
Algorithms for Chromatic Sums, Multicoloring, and Scheduling

Dependent Jobs

Magnús M. Halldórsson ICE-TCS, School of Computer Science, Reykjavik University, Iceland.∗

Guy Kortsarz Rutgers University, Camden, New Jersey.†

May 18, 2017

1 Introduction

This survey deals with problems at the intersection of two scientific fields: graph theory and scheduling.

They can either be viewed as scheduling dependent jobs – jobs with resource conflicts – or as graph coloring

optimization involving different objective functions.

Our main aim is to illustrate the various interesting algorithmic techniques that have been brought to

bear. We will also survey the state of the art, both in terms of approximation algorithms, lower bounds, and

polynomial time solvability.

We first formulate the problems, both from a scheduling and from a graph theory perspective, before

setting the stage.

1.1 Scheduling Perspective

The input consists of jobs that need to be processed on machines. There are enough machines available

(although the case of limited number of machines can also be handled). We view the processing to take

place in time steps or rounds. Each job J has an integral length or processing time x(J), so it must be

processed by a machine during x(J) of the rounds. The task is to process the jobs on the machines as

quickly as possible. What makes the task non-trivial is that each job requires an exclusive access to a set of

resources. (That means that two jobs that require the same resource cannot be processed simultaneously.)

Therefore, the jobs processed during a given round must use disjoint sets of resources.

There are two essential modes of processing the jobs. In the non-preemptive setting, once a job is

processed, it must be executed to completion. That means that a job is always processed in consecutive

rounds. In the preemptive case, there are no constraints of this sort. Finally, in the important special case

of unit-length jobs, each job is processed only for a single round.

We will consider two objective functions: minimizing the total length of the schedule, and minimizing

the average completion time. Given a legal schedule, let f(J) be the time J is finished. From the view of

the system, it is preferable to finish the last job early. This is known as minimizing the makespan of the

∗mmh@ru.is. Supported by Icelandic Research Fund grants 120032011 and 152679-051.
†guyk@camden.rutgers.edu. Supported by NSF grants 1218620 and 1540547

1

1 INTRODUCTION 2

schedule, or maxJ f(J). The users that “own” the jobs are most concerned that their job is finished early.

The natural objective to consider for that is to minimize the sum of completion times,
∑
J f(J), which is

equivalent to minimizing the average finish time of a job.

1.2 A Graph Theoretic Description

An alternative view of the above problems is as multicoloring problems, with colors being positive integers.

The number x(J) is then called the color requirement of J . The jobs naturally define a conflict graph

with vertices representing jobs, and with an edge between a pair of jobs that require the same resource.

Using graph terminology, a round is an independent set (namely a set of vertices no two of which share an

edge). Thus, a schedule is an ordered collection of independent sets, or a multicoloring (not just a coloring

since vertices can require multiple colors). Each vertex (job) v is to receive x(v) colors (i.e., belong to

x(v) independent sets), so that adjacent vertices receive disjoint sets of colors. In preemptive multicoloring

problems, there is no restriction on the x(v) colors that each vertex can receive, except that sets assigned to

adjacent vertices must be disjoint, as before. A different problem variant occurs when we require the colors

assigned to a vertex to form a contiguous interval – we refer to such an assignment as a non-preemptive

multicoloring.

We consider two objective functions. We assume that the colors are enumerated as the natural numbers,

1, 2, 3, . . . The makespan corresponds to the number of colors used, which equals the largest color used. The

chromatic sum criteria corresponds to
∑
v f(v), with f(v) being the largest color given to vertex v.

A coloring with few colors does not necessarily imply a low sum coloring. Even for SC, there are examples

for which using the minimum χ(G) number of colors gives a sum that is Θ(
√
n)-factor larger than the

minimum sum.

There are also examples in which preemptive coloring leads to a strictly smaller color sum. Consider a

path A − B − C with color requirements x(A) = 1, x(B) = 2, x(C) = 5. The reader may verify that every

non-preemptive coloring has sum at least 12, while there is a preemptive coloring with sum 11.

1.3 Notation

The input is an undirected, unweighted graph G = (V,E). For S ⊆ V , let S(S) =
∑
v∈S x(v) be the sum

of the color requirements of nodes in S, and let S(G) = S(V). Let p denote the largest color requirement.

Let χ(G) be the minimum number of colors required to (multi)color G. Let N(v) be the set of neighbors of

vertex v. We may intermix the scheduling and graph theory vocabulary in the remainder.

We denote SC for minimum sum coloring problem (where x(v) = 1 for every v); pMC (npMC) for preemptive

(non-preemptive) minimum makespan multicoloring ; and pSMC (npSMC) for preemptive (non-preemptive) sum

multicoloring problem, respectively.

1.4 Applications for Sum (Multi-)Coloring

Wire minimization in VLSI design, [41], terminals lie on a single vertical line, where each terminal

is represented by a short interval on this line. To its right are vertical bus lines, separated with unit

spacing. Pairs of terminals are to be connected via horizontal wires on each side to a vertical lane, with

non-overlapping pair utilizing the same lane. With the vertical segments fixed, the wire cost corresponds

1 INTRODUCTION 3

to the total length of horizontal segments. Numbering the lanes in increasing order of distance from the

terminal line, lane assignment to a terminal corresponds to coloring the terminal’s interval by an integer.

The wire-minimization problem then corresponds to sum coloring of an interval graph.

Storage allocation is a problem of minimizing the total distance distance traveled by a robot moving

in a warehouse [45]. Goods are located in a single corridor from the delivery spot. They are checked in and

out at known times. Two robots can move only if their intervals do not intersect. Since the starting point

and destinations are on a line, this gives the problem of multicoloring interval graphs.

Session scheduling on a path: In a path network,pairs of vertices need to communicate, for which

they need use of the intervening path. If two paths intersect, the corresponding sessions cannot be held

simultaneously. In this case, it would be natural to expect the sessions (i.e.,jobs”) to be of different lengths,

leading to the sum multicoloring problem on interval graphs

Resource-constrained scheduling: Say that we are given a collection of n jobs of integral lengths and

a collection of resources. We assume that each job requires an exclusive access to particular subset of the

resources to execute. The resource-constrained scheduling problem can then be modeled as a multicoloring

problem on the conflict graph. We address here the case where each task uses up to k resources. The

conflict graph is then k + 1-claw free, i.e., does not contain the star K1.k as an induced subgraph, since

disjoint vertices must use disjoint sets of resources. A natural example of a limited resource is processors

in a multi-processor system. In the biprocessor task scheduling problem, we are given a set of jobs and a

set of processors, and each job requires the exclusive use of two dedicated processors. We are interested

in finding a schedule which minimizes the sum of completion times of the jobs. In scheduling terms, this

problem is denoted by P |fixj |
∑
Cj , with |fixj | = 2. In the special case of two resources per task, such

as the biprocessor task scheduling problem, the conflict graph is a line graph. Another application of sum

multicoloring of (k + 1)-claw free graphs is scheduling data migration over a network, also known as the

file transfer problem (see, e.g., [10, 29]). Suppose that the network is fully connected, and we have a set

of files f1, . . . , fM ; each file fi needs to migrate from a source si to a destination ti. During migration, fi

requires the exclusive access to si and ti, for a pre-specified time interval; thus, fi and fj are in conflict if

{si, ti} ∩ {sj , tj} 6= ∅. Our goal is to find a migration schedule that minimizes the sum of completion times,

where the sum is taken over all files. This translates to the sum multicoloring problem on the conflict graph

of the files, which is a line graph.

1.5 Approximation Algorithms and Inapproximability

We deal primarily with minimization problems. The goal is to find an si with v(si) minimum. All the

problems we consider are NP -hard. Since NP -hard problems are unlikely to admit a polynomial time

solution, we need to settle for an approximate solutions. Let opt(I) be the value of the best solution for

problem instance I. For a minimization (respectively maximization) problem P , an algorithm is called a ρ-

approximation algorithm, if it runs in time polynomial in the input size, and for every input I, the algorithm

outputs a solution of cost at most ρ · opt(I) (respectively, at least opt(I)/ρ).

A lower bound ρ on the approximability of a problem is a proof that approximating the problem within

factor ρ in polynomial time would give a polynomial time algorithm for solving the problem exactly. Since

the latter problem is NP -hard, so is the former.

A polynomial-time approximation scheme (Ptas) for a minimization problem is an algorithm that, given

2 THE STATE OF THE ART 4

a constant parameter ε, produces a (1 + ε)-approximate solution for every ε. The running time should be

polynomial for ε constant, but could, e.g., be nf(1/ε), for some arbitrary function f , where n is the size of

the instance. A fully polynomial time approximation scheme (Fptas) for P is an a 1 + ε-approximation

algorithm that runs in time polynomial in n and in 1/ε.

1.6 Graph Classes

We define here the main classes of graphs that we will encounter.

Perfect graphs (see [21]) are those for which the clique number equals the chromatic number, in every

induced subgraph. Chordal graphs are graphs that contain no cycle of size 4 or larger as an induced subgraph.

An Interval graph is a special case of a Chordal graph: vertices correspond to intervals on a line with two

vertices adjacent whenever their intervals intersect. Bipartite graphs are the 2-colorable graphs.

A k-tree is a graph that can be formed by the following process. Starting with a k + 1-clique (complete

graph on k+ 1 vertices), and keep adding vertices adjacent to some k-clique. A Partial k-tree is a subgraph

of a k-tree. These graphs are exactly the graphs of Treewidth k (the definition via treewidth is more complex

and outside our scope).

A Line graph has a vertex for each edge of an underlying graph, with adjacencies between edges that

intersect. A graph is k + 1-claw free if it does not contains the star K1,k+1 as an induced subgraph.

Planar graphs are those that can be drawn on a plane with no two edges intersecting. Hexagon graphs

are a subclass of planar grpah defined in [38], with important applications for cellular networks. A Unit disc

graph [8] has vertices represented by unit circles in the plane, with two vertices being adjacent if the circles

intersect.

Outline In the next section, we overview quickly the state-of-the-art on sum-coloring and multicoloring

problems. We then devote a section to each of the major approaches used for tackling sum (multi-)coloring

problems: Greedy approaches in Sec. 3, randomized “doubling” in Sec. 4, partitioning in Sec. 5, and delays

in Sec. 6. We then close with a few open problems.

2 The State of the Art

We briefly summarize the known results on makespan coloring and sum-coloring problems.

Makespan problems (Multi)coloring a Line graph is equivalent to (multi)coloring the edges of a graph,

so that adjacent edges are assigned disjoint sets of colors.

For certain graphs, the pMC problem can be reduced to the ordinary coloring problem. A vertex v of color

requirement x(v) is replaced by a clique of x(v) vertices (connecting a copy of v to a copy of u if u and v are

connected). This reduction is polynomial if p is polynomial in n, but can often be done implicitly for large

values of p. This gives an optimum algorithm for pMC on certain perfect graphs such as Chordal graphs. But

large cliques cannot be introduced to Bipartite (or 2-colorable) graphs, hence the reduction does not work

for general perfect graphs. Similarly, one cannot introduce large cliques into a Planar graphs.

The above reduction, also does not work for the non-preemptive case. For a summary of known results

for Minimum coloring, pMC, and npMC see Table 1. The O∗() notation hides poly(log log n) factors.

3 SUM COLORING FUNDAMENTALS 5

Table 1: Known results for multicoloring problems

Coloring Multicoloring

u.b. l.b. pMC npMC

General graphs O∗(n/ log3 n)[23] n1−ε[14] O∗(n/ log3 n)[23]

Perfect graphs 1 [21]

Bipartite Graphs 1 Folklore 1 Folklore 1 Folklore

Chordal graphs 1 [20] 1 [21]

Interval graphs 1 [20] 1 [21] 2 + ε [9]

Partial k-trees 1 [2] 1 [28] 1 [28]

Planar graphs 4/3 [1] Npc 11/6 [34]

Hexagon graphs 4/3 [38, 40] Npc [38] 4/3 [38]

Line graphs Opt+1 [44] Npc [22] 1.1 [39]

Sum coloring problems The SC problem was first studied explicitly by Kubicka [30]. Efficient algorithms

have been given for trees [30], partial k-trees [28], and regular bipartite graphs [35]. See Table 2 for a summary

of best results known.

Table 2: Known results for sum (multi-)coloring problems

SC SMC

u.b. l.b. pSMC npSMC

General graphs∗ n/ log3 n [4, 13] n1−ε [4, 14] n/ log3 n [6, 13] n/ log2 n [6]

Perfect graphs 3.591 [16] Apx [7] 5.436 [16] O(log n) [6]

Interval graphs 1.796 [16] Apx [43] 5.436 [16] 11.273 + ε [16]

Bipartite graphs 27/26 [36] Apx [7] 1.5 [6] 2.8 [6]

Partial k-trees 1 [28] Ptas [24] Fptas [24]

Planar graphs Ptas [24] Npc [24] Ptas [24] Ptas [24]

Trees 1 [30] Ptas [25] 1 [25]

Line graphs 1.8298 [27] Npc 2 [6] 7.682 [16]

Line graphs of trees 1 Ptas [37]

k-claw free graphs k k [8] 1.796k2 + 0.5

Intersection of k-sets k [4] k [6] 3.591k+.5 [18]

Unit disc graphs 2 [8] Npc 2 [8]

3 Sum Coloring Fundamentals

We examine first two of the simplest and most natural solution strategies for sum coloring.

Canonical colorings The most basic property of a good sum coloring is that it be minimal : no vertex

can be moved to a smaller color without destroying the coloring property. Namely, each vertex colored c

should have neighbors colored 1, 2, . . . , c− 1. Such a coloring is sometimes called canonical.

3 SUM COLORING FUNDAMENTALS 6

We can observe that a canonical coloring has sum at most n+m, where n (m) is the number of vertices

(edges), respectively. Form an arbitrary order of the vertices that is consistent with the canonical coloring,

and let bi denote the number of neighbors of vertex i that precede it in the ordering. Observe that each edge

(i, j) contributes exactly one to bi + bj ; therefore, the sum equals the number of edges,
∑
i bi = m. We can

also note that the color of i is at most bi + 1, and thus the color sum is at most
∑
i(bi + 1) = m+ n. This is

also equivalent to d+2
2 n, where d is the average degree of the graph, for an approximation ratio of at most

d+2
2 [31].

This can be extended to an “everywhere sparse” parameter. A graph has inductiveness (or degeneracy)

D if there is an ordering of the vertices such that each vertex has at most D neighbors that precede it in the

ordering. Such an ordering can be found by repeatedly removing the minimum degree vertex. If we then

color the vertices in this order, using the smallest available color for each vertex, the resulting chromatic

sum is at most D+2
2 n.

Greedy colorings A natural heuristic is to color the vertices one color set at a time, each time finding

largest possible independent set in the remaining graph. After all, the more vertices that are colored with

the first color, the smaller the sum is likely to be. We call this the Greedy algorithm.

More formally, let Ri be the set of vertices that have not been colored by Greedy with the first i − 1

colors. Initially, clearly R0 = V . In each round i = 1, 2, . . ., Greedy finds a maximum independent set Xi in

the graph induced by Ri, assigns those vertices the color i, and updates Ri+1 = Ri \Xi.

Theorem 3.1 ([4]) Greedy achieves 4-approximation for SC.

We give a simpler proof from [15], that was stated for the related Sum Set Cover problem.

The proof idea is to compare the areas of geometric figures that represent the two colorings, the greedy

and the optimal coloring. We form a histogram for both colorings, with a column for each vertex of unit

width and height proportional to some measure of the contribution of that vertex to the objective function.

The key argument is showing that if we reduce the scale of the greedy histogram by a factor of two, along

both the x- and y-dimensions, then it will fit inside the optimal histogram. Since the areas of the original

histograms correspond to the color sums, this immediately shows that the sum of the greedy coloring is at

most four times that the optimal chromatic sum.

The optimal histogram has a column for each vertex, of unit width and height equivalent to the color

assigned. It follows immediately that the area equals the color sum. We order the columns of the histogram

in non-decreasing height, which corresponds to the order of the vertices in the optimal coloring.

Define the price of Xi as pi = |Ri|/|Xi|. The greedy histogram has a unit-width column for each vertex;

the height of the column is pi if the vertex was colored i by Greedy (i.e., if contained in Xi). The columns are

ordered by the greedy sets Xi, and hence the heights of rectangles in the greedy histogram are not necessarily

monotone.

Let Gr =
∑k
i=1 i|Xi| be the sum and k be the number of colors of the coloring returned by Greedy. Note

that Ri = ∪j≥iXj .

Claim 3.2 The area of the greedy histogram equals Gr =
∑k
i=1 pi|Xi|.

Proof: Since for each vertex in Xi there is a column of height pi, the area of the greedy histogram is clearly∑k
i=1 pi|Xi| =

∑k
i=1 |Ri|, applying the definition of pi. On the other hand, the coloring of each Xi by Greedy

3 SUM COLORING FUNDAMENTALS 7

delays the remaining vertices by Ri; thus, Gr =
∑k
i=1 |Ri|. 2

Consider Figure 1.

OPT
1

2

3

o

5

1
2
3

GREEDY

o

POINT Q

2 3 4 5 6 7 8 9 101
POINT Q

OPT

Figure 1: Optimum and greedy histograms (left); the shrunk greedy histogram aligned with the optimal one

(right).

We now scale the greedy histogram by halving both the height and width of each column. Thus, in

this shrunk greedy histogram, the columns corresponding to vertices in Xi have width 1/2 and height pi/2.

We position the shrunk greedy histogram over the optimal histograms so that their lowest right points is

collocated. For example, in Figure 1, the greedy histogram has 10 rectangles, ranging from x = 0 to x = 10,

so we place the shrunk greedy histogram so that it starts at point x = 5.

To establish our claim, we show that the shrunk histogram is completely contained inside the optimal

one. To this end, consider an arbitrary point Q inside the shrunk histogram; see Fig. 1 for an example. Let

i be the round in which Greedy colored the corresponding vertex (whose rectangle contains Q). Let h be the

height of Q from the baseline, and note that h is at most the height of its rectangle in the shrunk greedy

solution, or pi/2. Recall the set Ri of vertices that Greedy has not colored by the start of round i. Let r be

the distance from Q to the right edge of the shrunk greedy histogram (rounded down to the nearest integer).

Note that there are |Ri| vertices left to be colored when Greedy starts round i, and thus there are at most

|Ri| columns to the right of Q in the greedy histogram. In the shrunk histogram, where each is of width

1/2, that makes for a distance at most |Ri|/2; thus, r ≤ |Ri|/2.

The issue boils down to the height of the r-th last column in the optimal histogram, which equals to the

number of colors used in the optimal solution for the first n − r vertices. The greedy rule implies that the

largest independent set among the vertices in Ri is of size |Xi|. To color all but |Ri|/2 ≥ r vertices of Ri,

the optimal sum coloring uses at least |Ri|/(2|Xi|) = pi/2 colors. Thus, to color all but r vertices of the

whole graph, the optimal solution must use at least pi/2 colors. Hence, the height of the column containing

Q in the optimal histogram is at least pi/2, and Q is therefore contained inside the optimal histogram. This

completes the proof of 4-approximation.

A construction is given in [5] showing that the performance ratio of Greedy is in fact no better than 4.

4 SLICING AND DICING USING RANDOMIZED GEOMETRIC CHOICES 8

4 Slicing and Dicing using Randomized Geometric Choices

A two-person game We will introduce the technique as the following two-person game. Player 1 (the

adversary) writes down a secret, a positive real z ≥ 1, on a piece of paper and folds it. Player 2 (the

algorithm) then produces a series of guesses x0, x1, . . . until a guess exceeds z, i.e., xk ≥ z, for some guess

k. The goal of the algorithm is to minimize the total sum of the guesses, relative to the value of the

secret: minimize

∑k

i=0
xi

z . As the algorithm must perform well on every z, it effectively seeks to minimize

maxz

∑k

i=0
xi

z .

The natural deterministic strategy is the classic doubling trick: select xi = 2i, for i = 0, 1, This

strategy has a worst case competitive ratio of 4. The worst case occurs when xk−1 just barely undershoots

z, in which case the final guess xk overshoots by a factor of 2; the other factor of 2 comes from the cost of

the previous guesses
∑k−1
i=0 xk in comparison with xk. This turns out to be the best possible deterministic

strategy [33].

With randomization against an oblivious adversary (one that fixes its choice independent of the random

bits of the algorithm), we can do better, obtaining an expected competitive ratio of e ∼ 2.781. The idea

is to average out the cost of overshooting by randomly selecting a starting guess; to do so optimally, we

additionally change the base from 2 to e. Choose α uniformly at random from [0, 1), and select guesses

xi = ei+α. The last guess is the smallest k for which xk = ek+α ≥ z, or k + α ≥ ln z. The random

variable k + α− ln z is distributed like α, uniformly in [0, 1), and thus xk/z = ek+α−ln z has expected value

E(α) = e − 1. This means that in expectation, the overshoot is a factor of e − 1. The previous guesses

contribute a further multiplicative factor of e/(e− 1), since
∑k
i=0 xk = ek+α+1−1

e−1 < e·ek+α
e−1 = e

e−1 · xk.

This technique is often applied when the guesses and the answer must be integers; it is then simple to

just round the guesses down.

Using the game for sum (multi)coloring An easy application of this game is in solving npSMC on

easily colorable graphs. Let us illustrate it on bipartite graphs, using the color requirement of each vertex

as the value used in the game. We obtain subgraphs V0, V1, . . ., where Vi consists of the vertices with

color requirement in (xi−1, xi]. We then two-color the underlying subgraph induced by Vi (i.e., compute a

bipartition), giving a multicoloring of the subgraph using at most 2xi colors. Finally, the colorings of the

subgraphs are concatenated to form the final schedule.

The doubling strategy then ensures that each vertex v is fully colored within the first 8x(v) colors.

This is obviously an 8-approximation, since the vertex cannot be completed before color x(v). By using

the randomized strategy, the expected cost for each vertex is 2e · x(v), resulting in a coloring of expected

cost 2e · S(G) = 2
∑
v∈V (G) x(v). (It can also be derandomized.) By a finer analysis and by adjusting the

multiplier appropriately, the bound can be improved to 2.796S(G) [6].

Ways of applying the technique The first application of this technique on sum coloring problems was

the above application for npSMC of bipartite graphs, using the color requirements. The slicing technique can,

perhaps surprisingly, be used in two additional ways.

Another way is to use the fractional values of a linear programming relaxation. This has resulted

in 2e-approximation for pSMC on perfect graphs, a 7.7-approximation for npSMC for line graphs and 11.3-

approximation on interval graphs, and 3.6-approximation for SC on perfect graphs [16].

5 APPROXIMATION SCHEMA VIA INSTANCE-SENSITIVE PARTITIONING 9

The third way is to use a subroutine for the Maximum induced k-colorable subgraph problem, letting

xi denote the value of k in the i-th call. This problem is polynomially solvable in interval graphs and

comparability graphs (see [26]). That leads to constant-approximation for SC on interval, comparability,

co-comparability, trapezoid and permutation graphs [26].

Interestingly, all three variations of the technique were applied in [12] to the same problem, which is a

variant of npSMC where jobs are run in batches and no new job can be started before the whole previous

batch completes.

5 Approximation Schema via Instance-Sensitive Partitioning

The randomized geometric partitioning technique is oblivious in that the actual distribution of values in the

instance does not affect the partitioning. For finer approximation, we may need to construct the partition

more carefully. Let us examine when we can hope to obtain a polynomial-time approximation scheme

(PTAS).

As before, we aim to find breakpoints b1, b2, . . ., that define subproblems V1, V2, . . ., where Vi consists of

vertices with color requirements in the range (bi−1, bi] (with b0 = 0). We compute a schedule for each Vi, and

concatenate them in sequence. That is, if we use ci colors for subproblem Vi and denote Ci = c1+c2+· · ·+ci,
then we schedule the coloring of Vi during rounds Ci−1 + 1, Ci−1 + 2, . . . , Ci−1 + ci.

The impact of selecting a particular breakpoint bi defining a subproblem Vi is that it delays the rest of the

vertices (with color requirement larger than bi). We can compute this delay cost as Delay(bi) = g(bi) ·C(Vi),

where g(b) = |{v : x(v) > b}| equals the number of vertices with larger color requirement and C(Vi) is the

length of the schedule computed for subproblem Vi. The total delay cost of a sequence of breakpoints is

then Delay =
∑
iDelay(bi) =

∑
i=1 g(bi) · C(Vi). The key question is how large Delay is compared with

the cost of the optimal solution Opt; as a simple bound, we can use that it is at least the sum of the optimal

costs of the subproblems, Opt ≥
∑
iOpt(Vi). To this end, we need a schedule that is short, i.e., of small

makespan, while at the same time, the coloring on each subproblem must also be efficient, with a good

approximation of the chromatic sum. We therefore need a simultaneous approximation of the sum and the

makespan objectives.

Recall that S(G) =
∑
v∈V x(v) denotes the sum of color requirements of a graph G and p denotes the

largest color requirement.

The following result achieves the desired partitioning.

Proposition 5.1 (The breakpoint lemma [24]) Let X = {x1, . . . , xm} be a set of non-negative reals,

and let q be a number. Let g(x) be the number of elements in X greater or equal to x. Then, there is a

sequence of integral breakpoints bi, i = 1, 2, . . ., with
√
q ≤ bi+1/bi ≤ q, such that

∑m
i=1 g(bi) ·bi ≤ 1

ln
√
q S(X).

Additionally, this can be achieved with a polynomial time algorithm.

With the right algorithm for scheduling the subproblems, we can obtain a good solution for the whole.

We say that an instance is p-bounded if all color requirements are at most p. The following result follows

easily from the breakpoint lemma, since the delays amount to at most O(1/ log p)Opt.

Corollary 5.2 Suppose there is an efficient algorithm for a sum multi-coloring problem on p-bounded graphs

in graph class G that: a) approximates the sum within 1+O(1/ log p)-factor, and b) uses at most O(p) colors.

Then, we can approximate the sum multi-coloring problem on all graphs in G within factor 1 +O(1/ log p).

5 APPROXIMATION SCHEMA VIA INSTANCE-SENSITIVE PARTITIONING 10

We give examples of this approach on three different graph classes.

5.1 Bounded Treewidth Graphs

Graphs of small treewidth are a good example of graphs that can be handled efficiently, by efficient solution

of p-bounded graphs and classical rounding-and-scaling.

To begin with, p-bounded instances can be handled exactly.

Theorem 5.3 [24] For any integers k and p, the npSMC problem on p-bounded graphs with treewidth k admits

an exact algorithm that runs in time O(n · (k · p · log n)k+1).

This result follows from standard techniques once it is established that the number of colors in optimal

sum multicolorings is O(kp log n).

Suppose we are aiming for a 1 + ε-approximation. We round the color requirements up to the nearest

multiple of q = bεp/n2c, and produce an n2/ε-bounded instance I ′ where all lengths are scaled down by a

factor of q. We can solve it exactly in (n/ε)O(k) time and scale back the solution to apply to the original

instance. The cost formed by the rounding can be shown to increase the sum cost by at most 1 + ε-factor.

Since the complexity is polynomial in n and 1/ε, we obtain an Fptas.

Corollary 5.4 npSMC admits an Fptas on graphs of constant treewidth.

5.2 Planar Graphs

The starting point of most algorithms for planar graphs is the following classic result.

Theorem 5.5 (Baker’s decomposition [3]) Given a graph G = (V,E) and integer k, we can find in

polynomial time a subset U ⊆ V with at most n/k vertices inducing a treewidth-2 graph, such that the graph

G′ induced by V \ U is of treewidth at most k.

Our approach is to use the breakpoint lemma, and apply the following 1 + ε-approximate algorithm on

each subgraph Vi. Let h be such that 2(5 + 8 lg h)/h = ε/2.

Step 1: Partition the vertices of Vi into Ui and Vi \ U , as per Thm. 5.5, with k = dhpe.

Step 2: Compute an Fptas solution of G′i, the graph induced by Vi \ U , as per Cor. 5.4.

Step 3: Let W be the set of vertices with color (1 + 8 lg h)p and larger in the solution of G′i. Color the

subgraph induced by U ∪W using 4p colors (using that the underlying graph is planar, and therefore

4-colorable), and append it to the coloring of Vi \ (U ∪W).

It can be shown that after using p(1 + 8 lg h) colors, all but at most Opti/(hp) vertices have been fully

colored in the coloring of G′i, where Opti is the optimal multi-chromatic sum of Vi. Thus, W contains at

most Opti/(hp). Also, by Thm. 5.5 and the value of k, |U | ≤ Opti/(hp). The cost of coloring U ∪W is at

most (4 + 1 + 8 lg h)p · |U ∪W | ≤ 2(5 + 8 lg n)/h · Opti = εOpti/2. Hence, the resulting coloring of Vi is

a 1 + ε-approximation. Combined with the breakpoint lemma, we obtain a Ptas for (unrestricted) planar

graphs.

6 DELAYING LARGE JOBS: PAYING YOUR DUES 11

5.3 Generalization to Minor-Free Graphs

let H be a fixed graph (whose size is viewed as a constant). To contract an edge (u, v) in an undirected

graph is to merge u, v into a single vertex whose neighborhood is N(u) ∪N(v) \ {u, v}. H is a minor of G

if it can be derived from G by a sequence of vertex and edge deletions and contractions of edges.

Definition 5.1 A graph is H-minor-free iff H is not a minor of G

Theorem 5.6 ([11]) For every H-minor-free graph and integer k, there is a constant c = cH such that the

vertices can be partitioned to k + 1 disjoint sets so that every k of the sets induce a graph with treewidth

bounded by ch · k. Furthermore, such a partition can be found in polynomial time.

As graphs with constant treewidth are O(1)-colorable, the above is exactly what we need for the proof.

Hence:

Theorem 5.7 npSMC on H-minor-free graph admits a Ptas, for any fixed graph H.

6 Delaying Large Jobs: Paying Your Dues

Sum Coloring k + 1-claw-free Graphs

In non-preemptive problems, a large job once selected must be processed without preemption, and can

thereby cause delay for many small jobs. One useful algorithmic strategy is therefore to delay the large jobs.

We consider here a delay technique that results in a 2k(2k − 1)-approximation for npSMC on k + 1-claw free

graphs. For simplicity we assume all color requirements are distinct, resolving ties arbitrarily.

The idea is as follows. We form a new color requirement y(v) = (β+1) ·x(v) for each vertex v, where β is

a parameter to be determined. During the first βx(v) rounds that v is selected it waits, and only becoming

active once it is selected for the βx(v) + 1-th time. Note that neighbors cannot both be selected in the same

round, and, e.g., cannot both be waiting. Note that the rounds of waiting can be non-consecutive, while the

active rounds are consecutive. When selecting vertices, our algorithm gives preference to jobs with small

length (namely, small x(v)).

1. Let I ← ∅, j ← 1, I1 ← ∅

2. While G 6= ∅ do:

(a) Let Ij be the set of active vertices that are not fully processed.

(b) Iteratively add to Ij the vertex of smallest x(v) among vertices with no neighbors in Ij , until Ij

is a maximal independent set

(c) Give color j to the vertices in Ij and update the color requirements yv.

(d) Delete fully colored vertices

(e) j ← j + 1

3. Return the resulting coloring

6 DELAYING LARGE JOBS: PAYING YOUR DUES 12

Analysis We shall show the following.

Theorem 6.1 The above algorithm yields a 2k · (2k−1)-approximation for npSMC on k+ 1-claw free graphs.

This implies a 12-approximation for Line graphs, which are 3-claw free.

A vertex that is neither active nor waiting in a round (and has not completed its processing) is said to

be delayed. This must be caused by neighbors that are either active or waiting in that round. It can only

be delayed by waiting neighbors that are shorter, due to the rule of preference.

Definition 6.1 Let Ns(v) be the neighbors of v of smaller color requirement, and let Nb(v) be those neighbors

of v that are scheduled to completion before v. Define dg(v) = S(Ns(v)) and db(v) = S(Nb(v)) to be the total

color requirements of these sets.

Let f(v) be the time (round) when our algorithm finishes scheduling vertex v. A part of f(v) comes from

the (β + 1)x(v) rounds in which v is waiting or active. During other rounds, v is delayed by its neighbors,

either the shorter ones in Ns or the longer ones in Nb. We say v experiences a good delay if it is delayed by a

shorter neighbor; otherwise, the delay is bad for v. More formally, if I is the set of vertices active in a round,

then v experiences a good delay if I ∩Ns(v) 6= ∅, and bad delay otherwise (in which case I ∩Nb(v) 6= ∅).
Our main lower bound on the optimal costOpt involves the following measure. LetQ(G) =

∑
uv∈E min{x(v), x(w)}.

Claim 6.2 Opt ≥ S(G) +Q(G)/k

Proof: For a vertex v, let N−(v) be the set of vertices that finish before v in the optimal solution. Since the

graph is k + 1-claw free, at most k vertices in N−(v) can be simultaneously active in any round. The finish

time of v in the optimal solution is then at least x(v) + d 1k
∑
u∈N−(v) x(u)e. Summing over the vertices in

the graph, the bound follows from the observation that Q(G) =
∑
v

∑
u∈N−(v) min(x(v), x(u)). 2

We bound the good and bad delays separately. Bounding the former is straightforward.

Claim 6.3
∑
v

dg(v) ≤ (β + 1) ·Q(G).

Proof: A vertex v can experience at most (β + 1)
∑
u∈Ns x(u) good delay. Thus, the total good delay is at

most (β + 1)
∑
v

∑
u∈Ns x(u) = (β + 1)Q(G). 2

The key idea is to bound the bad delays in terms of the good ones.

Claim 6.4 db(v) ≤ (k − 1) · dg(v)

β − k + 1
.

Proof: We say that a round is an event for v if a neighbor of v in Nb is waiting. The total waiting of nodes

in Nb is
∑
u∈Nb β ·x(u), and each such wait occurred during an event for v. Since the graph is k+1-claw free,

at most k neighbors of v can be active or waiting in the same round. If some neighbor of v is waiting, then

v is neither active nor waiting, which means that it was delayed either by a shorter neighbor or an active

longer neighbor. Therefore, at most k − 1 longer neighbors of v can be waiting in a round, in particular

during an event for v. Thus, there are at least∑
u∈Nb

β · x(u)

k − 1
≥ β · db(v)

k − 1

7 OPEN PROBLEMS 13

events for v. Since v is delayed during an event, there are at most dg(v) + db(v) events for v Combining

the bounds on the number of events, we have that dg(v) + db(v) ≥ β · db(v)/(k − 1). The claim follows by

rearranging the expression. 2

Proof of Thm. 6.1: Set β = 2(k − 1). Then, db(v) ≤ dg(v), by Claim 6.4. The finish time of vertex v by

our algorithm is then x(v) + dg(v) + db(v) ≤ x(v) + 2dg(v). Summing over the vertices, the cost Alg of the

algorithm’s schedule is bounded by Alg − S(G) ≤ 2 · (2k − 1)Q(G) ≤ 2(2k − 1) · k(Opt− S(G)), by Claims

6.3 and Claim 6.2. 2

7 Open problems

In addition to improving the results in Table 2 consider the following open problems:

1. Does npSMC admits a constant ratio on chordal graphs? Maybe even on perfect graphs?

2. What is the ratio of npMC on planar graphs?

3. Give a a significant lower bound on approximating Open Shop scheduling.

References

[1] K. Appel and W. Haken. Every planar map is four colorable. Bulletin of the American Mathematical

Society 82(5):711–712, 1976.

[2] S. Arnborg and A. Proskurowski. Linear time algorithms for NP-hard problems restricted to partial

k-trees. Disc. Appl. Math. 23(1):11–24, 1989.

[3] B. S. Baker. Approximation algorithms for NP-complete problems on planar graphs. J. ACM 41:153–

180, Jan. 1994.

[4] A. Bar-Noy, M. Bellare, M. M. Halldórsson, H. Shachnai, T. Tamir. On chromatic sums and dis-

tributed resource allocation. Inf. Comp. 140:183–202, 1998.

[5] A. Bar-Noy, M. M. Halldórsson and G. Kortsarz. A Matched Approximation Bound for the Sum of

a Greedy Coloring. Information Processing Letters 71(3–4):135–140, 1998.

[6] A. Bar-Noy, M. M. Halldórsson, G. Kortsarz, H. Shachnai, and R. Salman. Sum multicoloring of

graphs. J. Algorithms 37(2):422–450, 2000.

[7] A. Bar-Noy and G. Kortsarz. The minimum color-sum of bipartite graphs. J. Algorithms 28:339–365,

1998.

[8] A. Borodin, I. Ivan, Y. Ye and B. Zimny. On sum coloring and sum multi-coloring for restricted

families of graphs. Theor. Comput. Sci. 418:1–13, 2012.

[9] A. L. Buchsbaum, H. Karloff, C. Kenyon, N. Reingold and M. Thorup. OPT versus LOAD in Dynamic

Storage Allocation. SIAM Journal on Computing 33(3):632–646, 2004.

REFERENCES 14

[10] E. G. Coffman, M. R. Garey, D. S. Johnson, and A. S. LaPaugh. Scheduling File Transfers. SIAM

Journal on Computing 14(3):744–780, 1985.

[11] E. Demaine, M. Hajiaghayi, and K. Kawarabayashi. Algorithmic graph minor theory: Decomposition,

approximation, and coloring. Proc. 46th Annual IEEE Symposium on Foundations of Computer

Science (FOCS), 637–646, 2005.

[12] L. Epstein, M. M. Halldórsson, A. Levin and H. Shachnai. Weighted Sum Coloring in Batch Scheduling

of Conflicting Jobs Algorithmica 55(4):643–655, 2009.

[13] U. Feige. Approximating Maximum Clique by Removing Subgraphs SIAM J. Discrete Math.

18(2):219–225.

[14] U. Feige and J. Kilian. Zero Knowledge and the Chromatic number. Journal of Computer and System

Sciences 57(2):187–199, October 1998.

[15] U. Feige, L. Lovász and P. Tetali. Approximating Min Sum Set Cover. Algorithmica 49(4):219–234,

2004.

[16] R. Gandhi, M. Halldórsson, G. Kortsarz and H. Shachnai. Improved Bounds for Sum Multicoloring

and Weighted Completion Time of Dependent Jobs. ACM Transaction on Algorithms 4(1), 2008.

[17] R. Gandhi, M. Halldórsson, G. Kortsarz and H. Shachnai. Corrigendum: Improved results for data

migration and open shop scheduling. ACM Transactions on Algorithms 9(4):34, 2013.

[18] R. Gandhi, M. Halldórsson, G. Kortsarz and H. Shachnai. Improved results for data migration and

open shop scheduling. ACM Transactions on Algorithms 2(1):116–129, 2006.

[19] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-

Completeness. W. H. Freeman, 1979.

[20] F. Gavril. Algorithms for Minimum Coloring, Maximum Clique, Minimum Covering by Cliques, and

Maximum Independent Set of a Chordal Graph. SIAM J. Comput. 1(2):180–187, 1972.

[21] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial Optimization.

Springer-Verlag, 1993.

[22] I. Holyer. The NP-completeness of Edge-Coloring. SIAM J. Comput. 10(4), 1981.

[23] M. M. Halldórsson. A Still Better Performance Guarantee for Approximate Graph Coloring. Inf.

Process. Lett. 45(1):19–23, 1993.

[24] M. M. Halldórsson and G. Kortsarz. Tools for multicoloring with applications to planar graphs and

partial k-trees. J. Algorithms 42(2), 334–366, 2002.

[25] M. M. Halldórsson, G. Kortsarz, A. Proskurowski, R. Salman, H. Shachnai, and J. A. Telle. Multi-

coloring trees. Inf. Computation, 180(2):113–129, 2003.

[26] M. M. Halldórsson, G. Kortsarz, H. Shachnai. Sum coloring interval and k-claw free graphs with

application to scheduling dependent jobs. Algorithmica 37:187–209, 2003.

REFERENCES 15

[27] M. M. Halldórsson, G. Kortsarz and M. Sviridenko. Sum edge coloring of multigraphs via configuration

LP. ACM Transactions on Algorithms 7(2):22, 2011.

[28] K. Jansen. The optimum cost chromatic partition problem. In Proc. Third Italian Conference on

Algorithms and Complexity (CIAC ’97), LNCS 1203, pages 25–36, 1997.

[29] Y. Kim. Data migration to minimize average completion time. Algorithmica 63(1–2):347–362, 2012.

[30] E. Kubicka. The chromatic sum of a graph. PhD thesis, Western Michigan University, 1989.

[31] E. Kubicka, G. Kubicki, and D. Kountanis. Approximation Algorithms for the Chromatic Sum. In

Proc. First Great Lakes Computer Science Conference, LNCS 1203, pages 15–21, 1989.

[32] A. Kovács. Sum-multicoloring on paths. In Proc. 21st Annual Symposium on Theoretical Aspects of

Computer Science (STACS), pages 68–80, 2004.

[33] Y. Kortsarts and J. Rufinus. Teaching the power of randomization using a simple game. In Proc. 39th

SIGCSE Technical Symposium on Computer Science Education, (SIGCSE), pages 460–463, 2006.

[34] M. Kchikech and O. Togni. Approximation Algorithms for Multicoloring Planar Graphs and Powers

of Square and Triangular Meshes. Discrete Mathematics and Theoretical Computer Science 8(1):159–

172, 2006.

[35] M. Malafiejski. The complexity of the chromatic sum problem on cubic planar graphs and regular

graphs. Electronic Notes in Discrete Mathematics, 8, May 2001.

[36] M. Malafiejski, K. Giaro, R. Janczewski, and M. Kubale. Sum coloring of bipartite graphs with

bounded degree. Algorithmica 40(4):235–244, 2004.

[37] D. Marx. Minimum sum multicoloring on the edges of trees. Computational Complexity 14(4):308–

340.

[38] C. McDiarmid and B. Reed. Channel assignment and weighted coloring. Networks 36(2):114–117,

2000.

[39] T. Nishizeki and K. Kashiwagi. On the 1.1 edge-coloring of multigraphs. SIAM Journal on Discrete

Mathematics 3(3):391–410, 1990.

[40] L. Narayanan and S. Shende. Static frequency assignment in cellular networks. Algorithmica 29(3),

396–401, 2001.

[41] S. Nicoloso, M. Sarrafzadeh and X. Song. On the sum coloring problem on interval graphs. Algorith-

mica 23:109–126,1999.

[42] M. Queyranne and M. Sviridenko. Approximation Algorithms for Shop Scheduling Problems with

Minsum Objective. Journal of Scheduling 5:287–305, 2002.

[43] D. Marx. A short proof of the NP-completeness of minimum sum interval coloring. Oper. Res. Lett.

33(4):382–384, 2005

REFERENCES 16

[44] V. G. Vizing. On the estimate of the chromatic class of p-graphs. Diskret. Analiz. 3:23–30, 1964.

[45] G. Woeginger. Private communication, 1997.

