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Abstract

Network design problems, such as generalizations of the Steiner Tree Problem, can be
cast as edge-cost-flow problems. An edge-cost flow problem is a min-cost flow problem in
which the cost of the flow equals the sum of the costs of the edges carrying positive flow.

We prove a hardness result for the Minimum Edge Cost Flow Problem (MECF). Using
the one-round two-prover scenario, we prove that MECF does not admit a 208" n_ratio
approximation, for every constant € > 0, unless NP C DTIME (nPoY'oen)

A restricted version of MECF, called Infinite Capacity MECF (ICF), is defined. The ICF
problem is defined as follows: (i) all edges have infinite capacity, (ii) there are multiple sources
and sinks, where flow can be delivered from every source to every sink, (iii) each source and
sink has a supply amount and demand amount, respectively, and (iv) the required total flow
is given as part of the input. The goal is to find a minimum edge-cost flow that meets the
required total flow while obeying the demands of the sinks and the supplies of the sources.
This problem naturally arises in practical scheduling applications, and is equivalent to the
special case of single source MECF, with all edges not touching the source or the sink having
infinite capacity.

The directed ICF generalizes the Covering Steiner Problem in directed and undirected
graphs. The undirected version of ICF generalizes several network design problems, such
as: Steiner Tree Problem, k-MST, Point-to-point Connection Problem, and the generalized
Steiner Tree Problem.

An O(log z)-approximation algorithm for undirected ICF is presented. We also present a
bi-criteria approximation algorithm for directed ICF. The algorithm for directed ICF finds a
flow that delivers half the required flow at a cost that is at most O(n¢/e*) times bigger than
the cost of an optimal flow. The running time of the algorithm is O(z/¢ - n!*1/€), where
denotes the required total flow.

Randomized approximation algorithms for the Covering Steiner Problem in directed and
undirected graphs are presented. The algorithms are based on a randomized reduction to a
problem called %-Group Steiner. In undirected graphs, the approximation ratio matches the
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approximation ratio of Konjevod et al. [KRS01]. However, our algorithm is much simpler.
In directed graphs, the algorithm is the first non-trivial approximation algorithm for the
Covering Steiner Problem. Deterministic algorithms are obtained by derandomization.



1 Introduction

1.1 Problems

Network design problems deal with finding subgraphs of minimum cost that satisfy certain con-
straints. The (undirected) Steiner Tree Problem is among the fundamental problems in network
design [GJ79]. The input of the Steiner Tree Problem is a graph G = (V, E) with edge prices
p(e) and a set of terminals T C V. The objective is to find a min-cost tree 7 that spans the
terminals in 7". In the directed version, the objective is to find a min-cost arborescence that spans
the terminals in 7'.

There are several generalizations of the Steiner Tree Problem. In the Group Steiner Problem,
the input consists of (disjoint) subsets of vertices {g;};, and the objective is to find a min-cost
subgraph that contains at least one vertex from each group (see [GKR00]). In the Covering
Steiner Problem, a demand d; is associated with every group g;. The objective is to find a min-
cost subgraph that contains at least d; vertices from group g;, for every i (see [KR00]).

All these problems are special cases of the Minimum Edge Cost Flow Problem (MECF)
(see [GJ79, ND32]). In the fixed cost model, the cost of a flow is the sum of the prices of
edges carrying positive flow. In MECEF, the objective is to find a max-flow with minimum cost in
the fixed cost model. We allow multiple sources and sinks in MECF instances, where flow can be
shipped from every source to every sink. In addition, a supply amount and a demand amount is
attached to every source and sink, respectively. Observe that an MECF instance with multiple
sources and sinks can be easily reduced to an MECF instance with a single source-sink pair.

The Infinite Capacities MECF Problem (ICF) is a restriction of MECF in which there are
multiple sources and sinks and all edges have infinite capacity. Observe that in ICF (as opposed
to MECF) multiple sources and sinks cannot be reduced to a single source-sink pair. In addition,
the ICF problem is equivalent to the single source MECF problem with the restriction that only
edges touching the source or the sink can have finite capacity. Edges not touching the source and
the sink have infinite capacity.

1.2 Applications

The MECF Problem is a fundamental flow problem with many applications. A sample of these ap-
plications include optimization of synchronous networks (see [LS91]), source-location (see [AIM+00]),
transportation (see [EGM+97, HY97, GL94, MW84|), scheduling (for example, trucks or man-
power, see [EGM+97, L96]), routing (see [HS89]), and designing networks (for example, communi-
cation networks with fixed cost per link used, e.g., leased communication lines, see [CFG00, FA92,
GC96, HS89, HY97, KP99, MMW86, MW84]).

It may seem that the ICF is a very restricted variant of MECF, as ICF is equivalent to single
source MECF problem with only the edges touching the source or the sink having finite capacity.
However, the ICF problem was not invented just for the sake of this paper. Quite the contrary.
We have encountered the ICF problem first as one of the problems we needed to solve (from a
practical point of view) while working on shift scheduling problems [GGK+03]; This is a project
part of us consulted for the Ximes Inc, corporation. At the end it produced a product called OPA
marketed since 2001 (see [GGK+03] for more details). The shift problem deals with finding a
small collection of shifts that can be used to cover loads that vary over time. In fact, the problem



that we need to solve for the shift scheduling project is even more restricted than ICF. The shift
design problem is equivalent to ICF instances with unit edge costs and an acyclic directed graph.
In [GGK+03] practical heuristics are used to efficiently solve the ICF problem and the other
scheduling applications.

In addition, infinite capacity edges naturally arise in Transshipment problems. Transshipment
problems model multiple servers from which commodities can be delivered to clients. The supply
models the amount that can be delivered by a warehouse, and the demand models the amount of
commodity desired by a client.

But more than that, ICF generalizes classic and well known problems. As we said, the directed
ICF generalizes the directed covering Steiner problem. Undirected ICF models several network
design problems. A few examples are: The k-MST(see [G96]), k-Steiner (see [CRW-01]), Gener-
alized Steiner (see [AKR95]), and Point-to-Point Steiner Problems (where groups are pairs). The
reason that undirected ICF is so powerful is that the problem reduces to finding a min-cost subset
of edges so that in the edge-induced subgraph the following holds: in every connected component,
the sum of the demands is not greater than the sum of the supplies. In Appendix A, reductions
of various Steiner problems to undirected ICF are presented.

We believe that this uniform formulation of several different problems can help in relating
these seemingly very different problems. In fact, our research does not rule out the possibility
of a constant approximation algorithm for undirected ICF. This seems interesting, as such an
algorithm will give a uniform constant approximation algorithm both for the generalized Steiner
problem and for the k—MST problem (just to name two examples).

1.3 Previous Results

Krumke et al. [KNS+98] proved a logarithmic hardness of approximation for MECF. They also
presented an F*-approximation, where F* denotes the maximum total flow.

Konjevod & Ravi [KR00] presented a O(logn - loglogn - log(max; |g;|) - log g - log(max; |d;|))-
approximation for the undirected Covering Steiner Problem, where ¢ denotes the number of sub-
sets. The approximation ratio was improved to O(logn - loglogn - log(max; |g;|) - log(q - max; |d,l))
by Konjevod et al. [KRS01]. An improvement of this approximation ratio when max; d; = 208" %)
is also presented in [KRSO01].

The undirected ICF problem with unit supplies and demands appeared previously as the point-
to-point connection problem [LMSL92], where its NP-completeness was proved.

1.4 Results

We improve the hardness result of approximating MECF using a reduction from one-round two-
prover protocols (see [AL96]). We show that MECF with uniform edge-prices does not admit a
2l0g'~“n_ratio approximation for any constant € > 0 unless NP C DTIME (nP°¥82) | This hardness
holds even if only two edge capacity values are allowed, namely, c(e) € {1, poly(n)}, for every e.
We present a bi-criteria approximation algorithm for directed ICF. First, we present an algo-
rithm that finds a flow with half the required total flow, the cost of which is O(n¢/€*) times the
cost of an optimal flow. The running time of the algorithm is O(x%¢ - n'*'/¢), where z denotes
the requires total flow. (Scaling is applied when the total flow z is non-polynomial). Observe that
this is essentially the best ratio we could expect at the moment, as even the basic directed Steiner



currently has only an n® approximation for every constant € > 0. In fact, we essentially show that
the algorithm of et al. [CCC+99] can be generalized with new ideas, to apply to the much more
general ICF problem.

Thus, the algorithm is a greedy algorithm and is similar to the algorithms of Charikar et
al. [CCC+99] and Kortsarz & Peleg [KP99]. A bi-criteria algorithm for directed ICF is presented
that increases the flow amount to (1 — ¢’) -  with a multiplicative overhead both in the running
time and in the approximation ratio that is exponential in 1/¢/. For a constant €, this implies
more total flow with the same asymptotic running time and approximation ratio.

We present an O(log x)-approximation algorithm for undirected ICF, where z is the required
total flow. Our algorithm is based on a modification of the approximation algorithm of Blum et
al. [BRV99] for the node-weighted k-Steiner Tree Problem.

We present the first non-trivial approximation algorithm for the Directed Covering Steiner
Problem. Our algorithm uses a randomized reduction to a new problem called the 1/2—Group
Steiner problem. In the %-Group Steiner Problem the objective is to find a min-cost subgraph that
contains a vertex of g; for at least half the groups. We solve the %—Group Steiner Problem in the
directed case using a reduction to the directed Steiner Tree Problem approximated by [CCC+99].
The randomized algorithm has an approximation ratio of O(% -logn) and a running time O(n®¢).
We present a derandomization procedure using 2-universal hash functions; the increase in the
running time is quadratic.

The randomized reduction from the Covering Steiner Problem to the %—Group Steiner Problem
is also used to obtain a randomized algorithm for the Undirected Covering Steiner Problem. Our
approximation ratio is O(logn - loglogn - log(max; |g;|) - log(>"; d;)). This ratio matches the best
known approximation ratio of Konjevod et al. [KRS01]. However, our algorithm is considerably
simpler. We approximate the %-Group Steiner Problem by a modification of the algorithm of
Garg et al. [GKROO] for the undirected Group Steiner Problem. Again, the derandomization via
2-universal hash functions is applied.

Organization. In Section 2, the problems MECF, ICF, and U-ICF are defined. In Section 3,
junction trees are defined and two lemmas are presented. In Section 4, we present some simple
properties of ICF and U-ICF and a relate ICF to U-ICF. In Section 5, we present a bi-criteria
approximation algorithm for U-ICF. In Section 6, we show how to increase the total flow deliv-
ered by the approximation algorithm. In Section 7, we present an approximation algorithm for
undirected ICF. In Section 8, we present randomized approximation algorithms for the Covering

Steiner Problem (directed and undirected graphs). In Section 9, we prove a hardness result for
MECF.

2 Problem definitions

A network is a 4-tuple N = (V, E, ¢, p) where (V, E) is a graph, c(e) are edge capacities, and p(e) >
0 are nonnegative edge prices. Given a source s and the sink ¢, an st-flow is a function defined
over the edges that satisfies capacity constraints, for every edge, and conservation constraints, for
every vertex, except the source and the sink. The net flow that enters the sink # is called the total
flow, and is denoted by |f].



The support of a flow f is the set of edges that either deliver positive flow, namely, the set
{e € E: f(e) > 0}, or have zero cost. We denote the support of f by x(f). The price of a subset
of edges F' C E is the sum of the prices of edges in F'. We denote the price of F' by p(F'). The
price of a flow f in the fixed cost model is p(x(f))-

The following problem is NP-Complete [GJ79, ND32|.

The Minimum Edge-Cost Flow Problem (MECF).

Instance:

e A network N = (V, E,c,p) consisting of a (directed or undirected) graph (V, E), edge ca-
pacities c(e), and edge prices p(e).

e A budget P.

Question: Is there a maximum st-flow f in N such that p(x(f)) < P?

Instead of considering a single source and sink, one may consider a situation where there is a
set of sources S C V and a set of sinks 7" C V. The set of candidate flow paths consists of the set
of paths from a source s € S to a sink ¢ € T'. This version is reducible to an st-flow problem.

A supply amount c(s) of a source s € S is an upper bound on the net flow deliverable by s. A
demand amount c(t) of a sink ¢ € T is an upper bound on the net flow absorbed by ¢.

The Infinite Capacities version of MECF is defined as follows.

The Infinite Capacities Minimum Edge-Cost Flow Problem (ICF).
Instance:

e A network N = (V, E,p) consisting of a (directed or undirected) graph (V, E), and edge
prices p(e). Every edge has an infinite capacity.

o A set of sources S C V and a set of sinks 7" C V. Each source s € S has a positive integral
supply amount ¢(s). Each sink ¢t € T has a positive integral demand amount c().

e A required integral total flow = and a budget P.

Question: Does there exist a flow f such that |f| > 2 and p(x(f)) < P?

Observe that, by a simple reduction, the in-degree of sources and the out-degree of sinks can
be zeroed. This can be achieved by adding dummy nodes that act as sources and sinks.

We refer to a flow f with total flow = as an z-flow. We denote by f*(N,z) an optimal z-flow
for an ICF instance (N, z). Namely, f*(V,z) is an z-flow with minimum support cost among
the set of z-flows in N. We denote the cost of an optimal z-flow in N by p*(N,z), namely,
p*(N,z) = p(x(f*(N,z))). We reformulate ICF as a search problem of finding an optimal z-flow
(hence an ICF instance is a pair (/V,z) and the budget P is not part of the input).

The Unit ICF Problem (U-ICF). The unit demands and supplies version of ICF (U-ICF) is
defined for ICF instances in which ¢(s) = 1, for every source s € S, and ¢(t) = 1, for every sink
teT.



3 Preliminaries

Reduced network N;. Consider an ICF instance (N, z) and an integral flow f in N. Suppose
that |f| < z. Let N; be the network obtained from N by the following changes:

1. The supply of every source is decreased by the amount of flow it supplies in f. Similarly,
the demand of every sink is decreased by the amount of flow it receives in f.

2. The price of every edge in x(f) is set to zero.

Observe that the reduced network Ny does not have reverse edges as defined in residual networks
when computing a max-flow. Indeed, there the capacity of a reverse edge is finite (since the
capacity of a reverse edge equals the amount of flow along the corresponding edge), but finite
capacities are not allowed in ICF.

Bi-criteria approximation algorithm. An algorithm A is an («, §) bi-criteria approximation
for ICF if, given (V, z), it computes a flow f that satisfies the following two conditions:

lfl > a-x
p(x(f) < B-p'(N,x).

3.1 Junction trees

A directed graph is an arborescence rooted at r if its underlying graph is a tree, the in-degree of
the root r is zero, and there is a directed path from the root 7 to all the other vertices. A reverse
arborescence rooted at r is a directed graph such that the directed graph obtained by reversing
the directions of all the arcs is an arborescence.

Consider a U-ICF instance (IV, z) with a set of sources S and a set of sinks 7. A junction tree
rooted at 7 is an edge induced subgraph JT of N such that: (i) J7T is the union of an arborescence
G and a reverse arborescence G both rooted at r. (ii) The leaves of G are sinks. (iii) The leaves
of G are sources. (iv) G; and G have an equal number of leaves.

Observe that the total flow that can be shipped using the edges of a junction tree J7T' equals
the number of sources in J7T'.

The problem of finding a low cost junction tree is defined as follows:

The Minimum Cost Junction Tree Problem (Min-JT).

Instance:
e A network N = (V, E, p) consisting of a directed graph (V, E), and edge prices p(e).
e A set S of sources and a set T of sinks.

e An integer x.



Goal: Find a min-cost junction tree JT' with z sources (and sinks).

We denote the cost of an optimal junction tree with x sources by JT*(N, z).

In [CCC+99] the k-Directed Steiner Problem (k-DS) is defined. In this problem the goal is
to find a min-cost arborescence rooted at r that spans at least k& terminals from a given set of
terminals. The best known approximation algorithm for £-DS is given in [CCC+99] where the
following theorem is proved (see also [Z97] for earlier results).

Theorem 3.1 [CCC+99] For any e > 0 there exists a k¢/e-ratio, O(k*-n'/¢)-time approzima-
tion algorithm for k-DS.

Min-JT generalizes k-DS, and therefore, it is not easier to approximate than Set-Cover. An
approximation algorithm for Min-JT is obtained as follows. Guess the root r of the junction
tree. Apply a k-DS approximation algorithm on the graph with sinks as terminals and a k-DS
approximation algorithm on the reversed graph with sources as terminals. We summarize this
approximation algorithm in the following corollary.

Lemma 3.2 For any e > 0 there exists an z¢/e*-ratio, O(x?/¢ - n'+1/¢)-time approzimation algo-
rithm for Min-JT.

3.2 The forest lemma

The following lemma shows that we may restrict flows in ICF to forests.

Lemma 3.3 For every ICF instance (N,x), there exists an optimal xz-flow f* such that the un-
derlying graph of the graph induced by the edges of x(f*) is a forest.

Proof: Let f* denote an optimal z-flow in N with a minimum support size. Assume for the
sake of contradiction that there exists a (not necessarily directed) cycle C' in x(f*). Let e; be
an edge carrying minimum flow in C. We re-route flow along C' as follows. Add a circulation of
f*(e1) along C in the direction opposite to the direction of e;. The effect of the addition of this
circulation is as follows: (i) The flow on edges with the same direction as the circulation increases
by f*(e1). (ii) The flow on edges with a direction opposite to the circulation decreases by f*(e;).
The minimality of f*(e;) along C implies that this decrease does not create negative flows. In
particular, the flow on e; is zeroed.

The new flow is still an optimal z-flow and its support is a proper subset of x(f*), contradicting
the minimality of x(f*). 1

The following assumption is based on Lemma 3.3.
Assumption 3.4 The underlying graph of the support of an optimal x-flow is a tree.

Assumption 3.4 is justified by the following modification. Add a new node v with zero in-degree
and add zero cost edges from v to all the other nodes. A subset of these edges can be used to glue
the forest into a tree without increasing the cost of the support. Although these glue edges do not
deliver flow, we may regard them as part of the support since their cost is zero.

Remark: Observe that the flow tree is nmot an arborescence or even a junction tree. It is
simply a tree in the undirected sense, with directions over the edges.



3.3 A decomposition lemma

Assumption 3.4 allows us to restrict the search to trees. A subtree 7' of a tree 7 is said to have
an articulation vertex r, if every path from a node in 77 to a node in 7 — T’ traverses the node
r. The following decomposition lemma is used for recursing when optimal z-flows avoid junction
trees.

Lemma 3.5 [BRV99, KP99] Let T be a tree with edge costs p(e). Let p(T) denote the sum of the
edge costs of edges in T. Let S be a subset of vertices in T, and k < |S|. There exists a sub-tree
T'C T that has an articulation vertex such that

IT'NS| € [k,3k], and
(7)) . »(T)
snT'l — S|

4 Properties of ICF and U-ICF

In this section we state some easy properties of ICF. Since the proofs are completely standard,
and for the sake of keeping the paper in a reasonable length, some proofs are omitted.

Integrality of f*(NV,z). The Integrality of supplies and demands implies that without loss of
generality f* is integral and hence may be decomposed into unit flow paths.

Claim 4.1 Let x denote an integer. FEvery ICF instance that allows an x-flow has an optimal
integral x-flow.

Proof: We show how to compute an integral z-flow f from a non-integral xz-flow ¢ such that
p(x(f)) < p(x(g9)). Let g denote a non-integral optimal z-flow of N. Construct a network N’ that
contains only edges in the support of g. Every z-flow in N’ is also an z-flow in N. Compute an
integral z-flow f in N’ (one exists since supplies and demands are all integral). Since x(f) C x(g),
it follows that p(x(f)) < p(x(g)). It follows that f is an integral optimal z-flow in N, as required.
|

Observe that in a U-ICF instance the unit supplies and demands imply that every integral
z-flow induces a matching between sources and sinks.

r-approximation. Krumke et al. prove that MECF admits an F-approximation, where F' de-
notes the maximum total flow [KNS+98]. Their algorithm uses a min-cost max-flow algorithm.
The flow along every edge in the support of a min-cost max-flow is in the interval [1, F], and
therefore, an F-approximation follows.

In the case of U-ICF an z-approximation can be obtained by a min-weight matching of size x
between sources and sinks. The weight of an edge between a source and a sink is the minimum
cost of a path between them. The complexity of computing a min-weight matching is O(n?).



Monotonicity. Consider an ICF instance (/V,z) and an integral flow f in N. We now wish to
solve the ICF instance (Ny,z — |f|) since an (z — | f|)-flow in N plus f constitutes an z-flow in N.
The problem with this approach is that p*(Ny, z — | f|) might be larger than p*(NN, z). Say that the
source s; can deliver a unit of flow either to ¢, or to t, with a price of 1. The source s, can deliver
a unit of flow to t, with a price of 1, or deliver a unit to ¢; with a price of p > 1. Suppose f is a
flow of one unit from s; to t5. It follows that s, must deliver a unit of flow to ¢;, but that is very
costly. Observe that the usage of a residual graph as used in max-flow algorithms (i.e., reverse
edges with a capacity equal to the flow along the edge) is not possible in ICF problems because
all edge capacities must be infinite in ICF. The development of an incremental non-backtracking
algorithm therefore requires that a monotonicity property holds.

Definition 4.2 An ICF instance (N, x) is monotone with respect to a flow f if

p*(Np,z —|f]) <p™ (N, z).

There are two important cases in which monotonicity always holds: undirected networks and
networks with a single source (or a single sink). We refer to an ICF instance with a single source
as a rooted ICF instance. Observe that if the capacities are polynomial in n, the rooted ICF is
identical to the k-Steiner Problem [RSMRR-96]. It is easily seen that the k—Steiner problem is a
special case of rooted IC'F. We can use a solution for k—Steiner to solve rooted ICF' by adding
c(t) edges leaving every sink ¢; ¢(t) being the sum of capacities in the graph. The union of all the
new vertices is declared the set of terminals. Clearly, a Steiner tree spanning k vertices in the new
instance translates to a k—flow in the /CF' instance.

In the following claims, f; denotes an integral optimal z-flow in V.

Claim 4.3 Monotonicity always holds in undirected networks.

Proof: The proof is similar to the reduction of a bi-criteria approximation algorithm to an
approximation algorithm. For simplicity consider a U-ICF instance (N,z) with an undirected
network N. Consider a flow f in N. We wish to prove that p*(Ny,z — |f|) < p*(N,z). Let M*
and M/ denote the matching between sources and sinks induced by f; and f, respectively. By
Claim B.1 in the appendix, there exists a matching consisting of x — |f| edges between f-vacant
sources and f-vacant sinks. This matching induces z — | f| paths from f-vacant sources to f-vacant
sinks in x(f) U x(fZ). These paths are augmenting paths. These paths define a flow of z — |f|
units in Ny the cost of which is bounded by p*(N, z), and the claim follows. |

Claim 4.4 Monotonicity always holds in rooted ICF.

Proof: Consider a flow path f, from the source s to a sink ¢. The flow path f, can only block
flow paths of f; that end in ¢. The amount of flow that is blocked by an integral flow f is bounded
by |f|. Hence, by removing |f| units of flow from f;, we obtain an (z — |f|)-flow in N; whose
support is contained in the support of f. |

Claim 4.4 is not used in the rest of the paper, but seemed important to observe. The following
claim proves that monotonicity holds in a weak sense as long as |f| < z/2.

10



Claim 4.5 [Weak Monotonicity] Consider a U-ICF instance (N, x) and an integral flow f such
that |f| < xz/2. Then,

p(Np,z/2—=|f])) <p"(Np,z —2-|f)),
and

p*(Np,z—2-|f[) < p"(N, =),

Proof: An integral optimal z-flow f} induces a matching between sources and sinks. A matched
pair (s,t) is said to be touched by f if s supplies flow in f or ¢ receives flow in f. The number of
touched pairs is bounded by 2-|f|. Let g denote the flow obtained from f} by removing all the flow
paths between matched pairs that are touched by f. Therefore, |g| > « — 2|f| and x(g) C x(f3).
In addition we get that p*(Ny,z/2 — |f|)) < p*(Ng,z —2-|f|)), and he claim follows. |

Hence, weak-monotonicity can be used in designing non-backtracking bi-criteria algorithms that
deliver at most z/2 flow.
Finally, by standard scaling and rounding methods we get a reduction from ICF to U-ICF.

Polynomial supplies and demands. The reduction splits every source s into ¢(s) sources,
each with a unit supply amount. The neighbor set of each source originating from s equals the
neighbor set of s. We apply the same reduction to every sink. Since the supplies and demands are
polynomial, it follows that the size of the obtained network is polynomial in the size of the ICF
instance.

Non-polynomial supplies and demands. In this case scaling and rounding are applied first
to obtain an ICF instance with polynomial supplies and demands.

Let n = |V] and m = |E|. Recall that we are looking for an z-flow. Fix a parameter -y that is
polynomial in n. Let ¢ = vma+{nm}

We may assume without loss of generality that c¢(s) < z, for every source or sink s. We round
the supplies and demands down to the nearest multiple of ¢ as follows:

/ c(s)

d(s)=¢-| - ]
Let N’ denote the network obtained by rounding the supplies and demands in N. Consider the
support x(f¥) of an optimal z-flow f} in N. The total flow across every cut of this support is at
least x. The rounding reduces the capacity of every cut by less than ¢ -m. Hence, by the min-cut
max-flow theorem, it follows that one can deliver more than x —¢-m flow in N’ using only edges in
x(f;). The ICF instance corresponding to N’ requires a total flow ' = ¢ [ 7 (1 - }Y)J Observe
that 2’ < x — ¢ -m and that p*(N', z') < p*(N, z). Moreover, every z'-flow in N’ is also an z'-flow
in N.

Since all supplies and demands are integral multiples of ¢ in N’, an argument similar to
Claim 4.1 is applicable. Namely, there exists an optimal z'-flow f} in N’ such that f}, delivers an
integral multiple of ¢ along every edge.

We now apply scaling. Let N” denote the network obtained from N’ by scaling demands and
supplies as follows: ¢’(s) = ¢/(s)/p. Let 2" = z'/p. The total flow required in N” is z”. Observe
that the network N” has polynomial supplies and demands (i.e., the maximum supply is bounded
by 7 - max{n, m}). Every z"-flow in N” induces an z'-flow in N, and p*(N", z") < p*(N, z).

We summarize this reduction in the following claim.

11



Claim 4.6 Let v be polynomial in n. If there exists an («, 8) bi-criteria poly-time approxima-
tion algorithm for U-ICF, then there exists an (« - (1 — %r - mTl{nm}),ﬁ) bi-criteria poly-time
approximation algorithm for ICF.

Observe that the total flow that the claim guarantees for an ICF instance almost equals a- (1 — %),

the o(1) term is due to the rounding procedure. Thus, in the sequel we restrict our attention to
U-ICF.

5 An approximation algorithm for U-ICF: directed net-
works

In this section we present a bi-criteria approximation algorithm for U-ICF that achieves an
(3,0 (?—Z))—approximation ratio. The algorithm only finds an z/2-flow due to monotonicity (see
Claim 4.5). The running time of the algorithm is O (xQ/e . n1+1/6) which n times the running time
of the Charikar et al. [CCC+99] algorithm. Our algorithm and its analysis are closely related to

the [KP99] and [CCC+99] algorithms.

Notation. Fix 1/3 > ¢ > 0. We denote the approximation ratio for the Directed k-Steiner Trees
by 7(k), namely, 7(k) = k¢/€%. The density of a flow f is the ratio ’%. We denote the density
of a flow f by v(f).

5.1 Motivation

In the submodular cover scenario, a covering problem P is given. The optimum solution O PT for
the problem can be decomposed into a union of some “local components” OPT;. With each OPT;
there is an associated cost and an associate part of the problem that OPT; covers. The sum of
costs of O PT; is proportional to the cost of OPT. Moreover, the sum of amounts that the O PT;
cover, is larger than what is required by P. A classical example is the set-cover problem. In the
set cover problem the optimum collection of covering sets OPT = {Si,...} is decomposed into
OPT; = {S;}.

In case a decomposition as above is possible, by an averaging argument, there is a single P;
whose density, namely, its cost over the amount that it covers, compares well with the optimum
density. Thus, it is well known since [J74, W82] that submodular cover problems admit a greedy
algorithm (that picks at every iteration the P; with minimum density) that delivers a logarithmic
approximation.

It is difficult to directly apply the above scenario to ICF. Note that by Assumption 3.4 the
underlying support is a tree, and the edges of the tree have directions. We would like to decompose
the tree into its immediate subtrees. A subtree T; can provide all the flow paths that are confined
to T;. The optimum tree does not easily decomposes in this way because flow paths can cross
from one tree 7; into another. To overcome this, we do the following. Consider a U-ICF instance
(N,x). If the tree 7 has a node r that belongs to a constant fraction of the flow paths, then r
together with the flow paths that traverse it constitutes a junction tree J7'. Note that the number
of sources and sinks in J7 is a constant fraction of the total flow x. Moreover, the cost of JT
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is bounded by p*(N, z). If, on the other hand, the flow traversing every node in 7 is less than
a fraction of z, then 7 has a subtree 7' that contains a constant fraction of the flow paths and
p(T")/p(T) is constant. The following lemma formalizes this observation which is the basis for
the approximation algorithm.

Lemma 5.1 If k < z/6, then
min {JT*(N, B o B (N, k)} < p*(N, )

Proof: Let f; denote an optimal z-flow in N. By Assumption 3.4, we may assume that the
underlying graph of the support of f is a tree 7. Let S denote the active sources in f} (i.e.,
|S| = x). By Lemma 3.5, there exists a subtree 7' C 7 that has a root r with at least 2k and no
more than 6k sources, so that p(7")/|SNT'| <p(T)/|S|. We consider the following two cases.

1. If at least k sources in 7' deliver their flow to sinks outside 7", then 7 contains a junction
tree rooted at r the root of 7'. This junction tree has at least k sources and sinks, and hence

JT*(N,k) < p(T) =p*(N, z).

2. If less than k sources in 7' deliver their flow to sinks outside 7', then there are at least k
flow paths within 77, implying that p*(N, k) < p(T"). However, p(T") < % . p(T), and the
lemma follows.

5.2 The algorithm

The approximation algorithm Find-Flow for U-ICF is listed in Figure 1. The instance of IC'F re-
quires z flow units. Our algorithm relaxes that condition and finds only z/2—flow. The algorithm
computes a flow by computing a sequence of augmenting flows. Note that € is a parameter that ef-
fects the approximation ratio and the running time. Algorithm Find-Flow invokes two procedures.
The first procedure is Min-W-Matching(N, d) that finds a d-flow that is d-approximate using a
min-weight matching, as described in Section 4. The second procedure, Find-Aug-Flow(N',1),
computes an augmenting flow a; in N’ such |a;| is at least =< - i.

The parameter t is a threshold parameter used for a stopping condition of the recursion. The
idea is to use an x—dependent threshold ¢ = 7(z) for the stopping condition of the recursion.
When the stopping condition is met (namely, the residual required flow units is at most 7(z)),
we use a simple brute force min-cost matching solution to find the remaining flow, as described
above. The outer call is thus to Find — Flow(N,xz/2,7(z)). Finally, observe that we always
employ Find-Aug-Flow to find € - d flow assuming that a d—flow exists. This implies that the
second parameter in Find-Aug-Flow is at most ed with d the maximum flow value in the network.
If d is not an integer, than the assumption that at least d flow units can be delivered in the network
is equivalent to assuming [d] possible flow units can be delivered. The way we use Find-Aug-Flow
makes sure these assumptions are valid.
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Algorithm Find — Flow(N,d,t)
1. If d <t then return (Min-W-Matching(N,d)).
2. else

(a) a < Find-Aug-Flow(N, e - d).
(b) Return (a U Find — Flow(N,,d — |al,t)).

Algorithm Find-Aug-Flow(N', 1)
1. Remark: 7(z) = x¢/€.
2. If i < 7(i/€) then return (Min-W-Matching(N',1)).
3. else
(a) For j =0 to log,, ;> do
L) =1-1+e) i
ii. f; < Find-Aug-Flow(N',i(j)).
(b) fJT — JT(N’,Z/G)
(c) Let f be a flow with minimum density in {{f;};, f/r}.
(d) Return (f).

Figure 1: Algorithm Find-Flow.
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5.3 Approximation ratio

We prove the approximation ratio of Algorithm Find — Flow by showing that the procedure
Find-Aug-Flow(N',i) finds a flow the density of which competes with the density of an optimal
(i/e)-flow in the reduced network. As mentioned before, we apply Find-Aug-Flow appropriately
guaranteeing that (i/eps)—flow exists. However, the claim is valid even if no such flow exist. Then
the price of an (i/e)— flow is defined to be co. Since the density is compared with an optimal
flow in a reduced network, the analysis relies on monotonicity. By Claim 4.5, monotonicity is
guaranteed as long as |f| < x/2. In this section we prove the following claim.

Claim 5.2 Let ¢ = ;% and € < 1/3. Algorithm Find — Flow(N,z/2,7(z)) finds an z/2-flow f

n?2
in N that satisfies
6 ¢
< g = o( )
pr) ST ra ¢

Define the function 8(x) by
6

c€
3 .

B(z) =

The following lemma shows three properties of the function 3(z).

X

o))

Lemma 5.3 Ifx > 1 and € < 1/3, then

B(ife) >ife ifi <T(ife) (1)
Blafe) > ° - r(z/6) )
Ble) 2 Bly) T ify < of2. )

Proof: Equation 1 follows from 3(i/€) > 1 - 7(i/€) > i/e. Equation 2 follows from & - 7(z/6) =
& (z/e)*- (¢/6)° < B(x/e). Equation 3 follows from % e < % - 1xe = 97cc. E€ We need to
prove that 1—f: < 2% which is equivalent to In (1 + 12—_:) < ce-In2. Since In(1 4+ z) < z, it follows
that it suffices if 2 < ce - In2, which holds for ¢ = 3/In2 and for € < 1/3. The lemma follows.

The following claim proves that Find-Aug-Flow(N', i) is a bi-criteria approximation algorithm in
the following sense; it finds an augmenting flow a; whose density v(a;) competes with the density
of an i/e-optimal flow. We use the following notation: f} denotes an z-optimal flow in N'.

Claim 5.4 Let a; = Find-Aug-Flow(N',4). Then the density of a; satisfies
v(ai) < Bi/€) - v (fiye)-

Proof: The proof is by induction on i. If i < 7(i/€), then a; is computed by the minimum weight
matching algorithm. In this case |a;| =i and p(a;) <1 -p(f;). Obviously p(f;") < p(f7.), so

E’Y(fz*/e)
(by Eq. 1) < B(ife)-y(fi0)-
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The induction step, for i > 7(i/e), is proved by considering f;.. By Assumption 3.4 it is shown
that the underlying graph of the support of f), is a tree. Let S denote the set of active sources
in i*/e. Lemma 3.5 implies that there exists a subtree 7 (of the underlying graph of the support
of f7.) with an articulation vertex v that satisfies:

T 1

TS| € [,5) and (4)
2T < 050, )

We now consider two cases depending on the amount of flow that traverses the articulation
vertex v € 7 in the flow f). If the amount of flow traversing v in the flow f},, is at least €-[7 NS/,
then this flow defines a junction tree rooted at v that delivers at least € - |7 N S| > i/6 units of
flow. The cost of this junction tree is at most p(f};.). (Note that even though we know that all
the sources of this junction tree reside in 7, it might be the case that reaching the sinks requires
all the support of f7,..) Obviously, p(JT*(N',i/6)) < p(f;,). By Lemma 3.2, the junction tree
approximation algorithm returns a flow f;; that satisfies:

\fir| = /6, and
p(fir) 7(i/6) - p(JT*(N',i/6))
7(i/6) - p(fi)e)-

VANRVAN

Hence the density of f;r satisfies:

W) < T sy

= /) (i)
(by Eq. 2) < B(i/e) - v(f)e)-

Since v(a;) < v(fsr), the claim follows in this case.

We consider now the case that the amount of flow that traverses the articulation vertex v € T
is less than e+ [7'NS|. Let f.NT denote the flow paths of f;;. that are fully contained in 7. The
flow f7NT delivers at least (1 —€) - |SN T units of flow. Let k =¢€-(1—€)-[SNT]. By Eq. 4 it
follows that k£ € [(1 —¢€) -i/6,i/2]. Consider the index j that satisfies i(j) < k < i(j)(1 + ¢), and
consider the recursive call Find-Aug-Flow(N',i(j)) in Line 3(a)ii. By the selection of a; (see Line
3c in Find-Aug-Flow), it follows that v(a;) < 7(a;;)). The induction hypothesis implies that

Y(aigy) < BGEG)/€) - v(fiigye)- (6)

Observe that f5 N T is a flow of at least k/e > i(j)/€ units, therefore p(f5;),) < p(T). It
follows that

. T
Y(figye) < ;ZE.)/)G

kje |SNT| »(T)
i(j)/e kje ISNT]

(by Ba.5) < (140 —— (/) (7

16



From 7(a;) < v(ai(;)), and from Eq. 6 and 7 it follows that

Ma) < BEGE T A (f)

(by Eq. 3) < B(i/€) - v(fije),

IA

and the claim follows. |

Charikar et al. [CCC+99] proved the approximation ratio achieved by an algorithm that com-
putes a solution by successively finding partial solutions that have a small density. The following
claim summarizes the approximation ratio achieved by Algorithm Find — Flow using the same
result and proof.

Claim 5.5 Let f denote a flow in N, f < x/2. Let ' = z/2 — |f| and N' = Ny. Let fp =
Find — Flow(N',z',t). Then,

p(fr) * B(z)
p*(N’,x’) < t+/0 7d2

Proof: The proof is by induction on z'. If 2/ < t, then f = Min-W-Matching(N',z"). Hence,
p(fw) < ' -p*(N',z'). As p*(N',z') < p*(N, ), the induction basis follows.
The induction step is proved as follows. Let a = Find-Aug-Flow(N', ¢ - z'). By Claim 5.4,

pa) < Jaf-ple) - TN )

Observe that 5(z)/z is a non-increasing function. Hence |a| - f(z) /2" < fj’_|a| B(z)/z dz, and

o) < [0 Py, (9)

'~la| 2

The induction hypothesis applied to z' — |a| and the network N; implies that the flow fu_,
computed by Algorithm Find — Flow(N.,z' — |al|,t) satisfies

N R A ) (10

Weak monotonicity means that
p*(Ng, 2’ = laf) < p"(N', ).
The claim follows by concatenating the intervals of integrations in Equations 9 and 10. 1

Claim 5.2 follows from Claim 5.5 by using a zero flow f.

5.4 Time complexity

The following claim shows that the asymptotic running time of Algorithm Find-Aug-Flow is n
times bigger than that of the approximation algorithm for the directed Steiner Problem.
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Claim 5.6 The running time of algorithm Find-Aug-Flow(N, 1) is O(i%/¢-n't/¢), where n denotes
the number of vertices in the network N.

Proof: Recall that (up to constant factors) the running time of the approximate directed Steiner
Problem is #(z), where t(z) = /¢ - n'/c.
The running time #'(z) of Find-Aug-Flow(N,1) satisfies the following recurrence:

. n? if i < 7(i/e)
(1) < ogrse3/(1-¢)
DI t'(i(7)) + n - t(i/6) otherwise.

A simple inductive proof gives that, if € < 1/3, then /(i) < n-t(i). 1
The following claim summarizes the running time of Algorithm Find — Flow.

Claim 5.7 The running time of algorithm Find — Flow(N,d,7(d)) is O(d*€ - n't1/¢), where n
denotes the number of vertices in the network N.

Proof: Let tpr(z) denote the running time of Find — Flow(N,x,t), and tpar(x) denote the
running time of Find-Aug-Flow(N',z). The running time of algorithm Find — Flow satisfies the
following recurrence:

trr(s) < trar(eo) + ter (o (1- (1 =)-9).

This gives a geometric sum and the claim easily follows. |

6 Improved bi-criteria approximation for U-ICF

In this section we present a bi-criteria algorithm for U-ICF that finds a (1 — €) - z-flow that is
f(e) - p-approximate given a (1/2, p)-bi-criteria approximation algorithm for U-ICF. Even though
f(e) is exponential in 1/¢, it is constant if € is. The running time required to increase the flow
from an z/2-flow to an (1 — ¢) - z-flow is also exponential in 1/e, which is again constant if e is.

For simplicity we assume that the number of sinks equals the number of sources, and that
x = |S|. It is easy to reduce a U-ICF instance so that it satisfies this assumption.

6.1 The reachability graph and alternating trees

Given a subset F© C F of edges in the network N, we define the reachability bipartite graph
G = (S, T,&) between sources and sinks as follows. The edge (s,t) is in £ if ¢ is reachable from s
in N using only edges of F.

Definition 6.1 An alternating tree is an edge-induced subgraph T of G and is defined recursively
as follows:

1. A single sink t is an alternating tree.
2. If T' is alternating tree, (s,t) € &, (s,t') € &, s,t € T, and t' € T', then T'U{(s,t)} U

{(s,t")} is an alternating tree.
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An alternating forest is a collection of vertex-disjoint alternating trees.
The following properties are easily proven by induction.

Claim 6.2 For every alternating forest F, the following holds:
1. Every source in the forest has degree 2.

2. For every tree T € F and sinkt € T, there exists a perfect matching in T —t.

6.2 Collections of singletons, pairs, and alternating trees

Given a reachability graph G, we are interested in an edge induced subgraph of G consisting of a
disjoint collection of single sources, source-sink pairs, and alternating trees. We refer to such an
edge induced subgraph as an SPT.

Consider an SPT denoted by #, spanning all the sources and sinks. We partition H into two
parts ‘H, and H;: H; consists of the single sources and source-sink pairs in H. H; consists of the
alternating trees in 7. Observe that, in every alternating tree, the number of sinks equals the
number of sources plus 1. It follows that, in every SPT, the number of single sources equals the
number of alternating trees (recall the assumption that |S| = |T'|).

6.3 The flow increasing algorithm

The starting point of the flow increasing algorithm it an z/2-flow f. This flow defines a reachability
graph G. Let H denote the SPT induced by f: H, contains the source-sink pairs matched by f
and all unmatched sources. H; contains all the unmatched sinks.

The goal is to decrease the number, z, of single sources, since every SPT with z single sources
implies an (x — z)-flow. The algorithms stops if z < € - x.

Consider the matching between sources and sinks induced by an optimal z-flow. We refer to
a source-sink pair matched by an optimal z-flow as an optimum-pair. The cut (#, H;) separates
at least z optimum-pairs. It follows that there are z/2 optimum pairs that are separated either
by (i) the cut between source-sink pairs in H, and sinks in alternating trees in H;, or (ii) the cut
between single sources in ‘H, and sinks in alternating trees in ;.

An iteration of the algorithm invokes the (1/2, p)-bi-criteria U-ICF approximation algorithm
two times. Both instances are over the network N with a required total flow z/2, and a sink set
that equals the sinks in H;. In the first instance, the source set is the set of single sources in H,
and in the second instance the source set is the set of sources in the source-sink pairs in H.

The algorithm keeps the cheapest z/4-flow among the two computed flows (recall that the
U-ICF approximation algorithm only finds a flow with half the required total flow). Keeping a
flow means that the edge costs of edges in the support are zeroed.

We refer to the case that the first flow is cheaper (i.e., flow from single sources to alternating
trees) as a good iteration. Assume that an iteration is good. There are two kinds of alternating
trees: (a) trees T in which the flow matches between a sink ¢ € 7 and a single source s. Note that
such a matching may match several ¢ in the same alternating tree to several other s. In type (b)
trees, all the sinks of which do not receive flow. Trees of type (a) are shattered into source-sink
pairs, and trees of the type (b) are shattered into single sources and single sinks. Consider an
alternating tree 7 of the first type. Pick exactly one single source s that is matched by the flow
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to a sink £ € 7. By Claim 6.2, 7 — ¢ contains a perfect matching, hence 7 4 s can be partitioned
into source-sink pairs, all of which are added to H. Consider an alternating tree 7 of the second
type. The tree T is shattered into single source and sinks as follows. The sources of 7 are declared
single sources, and are added to Hs. The sinks of 7 are declared single sinks, and are added to
‘H;. . Add that perfect matching and (s,t) to Hs, and delete T from ;.

We refer to the case that the second flow is cheaper (i.e., flow from pairs to alternating trees)
as a bad iteration. Assume that an iteration is bad. For every source-sink pair (s,t) in H; for
which s is matched by the flow to a sink ¢’ in an alternating tree 7', add (s,t) and (s,?') to 7' to
obtain a larger alternating tree 7, and delete (s, ) from H;.

6.4 Analysis

Observe that the number of consecutive bad iterations is at most 4/e. The reason is that in every
bad iteration at least z/4 source-sink pairs migrate to the alternating trees. There are at most z
such pairs, therefore the number of consecutive bad iterations is bounded by z/(z/4) < 4/e.

In each bad iteration, the number of sinks in every alternating tree at most doubles. This
implies that by the time the first good iteration occurs, the number of sinks in every alternating
tree is at most 2%/¢. In a good iteration, the z/4-flow induces a matching between single sources
and sinks in alternating trees. This implies that at most 2%¢ sources are matched to sinks in the
same alternating tree. It follows that a good iteration increases the number of source-sink pairs
by at least 224/ /‘i.

Let f(e) denote the number of iterations required to reduce the number of single sources to
¢ - x. It follows that f(e) = O(1/e-2%¢.log(1/¢)). Therefore, both the running time and the

approximation ratio are increased by a factor of f(e) which is constant if € is constant.

7 An approximation algorithm for ICF: undirected net-
works

In this section we present an O(logx)-approximation algorithm for ICF when the network is
undirected. We avoid the reduction to U-ICF to get a slightly better approximation ratio.
Consider an undirected network N with a set of sources S and a set of sinks 7. Let f denote
an optimal z-flow in N the support of which has the fewest number of edges. By the Forest
Lemma, it follows that the underlying graph of x(f) is a forest F'*. Given a tree T, let ¢(7)
denote the value min{c(SNT),c(TNT)}, where ¢(SNT) (¢(T'NT)) equals the sum of the supplies
(demands) of the sources (sinks) in 7. Observe that a tree 7 can be used to deliver ¢(7) flow.

The density of a tree 7 in this case is the ratio

A P(T)

v(T) o)

The O(log x)-approximation algorithm is a greedy algorithm that accumulates edges in iterations
until an z-flow is found. In each iteration, a tree 7 is found the density of which is minimum
up to a constant. The edges of the tree are added to the solution. Before the next iteration, the
following updates take place: (i) The supplies and demands of sources and sinks in 7" are updated
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as follows: Decrease the supplies of sources in 7 such that ¢(SN7T) is decreased by ¢(7"). Similarly,
demands of sinks in 7 are decreased by ¢(7T). (ii) The set of edges in T are given zero price (or,
equivalently, these edges are contracted).

A tree T with an almost minimum density is found using the constant approximation algorithm
for node-weighted-k-Steiner-Tree (WAST) of Blum et al. [BRV99] as follows. In the node-weighted-
k-Steiner-Tree Problem the input consists of (i) an undirected graph with edge prices p(e), (ii) a
set of terminal S is given, each terminal s has a weight w(s), and (iii) a root r. The goal is to find
a min-cost tree rooted at r that spans a subset of terminals of weight at least k.

Consider F™*, the forest induced by an optimal z-flow f}. Consider the updated supplies and
demands of sources and sinks in the beginning of an iteration. The forest F'* has at least one tree
T the density of which is not greater than the density of F*. The procedure for finding a low
density tree competes with the density of 7.

The reduction is based on guessing, within a factor of 2, the total flow ¢(7) that is delivered in
T. Let k denote the guess (i.e., k£ < ¢(7T) < 2k). The algorithm considers all possible roots r and
applies that WEST approximation algorithm twice. Both times it searches for a node-weighted-
k-Steiner-Tree rooted at r. The difference is in the terminal set; the first time it uses the set
of sources (with their updated supplies) and the second time it uses the set of sinks (with their
updated demands).

The approximation ratio of O(logz) follows from the fact that the algorithm greedily con-
structs a solution by accumulating trees, the density of which is optimal within a constant. See
Johnson [J74] for a proof of this special case of Claim 5.5.

The running time of each iteration is log z times the running time of the WkST approximation
algorithm, which is O(n? - log* n). Note that in each iteration the supply of at least one source or
the demand of at least one sink is zeroed. Hence, the number of iterations is bounded by n. We
summarize the resulting algorithm in the following claim.

Claim 7.1 There ezists a O(log z)-approzimation algorithm for undirected ICF that runs in O(n?:
log*n - logx) time.

8 The Covering Steiner Problem

In this section we present a randomized approximation algorithm for the Covering Steiner Problem
both in the undirected and the directed cases. The algorithm is based on a randomized reduction
of the Covering Steiner Problem to the %—Group Steiner Problem.

The following theorem is proved in this section.

Theorem 8.1 The undirected Covering Steiner Problem has a randomized approximation algo-
rithm that finds a cover that is O(logn -loglogn -log(max; |g;|) - log(Y; d;))-approzimate with high
probability.

The directed Covering Steiner Problem has a randomized approzimation algorithm that in time
O(n'¢) finds a cover that is O(logn - ne - %) -approzimate with high probability.

In the undirected case, this result matches the approximation-ratio of [KRS01].
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8.1 The %-Group Steiner Problem

In the %—Group Steiner Problem, the input consists of a graph G = (V, E) with edge prices p(e)
and ¢ (disjoint) subsets {g;}; of vertices. A tree T in G covers a set g; if T N g; is not empty. The
goal in the %—Group Steiner Problem is to find a min-cost tree that covers at least half the groups.

In the directed case, the %—Group Steiner Problem is reducible to the k-Directed Steiner Prob-
lem. See the reduction of the Group Steiner Tree Problem in [CCC+99]. This implies an approx-
imation as in Theorem 3.1.

In the undirected case, the —-Group Steiner Problem (for every constant € > 0) can be solved
by modifying the approximation algorithm for the Group Steiner Problem of Garg et al. [GKRO00].
The modified algorithm has 3 stages:

First, a fractional relaxation is defined. The fractional relaxation is a min-cost single-source
multi-sink flow problem. We guess the root r of an optimal solution. This root serves as the
source. For every group g;, we define a commodity ¢ and a flow f; from 7 to g; (namely, the sinks
are the nodes of g;). The total flow |f;| is at most 1. The sum of total flows Y, |f;| is at least
¢/2. The max-flow f(e) along an edge e equals max; f;(e). The objective is to minimize the sum
Yep(e)- fle)

Second, following [GKR00], a rounding procedure for the above fractional relaxation is applied
when the graph is a tree. If the graph is a tree, then the union of the supports U; x(f;) induces
a tree. Moreover, the directions of the flows induce an arborescence. Let pre(e) denote the
predecessor edge of the edge e. The rounding first picks an edge e with probability f(e)/f(pre(e)),
and then keeps e provided that all the edges along the path from the root r to e are picked.

Observe that, for at least ¢/4 groups, |f;| > 1/4. Otherwise the total flow is less than ¢/2.
In [GKROO0], it is proved that if |f;| is constant, then the rounding procedure covers g; with
probability Q(m). Moreover, the expected cost of the picked edges is the fractional optimum.
It follows that O(logmax; |g;|) iterations suffice to cover half the groups, and an O(logmax; |g;|)
expected approximation ratio follows.

Finally, the graph is approximated by a tree using the tree-metric technique of Bartal [B98].
The approximation by a tree increases the approximation ratio by O(logn loglogn). We point out
that Charikar et al. [CCG+-98] presented a derandomization for an approximate tree metric and
the above rounding technique.

It follows that in the undirected case the %—Group Steiner admits an O(logn - loglogn -
log(max; |g;|))-approximation.

8.2 A randomized reduction

In this section we present a randomized reduction of the Covering Steiner Problem to the %—Group
Steiner Problem.

Given a Covering Steiner instance, consider an optimal tree 7. For every group g;, the tree
T includes at least d; vertices in g;. We randomly partition g; into d; bins. The jth bin in g; is
denoted by ¢g/. A bin g} is empty if T N g} is empty. The probability that a bin is empty is less
than 1/e (as this corresponds to throwing d; balls to d; bins). Thus, the expected number of empty
bins is less than Y, d;/e. We consider this randomized reduction to be successful if the number
of empty bins is less than Y, d;/2. The Markov Inequality implies that the reduction is successful
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with a constant probability. We may decrease the probability of a failure to a polynomial fraction
by repeating the reduction ©(logn) times.

Observe that if the randomized reduction is successful, then the reduction yields a
Steiner instance with a solution, the cost of which is at most the cost of 7.

The %—Group Steiner approximation algorithm finds a tree that covers half of the total demands.
After O(log(X; d;)) = O(logn) iterations, all the groups are covered.

1

5-Group

8.3 Derandomization

The randomized reduction can be derandomized using 2-universal hash functions (c.f. [MR95]).
First, we may assume that d; < n/log,n for every i. Indeed, as the g; are disjoint there could
be at most O(logn) “large” groups with d; > n/logn. Thus, we can consecutively compute a
feasible solution containing at least d; terminals of g;, for one “large” g; after the other. When
there is only a single group, the resulting problem is the d;—Steiner problem. In this problem we
are given a unique set of terminals and the the goal is to span at least a pre-described number of
terminals. The k—Steiner problem, in the undirected case, admits a constant approximation (see
[CRW-01]). The O(logn) applications of the d;—Steiner algorithm incur a cost O(logn) times the
optimum covering steiner cost, which is negligible in our context.

The reduction is now to the 1/3—group Steiner (and not 1/2—group Steiner) problem. Let
p < 2n the minimum prime that is no smaller than n. For every g; create d; (initially empty) bins
B;, 0 < j <d; — 1. Choose at random two numbers a,b € {0,...,p}. Ordering the g; vertices in
some arbitrary order, the j vertex in g; is mapped into bin B with k = (a; +j - b; mod p) mod d;.
The resulting bins define the groups that give the reduction to a 1/3—group Steiner instance.

Let T; be the collection of exactly d; terminals of g; included by the optimum in the covering
Steiner tree. Let k € {0,...,p — 1}. Observe that the number integers between 0 and p — 1 that
are congruent to k modulo d; is |p/d;]. Since a; + j - b; is a random number in Z),, the probability
that £ = (a; + j - b; mod p) mod d; is (|p/d;|)/p or ([p/d;])/p. Therefore,

1 1 ; 1 1

- < Pr(ve B;) < di—i—p.
Observe that by the inclusion-exclusion formula:

Pr(lJveBy)>> Prive By)— Y Pr(ve Bj and u € By).

vET; veT; v,u€T;
By pairwise independence: Pr(v € Bl and u € B}) < 1/d? + O(1/d;p). Thus,
Pr(|JveB;) >Yyer Pr(veT:) — Y yuer Pr(v € B and u € B})

veT;
>di(4-1) - 240 (5 +0(%)) =4 - o)

We used the inequality d; < n/log,n < p to prove the last inequality.

Since a bin has probability at most 1/2 — o(1) to be empty, the expected number of nonempty
bins over all groups is at least Y- d;/2 —o(X" d;) > 3 d;/3. Choosing the best a and b pair (the one
giving minimum cost), we get an instance of the 1/3—group Steiner problem of cost at most the
optimum.

The derandomization incurs a quadratic increase in the running time.
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9 A hardness result for MECF

It is natural to ask if a strong lower bound on the approximability of ICF holds. We leave this
question open. However, we try to make a first step toward this direction, by giving a strong lower
bound for MECEF. In addition, the study of MECF is interesting by its own right, for the many
important applications of this problem.

Theorem 9.1 The Minimum Edge-Cost Flow Problem with uniform edge-prices does not admit
a 28" " _ratio approzimation for any constant € > 0 unless NP C DTIME(nPo¥'°g") . This
hardness holds even if only two edge capacity values are allowed, namely, c(e) € {1,poly(n)}, for
every e.

Non-uniform polynomial edge prices are easily reducible to uniform edge prices. The reduction
replaces every edge (u,v) by a path of length p(u,v).

9.1 Background

We essentially prove hardness by giving a reduction from a one-round two-prover, interactive proof
system. In [AL96] the Labelcover-Max Problem is introduced using graph theory for presenting
the one-round two-provers scenario. We use an alternative formulation, called Max — Rep, of the
Labelcover-Max Problem defined in [K98].

In Max — Rep we are given a bipartite graph B(V1, Vo, E). The sets V5 and V3 are partitioned
into a disjoint union of k sets: V; = U, 4; and V, = Ule B;. The sets A; and B; all have size V.
The bipartite graph and the partition of V; and V; induce a super-graph # in the following way:
The vertices in H are the sets A; and B;. Two sets A; and B; are connected by a (super) edge in
H iff there exist a; € A; and b; € B; which are adjacent in G. For our purposes, it is convenient
(and possible) to assume that graph H is regular. Say that every vertex in A has degree d, and
hence, the number of super-edges is h = k - d.

In Max — Rep the goal is to select a unique “representative” vertex a; € A; from each subset
A;, and a unique “representative” vertex b; € B; from each B,;. We say that a super-edge (4;, B,)
is covered if the two corresponding representatives are neighbors in G, i.e., (a;,b;) € E. The goal
is to select unique representatives so as to maximize the number of covered super-edges.

The Satisfiability Problem (SAT) is defined as follows. A CNF Boolean formula I is given, and
the question is whether there is an assignment satisfying all the clauses. Raz proved the following
result [R95].

Theorem 9.2 [R95] Let I be an instance of SAT. For any 0 < € < 1, there exists a (quasi-
polynomial) reduction of each instance of the Satisfiability Problem to an instance G of Max — Rep
with n vertices. If I is satisfiable, then there exists a set of unique representatives which covers
all h = k - d super-edges. If I is not satisfiable, then every set of unique representatives covers no
more than h/21°6 " of the super-edges.

In the above reduction, the size, n, of the Max — Rep instance, GG, is quasi-polynomial in the size
of the SAT formula. The following easily follows from Theorem 9.2.

Theorem 9.3 Unless NP C DTIME (nPoY°8")  the Max — Rep Problem admits no 208" _rgiig
approximation, for any € > 0.
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9.2 Proof of Theorem 9.1

Proof: We reduce Max— Rep to MECF as follows. Let B be the bipartite instance of Max — Rep
at hand. Form an instance G' for MECF as follows.

Figure 2 depicts the instance G' of MECF. Add B into GG. Give all the edges of B directions
from the A; vertices to the B; vertices. The edges of B are assigned zero cost and capacity 1. Add
a source s and a sink ¢. Add a special vertex a; for every set A; and a vertex b;, for every set
B;. Introduce a zero cost edge (s, a;), for every i, with capacity d (where d is the degree of every
A;, B; in the super-graph #). Add an edge (a;,v), for every v € A;, with capacity d and cost n®
(where n is the number of vertices in B). Add an edge (u,b;) with capacity d and cost n?, for
every u € B;. Finally, add a zero cost edge (b;,t) with capacity d, for every j.

Figure 2: A reduction of Max — Rep to MECF.

A direct inspection shows that the maximum flow in the network G is h = dk.
Let B be a Max— Rep instance resulting from a yes instance of SAT and let Gy be the resulting
MECF instance.

Lemma 9.4 The graph Gy admits a mazimum flow of h with cost 2k - n3.
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Proof: Let v; € A;, u; € B, be a collection of unique representatives covering all the super-edges
in H. Deliver d units of flow from s to a; and into v;. Let (A4;, Bj) be a super-edge. Deliver one
unit of flow from v; to u;. Note that the edge (v;,u;) exists as the chosen representatives cover
all the super-edges. From u; the flow continues to b; and into ¢. The cost incurred is 2 - k - n3, as
required. |

We prove that only yes instances reduce to MECF instances with flows that cost roughly 2k - n3.
We prove this by counter-position; namely, we show how to find a cover of at least h/(8192p%)
super-edges from every max-flow that costs p - 2k - n3.

Lemma 9.5 Given a solution S to an MECF instance of cost p - 2k - n3, it is possible to find
(in polynomial time) a collection of unique representatives covering at least h/(8192p%) of the
super-edges.

Proof: Call a vertex v active (in S, namely, in the MECF assumed solution) if (positive) flow
traverses (enters and leaves) v. Let X; (respectively, Y;) be the collection of active vertices in A,
(respectively, B;).

The sets X; and Y; may contain many vertices in A; and B}, respectively. The cost incurred
by flow along the edges from the vertex a; to vertices X; and from Y; to the vertex b, is >;(|X;| +
Y;]) - n3. It follows that ¥°; | X;| < p- 2k and Y; |Y;| < p-2k. The average of |X;| (|Y;]) is at most
2p. Call an A; “bad” if | X;| > 8p. Similarly, B; is bad if |Y;| > 8p.

Remove from the super-graph H all the bad sets A; and B;. Clearly, the number of bad A;
sets is no larger than £/4 and the same holds for B;. Now we update (namely, reduce) the flow to
a legal one. The loss of flow incurred by the removal of a bad A; or bad B; is at most d. Hence,
the removal of bad A; and B; sets incurs a loss of at most 2 - k/4-d = h/2. Hence, at least h/2
flow units still reach t after this update.

We now dilute the flow so that at most one flow path remains between every pair of sets
A;, B;. Since the remaining sets A; and B; are not bad, the number of active vertices in each set
is bounded by 8p. Hence, the total flow between every pair of sets A; and B; is at most (8p)?.
Therefore, the dilution results with a total flow of at least ﬁ.

Observe that the number of active vertices in each set A; and B; is still more than one (but
less than 8p). Unique representatives are drawn uniformly at random among the active vertices
in each set 4; and B;. The expected number of super-edges covered is at least h/(128p - 64p%) =
h/(8192p*). This implies that under the best choice of unique representatives at least this many
super-edges can be covered. We can find such a collection of unique representatives in polynomial
time using the method of conditional expectations. |

Now consider a yes instance of SAT. Assume we have a p-ratio approximation of MECF for
p = o(n). The corresponding graph Gy admits (by Lemma 9.4) a 2k - n® cost solution. Thus, by
the assumed approximation ratio, a 2pkn® cost solution for Gy is computed. By Lemma 9.5 a
solution to Max — Rep is found covering at least h/(8192p*) of the super-edges.

Let G denote a graph corresponding to a no instance of SAT. The best choice of represen-
tatives in B covers at most h/21°g17€" super-edges. Hence, if 8192p* < 2103175", then a p-ratio
approximation algorithm gives a separation between yes and no instances of SAT. This implies
that it is hard to approximate MECF within 2!/ 4log'~“n /10, and the hardness result follows.

Finally, observe that the edge prices are not uniform in the reduction. Uniform edge prices can
be obtained by (a) setting the price of every zero cost edge to be 1, and (b) splitting every edge
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of cost n? into a path of n® unit price edges. The same analysis holds, since the increase in the
cost of an h- flow is h + 2k = O(n?). This increase is o(n?), and does not effect the analysis. 1
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A Reductions to undirected ICF

Undirected ICF is equivalent to the problem of finding a min-cost subset of edges F' such that
the subgraph G = (V, F) satisfies the following property: In every connected component H of
G, the sum of the demands of the sinks in H is not greater than the sum of the supplies of the
sources in H.

Using this equivalent formulation we show that undirected ICF generalizes the following Steiner
Problems.

1. The minimum cost Steiner Tree Problem. This problem can be reduced to undirected ICF
as follows. Guess a root r and set the source set S = {r}. The sink set T is set to be the set
of terminals. The demand of every terminal is 1, and the supply of r is |T'|. The required
flow amount is |7|.

2. The k-MST Problem (see [G96]). In this problem the goal is to find a min-cost subset of
edges that spans at least k vertices. The k-MST problem can be reduced to undirected ICF
as follows. Guess a root 7 € V. Set the source set to be {r} with ¢(r) = k — 1. Set the sink
set T to be V — r, and set the demand of every sink ¢ to be ¢(t) = 1. The required flow
amount is £ — 1.

3. The Point-to-point Connection Problem (see [LMSL92, GW97]). In this problem there is a
set, of k sources si,...s; and k sinks ¢, ...%;. The goal is to find a min-cost subset of edges
F such that each source-sink pair is connected in F'.

In the non-fixed destination case, every source may be connected to every sink. This case is
equivalent to U-ICF where the required total flow equals the number of sources.

The fixed destination case is a special case of the Generalized Steiner Tree Problem discussed
below.
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4. The Generalized Steiner Tree Problem (see [GW97, AKR95]). In this problem the input
consists of a collection of terminal sets T; C V', for : = 1,...,p. The goal is to find a min-
cost forest that connects, for every 4, all the terminals in 7;. A special case of this problem is
the Point-to-point Generalized Steiner Tree Problem, where each set of terminals 7; consists
of exactly two terminals.

Observe that the Generalized Steiner Tree Problem is reducible to its point-to-point version
as follows. For every t € T;, create |T;| — 1 leaves connected to ¢ by zero-cost edges. The
index set of the leaves created for t is T; —t (i.e., ty denotes a leaf connected to ¢t whose index
is a terminal ¢’ € T; — t). For every T;, define 1|T;| - (|T;| — 1) sets of terminal pairs {s;,t,},
where s,t € T; and s # t. Observe that 7; is connected iff all these pairs are connected (we
add all zero cost edges to the forest).

Finally we reduce the Point-to-point Generalized Steiner Tree Problem to undirected ICF as
follows. Given a collection {s;,%;}¥ | of terminal pairs, the goal is to find a min-cost forest
that connects every terminal pair. The ICF problem defines the source set to be {s;}; and the
sink set to be {#;};. We assign the supply amount of s; to be c(s;) = 2°~!, and the demand
amount of ¢; is set to be also c(t;) = 27L. The required total flow is }_; c(s;) = 28 — 1. A
direct inspection shows that every feasible solution of the ICF instance must connect every
terminal pair s;, t;.

Note that the total flow amount is 2¥ — 1, and hence our undirected ICF approximation only
yields trivial approximation ratios for these problems.

B Augmenting paths in bipartite graphs

Claim B.1 Let My and M, denote matchings in a bipartite graph G(A, B, E). Assume that
|Mi| < |Ms|. There exists a set I1 of mazimal paths in the symmetric difference My /\ My such
that |I1| > |My| — |M;| and, for every path p € 11, the following two conditions hold: (a) the first
and last edges in p belong to My, and (b) the first vertex in p belongs to A and the last vertex in
p belongs to B.

Proof: The proof is basically the proof of [D00, Ex. 1, p. 40]. Decompose the symmetric
difference M; A M, into cycles and paths. Since |M;| < |M,], there must be at least |My| — | M|
paths in M; /A M, where each such path has more edges in M, than edges in M;. Let p denote
such a path. It follows that the first and last edges in p belong to M,. The parity of the number
of edges in p implies that its endpoints belong to different sides of (G, and the claim follows. |
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