) <b; and Ag- (2°Y5) > by
It follows that for every j,
min{4; - (z°;Y),b;} > min{4; - (2% Y7),b;},

because in any coordinate where Y and Y7 differ, the change in 7" does not help to increase
(and may only decrease) f»(S). From that, it immediately follows that

min{A; - (z7;Y%),b;} > min{4; - (z"5Y7),b;},

since the left term in the minimum was increased by the same amount on each side. By the
definition of f,, it follows that Y is optimal for 7', completing the proof. |

Next we prove axiom (II) for f,, relying on Claim A.1. Indeed, consider two fixed sets
S,T C U such that S CT'. It is necessary to show that

3 AL (S, u) > fo(T) — fo(S). (7)

ueT\S

By Claim A.1, and noting that

f(SU{u}) = max{fi(zY)} > Az YE)
Y
it follows that for establishing inequality (7), it suffices to prove that

> (fl(fSU{U}Q Y®) — f1(z% YS))

ueT\S

or, that the function ¢(z) = f,(#;Y”) is submodular. Partitioning A into sub-matrices
A; A where A, (respectively, A,,.,) consists of the first n (resp., last ¢) columns of A,
and letting 7 denote the vector of fixed nonnegative numbers h = A - Y5, we get that
9(z) =3, min{Ai T+ h; , b;}, hence its submodularity is immediate from Theorem 2.4,
since all the coefficients in A are positive. (See also [Dob82].) 1

B Proof of Axiom (/I) for f;

In proving axiom (I1) for fy, it is easier to rely on the connection of f; to flow. We start by
giving some standard but necessary decomposition properties of flow.

Consider the ILP€ program. Let S,T C U, S C T. Fix corresponding max-flow min-cost
assignments Y and Y7 to the g variables for S and 7. That is, Y% and Y7 are max-flow
min-cost assignments to the arcs of the corresponding directed flow graphs G(A,S,[) and
G(A,T,l). Given an arc e, denote by Y5(e) (resp., Y (e)) the flow in e in the Y (resp.,

Y1) assignment.

Define the following directed residual graph R that relies on the connection between
Y and Y. Let R(YT,Y®S) = (V, A), where V = {v; | 1 < i < m} corresponds to the
matrix rows as described in the flow interpretation of (L1). The graph R contains an arc
e = (v1,v9) € A, if there exists an arc e’ touching both v; and v, in the original flow graph
G(A,S) (hence in G(A,T) as well) and one of the following two cases holds:

e The arc is €’ = (vy,v,) and Y7 (e) > Y(e), or

e The arc is ¢’ = (vq,v;) and YT (e) < Y9(e).

i

In either case, we associate with every e a label d, = |Y(e)—Y ®(e)|. As before, assume with-
out loss of generality that Y7 and Y are two optimal (i.e., max-flow min-cost) assignments
minimizing the sum of labels in the graph,

hit(YT,Y®) = Z de

Lemma B.1 R(YT Y?) is acyclic.

Proof: For the sake of contradiction, assume the existence of a cycle

(U[]: Ul); (Ula U?)) ey (Upfla UO)

in R(YT,YS). Let e; be the original arc between v; and v(i{1)modp in the flow graph. Let
us modify Y7 as follows. For every 4, if YT (e;) > Y5(e;), reduce the flow through e in
YT by 1, and if the YT (e;) < Y9(e;), augment the flow through e in Y7 by 1. Call the
resulting assignment function Y’. Note that the flow balance in Y’ at every vertex in the
graph remains unchanged after the above modification. We prove that the flow-cost has
not changed too, or, that the net change D in flow-cost satisfies D = 0. Indeed, D cannot
be negative because of the optimality of Y7. Furthermore, assuming D is positive leads to
contradiction, as it implies that Y was not optimal, since the inverse change along the cycle
is available for Y5.

It follows that Y is also a max-flow min-cost function for G(A, S). However, hit(Y1,Y") <
hit(YT,Y®). This is a contradiction. 1

We now define a decomposition procedure for R(YT,Y®). Iteratively identify a collection

S “closer” to

P of paths in the residual graph, each carrying one flow unit and bringing Y
Y”. Each iteration operates as follows. By Lemma B.1. the residual graph of Y and Y7 is
acyclic. Consequently, the jth iteration selects a directed path P; from some source vertex
s; (with in-degree 0) to a sink vertex ¢; (with out-degree 0). Thereafter, the flow is changed
along P;, and the labels in R = R(Y?,Y?) are changed accordingly (deleting zero-labeled
arcs) and P; is added to P. This process continues until exhausting the arcs of R. Denote
the set of sources encountered by the decomposition procedure by V; = {v | v = s; for some

7}, and the set of sinks by V;, we have the following claim.

Claim B.2 A verter v € Vi is never a sink during any iteration of the decomposition pro-
cedure. Likewise, a vertex v € Vy is never a source in any iteration.

Proof: Assume the contrary. If v became a sink before it was a source, it is impossible that
later it will have a nonzero out-degree. Similarly, if v becomes a sink after it becomes a
source, it is impossible that later on v will have a nonzero in-degree. |

For v; € Vj, let s(v;) denote the number of paths in P starting at v;. Similarly, for v; € V,
let e(v;) be the number of paths of P ending at v;. Recall that fixing a specific assignment
for = in the original instance (L2) of the ILP¢ problem, can be thought of as resulting in

1

a modification of the vector b at the right hand side. This also results in a modification of
the flow graph, specifically, the number of flow units available for the vertices. Let b° (resp.,
b") be the b vector resulting from fixing the assignment z° corresponding to S (resp., z7
corresponding to 7). If b7 < 0 then in the flow graph of S, there is an arc from the source

s to v; with capacity —b7. We first prove some properties regarding vertices in V; and V;.

Claim B.3

1. For every vj € V, bf < 0 and the flow in S along the arc (s,v;) is at least e(v;).

2. For every v; € Vi, if b < 0 then the arc (s,v;) is saturated, i.e., it carries by flow
units.

Proof: For proving part 1 of the claim, consider a vertex v; € V;. the number of flow units
entering v; in G(A,T) is greater by e(v;) than in G(A,S). The extra flow units entering v;
must be balanced in 7. Thus b5 < 0, and the arc (s, v;) carries at least e(v;) flow units. In
this case, the flow can be balanced by reducing the number of flow units entering v; from the
source. (Recall that we are dealing with flows S and 7 that saturate all the arcs entering
each sink. Thus extra flow units cannot be balanced by increasing the number of flow units
entering the sink. With that respect, recall that b} < b5.)

For proving part 2 of the claim, assume the contrary holds. Select an arbitrary path
in P, leading from v; to some vertex v; € V;, and augment the flow through this path by
1. The balance at v; can be conserved by adding 1 to the flow entering v; through s. The
balance through v; can also be conserved by decreasing the flow from s to v; (see part 1).
Therefore, there exists a legal assignment Y’ where hit(Y?,Y") < hit(Y1,Y¥). Moreover,
as in the proof of Claim B.1 the net change in flow-cost is 0. This is contradiction. |

For v € Vj, denote by Path(v;) the subset of P consisting of the s(i) paths starting at

v;. Denote by k(v;) the additional flow units that enter v; in 7" in comparison to S, that is,
k(v) = bS — b

Lemma B.4 For every v; € Vs, the number of paths s(i) in Path(v;) satisfies s(i) < k(v;).

Proof: Assume that we change the Y° assignment to Y7 by iteratively augmenting the flow
through the paths of P. Note that whenever v; occurs as a middle vertex of some path during
this process, the flow balance at v; remains unmodified by this augmentation. Furthermore,
each of the s(7) times that v; is a source, either the outgoing flow of v; is incremented by 1,
or the incoming flow is decreased by 1. Thus in YT, s(i) additional flow units emanate from
v;. Those flow units cannot be balanced in G(S, A) using the source s (in the case bY < 0) as
indicated by part 2 of Claim B.3, as the arc (s, v;) is saturated. Nor can they be balanced in
G(A, S) by reducing the flow from v; to the sink, since we are dealing with flows saturating
all the arcs entering the sink. It follows that in 7', additional flow units are available for v;,
namely, k(i) = b7 — bl > s(i), as required. |

iv

We now complete the description of the decomposition. Assume w.l.o.g that T\ S =
{z1,...,z;}. Thus, adding z; to S results in making a;; additional flow units available for
v;, where a;; is the coefficient of z; on the 7th row of A. Clearly,

n

> aij = k(i), (8)

=1

and hence "

7j=1
Define for every v; a function f; : Path(v;) — T\ S that arbitrarily assigns to every z; no
more than a;; paths. (This is possible because of Lemma B.4 and (9)). Denote

P(z;) ={p € P| filp) = x; for some i}.

Note that if z; is added to S, one possibility for trying to reduce the flow is to make all
the changes along the |P(x;)| paths of P(xz;), since for every i, a;; additional flow units are
available for v;. It follows from part 1 of Claim B.3 that the flow can also be conserved in the
respective vertices of V;. Let A’(z;) denote the total change in f; caused by these changes.
Clearly,

A(S,x;) > Al(z;) . (10)

Furthermore,

> A'z)) = f5(T) — f3(5) (11)
J
since after the changes along all the paths of P, the flow function S is converted into the
flow function 7". Thus we conclude from Eq. (10) and (11) that

ZA(S, z;) 2 f3(T) — f3(5),

which establishes Axiom (II) for f5. |

