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Abstract

We introduce the problem of finding a spanning tree along with a partition of the tree
edges into the fewest number of feasible sets, where constraints on the edges define feasibility.
The motivation comes from wireless networking, where we seek to model the irregularities
seen in actual wireless environments. Not all node pairs may be able to communicate, even
if geographically close — thus, the available pairs are specified with a link graph G = (V,E).
Also, signal attenuation need not follow a nice geometric formula — hence, interference is
modeled by a conflict (hyper)graph C = (E,F ) on the links. The objective is to maximize
the efficiency of the communication, or equivalently, to minimize the length of a schedule of
the tree edges in the form of a coloring.

We find that in spite of all this generality, the problem can be approximated linearly
in terms of a versatile parameter, the inductive independence of the interference graph.
Specifically, we give a simple algorithm that attains a O(ρ log n)-approximation, where n
is the number of nodes and ρ is the inductive independence, and show that near-linear
dependence on ρ is also necessary. We also treat an extension to Steiner trees, modeling
multicasting, and obtain a comparable result.

Our results suggest that several canonical assumptions of geometry, regularity and “nice-
ness” in wireless settings can sometimes be relaxed without a significant hit in algorithm
performance.

1 Introduction

We introduce the problem of finding a spanning tree along with a partition of the tree edges
into fewest number of feasible sets, which are independent sets in a given conflict (hyper)graph.
The motivation comes from wireless networking, where we seek a basic communication structure
while capturing the irregularities seen in actual wireless environments.

A spanning tree is the minimal structure for connecting the given set of nodes into a mutually
communicable network. The cost of a communication spanning tree is the time required to
schedule all the tree edges – the transmission links – while obeying the interference caused by
simultaneous transmissions.

The scheduling complexity of the tree represents its throughput capacity: how much commu-
nication can be sustained in the long run. The task might be to aggregate the data measured at
the sensor nodes, or to broadcast using one-to-one communication to all nodes of the network.

Algorithmic studies of wireless connectivity to date have generally involved strong “niceness”
assumptions. One core assumption is that points are located in the Euclidean plane and all
(close enough) pairs of nodes are available as links for use in the spanning tree. Interference
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modeling has become progressively more realistic, starting with range-based graph models to
the fractional SINR model of interference, but the common thread is that interference is a direct
function of the geometry. While natural, these assumptions depend on a simplified view of the
nature of wireless communication.

Wireless networking in the real world behaves quite different from these theoretical models
[10, 32, 38] and typically displays a high degree of irregularity. This manifests in how the
strength of signals (and the corresponding interference) often varies greatly within the same
region, and is often poorly correlated with distance [2]. This behavior holds even in simple
outdoor environments, but is magnified inside buildings. It is also evidenced by fluctuations,
sensitivity to environmental changes (even levels of humidity), and hard-to-explain unreliability.

There has been increased emphasis for greater robustness in the design and analysis of
wireless algorithms to address the observed irregularities. In the world of communications
engineering, the default is to introduce stochastic distributions, e.g., on signal strengths. The
algorithms world prefers more adversarial effects, but that can easily lead to intractability.

The objective of this work is to embrace this irregularity in connectivity problems. We
replace the previous assumptions by the opposite premises:

A link may not be usable even if it should be.

and

Interference need not follow (or even relate to) the underlying geometry.

Technically, the former premise means that the set of usable or available links is now given
as a link graph G = (V,L) over the set V of nodes. We place no restrictions on the structure
of this graph. The second premise implies another (hyper)graph, the conflict graph C = (L,F ),
this time on top of the links. In the Connectivity Scheduling problem, we seek a spanning
tree T of G and a coloring of the links of T minimizing the number of colors used, where the
conflict graph C specifies whether a given set of links in L can coexist in the same color class.

These formulations naturally raise a number of questions: Can arbitrary sets of avail-
able/usable links actually be handled effectively? Can we disconnect the conflicts/interference
from the geometry? Since the ugly specter of intractability is bound to raise its head somewhere,
what are minimal restrictions that keep these problems well-approximable?

Our Results: Given the generality of the Connectivity Scheduling problem, it is un-
surprising that it is very hard even to approximate. We show that strong n1−ε-approximation
hardness holds, even for the natural special case of 2-hop interference. Instead, we aim to obtain
approximations in terms of natural instance parameters.

We show that the problem is approximable within aO(ρ log n)-factor, where ρ is the inductive
independence of the (fractional) conflict graph. This is particularly relevant since ρ is known
to be constant in both of the predominant interference models: the physical (or SINR) model,
and the protocol model. This is attained by a simple greedy algorithm that can be viewed as a
combination of Kruskal’s MST algorithm and a link scheduling algorithm for the physical model.
Interestingly, the result implies that the approximability of Connectivity Scheduling is not
significantly affected by restricting the set of allowable links.

In contrast, we find that the (perhaps more natural) approach of selecting and coloring an
MST fails badly. We also obtain improved results for the natural special case where links are
embedded in the plane and all short links are reliable.

We also generalize the problem to Steiner trees and obtain a similar logarithmic approxi-
mation.

Definitions: In line with a modern view of wireless interference, we represent the interference
conflicts by a fractional conflict graph C = (L,W ). Here L is the set of communication links
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and W : L × L → R+ is a function on ordered pairs of links, where W (e, f) represents (or
approximates) the degree to which a transmission on link e interferes with a transmission on
link f . Of particular interest are functions W in terms of geometric relationships involving
link lengths and distances between links. Note that W may be asymmetric. For convenience,
let W (e, e) = 0. We shall write W (S, e) =

∑
f∈SW (f, e) and W (f, S) =

∑
e∈SW (f, e). Let

C[Y ] = (Y,W �Y ) denote the subgraph induced by a given subset Y ⊆ L of links.
A set S of links is an independent or a feasible set if W (S, e) ≤ 1, for all e ∈ S. A coloring of

C = (L,W ) is a partition of L into independent sets. Observe that when W is a 0-1 function, we
have the usual independent sets and colorings of graphs. Also, the formulation with fractional
conflicts corresponds to hypergraphs that contain a hyperedge for each minimal set S′ where
W (S′, e) ≥ 1 holds for some e ∈ S′.

We can now state our Connectivity Scheduling problem formally:

Given a link graph G = (V,L) and a fractional conflict graph C = (L,W ), we seek a
spanning tree T of G and a coloring of C[T ], using the fewest number of colors.

A fractional conflict graph C = (L,W ) is said to be ρ-inductive independent, w.r.t. an
ordering ≺ of the links, if for every link e and every feasible set I with e ≺ I, W (I, e) +
W (e, I) ≤ ρ, where e ≺ I means that e precedes each link in I. Here, “inductive” refers
to how the interference is measured only towards later links, and “independence” that it is
towards independent sets. In geometric settings (including range-based and SINR models), ≺
corresponds to a non-decreasing ordering by link length.

For a fractional conflict graph C = (L,W ), let χ(C) denote the smallest number of indepen-
dent sets into which L can be partitioned; when C is an ordinary graph, χ(C) is the chromatic
number of C.
Notable Instantiations: Connectivity Scheduling has a number of special cases of inde-
pendent interest, both graph-based and geometric:

• A well-studied setting is where two links conflict if they are incident on a common link,
i.e., when C is the square of the line graph of the link graph G. This case corresponds
to bidirectional version of the classic radio network model. The directed version of Con-
nectivity Scheduling was treated in [9] as the radio aggregation scheduling problem.

• In range-based or disk models, nodes are embedded in the plane and two links are adjacent
if the distance between (the closest points on) them is less than K times the length of the
longer link, where K is some fixed constant. In a variant, the condition is on distances
between particular nodes on the links. Also, in the the related protocol model, adjacency
occurs if the distance is less than K1 times the length of the longer link plus K2 times the
length of the shorter link, for some constants K1,K2.

• The original driving motivation is when nodes and links are embedded in a metric space
and the fractional conflicts follow the geometric SINR model of interference in terms of
the lengths and distances between links. Before this work, only the case when G is the
complete graph over a set of points in a Euclidean metric was considered.

• A different geometric version is when we view that no signal gets transmitted between
nodes on unavailable links, perhaps due to an obstacle. The links are then unavailable,
but the nodes also don’t interfere with each other. We refer to this as the Missing Links
version.

• A natural special case occurs when link unreliability is restricted by link length, so that
only reasonably long links are unavailable or attenuated, but short links follow the normal
SINR laws (short links are reliable).
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• Finally, when the conflict graph C is the line graph of the link graph G, i.e., C = L(G),
we obtain the well-known minimum degree spanning tree (MDST) problem, where given
a graph G, the goal is to find a spanning tree of smallest maximum degree. By König’s
theorem, the chromatic number of the line graph of a tree (in fact, of any bipartite graph)
is equal to the maximum degree of the tree. This problem has more structure that allows
for better solution: while it is NP-hard, it can be approximated within an additive one
[8]. In particular, L(G) is claw-free (does not contain an induced star graph K1,3), which
is stronger than being 2-inductive independent), and is intimately related to G.

Related Work: The connectivity problem in the geometric SINR model was first considered
by Moscibroda and Wattenhofer [35]. It was, in fact, the first work on worst-case analysis in the
SINR model. They show that unlike in random networks, the worst-case connectivity depends
crucially on the use of power control, and with optimal power control, O(log4 n) colors suffice
to connect the nodes. They soon improved this to O(log2 n) [36, 34]. Currently, the best upper
bounds known are O(log n) [18] and O(log∗ Λ) [23], where Λ is the ratio between the longest to
the shortest length of a link in a minimum spanning tree (MST), a structural parameter that
is independent of n. Both of these results hold for the MST of the pointset; there are pointsets
where Ω(log∗ Λ) colors are necessary for coloring an MST [23].

The scheduling complexity of connectivity relates closely to the efficiency of aggregation,
a key primitive for wireless sensor networks. We refer the reader to [26] for bibliography on
aggregation/collection problems.

There are many approaches that have been proposed to model irregularity in wireless net-
works. We first examine static cases, or the modeling of non-geometric behavior. The basic
SINR model allows the pathloss constant α to be adjusted [14], giving a first-order approxima-
tion of the signal gain. In the engineering community, it is most common to assume that the
deviations are drawn from a particular stochastic distribution, typically assuming independence
of events. In the TCS camp, the prevailing approach is to view the variations as conforming the
plane into a non-Euclidean metric space [7, 17], while retaining some tractable characteristics.
This can also entail identifying appropriate parameters [4].

For frequent temporal changes, the standard engineering assumption is Rayleigh fading.
Dams et al. [6] (see also [22]) showed that link scheduling algorithms are not significantly
affected by such variation, assuming independence across time.

For unpredictably changing behavior, there is much research on adapting to new conditions,
particularly with exponential backoff. A theoretic model proposed to specifically capture un-
reliability is the dual graph model [33], which extends the radio network model to a pair of
graphs, the reliable and the unreliable links, where the latter are under adversarial control. The
focus there is on distributed algorithms for one-shot problems, like global and local broadcast
problems, where the nodes do not know which links are reliable. As far as we know, it has not
been considered in settings involving a long-term communication structure.

Inductive independence was first defined by [1] and studied by [37] in the graph setting,
while the weighted version was introduced by Hoefer and Kesselheim [25]. It has been used as
a performance measure for various problems related to wireless networks, including admission
control [11], dynamic packet scheduling [31, 16], and spectrum auctions [25, 24, 16].

Outline of the paper: We first examine, in Sec. 2, how the standard approach – finding a
minimum spanning tree – fares for our problem, and show that it can give poor solutions in every
known interference model when there are missing or unreliable links. We then give in Sec. 3.1 a
greedy algorithm for Connectivity Scheduling achieving O(ρ log n)-approximation, where
ρ is the inductive independence number of the conflict graph. This dependence on ρ is shown to
be essentially tight in Sec. 5. We also obtain a similar approximation of a Steiner or multicast
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version of the problem in Sec. 3.2. We additionally treat in Sec. 4 a special case involving
natural geometric interference assumptions.

Implications of our results to the SINR (or physical) model are given in Sec. 6. The rest of
the paper can safely be read without any background in that model. We then close with open
problems.

A brief primer on SINR concepts is given in Appendix A, for completeness.

2 MST Fails

In a basic setting, the nodes are located in the plane, and the interference between two links
is a function of the lengths of links (distance between the two end-nodes), and the distance
between the (endpoints of) links. For instance, in the SINR model, the interference between
two links is a decreasing function of their distance, and an increasing function of the length of
the interfered link. In this setting, the Euclidean minimum spanning tree (MST) over the set
of nodes is a natural candidate for connectivity, since it favors short links and has low degree
(or, more generally, contains few links in the vicinity of any node). Indeed, the MST of n nodes
O(log n)-colorable under the Euclidean SINR model [18].

Figure 1: The construction from Thm. 1

Somewhat surprisingly, we find that when
the set of possible links is restricted, the MST
can actually fail quite badly. This holds under
every conflict graph that satisfies the follow-
ing natural conditions.

We say that a conflict graph C over a set
of links in the plane is reasonable if: a) no
feasible set contains incident links, while b)
sparse sets of equal length links can be colored
with O(1) colors in C, where a set of length `
links is sparse if any ball of radius ` contains
O(1) endpoints of those links.

Every geometrically-defined wireless inter-
ference model known satisfies this reasonableness property. In particular, this holds in the
protocol and Euclidean SINR models.

Theorem 1 For any integer n > 0, there is an instance G = (V,L) of links over n nodes
embedded in the plane, such that G contains a spanning tree that is O(1)-colorable while the
MST requires Ω(n1/3) colors, in every reasonable conflict graph C.

Proof: Let k ≥ 1 be a number and K = 2k2. Let V = {o} ∪ {vi,j : i = 0, 1, . . . , k − 1, j =
0, 1, . . . ,K − 1} denote the set of n = kK + 1 = 2k3 + 1 nodes. We position the nodes in the
plane using polar coordinates, with the node o as the origin. For node vi,j , angular coordinate
ri,j is 2π · i/k, while its radial coordinate is k + j.

The links are given by L = O ∪ S ∪ Y , where O = {(o, vi,1) : i = 0, . . . , k − 1}, S =
{(vi,j , vi,j+1) : i = 0, . . . , k−1, j = 0, . . . ,K−2}, Y = {(vi,K−1, vi+1 mod k,K−1) : i = 0, . . . , k−1},
or the ordinary, the short and the yuge links. That is, the link graph is in the form of a wheel,
centered at origin, with k spokes, and K nodes on each spoke (see Fig. 1). Ordinary links are
incident with the origin, while the yuge links form the tire of the wheel.

We observe that d(vi,K−1, vi+1 mod k,K−1) > k = d(o, vi′,1), for any i, i′. Thus, the MST
consists of the short and the ordinary links, S∪O. Since all the ordinary links have an endpoint
in the origin, they must all be colored with different colors in C, implying that the MST requires
k = Θ(n1/3) colors.
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On the other hand, a more efficient solution is to use the short links, the yuge links, and a
single (arbitrary) ordinary link. As a union of three sparse subsets, it can be colored with O(1)
colors. �

This same example shows why the known results for Euclidean SINR do not carry over to
general metric spaces (even without missing links). Namely, one could simply form a metric
space on the n nodes by shortest-path distances in the link graph.

One way to try to overcome the hard example above would be to consider bounded degree
minimum spanning trees. However, under a slight variation of the definition of reasonable
conflict graphs, the example above can be modified so that the maximum degree of the resulting
link graph G is at most 3, but the result is similar. To this end, one can replace the top vertex
o in the construction with a chain of k equally spaced nodes connected into a simple path
(which is a sparse subset), where each node is incident with one ordinary link. Even though
the ordinary links are not incident, their mutual distances are still arbitrarily small compared
with their lengths. The variation of the definition of reasonable conflict graphs is that such
links must all use different colors. This is still in accord with standard geometric interference
models.

3 Approximations in Terms of Inductive Independence

3.1 Greedy Algorithm

A natural greedy approach is to find a large feasible subset of edges, assign it a fresh color, con-
tract it, and iterate on the contracted graph. The key step is obtaining a constant-approximation
for a maximum feasible subset. A logarithmic approximation then follows from a set cover ar-
gument.

We assume in this section that G can have parallel edges but no loops. We assume that the
conflict graph C is ρ-inductive independent for a number ρ > 0, and the corresponding conflict
function W and ordering of edges ≺ are given. In the maximum feasible forest problem, the
goal is to find a maximum cardinality subset of edges of G, which is both independent in C and
acyclic in G.

The algorithm, given as Alg. 1, is a greedy Kruskal-like algorithm that mixes the edge
selection criteria of wireless capacity algorithms [17, 29] with the classic MST algorithm of
Kruskal, thus the name CapKruskal. It processes the edges in order of precedence ≺ and
adds an edge to the forest if: a) the interference on that edge from previously selected edges is
small, and b) the edge does not induce a cycle (as per Kruskal). We state it in terms of the
classic union-find operations of MakeSet, Connected, and Union.

Recall that a subset S of edges in G is feasible if W (S, e) =
∑

f∈SW (f, e) ≤ 1, for all e ∈ S.

Define the (ordered) weight function W+ as W+(e, f) = W (e, f) if e ≺ f , and W+(e, f) = 0,
otherwise. Similarly, define W− as W−(e, f) = W (e, f) if f ≺ e, and W−(e, f) = 0, otherwise.
Also define the cumulative versions W+(S, e), W+(e, S) as before.

We say that a set S is skew-feasible if for each e ∈ S, W+(S, e) +W−(e, S) ≤ 1/2. Namely,
the weighted indegree from shorter nodes and to longer nodes is bounded, but the total indegree
of e may not be. By an averaging argument, a skew-feasible set I contains a feasible subset of
at least half its size. Indeed, using skew-feasibility and sum rearrangements, we have,∑

e∈S
W (S, e) =

∑
e,f∈S

W (f, e) =
∑
e∈S

(
W+(S, e) +W−(e, S)

)
≤ |S|

2
, (1)

so for at least half of the links e ∈ S it holds that W (S, e) ≤ 1.
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Algorithm 1 CapKruskal(G, C)
1: MakeSet(v), for each v ∈ V (G)
2: S ← ∅
3: for e = (u, v) in L in ≺ order do
4: if W (S, e) + W (e, S) ≤ 1/2 and

not Connected(u, v) then
5: S ← S ∪ {e}
6: Union(u, v)
7: end if
8: end for
9: return S′ = {e ∈ S : W (S, e) ≤ 1}

Algorithm 2 Connect(G, C)
1: i← 0
2: G0 ← G
3: while Gi has an edge do
4: Si ← CapKruskal(Gi, C[Gi])
5: Gi+1 ← Contract(Gi, Si)
6: i← i+ 1
7: end while
8: return S0, S1, . . . , Si−1

Theorem 2 Let F be a maximum feasible forest of G. Then CapKruskal(G, C) outputs a
feasible forest containing Ω(|F |/ρ) edges.

Proof: Let S and S′ be the sets computed in CapKruskal(G, C). By definition, S′ is feasible.
To argue that S′ is large, we examine an arbitrary feasible forest, break it into three parts, and
show that none of the parts can be too large compared to S′. This will hold, in particular, for
the optimal feasible forest.

Observe that the selection condition of the algorithm is equivalent to W+(S, e)+W−(e, S) ≤
1/2, since the edges are considered in the order of ≺. Hence, the set S is skew-feasible, and we
can focus on bounding |S|, as by (1), |S′| ≥ |S|/2.

Let I be an arbitrary feasible forest. Let IR be those edges e in I that failed the degree
condition (W+(S, e) + W−(e, S) > 1/2), and IT those edges e = (u, v) in I that failed the
connectivity condition (Connected(u, v)). The rest, IS = I \ (IR∪ IT ) are contained in S. We
bound these sets in terms of S.

Since IT contains only edges inside components that S also connects (recalling that I induces
a forest), |IT | ≤ |S|. Also, clearly IS ⊆ I ∩ S ⊆ S, so |IS | ≤ |S|. To bound the size of IR,
observe first that by the definition of ρ-inductive independence, W−(IR, f) + W+(f, IR) ≤ ρ,
for every edge f ∈ S. This implies that

W−(IR, S) +W+(S, IR) =
∑
f∈S

[
W−(IR, f) +W+(f, IR)

]
≤ ρ · |S| .

On the other hand, by the selection criteria,

W+(S, IR) +W−(IR, S) =
∑
e∈IR

[
W+(S, e) +W−(e, S)

]
>
∑
e∈IR

1

2
=
|IR|

2
.

Thus, |IR| ≤ 2ρ · |S| and |I| ≤ (2ρ+ 2)|S| ≤ 4(ρ+ 1)|S′| . �

Coloring Algorithm: The algorithm Connect repeatedly calls CapKruskal to obtain a
large independent set of links and assigns it to a new color class. These links are then contracted
and the process repeated until we have obtained a spanning tree.

The contraction of an edge is defined in the standard way, except we discard loops. Note
that contraction leaves the conflict graph C intact. The operation Contract(G, S) contracts all
edges in S of a link graph G and outputs the resulting graph.

The pseudocode of the algorithm is given in Alg. 2. The proof of the following theorem
follows the classic set cover argument [27].
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Theorem 3 Connect terminates in O(ρ log n) · χ rounds, where χ is the number of colors
needed for coloring an optimum spanning tree.

Proof: Let S0, S2, . . . , Si be the collection of edge-sets returned by Connect. For each index
k, denote sk = |Sk|, nk = |V (Gk)| and xk the cardinality of the optimum independent (in C[Gk])
forest in Gk. Note that C[Gk] is also ρ-inductive independent. Let cρ be an upper bound on the
approximation ratio of CapKruskal, where c > 0 is a constant. Hence, by Thm. 2,

nk ≥
xk
cρ

. (2)

Observe that xk ≥ nk/χ (by the pigeonhole principle), and nk = n −
∑

j<k nj , since each
iteration j decreases the number of vertices by |Sj | (as Sj is a forest). Moreover, we can assume
that n1, n2, . . . is a non-decreasing sequence, as otherwise we could rearrange the sets Sk without
violating (2). Thus, using monotonicity of nk and (2), we have∑

j<k nj

k − 1
≥ nk ≥

n−
∑

j<k nj

cρχ
,

so taking k = dcρχe+ 1, we see that
∑

j<k nj ≥ n/2. Namely, after every dcρχe iterations the
number of nodes is halved. This implies the required bound. �

3.2 Algorithm for a Steiner Variant

A natural generalization of Connectivity Scheduling is to allow for a set of optional nodes
that can be used in the tree construction but need not. Formally, the node set V contains a
subset X of terminals and we seek a Steiner (or multicast) tree that spans all the terminals. As
before, we ask also for the minimum number of colors to color the tree links under the conflict
graph C. We refer to this as the Steiner Connectivity Scheduling problem.

It is not hard to construct examples for which optimal multicast trees are arbitrarily better
than trees that use only the terminals, even in a geometric setting. One instance can be obtained
from the example of Sec. 2 by restricting the terminals to only the origin and the nodes incident
on yuge links.

We give a O(ρ log n)-approximation algorithm for Steiner Connectivity Scheduling
with unweighted ρ-inductive independent conflict graph C. Thus, by definition, there is an
ordering ≺ of L such that for each link v ∈ L, the subgraph induced by v’s neighbors that are
later in the ordering has no independent set of size greater than ρ. We refer to neighbors later
in the ordering as post-neighbors. As before, in the geometric setting, the ordering is given by
link length.

Our algorithm is a reduction to a multi-dimensional version of the Steiner tree (MMST)
problem, recently treated by Bilò et al. [3]. In MMST, each edge of the input graph has an
associated d-dimensional weight vector, where the weight of edge e along dimension i indicates
how much of the i-th resource is required by e. The objective is to find a tree that minimizes
the `p-norm of its load vector, where the load vector of a Steiner tree is the sum of the weight
vectors of its edges. We use the `∞-norm, as we want to minimize the maximum use of a
resource. They give a greedy O(log d)-approximation algorithm for that case.

Given an instance of Steiner Connectivity Scheduling with link graph G and conflict
graph C, our reduction is as follows. Each link e in G is itself (or corresponds to) a resource, so
there are n (=number of links) resources. The weight of link f along dimension e is 1 if f is a
post-neighbor of e in the conflict graph C, and 0 otherwise.

Theorem 4 There is a O(ρ log n)-approximation algorithm for Steiner Connectivity Sche-
duling with an unweighted ρ-inductive independent conflict graph C.
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Proof: Suppose that the MMST algorithm of [3], when executed on the input constructed
above, returns a tree T with `∞-norm Z. Then, the sum of the tree edges along each dimension
is at most Z, i.e., each link (whether in T or not) has at most Z post-neighbors in T . In other
words, the subgraph C[T ] is Z-inductive, and can then be colored greedily using Z + 1 colors.

On the other hand, consider an optimal tree T ∗ and let Z∗ denote the infinity norm of
its load vector. From [3], we know that Z = O(log n) · Z∗. Let f be a link with Z∗ post-
neighbors in T ∗, and let Nf be its set of post-neighbors in T ∗. By assumption, the maximum
independent set in C[Nf ] contains at most ρ links, and hence cannot be colored with less than
Z∗/ρ colors. Consequently, T ∗ also requires at least Z∗/ρ colors. Thus, our solution yields a
O(ρ log n)-approximation. �

4 Reliable Short Links

We consider here the case when the nodes are located in the Euclidean plane (or in a doubling
metric), and all short links are reliable. This is motivated by experimental results which indicate
on one hand that signal strength is poorly correlated with distance, but also that short links
are nevertheless almost always strong and reliable [38], with most of the variability in the links
of intermediate range. This is probably the most natural relaxation of the problem involving
geometry. The setting is as follows.

The link graph: There is a threshold distance, normalized to 1, i.e., the unit distance, such
that for every pair of nodes u, v ∈ V at distance below 1, there is a link {u, v} ∈ L. Let Π
then denote the maximum link length that might be used, e.g., corresponding to the maximum
distance at which signals can be properly received. Then, node pairs u, v ∈ V of distance in the
range 1 to Π may or may not form an edge in G. We call the links of length at most 1 short
links.

We make limited assumptions about the conflict graph C, which can be seen as more special-
ized variants of the reasonable conflict graphs defined in Sec. 2. We first define some notions.
By a t-square we mean a square of side t in the plane. A square hits a link if an endpoint of
the link is within the square. A set of links of length at most ` is said to be s-sparse if every
`-square hits at most s links, and a set of links of length at least ` is d-dense if some `-square
hits at least d links.

The conflict graph: We assume that in C, every s-sparse set of links is O(s)-colorable, while
a d-dense set requires Ω(d) colors. These assumptions are satisfied by all major interference
models defined in the plane (or in doubling metrics); we will argue this for the SINR model in
App. A.

We examine how the approximability of the problem Connectivity Scheduling varies
with Π. It turns out that MSTs work well here, unlike in the general setting (cf. Sec. 2).

Theorem 5 Every MST of G can be colored using ζ +O(Π
√
χ) colors under the conflict graph

C, where χ is the optimum number of colors of a spanning tree and ζ is the number of colors
required to schedule an MST of the complete graph over V .

In many settings, ζ is a negligible term, in which case we obtain a O(Π/
√
χ)-approximation.

Before proceeding to the proof, we state several technical lemmas. In the following lemmas,
we work with a fixed MST T of the link graph G. Denote a = Π

√
χ. We split the non-short

links into medium links, of length from 1 to
√
a, and long, of length at least

√
a. We refer to

the maximal connected subgraphs of T containing only short (non-long) links as clusters (resp.
blocks). A t-square hits a cluster (or a block) if it contains a vertex of that cluster (block).
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The plan is to show that both medium and long links of T form a O(a)-sparse subset, hence
can be colored using O(a) colors. To that end, we show that such links are only used to connect
different clusters and blocks, which cannot be too close to each other, since otherwise the MST
property would be violated. As for the short links, they are part of a MST of the complete
graph over V , and hence can be colored using ζ colors.

Lemma 6 There is no short link in G connecting two clusters. Similarly, there is no non-long
link connecting two blocks.

Proof: Suppose there is a short link e connecting two clusters C1 and C2. If e ∈ T , then this
contradicts the maximality of clusters. Otherwise, e could be used to improve T , contradicting
minimality of T . �

Lemma 7 Every
√
a-square S hits O(a) clusters.

Proof: A 1/
√

2-square can hit at most one cluster, as otherwise the respective vertices contained
in the 1/

√
2-square would be within unit distance and could be connected by a short link,

contradicting Lemma 6. Thus, a given
√
a-square S hits at most (

√
2a + 1)2 clusters, since it

can be covered with that many 1/
√

2-squares. �

Lemma 8 Every Π-square S hits O(a) blocks.

Proof: We account for the number of blocks hit by S by reasoning about their relation to some
fixed optimal spanning tree TOPT . First, observe that if there are at least 2 blocks, every block
B must have a vertex incident to a long link in TOPT , because TOPT has to connect B to some
other block, and by Lemma 6, it has to use a long link for that. We partition the set of blocks
hit by S into Class 1 and 2, where the former consists of blocks containing a vertex inside S
that is incident to a long link in TOPT , and Class 2, the remaining blocks. We bound the two
classes separately.

Let t denote the number of long links of TOPT that are hit by S. Since S can be covered
with O(Π/

√
a+ 1)2 = O(Π/

√
χ) of

√
a-squares, by an averaging argument, at least one of them

hits Ω(t/(Π/
√
χ)) = Ω(t

√
χ/Π) long links. Thus, the long links of TOPT are t

√
χ/Π-dense, and

by our assumption on C, χ = Ω(t
√
χ/Π). Rearranging, we have that t = O(a). We conclude

that the number of Class 1 blocks hit by S is in O(a).
Next, we consider Class 2 blocks. Each such block must have a vertex that is incident to

a long link e in TOPT , with both its endpoints outside of S. Thus, a Class 2 block must have
vertices both inside and outside of S, and TOPT uses only short or medium links to connect
vertices from the two sides. For each Class 2 block B, identify a single link used in TOPT to
connect the vertices of B inside S to those outside S, and refer to it as B’s linker. Note that each
1/
√

2-square hits at most one linker, as otherwise the corresponding blocks could be connected
with a short edge, contradicting Lemma 6. Short linkers are of length at most

√
χ; they must

have an endpoint in S within distance
√
χ from the border of S, as they must cross the border.

Thus, the total area in S that can contain an endpoint of a short linker is at most 2Π
√
χ, and

by covering it with 1/
√

2-squares, we see that there can be at most O(Π
√
χ) short linkers.

We partition the non-short linkers into i-linkers of length between Q := 2i · √χ and 2Q =
2i+1 · √χ, for i = 0, 1, . . .. Let qi be the number of Class 2 blocks with i-linkers. Observe that
an i-linker has an endpoint in S within distance 2Q from the border of S. Thus, the total
area in S that can contain an i-linker is less than 2ΠQ, and it can be covered with O(Π/Q)
different Q-squares. Thus, some Q-square hits Ω(Q/Π) of i-linkers (each in TOPT , and of length
at least Q), so TOPT is Ω(qiQ/Π)-dense. Hence, by our assumption on C, χ = Ω(qiQ/Π), and by
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rearranging, qi = O(
√
χΠ/2i) = O(a/2i). The total number of Class 2 blocks is then bounded

by O(Π
√
χ) +

∑
i=0

qi = O(a) +
∑
i=0

O(a/2i) = O(a)
∑
i=0

2−i = O(a) . �

Proof:[of Thm. 5] The short links are contained in an MST of the complete graph on the
pointset, hence they can be colored using ζ colors.

Next, we show that medium links form a O(a)-sparse set, and can be colored using O(a)
colors, by our assumptions on C. Let S be a

√
a-square. Note that the medium links of T that

are hit by S are all used to connect clusters hit by the 3
√
a-square S′ that has S in the center.

Then Lemma 7 implies at most O(a) medium links are hit by S, since there are at most O(a)
clusters hit by S′, and T is a tree.

Concerning the long links, we can apply a nearly identical argument as above, but considering
a Π-square instead of a

√
a-square, and blocks instead of clusters. This shows that long links

form a O(a)-sparse set, and can be colored using O(a) colors as well. �

Limitations: The bound of Thm. 5 on the MST is in fact best possible, by the result of Sec. 2.
Namely, in the construction of Sec. 2, the threshold under which all links are available is 1
(and all short links are present in G), while Π < 2k. We have shown that the MST must use
k = Ω(Π) colors. On the other hand, there is a spanning tree that can be colored using O(1)
colors.

Observation 1 For any integer n > 0, there is an instance G = (V,L) over n nodes that
contains all short links, such that the optimum solution to Connectivity Scheduling is
χ = O(1)-colorable, while an MST requires Ω(Π) = Ω(Π

√
χ) colors.

5 Hardness of Approximation

It is easy to see that with an arbitrary conflict graph C, the Connectivity Scheduling
problem is hard to approximate. For instance, if the link graph G is already a spanning tree,
Connectivity Scheduling becomes simply the classical graph coloring problem (of C). We
show below that the hardness extends to other more restricted settings. These results also show
that near-linear dependence on ρ, the inductive independence, is unavoidable.

We first show that hardness holds when C is the square of the line graph of G (for general
G), C = L2(G), then extend the construction to the case when G is a complete graph and C is
general (Thm. 10), and to signal strength models (Sec. 6). This corresponds to (bidirectional)
2-hop interferences: two transmission links conflict if they are incident on a common edge. The
reduction is from the Distance-2 Edge Coloring problem in general graphs, also known
as Strong Edge Coloring: Given a graph G, find a partition of the edge set into induced
matchings, i.e., induced subgraphs where every vertex is of degree 1.

Theorem 9 The Connectivity Scheduling problem is hard to approximate within a n1−ε-
factor, for any ε > 0, even when C = L2(G).

Proof: Given an instance of Strong Edge Coloring with graph G′ = (V ′, E′), we construct
an instance of Connectivity Scheduling problem with the graph G constructed as follows.
Consider a bipartite graph G′′ = (V1, V2, E), as follows. For each vertex v in V ′, there are two
vertices v1, v2 in V = V1 ∪ V2, where vi ∈ Vi, i = 1, 2. If uv ∈ E′ then v1u2 and v2u1 are in
E. Link graph G is obtained from G′′ by taking a complete binary tree with |V2| leaves and
identifying each leaf with a vertex of V2. The conflict graph is given by a simple graph C with
vertex set E, where e1, e2 ∈ E are adjacent in C if and only if they form an induced matching in
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G′, i.e., there is no edge in G′ connecting an endpoint of e1 to an endpoint of e2. This completes
the construction.

First, let us show that a strong edge coloring of G′ can be used to construct a spanning tree
in G with a similar coloring number. Consider a strong coloring that partitions the edges of G′

into c color classes E1, E2, . . . , Ec. Each class Ei induces a pair of feasible sets Si, S
′
i in G, where

Si = {v1u2 : uv ∈ Ei} and S′i = {u1v2 : uv ∈ Ei}. Indeed, since Ei is an induced matching
in G′, each of the sets Si, S

′
i is also an induced matching in G (and hence independent in C).

Note that the edges in these sets cover all vertices of G, except for the binary tree. We also add
O(log n) color classes, two for each layer in the binary tree. The number of colors used then is
O(c + log n). This gives us a connected subgraph of G that can be colored using O(c + log n)
colors.

Next, consider a spanning tree of G with a corresponding coloring of the edges in t color
classes S1, S2, . . . , St. Ignoring all edges within the binary tree, we obtain a partition of the
edges of the bipartite graph G′′ between V1 and V2. We claim that each partition corresponds
to an induced matching in G′, leading to a strong edge coloring of G′ with t colors.

Consider a pair of edges v1u2 and w1x2 in the same feasible set. Since they do not conflict,
there are no edges v1x2 nor w1u2 in G, and thus no edges vx nor wu in E. Then vu and wx
form an induced matching in G′.

Hence, the optimum number of colors in strong edge coloring of G′ is within a constant
factor plus a logarithmic term of the optimal number of colors needed for coloring a spanning
tree in G. Since the former is hard to approximate within n1−ε-factor [5], so is the latter. �

Theorem 10 For general graphs C, the Connectivity Scheduling problem is hard to ap-
proximate within a n1−ε-factor, for any ε > 0, even if the link graph G is complete.

Proof: We modify the instance of Thm. 9, by adding to G all edges that were not there and
make them adjacent (in C) to all other edges in the graph. If these new edges are used in a
spanning tree, they have to be given distinct colors. Thus, using them can only increase the
length of any coloring. �

6 Implications to Signal Strength Models

We consider in this section the implementation and implication of our results to signal strength
models, most importantly metric SINR model.

SINR-feasibility, besides the underlying metric, also depends on the transmission power
control regime. Different regimes give different notions of feasibility. Nevertheless, it is known
that for most interesting cases, SINR-feasibility has constant-inductive independence property.
In particular, power control is usually split into two modes: fixed monotone power schemes,
where links use only local information, such as the link length, to define the power level, and
global power control, where all power levels are controlled simultaneously to give larger inde-
pendent sets. The former includes the uniform power mode, where all links use equal power.
Another technical issue is directionality of links, which is not explicitly addressed by our general
results, but will be addressed below.

Let us start the discussion from Euclidean metrics (or more generally doubling metrics). For
the global power control mode, [29] introduced a weight function W and proved that with this
function, the conflict graph of any set of links is constant-inductive independent (see [29, Thm.
1]), so our results apply here directly (except for directionality issues, addressed below). Sim-
ilarly, for fixed monotone power schemes (excluding uniform power), [16] showed that in order
to get constant-inductive independence, one may take the natural weight function, affectance
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(also called relative or normalized interference) [16, Thm.3.3]. In all cases, the ordering ≺
corresponds to a non-decreasing order of links by length.

For general metric spaces, a slightly more technical definition of inductive independence is
used, where a fractional conflict graph C = (L,W ) is (ρ, γ)-inductive independent, w.r.t. an
ordering ≺ of the links, if for every link e and every feasible set I ∈ F with e ≺ I, there
is a subset I ′ ⊆ I of size |I ′| ≥ |I|/γ, such that W (I, e) + W (e, I) ≤ ρ. The old definition
corresponds to the setting γ = 1. It is easily verified that Thms. 2 and 3 extend to cover this
new definition, with approximation ratios multiplied by a factor of γ. Now, the counterparts of
the results from the previous paragraph in general metrics can be found in [19, Lemmas 2,4] and
[30, Thm. 1, Lemma 3], where it is shown that with appropriate weight functions, feasibility for
any fixed monotone power scheme (including uniform power), as well as feasibility with global
power control, can be expressed by a fractional conflict graph, which is (O(1), O(1))-inductive
independent.

The claims above concern settings where the links have fixed directions. In particular, if
we apply Thm. 3 to the weighted functions from the previous paragraph, then we should add
“there exists a direction of links, such that...” to the claim. This issue is easily resolved for the
global power control mode, where the weight function of [29] does not depend on directions.
Namely, it gives a coloring, such that whatever direction is assigned to the links, one can find
a power assignment that makes it work (the power assignment could be different for different
orientations of links).

For oblivious powers, the following trick applies. It is known that for a set of links with
some direction and an oblivious power assignment, and with the weight function W defined in
terms of the affectances, if W (e, S) ≤ 1/2 for all e ∈ S (call this dual-feasibility), then there is
another oblivious power assignment (called the dual of the original one) that makes S feasible
with the reversed directions of links [28]. Thus, we would like to have a coloring where each
color class S is also dual-feasible. To this end, it is enough to modify CapKruskal, so that
the threshold 1/2 in the acceptance condition is replaced with 1/4, and the output set S′ is
given by S′ = {e ∈ S : (W (S, e) ≤ 1) ∧ (W (e, S) ≤ 1/2)}. Very similar methods then show
that this again gives an O(ρ)-approximation to the maximum feasible forest problem. The rest
of the analysis is left intact, so we obtain an O(log n)-approximation as before, but with color
classes that are both feasible and dual-feasible. Then we can replace each color class with its
two copies and revert the directions of links in one of the copies. Every link thus gets a color
for both directions, while the number of colors used increases by a factor of two.

Summarizing the observations above, we state the following theorem.

Theorem 11 There is an O(log n)-approximation to Connectivity Scheduling problem in
the SINR model in arbitrary metric spaces. This holds both in the case of fixed monotone power
assignments and for arbitrary power control. It holds even when only a subset of the node-pairs
are available as links (but interferences follow the metric SINR definitions).

These are the first results that hold in general metrics. They are necessarily relative ap-
proximations, since in general metric spaces, there is no good upper bound on the connectivity
number, even for complete graphs. Two simple examples are the metric induced by the star
K1,t with unit-length edges, and the unit metric formed by distances on the unit-length clique
metric.

For the case of points in the plane (i.e., a complete link graph with conflicts induced by
distances), connectivity can be achieved using O(log n) colors [18]. Since it is not known if O(1)
colors always suffice, this result is not directly implied by Thm. 3. However, it was also shown
in [18] that the MST contains a feasible forest of Ω(n) edges. The rest of our analysis (using
constant-inductive independence) then implies a result matching [18].
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Corollary 12 Let P be a set of points in the plane. Then, Connect finds and colors a
spanning tree of P with O(log n) colors.

Steiner trees: In the geometric SINR model with a fixed monotone power scheme (with not
all links available), we reduce the problem to a graph question as follows. It was observed in [15]
that links of the same length class behave approximately like unit-disk graphs, where a length
class refers to links whose lengths differ by at most a factor of 2. Namely, there are constants c1
and c2 such that for a set S of links of length approximately `, if all links are of mutual distance
greater than c2`, then they form a feasible set, whereas any pair of links in S of distance at
most c1` must be given distinct colors.

We modify the reduction to MMST to that of the graph construction so that the weight
of link f along dimension e is 1 only if f is a post-neighbor of e in C and f and e are of the
same length class. We then take the resulting tree and color the length classes separately (using
disjoint palettes), at an extra cost of O(log Λ) (the number of length classes).

Corollary 13 There is a O(log Λ log n)-approximation algorithm for Steiner Connectivity
Scheduling in the geometric SINR model, under any fixed monotone power scheme.

Using global power control, we can do considerably better. The main result of [20] shows that
for any set L of links, there is an unweighted conflict graph C(L), such that every independent set
in C is feasible under the SINR model, and the chromatic number of C is at most O(log∗ Λ) factor
away from the chromatic number of L under SINR (using global power control). Moreover, C
is constant-inductive independent [20, Prop. 1].

Corollary 14 There is a O(log n log∗ Λ)-approximation algorithm for Steiner Connectiv-
ity Scheduling in the geometric SINR model with global power control.

A similar result with O(log log Λ)-factor holds also for certain monotone power schemes (but
not, for instance, uniform power) [21].

Short reliable links: Recall that the parameter ζ in Thm. 5 was defined as the number of
colors required to color an MST in the complete graph setting, i.e., when G is the complete graph.
For Euclidean SINR with general power control, ζ = O(min(log n, log∗ Λ)), where Λ is the ratio
between the length of the longest and the shortest possible link [18, 23]. Even though n and Λ
are formally speaking unrelated, it is beyond reasonable to assume that log∗ Λ = O(log∗ n).

Corollary 15 For a graph G that contains all short links, an MST achieves a O(max(log∗ n,Π))-
approximation in the Euclidean SINR setting with power control.

Hardness: A special Missing Links variant of the geometric case is where the nodes/links are
embedded in the plane and all interferences are either zero or follow the SINR model (with
either fixed power or global power control).

Theorem 16 The geometric Missing Links variant is n1−ε-hard to approximate, for any ε > 0.
It is also Λ2−ε-hard, where Λ is the ratio between the longest to the shortest node distance. This
holds even if all unavailable links are missing links.

Proof: We embed the instance of Thm. 9 in the plane. The nodes of V1 are located in a unit
square in a mesh pattern, 1/

√
n apart in

√
n columns

√
n abreast. At a unit distance, a similar

unit square holds the nodes of V2. The length of an edge in G (in distance in the plane) is then
between 1 and 4.
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An induced matching in G corresponds to a set of links with no mutual interference. On
the other hand, a pair of links that are incident on a common edge or share a vertex, will
receive interference from each other according to the SINR formula (using the shared edge
or each other). Given that distances along available edges vary only by a constant factor, the
interference between the links is a constant (specifically, at least 1/4α, where α is the “pathloss”
constant of the SINR model). Thus, in the setting where the SINR threshold is at least the
reciprocal of that constant (i.e., β ≥ 4α), feasible sets are necessarily induced matchings in G.
We can then conclude by recalling a “signal-strengthening” result [13] that shows that varying
the threshold by a constant factor only affects the number of colors by a constant factor.

The longest node distance is at most log n, which is from the root of the binary tree to its
leaves, while the shortest distance is 1/

√
n. Thus, Λ ≤ 4

√
n log n, and n1−ε ≥ Λ2−ε′ , for some

ε′ ≥ ε/3.
We can restrict the available edges incident to (non-leaf) nodes on the binary tree to the

tree edges alone. Thus, non-leaf nodes in the tree must be connected via the tree edges. Then,
all unavailable edges are missing edges. �

7 Discussion

Many related problems are left addressing; we list the most prominent ones.

• Latency minimization: Bounding the time it takes for a packet to filter through the tree
from a leaf to a root (and back). This requires optimizing both the height of the tree as
well as the ordering of the links in the coloring.

• Directed case: Finding an arborescence. This requires new techniques, as our argument
crucially depends on the graph being undirected.

• Distributed algorithms: This relates also to the issue of detecting or learning whether a
link is usable/reliable or not.

References

[1] Karhan Akcoglu, James Aspnes, Bhaskar DasGupta, and Ming-Yang Kao. Opportunity
cost algorithms for combinatorial auctions. In Computational Methods in Decision-Making,
Economics and Finance, pages 455–479. Springer, 2002.

[2] Nouha Baccour, Anis Koubaa, Luca Mottola, Marco Antonio Zuniga, Habib Youssef,
Carlo Alberto Boano, and Mario Alves. Radio link quality estimation in wireless sensor
networks: a survey. ACM Trans. Sensor Netw., 8(4):34, 2012.
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Vöcking. Online independent set beyond the worst-case: Secretaries, prophets, and pe-
riods. In ICALP, pages 508–519, 2014.

[12] Andrea Goldsmith. Wireless Communications. Cambridge University Press, 2005.
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[19] Magnús M. Halldórsson and Pradipta Mitra. Nearly optimal bounds for distributed wireless
scheduling in the SINR model. Distributed Computing, 29(2):77–88, 2016.
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A SINR Definitions

For completeness, we include here various definitions and facts regarding the SINR model.
The abstract SINR model has two key properties: (i) signal decays as it travels from a

sender to a receiver, and (ii) interference – signals from other than the intended transmitter –
accumulates. Transmission succeeds if and only if the interference is below a given threshold.
The Metric SINR model additionally assumes geometric path-loss: that signal decays propor-
tional to a fixed polynomial of the distance, where the pathloss constant α is assumed to be an
arbitrary but fixed constant between 1 and 6. This assumption is valid with α = 2 in free space
and perfect vacuum [12, Sec. 3.1]. In the Euclidean SINR model, the distances are planar.

Formally, a link lv = (sv, rv) is given by a pair of nodes, sender sv and a receiver rv, which
are located in a metric space. Let d(x, y) denote the distance between points x and y in the
metric, and use the shorthand dvw = d(sv, rw). The strength of a signal transmitted from point
x as received at point y is d(x, y)α. The interference Iuv of sender su (of link lu) on the receiver
rv (of link lv) is Pu/d

α
uv, where Pv is the power used by sv. When u = v, we refer to Ivv as the

signal strength of link lv. If a set S of links transmits simultaneously, then the signal to noise
and interference ratio (SINR) at lv is

SINRv :=
Ivv

N +
∑

u∈S Iuv
=

Pv/d
α
vv

N +
∑

u∈S Pv/d
α
uv

, (3)

where N is the ambient noise. The transmission of lv is successful iff SINRv ≥ β, where β ≥ 1
is a hardware-dependent constant.

Additional definitions: Power, affectance, separability We will work with a total order
≺ on the links, where lv ≺ lw implies that dvv ≤ dww. A power assignment P is monotone if
both Pv ≤ Pw and Pw

dαww
≤ Pv

dαvv
hold whenever lv ≺ lw. This captures the main power strategies,

including uniform and linear power.
The affectance aPw(v) [13, 28] of link lw on link lv under power assignment P is the interference

of lw on lv normalized to the signal strength (power received) of lv, or

aw(v) = min

(
1, cv

Pw
Pv

dαvv
dαwv

)
,

where cv = β
1−βN/(Pv/dαvv)

> β is a factor depending only on universal constants and the signal

strength P/dαvv of lv, indicating the extent to which the ambient noise affects the transmission.
We drop P when clear from context. Furthermore let av(v) = 0. For a set S of links and
link lv, let av(S) =

∑
lw∈S av(w) be the out-affectance of v on S and aS(v) =

∑
lw∈S aw(v) be

the in-affectance. Assuming S contains at least two links we can rewrite Eqn. 3 as aS(v) ≤ 1
and this is the form we will use. A set S of links is feasible if aS(v) ≤ 1 and more generally
K-feasible if av(S) ≤ 1/K.
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The following theorem shows that the interference model assumptions of Sections 2 and
4 hold for geometric SINR. This fact is widely known, see e.g., [18]. We outline a proof for
completeness.

Theorem 17 ([18]) If a link set is s-sparse, then it can be colored using O(s) colors under
geometric SINR, and if it is d-dense, then it requires Ω(d) colors.

Proof: The former claim essentially follows from the results of [15]. Here is a crude sketch of
a proof. Let L be a s-sparse set of links of length at most `. Partition the plane into squares of
side `. Assign each link to a square where it has an endpoint, ties broken arbitrarily. It is easy to
color the squares using constant number of colors, such that for each color class C, the distances
between the squares in C are greater than c`, where c is a constant of our choice. Let C be any
color class. Using sparsity, partition the set of links assigned to the squares in C into at most s
subsets S1, S2, . . . , Sk, such the intersection of each Si and each square in C is at most a single
link. Then a standard area argument (see, e.g. [15]) shows that if the constant c is sufficiently
large, Si are feasible sets (e.g. under uniform power assignment). Note that it is important here
that all links have length at most `, so they are “attached” to their corresponding squares.

Now consider a subset S ⊆ L that is s(L)-dense, and let ` be the minimum link length in S,
and let X be a `-by-` square with s(L) endpoints from S. Let T ⊆ S be the subset of links with
endpoints in X, and note that |T | ≥ s(L)/2. The distance between any two points within X is
at most

√
2`. It follows that no pair of links in T can coexist in a

√
2
α
-feasible set. That is, T ,

and therefore also L, requires |T | ≥ s(L)/2 colors when β ≥
√

2
α
. By signal strengthening, the

exact value of β changes the chromatic number of the set only by a constant factor. �
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