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Abstract

Given an undirected graph with edge costs, the power of a node is the
maximum cost of an edge incident to it, and the power of a graph is the sum
of the powers of its nodes. Motivated by applications in wireless networks, we
consider two network design problems under the power minimization criteria.
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the Min-Power Edge-Cover problem, H should contain an edge incident
to every terminal. Using the Iterative Randomized Rounding (IRR) method,
we give an algorithm with expected approximation ratio 1.41; the ratio is
reduced to 73/60 < 1.217 when T is an independent set in G. In the case of
unit costs we also achieve ratio 73/60, and in addition give a simple efficient
combinatorial algorithm with ratio 5/4. For all these NP-hard problems the
previous best known ratio was 3/2. In the related Min-Power Terminal
Backup problem, H should contain a path from every t ∈ T to some node
in T \ {t}. We obtain ratio 3/2 for this NP-hard problem, improving the
trivial ratio of 2.
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1. Introduction

Wireless networks are studied extensively due to their wide applications.
The power consumption of a station determines its transmission range, and
thus also the stations it can send messages to; the power typically increases
at least quadratically in the transmission range. Assigning power levels to
the stations (nodes) determines the resulting communication network. Con-
versely, given a communication network, the power required at v only de-
pends on the farthest node that is reached directly by v. This is in con-
trast with wired networks, in which every pair of stations that need to
communicate directly incurs a cost. Thus the minimal power p(v) of a
node v equals the largest cost of an edge incident to v in the communi-
cation network. The first work under the minimum power model is from
1989 [8]. For a sample of other works under this model see for example
[1, 5, 18, 24, 28, 9, 6, 7, 9, 10, 17, 20, 21, 23, 26, 27, 30, 31, 32, 25, 19].

Definition 1.1. Let H = (V, F ) be a graph with edge-costs {c(e) : e ∈ F}.
For v ∈ V , the power p(v) = pH(v) = pF (v) of v in H (w.r.t. c) is the
maximum cost of an edge in F incident to v (or zero, if no such edge exists),
i.e., p(v) = pF (v) = max

vu∈F
c(vu). The power of H is the sum of the powers of

its nodes, namely, p(H) = p(F ) =
∑

v∈V pF (v).

All the graphs are assumed to be undirected, unless stated otherwise. In
our problems, the input is a graph G = (V,E) with edge costs {c(e) : e ∈ E}
and a subset T ⊆ V of terminals; the goal is to find a minimum power
subgraph H = (V, F ) of G that satisfies some prescribed properties. We
refer the reader to a recent survey [29] on such problems. We consider the
min-power variant of two classic problems, Edge-Cover and Terminal-
Backup, defined below.

Definition 1.2. For a graph H = (V, F ) and a set T ⊆ V of terminals, we
say that F (or H) is:

• a T -cover if every t ∈ T has some edge in F incident to it (equivalently,
no connected component of H is a single terminal);

• a T -backup if every t ∈ T has a path to some other node in T (equiv-
alently, no connected component of H contains a single terminal).
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Min-Power Edge-Cover
Here F should be a T -cover, namely, every t ∈ T has some edge in F
incident to it.

Min-Power Terminal Backup
Here F should be a T -backup, namely, every t ∈ T has a path to some
other node in T .

For illustration of an application of the Min-Power Edge-Cover prob-
lem, suppose we have two sets A,B of stations. The stations in A can com-
municate via an existing wired infrastructure, while each station in B should
have a wireless communication with some station in A. We want to as-
sign energy levels to the stations while minimizing the total energy. This is
modeled as a Min-Power Edge-Cover problem in a bipartite graph with
terminal set T = B.

The min-cost versions (where one seeks to minimize c(F ) =
∑

e∈F c(e)) of
these problems can be solved in polynomial time see [11] and [2], respectively.
Min-Cost Edge Cover is among the most basic problems in combinatorial
optimization and theoretical computer science, see for example the book [33].
The Min-Cost Terminal Backup problem was also widely studied, c.f.
[2, 13, 3]. In the case T = V the problems coincide; the resulting min-power
problem is still NP-hard by a standard reduction from Set Cover; note
that this implies that the min-power versions of both problems are NP-hard.
Moreover, the Min-Power Edge-Cover problem is APX-hard even if T
is an independent set in the input graph G and all costs are equal to 1 [18].

For each of these problems, any inclusion-minimal solution is a forest,
since removing any edge from any cycle keeps the solution feasible and does
not increase the objective function. It is known that if F is a forest then
c(F ) ≤ p(F ) ≤ 2c(F ). This implies that both problems admit ratio 2, by
simply computing an optimal min-cost solution.

For Min-Power Edge-Cover the trivial ratio 2 was improved to 1.5 in
[22]. No better ratio was known even for the case when T is an independent
set in G and all costs are equal to 1. We improve this as follows.

Theorem 1.3. Min-Power Edge-Cover admits a polynomial time algo-
rithm with expected approximation ratio 1.41. If T is an independent set in
G then the ratio can be reduced to 73/60 < 1.217.

The algorithm in Theorem 1.3 uses the Iterative Randomized Rounding
(IRR) method. We also use a method of analyzing the best of two algorithm
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using a convex combination of their results; we have seen this technique in
[15].

In the case of unit costs we show a simple approximation ratio preserving
reduction to the case when T is an independent set, thus obtaining for this
case ratio 73/60 < 1.217. In addition, we use a different method to obtain
an efficient combinatorial approximation algorithm with good ratio.

Theorem 1.4. Min-Power Edge-Cover with unit costs admits a poly-
nomial time algorithm with expected approximation ratio 73/60 < 1.217. The
problem also admits a 5/4-approximation algorithm with running time O(n3).

We also improve the trivial ratio 2 for Min-Power Terminal Backup.

Theorem 1.5. Min-Power Terminal Backup admits a polynomial time
algorithm with approximation ratio 1.5.

The proof of the latter theorem uses the idea of the 1.5-approximation
algorithm in [22] for Min-Power Edge-Cover, but the details are more
involved.

We now briefly survey some work where the IRR method is used. This
method is due to Byrka, Grandoni, Rothvoß and Sanita [4], that gave a
ln 4 + ε < 1.39 approximation for the Min-Cost Steiner Tree prob-
lem. This is currently the best ratio known for the problem. Goemans,
Olver, Rothvoß and Zenklusen [14] gave faster and simpler ln 4 + ε approx-
imation for the same problem, and also obtained a better ratio 73/60 for
quasi-bipartite graphs. Grandoni [16] used the IRR method to give the cur-
rently best known ratio 1.91 for the Min-Power Steiner Tree problem.
Our paper has similarities with [16] including a Harmonic potential function,
and two main differences: (i) it is technically easier (for us) to cover terminals
than to cover all cuts separating terminals as in [16]; (ii) we combine iter-
ative randomized rounding with another algorithm, since by itself, iterative
randomized rounding fails to improve the ratio 3/2 in some cases.

This paper is organized as follows. Theorem 1.3 is proved in Sections
2 and 3; in Section 2 we formulate the hypergraphic LP-relaxation for the
problem, describe the algorithm, and prove the approximation ratio assuming
that a specific lemma (Lemma 2.6) holds; this lemma is proved in Section 3.
Theorems 1.4 and 1.5 are proved in Sections 4, and 5, respectively. Finally, in
Section 6 we describe a more efficient version of our algorithm from Section 2.
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2. Algorithm for Min-Power Edge-Cover (Theorem 1.3)

A star is a rooted tree R such that only its root r, called the center, may
have degree ≥ 2. Note that any inclusion-minimal T -cover F is a collection
of disjoint stars, as if F has a path of length three, then the middle edge e
of this path can be removed and F \ {e} remains an T -cover.

For S ⊆ T let πS be the minimum power of a star RS that contains S
(πS =∞ if no such star exists). Note that given S, both RS and πS can be
computed in polynomial time by “guessing” the center of RS. For an integer
k ≥ 1 let Tk = {S ⊆ T : |S| ≤ k}. We say that a subfamily T ⊆ Tk is a
k-restricted T -cover if the union of the sets in T is T ; the power of T is
defined to be p(T ) =

∑
S∈T πS. In what follows we denote by t = |T | the

number of terminals and by n = |V (G)| the number of nodes in G.
The “hypergraphic” linear program LPk(T ) below has a variable xS for

every S ∈ Tk, and it is a relaxation for the problem of finding a k-restricted
T -cover of minimum power.

min
∑
S∈Tk

πSxS

s.t.
∑

S∈Tk,S3v

xS ≥ 1 ∀v ∈ T

xS ≥ 0 ∀S ∈ Tk

It is easy to see that LPk(T ) can be solved in polynomial time for any
constant k. Let us call a feasible solution x to LPk(T ) irreducible if no
coordinate of x can be lowered while keeping feasibility.

Lemma 2.1. Let x be an irreducible feasible solution to LPk(T ). Then∑
S∈Tk xS ≤ n, and Tk with probabilities Pr[S] = xS/n for S 6= ∅ and Pr[∅] =

1 −
∑

S∈Tk xS/n is a sample space, in which Pr[{S ∈ Tk : S 3 v}] ≥ 1/n
holds for any v ∈ T .

Proof. Since x is irreducible, for any S ∈ Tk with xS > 0 there exists v ∈ S
such that the inequality of v in LPk(T ) is tight. For every S ∈ Tk with
xS > 0 choose one such node vS. Let W = {vS : xS > 0, S ∈ Tk} be the set
of chosen nodes, and note that W ⊆ T . Then∑

S∈Tk

xS ≤
∑
v∈W

∑
S∈Tk,S3v

xS ≤
∑
v∈W

1 ≤ |W | ≤ n .
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This implies that Pr[∅] = 1 −
∑

S∈Tk xS/n ≥ 0 and thus we have a sample
space. Furthermore, Pr[{S ∈ Tk : S 3 v}] =

∑
S∈Tk,S3v xS/n ≥ 1/n, by the

constraint of v in LPk(T ).

The following lemma provides a (tight) bound on the ratio between the
power of an optimal T -cover and a k-restricted T -cover.

Lemma 2.2 ([22]). For any T -cover F there exists a k-restricted T -cover T
of power p(T ) ≤ (1 + 1/k)p(F ).

We run two algorithms and take the best of the two. The first algorithm
is the 3/2-approximation algorithm of Kortsarz & Nutov [22]; we call it the
KN-Algorithm.

Algorithm 1: KN-Algorithm(G = (V,E), c, T )

1 for all u, v ∈ T (possibly u = v) compute a min-power {u, v}-cover Juv
2 let (T,E ′) be a complete graph with all loops and edge costs

cuv = p(Juv) for all u, v ∈ T
3 compute a minimum cost T -cover J ′ ⊆ E ′

4 return J =
⋃

uv∈J ′
Juv

The second algorithm is an Iterative Randomized Rounding algorithm,
abbreviated by IRR-Algorithm. For previous applications of this type of
algorithms see [4, 14] for the Min-Cost Steiner Tree problem, and [16]
for the Min-Power Steiner Tree problem.

Algorithm 2: IRR-Algorithm(G = (V,E), c, T, k)

1 initialize J ← ∅
2 while T 6= ∅ do
3 compute an irreducible optimal solution x for LPk(T ) and

sample one set S ∈ Tk with probabilities as in Lemma 2.1
4 T ← T \ S, J ← J ∪RS

5 return J

Note that in every iteration, the set of terminals may change. In such
a case, the IRR-Algorithm solves a new LP with respect to the new set of
terminals. To ensure polynomial time, after 2n lnn iterations the while-loop
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is terminated, and we add to J a solution for the residual problem computed
by the KN-Algorithm. The following lemma shows that the expected loss in
the approximation ratio incurred by such modification is negligible.

Lemma 2.3. In every iteration, every v ∈ T is hit with probability at least
1/n. The probability that T 6= ∅ after 2n lnn iterations is at most 1/n.
The expected loss in the approximation ratio incurred by stopping the IRR
algorithm after 2n lnn iterations is at most 3

2n
.

Proof. The first statement follows from Lemma 2.1. The probability that
after i = 2n lnn iterations a terminal is not hit is at most (1− 1/n)i ≤ 1/n2.
By the union bound the probability that there exists a non hit terminal is
at most 1/n. Finally, in the case that there exists a non hit terminal, the
algorithm has an approximation ratio of 3/2. Thus the loss in the ratio is at
most 3

2n
.

We now give properties of these algorithms that will enable us to prove
the approximation ratio. We say that a star R is a proper star if R has at
least one terminal and, if R has at least two edges, then all the leaves of R
are terminals (a star with one edge may have one terminal, that may be the
leaf or the center). Fix some proper star R with center r. Note that if R has
a single edge then r can be the unique terminal in R. Denote the leaves of
R by v1, v2, . . . , vq arranged by non-increasing edge costs c1 ≥ c2 ≥ . . . ≥ cq
where cj = c(rvj) and assume that c1 > 0. Note that p(R) = c1 + c(R) =
c1 +

∑q
j=1 cj. Let ψ(R) be defined by:

ψ(R) =


c3 + c5 + · · ·+ cq q ≥ 3 odd
c3 + c5 + . . .+ cq−1 q ≥ 4 even, r /∈ T
c3 + c5 + . . .+ cq−1 + cq q ≥ 4 even, r ∈ T

Here ψ(R) = 0 if q ∈ {1, 2}, except that ψ(R) = c2 if q = 2 and r ∈ T .
The following lemma is proved in [22], but we provide a proof-sketch for

completeness of exposition.

Lemma 2.4 ([22]). Let R be a proper star as above. Then there exists a
2-restricted cover T of the terminals in R such that p(T ) ≤ p(R) + ψ(R) ≤
3
2
p(R).
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Proof. It is not hard to verify that the following T is as required:

T = {{v1, v2}, {v3, v4}, . . . , {vq−2, vq−1}, {vq}} q odd, r /∈ T
T = {{v1, v2}, {v3, v4}, . . . , {vq−2, vq−1}, {vq, r}} q odd, r ∈ T
T = {{v1, v2}, {v3, v4}, . . . , {vq−3, vq−2}, {vq−1, vq}} q even, r /∈ T
T = {{v1, v2}, {v3, v4}, . . . , {vq−3, vq−2}, {vq−1}, {vq, r}} q even, r ∈ T

It is also not hard to see that ψ(R) ≤ 1
2
p(R).

Assume for a moment that proper star R as above contains all terminals
and is an optimal solution to our problem. Then p(R) + ψ(R) bounds the
solution value produced by the KN-Algorithm. We will show later that the
expected solution value produced by the IRR-Algorithm is bounded by p(R)+
φ(R) where

φ(R) =



q∑
j=1

cj/j q ≥ 1, V (R) ⊆ T

q∑
j=2

cj/j q ≥ 1, r /∈ T

0 otherwise (q = 1, V (R) ∩ T = {r})

The function φ(R) is built so that the proof of Lemma 2.6 to follow holds;
we note that Harmonic functions are also used in [16] and [14].

If we know that our optimal solution is just one star R, then by taking
the best outcome of the two algorithms, the (expected) value of the produced
solution will be p(R) + min{ψ(R), φ(R)}. In the case of many stars, we take
a convex combination of the two algorithms: KN-Algorithm with probability
θ = 2/3 and IRR-Algorithm with probability 1−θ = 1/3. Since any inclusion-
minimal solution is a collection of node-disjoint proper stars, we conclude that
the (expected) approximation ratio of the convex combination algorithm is
bounded by the maximum possible value of

θ(p(R) + ψ(R)) + (1− θ)(p(R) + φ(R))

p(R)
= 1 +

1

3
· 2ψ(R) + φ(R)

p(R)

over all the stars R (this assumes that, as shown in Lemma 2.7 below, the
expected power of the output of the IRR-Algorithm is p(R) + φ(R)).
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For a proper star R as above let us denote (with some abuse of notation)
p(q) = p(R), ψ(q) = ψ(R), and φ(q) = φ(R). Then the expected approxi-
mation ratio of the convex combination algorithm is bounded by max

q≥1
ρ(q),

where

ρ(q) = 1 +
1

3
max

c1≥···≥cq≥0,c1>0

2ψ(q) + φ(q)

p(q)
.

We will show later that:

Lemma 2.5. ρ(q) ≤ 1 73
180

< 1.4056.

Let Φ(R) = p(R) + φ(R) and Ψ(R) = p(R) + ψ(R). It is convenient to
also have Φ(R) = 0 if the star R has only a center and no leaves (this is not a
proper star, and has p(R) = 0). The next lemma, to be proved in Section 3,
is the heart of the proof of Theorem 1.3.

Lemma 2.6. Consider an iteration of the IRR-Algorithm. Let R be a proper
star at the beginning of the iteration and let R′ be a star obtained from R
by removing the leaves of R that are terminals covered at the iteration, with
one exception: if only the center of R is an uncovered terminal among V (R)
after the iteration, we keep in R′ the leaf closest to the center (this means
that, unless all the terminals of R are covered, R′ remains a proper star).
Then Φ(R)− E[Φ(R′)] ≥ p(R)/n.

For a collectionR of stars let Φ(R) :=
∑

R∈RΦ(R) and p(R) :=
∑

R∈R p(R).

Lemma 2.7. Let R = {RS : S ∈ T } be a set of stars of a k-restricted
(optimal) T -cover T and J a solution produced by the IRR-Algorithm. Then
E[p(J)] ≤ Φ(R).

Proof. Let Ti−1 be the set of terminals uncovered at the beginning of iteration
i and τ ∗i the expected optimal value of LPk(Ti−1). Let R0 = R and for i ≥ 1
obtain Ri from Ri−1 by taking, for each proper star in R ∈ Ri−1, the star
R′ as in Lemma 2.6. Now, note the following:

• E[p(J)] ≤
∑

i≥1 τ
∗
i /n, since after solving LPk(Ti−1) at iteration i ≥ 1,

each star RS is selected with probability xS/n.

• τ ∗i ≤ E[p(Ri−1)] at iteration i ≥ 1, since the stars in Ri−1 cover Ti−1

while τ ∗i is the expected optimal value of LPk(Ti−1).

• E[p(Ri−1)]/n ≤ E[Φ(Ri−1)−Φ(Ri)] at iteration i ≥ 1, by Lemma 2.6.
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Combining we get that the expected power of J is bounded by:

E[p(J)] ≤
∑
i≥1

τ ∗i /n ≤
∑
i≥1

E[p(Ri−1)]/n ≤
∑
i≥1

E[Φ(Ri−1)− Φ(Ri)] = Φ(R)

The last equality holds since the sum is telescopic and since Φ(R0) = Φ(R)
is not a random variable.

Let JKN and JIRR be the outputs of the KN-Algorithm and the IRR-
Algorithm, respectively. Let R and Rk be optimal and k-restricted optimal
set of stars that cover T , respectively. Then p(Rk) ≤ (1 + 1/k)p(R), by
lemma 2.2. As was mentioned, in [22] it is proved that p(JKN) ≤ Ψ(R).
By Lemma 2.7, p(JIRR) ≤ Φ(R). Combining we get that the power of
the solution produced by the convex combination of the two algorithms is
bounded by

θp(JKN)+(1−θ)p(JIRR) ≤ θΨ(R)+(1−θ)Φ(Rk) ≤
(

1 +
1

k

)
(θΨ(R)+(1−θ)Φ(R))

From Lemma 2.5 we conclude that θΨ(R) + (1 − θ)Φ(R) ≤ 1.4056p(R) for
θ = 2/3. Consequently, we get that for θ = 2/3 and constant k large enough

θp(JKN) + (1− θ)p(JIRR) ≤ 1.41p(R) = 1.41 · opt .

To complete the proof of the 1.41 approximation ratio it only remains to
prove Lemmas 2.5 and 2.6; Lemma 2.5 is proved below, while Lemma 2.6 is
proved in the next section.

For the proof of Lemma 2.5 we bound the function h(q) = 3(ρ(q)− 1), so
ρ(q) = 1 + 1

3
h(q). For simplicity of notation let us write

h(q) =
2ψ(q) + φ(q)

p(q)
meaning h(q) = max

c1≥c2≥···≥cq ,c1>0

2ψ(q) + φ(q)

p(q)
.

Note that Lemma 2.5 follows immediately from the following lemma:

Lemma 2.8. h(q) ≤ 73
60

.

Proof. Let us consider the cases q = 1, 2, 3, 4, 5.

1. ψ(1) = 0, φ(1) ≤ c1 and p(1) = 2c1 > 0, hence h(1) = 1/2.

2. ψ(2) = c2, φ(2) = c1 + c2/2, and p(2) = 2c1 + c2, hence h(2) ≤ c1+ 5
2
c2

2c1+c2
≤

7
6
.
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3. We have h(3) = 2c3+c1+c2/2+c3/3
2c1+c2+c3

≤ 23
24

.

4. We have h(4) = 2c3+2c4+c1+c2/2+c3/3+c4/4
2c1+c2+c3+c4

, and this can be verified to be

at most 73
60

by expanding and using c1 ≥ c2 ≥ c3 ≥ c4 (we get equality
when c1 = c2 = c3 = c4).

5. We have h(5) = 2c3+2c5+c1+c2/2+c3/3+c4/4+c5/5
2c1+c2+c3+c4+c5

, and this can be verified

to be at most 73
60

by expanding and using c1 ≥ c2 ≥ c3 ≥ c4 ≥ c5.

For q > 5, we use induction on q. For even q > 4, we must prove:
60(2(c3 + c5 + · · · cq−1 + cq) +

∑q
j=1 cj/j) ≤ 73(c1 +

∑q
j=1 cj), which follows

from summing up the inductive hypothesis: 60(2(c3 + c5 + · · · cq−3 + cq−2) +∑q−2
j=1 cj/j) ≤ 73(c1 +

∑q−2
j=1 cj) and the inequalities 60cq ≤ 60cq−2, 60cq−1 ≤

60cq−2, 60cq(1 + 1/q) ≤ 73cq, and 60cq−1(1 + 1/(q − 1)) ≤ 73cq−1.
For odd q > 5, we must prove: 60(2(c3 + c5 + · · · + cq) +

∑q
j=1 cj/j) ≤

73(c1 +
∑q

j=1 cj), which follows from summing up the inductive hypothesis:

60(2(c3 +c5 + · · ·+cq−2)+
∑q−2

j=1 cj/j) ≤ 73(c1 +
∑q−2

j=1 cj) and (120+60/q)cq +
cq−160/(q − 1) ≤ 73(cq−1 + cq).

In the case when T is an independent set in G, no star has center in T .
In this case, we simply run the IRR-Algorithm. The approximation ratio
stated for this case in Theorem 1.3 follows from the following lemma.

Lemma 2.9. If T is an independent set in G then Φ(q)/p(q) ≤ 73
60

.

Proof. In this case, we have Φ(q) =
∑q

j=1 cj(1 + 1/j). One obtains that
60Φ(q) ≤ 73p(q) for q = 1, 2, 3, 4 by inspection, using c1 ≥ c2 ≥ c3 ≥ c4. The
bound is tight for q = 4 and c1 = c2 = c3 = c4. For q ≥ 5, the bound follows
from the fact that 60(1 + 1/j) ≤ 73 for any j ≥ 5.

3. Proof of Lemma 2.6

Let us write explicitly the function Φ:

Φ(R) = p(R)+φ(R) =



c1 +

q∑
j=1

cj(1 + 1/j) q ≥ 1, V (R) ⊆ T

q∑
j=1

cj(1 + 1/j) q ≥ 1, r /∈ T

2c1 otherwise (q = 1, V (R) ∩ T = {r})

We split the proof into two cases: r /∈ T and r ∈ T .
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3.1. The case r /∈ T
Recall that a set-function f on a groundset U is submodular if for any

A ⊆ U and aj, ak ∈ U \ A we have:

∆f (A, {aj, ak}) := f(A∪ {aj}) + f(A∪ {ak})− f(A)− f(A∪ {aj, ak}) ≥ 0 .

We will need the following lemma. We believe this lemma is known, but we
failed to find its proof in the literature.

Lemma 3.1. Let U be a set of items with non-negative weights {w(u) : u ∈
U} and let z1 ≥ z2 ≥ · · · ≥ z|U | be reals. Let f(∅) := 0 and for ∅ 6= A ⊆ U

define f(A) :=
∑|A|

i=1 ziw(ai), where a1, . . . , a|A| is an ordering of A such that
w(a1) ≥ · · · ≥ w

(
a|A|
)
. Then f is submodular and non-decreasing.

Proof. Let A ⊆ U and aj, ak ∈ U \ A. Order the elements in A ∪ {aj, ak} in
non-increasing order a1, . . . , a|A|+2 by the weights w1 ≥ · · · ≥ w|A|+2, and sup-
pose w.l.o.g. that this order is a1, . . . , aj−1, aj, aj+1, . . . , ak−1, ak, ak+1, . . . , a|A|+2.
Note that the terms in the sums defining f(A ∪ {ak}) and f(A) coincide up
to the kth term, and this so also for f(A ∪ {aj}) and f(A ∪ {aj, ak}). Then
we have:

f(A ∪ {ak})− f(A) =

|A|+2∑
i=k

wizi−1 −
|A|+2∑
i=k+1

wizi−2 =

|A|+2∑
i=k

wizi−1 −
|A|+1∑
i=k

wi+1zi−1

f(A ∪ {aj})− f(A ∪ {aj, ak}) =

|A|+2∑
i=k+1

wizi−1 −
|A|+2∑
i=k

wizi =

|A|+1∑
i=k

wi+1zi −
|A|+2∑
i=k

wizi

Consequently,

∆f (A, {aj, ak}) =

|A|+2∑
i=k

wizi−1 −
|A|+1∑
i=k

wi+1zi−1 +

|A|+1∑
i=k

wi+1zi −
|A|+2∑
i=k

wizi

=

|A|+2∑
i=k

wi(zi−1 − zi)−
|A|+1∑
i=k

wi+1(zi−1 − zi)

≥
|A|+1∑
i=k

(wi − wi+1)(zi−1 − zi) ≥ 0

This shows that f is submodular. It is easy to see that f is non-decreasing.
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We want to show that Φ(R) − E[Φ(R′)] ≥ p(R)/n. Let R̄ be the set of
leaves of R. The case R̄ = ∅ is obvious hence we assume that R̄ 6= ∅.

In this case, by definition, Φ(R) =
∑q

j=1(1 + 1/j)cj. Therefore if we set
in Lemma 3.1 wi = ci for every i and and zi = 1 + 1/i for 1 ≤ i ≤ q, then by
definition f(R̄) = Φ(R).

Definition 3.2. Let H̃ be the random variable of the set of terminals hit in
iteration i. For H ⊆ T we denote the probability that H̃ ∩ R̄ = H by Pr[H],
namely, that H is exactly the set of hit terminals among the nodes of R.

Denote ∆(H) = Φ(R) − Φ(R′); in this case (r 6∈ T ), we have ∆(H) =
f(R̄) − f(R̄ \ H). Consider some arbitrary set H ⊆ R̄ of possible termi-
nals that could be hit. The following lemma is a standard consequence of
submodularity:

Lemma 3.3. ∆(H) ≥
∑

v∈H ∆({v}).

Proof. We have

∆(H) = f(R̄)− f(R̄ \H) = (As the sum is telescopic)

=

p∑
`=1

f
(
R̄ \ {v1, . . . v`−1}

)
− f(R̄ \ {v1, . . . v`}) ≥ (As f is submodular)

≥
p∑

`=1

f(R̄)− f(R̄ \ {v`}) =

p∑
`=1

∆({v`})

Therefore

E[∆(H)] =
∑
H⊆R̄

Pr[H]∆(H) ≥ (As ∆(H) ≥
∑
`

∆(v`))

≥
∑
H⊆R̄

(
Pr[H]

∑
v∈H

∆({v})

)
= (By changing summation order)

=
∑
v∈R̄

∆({v})
∑

H⊆R̄ | v∈H

Pr[H]


=

∑
v∈R̄

∆(v) Pr[v is hit] ≥
∑
v∈R̄

∆(v)
1

n

13



To justify the last equality, note that
∑

H⊆R̄ | v∈H Pr[H] = Pr[v is hit] because
we sum the probabilities of all sets H that contain v. The last inequality
follows from Lemma 2.1, which states that the probability that v is hit is at
least 1/n.

What remains to be proved is that∑
v∈R̄

∆(v) ≥ p(R) (1)

We need to measure the change in the potential ∆(v`) (recall that v` is
the `th child of the star R). Also recall that in the potential function Φ(R),
c` is multiplied by (1+1/`). The addition of v1 (and its most expensive edge)
shifts all indexes by 1. This means that v`−1 becomes v`. In the new star
with v1 the coefficient of the edge number ` is 1+1/` and in the star without
this edges it was 1/(` − 1). Thus the difference between the coefficients is
−(1/(`− 1)− 1/`).

Suppose that we add an edge rvp, p ≥ 2. Then the coefficients are shifted
only for edges that are p + 1 smallest or later. This means that the sum
will start with ` = p+ 1. Indeed adding edge number p does not change the
location of the p− 1 first edges. Thus the changes are as follows:

∆({v1}) ≥ 2c1 −
q∑

`=2

c`

(
1

`− 1
− 1

`

)

∆({v2}) = c2

(
1 +

1

2

)
−

q∑
`=3

c`

(
1

`− 1
− 1

`

)
. . .

∆({vk}) = ck

(
1 +

1

k

)
−

q∑
`=k+1

c`

(
1

`− 1
− 1

`

)
. . .

∆({vq}) = cq

(
1 +

1

q

)
Note that the coefficient of edge k is counted k− 1 times and thus we get

by summing up these equations that:

q∑
k=1

∆(vk) ≥ 2c1+

q∑
k=2

ck

(
1 +

1

k
− (k − 1)

(
1

k − 1
− 1

k

))
= 2c1+

q∑
k=2

ck = p(R),

ending the proof for the case r 6∈ T .
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3.2. The case r ∈ T
Note that the equality Φ(R) − Φ(R′) = f(R̄) − f(R̄′) no longer holds in

all the cases, because Φ(R) = f(R̄) + c1, but this may not hold for Φ(R′).
Precisely, the bound ∆(H) is by definition:

∆(H) = f(R̄)− f(R̄′) + c1 if r is hit (H 3 r)
∆(H) = f(R̄)− f(R̄′) + c1 − c′1 if r is not hit (H 63 r) and R̄ 6= H

∆(H) = f(R̄) + c1 − 2cq if R̄ = H

Indeed, if r is hit, then c1 does not appear anymore in φ(R′), since r is no
longer a terminal. If r is not hit, its power goes from c1 to c′1. In the case
R̄ = H we get that Φ(R)− Φ(R′) = (c1 − 2cq) +

∑
j≥1(1 + 1/j) · cj. This is

because R′ is defined to keep from R only the leaf closest to the center, and
therefore Φ(R′) = 2cq.

Corollary 3.4. If R̄ 6= H then Φ(R) − Φ(R′) ≥ f(R̄) − f(R̄′). If R̄ = H
then ∆(H) = f(R̄) + c1 − 2cq ≥ f(R̄)− c1.

We continue with the proof of Lemma 2.6 for the case r ∈ T . We first
assume that Pr[R̄] ≤ 1/n. Then we have

E[∆(H)] = Pr[R̄] ·∆(R̄) +
∑
H 6=R̄

Pr[H] ·∆(H) (Corollary 3.4 and Pr[R̄] ≤ 1/n)

≥ − 1

n
c1 + Pr[R̄]f(R̄) +

∑
H 6=R̄

Pr[H]∆(H) (By separating r from the sum)

≥ − 1

n
c1 + Pr[R̄]∆(R̄) +

∑
H 63r,H 6=R̄

Pr[H]∆(H) +
∑
H3r

Pr[H]∆(H)

By the definition of ∆ we get that E[∆(H)] + 1
n
c1 is at least

Pr[R̄]f(R̄) +
∑

H 63r,H 6=R̄

Pr[H](f(R̄)− f(R̄ \H)) +
∑
H3r

Pr[H](c1 + f(R̄)− f(R̄ \H))

=
∑
H 63r

Pr[H](f(R̄)− f(R̄ \H)) +
∑
H3r

Pr[H](c1 + f(R̄)− f(R̄ \H))

Lemma 3.3 submodularity implies that the last expression is at least∑
H 63r

∑
v∈H

Pr[H]
∑
v∈H

(f(R̄)−f(R̄\{v}))+
∑
H3r

Pr[H](c1+
∑

v∈H\{r}

(f(R̄)−f(R̄\{v}))
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By rearranging terms and applying Lemma 2.3 we get

E[∆(H)] ≥ − 1

n
c1 +

(∑
v∈R̄

(f(R̄)− f(R̄ \ {v})) ·
∑
H3v

Pr[H]

)
+ c1 ·

∑
H3r

Pr[H]

≥ − 1

n
c1 +

(∑
v∈R̄

(f(R̄)− f(R̄ \ {v})) 1

n

)
+ c1 ·

1

n

=
1

n

∑
v∈R̄

(f(R̄)− f(R̄ \ {v}))

≥ p(R)/n,

where the last inequality is as in the case r 6∈ T .
The second case is if Pr[R̄] > 1/n. In this case only the contribution of

disjoint events H = R̄ and r ∈ H is taken into account:

E[∆(R)] ≥ Pr[R̄]∆(R̄) + Pr[r is hit] ·∆({r}) (Corollary 3.4)

≥ Pr[R̄]
(
f(R̄)− c1

)
+ Pr[r is hit ] ·∆({r})

(
We assume Pr[R̄] ≥ 1/n

)
≥ 1

n
·
(
f(R̄)− c1

)
+ Pr[r is hit ] ·∆({r}) (Lemma 2.3 )

≥ 1

n
·
(
f(R̄)− c1

)
+ ∆({r})/n (Definition of ∆)

=
1

n
· f(R̄) (Definition of f)

≥ 1

n
p(R).

This finishes the proof of Lemma 2.6 and thus the proof of Theorem 1.3 is
complete.

4. Min-Power Edge-Cover with unit costs (Theorem 1.4)

Let E(T ) denote the set of edges in E that have both endnodes in T . We
say that a star S in G is a proper star if all the leaves of S are terminals.
Let TS denote the set of terminals in S. Our algorithm for unit costs is as
follows.
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Algorithm 3: Unit-Costs-Algorithm(G = (V,E), T ) (ratio 5/4)

1 F ← E(T ), E ← E \E(T ), exclude from T terminals covered by E(T )
2 while there is a proper star S in G with |TS| ≥ 4 do

F ← F ∪ S, T ← T \ TS, G← G \ TS
3 compute a solution with the KN-Algorithm (with input the current G

and T ) and add this solution to F
4 return F

In the case of unit costs, if F is a feasible solution then p(F ∪ E(T )) =
p(F ), since pF (v) = 1 for all v ∈ T . This implies that there exists an optimal
solution F such that E(T ) ⊆ F , and thus step 1 in the algorithm is optimal.
Note that after this step T is an independent set in G, and thus we can get
ratio 73/60, by the second part of Theorem 1.3. This concludes the first part
of Theorem 1.4.

We now prove the second part of Theorem 1.4. We may assume that
V \T is an independent set, as edges in E(V \T ) do not cover any terminal.
Consider an iteration at step 2 when a proper star S with k ≥ 4 terminals
is chosen. Adding S to F increases p(F ) by k + 1 and removing TS from
G reduces the optimum by at least k. Hence it is a k+1

k
≤ 5/4 local ratio

step. We now show that the KN-Algorithm achieves ratio 5/4 for the residual
instance.

Lemma 4.1. In the case of unit costs, if T is an independent set in G and
if G has no star with 4 terminals then the KN-Algorithm has ratio 5/4.

Proof. In [22] the following is proved.
If for any proper star S in G there exists a 2-restricted T -cover T of TS such
that p(T ) ≤ αp(S), then the KN-Algorithm achieves ratio α.

In the case considered in the lemma we have unit costs, the center of
S is not a terminal, and S has at most 3 leaves. Let u be the center of
S and {v1, . . . , vq} the set of leaves of S, where u /∈ T and q ∈ {1, 2, 3}.
Note that p(S) = q + 1. If q = 3 then we take T = {{v1}, {v2, v3}}; then
p(S) = 4 and p(T ) = 2 + 3 = 5. If q ∈ {1, 2} then we take T = {T (S)}
and get p(S) = q + 1 = p(T ). In both cases p(T ) ≤ 5

4
p(S), and the lemma

follows.

In the worse time complexity case |T | = Θ(n), the running time of the
algorithm is dominated by the running time of step 3 of the KN-Algorithm,
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that requires computing a minimum cost T -cover in a complete graph on T .
This can be done in time O(n3) by the algorithm of Edmonds and Johnson
[12]. This concludes the proof of Theorem 1.4.

5. Min-Power Terminal Backup (Theorem 1.5)

We reduce Min-Power Terminal Backup to the Min-Cost Edge-
Cover problem, that is solvable in polynomial time, c.f., [33]. However, the
reduction is not approximation ratio preserving, but incurs a loss of 3/2 in
the approximation ratio. That is, given an instance (G, c, T ) of Min-Power
Terminal Backup, we construct in polynomial time an instance (G′, c′, T )
of Min-Cost Edge-Cover such that:

(i) For any T -cover F ′ in G′ corresponds a T -backup F in G with p(F ) ≤
c′(F ′).

(ii) opt′ ≤ 3opt/2, where opt′ is the minimum cost of a T -cover in (G′, c′, T ).

Hence if F ′ is an optimal (min-cost) solution to (G′, c′, T ), then

p(F ) ≤ c′(F ′) = opt′ ≤ 3opt/2 .

Definition 5.1. A spider is a rooted tree such that only its root, called the
center, may have degree 3 or more (equivalently, a spider is a subdivision of
a star). Given a set T of terminals, we say that a spider S is T -proper if
the set S ∩ T of its terminals is the set of leaves of S.

Given an instance of Min-Power Terminal Backup or Min-Cost
Terminal Backup, we may assume that all the terminals have degree 1,
namely, each t ∈ T has a unique edge in G incident to it; this is achieved by
a standard reduction of adding for every t ∈ T a new node t′ and an edge
tt′ of cost 0, and making t′ a terminal instead of t (note that this reduction
does not work for Min-Power Edge-Cover). Under this assumption, we
have the following.

Proposition 5.2. Let F be an inclusion minimal T -backup. Then any con-
nected component C of the graph H = (V, F ) is a T -proper spider.

Proof. Clearly, F is a tree and every leaf of C is a terminal. If this tree
has two nodes of degree at least three, than removing an edge on the path
between these two nodes results in a valid T -backup.
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We now define a certain decomposition of spiders, similar to the decom-
positions of stars in [22].

Definition 5.3. Let S be a spider. A collection D of paths between the leaves
of S such that every leaf belongs to some path is called a 2-decomposition
of S. The power p(D) =

∑
Sj∈D p(Sj) of D is the sum of the powers of its

paths.

Lemma 5.4. Any spider S admits a 2-decomposition D with p(D) ≤ 3
2
p(S).

Proof. If S is a path then the statement is obvious, so assume that S has at
least 3 leaves. Let s be the center of S, let T ′ be the set of leaves of S, and
let d = |T ′| be the number of leaves of S. For each terminal ti ∈ T ′, let si be
the neighbor of s on the tis-path (possibly si = ti), let ĉi be the sum of the
costs of the edges on the tis-path, and let ci = c(sis), i = 1, . . . , d. Assume
w.l.o.g. that the leaves in T are ordered such that ĉ1 ≤ ĉ2 ≤ · · · ≤ ĉd. Note
that ĉi ≥ ci, and thus ĉi ≥ ĉj ≥ cj for any i ≥ j, and that the power of the
spider is

p(S) =
d∑

i=1

ĉi + max
1≤i≤d

ci

We now define our 2-decomposition D. In the case of d even we just
take consecutive disjoint pairs Ti = {t2i−1, t2i}, i = 1, . . . , bd/2c. In the
case of d odd, we take the two pairs {t1, t2}, {t1, t3} and then add to them
the remaining bd/2c − 1 consecutive disjoint pairs of the (possibly empty)
sequence formed by the remaining terminals in T \ {t1, t2, t3}. Recall that
the power of this decomposition is defined to be the sum of the power of its
paths, or in other words:

p(D) =
d∑

i=1

ĉi+

d/2∑
i=1

max{c2i−1, c2i} if d is even

p(D) =
d∑

i=1

ĉi+

bd/2c∑
i=2

max{c2i, c2i+1}+ĉ1+max{c1, c2}+max{c1, c3} if d is odd

We need to prove that 3p(S) ≥ 2p(D).
If d is even then we need to prove that:

3

2

(
d∑

i=1

ĉi + max
1≤i≤d

ci

)
≥

d∑
i=1

ĉi +

d/2∑
i=1

max{c2i−1, c2i}
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By rearranging terms we obtain:

d∑
i=1

ĉi + 3 max
1≤i≤d

ci ≥ 2

d/2∑
i=1

max{c2i−1, c2i}

The latter inequality holds since:

d∑
i=1

ĉi + 3 max
1≤i≤d

ci ≥
d/2−1∑
i=1

(ĉ2i + ĉ2i+1) + 2 max
1≤i≤d

ci ≥

≥ 2

d/2−1∑
i=1

max{c2i−1, c2i}+ 2 max{cd−1, cd}

= 2

d/2∑
i=1

max{c2i−1, c2i}

For the first inequality we applied a standard manipulation of indices, giving
up some terms while recalling that all costs and powers are non-negative; the
second inequality is since ĉ2i+1 ≥ ĉ2i ≥ max{c2i−1, c2i}; the last equality is
obvious.

If d is odd then we need to prove that:

3

2

(
d∑

i=1

ĉi + max
1≤i≤d

ci

)
≥

d∑
i=1

ĉi+

bd/2c∑
i=2

max{c2i, c2i+1}+ĉ1+max{c1, c2}+max{c1, c3}

By rearranging terms we obtain that we need:

d∑
i=1

ĉi+3 max
1≤i≤d

ci ≥ 2ĉ1 +2 max{c1, c2}+2 max{c1, c3}+2

bd/2c∑
i=2

max{c2i, c2i+1}.
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If d > 3, the latter inequality holds since:

d∑
i=1

ĉi + 3 max
1≤i≤d

ci = ĉ1 + (ĉ2 + ĉ3) + ĉ4 + ĉd + 3 max
1≤i≤d

ci +

bd/2c∑
i=3

(ĉ2i−1 + ĉ2i)

≥ (ĉ1 + ĉ4) + ĉd + 2 max{c1, c2}+ 3 max
1≤i≤d

ci + 2

bd/2c−1∑
i=2

max{c2i, c2i+1}

≥ 2ĉ1 + max{cd−1, cd}+ 2 max{c1, c2}+

max{cd−1, cd}+ 2 max{c1, c3}+ 2

bd/2c−1∑
i=2

max{c2i, c2i+1}

= 2ĉ1 + 2 max{c1, c2}+ 2 max{c1, c3}+ 2

bd/2c∑
i=2

max{c2i, c2i+1}.

The first equality follows by applying a standard manipulation of indices; the
first inequality is since ĉi+1 ≥ ĉi ≥ max{ci−1, ci}; the last inequality is since
ĉ4 ≥ ĉ1, ĉd ≥ max

1≤i≤d
ci ≥ max{ci, cj} for any i, j, and the last equality follows

by applying a standard manipulation of indices.
If d = 3, we must prove that:

ĉ1 + ĉ2 + ĉ3 + 3 max
1≤i≤3

ci ≥ 2ĉ1 + 2 max{c1, c2}+ 2 max{c1, c3},

and this follows since ĉ2 ≥ ĉ1 and ĉ3 ≥ max{ĉ1, ĉ3} ≥ 2 max{c1, c3}. This
completes the proof of the lemma.

Our algorithm for Min-Power Terminal Backup is as follows.

Algorithm 4: Approx-T -Backup(G = (V,E), c, T ) (ratio 3/2)

1 construct an instance (G′ = (T,E ′), c′) of Min-Cost T -Cover:

• For every {ti, tj} ∈ T with i 6= j let Lij be a titj-path of minimum
power.

• The graph G′ is a complete graph on T with edge costs
c′(titj) = p(Lij).

2 compute a minimum cost T -cover F ′ in G′, c′.
3 return F = ∪{Lij : titj ∈ F ′}
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We note that the problem of computing a minimum power titj-path can
be solved in polynomial time by a simple reduction to its min-cost variant,
c.f. [1, 24]. All the other parts of the algorithm can also be implemented in
polynomial time. The following statement is used to prove that the approx-
imation ratio of the algorithm is 3/2.

Lemma 5.5.

(i) If F ′ is a T -cover in G′ then F = ∪{Lij : titj ∈ F ′} is a T -backup in
G and p(F ) ≤ c′(F ′).

(ii) opt′ ≤ 3opt/2, where opt′ is the minimum cost of a T -cover in G′, c′.

Proof. F is a T -backup since F ′ is a T -cover, and since Lij connects ti and
tj for every titj ∈ F ′. Also, p(F ) ≤ c′(F ′) since

p(F ) = p

 ⋃
titj∈F ′

Lij

 ≤ ∑
titj∈F ′

p(Lij) =
∑

titj∈F ′
c′(titj) = c(F ′) .

We now prove that opt′ ≤ 3opt/2. Let F be an optimal inclusion minimal
solution to Min-Power Terminal Backup in (G, c, T ), so p(F ) = opt. By
Lemma 5.4 there exists a 2-decomposition D of F with p(D) ≤ 3p(F )/2 =
3opt/2. To every path Lij ∈ D corresponds an edge eij = titj in G′ and
c′(eij) ≤ p(Lij). Let F ′ = {eij : Lij ∈ D}. Then F ′ is a T -cover in G′, since
eij and Lij have the same endnodes ti, tj, and since F is a T -cover. Hence
opt′ ≤ c′(F ′). Thus:

opt′ ≤ c′(F ′) =
∑
e′∈F ′

c′(e′) ≤
∑
i,j

p(Lij) = p(D) ≤ 3p(F )/2 = 3opt/2 .

Theorem 1.5 now easily follows from Lemma 5.5. Let F, F ′ be as in the
algorithm. Then, by Lemma 5.5, we have p(F ) ≤ c′(F ′) = opt′ ≤ 3opt/2.

The proof of Theorem 1.5 is complete.

6. Removing the need of k-restricted approach

We can obtain T -covers as in Theorem 1.3 without using k-restricted
covers. This improves the running time of the main approximation algorithm.
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The “hypergraphic” linear program LP (T ) below has a variable xR for
every star R and it is a relaxation for the problem of finding a T -cover of
minimum power. Let R be the collection of all stars of the input graph.

min
∑
R∈R

p(R)xR

s.t.
∑

R∈R,v∈V (R)

xR ≥ 1 ∀v ∈ T

xR ≥ 0 ∀R ∈ R

The approximation algorithm is the same as in Theorem 1.3, but it uses
LP (T ) instead of LPk(T ). The remaining challenge is solving LP (T ), which
has exponentially many variables.

For this, we use an auxiliary linear program ALP (T ), which has variables
y(v,u) for all 2-tuples (v, u) with v, u ∈ V with v 6= u and uv ∈ E(G), and
z(w,v,u) for all 3-tuples (w,v,u)) with w, v, u ∈ V , u 6∈ {v, w} and c(wu) ≤
c(vu) (note that w = v is possible). ALP (T ) is:

min
∑
(v,u)

c(uv)y(v.u) +
∑

(w,v,u)

c(wu)z(w,v,u)

s.t.
∑
v

y(v.u) +
∑

(w,v) | c(uv)≤c(wv)

z(u,w,v) ≥ 1 ∀u ∈ T

z(w,v,u) ≤ y(v,u) ∀(w, v, u)

z(v,v,u) = y(v,u) ∀(v, u), v 6= u

y(v,u) ≥ 0 ∀(v, u), v 6= u

z(w,v,u) ≥ 0 ∀(w, v, u), v 6= u and c(wu) ≤ c(vu)

Let us check this equivalence. If we have a solution to LP (T ), from
variables xR we obtain the variables y(v,u) and z(w,v,u) in ALP (T ) as follows:
we start with each such variable as 0, and for every R, star with center u
and leaves v1, v2, . . . , vk arranged in non-increasing order of costs c(uv1) ≥
c(uv2) ≥ · · · ≥ c(uvk), we add xR to y(v1,u) and to z(vj ,v1,u), for j = 1 to k.

Notice that p(R) = c(uv1)+
∑k

j=1 c(uvj), which is at most the increase in the
objective function of ALP (T ). Also, notice that z(v,v,u) = y(v,u) for all v 6= u
since every time y(v,u) is increased, z(v,v,u) is increased by the same amount.
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Moreover, the constraint, for a given u ∈ T ,
∑

v y(v.u) +
∑

(w,v) z(u,w,v) ≥ 1 is

satisfied, as for every star R with u ∈ V (R), xR contributes to either y(v1,u)

(when u is the center of R), or z(u,w,v) (when v the center of R and w the
first child of R), and using

∑
R∈R,v∈V (R) xR ≥ 1.

Now suppose we have a feasible solution to ALP (T ). One by one, go
through all 2-tuples (v, u) with v 6= u. Let w1, w2, . . . , wq be the nodes with
c(wju) ≤ c(vu) sorted such in non-decreasing order of z(wi,v,u). As for all i,
we have that z(wi,v,u) ≤ y(v,u) = z(v,v,u), we may assume that v = wq. For i =
1, 2, . . . , q, star Ri = Ri(v, u) will have center u and children wi, . . . , wq.Set
xR1 = z(w1,v,u), and for i > 1 set xRi

= z(wi,v,u) − z(wi−1,v,u). Using that
c(wju) ≤ c(vu) for all u, we have that p(Ri) ≤ c(vu) +

∑q
j=i c(wiu). Using

that y(v,u) = z(wq ,v,u), we deduce that:

q∑
i=1

p(Ri)xRi
≤ z(w1,v,u)

(
c(vu) +

q∑
j=1

c(wiu)

)
+

q∑
i=2

(
z(wi,v,u) − z(wi−1,v,u)

)(
c(vu) +

q∑
j=i

c(wiu)

)

= c(vu)z(wq ,v,u) +

q∑
i=1

z(wi,v,u)c(wiu)

= c(vu)y(v,u) +

q∑
i=1

z(wi,v,u)c(wiu).

Therefore, while doing this for all 2-tuples (v, u) with v 6= u, we obtain a
solution of LP (T ) without increasing the costs.

Moreover, when creating these stars Ri, we have that∑
i,u∈V (Ri)

xRi
= y(v,u)

and ∑
i,wj∈V (Ri)

xRi
= z(wj ,v,u).

Therefore, for any u, we have
∑

R∈R,u∈V (R) xR ≥
∑

v y(v,u) +
∑

(w,v) z(u,w,v) ≥
1, and thus our LP (T ) solution is feasible.

Thus, with LP (T ) we eliminated the need for k-restricted covers; by
comparisons for the Min-Cost Steiner Tree problem, so far, k-restricted
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decompositions are still needed for the best ratios, or for any linear program
with ratio provable better than 2.

We note that it is quite possible that solving one LP (T ) is enough (when
applying iterative rounding, avoid resolving new linear programs), as it was
shown for Min-Cost Steiner Tree by [14].

We also believe that LP (T ) has integrality ratio better than 3/2, but with
the methods of this paper we were not able to obtain the ratio of Theorem 1.3,
the general case, with respect to LP (T ) (LP (T ) may be used to bound the
output of the iterative rounding algorithm, but the KN-Algorithm’s output
is directly compared to the optimum).

Acknowledgment:. Gruia and Zeev thank Neil Olver for many useful dis-
cussions. Also, Gruia and Zeev acknowledge the support of the Hausdorff
Trimester Program for Combinatorial Optimization (held at the Hausdorff
Research Institute for Mathematics, University of Bonn).

References

[1] E. Althaus, G. Calinescu, I. Mandoiu, S. Prasad, N. Tchervenski, and
A. Zelikovksy. Power efficient range assignment for symmetric connectiv-
ity in static ad hoc wireless networks. Wireless Networks, 12(3):287–299,
2006.

[2] E. Anshelevich and A. Karagiozova. Terminal backup, 3D matching, and
covering cubic graphs. SIAM J. on Computing, 40(3):678–708, 2011.
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