Generating Sparse 2—spanners

Guy Kortsarz * David Peleg* |

November 22, 1993

Abstract

A k—spanner of a connected graph GG = (V,) is a subgraph G’ consisting of all the
vertices of V' and a subset of the edges, with the additional property that the distance
between any two vertices in ' is larger than that distance in G by no more than a
factor of k. This note concerns the problem of finding the sparsest 2-spanner in a given
graph, and presents an approximation algorithm for this problem with approximation

ratio log(|E|/|V]).

*Department of Applied Mathematics and Computer Science, The Weizmann Institute, Rehovot 76100,
Israel.
TSupported in part by a Walter and Elise Haas Career Development Award and by a grant from the Basic

Research Foundation.

1 Introduction

The concept of graph spanners has been studied in several recent papers, in the context
of communication networks, distributed computing, robotics and computational geometry
[ADDJ90, Cai9l, Che86, DFS87, DJ89, L189, PS89, PU8Y]. Consider a connected simple
graph G = (V| F), with |V| = n vertices. A subgraph G' = (V, E') of GG is a k — spanner if
for every u,v € V,

dilst(u,v,G’) <1

dist(u,v,G) —
where dist(u,v,G") denotes the distance from u to v in G, i.e., the minimum number of

edges in a path connecting them in G'. We refer to k as the stretch factor of G.
In the Euclidean setting, spanners were studied in [Cai91, DFS87, DJ89, LL89]. Spanners

for general graphs were first introduced in [PU89], where it was shown that for every n—vertex
hypercube there exists a 3-spanner with no more than 7n edges. Spanners were used in
[PU89] to construct a new type of synchronizer for an asynchronous network. For this, and
other applications, it is desirable that the spanners be as sparse as possible, namely, have
few edges. This leads to the following problem. Let Si(() denote the minimum number of
edges in a k—spanner for the graph G. The sparsest k-spanner problem involves constructing

a k—spanner with Si(() edges for a given graph G.

It is shown in [PS89] that the problem of determining, for a given graph G = (V, F) and
an integer m, whether S3(G) < m is NP-complete. This indicates that it is unlikely to find
an exact solution for the sparsest k—spanner problem even in the case k = 2. Consequently,
two possible remaining courses of action for investigating the problem are establishing global

bounds on Si(G') and devising approximation algorithms for the problem.

In [PS89] it is shown that every n—vertex graph G has a polynomial time constructible
(4k + 1)—spanner with at most O(n'*'/*¥) edges, or in other words, Syy1(G) = O(n'*+'/%)
for every graph (. Hence in particular, every graph G has an O(log n)—spanner with O(n)
edges. These results are close to the best possible in general, as implied by the lower bound
given in [PS89]. The construction of [PS89] is based on the concept of sparse covers or
partitions (cf. [AP90]). Consequently, faster algorithms for constructing sparse covers, in
either the sequential, parallel or distributed modes [L.S91, ABCP91, ABCP92b, ABCP92a],

directly translate into faster algorithms for spanner construction as well.

The results of [PS89] were improved and generalized in [ADDJ90] to the weighted case,
in which there are positive weights associated with the edges, and the distance between

two vertices is the weighted distance. Specifically, it is shown in [ADDJ90] that given an

n—vertex graph and an integer k > 1, there is a polynomially constructible (2k+1)—spanner
(' such that |E(G")| < n - [n¥]. Again, this result is shown to be the best possible.

The algorithms of [ADDJ90, PS89] provide us with global upper bounds for sparse
k—spanners, i.e., general bounds that hold for every graph. However, it may be that for
specific graphs, considerably sparser spanners exist. Furthermore, the upper bounds on
sparsity given by these algorithms are small (i.e., close to n) only for large values of k. It
is therefore interesting to look for approzimation algorithms, that yield near-optimal local

bounds applying to the specific graph at hand, by exploiting its individual properties.

In the sequel we concentrate on the sparsest 2-spanner problem. For this case, the best
global upper bound is S3(G) = O(n?). To see why this cannot be improved in general,
consider the complete bipartite graph having n/2 vertices on each side. It is not hard to
see that the only 2—spanner for this graph is the graph itself. Thus there are cases where
any 2-spanner requires 2(n?) edges. This lends additional motivation to our interest in

approximating the sparsest 2—spanner for specific graphs.

The construction of [ADDJ90] can be thought of as an approximation algorithm for the
sparsest k—spanner problem. However, for the case of & = 2 the ratio provided by this
algorithm might be as bad as Q(n) (which is also the trivial ratio, since every 2-spanner

contains at least n — 1 edges).

In this paper we present an approximation algorithm for the sparsest 2—spanner problem

with approximation ratio log % That is, given a graph GG = (V, E'), our algorithm generates
a 2—spanner (' = (V, E') with |E’| = O(5:(G) - log %) edges. In the next three sections we

give some preliminary definitions, describe the algorithm and analyze its performance. In
the last section we show a matching lower bound for our algorithm. In particular, we exhibit
a family of graphs G}, with ©(k) vertices and Q(k?*) edges for which our algorithm may find
a 2-spanner with Q(5,(G) - log k) edges.

2 Preliminaries

We start by introducing some definitions. Let U C V' be a subset of the vertices. The graph
induced by U is denoted by G(U). The set of edges in G(U) is denoted by E(U). The density

of U in @ is defined as
RGN

Ul

pa(U)

The mazimum density of the graph G is defined to be

p(G) = max{pa(U)}.

Ucv

We call the problem of finding a subgraph of G with density p(G') the mazimum density prob-
lem. We recall the following fact, derivable, e.g., from [Law76]; pp. 125-127, or alternatively
from [GGT89].

Lemma 2.1 [Law76, GGT89] The maximum density problem can be solved polynomially

using flow techniques.

The fastest algorithm known for the maximum density problem is given in [GGT89]. This

algorithm runs in time O(mnlog(n?/m)).

We make use of an alternative characterization of k—spanners, given in the following

lemma of [PS89].

Lemma 2.2 [PS89] The subgraph G' = (V, E') is a k — spanner of the graph G = (V| E) iff
dist(u,v,G") < k for every (v,u) € F.

Next, we introduce the definition of a k-spanner of a subset £’ C F of the edges.

Definition 2.3 Let E' be a subset of the edges. An optimal k-spanner for E' in G is a
minimum subset " C F such that every edge e € E'\ E" lies on a cycle of length k + 1 or
less with the edges of E".

Thus the sparsest 2—spanner problem can be restated as follows: we look for a minimum
subset of edges £’ C FE such that every edge e that does not belong to £’ lies on a triangle
with two edges that do belong to E’. Since a spanning graph of any set £’ is also a spanning
graph of any subset E” C E’, the following fact holds.

Fact 2.4 Let Ey be an arbitrary subset of Fy, and let E{ C E and E) C E be the edge sets
of an optimal k—spanner for Fy and Ey in G, respectively. Then |Ey| < |EL. 1

Given a graph G, we denote by N(v) the set of neighbors of v in G| i.e.,
N@w)=A{u| (u,v) € E} .

Let £’ be an arbitrary set of edges and U an arbitrary subset of vertices. Denote by R(E’,U)
the subset of the edges in the induced graph G(U) restricted to E’, namely,

R(E,U)= EU)NE".

We denote
covg(E',v) = |R(E', N(v))|

and say that v covers the edges of R(E’, N(v)) in (. Note that if all the edges adjacent to
v are in the spanner, then all the edges of R(FE’, N(v)) lie on a triangle with these spanner
edges, and thus are taken care of. Denote the graph of neighbors of v restricted to £’ by

N(E',v) = (N(v), R(E", N (v))) .
Denote the maximum density of this restricted neighborhood graph by

p(E"v) = p(N(E',v)) .

3 The approximation algorithm

Let us first explain the idea behind our approximation algorithm for the 2—spanner problem.
Throughout the run of the algorithm we maintain a cover of the edge set £ by three sets
of edges, denoted H*, H® and H". The set H?® contains spanner edges, i.e., edges that were
already added to the constructed spanner. The set H® consists of covered edges, i.e., edges
that are either in the spanner, or lie on a triangle with two edges that are included in H”.
That is, at any given moment, for every edge e € H®\ H* there exist two edges ¢1,¢2 € H?
such that e, e; and ey form a triangle. Finally, H" consists of unspanned edges, i.e., edges

that are still neither in the spanner nor covered by spanner edges.

Our algorithm operates by repeatedly performing the following operation. For every
vertex v, we consider the graph N(H", v), consisting of the set of neighbors of v, with the
edge set restricted to the unspanned edges H". In this graph we look for a subset U, of
maximum density, relying on Lemma 2.1. Then we choose the most dense such set among
all the sets {U, | v € V'}. Assume that the chosen set is U,.

After finding U,,, we add the “star” composed of the edges connecting U,, and w, to the
edge set of the spanner H*®. In this way we cover a “large” set of edges (namely, those in
H"N E(U,)), while adding only a “small” number of new edges (specifically, |U,]|) to the

Spanner.

This operation is repeated until all sets U, are “sufficiently sparse,” whence the algorithm
halts and H* U H" is taken to be the edge set of the resulting spanner.

We now state our approximation algorithm more precisely.

Figure 1: The set U represents a dense subset of N(v). The solid edges are the ones added to

the constructed spanner.

Algorithm 3.1 An approximation algorithm for the 2—spanner problem Input: a graph
G=(V.F).

1. Set H* «+— FE; H « (; H® « 0;

2. While there exists some v for which p(H*,v) > 1 do

(a) Choose a vertex v for which p(H",v) is mazimum.

(b) Let U, be the corresponding dense subset of N(v).
H — H* U{(u,v) |uel,b}.
H® — (H° UR(H",U,)) U H,.
H* — H"\ H°.

End-While.

3. Return(H* U H")

4 Analysis

4.1 The approximation ratio

Note that the output set of edges indeed forms a 2—spanner of (5, since every edge in H®
lies on a triangle with two edges of H®. Denote the edge set of an optimal 2—spanner for

G by H*. Let us now proceed to bound from above the ratio between the sizes of the sets

H* U HY and H*.

Let us break the execution of the main loop of the algorithm into phases as follows.

Denote r = % and f = [logr]. Note that since the set H* decreases in size at every step,

p(H",v) is monotonically decreasing as well.

Definition 4.1 We define the first phase to include all the iterations during which for every
selected vertexr v, p(H",v) > 7. For2 < ¢ < f, the ¢ 'th phase consists of the iterations during
which every selected vertexr v satisfies

r
2i—1

| =

> p(H",v) >

.

[N]

Let H? (respectively, H?) be the set of new edges added to H® (resp., H°) in the ¢’th phase,
and let H! be the set of edges left in H* at the end of the ¢’th phase. Note that from the
above definition of the phases, and the fact that the algorithm always picks the vertex v

maximizing p(H",v), it follows that H} satisfies

N r

plHE) < &)
for every v. Let H; be the edge set of an optimal 2-spanner for H' in G. We denote by
X, the set of vertices selected by the algorithm during step (a) of the iterations of the ¢’th
phase (namely, those vertices for which p(H",v) was maximum in the iterations of the ¢’th

phase).

Note that a vertex v may be picked more than once during a phase, and in more than
one phase. Consider a particular phase z. Each time that the vertex v is picked in the 2’th
phase, a subset 5, = {(w,v)|w € U,} of its adjacent edges is added to H*, namely, those
edges connecting it to U,. Also, there is a corresponding set C, = R(H",U,) of edges from
H" that lie on a triangle with the edges of S, and are thus added to H°. Since |S,| = |U,|,
by definition of p, these sets S, and C, satisfy

Denote the cardinality of the union of these sets ', added during the i’th phase by h¢(v),
and the cardinality of the union of the sets S, by h?(v), for every vertex v € X;. Note that
by the definition of the :’th phase, it follows from the above that for every v € X,

7

H() = 2 i))

Observe that an edge e = (v, u) may belong to two different sets S,, S, hence

EHEDIRHOR (3)

veX;

On the other hand, edges are included in sets (), atmost once, hence

[H| = 3 hi(v) . (4)

veX;

It follows from (2),(3) and (4) that
C r S
EHESUHE (5)
We now prove the following claim. Let GF = (V, H) be an optimal 2-spanner of H!, and
for every v € V' let d7(v) be the degree of v in the graph 7. Recall that covgs(H}',v) is the
number of edges of H;* covered by v in 7. Denote
covgs (H},v)
S

Lemma 4.2 For every v € V,
”

pi(v) < 5
Proof: Let N*(v) be the set of vertices adjacent to v in G. Thus |[N*(v)| = d;(v). Also
covg: (H{',v) = [R(H, N*(v))] = [E(N"(v)) N HF| .

Thus p;(v) is the density of N*(v) in the restricted neighborhood graph N(H",v), i.e.,
pi(v) = pn(e) (N*(v)). This density is no larger than the maximum density of the graph
N(H!,v), namely, p;(v) < p(H*,v). Thus the required claim follows directly from inequality

(). 1
Lemma 4.3 For every 1 <i < f,

o
|H*| 2i—1

+1.

Proof: First let us remark that
|H| < [H [+) covg: (HY,v), (6)
veV
since every edge e € H} either belongs to H or is covered by some vertex in 7. Secondly,
by Fact 2.4 we have that
| H| < |H7] (7)
Thirdly, note that

1] = 5 Y ())

veV
Combining Eq. (6), (7) and (8) we conclude that

|qu| < |qu| < |Hz*| + ZUEV cova(quvv)
|| T [HE] T 17|

(H},
= gy Do era LY
3 Lvev 47 (v)

covgr (HM, v)
< : S S s
< e

= 142 max{p;(v)}.
Thus by Lemma 4.2 we have
| H| r

: r
|H*| N + 22—1 + I

We now proceed to prove our main lemma.

Lemma 4.4 For every 1 <1 < f,

LH <4+ 2

| H| r
Proof: We first prove the claim for ¢ = 1. We may assume w.l.o.g that n > 2. In this case
by Eq. (5) and by the choice of r

2n

LR - L S
R e e

We now prove the claim for ¢ > 1. By Eq. (5) and by the fact that HS C H! |, we have

| _ Rl _ 2 (A,

H| S TH] S [

Using Lemma 4.3 we get

R T
|H*| ~ r 2072 B ro
Corollary 4.5
| 1°]
= O(logr) .
| 17|

Proof: By Lemma 4.4 and the choice of f,

|HS| — Z{:l |HZS|
| H~| | 1|
f 22
< D (4 =)
=1 r

/
= 4-f—|—%-22i:4-f—|—0(1):O(logr). I

=1

Furthermore, by Lemma 4.3 we have

||

Corollary 4.6 7 < 3. 1

From Corollaries 4.5 and 4.6 we conclude our main result.

Theorem 4.7 Algorithm 3.1 is an O(log %) approximation algorithm for the sparsest 2-

spanner problem. |

4.2 The time complexity

We now analyze the time complexity of our algorithm. In each iteration of the algorithm,
the value of p(H",v) is computed for each vertex v. This requires solving a maximum
density problem. The algorithm given in [GGT89] for the maximum density problem has
time complexity O(m - n - log(n?/m)), hence each iteration of our algorithm requires O(m -
n? -log(n?/m)) operations. At each iteration, at least one edge is added to H.. Since every
edge is added to H. at most once, there are at most m iterations, so the complexity of the

algorithm is bounded by O(m? - n* - log(n*/m)) which is polynomial in the input size.

Since this complexity is rather high, we suggest the following way to speed up the algo-
rithm, while losing only a constant factor in the approximation ratio. Instead of calculating

at each stage the maximum density p of a subset of N(v) for every v, we rather approximate

p. That is, we find a subset with density within a constant ¢ from the maximum. It is easy
to see that the approximation ratio of the algorithm remains asymptotically unchanged (it
only grows by the constant ¢). The proof of this claim follows exactly as the proof of the

previous subsection.

It remains to show how to approximate the maximum density problem. Given a graph
(i and a number p we check if the densest subgraph G’ has density p or more. Note that
every vertex v in the graph with degree p — 1 or less can not be contained in G’; since by
eliminating v from G’ the density p(G’) is increased. Thus we apply the following iterative
procedure. Let Gy be a copy of GG. Iteratively find in (7 a vertex v with degree p — 1 or
less (if exists), and eliminate v and its adjacent edges from Gy. If GGy ends up empty, we
conclude that the maximum density p(() is less than p. (This is because if the density is
p or higher, the subgraph G’ contains only vertices of degree p or more, and therefore must
be preserved in (¢4 throughout the elimination process.) Else, we found a subgraph G of ¢¢
with minimum degree at least p, implying that the density of G is p(G”) > p/2. Thus by
conducting a binary search over the possible values of p we obtain a subgraph G of density

p(G") > p(G)/2. This implies an approximation ratio of 2.

Clearly, the approximation procedure for the maximum density problem is considerably
faster than the exact solution. In particular, using appropriate data structures (whose de-
scription is omitted from the paper), we get an approximation procedure for the maximum
density problem with time complexity O(m logn +nlog®n). This, in turn, yields a logarith-
mic ratio approximation algorithm for the 2-spanner problem, with time complexity bounded

by O(m? - nlogn +m-n?-log*n).

5 A lower bound

In this section we establish tightness of the analysis in Section 4.1 by presenting a family
of graphs for which the greedy algorithm for the 2-spanner problem performs as badly as
Qlogn). That is, we exhibit a family of graphs Gy, for infinitely many values of k, with
O(k) vertices and Q(k?) edges for which the greedy algorithm outputs a 2-spanner with
Q(S2(G) - log k) edges.

5.1 The graph G

Let k& = 2° for an integer p. Denote k' = k—4. Let U = {uq,...,up} and W = {wy, ..., wp}.
Break the set U into p — 2 subsets by successive halving, letting U; contain the first k/2 of

10

by b b; o e @
-
a U@ U U ¢eoe
a, Y@ u) U co o0
a, U1(3) U2(3) u3(3) eo e
a, — U1(4) U2(4) U3(4) o0 o
Uq Uy Ug

Figure 2: Break-up of the set UU into subsets, and connections to the vertices of A and B.

the vertices, U contain the next £/4 and so on. lLe.,

Uy = {ur,...;ugpe} s Us = {upjoqns - susgyafy oo s Upmg = {Uh—r, Up—p, Up—5, Up—s }.

Also define two additional sets A = {a1,a2,a3,a4} and B = {by,...,b,_2}. The vertex set
is V=UUWUAU B. Note that the number of vertices, n, satisfies n = O(k). We shall
further break each set U; into four equal-sized subsets U;(j), for j = 1,2,3,4 (see Fig. 2).
Formally, for a set P = {py,...,pss} of 4.1 elements denote P(j) = {P;-1)i41,- .-, Pj}. For
example, Uy (1) consists of the first quarter of the vertices of Uy, i.e., Uy(1) = {uq, ..., ups}

and so on.
We now specity the edge set of Gj.
(L) For 1 <@ < 4, the vertex a; is connected to W U J; U;(2).
(Es) For 1 < ¢ < p—2, the vertex b; is connected to every vertex in W U U,.

(E5) The sets W and U are connected by a complete balanced bipartite graph (that is, W

and U are independent sets, and every vertex of W is connected to every vertex in U.)

(E4) AU B forms a clique.

11

5.2 The approximation ratio of the greedy algorithm on G|

We now consider the question of a sparse 2—spanner for the graph G defined above. Let
us first observe that this graph has a 2—spanner with O(n) edges. This spanner is obtained
by taking the edge subsets (F;) and (F4) above, namely, all the edges adjacent to a;, for
1 < < 4. Hence we have:

Claim 5.1 5,(Gy) =0(n). 1

On the other hand, we claim that our algorithm will construct for G a 2—spanner with
Q(nlogn) edges. (Specifically, it includes the edge subset (F3) above, namely, all the edges
connecting b; to W U U, for every 1 < < p—2.) In particular, the algorithm will select the

vertices by, ..., b, 5 in its iterations. To see this, observe first the following claim.
Claim 5.2 The first vertex to be selected by our algorithm is by.

Proof: Let us first compute bounds on p(H", v) for every v in the initial situation. Consider
a vertex v € AU B, and denote its corresponding densest subgraph by U, = Wutlu Z,
where W and U are subsets of W and U respectively, and Z is subset of AUB, |Z| = . The
density of the set U, is bounded above by

o(U,) = [EW)] U[|W]+ W2+ |U)|2| + | Z)? - U||W]
125 - U]+ |W|+ | 7] U+ W

(9)

For a vertex v in AU B\ {b;} the maximum size of U is k/4, and the maximum size of W is
less than k. It thus follows that for a vertex in AU B\ {1} the maximum density is bounded
above by -
-k/4
) = 7 k//4
On the other hand, N(b;) contains a subgraph of density larger than &'/3, namely WUU;. It
is easy to see that the density of N(v) for vertices v € UUW is smaller. Thus for sufficiently
large k (it is enough to choose k such that 2k/15 > p + 3), by is chosen. |

Fl=k/5+1.

Next, we prove that when b; is selected, the densest subgraph (i.e., the subset of N(b;)
selected) is in fact the entire neighborhood, N(b).

Note that the maximum density of N(b1) is bounded by
K3 < p(N(b)) <k/3+p+1. (10)

Let U,, denote the densest subgraph of N(H", by). As before, let U, W and Z, |Z] = [be
the subsets chosen, namely, U, = Tuwu 7z, 7Z CAUB, UcC U, W C W. We have the

following claim.

12

Claim 5.3 For sufficiently large k,

U], W] = 5k /12

Proof: Suppose that the claim does not hold. W.l.o.g assume that |U| < 5k'/12. Note that
|W| < k" and therefore Eq. (9) would imply that the density of Us, is bounded above by

Ul|W 5k /12 - k'
o(Uh) < \U]|W| o OK/

—— — 1 =5k/1 1<k
S04 _5k’/12—|—k’+p+ 5K /1T +p+1 < E/3,

in contradiction with Eq. (10). 1

From Claim 5.3 we deduce that (for sufficiently large k) Uy, = N(b1). To see this, note
that if this is not the case, it is possible to add to U,, an outside vertex v’ € N(by) \ Up,.
By Claim 5.3 the number of neighbors of v' in U, is at least 5&'/12 and by Eq. (10),
bE'/12 > k/3+p+ 1> p(Uy,). Thus the density of Uy, U {v'} is larger, a contradiction.

Thus in the first iteration of our algorithm, the star composed of all the edges of b; is

added to the spanner.

At the end of the first iteration the situation becomes somewhat simpler. All the edges
connecting vertex pairs in AUB, AUW and BUW are already spanned, and it remains only
to take care of edges connecting U to AU B U W. Hence starting from the second stage, for
every v € AU B, the neighborhood of v in the collection of unspanned edges H*, N(H",v),
is a bipartite graph, with the vertices of U in one side, and the rest of v’s neighbors in the

other. It follows by arguments similar to the above that

Claim 5.4 In the i¢'th iteration, 2 < i < p — 2, the vertex b; is chosen and all the edges
connecting b; to the vertices of W and U (and no other edges) are added to the spanner. 1

It thus follows from Claim 5.4 that the number of edges in the constructed spanner is

Qklogk) = Q(nlogn). Combined with Claim 5.1, we conclude:

Lemma 5.5 On the graph Gy, the approximation ratio provided by our algorithm is Q(logn).
|

6 Conclusion and open problems

We have shown that there exists an approximation algorithm for the sparsest 2—spanner
problem with a worst case approximation ratio of ©(log %) Note that while the worst case

ratio of the algorithm is O(log n), it performs better for sparse graphs. The next immediate

13

problem is to approximate the sparsest k—spanner problem for an arbitrary fixed value of
k with a similar ratio. This seems to be a considerably more difficult problem than the one
solved in this paper, even for £ = 3. Another interesting problem is to give an approximation

algorithm for the weighted version of this problem.

Acknowledgment

We are grateful to Noga Alon for his helpful comments, and for directing us to Lemma 2.1 in

[Law76]. We would like to thank Barun Chandra for helpful comments on previous drafts.

14

References

[ABCP91]

[ABCP92a]

[ABCP92b]

[ADDJ90]

[AP90]

[Cai9l]

[Che86]

[DFS87]

[DJ8Y]

[GGTSY]

[LawT76]

[LL1.89]

B. Awerbuch, B. Berger, L. Cowen, and D. Peleg. Fast constructions of sparse
neighborhood covers. Unpublished manuscript, 1991.

B. Awerbuch, B. Berger, L.. Cowen, and D. Peleg. Fast network decomposition.
In Proc. 11th ACM Symp. on Principles of Distributed Computing, pages 169—
177, August 1992.

B. Awerbuch, B. Berger, .. Cowen, and D. Peleg. Low diameter graph decom-
position is in nc. volume LNCS-621, pages 83-93. Springer-Verlag, 1992.

I. Althofer, G. Das, D. Dobkin, and D. Joseph. Generating sparse spanners for
weighted graphs. In Proc. 2nd Scandinavian Workshop on Algorithm Theory,
volume LNCS-447, pages 26-37. Springer-Verlag, July 1990.

B. Awerbuch and D. Peleg. Sparse partitions. In 31°* IEEE Symp. on Founda-
tions of Computer Science, pages 503-513, October 1990.

L. Cai. Tree 2-spanners. Technical Report No. 91-4, Simon Fraser University,
1991.

L.P. Chew. There is a planar graph almost as good as the complete graph. In
ACM Symposium on Computational Geometry, pages 169-177, 1986.

D.P. Dobkin, S.J. Friedman, and K.J. Supowit. Delaunay graphs are almost
as good as complete graphs. In Proc. 31°st IEFE Symp. on Foundations of
Computer Science, pages 20-26, 1987.

G. Das and D. Joseph. Which triangulation approximates the complete graph?
In International Symposium on Optimal Algorithms, volume LNCS-401, pages
168-192. Springer-Verlag, 1989.

G. Gallo, M.D. Grigoriadis, and R.E. Tarjan. A fast parametric maximum flow
algorithm and applications. SIAM J. on Comput., 18:30-55, 1989.

E.L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rine-
hart and Winston, 1976.

C. Levcopoulos and A. Lingas. There are planar graphs almost as good as

the complete graph and as short as minimum spanning trees. In International

15

Symposium on Optimal Algorithms, volume LNCS-401, pages 9-13. Springer-
Verlag, 1989.

[LS91] A.L. Liestman and T. Shermer. Grid and hypercube spanners. Technical Report
No. 91-1, Simon Fraser University, 1991.

[PS89] D. Peleg and A. Schaffer. Graph spanners. J. of Graph Theory, 13:99-116, 1989.

[PU89] D. Peleg and J.D. Ullman. An optimal synchronizer for the hypercube. SIAM
J. on Comput., 18:740-747, August 1989.

16

