
Improved Approximation Algorithm for Steiner

k-Forest with Nearly Uniform Weights

Michael Dinitz1

Johns Hopkins University

mdinitz@cs.jhu.edu

and

Guy Kortsarz2

Rutgers University, Camden

guyk@crab.rutgers.edu

and

Zeev Nutov

The Open University of Israel

nutov@openu.ac.il

In the Steiner k-Forest problem we are given an edge weighted graph, a collection D of node pairs,
and an integer k ≤ |D|. The goal is to find a min-weight subgraph that connects at least k pairs.
The best known ratio for this problem is min{O(

√
n), O(

√
k)} [Gupta et al. 2010]. In [Gupta et al.

2010] it is also shown that ratio ρ for Steiner k-Forest implies ratio O(ρ · log2 n) for the related

Dial-a-Ride problem. The only other algorithm known for Dial-a-Ride, besides the one resulting
from [Gupta et al. 2010], has ratio O(

√
n) [Charikar and Raghavachari 1998].

We obtain approximation ratio n0.448 for Steiner k-Forest and Dial-a-Ride with unit weights,

breaking theO(
√
n) approximation barrier for this natural case. We also show that if the maximum

edge-weight is O(nǫ) then one can achieve ratio O(n(1+ǫ)·0.448), which is less than
√
n if ǫ is small

enough. The improvement for Dial-a-Ride is the first progress for this problem in 15 years. To prove
our main result we consider the following generalization of the Minimum k-Edge Subgraph (Mk-ES)

problem, which we call Min-Cost ℓ-Edge-Profit Subgraph (MCℓ-EPS): Given a graph G = (V,E)
with edge-profits p = {pe : e ∈ E} and node-costs c = {cv : v ∈ V }, and a lower profit bound ℓ,
find a minimum node-cost subgraph of G of edge-profit at least ℓ. The Mk-ES problem is a special
case of MCℓ-EPS with unit node costs and unit edge profits. The currently best known ratio for
Mk-ES is n3−2

√
2+ǫ [Chlamtac et al. 2012]. We extend this ratio to MCℓ-EPS for general node

costs and profits bounded by a polynomial in n, which may be of independent interest.

Categories and Subject Descriptors: F.2.2 [Nonnumerical Algorithms and Problems]: Com-
putations on discrete structures; G.2.2 [Discrete Mathematics]: Graph Algorithms

General Terms: Network Design, Steiner k-Forest, Approximation Algorithms

1. INTRODUCTION

1.1 Problems considered and previous work

We consider the following problem, first studied by [Hajiaghayi and Jain 2006]:

Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–0??.

2 ·
Steiner k-Forest
Instance: A graph G = (V,E) with integral edge-weights w = {we : e ∈ E}, a
collection D of node pairs (called the demands), and an integer k ≤ |D|.
Objective: Find a minimum weight subgraph of G that connects at least k pairs
from D.

Let Q denote the union of the pairs in D; the nodes in Q are called terminals,
and the graph (Q,D) is called the demand graph.

Steiner k-Forest generalizes several known problems, among them the following:

• When k = |D|, namely, if we need to connect all pairs in D, we get the
Steiner Forest problem, which admits a 2-approximation algorithm [Agrawal
et al. 1995].

• When the demand graph is connected and k = |D|, we get the Steiner Tree
problem, which admits a (ln 4 + ǫ)-approximation scheme [Byrka et al. 2013].

• When the demand graph is connected and Q = V we get the k-MST problem,
which admits a 2-approximation algorithm [Garg 2005].

• Consider the Minimum k-Edge Subgraph (Mk-ES) problem (the minimization
version of the Densest k-Subgraph problem): Given a simple graph G and an
integer k, find a subgraph of G with k edges and minimum number of nodes.
Mk-ES is essentially equivalent to a particular case of Steiner k-Forest with unit
weights when the input graph is a star. Given an instance G = (V,E), k of Mk-
ES, obtain an instance G′ = (V ′, E′), D, k of Steiner k-Forest with unit weights
as follows. G′ = (V ′, E′) is a star with center s and leaf set V , where s is a new
node; the demands are D = {{u, v} : uv ∈ E}, namely, we create a demand
for every edge in E. Then Steiner k-Forest on G′ is exactly Mk-ES on G, see

[Hajiaghayi and Jain 2006]. For simple graphs, Mk-ES admits an Õ(n3−2
√
2+ǫ)-

approximation scheme [Chlamtac et al. 2012] (note that 3− 2
√
2 < 0.1716).

Another problem closely related to Steiner k-Forest is the following.

Dial-a-Ride
Instance: A graph G = (V,E) with integral edge-lengths w = {we : e ∈ E}, a
collection of items with a source and a destination each, and an integer k ≤ |D|.
Objective: Move every item from its source to its destination using a vehicle that
can carry at most k items, minimizing total travel length.

This version is called the non preemptive Dial-a-Ride, in the sense that we can
not leave an item in a node that is not its destination for picking it up later.

Steiner k-Forest hardness of approximation. We note that a strong lower bound
on approximating Steiner k-Forest is not known. Indeed, it is only known that the
problem is APX-hard (as the Steiner Tree problem is, see [Agrawal et al. 1995]).
The Densest k-Subgraph problem is as follows: Given a graph and an integer k,

find a subgraph of G with k nodes and maximum number of edges. It is known that
if Mk-ES admits approximation ratio ρ then Densest k-Subgraph admits ratio ρ2.
The first approximation for Densest k-Subgraph was O(n2/5) given in [Kortsarz and
Peleg 1993], and it was improved to O(n1/3) in [Feige et al. 2001]. Today, the best
known ratio for the problem is essentially O(n1/4) [Bhaskara et al. 2010]. Since

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 3

for 22 years the best known ratio for Densest k-Subgraph remained polynomial,
and because of the large effort invested in improving the ratio for the problem,
it seems likely that Densest k-Subgraph admits no better than polynomial ratio.
This indicates that it is unlikely that Mk-ES admits a better than polynomial
approximation ratio (see above). In turn, this implies that it is unlikely that Steiner
k-Forest admits better than polynomial ratio.

Known approximation for our problems. The best known ratio for Steiner k-
Forest is min{O(

√
n), O(

√
k)} [Gupta et al. 2010], even for the case of unit weights.

For k = O(n) this ratio almost coincides with the best known ratio k1/2+ǫ for
the directed version of the problem [Feldman et al. 2012], even though undirected
network design problems usually have much better approximation ratios.
The Dial-a-Ride problem admits an O(

√
n) ratio by [Charikar and Raghavachari

1998]. In [Gupta et al. 2010] it is also shown that ratio ρ for Steiner k-Forest implies
ratio O(ρ · log2 n) for the related Dial-a-Ride problem.

1.2 Our results

We prove the following.

Theorem 1.1. Steiner k-Forest with unit weights admits approximation ratio
n0.448.

To prove Theorem 1.1 we consider the following generalization of the Mk-ES
problem, which we call Min-Cost ℓ-Edge-Profit Subgraph, or MCℓ-EPS for short.

Min-Cost ℓ-Edge-Profit Subgraph (MCℓ-EPS)
Instance: A multigraph G = (V,E) with edge-profits p = {pe : e ∈ E} and
node-costs c = {cv : v ∈ V }, and a profit lower bound ℓ.
Objective: Find a minimum node-cost subgraph of G of profit at least ℓ.

MCℓ-EPS with a simple graph G, and with unit node costs and unit edge profits
(and ℓ = k), is the Mk-ES problem. As was mentioned, the currently best known

ratio for Mk-ES is n3−2
√
2+ǫ [Chlamtac et al. 2012]. We extend this ratio to MCℓ-

EPS by modifying the algorithm of [Chlamtac et al. 2012] (for simple graphs with
unit node costs and unit edge profits) to handle multigraphs with general node
costs and profits bounded by a polynomial in n. The node costs can be exponential
in n or beyond, but when the edge profits are exponential in n we can only give a
bicriteria approximation: the algorithm will find a subgraph of node cost at most

n3−2
√
2+ǫ times the optimum and edge profit at least ℓ(1− 1/poly(n)) (rather than

the desired profit of ℓ), where poly(n) is any polynomial in n. However, in the
application to Steiner k-Forest, edge profits are at most n2, and hence we just need
to consider multigraphs with node costs and unit edge profits, and do not have to
resort to the bicriteria approximation.

Theorem 1.2. MCℓ-EPS with edge profits that are at most polynomial in n (but

with arbitrary node costs) admits an n3−2
√
2+ǫ-approximation scheme.

The following theorem establishes a relationship between Steiner k-Forest and
MCℓ-EPS, and it implies Theorem 1.1 by substituting the value of γ = 3− 2

√
2+ ǫ

from Theorem 1.2; note that then 1
3 (1 + 2γ) = 1

3 (7− 4
√
2 + ǫ) < 0.4478 + ǫ.

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 ·
Theorem 1.3. If MCℓ-EPS (with edge profits and node costs at most polynomial

in n) admits approximation ratio ρ = nγ with 0 ≤ γ ≤ 1/4, then Steiner k-Forest
with unit weights admits approximation ratio Õ

(

n1/3+2γ/3
)

.

This theorem is our main contribution.
In [Gupta et al. 2010], the Dial-a-Ride problem is approximated using the approx-

imation for Steiner k-Forest as a black box. Thus if the Dial-a-Ride problem has unit
(or uniform) edge lengths, the black box can be replaced by our approximation for
Steiner k-Forest. This implies the same approximation (up to polylog(n) factors)
for Dial-a-Ride with unit edge lengths.

Corollary 1.4. Dial-a-Ride with unit edge lengths admits approximation ratio
n0.448.

Breaking the O(
√
n) ratio when the maximum weight is small. Many

times in practice, the largest weight is not arbitrarily large. Studying problems
for low weights is a well established paradigm in approximation algorithms. For
example, there are several papers that deal with the TSP problem with weights in
{1, 2} (c.f. [Berman and Karpinski 2006]). In several applications its reasonable
to assume that the weights are polylogarithmic in n. Our algorithm can deal with
these cases, and more generally, when the maximum weight is nǫ (and the weights
are integral) our ratio is n1(+ǫ)·0.448 (which is less than

√
n for small ǫ). In several

applications the maximum weight and the minimum weight are not so far apart.
Given a graph with arbitrary weight so that the maximum cost over minimum cost
is at most n1−ǫ by a standard argument the weights can be transformed so that
they are integral and belong to [1, ⌈nǫ⌉] with negligible loss.
Hence, we now show that if the maximum weight of an edge is nǫ for a small

enough ǫ, then improving the O(
√
n) ratio for Steiner k-Forest and Dial-a-Ride is

still possible. As a first step, we can replace the input graph by an O(log n)-stretch
graph spanner H containing O(n) edges (see [Althöfer et al. 1993]). Then any
solution to the original input can be changed into a solution on H with weight at
most O(log n) times the original weight (any edge e of the original solution which
is not in H can be replaced by a path of total weight at most O(log n) times the
weight of e). Now let E′ be the edge set of H, and suppose that the average weight
of the edges w(E′)/O(n) in the spanner H is at most nǫ. Then if we replace each
edge e by a path of w(e) edges each of weight 1, we only increase the size of the
graph by an nǫ factor, and hence we get ratio O(n(1+ǫ)0.448). Clearly, the average
weight in the spanner is at most nǫ if every weight is at most nǫ, and thus for small
enough ǫ we get a bound of o(

√
n) in the case of the maximum weight is nǫ.

2. THE ALGORITHM (PROOF OF THEOREM 1.3)

2.1 Preliminaries

Some of our intermediate statements will be valid for the weighted version of the
problem; we will mention which formal statements are valid for unit weights only.
We will sometimes treat weights as lengths. Namely, the distance between a pair
of nodes u and v in a weighted graph is the minimum weight of a uv-path in the
graph. We denote by distG(u, v) the minimum weight/length of a uv-path in G.

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 5

Fix some optimal solution J and a set DJ of k demands connected by J . We will
use the following notation.

• τ is the optimum solution value, namely, the size (or weight) of J .

• q = |QJ | is the number of nodes in the union QJ of the pairs in DJ .

• ρ = nγ denotes the best known ratio for MCℓ-EPS.

In what follows, we may “guess” the right values of τ and q, by applying any
of our algorithms for all possible values of τ = 1, . . . , |E| and q = 1, . . . , n, and
among the edge sets computed return the best one (a similar method works for the
weighted case as well, with τ ∈ {2i : i = 0, . . . , ⌊log2 w(E)⌋} being an estimate for
an optimal solution value up to a factor of 2). While we can not know a priori what
the correct values are, we know that since we apply exhaustive search there is a run
of the algorithm with the correct two values. We prove that when the algorithm
runs with the correct values, the claimed ratio holds. Hence from now on we use τ
and q in the analysis, namely, we only analyze the run of the algorithm with the
correct value for the parameters. Consequently, we may assume that distG(u, v) ≤ τ
for every {u, v} ∈ D; pairs {u, v} ∈ D with distG(u, v) > τ are not connected by J
and can be discarded in advance.
In what follows, note that k ≤ q(q − 1)/2 < q2 (k = q(q − 1)/2 may hold if DJ

is a clique on QJ) and that in the case of unit weights q = |QJ | ≤ 2|J | ≤ 2τ , since
every node in QJ is an endnode of some edge in J (|QJ | = 2|J | may hold if J is a
matching on QJ).
We have one very easy case τ

√
q > n/ρ, which is resolved in the following state-

ment.

Lemma 2.1. For any 0 ≤ γ ≤ 1/4, the following holds: if τ
√
q > n1−γ , then

Steiner k-Forest with unit weights admits approximation ratio O
(

n1/3+2γ/3
)

.

Proof. Let θ = 1
6 − 2

3γ. Since γ ≤ 1
4 , θ ≥ 0. Any maximal forest of G is a

feasible solution that has at most n − 1 edges. Thus if 2τ > n1/2+θ then simply
returning a maximal forest gives approximation ratio

n− 1

τ
≤ 2

n

n1/2+θ
< 2n1/2−θ = 2n1/3+2γ/3 .

Otherwise, if τ ≤ n1/2+θ then q ≤ τ ≤ n1/2+θ, so τ
√
q ≤ n1/2+θn1/4+θ/2 =

n3/4+3θ/2 = n1−γ ; this contradicts the assumption τ
√
q > n1−γ .

From now and on we will focus on the complementary “hard case” τ
√
q ≤ n/ρ.

We use Õ and Ω̃ to suppress polylogarithmic terms. We first show that in order to
get ratio Õ(f) for Steiner k-Forest it is sufficient to be able to find a partial solution
of size (or weight) τ · Õ(f) that connects Ω̃(k) demands; then we can just iterate
until we connect at least k demands. This type of reduction is essentially standard,
but we provide a proof-sketch for completeness of exposition.

Lemma 2.2. Suppose that Steiner k-Forest admits a bicriteria approximation al-
gorithm that returns a subgraph of weight ≤ f · τ that connects at least k/p de-
mands, where 1 < p < k. Then Steiner k-Forest admits approximation ratio
f · (⌊ln k/ lnα⌋ + 1), where α = 1 + 1

p−1 . In particular, if k = nǫ for some ǫ > 0

and p = polylog(n), then Steiner k-Forest admits a Õ(f)-approximation algorithm.

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 ·
Proof. We run the bicriteria algorithm iteratively, as follows. Let ki denote the

residual demand (the number of pairs we still need to connect) at the beginning
of iteration i, where k1 = k. While ki ≥ 1, we run the bicriteria algorithm,
remove from D the pairs connected in the current iteration, and set ki+1 = ki− pi,
where pi ≥ ki/p is the number of pairs connected at iteration i. Clearly, at the
beginning of each iteration i there exists a solution to the residual problem (namely,
a subgraph that connected ki pairs from the remaining pairs) of weight at most τ ,
where τ is the optimal solution value to the original problem. Hence the weight of
the bicriteria solution computed at each iteration is at most f · τ .
Note that 1

1−1/p = 1 + 1
p−1 = α. We have

ki = ki−1 − pi−1 ≤ ki−1(1− 1/p) = ki−1/α .

Hence ki ≤ k/αi. The least integer i such that αi > k is i = ⌊ln k/ lnα⌋+1, and it
bounds the number of iterations. Consequently, the overall weight of the solution
computed is at most f · (⌊ln k/ lnα⌋+ 1) · τ , as claimed.
To see the last statement, note that ln(1 + x) > x/2 for x ∈ [0, 1/2], and thus

for p = polylog(n) and n large enough we have lnα = ln(1 + 1
p−1) ≥ 1

2(p−1) ≥ 1
2p .

Hence ln k/ lnα ≤ 2p ln k = polylog(n).

Suppose that for a Steiner k-Forest instance we are given a subgraph G′ = (V ′, E′)
(E′ is a partial solution) and a set D′ of demands on V ′ between distinct connected
components of G′; we seek an augmenting edge set F ′ ⊆ E \ E′ that connects k′

demands in D′. Then we can obtain a residual instance of the problem by con-
tracting every connected component of G′ into a single “supernode” and updating
the demands accordingly. E.g., if Dij is the set of demands between two connected
components Ci and Cj , then after Ci and Cj are contracted into vi and vj , re-
spectively, we have |Dij | parallel demands between vi and vj ; equivalently, we can
replace these |Dij | parallel demands by a single demand of profit |Dij |, and require
that F ′ will connect a set of demands of total profit k′.

2.2 The hard case τ
√
q ≤ n/ρ

We start by giving an algorithm for Steiner Forest where we bound the solution
weight by the number of terminals and the maximum distance between node pairs
in D.

Lemma 2.3. Steiner Forest admits a polynomial time algorithm that computes a
solution F ′ of weight at most L(|Q| − 1), where L = max{u,v}∈D distG(u, v).

Proof. Let (Q,D′) be a spanning forest of the demand graph (Q,D). The
connected components of (Q,D′) coincide with those of (Q,D). For every pair
{u, v} ∈ D′ let Puv be the edge set of a shortest uv-path, and let F ′ be the union
of these edge sets. It is easy to see that the graph (V, F ′) connects every pair in D,
and clearly its weight is at most L(|Q| − 1).

Corollary 2.4. Suppose that for a Steiner k-Forest instance we are given a
subgraph G′ = (V ′, E′) of G that has t connected components and contains a set D′

of demands such that max{u,v}∈D distG(u, v) ≤ L. Then there exist a polynomial
time algorithm that finds an augmenting edge set F ′ of weight w(F ′) ≤ L(t − 1)
such that E′ ∪ F ′ connects all demands in D′.

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 7

Proof. Contract every connected component ofG′ into a single node and update
the demands accordingly. For the obtained Steiner Forest instance, compute an edge
set F ′ as in Lemma 2.3. Note that if two connected components Ci and Cj are
contracted into vi and vj , respectively, then joining vi and vj by a path connects
all demands between Ci and Cj . This implies that E′ ∪F ′ connects all demands in
D′, and w(F ′) ≤ L(t− 1) by Lemma 2.3.

Our algorithm executes several procedures (one of them given in Section 3), and
chooses the outcome of one of them. Intuitively, in each procedure, we have the
following three steps.

(1) Construct: This procedure constructs a MCℓ-EPS instance from the demand
graph (Q,D) by removing some nodes, choosing some node subsets, and con-
tracting each node subset into a supernode of a certain cost.

(2) Compute: This procedure computes a ρ-approximate solution to the obtained
MCℓ-EPS instance, which determines a certain set Q′ of terminals.

(3) Connect: This procedure returns a graph obtained by connecting some pairs
of chosen terminals.

The next statement illustrates this relation between Steiner k-Forest and Mk-ES.
It says that if our optimal solution J connects “many” pairs by “short” paths of
weight ≤ L, then we can find an edge set that connect many pairs by total weight
at most ρqL.

Corollary 2.5. Suppose that DJ has at least k′ pairs {u, v} with distJ(u, v) <
L. Then there exists a polynomial time algorithm that computes an edge set F ′ of
weight w(F ′) ≤ L(ρq − 1) that connects k′ pairs from D.

Proof. The algorithm is as follows.

Algorithm 1: Short-Paths(G,D,L, k′)

1 Construct a MCℓ-EPS instance with ℓ = k′ from the demand graph (R,D)
by removing demands {u, v} with distG(u, v) ≥ L.

2 Compute a ρ-approximate solution R′ for the obtained Mk′-ES instance.
3 Connect: Return F ′ as in Corollary 2.4 (with E′ = ∅).

Note that QJ is a feasible solution to the obtained MCℓ-EPS instance with q =
|QJ | nodes. Thus the returned ρ-approximate solution Q′ has at most ρq nodes.
The graph (Q′, ∅) has |Q′| ≤ ρq connected components, hence the algorithm from
Corollary 2.4 returns an edge set F ′ of weight at most w(F ′) ≤ L(ρq − 1) that
connects k′ pairs.

The next lemma is the technical heart of our paper. It says that if our optimal
solution J connects “many” pairs by “long” paths, then we can find a subgraph that
is relatively cheap, has few connected components, and contains Ω̃(k) demands.

Lemma 2.6. There exists a polynomial time algorithm that when given an in-
stance of Steiner k-Forest with unit weights and integers 2 ≤ d, h ≤ n such that
distJ(u, v) ≥ d holds for k/2 pairs {u, v} in DJ , computes a subgraph G′ = (V ′, E′)
of G such that G′ has Õ(ρτ/d+n/h) connected components, |E′| = Õ(ρhτ/d+ρqd),
and V ′ contains Ω̃(k) pairs from D.

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 ·
The proof of this lemma is rather involved, and it is given in Section 3. In the

rest of this section we will use this lemma to finish the proof of Theorem 1.3.

Corollary 2.7. There exists a polynomial time algorithm that under conditions
of Lemma 2.6 computes a subgraph G′ = (V ′, E′) that connects Ω̃(k) demands and
has size at most |E′| = τ · Õ(f(d, h)), where

f(d, h) = ρτ/d+ n/h+ ρh/d+ ρqd/τ

Proof. We simply connect the components as in Lemma 2.6 using the algorithm
from Corollary 2.4 and the obvious distance bound L = τ (recall that we assume
that distG(u, v) ≤ τ for every {u, v} ∈ D). We write this a little more formally as
Algorithm 2.

Algorithm 2: Long-Paths(G,D, τ, h, d)

1 Compute a graph G′ = (V ′, E′) using Lemma 2.6.
2 Compute an augmenting edge set F ′ as in Corollary 2.4.
3 Return E′ ∪ F ′.

By Lemma 2.6, G′ has Õ(ρτ/d + n/h) connected components. Thus by Corol-
lary 2.4 |F ′| = τ · Õ(ρτ/d + n/h). We also know from Lemma 2.6 that |E′| =
Õ(ρhτ/d+ρqd) and that the algorithm connects Ω̃(k) demand pairs. Consequently,

|F ′|+|E′| = τ ·Õ(ρτ/d+n/h)+Õ(ρhτ/d+ρqd) = τ ·Õ(ρτ/d+n/h+ρh/d+ρqd/τ) ,

as claimed.

We now instantiate some parameters to show that for certain ranges of values,
the combination of Algorithms 1 and 2 gives a good approximation ratio.

Lemma 2.8. If τ
√
q ≤ n/ρ then Steiner k-Forest with unit weights admits ap-

proximation ratio Õ

(

(

ρ2nq
τ

)1/3
)

.

Proof. Let f(d, h) be as in Corollary 2.7 and let

d =

(

nτ2

ρq2

)1/3

and h =

(

n2τ

ρ2q

)1/3

= d ·
(

nq

ρτ

)1/3

.

Note that since τ ≥ q/2, then for ρ ≤ n/8 we have d, h ≥ 2. Also note that the
condition τ

√
q ≤ n/ρ implies d, h ≤ n.

We execute two different algorithms: Algorithm 1 with L = d and k′ = k/2,
and Algorithm 2. Then, among the two edge sets returned we choose the one of
smaller weight. IfDJ has k/2 pairs {u, v} with distJ(u, v) < d, then by Corollary 2.5
Algorithm 1 returns an edge set of weight at most ρqd = τ ·O(f(d, h)) that connects
k/2 demands. Otherwise, if DJ has k/2 pairs {u, v} with distJ(u, v) ≥ d, then by
Corollary 2.7 Algorithm 2 returns an edge set of weight at most τ · Õ(f(d, h)) that
connects Ω̃(k) demands. Elementary computations show that

ρτ

d
=

(

ρ4q2τ

n

)1/3

and
n

h
=

ρh

d
=

ρqd

τ
=

(

ρ2nq

τ

)1/3

.

The statement follows, since the condition τ
√
q ≤ n/ρ implies ρ4q2τ

n ≤ ρ2nq
τ .

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 9

Corollary 2.9. For any 0 ≤ γ ≤ 1, the following holds: if ρ = nγ and
τ
√
q ≤ n1−γ , then Steiner k-Forest with unit weights admits approximation ratio

Õ
(

n1/3+2γ/3
)

.

Proof. This follows from Lemma 2.8, since ρ2nq
τ = q

τ ρ
2n ≤ 2ρ2n = 2n1+2γ .

From Lemma 2.1 and Corollary 2.9 it follows that Steiner k-Forest with unit
weights admits approximation ratio Õ

(

n1/3+2γ/3
)

, as claimed in Theorem 1.3. It
only remains to prove Lemma 2.6.

3. PROOF OF LEMMA 2.6

We give an overview of the proof of Lemma 2.6. Our algorithm has two phases.
Roughly speaking, in the first phase we get a collection (called “cluster”) of pairwise
node disjoint rooted trees in G such that:

• Ω̃(k) demands in DJ have their endnodes in distinct trees.

• The radius (height) of each tree is O(d log n) = Õ(d).

A tree T is heavy if it has more that h edges, and T is light otherwise. We will
use the following bounds:

• We will show that only O(τ/d) trees can contain a node from QJ (this property
depends on J , and note that we do not know these trees explicitly).

• Since the trees are pairwise disjoint and since every heavy tree has at least h
nodes, we have O(n/h) heavy trees (note that we know these trees explicitly).

While the number of heavy trees is small, we do not have a good bound on the size
of a heavy tree, so taking an entire (just one) heavy tree into G′ might make |E′|
too large. However, to connect a set QT of terminals that belong to the same heavy
tree T , we do not have to take the entire tree; the terminals in QT can be connected
to the root of T using Õ(|QT |d) edges, which can be much smaller than the number
of edges in T . On the other hand, the contribution of each light tree to |E′| is small,
but we do not have a good bound on the number of light trees. Our strategy is to
choose a small amount O(ρτ/d) of light trees and a small number O(ρq) of single
nodes that belong to heavy trees, such that their union contains Ω̃(k) demands.
This is achieved in the second phase, which is similar to Algorithm 1. We construct
a MCℓ-EPS instance with ℓ = Ω̃(k) from the demand graph (Q,D) by contracting
the terminals of every light tree into a single “super-node” of cost α = qd/τ . We
then compute a ρ-approximate solution Q′ for the obtained MCℓ-EPS instance. The
returned graph G′ is the union of:

• The light trees that correspond to supernodes in Q′.

• Union of the shortest paths from each terminal in Q′ that belongs to a heavy
tree to the root of the heavy tree it belongs to.

The returned graph G′ contains ℓ = Ω̃(k) pairs from D. By the construction, the
number of connected components in G′ is bounded by the number of supernodes
in Q′ plus the total number of heavy trees.
Since only O(τ/d) (light) trees contain a node from QJ , the obtained MCℓ-EPS

instance admits a solution of node cost O(ατ/d+ q) = O(q) (this is the reason for

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 ·
choosing supernode costs α = qd/τ). Thus the returned ρ-approximate solution Q′

has node cost O(ρq), so the number of supernodes in Q′ is O(ρq/α) = O(ρτ/d).
The number of heavy trees is O(n/h). Thus G′ has Õ(ρτ/d + n/h) connected
components, as claimed in Lemma 2.6.
On the other hand, |E′| is bounded by the sum of:

• h times the number of supernodes in Q, which is O(hρτ/d).

• Õ(d) times the the number of ordinary nodes in Q, which is (ρqd).

Consequently, |E′| = Õ(ρhτ/d+ ρqd), so the bounds promised in Lemma 2.6 hold.

3.1 Cluster decompositions

The following type of cluster is similar to other construction that date back to
[Awerbuch 1985]. But the details are always somewhat different, and we need to
present the algorithm and some of its properties in full.

Definition 3.1. A (d, p)-cluster of a subset A of nodes in a graph G (possibly
with edge weights) is a collection TA of node-disjoint rooted subtrees of G such that
the following holds:

(1) Every node in A belongs to exactly one tree in TA.
(2) The radius (height) of each tree is at most p.

(3) distG(u, v) > d for any two nodes u, v ∈ A that belong to distinct trees.

A (d, p)-cluster-decomposition of S is a collection of (d, p)-clusters {TA : A ∈ A}
where A is a partition of S.

Let lg i = log2 i denote logarithm with base 2. The purpose of this section is to
prove the following theorem.

Theorem 3.1. There exists a polynomial time algorithm that given a graph
G = (V,E), a subset S ⊆ V of terminals, and an integer 1 ≤ d ≤ n/2 returns
a (d, d(lg |S|+ 1))-cluster-decomposition of S with at most lg |S|+ 1 clusters.

Proof. To prove the theorem, we design a polynomial time algorithm for the
following intermediate problem:
Find a (d, d(lg |S|+ 1))-cluster TA of a subset A ⊆ S with |A| ≥ |S|/2.
Given such an algorithm, we construct the clusters in the decomposition sequen-
tially, such that after construction of each cluster TA we remove from S the corre-
sponding set A of nodes and add A to A. Clearly, at the end A is a partition of S.
After each cluster construction the number of nodes in S decreases by a factor of
at least 2, hence |A| ≤ lg |S|+ 1.
For a subtree T of G let Bd(T) = {v ∈ S \ T : distG(T, v) ≤ d} denote the set of

nodes in S \ T of distance at most d from T . Algorithm 3 below solves the above
intermediate problem.

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 11

Algorithm 3: Cluster-Construct(G,S, d)

1 initialize T ← ∅, A← ∅
2 while S 6= ∅ do
3 Choose root s ∈ S and set T ← ({s}, ∅)
4 while |Bd(T)| ≥ |S ∩ T | do
5 Expand(T): For each v ∈ Bd(T), add to T some shortest path from T

to v.

6 Update(T , S,A): Add T to T , move T ∩ S from S to A, and remove Bd(T)
from S.

7 return T

In the algorithm, the lines in the loop add nodes to the trees as long as the number
of terminals in the ”boundary” is at least equal to the number of terminals inside
the tree. When this is no longer the case, the update line removes the boundary of
the new tree from the graph.
Each time we expand T , the radius of T increases by at most d while |T ∩ S| is

at least doubled. Thus the radius of T is bounded by d(lg |S|+ 1).
Note that at the update step, the set Bd(T) of nodes within distance d from T

is removed from S, and thus none of them will belong to A. This implies that at
the end of the algorithm, distG(u, v) > d for any two nodes u, v ∈ A that belong
to distinct trees. Note also that the number of nodes moved from S to A and
included in T is at least half the number of nodes removed from S (since at this
point |Bd(T)| ≤ |T ∩ S|). This implies that |A| ≥ |S|/2.
It remains to prove that the trees in T are pairwise node-disjoint. Suppose to

the contrary that there is v ∈ V that belongs to two trees T1, T2 ∈ T , where T2 was
constructed after T1. Let T

′
2 denote the tree stored in T2 right before the expansion

step when v was added to T2. When v was added to T ′
2, this was because there

was a path of length ≤ d that goes through v from T ′
2 to some t ∈ S. In particular,

distG(v, t) ≤ d. Now let T ′
1 denote the tree stored in T1 right after the expansion

step when v was added to T1. At this point, t was not added to T ′
1, hence we must

have distG(v, t) > d. This is a contradiction.

Theorem 3.1 extends to edge-weighted graphs by an elementary construction of
replacing every edge e of weight we by a path of length we.

Corollary 3.2. Given a Steiner k-Forest instance, let {TA : A ∈ A} be a
cluster-decomposition as in Theorem 3.1 of the set Q of terminals. Then for
any D′ ⊆ D there exist A,B ∈ A (possibly A = B) such that |D′(A,B)| =
Ω(|D|/ lg2 |Q|), where D′(A,B) is the set of pairs in D with one node in A and
the other in B.

Proof. We have |A| ≤ lg |Q|+1. The statement follows by a standard averaging
argument from the observations that

∑

{A,B}⊆A
|D′(A,B)| = |D′|

|{{A,B} : {A,B} ⊆ A}| = |A|(|A|+ 1)/2 = O(lg2 |Q|) .
ACM Journal Name, Vol. V, No. N, Month 20YY.

12 ·

For simplicity of exposition, let us assume that we know the sets A,B as in
the above corollary (we can try all O(lg2 |Q|) possible choices) and that A 6= B
(the analysis of the case A = B is similar). Furthermore, by Corollary 3.2, we
lose only a polylogarithmic factor by replacing D by D(A,B); hence we assume
that D = D(A,B), that our optimal solution J connects k pairs from D = D(A,B)
(namely, that QJ ⊆ A∪B), and denote by TA, TB the corresponding pair of clusters.

3.2 Choosing and connecting trees

As explained before, the two parameters d and h from Lemma 2.6 are related to
the cluster decomposition, and have the following meaning:

• d is the cluster decomposition parameter as in Theorem 3.1.

• h is a threshold on a tree size in a cluster; a tree T is heavy if it has more that
h edges, and T is light otherwise.

Recall that Lemma 2.6 assumes that distJ (u, v) ≥ d holds for at least half of the
pairs {u, v} ∈ DJ . Thus removing from D pairs {u, v} with distJ(u, v) < d loses
only a factor of 2 in the number of pairs in DJ . For simplicity of exposition, we will
assume that distJ(u, v) ≥ d holds for all pairs in DJ . The following lemma shows
that then the number of trees that contain a node from QJ cannot be too large.

Lemma 3.3. Suppose that distJ(u, v) ≥ d for every {u, v} ∈ DJ . Then at most
2τ/d trees in TA (or in TB) contain a node from QJ .

Proof. Let T ′
A be the family of those trees in TA that contain a node from QJ .

For every tree T ∈ T ′
A fix some pair {uT , vT } ∈ DJ , where uT ∈ T . Let PT be the

set of the first d/2 edges on the uT vT -path in the graph (V, J). For any distinct
T, T ′ ∈ T ′

A the sets in PT , PT ′ are disjoint, since the distance in G between any two
terminals that belong to distinct trees is at least d. The statement follows.

Let α = dq/τ . We execute the following Algorithm 4 (for illustration see Fig. 1).

Algorithm 4: Choose-Connect-Trees(G,D, T)
1 Construct a MCℓ-EPS instance with ℓ = k from the demand graph (Q,D)
by contracting the terminals of every light tree into a single node of cost α.
⊲ Comment: We get a multigraph with node-costs in {1, α} and unit edge-profits.

2 Compute a ρ-approximate solution Q′ for the obtained MCℓ-EPS instance.
3 Connect: G′ = (V ′, E′) is the union of the light trees that correspond to
supernodes in Q′ and shortest paths from each terminal in Q′ that belongs to
a heavy tree to the root of the heavy tree it belongs to.

Note that by Lemma 3.3 at most O(τ/d) trees contain a node from QJ , hence the
total weight of the supernodes that correspond to such trees is α ·O(τ/d) = O(q).

Also note that for our choice d =
(

nτ2

ρq2

)1/3

, we have α =
(

nτ
ρq

)1/3

≥
(

n
2ρ

)1/3

≥ 1,

since τ ≥ q/2 and since n >> ρ.
To finish the proof of Lemma 2.6 it is sufficient to prove the following.

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 13

dd

d n

d

lg

d nlg

ω ω

ω

(b)

(c)

d

(d)

(a) lg

ω

ω

d nlg

d nlg

d nlg

d nlg d nlg

d n

Fig. 1. Illustration to Algorithm 4. Light trees are shown by bright gray triangles, demands are
shown by dashed lines. (a) The collection of trees TA ∪ TB (a tree in TA may intersect a tree in
TB). (b) The constructed instance of MCℓ-EPS. (c) The computed solution Q′ for k = 5. (d) The

returned graph G′ has 4 connected components (two of them are light trees chosen).

Lemma 3.4. Suppose that distJ(u, v) ≥ d holds for all {u, v} ∈ DJ . Then Algo-
rithm 4 computes a graph G′ = (V ′, E′) with O(ρτ/d+n/h) connected components
and |E′| = Õ(ρqd+ hτ/d).

Proof. Since ℓ = k, V ′ contains k pairs from D. The obtained MCℓ-EPS in-
stance admits a solution with at most q nodes and O(τ/d) supernodes, since by
Lemma 3.3 O(τ/d) trees contain a node from QJ . Hence the node cost of this so-
lution is O(ατ/d + q) = O(q). Consequently, the returned ρ-approximate solution
Q′ has node cost O(ρq). Now, note the following bounds:

(i) |Q′| = O(ρq) and the number of supernodes in Q′ is at most |Q′|/α = O(ρτ/d)
(since every node has cost ≥ 1 and every super-node has cost α).

(iii) The total number of heavy trees is O(n/h) (since the heavy trees in each of
TA, TB are pairwise disjoint and each of them has at least h nodes).

(iv) The length of the paths from a terminal to the root of its tree is Õ(d) (since
the radius of each tree is at most d log |Q| = Õ(d)).

The number of connected components in G′ is bounded by the sum of:

• The number of super-nodes in Q′, which is O(ρτ/d), by (i).

• The total number of heavy trees, which is O(n/h), by (ii).

Thus the total number of connected components in G′ is O(ρτ/d+n/h), as claimed.
The number of edges in |E′| is bounded by the sum of:

• h times the number of supernodes in Q′, which is h ·O(ρτ/d), by (i).

• |Q′| · Õ(d) = Õ(ρqd), by (i) and (iii).

Thus |E′| = Õ(ρqd+ hτ/d), as claimed.

This ends the proof of Lemma 2.6, and thus also the proof of Theorems 1.3.

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 ·
4. PROOF OF THEOREM 1.2

We first make the node costs bounded by a polynomial in n. We remove nodes of
cost more than τ and zero the edges of cost at most τ/n2, where τ is the optimal
solution value. The cost we ignore due to the zeroing of the node costs is less than
τ and is negligible in our context. Then we divide all the weights by the minimum
weight and round the value down. Note that the cost of any edge over the cost
of the minimum weight is at least 1. Hence the rounding down loses a negligible
factor of 2: the worse case is that we may round a number that is at most 2 to 1.
If the profits are exponential in n or larger, we give a bicriteria approximation in
which we have the same ratio but we cover only ℓ−ℓ/poly(n) profit where poly(n) is
an arbitrary polynomial function of n. Thus our generalization of [Chlamtac et al.
2012] is really for the case when node weights are arbitrary and edge profits are
polynomial in n.
We call an instance of MCℓ-EPS simple if all the edge-profits are the same and

there are at most two distinct node costs (say c1 and c2) such that every edge has
exactly one endpoint of each cost (note that it might be the case that c1 = c2).

Lemma 4.1. If MCℓ-EPS admits an f -approximation algorithm on simple in-
stances, then MCℓ-EPS admits a bicriteria approximation algorithm that returns a
graph of node-cost O(f) times the optimal and edge-profit Ω(ℓ/ log3 n).

Proof. Let 〈G = (V,E), c, p, ℓ〉 be an instance of MCℓ-EPS. Recall that we may
assume that the node costs are polynomial in n because of the reduction described
above. Also, by assumption, the edge profits are bounded by a polynomial in n.

Partition E into O(log n) sets Eh = {e ∈ E : 2h ≤ pe < 2h+1}. Each e ∈ Eh

is given profit 2h. Partition the nodes similarly: Vi = {v ∈ E : 2h ≤ cv < 2h+1}.
according to powers of 2. Let Eijh be the set of edges in Eh with one end in Vi and
the other in Vj . The edge sets Eijh partition E, and there are O(log3 n) such sets.
Each graph Gijh = (Vi ∪ Vj , Eijh) gives a simple instance of MCℓ-EPS, and one of
them contains Ω(ℓ/ log3 n) profit of the optimum. We run the algorithm for simple
instances on each graph Gijh with Ω(ℓ/ log3 n) instead of ℓ, and return the one of
minimum node cost. The returned subgraph has node cost O(f) times the optimal
and Ω(ℓ/ log3 n) edge-profit, as required.

By the same argument as in Lemma 2.2 we have the following.

Lemma 4.2. Suppose that MCℓ-EPS admits a bicriteria approximation algorithm
that returns a graph of node-cost f times the optimal and edge-profit at least (1 −
1/α) · ℓ, where 1 < α < ℓ. Then MCℓ-EPS admits an f · ⌈ln ℓ/ lnα⌉-approximation
algorithm.

From Lemmas 4.1 and 4.2 we have the following.

Corollary 4.3. Suppose that MCℓ-EPS on simple instances admits a bicriteria
approximation algorithm that returns a graph of node-cost f times the optimal and
edge-profit Ω̃(ℓ). Then MCℓ-EPS admits a Õ(f)-approximation algorithm.

In the rest of this section we prove the following statement, which together with
Corollary 4.3 implies Theorem 1.2.

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 15

Lemma 4.4. MCℓ-EPS on simple instances admits a bicriteria approximation
algorithm that returns a graph of node-cost f times the optimal and edge-weight

Ω̃(ℓ), where f = Õ
(

n3−2
√
2+ǫ

)

for arbitrarily small constant ǫ > 0.

We need some definitions and results from [Chlamtac et al. 2012].

Definition 4.1 [Chlamtac et al. 2012]. A bipartite graph G = (V1 ∪ V2, E)
is called (n1, d1, n2, d2)-nearly regular if for every i = 1, 2 we have |Vi| = ni and
the following condition on the degrees holds:

di ≥ max
v∈Vi

d(v) ≥ min
v∈Vi

d(v) = Ω(di/ log n).

Lemma 4.5 [Chlamtac et al. 2012]. Any graph H = (V,E) contains an
(n1, d1, n2, d2)-nearly regular subgraph with Ω(|E|/ log2 n) edges, for some n1, d1, n2, d2.

A key step in [Chlamtac et al. 2012] was the following lemma:

Lemma 4.6 [Chlamtac et al. 2012]. For any ǫ > 0 there exists a randomized
polynomial time algorithm that given a bipartite graph G on n nodes that contains
an (n1, d1, n2, d2)-nearly regular subgraph, returns a subgraph G′ = (V ′, E′) of G
such that |V ′| ≤ f · (n1 + n2) (with probability 1) and E[|E′|] = Ω̃(n1d1), where

f = n3−2
√
2+ǫ.

We prove the following refinement of Lemma 4.6, which gives a more “balanced”
guarantee.

Lemma 4.7. For any ǫ > 0 there exists a randomized polynomial time algorithm
that given a bipartite graph G on n nodes that contains an (n1, d1, n2, d2)-nearly
regular subgraph, returns a subgraph G′ = (V ′, E′) of G such that |V ′ ∩ V1| ≤ fn1

and |V ′ ∩ V2| ≤ fn2 (with high probability) and E[|E′|] = Ω̃(n1d1), where f =

n3−2
√
2+ǫ.

Proof. We will assume that n1 ≥ n2; otherwise we just switch indices. Note
that if n1 ≤ 2n2, then the algorithm from Lemma 4.6 produces a subgraph that
satisfies the new stronger requirement on the chosen nodes. So suppose that n1 >
2n2. For simplicity, let us also assume that p = n1/n2 is an integer.
Let Ĝ = (V1 ∪ V̂2, Ê), where V̂2 consists of p copies of V2 and Ê is obtained

by putting between V1 and each copy of V2 a copy of E. For a subgraph G′ =
(V ′

1 ∪ V ′
2 , E

′) of G let Ĝ′ = (V ′
1 ∪ V̂ ′

2 , Ê
′) denote the corresponding subgraph of

Ĝ, i.e. where between each copy of V ′
1 and V ′

2 we include a copy of E′. Note that
|V̂ ′

2 | = p|V ′
2 |, that dĜ′(v) = pdG′(v) if v ∈ V ′

1 , and that if v̂ ∈ V̂2 is a copy of v ∈ V2

then dĜ′(v̂) = dG′(v). This implies that if G′ is (n1, d1, n2, d2)-nearly regular then

Ĝ′ is (n1, d2, n1, d2)-nearly regular.
We run the algorithm from Lemma 4.6 on the instance 〈Ĝ, (n1, d2, n1, d2)〉 in-

dependently Õ(n2) times, and among the subgraphs computed take one Ĝ′ =
(V ′

1 ∪ V̂ ′
2 , Ê

′) with maximum number of edges. For each v ∈ V2, let Tv denote
the number of copies of v in V̂ ′

2 . We build V ′
2 by sampling each v ∈ V̂ ′

2 indepen-
dently with probability Tv/p. Let E′ be the set of edges between V ′

1 and V ′
2 . We

will return the graph G′ = (V ′
1 ∪ V ′

2 , E
′).

We now prove the bounds on the sizes of V ′
1 , V ′

2 , and E′. Since we run the
algorithm as in Lemma 4.6, |V ′

1 | ≤ 2fn1 and
∑

v∈V2
Tv ≤ |V̂ ′

2 | ≤ 2fn1. By linearity

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 ·
of expectations, we get that the expected size of V ′

2 is at most n2

n1

∑

v∈V2
Tv ≤ 2fn2.

Since each node in V2 was chosen independently, a simple Chernoff bound implies
that |V ′

2 | = Õ(fn2) with high probability.
To bound |E′|, note that a Chernoff bound implies that with high probability

|Ê′| = Ω̃(n1d2) (since we ran Lemma 4.6 a polynomial number of times and took
the best, and each run was independent). An edge uv ∈ E with u ∈ V ′

1 is included
in our subgraph with probability Tv/p = Tvn2/n1. Thus

E[|E′|] =
∑

u∈V ′

1

∑

v∈V ′

1
:uv∈E

Tv/p =
n2

n1

∑

u∈V ′

1

∑

v∈V ′

2
:uv∈E

Tv

=
n2

n1
· Ω̃(n1d2) = Ω̃(n2d2) = Ω̃(n1d1),

proving the lemma.

Now we finish the proof of Lemma 4.4. Let 〈G = (V1 ∪ V2, E),m, (c1, c2)〉 be
a simple MCℓ-EPS instance. Let G∗ = (V ∗

0 ∪ V ∗
1 , E

∗) be an optimal subgraph.
Applying Lemma 4.5 to G∗ implies that there exist values of n1, d1, n2, d2 such
that there is a (n1, d1, n2, d2)-nearly regular subgraph of G of cost at most c(V ∗) =
c1|V ∗

1 |+ c2|V ∗
2 | that contains at least Ω̃(ℓ) = Ω̃|E∗| edges (note that up to polylogs

n1d1 = n2d2 = ℓ = |E∗|). So when we run the algorithm from Lemma 4.7, we
get a graph G′ = (V ′

1 ∪ V ′
2 , E

′) with the properties that with high probability
|V ′

1 | = Õ(fn1) and |V ′
2 | = Õ(fn2) and in expectation |E′| = Ω̃(n1d1) = Ω̃(ℓ).

The node-cost of this subgraph is Õ(fn1c1 + fn2c2) = Õ(f) · c(V ∗). This proves
Lemma 4.4, and thus also the proof of Theorem 1.2 is complete.

5. DISCUSSION AND FUTURE WORK

A central question is: Does the weighted case admits a better than Ω(
√
n) ratio? It

seems that our techniques are not good enough for proving such a ratio; the hard
case is when q >>

√
n because in the weighted case we have no solution of cost n.

It may be the case that adding new techniques, on top of our techniques, will allow
breaking the O(

√
n) ratio for both Steiner k-Forest and Dial-a-Ride with general edge

weights. However, we cannot be sure of that, as there are combinatorial problems
in which the approximation ratios of the weighted and the unweighted cases are
drastically different For example for the Hard Capacity Vertex Cover problem, the
case in which the nodes have weights, admits only a logarithmic ratio [Chuzhoy
and Naor 2006], while for weights 1, the problem admits ratio 2, which is the long
lasting best ratio known for the simpler Vertex Cover problem.

REFERENCES

Agrawal, A., Klein, P., and Ravi, R. 1995. When trees collide: an approximation algorithm

for the generalized Steiner problem on networks. SIAM J. Computing 24, 3, 440–456.

Althöfer, I., Das, G., Dobkin, D. P., Joseph, D., and Soares, J. 1993. On sparse spanners

of weighted graphs. Discrete & Computational Geometry 9, 81–100.

Awerbuch, B. 1985. Complexity of network synchronization. Journal of the ACM 32, 4, 804–823.

Berman, P. and Karpinski, M. 2006. 8/7-approximation algorithm for (1, 2)-tsp. In Proceed-

ings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2006,

Miami, Florida, USA, January 22-26, 2006. 641–648.

Bhaskara, A., Charikar, M., Chlamtac, E., Feige, U., and Vijayaraghavan, A. 2010. Detect-

ing high log-densities: an O(n1/4) approximation for densest k-subgraph. In STOC. 201–210.

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 17

Byrka, J., Grandoni, F., Rothvoß, T., and Sanità, L. 2013. Steiner tree approximation via
iterative randomized rounding. J. ACM 60, 1, 6.

Charikar, M. and Raghavachari, B. 1998. The finite capacity dial-a-ride problem. In FOCS.
458–467.

Chlamtac, E., Dinitz, M., and Krauthgamer, R. 2012. Everywhere-sparse spanners via dense
subgraphs. In FOCS. 758–767.

Chuzhoy, J. and Naor, J. 2006. Covering problems with hard capacities. SIAM J. Comput-

ing 36, 2, 498–515.

Feige, U., Kortsarz, G., and Peleg, D. 2001. The dense k-subgraph problem. Algorith-

mica 29, 3, 410–421.

Feldman, M., Kortsarz, G., and Nutov, Z. 2012. Improved approximation algorithms for
directed steiner forest. J. Comput. Syst. Sci. 78, 1, 279–292.

Garg, N. 2005. Saving an epsilon: a 2-approximation for the k-MST problem in graphs. In
STOC. 396–402.

Gupta, A., Hajiaghayi, M. T., Nagarajan, V., and Ravi, R. 2010. Dial a ride from k-forest.
ACM Transactions on Algorithms 6, 2.

Hajiaghayi, M. T. and Jain, K. 2006. The prize-collecting generalized Steiner tree problem via
a new approach of primal-dual schema. In SODA. 631–640.

Kortsarz, G. and Peleg, D. 1993. On choosing a dense subgraph. In FOCS. 692–701.

ACM Journal Name, Vol. V, No. N, Month 20YY.

