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Abstract. In this paper we introduce and study the notion of low risk mechanisms. Intuitively, we say
a mechanism is a low risk mechanism if the randomization of the mechanism does not effect the utility
of agents by a lot. Specifically, we desire to design mechanisms in which the variance of the utility of
agents are small. Inspired by our work, later, Procaccia et al. [13] study the approximation-variance
tradeoffs in mechanism design.
In particular here we present a low risk mechanism for the pairwise kidney exchange game. This game
naturally appears in situations that some service providers benefit from pairwise allocations on a net-
work, such as the kidney exchanges between hospitals. Ashlagi et al. [3] present a 2-approximation
randomized truthful mechanism for this problem. This is the best known result in this setting with
multiple players. However, we note that the variance of the utility of an agent in this mechanism may
be as large as Ω(n2),where n is the number of vertices. Indeed, this is not desirable in a real application.
In this paper we resolve this issue by providing a 2-approximation randomized truthful mechanism in
which the variance of the utility of each agent is at most 2 + ε.
As a side result, we apply our technique to design a deterministic mechanism such that, if an agent
deviates from the mechanism, she does not gain more than 2dlog2me, where m is the number of players.

1 Introduction

Kidney transplant is the only treatment for several types of kidney diseases. Since people have two kidneys
and can survive with only one kidney, they can potentially donate one of their kidneys. It may be the case
that a patient finds a family member or a friend willing to donate her kidney. Nevertheless, at times the
kidney’s donor is not compatible with the patient. These patient-donor pairs create a list of incompatible
pairs. Consider two incompatible patient-donor pairs. If the donor of the first pair is compatible with the
patient of the second pair and vise-versa, we can efficiently serve both patients without affecting the donors.

In this paper we consider pairwise kidney exchange, even though there can be a more complex com-
binations of transplantation of kidneys, that involves three or more pairs. Nevertheless, such chains are
complicated to deal with in the real life applications since they need six or more simultaneous surgeries.

To make the pool of donor-patient pairs larger, hospitals combine their lists of pairs to one big pool,
trying to increase the number of treated patients by exchanging pairs from different hospitals. This process
is managed by some national supervisor. A centralized mechanism can look at all of the hospitals together
and increase the total number of kidney exchanges. The problem is that for a hospital its key interest is to
increase the number of its own served patients. Thus, the hospital may not report some patient-donors pairs,
namely, the hospital may report a partial list. This partial list is then matched by the national supervisors.
Undisclosed set of pairs are matched by the hospitals locally, without the knowledge of the supervisor. This
may have a negative effect on the number of served patients.

A challenging problem is to design a mechanism for the national supervisor, to convince the hospitals not
to hide information, and report all of their pairs. In fact, if hiding any subset of vertices does not increases
the utility of an agent, she has no intention to hide any vertex.

1.1 Notations and Definitions

To model this and similar situations hospitals are called agents, and each patient-donor pair is modeled by
a vertex. Let m be the number of agents. Each agent owns a disjoint set of vertices. We denote the vertex
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set of the i-th agent by Vi and
#»

V = {V1, V2, ..., Vm} is called the vector of vertices of the agents. Denote

an instance of the kidney exchange problem by (G,
#»

V ), where G is the underlying graph,
#»

V is the vector of
vertices of the agents and E is the edge set. Each vertex in G = (V,E) belongs to exactly one agent. Thus,
V = ∪mi=1Vi holds.

In this game, the utility of an agent i is the expected number of matched vertices in Vi and is denoted by
ui. Similarly, the utility of an agent i with respect to a matching M is the number of vertices of Vi matched
by M and is denoted by ui(M). The social welfare of a mechanism is the size of the output matching.

A mechanism for the kidney-exchange game is the mechanism employed by the national supervisor to
choose edges among the reported vertices. The process is a three step process. First the agent expose some of
their vertices. Then the mechanism chooses a matching on the reported graph. Finally, each agent matches
her unmatched vertices, including her non disclosed vertices, privately.

Formally, a kidney exchange mechanism F is a function from an instance of a kidney exchange problem
(G,

#»

V ) to a matching M of G. The mechanism F may be randomized.
Given that some pairs are undisclosed, we say a kidney exchange mechanism F is α-approximation if

for every graph G the number of matched vertices in the maximum matching of G is at most α times the
expected number of matched vertices in F (G). This means that for every graph G

|Opt(G)|
E[|F (G)|]

≤ α,

where Opt(G) is the maximum matching in graph G, and the expectation is over the run of the mechanism
F .

We define the notion of bounded-risk mechanisms as follow.

Definition 1. A mechanism is a bounded-risk mechanism if the variance of the utility of each agent is is
bounded by a constant.

We say a kidney exchange mechanism is truthful if no agent has incentive to hide any vertex i.e., for each
agent i, we have

∀V ′
i ∈Vi ui(F (G)) ≥ ui(F (G\V ′i )) + ui(F (G\V ′i ), V ′i )

where ui(F (G\V ′i ), V ′i ) is the [expected] number of vertices that agent i matches privately if she hides V ′i .
We also define almost truthful mechanisms, to use for our side result.

Definition 2. We say that a kidney exchange mechanism is almost truthful if by deviating from the mech-
anism, an agent have an additional gain of at most O(logm) vertices in the utility, where m is the number
of agents.

Indeed, in a real application finding the right subset of vertices to hide is costly. Roughly speaking, this
cost involves extracting the information of m other agents, and hence, is an increasing function in m. Thus,
in an almost truthful mechanism we hope that agents ignore gaining O(logm) vertices compare to the cost
involved, and report the true information. Remark that, in this paper we do not consider a cost for deviating
from the mechanism, and thus, we use two different definitions of truthful mechanisms and almost truthful
mechanisms.

1.2 Related Work

The model considered in this paper was initiated by Sönmez and Ünver [14] and Ashlagi and Roth [5].
Sönmez and Ünver [14] show that there is no deterministic truthful mechanism that gets the maximum
possible social welfare (See Figure 1).

Achieving social welfare optimal mechanisms, which are truthful, is thus not possible. However, achieving
approximate truthful mechanisms may be possible. Ashlagi et al. [3] used the same example as in Figure
1 to show that there is no deterministic truthful mechanism for the kidney-exchange game, with approxi-
mation ratio better than 2. Moreover, they show that there is no randomized truthful mechanism with an
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Fig. 1. Black vertices belong to the first agent and white vertices belong to the second agent. In this example, the
number of vertices is odd. Therefore, any mechanism that provide a maximum matching leaves exactly one vertex
unmatched. Consider a mechanism that leaves a vertex of the first agent unmatched. In this case the utility of the
first agent is 2. If this agent hides the fifth and the sixth vertices, any maximum matching matches the first vertex
to the second vertex and the third vertex to the fourth vertex. Later, agent one matches the fifth and sixth vertices,
privately. This increases the utility of the first agent to 3, and means that such a mechanism is not truthful. Similarly,
if the mechanism leaves a vertex of the second agent unmatched, she can increases her utility by hiding the second and
third vertices and matching them privately. This shows that a mechanism that always reports a maximum matching
is not truthful.

approximation ratio better than 8/7. They also introduce a deterministic 2-approximation truthful mecha-
nism for the two player kidney exchange game and a randomize 2-approximation truthful mechanism for the
multi-agent kidney exchange game. Later Caragiannis et al. [7] improved the approximation ratio for two
agents to an expected 3/2-approximation truthful mechanism. It is conjectured that there is no deterministic
constant-approximation truthful mechanism for the multi-agent kidney exchange game, even for three agents
[3].

Kidney exchange has also been studied when we are able to exchange kidneys over small cycles (instead
of just pairs) [1, 2, 4]. In particular Abraham, Blum and Sandholm, show that this problem is NP-hard when
cycles of length at most 3 is allowed [1]. Biro, Manlove and Rizzi consider the complexity of this problem in
weighted directed graphs. See [8] for a survey of applications and existing algorithms.

Following our paper, Procaccia, Wajc and Zhang [13] consider this notion for facility location and put
forward an agenda of exploring the tradeoffs between approximation guarantees and variance in mechanism
design.

Almost truthful mechanisms has been widely studied (See [9], [10] and [11]) with slightly different def-
initions. However, all use the concept that an agent should not gain more than small amount by deviating
from the truthful mechanism.

1.3 Our Results

First, we show that the variance of the utility of an agent in the mechanism proposed by Ashlagi et al. [3]
may be as large as Ω(n2), where n is the number of vertices. The variance of the utility can be interpreted
as the risk of the agent caused by the randomness in the mechanism. Indeed, in a real application agents
prefer to take less risk for the same expected utility. In Section 2, we provide a tool to lower the variance of
the utility of each agent in a kidney exchange mechanism while keeping the expected utility of each agent
the same. The following theorem is an application of this tool to the mechanism proposed by Ashlagi et. al.
[3]. low variance.

Theorem 1. There exists a bounded-risk truthful 2-approximation mechanism for multi-agent kidney ex-
change. Specifically, in this mechanism the variance of the utility of each agent is at most 2 + ε, where ε is
an arbitrary small constant.

As a side result, in Section 3, we provide a derandomization of our mechanism. Specifically, we design
an almost truthful deterministic 2-approximation mechanism for this problem. To the best of our knowledge
this is the first non-trivial deterministic mechanism for the multi-agent kidney exchange game.

Theorem 2. There exists an almost truthful deterministic 2-approximation mechanism for multi-agent kid-
ney exchange.
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Remark that in a real application hiding vertices involves extracting the information about other agents
and finding the right subset of vertices to hide, which is costly itself. Thus, in a real application, if the loss
stemming from being truthful is negligible, it is likely that the hospital will absorb the small loss and remain
truthful.

2 A Truthful Mechanism With Small Utility Variance

Ashlagi et al. in EC’10 [3] study the multi-agent kidney exchange game. They provide a polynomial time
truthful 2-approximation mechanism called Mix and Match. The Mix and Match mechanism is described as
follows; independently label each agent either by 1 or 0 each with probability 0.5. Remove the edges between
different agents with the same labels, i.e., for each edge (u, v) ∈ E, if u and v belongs to different agents
and these agents have the same label, remove the edge (u, v) from G. Let G′ be the new graph. Consider
all matchings in G′ that contain a maximum matching over the induced subgraph of each agent separately.
Output the one with the maximum cardinality. Ties are broken serially in favor of agents with label 1 and
then agents with labels 0. The following example shows that in this mechanism the variance of an agent
utility may be as large as Ω(n2).

Example 1. Consider a game with three agents. Each agent has n
3 vertices, where n is the number of vertices

in the graph. There is a perfect matching with n
3 edges between vertices of agent 1 and agent 2 and there is

no other edges (see Figure 2).

Fig. 2. In this example, the variance of the first agent utility, is Ω(n2)

In this example, with probability 0.5, agent 1 and agent 2 get the same label and all of the edges between
these two agents are removed. In this case, all edges are removed and thus the utility of each agent is zero.
However, with probability 0.5, agent 1 and agent 2 get different labels and we have a matching of size n

3
between the vertices of these two agents. In this case, the utility of agent 1 is n

3 . Therefore, the variance of
the first agent utility is

σ2 = 0.5(0− n

6
)2 + 0.5(

n

3
− n

6
)2 =

n2

36
,

which is Ω(n2).
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Our mechanism uses a randomized truthful mechanism as a core mechanism. We take two matchings
resulting from two independent runs of the core mechanism. These two matchings are combined into a new
matching. The way we choose the new matching is randomized too. The new matching preserves the expected
utility of each agent, and in addition, decreases the variance of the utility of each agent by a constant factor.
This gives a mechanism with a lower utility-variance. We repeat this procedure iteratively (See Figure 3)
and decrease the variance of the utilities to O(1). We show that for this purpose it is enough to apply the
combination of two matchings mechanism a logarithmic number of times. For the purpose of this section, we
use Mix and Match as the core mechanism and show that there exists a truthful 2-approximation mechanism
such that the variance of each utility is at most 2 + ε, where ε is an arbitrary small constant.

Fig. 3. Hierarchy of mechanisms

One can think of our mechanism as a multi-layered mechanism. The layer-0 mechanism is the core
mechanism. In the i-th layer we combine two outputs of the layer i − 1 mechanism. Lemma 2 shows that
we can use the lower layer mechanism and create a mechanism where the variance of the utilities is almost
halved.

Note that the utility of an agent can be completely different for two matchings M1 and M2. Let M1⊕M2

denote the symmetric difference of M1 and M2. There may be a path from u to v in M1 ⊕M2 in which u
is a vertex of agent i and v is a vertex of agent j and i 6= j. One of the two matchings will have a utility
smaller by 1 for agent i. As the number of such paths in M1⊕M2 may be very large, the difference in utility
of an agent with respect to M1 and M2 can be very large. We show how to find two matchings N1 and N2

such that the utility of each agent with respect to these two matchings is almost equal.
Let (G,

#»

V ) be an instance of the kidney exchange graph. Consider two matchings M1 and M2 derived by
independent runs of the previous layer. Let P = {p1, p2, . . . , pk} be a subset of distinct paths in M1 ⊕M2

(ignoring cycles).

Definition 3. The contraction graph Cont((G,
#»

V ), P ) is defined as follows:

– Each vertex in Cont((G,
#»

V ), P ) corresponds to one agent in (G,
#»

V ).

– There is an edge in Cont((G,
#»

V ), P ) between agent i and j if and only if there is a path in P that begins
with a vertex of agent i and ends with a vertex of agent j.

We call this graph the contraction graph because the paths are replaced by edges. When the instance of the
kidney exchange game is clear from the context, we drop (G,

#»

V ) from the notation of the contraction graph.

The following lemma proves that any two matchings can be transformed into two other matchings such
that for every agent i the utility of agent i in the two new matchings has a difference of at most 2.

Lemma 1. Let M1 and M2 be two matchings of graph G. There exist two matchings N1 and N2 such that
for any agent i we have
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– |ui(N1)− ui(N2)| ≤ 2 and
– ui(N1) + ui(N2) = ui(M1) + ui(M2).

Proof. We decompose M1 ⊕M2 into two different matchings N ′1 and N ′2 such that N ′1 ∪ N ′2 = M1 ⊕M2.
Then define N1 and N2 as N1 = N ′1 ∪ (M1 ∩M2) and N2 = N ′2 ∪ (M1 ∩M2) respectively. Clearly, an edge
e belongs to exactly one of N1 or N2, if and only if e belongs to exactly one of M1 or M2. In addition, e
belongs to both of N1 and N2 if and only if it belongs to both of M1 and M2. This means that the equality
ui(N1) + ui(N2) = ui(M1) + ui(M2) holds for all agents. It holds true, regardless of the way we decompose
M1 ⊕M2 into N ′1 and N ′2. We now describe our approach to achieve the main property, namely, change
M1 ⊕M2 into two matchings N ′1 and N ′2 such that N ′1 ∪N ′2 = M1 ⊕M2 and |ui(N ′1)− ui(N ′2)| ≤ 2.

Consider the subgraph induced in G by M1⊕M2. The degrees of vertices in this graph are either zero or
one or two. There are three types of connected components: cycles, even-length paths and odd-length paths.
We explain how to decompose the different parts of M1⊕M2 in these three cases. Every path p decomposes
into two matchings Mp

1 and Mp
2 . In any such decompositions, all the vertices of p except the endpoints are

covered by both Mp
1 and Mp

2 .

– Case 1: Components that are cycles. Each of these cycles is the union of two matchings. It means
that every other edge in each cycle belongs to one of the matchings. We add one of these matchings to
N ′1 and we add the other one to N ′2. Since these two matchings cover the same set of vertices, they have
the same effect on the utility of agents.

– Case 2: Edges of even length paths. Let p be an even size path between two vertices v and u. Let
Mp

1 and Mp
2 be a decomposition of p into matching such that Mp

1 covers all vertices in p except u and
Mp

2 covers all vertices in p except v. For each path, we add one of Mp
1 and Mp

2 to N ′1 and add the
other one to N ′2. However, the assignment cannot be arbitrary. The assignment is derived by performing
computations on the contraction graph. We represent the selection of Mp

1 by directing the edge in the
contraction graph from the agent that contains u to the agent that contains v. Note that we deal with
all even paths simultaneously. The difference of the outgoing and in-going degrees of each agent exactly
equals the difference of her utilities caused by edges of even length paths in N ′1 and N ′2. Thus, we just
need to direct edges of the contraction graph of even length paths, so as to minimize this difference.
We can direct the edges of this graph such that for each vertex the difference of outgoing and in-going
edges is at most one. This is done by adding a matching between the odd degree vertices, directing the
edges through an Eulerian cycle and removing the added edges. We adopt this strategy to get our almost
balanced in and out degree pair of matchings, derived from all even sized paths in M1 ⊕M2.

– Case 3: Odd length paths. Let p be a path between vertices v and u which has an odd number of
edges. We can decompose p into two matchings Mp

1 and Mp
2 such that Mp

1 covers all vertices in p and
Mp

2 covers all vertices in p except v and u. Again in this case, for each path, we add one of Mp
1 or Mp

2

to N ′1 and add the other one to N ′2.
In one of N ′1 and N ′2, both endpoints are matched and in the other none of the two endpoints are matched.
We represent the selection of Mp

1 by coloring the edge corresponding to p blue. Otherwise, we color the
edge red. Let the blue (red) degree of a vertex be the number of blue (red) edges touching the vertex. The
difference between the red and blue degrees of each agent, exactly equals the difference in her utilities
caused by odd length paths in M1 ⊕M2.
We can color the edges of any arbitrary graph with blue and red such that for each vertex the difference
between the red and blue degree is at most 2. This again is done by adding a matching of dummy edges
between the odd degree vertices, and coloring every second edge in the Eulerian cycle red and every other
second edge blue. Then we remove the fake edges added at the beginning. Note that the start vertex of
the cycle may be touched by two red or two blue, edges. On the other hand, the other vertices in this
cycle are touched by the same number of blue and red edges. We use the following rule: if the start vertex
has a dummy edge, we use this edge as the first in the Euler cycle. This is done such that the difference
of blue and red degrees will not accumulate to 3 (2 may be added to the difference due to the fact that
the path starts and ends in the same color, and an additional 1 can be added to the difference when we
take the dummy edge out). This clearly implies a difference of 2 in the utility of any agent with respect
to the new matchings.
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If we combine the matchings of case 2 and case 3, the difference of the utilities for any agent with respect
to N ′1 and N ′2 may grow up to at most 3. We want to avoid this situation. Let i be some agent for which the
utility difference is 3. The difference of the utilities is derived as follows:

– Agent i has a difference of two between the number of red edges and blue edges. Note that this means
that the other agents have a difference of at most 1 between the number of red and blue edges, as the
the agents are not start vertices of the cycle.

– Agent i has a difference of one between the number of outgoing and in-going edges. This means that the
vertex is an odd degree vertex.

– The effect of these two differences accumulate and cause a difference of three between N ′1 and N ′2.

In this case, we flip the color of edges in the component that contains i. This decreases for i the difference
of N ′1 and N ′2 from 3 to 1. Note that any vertex that was not a start vertex of the Euler cycle has a difference
of at most 1 in the edge coloring stage. The flipping of colors still implies that the maximum difference in the
utility of every agent that is not a beginning of a cycle, is at most 1. Together with the difference caused by
even length paths, the total difference is at most 2. Note that cycles of two different agents with difference
2 in their utility, are disjoint. Only one agent with two red or two blue edges can exist in every connected
component. ut

The following lemma uses lemma 1 to combine outcomes of two independent runs of a mechanism.

Lemma 2. Let F be a mechanism for the multi-agent kidney exchange game and let xi be the random
variable of the utility of agent i in the mechanism F . Then there exist a mechanism F ∗ such that for every
input graph and every agent i the following holds:

Var(yi) ≤
Var(xi)

2
+ 1, E[yi] = E[xi],

where yi is the random variable that indicates the utility of agent i in mechanism F ∗.

Proof. We run mechanism F two times independently. Let M1 and M2 be the random matchings resulting
from these two runs. We apply Lemma 1 on M1 and M2 and let N1 and N2 be the resulting matchings. The
mechanism F ∗ chooses one of the two matchings N1 and N2 uniformly at random. Note that:

E[yi] =
E[ui(N1)] + E[ui(N2)]

2
=
E[ui(M1)] + E[ui(M2)]

2
=

2E[xi]

2
= E[xi]

where the second equality is an application of Lemma 1. This means that each agent has the same expected
utility in F and F ∗. Now, we need to bound the variance of the utilities of the agents in F ∗. Let Di be the

difference between ui(N1) and the average of ui(M1) and ui(M2). Note that ui(N1) = ui(M1)+ui(M2)
2 + Di

and ui(N2) = ui(M1)+ui(M2)
2 − Di. Let I be the random variable that indicates whether F ∗ reports N1 or

not. Thus, we have

Var(yi) =Var

(
ui(M1) + ui(M2)

2
+ IDi

)
=Var

(
ui(M1) + ui(M2)

2

)
+ Var (IDi) + 2Cov

(
ui(M1) + ui(M2)

2
, IDi

)
=

Var(ui(M1))

4
+

Var(ui(M2))

4
+ Var(IDi) + 2Cov

(
ui(M1) + ui(M2)

2
, IDi

)
=

Var(xi)

2
+ Var(IDi) + 2Cov

(
ui(M1) + ui(M2)

2
, IDi

)
=

Var(xi)

2
+ Var(IDi). (1)
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It remains to bound Var(IDi). From Bhatia-Davis Inequality [6] for any random variable X: Var(X) ≤
(Sup(X)−µ)(µ− Inf(X)), where µ is the expected value of X, Sup(X) is the supremum of X and Inf(X)
is the infimum of X. By applying Bhatia-Davis Inequality to IDi, we have

Var(IDi) ≤ (Sup(IDi)− µ)(µ− Inf(IDi)) ≤ (1− µ)(µ+ 1) ≤ 1

where the second inequality is by definition of Di and Lemma 1. Combining this with inequality (1), gives

us Var(yi) ≤ Var(xi)
2 + 1 as desired. ut

Lemma 2 provides a way to decrease the variance of the utilities, iteratively. New we are ready to prove
Theorem 1.

Proof (of Theorem 1).
Let F 0 be the Mix and Match mechanism and let F i be the combination of two independent runs of F i−1

from Lemma 2. We call the mechanism a multi-layered mechanism and F i denoted i-th layer mechanism
in the multi-layered mechanism. It is easy to see that F k is a combination of 2k independent runs of the
Mix and Match mechanism which is the layer 0 mechanism. Recall that all those combinations preserve the
expected utility of every agent. Thus, this process preserves the social welfare function, which is the sum
of utilities of all of the agents. Thus, the assumption that F 0 is a 2-approximation mechanism immediately
gives us that F k is a 2-approximation mechanism, for any k.

Now, we show that for any k, F k is truthful. We prove this by contradiction. Suppose that F k is not
truthful. Without loss of generality we assume that if agent 1 deviates, her expected utility increases. Since,
F k preserves the expected utility of each agent, this deviation should increase the expected utility of this
agent all the way back to F 0. However, this contradicts the truthfulness of F 0. Therefore, F k is truthful.

Now, we need to bound the variance of the utility of each agent. Without loss of generality, we fix an agent
i and bound the variance of the utility of that agent. The same bound holds for all agents, by symmetry.

Let σ2 be the variance of the utility of the agent in F 0. We prove by induction that the variance of the

utility of this agent in F k is σ2

2k
+ 2− 2

2k
. The base case is clear since σ2

20 + 2− 2
20 = σ2. Assume the bound for

F k and then we prove it for F k+1. By applying Lemma 2, for F k+1 the variance of the utility of the agent
is at most

σ2

2k
+ 2− 2

2k

2
+ 1 =

σ2

2k+1
+ 1− 1

2k
+ 1 =

σ2

2k+1
+ 2− 2

2k+1
.

This completes the induction. The utility of an agent cannot exceed the total number of vertices. Thus, we
have σ2 ≤ n2. If we set k to 2 log(n) + log( 1

ε ), then the variance of the utility of each agent in F k is at most

σ2

2k
+ 2− 2

2k
=

σ2

22log(n)+log(
1
ε )

+ 2− 2

22log(n)+log(
1
ε )

=
σ2ε

n2
+ 2− 2ε

n2
≤ ε+ 2− 2ε

n2
≤ 2 + ε.

We note that the running time is polynomial. Indeed, running F k, combines 2k−i instances of F 0, mechanisms.

Since we set k to 2 log n + log( 1
ε ), F k operates on n2

ε instances of F 0 and contains n2

ε − 1 combinations of
matchings in higher levels. Since here both F 0 and the combination process runs in polynomial in n, F k

runs polynomial time as well. ut

3 An Almost Truthful Deterministic Mechanism

In some applications, agents may not accept any risk. In this section, we modify our randomized mechanism
to a deterministic one. This deterministic mechanism is not truthful anymore. However, it is almost truthful
i.e., by deviating from the mechanism, an agent may gain an additive factor of at most 2dlog2(m)e, where
m is the number of agents.

The analysis of the Mix and Match mechanism does not use the property that the labels of agents are
fully independent. It just uses the fact that for every two fixed agents i and j, with probability 0.5, we assign
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different labels to agents i and j. In fact, this holds even if we use m pairwise independent random bits. We
can generate m pairwise independent random bits using dlog2(m)e fully independent random bits [12]. We
call this modified mechanism that just uses dlog2(m)e random bits, Modified Mix and Match.

Proof (of Theorem 2). For simplicity of notation, we replace log2(.) by log(.). Our deterministic mechanism
can be seen as a multi-layered mechanism defined as follows. In Layer 0, we run the modified Mix and Match
mechanism over all possible values of the dlog(m)e random bits. The collection of all resulted matchings is
called layer 0 matchings. Note that the number of matchings for layer 0 is at most 2dlog(m)e ≤ 2m. We now
describe dlog(m)e steps to combine these matchings together, into a single matching. We note that each layer
will halve the number of matchings, and so dlog(m)e applications of the mechanism give a layer with a single
matching and this matching is our output. After the i-th step we inductively construct the matchings of the
i + 1-th layer as follows. We decompose the matchings in the i-th layer into arbitrary pairs of matchings.
We use the procedure of Lemma 2 on every pair. Unlike the randomized version, here we always output the
matching between N1 and N2 that has the largest number of edges. Clearly, in each step, the number of
matchings in the layer is halved. Thus, after dlog(m)e steps we have exactly one matchings. This matching
is the output of our mechanism.

This mechanism contains at most 2m runs of the modified Mix and Match mechanism and at most
2m combinations of such matchings. Both the modified Mix and Match mechanism and the combination
procedure run in polynomial time. Thus, this mechanism is a polynomial time mechanism.

Note that the average number of edges in the 0-th layer is exactly equal to the expected social welfare in
the modified Mix and Match mechanism. This follows because every labeling among the 2dlog(m)e is equally
likely. In each step, we replace each pair with one of the matching obtained from Lemma 2. Selecting the
matching between N1 and N2 that contains the largest number of edges, combined with the second property
of Lemma 2, implies that the average number of edges cannot decrease when we go to the next layer. Thus, the
number of edges in the last-layer matching is at least that of the modified Mix and Match mechanism. Thus,
this mechanism is a 2-approximation mechanism. We now discuss individual utilities. The average utility of
every agent in layer 0 exactly equals her expected utility in the modified Mix and Match mechanism. Using
the first property of Lemma 2, it is clear that for a fixed agent, the difference between its modified Mix and
Match utility, and the average of her utilities in the 1-th layer is at most 1. This holds true each time we go
from one layer to the next. Namely, for every agent, the difference in utility between the modified Mix and
Match strategy and our strategy goes up by at most 1. Thus, in the i-th layer the difference between the
utility in our deterministic mechanism and the modified Mix and Match mechanism is at most i.

We now inspect how much an agent can gain by deviating from the mechanism. Since the modified
Mix and Match mechanism is truthful, her utility in the modified Mix and Match mechanism does not
increase with the new strategy. The difference between her expected utility in the modified Mix and Match
mechanism and our mechanism is at most dlog(m)e. A non truthful strategy can increase the utility by at
most an additive factor of 2dlog(m)e. ut
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