
On the advantage of overlapping clusters for minimizing
conductance

Rohit Khandekar∗ Guy Kortsarz† Vahab Mirrokni‡

January 9, 2013

Abstract

Graph clustering is an important problem with applications to bioinformatics, community
discovery in social networks, distributed computing, and more. While most of the research in
this area has focused on clustering using disjoint clusters, many real datasets have inherently
overlapping clusters. We compare overlapping and non-overlapping clusterings in graphs in
the context of minimizing their conductance. It is known that allowing clusters to overlap gives
better results in practice. We prove that overlapping clustering may be significantly better than
non-overlapping clustering with respect to conductance, even in a theoretical setting.

For minimizing the maximum conductance over the clusters, we give examples demon-
strating that allowing overlaps can yield significantly better clusterings, namely, one that has
much smaller optimum. In addition for the min-max variant, the overlapping version admits a
simple approximation algorithm, while our algorithm for the non-overlapping version is com-
plex and yields a worse approximation ratio due to the presence of the additional constraint.
Somewhat surprisingly, for the problem of minimizing the sum of conductances, we found out
that allowing overlap does not help. We show how to apply a general technique to transform
any overlapping clustering into a non-overlapping one with only a modest increase in the sum
of conductances. This uncrossing technique is of independent interest and may find further
applications in the future.

We consider this work as a step toward rigorous comparison of overlapping and non-
overlapping clusterings and hope that it stimulates further research in this area.

∗IBM T.J.Watson research center. email: rkhandekar@gmail.com.
†Department of Computer Science, Rutgers University-Camden. Partially supported by NSF Award Grant number

434923. email: guyk@crab.rutgers.edu.
‡Google Research, New York, USA. email: mirrokni@gmail.com

1

1 Introduction

Graph clustering has several fundamental applications including analyzing social networks and
efficient distributed computing:

– As online social networks are popular with hundreds of millions of users, they are becoming
a rich source of user-specific data. An important problem on such social networks is the discovery
of communities. Modeling, discovering and analyzing such communities can help understanding
structural properties of these networks and help in potential applications like recommendation
systems and advertising.

– Another application of graph clustering is to aid efficient computations on large graphs which
model interactions between different elements in a system, e.g., a biological system. Efficient
computations on such graphs entail a careful partitioning of the vertices into clusters such that no
single cluster is too large, and the number of edges crossing the clusters is small. Each cluster
then is stored on a separate machine, and the interaction is carried out via communication between
different machines.

Non-overlapping clustering. In this variant, we have a constraint in the clustering problems that
the set of clusters should be disjoint. This constraint has been considered in most of the well-
studied clustering problems in graph theory and combinatorial optimization literature [18, 7, 25, 2,
31].

Overlapping clustering: While disjoint clusters is a reasonable constraint in some settings, it
may not be necessary/appropriate in others as we discuss below. In some settings, like discovering
communities in social networks [29, 22], the clusters are naturally overlapping and by restricting
our attention to non-overlapping clustering, we may lose valuable information about the structure
of communities in a social network [29]. For example, consider a graph with a small number of
popular nodes that are well-connected to many other nodes in the graph. These nodes may natu-
rally belong to more than one cluster. For more applications that show that overlapping clustering
is more suitable than non-overlapping clustering, see clustering for social networks [29, 22], clus-
tering for distributed computing [28, 3], clustering for inherent multi-assignment clustering [36]
and clustering large networks for distributed PageRank computation and performing distributed
random walks [3]. For a survey on such models of graph clustering, see the article by Brandes et
al. [11] and the references therein. Other than being more appropriate in some clustering scenarios,
non-overlapping clustering is often harder to perform in a large scale, as the disjointness constraint
is a statement about all of the clusters and requires careful distributed or global implementations”.
(Note that it is possible to have distributed non-overlapping clustering algorithms, see for example
[33]).

2

As allowing overlap may improve the quality of clusters and has the above advantages in prac-
tice, it is natural to assume that overlap will significantly improve and simplify approximation
algorithms for minimizing conductance. Now two properties may hold if overlapping clusters are
allowed. First, the optimum conductance value may drastically decrease. Second, the approxi-
mation algorithm for the overlapping case may become simpler and have a better ratio than if the
overlap is not allowed.

In this paper, we partially prove the above intuition to be correct. To this end, we study two
natural ways in which one can aggregate the conductances of all the clusters in a clustering –
minimizing the maximum or minimizing the sum. For clustering to minimize the maximum con-
ductance of any cluster, two significant advantages are derived by allowing overlap. The optimum
for the overlapping case may be much smaller than the one for non-overlapping clustering. In addi-
tion, the approximation algorithm for the overlapping case is simple and has ratioO(log n). On the
other hand the problem of non-overlapping clustering is complex, and thus, the algorithm given for
it is also much more involved. Also, this algorithm has a worse approximation factor as can be seen
later. On the other hand, for the measure of minimizing the sum of conductances over all clusters,
we show a general uncrossing technique to transfer an overlapping clustering to a non-overlapping
one with small penalty. This implies that the two models are equivalent up to a constant factor
with respect to approximation in the sum version. Hence, overlapping does not help much in this
case contradicting our initial intuition. We believe that the transformation of overlapping clusters
to non-overlapping ones is of independent interest and may find other applications.

We are not aware of a theoretically rigorous study that exhibits that allowing overlaps gives
improved results compared to non-overlapping clustering. Initializing this study here, we hope that
this important topic will be studied from theoretical and practical points of view in the future. Note
that our main contributions are theoretical, and our polynomial-time algorithms may not be very
practical for very large graphs very, mainly because of the complex dynamic programs involved
in them. However we note that different branches of the dynamic program can be implemented
in parallel, and thus the dynamic programs can be implemented more efficiently in a distributed
fashion.

Follow-up Work. Following the conference version of this paper, there have been various at-
tempts to study the overlapping clustering problem from a theoretical perspective, and present a
rigorous study of computing overlapping communities in social networks. For example, Arora et
al [4] study the problem of overlapping communities, present an axiomatic approach for defining
overlapping social communities, and design approximation algorithms for discovering such com-
munities in a set of randomly generated graphs. Moreover, Balcan et al [8] considered the problem
of enumerating and identifying communities generalizing and refining the definition of communi-

3

ties by Mishra et al[29]. These papers do not explicitly attempt to optimize the cut conductance,
but they consider other related notions for quality of clusters like the cut value and density of clus-
tersl [4, 8]. All the recent research about the topic of overlapping clustering imply the need for
exploring this topic from a more algorithmic and theoretical perspectivel [4, 8].

1.1 Problem Formulation

Consider an undirected graph G = (V,E) with non-negative edge-weights we ≥ 0. For simplicity,
we assume that the weights we are integers that are polynomially bounded in n = |V |. Our results,
however, can be generalized for arbitrary weights as well – we omit the details from this version.
For a subset of vertices S ⊂ V , let δ(S) denote the set of edges in E with exactly one end-point in
S. For a vertex v ∈ V , let deg(v) =

∑
e∈δ(v)we denote the total edge-weight incident to v. For a

subset S ⊆ V , let vol(S) =
∑

v∈S deg(v).

The conductance of a cut (S, S = V \ S) is defined1 as φ(S) =
∑
e∈δ(S) we

min{vol(S),vol(S)} . We consider
several variants of the minimum conductance clustering problem. The input to this problem also
includes a volume-budget B ≥ 0. We assume that the volume-budget is very small compared
to the total volume, say B < vol(V)/12 to be concrete. Putting a bound on the volume makes
sense for a couple of reasons: One reason is that if we want to cluster the graph for the purpose of
performing some distributed computation, it is important that each cluster fits on one machine, and
amount of memory to store the cluster is directly proportional to the volume of the cluster. This is
captured by putting an upper bound on the volume of each cluster. Another reason to put a bound
on the volume of the clusters is that it is harder to understand and conceptualize huge clusters,
and to make sure that the clustering algorithm generates clusters that are easily understood and
interpretable, we put an upper bound on the size or volume of each cluster.

The output is a clustering of the vertices, i.e., subsets S1, . . . , Sk ⊂ V such that V = ∪iSi
and vol(Si) ≤ B for all i. Following are the variants of the basic clustering problem we consider.
(I) In an Overlap clustering, the subsets Si are allowed to intersect with each other, while in a
Nonoverlap clustering, the subsets Si must be disjoint, thus forming a vertex partitioning. (II) In
a Bound (or bounded-count) clustering, we require that the total number of clusters k is at most
given count-budget k, while in an Unbound (or unbounded-count) clustering, there is no bound on
the number of clusters formed. (III) In a Sum (or min-Sum) clustering, the objective is to minimize
the total conductance of the clusters: min

∑
1≤i≤k φ(Si), while in a Max (or min-max) clustering,

the objective is to minimize the maximum conductance of a cluster: min max1≤i≤k φ(Si).

1Alternatively, we can define the conductance (or, more appropriately the sparsity) of a cluster as∑
e∈δ(S) we/min{|S|, |S|}. Our results also hold for this definition.

4

1.2 Related work

Partitioning a graph into two parts Most approximation algorithms for partitioning problems
require the vertices to be partitioned into two parts only. Some examples follow. In [19], a graph
G(V, U) and an integer k is given. The goal is to find a set U ⊆ V of size k so that e(U), namely,
the number of edges with both endpoints in U , is maximized.

Another example is the Sparsest cut problem in which the goal is to split the graph into two
disjoint parts (thus defining a cut) and maximize the number of separated pairs over the cost of the
cut (see [7]). The unweighted version admits an O(

√
log n) approximation [7]. The weighted case

admits a slightly worse approximation. See [5] and references therein.

The Bisection problem is to partition V into two equal and disjoint partsA andB, and minimize
the number of edges between A and B. The problem admits an O(log n) approximation [32].

Partitioning problems into more than two parts: In the Minimum cut, problem given an edge-
weighted graph and a collection of pairs {(si, ti)}ki=1, the goal is to find a subset E ′ ⊆ E of
minimum cost so that in V \E ′ there is no si-ti path for any i. ClearlyG\E ′ may have many parts.
Garg et. al. [21] showed that the Minimum multicut problem is at least as hard to approximate as
the well-known vertex-cover problem even if the underlying graph is a star. This implies that unless
P = NP , it is hard to approximate the undirected multicut problem on stars within a factor better
than 10

√
5− 21 [17]. Garg et. al. [21] also gave a 2 approximation for Minimum multicut in trees

via the primal dual approach. The best known approximation for Undirected multicut in general
undirected graphs is O(log n) [20].

In the Directed multicut problem the goal is to discard min cost set of edges E ′ so that for every
si, ti there is no directed si, ti path G′(V,E −E ′). In [16] it is shown that unless NP ⊆ ZPP the
Directed multicut problem admits no 2log1−ε n ratio for any constant ε. The first non-trivial approx-
imation for Directed multicut was an O(

√
n log n) ratio by Cheriyan et. al. [14]. This ratio was

improved to an O(
√
n) by Gupta [23]. Recently, the O(

√
n) barrier was broken by Agrawal et.

al. [1] to an Õ(n11/23) ratio approximation2. In [26], an O(n2/3/opt1/3) approximation algorithm
for uniform costs directed multicut, is presented. Here opt is the optimum value. If the optimum
is at least n0.566, the ratio of [26] is better than the one of [1]. The [26] algorithm is also the only
non-trivial combinatorial approximation algorithm for Directed multicut. For more papers on cut
problems see [27, 6, 15, 13, 35, 10]. Some of these papers were an inspiration for this paper.

No previous papers gave approximation algorithm for conductance. The only slightly related
result is by Bansal et. al. [9]. This problem considered is, given a graph G and a number k,

2The notation Õ(f(n)) ignores the factors polylogarithmic in n.

5

min-sum overlap no-overlap
bounded-count SumOverlapBound SumNonoverlapBound

O(log n) O(log n)

(with O(K) clusters) (with O(K) clusters)

unbounded-count SumOverlapUnbound SumNonoverlapUnbound

O(log n) O(log n)

min-max overlap no-overlap
bounded-count MaxOverlapBound MaxNonoverlapBound

O(log n) O(log4 n log logn)

(with O(K log n) clusters) (with O(K) clusters)

unbounded-count MaxOverlapUnbound MaxNonoverlapUnbound

O(log n) O(log4 n log logn)

Table 1: The approximation ratios obtained by polynomial-time algorithms for different variants of the

problem. The volume-budget B (resp. the count-budget K, if given) is violated by at most a constant factor

(resp. given factor). The most complex technical contribution is shaded.

divide the vertices into k parts and minimize the maximum number of edges leaving any set in
the partition. The number of edges leaving a set in the partition is related to conductance, but the
problems are very different, still. For two more problems that admit non trivial approximation and
require to partition the graph into more than two parts see [12, 34]. Generally speaking, it seems
that approximating partitioning problems into many parts is a quite complex subject.

1.3 Our results

Considering all the variants, we define eight minimum conductance clustering problems. The no-
tation and results for these problems is summarized in Table 1. While we have general technical
contributions in comparing overlapping vs. non-overlapping clustering discussed above, and in
the uncrossing technique, the algorithm for minimizing the maximum conductance in the non-
overlapping case, is the most complex algorithm in the paper. To solve this problem, we begin by
a tree decomposition of the graph — but now, we need a single tree of Räcke [30] or Harrelson
et al. [24] that preserves all the cuts simultaneously. This is required since the non-overlapping
problems, unlike overlapping or min-sum problems, is inherently global in nature. 3 The difficulty
in designing an approximation algorithm for MaxNonoverlapBound is not only in the dynamic
programming, but also in proving some non-trivial structural property of a near-optimal solution

3A similar consideration does not hold for the non-overlapping version of the min-sum problem since the overlap-
ping and non-overlapping versions turn out to be equivalent for the min-sum problem. This is explained in detail in
Section 2.

6

in terms of how many subtrees of different “(volume, cut-value) types” can a near-optimum clus-
tering contain. Our dynamic program then forms near-optimal clusters by taking the union of the
“correct” number of subtrees of certain (volume, cut-value) types (Section 3).

The hardest problem to approximate seems to be MaxNonoverlapBound. All the other vari-
ants of the problem admit an O(log n)-approximation algorithm. These results are summarized
in Table 1 and presented in Section 4. These results are mainly based on the tree decomposition
of Räcke [31] that embeds the given graph into (a distribution on) trees and preserves all the cuts
within a logarithmic factor. We then present constant-factor approximations to these problems on
trees based mainly using a dynamic program over trees.

Remark 1 It is easy to see why a distribution on tree-embeddings that preserves any cut within
a logarithmic factor in expectation is enough to get logarithmic approximations for the min-sum
versions of the problem. Somewhat surprisingly, it is also enough to get logarithmic approximation
for min-max and overlapping version of the problem. The reason, roughly speaking, is that we
compute separate (and possibly overlapping) clusters covering different parts of the graph; and for
this, we do not necessarily need a single tree that preserves all the cuts in the graph simultaneously.
This was clearly not the case for min-max non-overlapping version.

Since we claim that in the min-max conductance variant with overlapping, our algorithm is
much simpler than the non-overlap algorithm, it seems appropriate to shortly describe the overlap-
ping algorithm. In order to get a logarithmic approximation for minimum MaxOverlapBound, we
design a set-cover-type greedy algorithm as follows: By guessing the value of OPT, we iteratively
find a set St ⊆ V (G) with the conductance of at most OPT which maximizes the total weight of
uncovered nodes, and add this set St to the output. In order to identify cost-effective clusters as a
step of the above set-cover-type algorithm, we solve a natural dynamic program over trees.

2 Comparing the optima of overlapping and non-overlapping
clusterings

In this section, we show that min-max conductance overlapping and non-overlapping optimiza-
tion problem might be quite different, but min-sum conductance overlapping and non-overlapping
problems are similar in terms of their approximability. We start by showing a large gap between
the optimal solutions of the min-max conductance overlapping clustering problem versus the min-
max conductance non-overlapping clustering problem. If you do not find this example particularly
natural, let us state that it is our experience that most times, if you have any example for a gap,
this implies that there is a “natural” example for the gap. The next example may not correspond

7

to a natural social network. However, it is our experience that once we establish the gap between
the two variants its highly likely that a more representative example with the same gap exists.
For completeless, we also provide an more natural family of examples showing a smaller gap for
min-max conductance between the overlapping and non-overlapping clustering.

Lemma 2.1 There exists an infinite family of graphs G = (V,E) such that there exists an instance
of min-max conductance clustering problem on G such that

1. the optimum value of the overlapping version is O(|V |−2/3),

2. the optimum value of the non-overlapping version is Ω(1), even if we violate the budget by
an Ω(|V |1/3) factor.

Proof: For an integer k, let G = (V,E) be the disjoint union of a clique Kk on k vertices and a 3-
regular expanderH on k3 vertices. Let the weight of each edge inG be 1. Denote n = |V | = k3+k

and let the budget on the volume of clusters be B = k(k − 1) + 3.

We first prove item 1. For each vertex v ∈ H , define a cluster Cv to be the union of Kk and v.
Note that vol(Cv) = k(k − 1) + 3 and φ(Cv) = 3/B = Θ(1/k2) = Θ(n−2/3). These clusters are
over-lapping and satisfy property in item 1. Now for item 2, we prove that as long as the budget is
not violated by 3k3

2B
factor, the optimum value of the non-overlapping clustering is Ω(1). Consider

the optimum clustering. First note that the budget violation considerations imply that any cluster
contains at most k3/2 vertices from H . Now since the number of vertices in H is k2 times the
number of vertices in Kk, there exists a cluster C such that the number of vertices in C ∩ H is
p ≥ 1 and the number of vertices in C ∩ Kk is at most bp/k2c. Since H is an expander, the cut
capacity of this cluster is Ω(p). On the other hand, the volume of C is at most 3p + p(k − 1)/k2.
Thus the conductance of C is Ω(1) as desired.

Despite its intuitive appeal, overlap does not always help. The following lemma shows that
the min-sum conductance overlapping and non-overlapping clustering problems are essentially
identical, up to a constant in the approximation factor.

Lemma 2.2 Any solution for the min-sum conductance overlapping problem, of objective value
φ and maximum cluster volume b, can be converted into a solution for the min-sum conductance
non-overlapping problem of objective value at most 2φ and maximum cluster volume at most
3b/2.

Proof: Let S1, . . . , Sk be a solution for the overlapping problem with φ =
∑

i φ(Si) ≥
∑

iw(δ(Si))/b.
Now we systematically “uncross” the sets {Si} as follows. For any two intersecting sets X and Y ,
we first observe thatw(δ(X))+w(δ(Y)) ≥ min{w(δ(X))+w(δ(Y \X)), w(δ(X\Y))+w(δ(Y))}.
Thus we can replace X and Y with either X and Y \ X , or X \ Y and Y without increasing

8

the total cut value. We can in polynomial time, uncross all the sets {Si} to get a family {Tj}
of non-overlapping clusters. Note that

∑
iw(δ(Si)) ≥

∑
j w(δ(Tj)) and vol(Tj) ≤ b for all j.

Now we successively merge the clusters {Tj} as follows. For any two clusters X and Y with
vol(X), vol(Y) ≤ b/2, replace X and Y with X ∪ Y . Thus finally, we are left with all clusters
of volume between b/2 and b and at most one small cluster of volume less than b/2. We can
merge this small cluster with any of the other clusters. This way, we form non-overlapping clusters
{U1, . . . , Up} with

∑
j w(δ(Tj)) ≥

∑
l w(δ(Ul)) and b/2 ≤ vol(Ul) ≤ 3b/2 for all l. Note that

{Ul} is
∑

l φ(Ul) ≤ 2
∑

l w(δ(Ul))/b ≤ 2
∑

j w(δ(Tj))/b ≤ 2
∑

iw(δ(Si))/b ≤ 2φ, as desired.

In the above proof, the clusters used in the gap example are not connected. The following is
an example showing a smaller gap with more natural clusters. Consider a graph with k1.5 cliques
of size k, a random (Erdos-Renyi) graph of k3 vertices with expected degree k0.5. Each clique
connects to a (disjoint) set of size k1.5 in the random graph with k1.5 edges. The volume constraint
is still k2. For this example, it is not hard to see that for non-overlapping, one still gets only
constant conductance. However for overlapping it’s easy to get k−0.5, i.e.,for each cluster, take k
vertices in the random graph and a clique. For this instance the gap is smaller but at least the graph
is connected.

As a consequence, a ρ-approximation algorithm for one problem can be used to obtain anO(ρ)-
approximation algorithm for the other problem, provided we are willing to violate the budgets by
a constant factor. We appreciate however that although a factor of two may not matter in “theory”,
it may have an impact in practice.

3 The non-overlapping min-max conductance clustering

In this section, we focus on our most involved result, the non-overlapping min-max conductance
clustering MaxNonoverlapUnbound and present a poly-log approximation ratio for this problem.
We first note that the two variants (bounded-count and unbounded-count) of this problem are es-
sentially the same, provided we violate the volume-budget B and the count-budget K by a con-
stant factor. First note that B · K ≥ vol(V) must hold for a feasible solution to exist. Now
any solution for the unbounded-count variant can be transformed into a solution for the bounded-
count without increasing the min-max objective as follows. Consider a clustering S1, . . . , Sk for
the unbounded-count variant where b = maxi vol(Si) = O(B). Now observe that the con-
ductance of the union two clusters is at most the maximum conductance of the two clusters:
φ(Si ∪ Sj) ≤ max{φ(Si), φ(Sj)}. Thus we can take union of the clusters till all clusters have
volume between B/2 and 2 · max{b, B}. This process results in O(K) clusters with maximum
conductance at most that of the original clustering.

9

Theorem 3.1 There is a polynomial-time O(log4 n log log n)-approximation for the no-overlap
min-max conductance clustering, in which the budget is violated by a at most constant factor.

Outline of our approach. We reduce the problem on the general graph to trees by using the
techniques of Räcke [31] and Harrelson et al. [24] thereby losing a factor of O(log2 n log log n)

in the approximation. The leaves in the tree are in one-to-one correspondence with the vertices in
the original graph. With each leaf v in the tree, we associate a weight wv = deg(v), the weighted
degree of v in the original graph. The problem on trees is to partition the leaves into disjoint
clusters such that each cluster has weight at most B and the maximum conductance of any cluster
S, defined as the ratio of the min-cut, in the tree, separating S from rest of the leaves to the weight
of S, is minimized. We compute a logarithmic approximation for this problem on trees by using
a complex dynamic program. Before describing the dynamic program, we study the structure
of the optimum solution. Note that the edge-weights we are integers between 1 and B where B
is polynomially bounded in n. Since we violate the budget B by a constant factor anyway, we
assume that B = 2b for some integer b = O(log n). Consider the optimum clustering on the tree
S∗1 , . . . , S

∗
l . If we remove the edges in the min-cuts separating each S∗i from rest of the leaves, the

tree gets decomposed into disjoint subtrees. Let T ∗1 , . . . , T
∗
t be the disjoint subtrees thus formed.

Let vol(T ∗i) denote the total volume of the leaves in tree T ∗i and let cut(T ∗i) denote the capacity of
the cut separating T ∗i from rest of the tree. Also let ratio(T ∗i) = cut(T ∗i)/vol(T ∗i). We say that a
tree T ∗i belongs to class k if 2k · OPT ≤ ratio(T ∗i) < 2k+1 · OPT where OPT is the optimum value of
the maximum conductance for the tree instance. In the algorithm, we first guess the value OPT. We
then estimate the total volume of trees T ∗i in the optimum solution that belong to each class. Our
dynamic program then decomposes the tree into the correct volume of trees from different classes
and greedily combines them to form a clustering. This clustering naturally induces a clustering in
the original graph.

Details of the approach. We now describe our approach in more details. We first state the result of
Harrelson, Hildrum, and Rao [24] more formally. A tree decomposition T of a graphG = (V,E) is
described by a series of hierarchical partitions of the vertex set V ofG. The nodes of T correspond
to the subsets of V . Consider a series of partitions Π0, . . . ,Πd where partition Πi+1 is a refinement
of partition Πi. The partition Π0 corresponds to a single set V while the partition Πd corresponds
to the set of singletons {v} where v ∈ V . These partitions give rise to a tree T naturally. The root
node of T is V itself. The nodes in layer i are the sets in Πi and the leaves correspond to the sets
in Πd, i.e., the vertices in V . The edges of the tree go between the consecutive layers and are given
by set inclusion. The weights of the edges of the tree are given as follows. For a setpair (S, T),
where S ⊂ T , S ∈ Πi+1, and T ∈ Πi, the weight w(S, T) = wG(δ(S)) is defined to be the weight
of the cut (S, S) in the graph G. For S ⊂ V , define wT (S, S) to be the minimum cut in T that
separates leaves in S from the leaves in S. Harrelson et al. [24] proved the following theorem.

10

Theorem 3.2 (Harrelson et al. [24]) In time polynomial in n = |V |, one can compute a tree de-
composition T with depth d = O(log n) such that for any S ⊂ V , we have

wG(δ(S)) ≤ wT (S, S) ≤ O(log2 n log log n) · wG(δ(S)).

Remark 2 Harrelson et al. [24] did not state their theorem as above. They showed how to com-
pute a decomposition T such that any multicommodity-flow, that can be routed in G with (edge)
congestion 1, can be routed in T with congestion at most 1 and any multicommodity-flow (be-
tween leaves of T), that can be routed in T with congestion 1, can be routed in G with congestion
O(log2 n log log n). It is easy to see that this implies Theorem 3.2. Fix a subset S ⊂ V . The
multicommodity-flow given by demands rij = we for e = (i, j) ∈ δ(S) can be routed in G with
congestion 1. Thus it can be routed in T with congestion at most 1. Hence wG(δ(S)) ≤ wT (S, S).
On the other hand, consider the maximum flow (of total value wT (S, S)) that can be routed be-
tween leaves S and leaves S in T . Fix a flow-path decomposition of this flow. This decomposition
gives multicommodity-flow demands between S and S that can be routed in T with congestion 1.
Thus it can be routed in G with congestion O(log2 n log log n). Since all of this flow must cross the
cut δ(S) in G, we get that wG(δ(S)) ≥ wT (S, S)/O(log2 n log log n), implying the theorem. The
same connection holds also for the result of Räcke [31] (see Theorem 4.1).

Let S∗1 , . . . , S
∗
l be the optimum clustering in G and let OPT = maxi φ(S∗i) be the value of the

optimum. Consider the minimum cuts in T that separate the leaves in S∗i from the leaves in S
∗
i for

each i. If we remove the tree-edges that appear in any of these min cuts from T , the tree T gets
decomposed into a collection of disjoint subtrees T ∗1 , . . . , T

∗
t . For each subtree T , let l(T) denote

the set of leaves of T present in T , vol(T) = vol(l(T)) be the total volume of T , and cut(T) denote
the total weight of the tree-edges needed to separate T from rest of the tree T . Here we consider
only those subtrees T such that vol(T) > 0. Define ratio(T) = cut(T)/vol(T) to be the ratio of
T . We now define a notion of a class of a tree based on its ratio as follows.

Definition 3.1 We say that a tree T belongs to class 0, denoted by C0, if ratio(T) < 2 · OPT. For
k ≥ 1, we say that a tree T belongs to class k, denoted by Ck, if 2k · OPT ≤ ratio(T) < 2k+1 · OPT.

Thus there are at O(log vol(V)) = O(log n) classes. We now prove an important lemma about the
trees T ∗i obtained from the optimum solution.

Lemma 3.3 We have (i) The volume of any tree in class Ck is at most 2−k · B, or formally,
vol(T ∗i) ≤ 2−k · B for any tree T ∗i ∈ Ck for any k ≥ 0, and (ii) The volume of all trees in
class Ck or higher is at most 2−k · vol(T), or formally,

∑
l≥k
∑

i:T ∗i ∈Cl
vol(T ∗i) ≤ 2−k · vol(T) for

any k ≥ 0.

Proof: We first prove item 1. Note that item 1 trivially holds for k = 0 since any tree is contained
in a single cluster with volume at most B. For k > 0, if the inequality in item 1 does not hold, then

11

cut(T ∗i) = vol(T ∗i) · ratio(T ∗i) > 2−k ·B · 2k · OPT = B · OPT. This implies that the total cut of the
optimum cluster containing T ∗i is more than B · OPT. Since the volume of this cluster is at most B,
its conductance is more than OPT, which is a contradiction. We now prove item 2. Note that item
2 trivially holds for k = 0. For k > 0, if the inequality in item 2 does not hold, then∑

l≥k

∑
i:T ∗i ∈Cl

cut(T ∗i) > 2−k · vol(T) · 2k · OPT = vol(T) · OPT.

This is a contradiction since it implies that
∑

i cut(T ∗i)/
∑

i vol(T ∗i) > OPT, which in turn means
that the conductance of at least one of the optimum clusters is more than OPT.

The above lemma motivates the following definition.

Definition 3.2 A partition of T into disjoint subtrees T1, . . . , Tl is called admissible if (i) vol(Ti) ≤
2−k ·B for any tree Ti ∈ Ck for any k ≥ 0, and (ii)

∑
i:Ti∈Ck vol(Ti) ≤ 2−k · vol(T) for any k ≥ 0.

The following lemma presents an important property of an admissible partition.

Lemma 3.4 Given any admissible partition T1, . . . , Tl of T , the sets of leaves l(Ti) of these trees
can be combined, in polynomial time, to form clusters of vertices inG, each of volume at most 10B

and such that the maximum conductance of any cluster is O(OPT · log n).

Proof: Item 1 is proved as in Lemma 3.3 We now prove item 2. Note that item 2 trivially holds for
k = 0. For k > 0, if the inequality in item 2 does not hold, then∑

l≥k

∑
i:T ∗i ∈Cl

cut(T ∗i) > 2−k · vol(T) · 2k · OPT = vol(T) · OPT.

This is a contradiction since it implies that
∑

i cut(T ∗i)/
∑

i vol(T ∗i) > OPT, which in turn means
that the conductance of at least one of the optimum clusters is more than OPT. We combine
the sets of leaves l(Ti) of the trees Ti into K = dvol(V)/4Be clusters as follows. For each
class Ck, we distribute the trees Ti ∈ Ck into K clusters as follows. Consider the trees in Ck
in arbitrary order and assign the next tree in Ck to a cluster that has the minimum volume of
the trees in class Ck. Below we show that this clustering satisfies the conditions claimed. Now
consider any of these K clusters. The volume of trees in a class Ck in this cluster is at most
2−k · vol(V)/(vol(V)/4B) + 2−k · B ≤ 5B · 2−k. This holds due to the way trees in class Ck are
assigned to clusters. Thus the total volume of this cluster is at most 5B

∑
k 2−k < 10B. We now

argue that the conductance of each of these K clusters is O(OPT · log n). First of all, we argue that
the volume of any cluster is at least B. Let Vk denote the total volume of trees in class Ck, thus∑

k Vk = vol(V). Again from the assignment of trees from different classes to clusters, we get that
the total volume of any cluster is at least∑

k

(
Vk

dvol(V)/4Be
− 2−k ·B

)
≥
∑
k

(
Vk

vol(V)/3B
− 2−k ·B

)
≥ 3B − 2B = B.

12

The first inequality holds if dvol(V)/4Be ≤ vol(V)/3B which, in turn, holds if 12B ≤ vol(V).

Next note that the total cut value of any cluster C is at most∑
k

∑
T∈C∩Ck

cut(T) =
∑
k

∑
T∈C∩Ck

ratio(T) · vol(T)

<
∑
k

2k+1 · OPT
∑

T∈C∩Ck

vol(T)

≤
∑
k

2k+1 · OPT · 5B · 2−k

≤
∑
k

10OPT ·B

= O(OPT ·B · log n).

The last inequality follows since the total number of classes is O(log n). This completes the proof.

The above lemma, in particular, implies that computing an admissible partition of T yields
O(log3 n log log n) approximation to our original problem on the graph. Here anO(log2 n log log n)

factor comes from Theorem 3.2 and another O(log n) factor comes from the above lemma.

The dynamic program. We now present a dynamic program based algorithm for finding an
admissible partition of T . To convey the basic intuition behind our approach, we first describe a
dynamic program that runs in nO(logn) time. Later we sketch how to turn it into a polynomial-time
algorithm, losing another factor of O(log n) in the approximation ratio.

In the dynamic program, we first compute and store some tables for the leaves of T . We
then show how to use the tables for the children of a node to compute the table for the node
itself. Finally, the table for the root node is used to compute an admissible partition of T . Let
C = O(log n) denote the total number of classes.

Fix a node u of the tree T . The table for u has the following form. Consider a vector ~v =

[c, v, v0, v1, . . . , vC] where c, v0, . . . , vC are integers in the range [0, vol(V)]. Note that there are at
most vol(V)O(log vol(V)) = nO(logn) such vectors.

Definition 3.3 The vector ~v is called valid for node u if the subtree hanging below u can be
partitioned into disjoint subtrees T0, T1, . . . , Tl such that (i) The node u belongs to the tree T0 and
c = cut(T0), v = vol(T0), and (ii) For each class 0 ≤ k ≤ C, the total volume of trees T1, . . . , Tl
that belong to class Ck is exactly vk, i.e.,

∑
i:Ti∈Ck vol(Ti) = vk for all k ≥ 0.

The table of u stores a list of all valid vectors ~v and the corresponding partition T0, . . . , Tl as
a certificate that makes ~v valid. We first note that it is easy to compute the table for the leaves of

13

T . We now explain how to compute the table for a node v given the tables of all of its children
u1, . . . , up. If p = 1, it is easy to compute the table of v from that of u1. Consider the case
p = 2 now. For each vector ~v = [c, v, v0, v1, . . . , vC], in order to determine if there exists a
partition T0, . . . , Tl that makes ~v valid, we consider several cases. These cases are based on whether
T0 would have components from both the subtrees hanging from u1 and u2 (case 1) or just one
(case 2). For case 1, we consider all possible ways of decomposing it into two vectors ~v1 =

[c1, v1, v10, v
1
1, . . . , v

1
C] and ~v2 = [c2, v2, v20, v

2
1, . . . , v

2
C] such that ~v = ~v1 + ~v2 where the addition

is done component-wise. Note that there are vol(V)C = nO(logn) such decompositions. We find
a decomposition (if one exists) such that ~v1 is valid for u1 and ~v2 is valid for u2. If these exists
such a decomposition, we mark ~v valid for v and compute the corresponding partition for ~v as
follows. We recover the decompositions T 1

0 , . . . , T
1
l1

for ~v1 from the table of u1 and T 2
0 , . . . , T

2
l2

for ~v2 from the table of u2. We define T0 = T 1
0 ∪ T 2

0 ∪ {(v, u1), (v, u2)}, i.e., the tree formed
by taking the union of T 1

0 , T 2
0 , and the edges (v, u1) and (v, u2). The decomposition for ~v is then

T0, T
1
1 , . . . , T

1
l1
, T 2

1 , . . . , T
2
l2

.

If there is no such decomposition, we try case 2. Assume that the tree T0 contains a subtree T 1
0

from the subtree hanging from u1 and the edge (v, u1); thus the edge (v, u2) contributes to cut(T0).
We consider all possible ways of decomposing ~v into two vectors ~v1 and ~v2 such that the following
holds: c = c1 + w(v,u2), v = v1, c2 = 0, v2 = 0, and vk = v1k + v2k for all classes k. If there exists
such a decomposition, we mark ~v valid and store the appropriate tree partition that makes ~v valid.
If there is no such decomposition, we try the same by exchanging the roles of u1 and u2. If we do
not succeed to mark ~v valid in the above cases, we conclude that ~v is not valid.

The case of p ≥ 3 children is handled similarly. Conceptually, we can make T binary by adding
dummy edges of weight zero and work with the previous cases. This is equivalent to processing
the children u1, . . . , up from left to right one by one. We first determine all the valid vectors for
the subtree which is a union of subtrees hanging from u1 and u2 using the p = 2 case. We then
determine all the valid vectors for the subtree which is a union of subtrees hanging from u1, u2, and
u3 using the p = 2 case and the previously computed information. We repeat this till we consider
all the children of v. Thus we can compute the entire table for v.

In the end, to find an admissible partition of T , we determine if there is a vector ~v (with corre-
sponding partition T1, . . . , Tl) that is valid for the root node and that satisfies the two conditions in
the definition of admissible partition: vol(Ti) ≤ 2−k · B for all Ti ∈ Ck and vk ≤ 2−k · vol(T) for
all k.

Making the dynamic program run in polynomial time. We can improve the running time
from nO(logn) to polynomial time if we lose a factor of O(log n) in the approximation guaran-
tee. This is done using the following main observations: (i) The depth of the tree T is O(log n),

14

say a log n for some constant a > 0, (ii) The number of classes can be reduced from O(log n)

to O(log n/ log log n) by defining class 0 to be the set of trees T with ratio(T) < (log n) · OPT

and class k ≥ 1 to be set of trees T with (log n)k · OPT ≤ ratio(T) ≤ (log n)k+1 · OPT. This is
the place where we lose another factor of O(log n) in the approximation ratio, and (iii) The co-
ordinates in vectors ~v, considered in the dynamic program, instead of ranging over all integers in
[0, vol(V)], now range over powers of (1 + δ) in [0, vol(V)] where δ = 1/(a log n). Note that there
are O(log2 n) distinct powers of (1 + δ) in this interval. Thus the number of distinct vectors ~v is
O(log2 n)O(logn/ log logn) = nO(1).

More formally we show that the dynamic programming algorithm described for no-overlap
min-max conductance clustering, can be modified to run in polynomial time. As it is now its
running time is time nO(logn) since the size of each table can be as large as this. We can make
the program run in polynomial time provided we are willing to lose a factor of O(log n) in the
approximation guarantee as outlined below. This reduction in the running time is based on the
following main observations:

• The depth of the tree T is O(log n), say a log n for some constant a > 0.

• The number of classes can be reduced fromO(log n) toO(log n/ log log n) by defining class
0 to be the set of trees T with ratio(T) < (log n) · OPT and class k ≥ 1 to be set of trees T
with (log n)k · OPT ≤ ratio(T) ≤ (log n)k+1 · OPT. This is the place where we lose another
factor of O(log n) in the approximation ratio.

• The coordinates in vectors ~v, considered in the dynamic program, instead of ranging over all
integers in [0, vol(V)], now range over powers of (1+δ) in [0, vol(V)] where δ = 1/(a log n).
Note that there are O(log2 n) distinct powers of (1 + δ) in this interval. Thus the number of
distinct vectors ~v is O(log2 n)O(logn/ log logn) = nO(1).

For every node u ∈ T , we define its height as follows. The height of the root node is a log n

and the height of any node u ∈ T is defined as one less than the height of its parent in T . The
definition of valid vectors is modified as below.

Definition 3.4 The vector ~v is called valid for node u of height h if the subtree hanging below u

can be partitioned into disjoint subtrees T0, T1, . . . , Tl such that

• The node u belongs to the tree T0 and c ≤ cut(T0) < c(1 + δ)h, v ≤ vol(T0) < v(1 + δ)h.

• For each class 0 ≤ k ≤ C, the total volume of trees T1, . . . , Tl that belong to class Ck is in
the range [vk, vk(1 + δ)h).

15

The dynamic program proceeds as before. For each node u ∈ T , we determine all valid vectors
~v and the corresponding certificates that make them valid. We say that a number v is known within
a precision of (1 + δ)p if we know q such that (1 + δ)q ≤ v < (1 + δ)p+q. At height h, we work
with a precision of (1 + δ)h. As we compute the table for u ∈ T at height h + 1 from the tables
of its children at height h, the precision changes to (1 + δ)h+1. This happens since the sum of two
or more numbers that are known individually within a precision of (1 + δ)h is known only within
a precision of (1 + δ)h+1. (See footnote4 for more explanation.) At the root, the final precision of
the numbers is (1 + δ)a logn = O(1).

We hope this difficult algorithm gives enough evidence why allowing overlap is better: the
approximation algorithm for the overlapping case has much lower ratio and is much simpler.

4 Other conductance clustering problems

4.1 The MaxOverlapUnbound Problem

For MaxOverlapUnbound problem, since we should cover all the nodes, and we want to minimize
the maximum conductance of the clusters, we can find the cut with the minimum conductance
around each vertex v ∈ V (G). The output of the algorithm is then the union of all cuts around all
vertices. As a result, in order to solve the MaxOverlapUnbound problem, it is sufficient to solve
the following problem: Given a bound B, a graph G(V,E) and a vertex v ∈ V (G), find a cut
(S, S) with minimum conductance φ(S) such that v ∈ S, and vol(S) ≤ B. We give a logarithmic
approximation for this problem. In this algorithm, we use a recent result of Räcke [31] which is
similar to the results [24].

Theorem 4.1 (Räcke [31]) For any graph G = (V,E), there exists a convex combination of tree
decompositions Ti defined by multipliers λi with

∑
i λi = 1 and a constant C such that the fol-

lowing holds: for any S ⊂ V , (i) for any tree Ti, we have wG(δ(S)) ≤ wTi(S, S), and (ii)
1

C logn

∑
i λiwTi(S, S) ≤ wG(δ(S)).

The above theorem implies that if we design an exact algorithm for our problem on trees, then
using Racke’s result, we can design a logarithmic approximation for our problem on all graphs.
Now, we present a PTAS for the following problem P1 on trees: Given a bound B, a graph G, and
a vertex v ∈ V , find a cut (S, S) with minimum conductance for which v ∈ S and vol(S) ≤ B.
In order to solve this problem, we first give a dynamic programming solution to a problem P2 as

4If (1 + δ)q1 ≤ a < (1 + δ)h+q1 and (1 + δ)q2 ≤ b < (1 + δ)h+q2 , then (1 + δ)q ≤ a+ b < (1 + δ)h+1+q where
(1 + δ)q ≤ (1 + δ)q1 + (1 + δ)q2 < (1 + δ)q+1.

16

follows: Let T be a decomposition tree with edge weights we and polynomially-bounded integer
leaf weights wv. For each leaf node v, let lv ∈ {0, 1} be the label of v: lv = 0, we say that v is
unsaturated, and lv = 1, we say that v is saturated. Given the above input, problem P2 is as follows:
for any node u of the tree and any two numbers A and C, solve the following two problems: (i)
find the minimum cut (S, S) such that u ∈ S, the total leaf weight in S is A, and the total weight
of unsaturated leafs in S is C, and (ii) find the minimum cut (S, S) such that u 6∈ S, the total leaf
weight in S is A, and the total weight of unsaturated leafs in S is C.

We call the minimum cut value in the former and the later cases X(u,A,C) and Y (u,A,C)

respectively. The base case of the dynamic program is for small values ofA andC, i.e, 0 ≤ A,C ≤
1. For a node u with two children nodes u1 and u2, in order to compute compute X(u,A,C) and
Y (u,A,C), we consider all possible ways of decomposing A and C to four numbers A1, A2, and
C1, C2 such that A = A1 + A2 and C = C1 + C2, and write the following recurrence relation:

X(u,A,C) = min(X(u1, A1, C1) +X(u2, A2, C2),

Y (u1, A1, C1) + wu1u +X(u2, A2, C2),

Y (u1, A1, C1) + wu1u + Y (u2, A2, C2) + wu2u,

X(u1, A1, C1) + Y (u2, A2, C2) + wu2u)

and

Y (u,A,C) = min(X(u1, A1, C1) +X(u2, A2, C2) + wu1u + wu2u,

Y (u1, A1, C1) +X(u2, A2, C2) + wu2u,

Y (u1, A1, C1) + Y (u2, A2, C2),

X(u1, A1, C1) + Y (u2, A2, C2) + wu1u)

In both the cases, the minimum is taken over all A1, A2, C1, C2 such that A1 +A2 = A,C1 +C2 =

C.

The above dynamic program solves problem P2. Now, in order to solve problem P1, we first
round all the weight of leafs of weight less than εB

n
for a small constant ε to zero. This rounding

does not change the volume of the solution by a factor more than 1 + ε as the total weight of such
leaves is less than εB. Now, we can assume that the ratio between the maximum and minimum
weight of leaves is at most n

ε
, since the leaves of weight more than B are not in the optimal

solution. Now, we round all the remaining weights to a multiple of εB
n

which is smaller than
the original weight of the leaf. This operation changes the total volume of clusters by at most
a 1 + ε factor. After performing the above rounding operation, the weight of the leaves are all
in set { ε

n
B, 2ε

n
B, . . . , (n−1)ε

n
B, εB}, and thus by the right scaling, we can assume that weights

are polynomially-bounded integers (as assumed in problem P2). Now, we can solve problem P2

17

on the new instance (with rounded weights) using the above dynamic program, and for a node
u output the cut with minimum value among all min cuts corresponding to X(u,A,C) for any
two numbers A,C ≤ 3

2
B. Because of the rounding method discussed above, this is a PTAS for

problem P1 on trees. This PTAS on trees and Racke’s result imply a logarithmic approximation
for the MaxOverlapUnbound problem.

4.2 The MaxOverlapBound Problem

To get a logarithmic approximation for the MaxOverlapBound problem, we again use Racke’s
result and reduce the problem to a problem on decomposition trees. For decomposition trees,
we can design a PTAS using the dynamic program solution to problem P2 described above. In
fact, we run a set cover-type greedy algorithm and use the dynamic program as a procedure to
implement the greedy set cover algorithm. In the following, we first present the algorithm, and
then show that it can be implemented in polynomial time with a desired approximation factor.
Given a decomposition tree T , we run the following set-cover-type algorithm ALG:

1. Guess the value of optimal solution OPT (i.e, try the following values for OPT: vol(V (G))
2i

for
0 ≤ i ≤ log vol(V (G)).); and let t = 0.

2. While ∪1≤i≤tSi 6= V (G) do

(a) Find a set St ⊆ V (G) with the conductance of at most OPT which maximizes the total
weight of uncovered nodes, i.e, the total weight of nodes in the set St∩(V (G)\(∪1≤i≤t−1Si));
and set t := t+ 1.

3. Output S1, S2, . . . , St.

To show that this algorithm can be implemented in polynomial time, we show a PTAS imple-
mentation of Line 2a of this algorithm. Similar to the rounding method used in solving problem
P1, we first round the weights of the leaves to polynomially-bounded integers. We call a node u
saturated if u is already covered by set of clusters S1, . . . , St−1, i.e, u ∈ ∪1≤i≤t−1Si. Now, we
use the dynamic program for problem P3 as follows: for each total weight A ≤ 3

2
B and each

total weight of unsaturated nodes C, we find a cluster with the minimum cut value cutvalue(A,C).
Among all these cuts with conductance cutvalue(A,C)

C
≤ OPT, we choose the cut the maximum C.

This cut is the desired cut in Line 2a of Algorithm ALG.

We now prove the performance of Algorithm ALG for MaxOverlapBound. LetU1, U2, . . . , Uk(k ≤
K) be optimal clusters for the MaxOverlapBound on a tree T . Also, consider a family F of subsets

18

of nodes of T corresponding to all clusters of conductance at most OPT each with a unit cost 1.
Consider a set cover instance over this set system F , i.e., a family of clusters with minimum cost
(or minimum number of clusters) that covers all the elements (i.e., nodes of the graph). Since the
conductance of all sets U1, . . . , Uk is at most OPT, one can cover all nodes of the graph, using
at most k sets in F , and thus the cost of the optimal solution is at most k. While running algo-
rithm ALG with a guess O for OPT such that OPT ≤ O ≤ 2OPT, the algorithm is equivalent
to the greedy set cover algorithm on the set cover instance F . Therefore, the approximation fac-
tor of this algorithm is log n where n is the number of nodes, and as a result, this algorithm find
at most k log n ≤ K log n clusters with min-max conductance of at most (1 + ε)OPT over tree
T . Using Racke’s result [31] along with this algorithm on trees, we get the desired algorithm for
MaxOverlapBound with O(log n) approximation for the conductance and K log(n) clusters.

5 Min-Sum Conductance Minimization

For min-sum conductance optimization problems, we show that the optimum solution consists of
clusters of volume O(B), and thus reduce these problems to the the minimum balanced multi-
cut optimization problems. Therefore, using Lemma2.2 and the known O(log n) approximation
algorithms for the minimum balanced multi-cut problems [31], we get logarithmic approximation
algorithms for SumOverlapBound.

In section 2, we showed that the overlapping and non-overlapping problems are equivalent up
to a constant factor, therefore we design logarithmic approximation for non-overlapping clustering
variants and it implies a logarithmic approximation for overlapping variants as well. In order to
solve SumNonoverlapUnbound, we first observe that there exists a clustering of total cost less than
or equal to the optimal solution in which all clusters have volume between B

2
and 3

2
B. The reason is

that in any optimal solution, if any cluster has volume less than B
2

, we can substitute this cluster and
another arbitrary cluster and only decrease the sum of the conductance of the clusters. As a result,
the cut minimization problem and the conductance minimization problem are equivalent for this
objective function up to a constant factor. The minimum cut balanced partitioning problem admits
a polynomial-time O(log n)-approximation algorithm [18], and thus the SumNonoverlapUnbound

also admits a logarithmic approximation algorithm. Now, in order to solve SumNonoverlapBound,
we note that since in the solution of SumNonoverlapUnbound, the volume of clusters is between
B
2

and 3B
2

, the number of clusters is at most O(vol(V (G))
B

). Moreover, for SumNonoverlapBound to
have a feasible solution, we should have K ≥ vol(V (G))

B
. As a result, by running the logarithmic

approximation algorithm SumNonoverlapUnbound, the output has at most O(K) clusters, and its
solution is a logarithmic approximation to SumNonoverlapBound as desired.

19

6 Conclusion

In this paper, we set out to examine the advantage in allowing overlap in clustering from a the-
oretical point of view. The problem chosen is the popular one of minimizing conductance. We
introduced several overlapping and non-overlapping clustering problems, and presented a first set
of approximation algorithms for them. In one case (min-max) the intuition that overlap clustering
should be better was proved true as the optimum may be much smaller and the approximation
much easier. In the sum version, contrary to our intuition, overlapping does not help much in
terms of the approximability of the problem. Many interesting problems remain open. Other than
improving the approximation algorithms, fast combinatorial algorithms for the minimum conduc-
tance problems, and studying overlapping clustering for other previously-studied non-overlapping
clustering problems are interesting subjects of study.

Acknowledgement. We thank David Gleich for useful discussions, for validating the importance
of our model and for conducting some initial experimental study.

References

[1] A. Agarwal, N. Alon, and M. Charikar. Improved approximation for directed cut problems.
In STOC, pages 671–680, 2007.

[2] R. Andersen, F. R. K. Chung, and K. J. Lang. Local graph partitioning using pagerank
vectors. In FOCS, pages 475–486, 2006.

[3] R. Andersen, D. Gleich, and V. Mirrokni. Overlapping clustering for distributed computation.
In ACM Conference on Web search and Data Mining, 2012.

[4] S. Arora, R. Ge, S. Sachdeva, and G. Schoenebeck. Finding overlapping communities in
social networks: Toward a rigorous approach. In ACM EC, 2012.

[5] S. Arora, E. Hazan, and S. Kale. O(sqrt(log(n)) approximation to sparsest cut in õ(n2) time.
SIAM J. Comput., 39(5):1748–1771, 2010.

[6] S. Arora, J. R. Lee, and A. Naor. Euclidean distortion and the sparsest cut. In STOC ’05:
Proceedings of the thirty-seventh annual ACM symposium on Theory of computing, pages
553–562, New York, NY, USA, 2005. ACM Press.

[7] S. Arora, S. Rao, and U. V. Vazirani. Expander flows, geometric embeddings and graph
partitioning. In STOC, pages 222–231, 2004.

20

[8] M. Balcan, C. Borgs, M. Braverman, J. T. Chayes, and S. Teng. I like her more than you:
Self-determined communities. CoRR, abs/1201.4899, 2012.

[9] N. Bansal, U. Feige, R. Krauthgamer, K. Makarychev, V. Nagarajan, J. Naor, and
R. Schwartz. Min-max graph partitioning and small set expansion. In FOCS, pages 17–26,
2011.

[10] A. Blum and S. Chawla. Learning from labeled and unlabeled data using graph mincuts. In
ICML, pages 19–26, 2001.

[11] U. Brandes, M. Gaertler, and D. Wagner. Engineering graph clustering: Models and experi-
mental evaluation. ACM J. Experimental Algorithmics, 1(1), 2007.

[12] G. Călinescu, H. J. Karloff, and Y. Rabani. An improved approximation algorithm for multi-
way cut. J. Comput. Syst. Sci., 60(3):564–574, 2000.

[13] S. Chawla, A. Gupta, and H. Räcke. Embeddings of negative-type metrics and an im-
proved approximation to generalized sparsest cut. In SODA ’05: Proceedings of the sixteenth
annual ACM-SIAM symposium on Discrete algorithms, pages 102–111, Philadelphia, PA,
USA, 2005. Society for Industrial and Applied Mathematics.

[14] J. Cheriyan, H. Karloff, and Y. Rabani. Approximating directed multicuts. Combinatorica,
25(3):251–269, 2005.

[15] J. Chuzhoy and S. Khanna. Hardness of cut problems in directed graphs. In STOC ’06:
Proceedings of the thirty-eighth annual ACM symposium on Theory of computing, pages
527–536, New York, NY, USA, 2006. ACM Press.

[16] J. Chuzhoy and S. Khanna. Polynomial flow-cut gaps and hardness of directed cut problems.
J. ACM, 56(2), 2009.

[17] I. Dinur and S. Safra. The importance of being biased. In Symposium on Theory of Comput-
ing, pages 33–42, 2002.

[18] G. Even, J. Naor, S. Rao, and B. Schieber. Fast approximate graph partitioning algorithms.
SIAM J. Comput., 28(6):2187–2214, 1999.

[19] U. Feige, D. Peleg, and G. Kortsarz. The dense k -subgraph problem. Algorithmica,
29(3):410–421, 2001.

[20] N. Garg, V. V. Vazirani, and M. Yannakakis. Approximate max-flow min-(multi)cut theorems
and their applications. SIAM Journal on Computing, 25(2):235–251, 1996.

21

[21] N. Garg, V. V. Vazirani, and M. Yannakakis. Primal-dual approximation algorithms for inte-
gral flow and multicut in trees. Algorithmica, 18(1):3–20, 1997.

[22] U. Gargi, W. Lu, V. Mirrokni, and S. Yoon. Large-scale community detection on youtube. In
ICWSM, 2011.

[23] A. Gupta. Improved results for directed multicut. In Symposium on Discrete Algorithms,
pages 454–455, 2003.

[24] C. Harrelson, K. Hildrum, and S. Rao. A polynomial-time tree decomposition to minimize
congestion. In SPAA, pages 34–43, 2003.

[25] R. Khandekar, S. Rao, and U. V. Vazirani. Graph partitioning using single commodity flows.
In STOC, pages 385–390, 2006.

[26] Y. Kortsarts, G. Kortsarz, and Z. Nutov. Greedy approximation algorithms for directed mul-
ticuts. Networks, 45(4):214–217, 2005.

[27] J. R. Lee. On distance scales, embeddings, and efficient relaxations of the cut cone. In SODA
’05: Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms,
pages 92–101, Philadelphia, PA, USA, 2005. Society for Industrial and Applied Mathematics.

[28] R. Lepère and C. Rapine. An asymptotic o(ln rho/ln ln rho)-approximation algorithm for the
scheduling problem with duplication on large communication delay graphs. In STACS, pages
154–165, 2002.

[29] N. Mishra, R. Schreiber, I. Stanton, and R. E. Tarjan. Clustering social networks. In WAW,
pages 56–67, 2007.

[30] H. Räcke. Minimizing congestion in general networks. In FOCS, pages 43–52, 2002.

[31] H. Räcke. Optimal hierarchical decompositions for congestion minimization in networks. In
STOC, pages 255–264, 2008.

[32] H. Räcke. Optimal hierarchical decompositions for congestion minimization in networks. In
STOC, pages 255–264, 2008.

[33] T. Sahai, A. Speranzon, and A. Banaszuk. Hearing the clusters of a graph: A distributed
algorithm. Automatica, 48(1):15–24, 2012.

[34] H. Saran and V. V. Vazirani. Finding k cuts within twice the optimal. SIAM J. Comput.,
24(1):101–108, 1995.

22

[35] D. Shmoys. Cut problems and their applications to divide-andconquer, 1996.

[36] A. P. Streich, M. Frank, D. Basin, and J. M. Buhmann. Multi-assignment clustering for
boolean data. In ICML, 2009.

23

