
On some network design problems with degree

constraints✩

Rohit Khandekar1

IBM T.J.Watson Research Center

Guy Kortsarz1

Rutgers University, Camden. Partially supported by NSF grant number 434923

Zeev Nutov1

The Open University of Israel

Abstract

We study several network design problems with degree constraints. For the
minimum-cost Degree-Constrained 2-Node-Connected Subgraph problem, we
obtain the first non-trivial bicriteria approximation algorithm, with 5b(v)+3
violation for the degrees and a 4-approximation for the cost. This improves
upon the logarithmic degree violation and no cost guarantee obtained by
Feder, Motwani, and Zhu (2006). Then we consider the problem of fin-
ding an arborescence with at least k terminals and with minimum maximum
outdegree. We show that the natural LP-relaxation has a gap of Ω(

√
k)

or Ω(n1/4) with respect to the multiplicative degree bound violation. We
overcome this hurdle by a combinatorial O(

√

(k log k)/∆∗)-approximation
algorithm, where ∆∗ denotes the maximum degree in the optimum solution.
We also give an Ω(log n) lower bound on approximating this problem. Then
we consider the undirected version of this problem, however, with an extra
diameter constraint, and give an Ω(log n) lower bound on the approximability
of this version. We also consider a closely related Prize-Collecting Degree-

Constrained Edge-Connectivity Survivable Network problem, and obtain several

✩A preliminary version of this paper is [18].
Email addresses: rohitk@us.ibm.com (Rohit Khandekar),

guyk@camden.rutgers.edu (Guy Kortsarz), nutov@openu.ac.il (Zeev Nutov)

Preprint submitted to Journal of Computer and System Sciences January 12, 2013

results in this direction by reducing the prize-collecting variant to the regular
one. Finally, we consider the Terminal Steiner Tree problem, which is a simple
variant of the Degree-Constrained Steiner Tree problem, when some terminals
are required to be leaves. We show that this seemingly simple problem is
equivalent to the Group Steiner Tree problem.

Keywords: Network design; Degree-constraints; Approximation algorithms

1. Introduction

1.1. Problems considered

In network design problems one seeks a cheap subgraph H of a given
graph G that satisfies some given properties. In the b-Matching problem
H should satisfy prescribed degree constraints, while in the Survivable Net-

work problem H should satisfy prescribed connectivity requirements. The
Degree-Constrained Survivable Network problems is a combination of these
two fundamental problems, where H should satisfy both degree constraints
and connectivity requirements. For most of these problems, even checking
whether there exists a feasible solution is NP-hard, hence one considers a
bicriteria approximation when the degree constraints are relaxed. Namely,
the goal is to compute a cheap solution that satisfies the connectivity re-
quirements and has small degree violation.

Many recent papers considered edge-connectivity Degree-Constrained Sur-

vivable Network problems, see a recent survey in [23]. Our first problem is
the simplest node-connectivity problem. A graph H is k-(node-)connected
if it contains k internally disjoint paths between every pair of its nodes. In
the k-Connected Subgraph problem we are given a graph G = (V,E) with
edge-costs and an integer k. The goal is to find a minimum-cost k-connected
spanning subgraph H of G. In the Degree-Constrained k-Connected Subgraph

problem, we are also given degree bounds {b(v) : v ∈ B ⊆ V }. The goal is to
find a minimum-cost k-connected spanning subgraph H of G such that in H,
the degree of every node v ∈ B is at most b(v). We consider the case k = 2.

Degree-Constrained 2-Connected Subgraph

Instance: An undirected graph G = (V,E) with non-negative edge-costs
{ce : e ∈ E}, and degree bounds {b(v) : v ∈ B ⊆ V }.
Objective: Find a minimum cost 2-connected spanning subgraph H of G
that satisfies the degree constraints degH(v) ≤ b(v) for all v ∈ B.

2

In the Steiner k-Tree problem one seeks a minimum-cost tree that con-
tains at least k-terminals (when every node is a terminal we get the k-MST

problem). Our next problem is the minimum-degree directed version of this
problem. Given a directed graph G, a set S of terminals, and an integer
k ≤ |S|, a k-arborescence is an arborescence in G that contains k terminals;
in the case of undirected graphs we have a k-tree. For a directed/undirected
graph or edge-set H let ∆(H) denote the maximum outdegree/degree of a
node in H.

Minimum Degree k-Arborescence
Instance: A directed graph G = (V,E), a root s ∈ V , a subset S ⊆ V \{s}
of terminals, and an integer k ≤ |S|.
Objective: Find in G a k-arborescence T rooted at s that minimizes ∆(T).

The origin of this problem is in peer-to-peer networking, when one wants
to bound the maximum load (degree) of a node, while connecting the root to
the maximum number of terminals. It is also of interest to bound the height
of such a tree, to limit the time for sending messages from the root. This
motivates our next problem, for which we only show a lower bound. Hence
we show it for the less general case of undirected graphs.

Degree and Diameter Bounded k-Tree
Instance: An undirected graph G = (V,E), a subset S ⊆ V of terminals,
an integer k ≤ |S|, and a diameter bound D.
Objective: Find a k-tree T with diameter bounded by D that minimizes
∆(T).

Let λH(u, v) denote the the maximum number of edge-disjoint uv-paths
in H. In the Edge-Connectivity Survivable Network problem we are given a
graph G = (V,E) with edge-costs, a collection P = {{u1, v1}, . . . , {uk, vk}}
of node pairs, and connectivity requirements R = {r1, . . . , rk}. The goal
is to find a minimum-cost subgraph H of G that satisfies the connectivity
requirements λH(ui, vi) ≥ ri for all i.

We consider a combination of the following two generalizations of this
problem. In Degree-Constrained Edge-Connectivity Survivable Network, we are
given degree bounds {b(v) : v ∈ B}. The goal is to find a minimum-cost
subgraph H of G that satisfies the connectivity requirements and the degree

3

constraints degH(v) ≤ b(v) for all v ∈ B. In the Prize-Collecting Edge-

Connectivity Survivable Network we are given a submodular monotone non-
decreasing penalty function π : 2{1,...,k} → R+ (π is given by an evaluation
oracle). The goal is to find a subgraph H of G that minimizes the value
val(H) = c(H)+π(unsat(H)) of H, where unsat(H) = {i | λS

H(ui, vi) < ri}
is the set of requirements not (completely) satisfied by H. Formally, the
problem we consider is as follows.

Prize-Collecting Degree-Constrained Edge-Connectivity Survivable Network

Instance: An undirected graph G = (V,E) with non-negative edge-costs
{ce : e ∈ E}, a collection P = {{u1, v1}, . . . , {uk, vk}} of node pairs,
connectivity requirements R = {r1, . . . , rk}, a submodular monotone non-
decreasing penalty function π : 2{1,...,k} → R+ given by an evaluation
oracle, and degree bounds {b(v) : v ∈ B ⊆ V }.
Objective: Find a subgraph H of G that satisfies the degree constraints
degH(v) ≤ b(v) for all v ∈ B, and minimizes the value

val(H) = c(H) + π(unsat(H))

of H, where unsat(H) = {i | λS
H(ui, vi) < ri} is the set of requirements

not satisfied by H.

The Steiner Tree problem is a particular case of this problem, when we
seek a minimum-cost subtree T of G that contains a specified subset S of
terminals. In the degree constrained version of Steiner Tree, we are also given
degree bounds on nodes in S and need to satisfy the degree constraints. We
consider the case of {0, 1}-constraints, namely, we require that certain nodes
in S should be leaves of T , and do not allow to relax this condition, as was
done in previous papers [22, 24, 26, 2]. Namely, the degree bounds here are
of the “hard capacity” type, and cannot be violated. Formally, our problem
can be casted as follows.

Terminal Steiner Tree

Instance: An undirected graph G = (V,E) with non-negative edge-costs
{ce : e ∈ E} and node subsets L ⊆ S ⊆ V .
Objective: Find a minimum-cost tree T in G that contains S such that
every v ∈ L is a leaf of T .

4

1.2. Previous and related work

Fürer and Raghavachari [10] were the first to consider degree-constrained
connectivity problems. They gave a “plus 1” approximation for the Minimum

Degree Steiner Tree problem. Namely, if the lowest maximum degree possible
is ∆∗, their algorithm returns a Steiner tree with maximum degree ∆∗ + 1.
This result is the best possible, as computing an optimal solution is NP-hard
even in Minimum Degree Spanning Tree case.

The first result for the min-cost case is due to Ravi et al. [27]; they
obtained an (O(log n) · b(v), O(log n))-approximation for Degree-Constrained
MST, namely, the degree of every node v in the output tree is O(log n) · b(v)
while its cost is O(log n) times the optimal cost. A major breakthrough was
obtained by Goemans [12]; his algorithm computes a minimum cost spanning
tree with degree at most ∆ + 2, with ∆ the minimum possible degree.

In [19] and [32] is given an O(nδ)-approximation algorithm for the Mini-

mum Degree k-Edge-Connected Subgraph problem, for any fixed δ > 0.
It turned out that an extension of the iterative rounding method of Jain

[17] may be the leading technique for degree-constrained problems. Singh
and Lau [34] were the first to extend this method to achieve the best possible
result for Min-Cost Minimum Degree MST; their tree has optimal cost while
the maximum degree is at most ∆ + 1. Lau et al. [22] obtained a (2b(v) +
3, 2)-approximation for the edge-connectivity Degree-Constrained Survivable

Network problem, which was recently improved to (2b(v) + 2, 2) in [26]. Lau
and Singh [24] further obtained a (b(v) +O(rmax), 2)-approximation, where
rmax denotes the maximum connectivity requirement.

For directed graphs, Bansal et al. [2] gave an (⌈ b(v)
1−ǫ
⌉+4, 1

ǫ
)-approximation

scheme for the Degree-Constrained k-Edge-Outconnected Subgraph problem;
the case k = 1 is the Degree-Constrained Arborescence problem, for which [2]
gave a b(v) + 2-approximation, without bounding the cost. Some extensions
and slight improvements can be found in [29].

Note that all the above results are for edge-connectivity Survivable Network
problems. The only known result for node-connectivity degree-constrained
problems is by Feder, Motwani, and Zhu [9] who gave an algorithm that
computes in nO(k) time a k-connected spanning subgraph H of G such that
degH(v) = O(log n) · b(v). Their algorithm cannot handle costs.

The special case k = |S| of the Minimum Degree k-Arborescence problem
was already studied in [8], where a Õ(

√
k) additive approximation was given.

Their technique does not seem to extend to the case k < |S|. Even for the

5

easier undirected case, if we ask for a tree containing k nodes and want to
minimize the maximum degree (this is the Degree Bounded k-MST problem),
the above techniques of [8] seem to fail.

Hajiaghayi and Nasri [14] obtained a constant ratio for a very special
case of Degree-Constrained Prize-Collecting Edge-Connectivity Survivable Net-

work problem when the penalty function π is modular.
A particular case of the Terminal Steiner Tree problem, when the costs are

metric and S = L, admits a constant ratio algorithm [25, 5, 7].

1.3. Our results and techniques

Recall that for the Degree-Constrained k-Connected subgraph problem,
Feder, Motwani, and Zhu [9] gave an algorithm that computes in nO(k) time
a k-connected spanning subgraph H of G such that degH(v) = O(log n) ·b(v),
and that their algorithm cannot handle costs. Our first result significantly
improves their result for k = 2, from logarithmic factor degree violation to
constant factor violation. Furthermore, we are also able to bound the cost.

Theorem 1.1. The Degree-Constrained 2-Connected Subgraph problem ad-
mits a bicriteria (5b(v) + 3, 4)-approximation algorithm; namely, a polyno-
mial time algorithm that computes a 2-connected spanning subgraph H of G
in which the degree of every node v is at most 5b(v) + 3, and the cost of H
is at most 4 times the optimal cost.

To prove Theorem 1.1 we first compute a degree-constrained spanning tree
J with +1 degree violation using the algorithm of [34]. Then we compute
an augmenting edge-set I such that J ∪ I is 2-connected, using the iterative
rounding method. To apply this method for degree constrained problems, one
proves that any basic LP-solution x > 0 has an edge e with hight xe value,
or there exists a node v ∈ B such that degE(v) is close to b(v). Otherwise,
one shows a contradiction using the so called “token assignment argument”.
Here one shows that there exists a laminar family L of “violated sets” and
a set T of nodes, such that x is the unique solution to the equation system
defined by cut-constraints of sets in L and degree constraints of nodes in T .
The contradiction is obtained by showing that the number of entries in x is
strictly larger than |L| + |T |. All previous “token assignment arguments”
associated every node with a unique set in the laminar family L. However,
even in the simplest node-connectivity problem of augmenting a tree to be
2-connected, this is not possible, as the cut-nodes of the tree are associated

6

with many sets in L. We will allow for a node to be “shared” by many
members of L, and still will be able to distribute the tokens to obtain the
desired contradiction.

Our second result gives the first approximation algorithm for theMinimum

Degree k-Arborescence problem.

Theorem 1.2. The Minimum Degree k-Arborescence problem admits an ap-
proximation algorithm with ratio O(

√

(k log k)/∆∗), where ∆∗ is the optimal
solution value, namely, the minimal maximum outdegree possible. Further-
more, the problem admits no o(log n)-approximation, unless NP=Quasi(P).

Our algorithm for the Minimum Degree k-Arborescence problem uses a
new method, which might be useful for related problems. We show that
any k-arborescence with maximum degree ∆∗ admits a “balanced partition”
into roughly

√
k ·
√
∆∗ edge-disjoint arborescence, each containing at most√

k ·
√
∆∗ terminals. We find iteratively, via max-flow computations, trees

that contain
√
k · ∆∗ terminals. This will create many separate trees, that

should be connected to the root. Thus, we have to show that there will
be not too many such trees. We prove this by using the fact that the flow
computation problem can be casted as a submodular covering problem, and
thus admits a O(log n)-approximation [35].

Integrality gap of the natural LP relaxation for Minimum Degree k-MST.
To get some indication that the problem might be hard even on undirected
graphs, consider the following natural LP-relaxation for Minimum Degree k-
MST. The intended integral solution has yv = 1 for nodes picked in the
optimum tree T ∗, xe = 1 for e ∈ T ∗, and d equal to the maximum degree of
T ∗.

Minimize d
Subject to

∑

v 6=r

yv ≥ k
∑

e∈δ(S)

xe ≥ yv ∀v ∈ V \ {r} ∀S ⊂ V, r ∈ S, v 6∈ S

∑

e∈δ(v)

xe ≤ d ∀v ∈ V

xe, yv ∈ [0, 1] ∀e ∈ E ∀v ∈ V
(1)

7

We show that this LP-relaxation has integrality gap Ω(
√
k) or Ω

(

n1/4
)

where n = |V |. This holds even for the undirected case. Consider a rooted at
r complete ∆-ary tree T of height h and let k = ⌊(∆+∆2+· · ·+∆h)/(∆+1)⌋.
It is easy to see that giving xe = 1/(∆ + 1) to all the edges e ∈ T and
yv = 1/(∆+ 1) to all nodes v 6= r satisfies all the constraints with fractional
objective value d = 1. In order to cover k nodes, any integral tree however
has to have a maximum degree of at least δ where δ + δ(δ− 1) + δ(δ− 1)2 +
· · · + δ(δ − 1)h−1 ≥ k. Such δ satisfies δ = Ω(k1/h). Thus the optimum
integral tree must have maximum degree Ω

(

k1/h
)

giving an integrality gap

of Ω
(

k1/h
)

. If we let h = 2, we get that k = ∆ and n = 1 +∆+∆2 and the

integrality gap is Ω(
√
∆) which is Ω(

√
k) or Ω(n1/4).

Proposition 1.3. The Degree and Diameter Bounded k-Tree problem admits
no o(log n)-approximation algorithm, unless NP=Quasi(P). In the undirected
case this holds true only if we add a diameter bound of 4 on the k-tree.

Let δF (S) denote the set of edges in F going from S to V \ S. For
i ∈ K let S ⊙ i denote that |S ∩ {ui, vi}| = 1. Menger’s Theorem for edge-
connectivity (see [20]) states that for a node pair ui, vi of a graph H = (V, F)
we have λH(ui, vi) = min

S⊙i
|δF (S)|. Hence if λH(ui, vi) ≥ ri for a graph H =

(V, F), then for any S with S ⊙ i we must have |δF (S)| ≥ ri. A standard
“cut-type” LP-relaxation for Degree-Constrained Edge-Connectivity Survivable

Network problem is as follows.

Minimize
∑

e∈E

cexe

Subject to
∑

e∈δE(S)

xe ≥ ri(S) ∀i ∈ K,S ⊆ V, S ⊙ i

∑

e∈δE(v)

xe ≤ b(v) ∀v ∈ B

xe ∈ [0, 1] ∀e ∈ E

(2)

Theorem 1.4. Suppose that for a Prize-Collecting Degree-Constrained Edge-

Connectivity Survivable Network instance the following holds. For any P ′ ⊆ P,
the Degree-Constrained Edge-Connectivity Survivable Network instance defined
by P ′ admits a polynomial-time algorithm that computes a solution H ′ of cost
at most ρ times the optimal value of LP (2) such that degH′(v) ≤ αb(v) + β
for all v ∈ B. Then the Prize-Collecting Degree-Constrained Edge-Connectivity

8

Survivable Network instance admits a polynomial time algorithm that for any
µ ∈ (0, 1) computes a subgraph H of G such that val(H) ≤ ρ

1−µ
c∗ + 1

µ
π∗ and

degH(v) ≤ α
1−µ

b(v) + β for all v ∈ V , where c∗, π∗ satisfy c∗ + π∗ ≤ opt.

The above theorem can be used along with the following known results.
Louis and Vishnoi [26] obtain ρ = 2, α = 2, β = 2 for Degree-Constrained

Edge-Connectivity Survivable Network. Lau and Singh [24] obtain ρ = 2, α =
1, β = 3 for Degree-Constrained Steiner Forest and ρ = 2, α = 1, β = 6rmax+3
for Degree-Constrained Edge-Connectivity Survivable Network where rmax is the
maximum requirement.

In the Group Steiner Tree problem we are given a collection S of node-
subsets (groups), and seek a minimum-cost subtree T of G that contains
at least one node from each group. The Group Steiner Tree problem admits
ratio O(log n log |S| log Smax) [11], where Smax = maxS∈S |S|. Group Steiner

Tree with G being a tree admits no Ω(log2−ǫ n) ratio, unless NP has quasi-
polynomial Las-Vegas algorithms [15]. Our last result shows that Terminal

Steiner Tree (with arbitrary costs), and Group Steiner Tree are equivalent
w.r.t. approximation.

Theorem 1.5.

(i) If Group Steiner Tree admits approximation ratio ρ(|V |, |S|,Smax) then
Terminal Steiner Tree admits ratio ρ(|L||V |, |S|, |V |).

(ii) If Terminal Steiner Tree admits ratio ρ(|V |, |S|) then Group Steiner Tree

admits ratio ρ(|V |+ |S|, |S|).

Consequently, Terminal Steiner Tree admits ratio O(log2 n log |S|), and admits
no Ω(log2−ǫ n) ratio, unless NP has quasi-polynomial Las-Vegas algorithms.

Note that in the Terminal Steiner Tree problem the degree bounds are 1,
and that in the case of degree bounds 2, even checking whether the problem
admits a feasible solution is NP-hard (by a reduction to the Hamiltonian Path

problem).
Theorems 1.1, 1.2, 1.4, and 1.5, are proved in Sections 2, 3, 4, and 5,

respectively.

9

2. Degree-Constrained 2-Connected Subgraph (Theorem 1.1)

We start by considering the problem of augmenting a connected graph
J = (V,EJ) by a minimum-cost edge-set I ⊆ E such that degI(v) ≤ b(v) for
all v ∈ V and such that J ∪ I is 2-connected.

Definition 2.1. For a node v of J let µJ(v) be the number of connected
components of J \ {v}; v is a cut-node of J if µJ(v) ≥ 2.

Note that since J is connected, any node v has a neighbor in every con-
nected component of J \ {v}. This implies µJ(v) ≤ degJ(v) for every v ∈ V .
Let r be a non-cut-node of J ; it is known that such r always exists. A set
S ⊆ V \ {r} is violated if it has a unique neighbor which we denote by aS,
and aS is distinct from r. Let SJ denote the set of violated sets of J . Recall
that δF (S) denotes the set of edges in F between S and V \ S. For S ∈ SJ
let ζF (S) denote the set of edges in F with one endnode in S and the other
in V \ (S ∪{aS}). By Menger’s Theorem, J ∪ I is 2-connected if, and only if,
|ζI(S)| ≥ 1 for every S ∈ SJ . Thus a natural LP-relaxation for our augmen-
tation problem is τ = min{c · x : x ∈ P (J, b)}, where P (J, b) is the polytope
defined by the following constraints:

x(ζE(S)) ≥ 1 for all S ∈ SJ
x(δE(v)) ≤ b(v) for all v ∈ B

xe ∈ [0, 1] for all e ∈ E

Theorem 2.1. There exists a polynomial time algorithm that given an in-
stance of Degree-Constrained 2-Connected Subgraph and a connected spanning
subgraph (V, J) of G computes an edge set I ⊆ E \J such that c(I) ≤ 3τ and
such that degI(v) ≤ 3b(v) + max{µJ(v), 3}+ 1 for all v ∈ B.

Theorem 2.1 will be proved later. Now we show how to deduce the
promised approximation ratio from it. Consider the following two phase
algorithm.

Phase 1: With degree bounds b(v), use the (b(v) + 1, 1)-approximation
algorithm of Singh and Lau [34] for the Degree Constrained Spanning Tree

problem to compute a spanning tree J in G.
Phase 2: Use the algorithm from Theorem 2.1 to compute an augmenting
edge set I such that H = J ∪ I is 2-connected.

10

We prove the approximation ratio. We have c(J) ≤ opt and c(I) ≤ 3τ ,
hence c(H) = c(J) + c(I) ≤ 4opt. We now prove the approximability of the
degrees. Let v ∈ V . Note that µJ(v) ≤ degJ(v) ≤ b(v) + 1. Thus we have

degI(v) ≤ 3b(v) + max{µJ(v), 3}+ 1 ≤ 3b(v) + max{b(v) + 1, 3}+ 1 .

Since we must have b(v) ≥ 2 for all v ∈ V , this implies

degH(v) ≤ degJ(v) + degI(v) ≤ 4b(v) + max{b(v), 2}+ 3 ≤ 5b(v) + 3 .

In the rest of this section we will prove the following statement, that
implies Theorem 2.1.

Lemma 2.2. Let x be an extreme point of the polytope P (J, b) such that
0 < xe < 1/3 for every e ∈ E. Then there is a node v ∈ B such that
degE(v) ≤ max{µJ(v), 3}+ 2.

Lemma 2.2 implies Theorem 2.1 as follows. Given a partial solution I and
a parameter α ≥ 1, the residual degree bounds are bαI (v) = b(v)−degI(v)/α.
The following algorithm starts with I = ∅ and performs iterations. In every
iteration, we work with the residual polytope P (SJ∪I , bαI), and remove some
edges from E and/or some nodes from B, until E becomes empty. Let α = 3
and β(v) = max{µJ(v), 3} + 2 for all v ∈ B. It is easy to see that for any
edge-set I ⊆ E we have µJ∪I(v) ≤ µJ(v) for every v ∈ V .

Algorithm as in Theorem 2.1
Input: A connected graph (V, J), a set of edges E on V with costs
{ce : e ∈ E}, integral degree bounds {b(v) : v ∈ V }, and non-negative
integers {β(v) : v ∈ V }.
Initialization: I ← ∅.
If P (J, b) = ∅, then return ‘UNFEASIBLE’ and STOP.
While E 6= ∅ do:

1. Find a basic solution x ∈ P (SJ∪I , bαI).
2. Remove from E all edges with xe = 0.
3. Add to I and remove from E all edges with xe ≥ 1/α.
4. Remove from B every v ∈ B with degE(v) ≤ β(v).

EndWhile
Return I.

It is a routine to prove the following statement, c.f. [29].

11

Lemma 2.3. If the above algorithm terminates and does not return ‘UN-
FEASIBLE’, then it computes an edge set I such that J ∪ I is 2-connected,
c(I) ≤ ατ , and degJ(v) ≤ αb(v) + β(v)− 1 for all v ∈ B.

It remains to prove Lemma 2.2. The following statement is well known
and can be easily proved using the tree structure of the cut-nodes.

Lemma 2.4. For any X, Y ∈ SJ exactly one of the following holds:

• X ⊆ Y and aX ∈ Y ∪ {aY }, or Y ⊆ X and aY ∈ X ∪ {aX};

• X ∩ Y = ∅ and aX /∈ Y , aY /∈ X.

Recall that a set-family L is laminar if for any distinct sets X, Y ∈ L
either X ⊂ Y , or Y ⊂ X, or X ∩ Y = ∅. Note that the family SJ is laminar.
Any laminar family L defines a partial order on its members by inclusion;
we use the usual notion of children, descendants, and leaves of laminar set
families. The following statement follows from polyhedral theory.

Lemma 2.5. For any basic solution x ∈ P (J, b) with 0 < x(e) < 1 for all
e ∈ E, there exists L ⊆ SJ and T ⊆ B, such that x is the unique solution to
the linear equation system:

x(ζE(S)) = 1 for all S ∈ L
x(δE(v)) = b(v) for all v ∈ T

Thus |L| + |T | = |E| and the characteristic vectors of {ζE(S) : S ∈ L} are
linearly independent.

Let x be an extreme point of P (J, b) with 0 < xe < 1/3 for every e ∈ E.
Let L and T be as in Lemma 2.5. To prove Lemma 2.2, we will assume that
degJ(v) ≥ max{µJ(v) + 3, 6} for all v ∈ T and obtain a contradiction. For
that we will assign two tokens to every edge e = uv ∈ E, placing 1 token at
u and 1 token at v. We will show that these tokens can be redistributed such
that every member of L∪T gets 2 tokens and some spare tokens remain. We
need some definitions and simple statement to continue.

Definition 2.2. Let S ∈ L. We say that an edge e ∈ E covers S if e ∈
ζE(S). Let ES denote the set of edges in E that cover S or a child of S, but
not both. Let us say that S owns a node v if S is an inclusion minimal set
in L that contains v, and S shares v if S is an inclusion minimal set in L
with aS = v.

12

From the definition and Lemma 2.4 we have the following.

Claim 2.6. For any v ∈ V the following holds.

(i) At most one set in L owns v.

(ii) If two distinct sets in L share v then they are disjoint.

(iii) If X owns v and Y shares v then Y is a descendant of X.

Corollary 2.7. For any v ∈ V the following holds.

(i) If each of X, Y ∈ L owns or shares v then δEX
(v) ∩ δEY

(v) = ∅.

(ii) At most µJ(v)− 1 ≤ degE(v)− 1 sets in L share v.

Proof: We prove (i). It is not possible that bothX, Y own v, by Claim 2.6 (i),
so assume that one of X, Y , say Y , shares v. Let e ∈ δEY

(v). Then e goes
from v to a child of Y . We will show that e /∈ δEX

(v). If X, Y share v, then
X, Y are disjoint, by Claim 2.6 (ii). This implies that e cannot cover a child
of X. Consequently, e /∈ δEX

(v). The remaining case is when X owns v.
Then Y is a descendant of X, by Claim 2.6 (iii). It is easy to see that since
e goes from v to a child of Y , then e cannot cover X or a child of X.

We prove (ii). By Claim 2.6 (ii), the sets that share v are pairwise disjoint.
Also, every set that shares v is a union of some connected components of
J \ {v} that do not contains r. Consequently, the number of sets that share
v is at most the number of such components, which is at most µJ(v)− 1. �

We start with an intermediate assignment of tokens to the members of
L, using the following rules for each S ∈ L.

1. If S owns or shares v /∈ T , then v gives degES
(v) tokens to S.

2. If S owns v ∈ T then v gives to S: 4 tokens if S is a leaf set in L
(namely, if S has no children in L), and 2 tokens otherwise.

3. If S shares v ∈ T , then v gives to S: 2 tokens if S has a unique child C
and at least 4 edges incident to v enter C, and min{degES

(v), 1} tokens
otherwise.

Lemma 2.8. For every v ∈ V , the amount of tokens v gives to the members
of L is at most degE(v) if v ∈ V \ T , and at most degE(v) − 2 otherwise.
Thus at most 2|E| − 2|T | tokens are assigned to the members of L.

13

(a) (b) (c) (d)

S S
C
SS

a a a a

v

vu

v

Figure 1: Illustration for Rules 1,2,3. Nodes in T are shown by squares. (a) S gets 3
tokens from each of a, v by Rule 1. (b) S gets 2 tokens from v by Rule 2. (c) S gets 4
tokens from v by Rule 2 and 1 token from u by Rule 1. (d) S gets 2 tokens from a by
Rule 3.

Proof: Suppose that v ∈ V \T . Then the tokens at v are assigned by Rule 1.
Hence from Corollary 2.7 (i) it follows that v gives to the members of L at
most

∑

S∈L degES
(v) ≤ degE(v) tokens, and the statement holds in this case.

If v ∈ T , then degE(v) − 2 ≥ max{µJ(v) + 1, 4} and the tokens at v
are assigned by Rules 2 and 3. Suppose that there is S ∈ L that owns v.
Then Rule 2 applies and no other set owns v, by Claim 2.6 (i). If S is a
leaf set of L then v gives 4 tokens to S, and v is not shared by any other
biset, by Claim 2.6 (iii); hence no other member of L gets tokens from v,
and the statement holds in this case. Otherwise, if S is not a leaf set, then
v gives 2 tokens to S, and has degE(v)− 4 ≥ µJ(v)− 1 tokens to give, using
Rule 3, to the sets in L that share v. Let q be the number of sets in L that
share v and get 2 tokens from v. For each such set S, degES

(v) ≥ 4. Hence
degE(v) − 4 ≥ 3q + µJ(v) − 1, by Corollary 2.7 (i). On the other hand, the
number of tokens v gives to sets that share v is q+µJ(v)−1 ≤ 3q+µJ(v)−1.
The statement follows. �

Lemma 2.9. For every S ∈ L, it is possible to redistributed the tokens as-
signed to S and its descendants such that every descendant of S gets at least
2 tokens, and S gets at least 4 tokens.

Proof: The proof is by induction on the number of descendant of S. The
induction base is when S has no descendants. Then at least 4 edges cover S.
If S owns no node in T then S gets 4 tokens from these edges, by Rule 1. If
S owns v ∈ T then S gets 4 tokens from v, by Rule 2.

Now suppose that S has at least 1 descendant, and hence S has at least
one child. By the induction hypothesis, S can can get 2 tokens from every
child, hence if S has at least 2 children then we are done. Suppose therefore

14

that S has a unique child C. Then S can get 2 tokens from C and needs
2 more tokens. Note that |ES| ≥ 2, by the linear independence and the
integrality of cuts in Lemma 2.5.

Let VS be the set of those endnodes of the edges in ES that are owned or
shared by S. By our assignment rules, if |VS| ≥ 2, of if VS ∩ T = ∅, or if S
owns a node v ∈ VS ∩ T , then S gets 2 tokens from nodes in VS. We are left
with the case VS = {aS}, aS ∈ T , and S shares aS. Then the assumption
xe < 1/3 implies that at least 4 edges go from aS to R, and S gets 2 tokens
from aS, by Rule 3. �

Lemmas 2.8 and 2.9 imply the contradiction 2|E| − 2|T | < 2|L|. Conse-
quently, the proof of Lemma 2.2, and thus also of Theorem 1.1, is complete.

3. Minimum Degree k-Arborescence (Theorem 1.2)

3.1. Hardness

We prove Proposition 1.3 which is basically a corollary of the work of
[16]. In [16] an arbitrary NPC (yes or no) instance is reduced to a Set Cover
instance in which the elements are divided to ground sets. In fact a ground
set M(A,B) is associated to a subset A ∪ B of the sets, and elements of
M(A,B) may belong to A ∪ B only. Note that a set A and a set B may be
assigned other ground sets (say M(A,B′)). The size of the ground sets can
be chosen by the reduction and is typically equal to the number of sets and
the size of the input which is O(nlog logn).

The following is achieved in [16]. Starting with a yes instance of the NPC
problem, the resulting Set-Cover one could always pick two sets a ∈ A, b ∈ B
so that these sets contain all of the elements of M(A,B).

In the case of a Set Cover derived from a no instance of the NPC problem,
every set in A ∪ B is essentially joined to a random half of M(A,B) (even
though the construction can be derandomized [28]). Intuitively, this implies
a gap (hence inapproximability) of log2 |M |/2 for Set-Cover.
Changes: We later change the size of ground sets but first we describe an
elementary reduction to the Minimum Degree k-Arborescence. Make the Set
Cover instance a directed bipartite graph G(S,M,E) with S all the sets and
M the union of ground sets. A set s is joined by a directed edge to an
element x if x ∈ s. The edges of this graph given cost 1. Add a node r and
add directed edges from r to all the sets each edge, of cost 1. The reduction
to Minimum Degree k-Arborescence complete by declaring all elements M to

15

be terminals and setting k = |M |. Hence, in fact we give the lower bound
for the special case that k equals the number of terminals. It may well be
that for general k a much better hardness can be proven.

Note that in order for a tree rooted at r to span all the terminals, it must
be connected in S to a Set-Cover of M .

The degrees, an important detail:. We want to make the maximum degree
in G(S,M,E) negligible compared to the size of the set cover. From [16] it
follows that the maximum degree inM is O(logc n) hence negligible compared
to the size of a set cover. To make the degrees in S negligible compared to
the size of a set cover we make every groundset of size

√
n instead of the

usual size which is roughly n. It follows from [16] that the maximum degree
of a vertex in S is now O(logc1 n · √n) for some constant c1.

The size of the Minimum Set Cover in [16] is n/O(logc2 n) for some con-
stant c2. Hence, clearly the maximum degree in the graph will be the one
of r, that, since the graph is directed, and r must be joined to a Set Cover
in S. The only difference is that the gap is now log2(

√
n)/2 which still is a

logarithmic gap.
For the undirected case, the only way we find to force r to be connected

to a Set Cover in S, is to bound the diameter of the resulting graph by 4.
This ends the proof of Proposition 1.3.

3.2. The approximation

We may assume that in the input graph G every node is reachable from
the root s, that every terminal has indegree 1 and outdegree 0, and that the
set of terminal of every arborescence T coincides with the set of leaves of T .
Let U = V \ S. Before describing the algorithm, we need some definitions.

Definition 3.1. For W ⊆ U and an integer parameter α ≥ 1 the network
Fα(W) with source s′ and sink t′ is obtained from G as follows.

1. Assign infinite capacity to every edge of G and capacity α to every
node in U .

2. Add a new node s′ and add new edges of capacity α each from s′ to
every node in W .

3. Add two new nodes t, t′, add an edge of capacity 1 from every terminal
to t, and add an edge of capacity k from t to t′.

16

Our algorithm runs with an integer parameter α set eventually to

α =
⌈

√

k ·∆∗ · (ln k + 1)
⌉

. (3)

Although ∆∗ is not known, ∆∗ ≤ k, and our algorithm applies exhaustive
search in the range 1, . . . , k.

Recall that a set-function ν defined on subsets of a ground-set U is sub-
modular if ν(A) + ν(B) ≥ ν(A ∪ B) + ν(A ∩ B) for all A,B ⊆ U . Consider
the following well known generic problem (for our purposes we state only the
unweighted version).

Submodular Cover

Instance: A finite set U and a non-decreasing submodular function
ν : 2U 7→ Z.
Objective: A minimum-size subset W ⊆ U such that ν(W) = ν(U).

The Submodular Cover Greedy Algorithm (for the unweighted version)
starts with W = ∅ and while ν(W) < ν(U) repeatedly adds to W an element
u ∈ U \W that maximizes ν(W ∪ {u}) − ν(W). At the end, W is output.
It is proved in [35] that the Greedy Algorithm for Submodular Cover has
approximation ratio lnmax

u∈U
ν({u}) + 1.

A generalization of the following statement is proved in [3].

Lemma 3.1 ([3]). For W ⊆ U let να(W) be the maximum s′t′-flow value
in the network Fα(W). Then να is non-decreasing and submodular, and
να(U) ≤ k.

The algorithm is as follows.

1. Execute the Submodular Cover Greedy Algorithm with U = V \ S and
with ν = να; let W ⊆ U be the node-set computed.

2. Let f be a maximum integral flow in Fα(W) and let JW = {e ∈ E :
f(e) > 0} be the set of those edges in E that carry a positive flow in
Fα(W).
Let TW be an inclusion-minimal arborescence in G rooted at s contain-
ing W .

3. Return any k-arborescence contained in the graph (V, JW) ∪ TW .

17

In the rest of this section we prove that the graph (V, JW) ∪ TW indeed
contains a k-arborescence, and that for any integer α ≥ 1 it has maximum
outdegree at most α + (ln k + 1) · k∆∗/α.

For α given by (3), this implies the approximation ratio

α/∆∗ + (ln k + 1) · k/α = O(
√

(k log k)/∆∗) .

Definition 3.2. A collection T of sub-arborescence of an arborescence T is
an α-leaf-covering decomposition of T if the arborescence in T are pairwise
node-disjoint, every leaf of T belongs to exactly one of them, and each of
them has at most α leaves.

Lemma 3.2. Suppose that G contains a k-arborescence T that admits an α-
leaf-covering decomposition T . Let R be the set of roots of the arborescence
in T . Then να(R) = k, and for the set W computed by the algorithm the
following holds:

(i) να(W) = k and thus the graph JW ∪ TW contains a k-arborescence.

(ii) The graph (V, JW)∪ TW has maximum outdegree ≤ α+ |T | · (ln k+1).

Proof: We prove that να(R) = k. For a terminal v in T , let rv ∈ R be the
root of the (unique) arborescence Tv ∈ T that contains v, and let Pv be the
path in Fα(R) that consists of: the edge s′rv, the unique path from rv to v
in Tv, and the edges vt′ and t′t. Let f be the flow obtained by sending for
every terminal v of T one flow unit along Pv. Then f has value k, since T
has k terminals. We verify that f obeys the capacity constraints in Fα(R).
For every r ∈ R, the arborescence Tr ∈ T which root is r, has at most α
terminals; hence the edge s′r carries at most α flow units, which does not
exceed its capacity α. This also implies that the capacity α on all nodes in
U is met. For every terminal v of T , the edge vt carries one flow unit and
has capacity 1. The edge t′t carries k flow units and has capacity k. Other
edges have infinite capacity.

We prove (i). By Lemma 3.1, να is non-decreasing and να(U) ≤ k. As
να(U) ≥ να(R) = k and να(W) = να(U), we conclude that ν(W) = k. This
implies that in the graph (V, JW), k terminals are reachable from W , and (i)
follows.

We prove (ii). In the graph (V, JW), the outdegree of any node is at
most α. This follows from the capacity α on any node in U . We have |W | ≤

18

|R| ·(ln k+1) = |T | ·(ln k+1), by Lemma 3.2 (i) and the approximation ratio
of the Submodular Cover Greedy Algorithm. Since TW is an arborescence with
leaf-set W , the maximum outdegree of TW is at most |W | ≤ |T | · (ln k + 1).
The statement follows. �

The following lemma implies that the optimal tree T ∗ admits an α-leaf-
covering decomposition T of size |T | ≤ k∆∗/α for any α ≥ 1. This together
with Lemma 3.2 concludes the proof of Theorem 1.2.

Lemma 3.3. Any arborescence T with k leaves and maximum outdegree ∆
admits an α-leaf-covering decomposition T of size |T | ≤ ∆ · ⌊k/(α+1)⌋+1,
for any integer α ≥ 1.

Proof: For a node r of an arborescence T with root s let us use the follow-
ing notation: Tr is the sub-arborescence of T with root r that contains all
descendants of r in T , and Pr is the set of internal nodes in the ar-path in
T , where a is the closest to r ancestor of r that has outdegree at least 2. Let
us say that a node u ∈ U of T is α-critical if Tu has more than α leaves, but
no child of u has this property. It is easy to see that T has an α-critical node
if, and only if, T has more than α leaves.

Consider the following algorithm. Start with T = ∅. While T has an
α-critical node u do the following: add Tr to T for every child r of u, and
remove Tu and Pu from T (note that since we remove Pu no new leaves are
created). When the while loop ends, if T is nonempty, add the remaining
arborescence T = Ts (which now has at most α leaves) to T .

By the definition, the arborescence in T are pairwise node-disjoint, every
leaf of T belongs to exactly one of them, and each of them has at most α
leaves. It remains to prove the bound on T . In the loop, when we consider
an α-critical node u, at least α + 1 leaves are removed from T and at most
∆ arborescence are added to T . Hence |T | ≤ ∆ · ⌊k/(α + 1)⌋ at the end of
the loop. At most one additional arborescence is added to T after the loop.
The statement follows. �

4. Prize-Collecting Degree-Constrained Survivable Network (Theorem 1.4)

Our LP-relaxation for Prize-Collecting Degree-Constrained Edge-Connectivity
Survivable Network is:

19

Minimize
∑

e∈E

cexe +
∑

I⊆K

π(I)zI

Subject to
∑

e∈δ(T)

fi,e ≥ (1− ∑

I:i∈I

zI)ri(T) ∀i ∀T ⊙ i

fi,e ≤ 1− ∑

I:i∈I

zI ∀i ∀e
xe ≥ fi,e ∀i ∀e

∑

I⊆K

zI = 1
∑

e∈δ(v)

xe ≤ b(v) ∀v

xe, fi,e, zI ∈ [0, 1] ∀i ∀e ∀I

(4)

Without the degree constraints, this LP-relaxation was used in [13] for
Prize-Collecting Edge-Connectivity Survivable Network. In the intended integral
solution H, the variables are supposed to take the following values: xe = 1
if e ∈ H, fi,e = 1 if i 6∈ unsat(H) and e appears on a chosen set of ri
edge-disjoint {ui, vi}-paths in H and zI = 1 if I = unsat(H). We prove the
following refinement of Theorem 1.4.

Theorem 4.1. Suppose that for a Prize-Collecting Degree-Constrained Edge-

Connectivity Survivable Network instance the following holds. For any P ′ ⊆ P,
the Degree-Constrained Edge-Connectivity Survivable Network instance defined
by P ′ admits a polynomial-time algorithm that computes a solution H ′ of cost
at most ρ times the optimal value of LP (2) such that degH′(v) ≤ αb(v) + β
for all v ∈ B. Then the Prize-Collecting Degree-Constrained Edge-Connectivity

Survivable Network instance admits a polynomial time algorithm that for any
µ ∈ (0, 1) computes a subgraph H of G such that c(H) ≤ ρ

1−µ

∑

e∈E cex
∗
e,

π(unsat(H)) ≤ 1
µ

∑

I⊆K π(I)z(I), and degH(v) ≤ α
1−µ

b(v) + β for all v ∈ B.

We prove Theorem 4.1. Let {x∗
e, f

∗
i,e, z

∗
I} be a feasible solution to LP (4)

and let µ ∈ (0, 1). We partition the requirements into two classes: we call a
requirement ri good if

∑

I:i∈I z
∗
I ≤ µ and bad otherwise. Let Rg denote the

set of good requirements. The following statement shows how to satisfy the
good requirements.

Lemma 4.2. There exists a polynomial-time algorithm that computes a sub-
graph H of G of cost c(H) ≤ ρ

1−µ
·∑e cex

∗
e that satisfies all good requirements

such that degH(v) ≤ α
1−µ

b(v) + β for all v ∈ V .

20

Proof: Consider the LP-relaxation (2) of the Degree-Constrained Edge-Connectivity
Survivable Network problem with good requirements only, with K replaced
by Kg; namely, we seek a minimum cost subgraph H of G that satisfies
the set Kg of good requirements and the degree constraints. We claim that
x∗∗
e = min {1, x∗

e/(1− µ)} for each e ∈ E is a feasible solution to LP (2)

with degree bounds b(v)
1−µ

. Thus the optimum value of LP (2) is at most
∑

e∈E cex
∗∗
e . Consequently, using the algorithm that computes an integral so-

lution to LP (2) of cost at most ρ times the optimal value of LP (2) and with
degrees at most αb(v) + β, we can construct a subgraph H that satisfies all
good requirements and has cost at most c(H) ≤ ρ

∑

e∈E cex
∗∗
e ≤ ρ

1−µ

∑

e cex
∗
e,

and degrees at most degH(v) ≤ α
1−µ

b(v) + β, as desired.

We now show that {x∗∗
e } is a feasible solution to LP (2), namely, that

∑

e∈δ(A) x
∗∗
e ≥ ri(A) for any i ∈ Kg and any A⊙i. Let i ∈ Kg and let ζi = 1−

∑

I:i∈I z
∗
I . Note that ζi ≥ 1−µ, by the definition ofKg. By the second and the

third sets of constraints in LP (4), for every e ∈ E we have min{ζi, x∗
e} ≥ f ∗

i,e.

Thus we obtain: x∗∗
e = min

{

1, x∗
e

1−µ

}

= 1
ζi
min

{

ζi,
ζi

1−µ
x∗
e

}

≥ 1
ζi
min{ζi, x∗

e} ≥
f∗

i,e

ζi
=

f∗

i,e

1−
∑

I:i∈I z
∗

I

. Consequently, combining with the first set of constraints in

LP (4), for any A⊙ i we obtain that
∑

e∈δ(A) x
∗∗
e ≥

∑
e∈δ(A) f

∗

i,e

1−
∑

I:i∈I z
∗

I

≥ ri(A). �

Let H be as in Lemma 4.2, and recall that unsat(H) denotes the set of
requirements not satisfied by H. Clearly each requirement i ∈ unsat(H) is
bad. The following lemma bounds the total penalty we pay for unsat(H).

Lemma 4.3. π(unsat(H)) ≤ 1
µ
·∑I π(I)z

∗
I .

Proof: This lemma was proved in [13] for the case when there are no degree
bounds, and the proof of the case with degree bounds is identical. �

The proof of Theorem 4.1 and thus also of Theorem 1.4 is now complete.

5. Terminal Steiner Tree (Theorem 1.5)

We start by proving Part (i) of Theorem 1.5, namely, that if Group Steiner

Tree admits approximation ratio ρ(|V |, |S|,Smax) then Terminal Steiner Tree

admits ratio ρ(|L| · |V |, |S|, |V |). Given an instance G = (V,E), c, S, L of
Leaf-Constrained Steiner Tree construct an instance G′ = (V ′, E ′), c′,S ′ of
Group Steiner Tree as follows.

21

• The pair G′, c′ is obtained from G, c as follows. For every v ∈ L do the
following. For every u ∈ ΓG(v) \L add a new node vu, and replace the
edge e = uv by the new edge e′ = uvu, of the same cost as e. Then
remove v and all the edges incident to it from the graph.

• The set of groups is as follows. Every v ∈ L defines the group S(v) =
{vu : u ∈ ΓG(v) \ L}. The collection of groups is S ′ = {{S(v)} : v ∈
L} ∪ {{s} : s ∈ S \ L}.

By the construction, |V ′| ≤ |V | · |L|, |S| = |S|, and Smax ≤ |V |. Note
that to every edge-set F ′ ⊆ E ′ corresponds the edge-set F ⊆ E, where to
every edge e′ = uvu corresponds the edge uv, and the other edges appear in
both F and F ′. Note that if F corresponds to F ′, then F, F ′ have the same
cost, namely, c(F) = c′(F ′), and that if F ′ is a tree then so is F . Now we
prove the following.

Lemma 5.1. If T ′ is an inclusion-minimal solution to the obtained Group

Steiner Tree instance then the edge set T that corresponds to T ′ is a fea-
sible solution to the Terminal Steiner Tree instance. Furthermore, to every
inclusion-minimal solution T to the Terminal Steiner Tree instance there ex-
ists a feasible solution T ′ to the Group Steiner Tree instance, such that T
corresponds to T ′.

Proof: Let T ′ be an inclusion-minimal solution to the obtained Group Steiner

Tree instance. Let T ⊆ E the edge set that corresponds to T ′. From the
construction it is clear that T satisfies the connectivity requirements. We
show that T satisfies the degree constraints. Since T ′ is an inclusion minimal
solution, for every v ∈ L there is a unique node vu ∈ S(v) included in the
tree T ′. This implies degT (v) = 1.

Let T be an inclusion-minimal solution to the Terminal Steiner Tree in-
stance. If |S| = 2 then the statement is easily verified, so assume that |S| ≥ 3.
There is no edge in T between two nodes in L. Hence every v ∈ L has its
unique neighbor in V \ L. The tree T ′ is obtained from T by replacing for
every v ∈ L the unique edge uv incident to v in T by the edge uvu. Clearly,
T corresponds to T ′, and it is easy to see that T ′ is a feasible solution to the
obtained Group Steiner Tree instance. �

Now we prove Part (ii) of Theorem 1.5, namely that if Terminal Steiner

Tree admits ratio ρ(|V |, |S|) then Group Steiner Tree admits ratio ρ(|V | +

22

|S|, |S|). Given an instance G = (V,E), c,S of Group Steiner Tree construct
an instance G′ = (V ′, E ′), c′, S ′, L′ of Terminal Steiner Tree as follows.

• The pair G′, c′ is obtained from G, c by adding for every group Si a new
node vi and connecting vi to every node in Si by an edge of cost zero.

• The node sets S ′, L′ are defined by S ′ = L′ = {v1, . . . , v|S|}.
By the construction, |V ′| = |V |+ |S| and |S ′| = |L′| = |S|. Now it is easy

to see the following.

Lemma 5.2. If T ′ is a feasible solution to the obtained Terminal Steiner Tree

instance then the tree T = T ′ \ L is a feasible solution to the original Group
Steiner Tree instance and c(T) = c′(T ′). Furthermore, to every feasible solu-
tion T to the Group Steiner Tree instance there exists a feasible solution T ′ to
the Group Steiner Tree instance, such that T = T ′ \ L. �

The proof of Theorem 1.5 is complete.

6. Discussion and open problems

In this paper we gave the first constant degree and cost approximation
for the Degree-Constrained 2-Connected Subgraph problem. Recently, in [30],
the method here was generalized to obtain constant ratios for several other
node-connectivity degree-constrained problems. For the Degree-constrained

k-Connected Subgraph problem the algorithm in [30] has ratio O(2k) for the
degrees and O(log k) for the cost.

Now let us focus on the undirected Minimum Degree k-MST problem. We
do not know a lower bound for this problem beyond the standard APX-
hardness result. However, it may be a bad sign that the natural LP already
has a large integrality gap. Hence a polylogarithmic approximation for this
problem may be hard or not possible to obtain. An easier task might be
to get an nǫ-approximation scheme, similar to the one that exists for the
Directed Steiner Tree problem (see [4]).

Finally, we note that for the Minimum Degree k-MST problem (the undi-
rected variant) it is not hard to design an “iterative merging” algorithm with
ratio O(n/k) (c.f., [27]). Combined with our result in Theorem 1.2 this im-
plies ratio O(n1/3), which in terms of n might be better than the one in
Theorem 1.2. We do not know if this holds also for directed graphs. The
main open problem here is either to achieve a polylogarithmic ratio, or to
give a strong evidence that a polylogarithmic ratio is unlikely.

23

References

[1] N. Bansal, R. Khandekar, and V. Nagarajan. Additive guarantees for de-
gree bounded directed network design. SIAM J. Computing, 39(4):1413–
1431, 2009.

[2] J. Bar-Ilan, G. Kortsarz, and D. Peleg. Generalized submodular cover
problems and applications. Theoretical Computer Science, 250:179–200,
2001.

[3] M. Charikar, C. Chekuri, T. Cheung, Z. Dai, A. Goel, S. Guha, and
M. Li. Approximation algorithms for directed Steiner problems. Journal
of Algorithms, 33:73–91, 1999.

[4] Y. H. Chen, C. L. Lu, and C. Y. Tang. On the full and bottleneck full
steiner tree problems. In COCOON, pages 122–129, 2003.

[5] D. Drake and S. Hougardy. On approximation algorithms for the termi-
nal Steiner tree problem. Information Processing Letters, 89(1):15–18,
2004.

[6] M. Elkin and G. Kortsarz. An approximation algorithm for the directed
telephone multicast problem. Algorithmica, 45(4):569–583, 2006.

[7] T. Feder, R. Motwani, and A. Zhu. k-connected spanning subgraphs
of low degree. Electronic Colloquium on Computational Complexity
(ECCC), 041, 2006.

[8] M. Fürer and B. Raghavachari. Approximating the minimum-degree
Steiner tree to within one of optimal. J. Algorithms, 17(3):409–423,
1994.

[9] N. Garg, G. Konjevod, and R. Ravi. A polylogarithmic approximation
algorithm for the group Steiner tree problem. J. Algorithms, 37(1):66–
84, 2000.

[10] M. Goemans. Bounded degree minimum spanning trees. In FOCS, pages
273–282, 2006.

[11] M. Hajiaghayi, R. Khandekar, G. Kortsarz, and Z. Nutov. Prize-
Collecting Steiner Network Problems. In IPCO, pages 71–84, 2010.

24

[12] M. Hajiaghayi and A. Nasri. Prize-collecting steiner networks via iter-
ative rounding. In LATIN, pages 515–526, 2010.

[13] E. Halperin and R. Krauthgamer. Polylogarithmic inapproximability.
In STOC, pages 585–594, 2003.

[14] D. Hochbaum, editor. Approximation algorithms for NP-hard problems.
PWS Publishing Co., Boston, MA, USA, 1997.

[15] K. Jain. A factor 2 approximation algorithm for the generalized Steiner
network problem. Combinatorica, 21(1):39–60, 2001.

[16] R. Khandekar, G. Kortsarz, and Z. Nutov. Network-design with degree
constraints. In APPROX-RANDOM, pages 289–301, 2011.

[17] P. Klein, R. Krishnan, B. Raghavachari, and R. Ravi. Approximation
through local optimality: designing networks with small degree. Net-
works, 44:203–215, 2004.

[18] G. Kortsarz and Z. Nutov. Approximating minimum cost connectivity
problems, in Approximation Algorithms and Metahueristics, T. F. Gon-
zalez ed. Chapman and Hall/CRC, 2007. Chapter 58.

[19] Lap Chi Lau, J. Naor, M. Salavatipour, and M. Singh. Survivable net-
work design with degree or order constraints. SIAM J. Computing,
39(3):1062–1087, 2009.

[20] Lap Chi Lau, R. Ravi, and M. Singh. Iterative Methods in Combinatorial
Optimization. Cambridge University Press, 2011.

[21] Lap Chi Lau and M. Singh. Additive approximation for bounded degree
survivable network design. In STOC, pages 759–768, 2008.

[22] G.-H. Lin and G. Xue. On the terminal steiner tree problem. Information
Processing Letters, 84:103–107, 2002.

[23] A. Louis and N. Vishnoi. Improved algorithm for degree bounded sur-
vivable network design problem. In SWAT, pages 408–419, 2010.

[24] Madhav V. Marathe, R. Ravi, Ravi Sundaram, S. S. Ravi, Daniel J.
Rosenkrantz, and Harry B. Hunt, III. Bicriteria network design prob-
lems. J. Algorithms, 28(1):142–171, 1998.

25

[25] M. Naor, L. Schulman, and A. Srinivasan. Splitters and near-optimal
derandomization. In FOCS, pages 182–191, 1995.

[26] Z. Nutov. Approximating directed weighted-degree constrained net-
works. Theoretical Computer Science, 412(8-10):901–912, 2011.

[27] Z. Nutov. Degree-constrained node-connectivity. Manuscript, 2011.

[28] R. Ravi, B. Raghavachari, and P. Klein. Approximation through local
optimality: Designing networks with small degree. In FSTTCS, pages
279–290, 1992.

[29] M. Singh and Lap Chi Lau. Approximating minimum bounded degree
spanning trees to within one of optimal. In STOC, pages 661–670, 2007.

[30] L. A. Wolsey. An analysis of the greedy algorithm for the submodular
set covering problem. Combinatorica, 2:385–393, 1982.

26

