The Dense k-Subgraph Problem *

Uriel Feige | Guy Kortsarz * David Peleg *

April 13, 1999

Abstract

This paper considers the problem of computing the dense k-vertex subgraph of a
given graph, namely, the subgraph with the most edges. An approximation algorithm

is developed for the problem, with approximation ratio O(n?), for some § < 1/3.

1 Introduction

We study the dense k-subgraph (DkS) maximization problem, of computing the dense k-
vertex subgraph of a given graph. That is, on input a graph G and a parameter k, we
are interested in finding a set of k£ vertices with maximum average degree in the subgraph
induced by this set. As this problem is NP-hard (say, by reduction from Clique), we consider
approximation algorithms for this problem. We obtain a polynomial time algorithm that on
any input (G, k) returns a subgraph of size k whose average degree is within a factor of at most
n? from the optimum solution, where n is the number of vertices in the input graph G, and
d < 1/3is some universal constant. Unfortunately, we are unable to present a complementary
negative result giving evidence that for some ¢ > 0, achieving an approximation ratio of O(n¢)
is NP-hard. In fact, we do not even know whether achieving an approximation ratio of (1+€)
is NP-hard, though we conjecture that this is indeed the case.

*A preliminary version of this paper appeared in the proceedings of the 34th Annual Symposium on
Foundations of Computer Science, 1993, published by IEEE Computer Society Press, pages 692-701.

tDepartment of Applied Math and Computer Science, The Weizmann Institute, Rehovot 76100, Israel.
Incumbent of the Joseph and Celia Reskin Career Development Chair. Yigal Alon Fellow.

'Department of Computer Science, The Open University, Tel Aviv, Israel.

$Department of Applied Mathematics and Computer Science, The Weizmann Institute, Rehovot 76100,
Israel. Supported in part by a Walter and Elise Haas Career Development Award and by a grant from the
Basic Research Foundation.

Our problem is related to several other problems. We mention two of them.

e The Densest Subgraph (DS) problem concerns choosing a subset V' (of arbitrary size)
such that the vertex induced subgraph has maximum average degree. This problem can
be solved polynomially using flow techniques (cf. Chapter 4 of [Law76]). The fastest
algorithm known for DS is given in [GGT89] and runs in time O(mnlog(n®/m)).
One may hope that some algorithmic techniques used in solving the DS problem can
help approximate the DkS problem, but there seem to be major difficulties involved.
Consider for example the case of regular graphs. The densest subgraph of a regular
graph is the graph itself, and hence no algorithmic ideas are involved in solving this DS
problem. On the other hand, finding the dense k-subgraph remains NP-hard (proof
omitted).

e The Minimum Fluz Cut (FLUX) problem concerns choosing a cut C' with minimum
ratio between the number of edges that cross the cut and the number of vertices in
the smaller side of the cut. This is a measure of the edge expansion of the graph. The
FLUX problem on regular graphs is related to the DkS problem in the following sense:
by solving the DkS problem optimally for all values of £ in a regular graph, one can
deduce the optimal solution to the FLUX problem on this graph. The FLUX problem
can be approximated within a factor of O(logn) [LR8S].

We mention two special cases of the dense k-subgraph problem that make it easier to
approximate. First, if ¥ = Q(n) and the number of edges is (n?), then the problem
has a polynomial time approximation scheme (PTAS) [AKK95]. Secondly, if the input
graph is a complete graph with edge weights that obey the triangle inequality, then it is
shown in [RRT91] that a greedy algorithm achieves an approximation ratio of 4 for the
dispersion problem, which asks for the k-vertex subgraph of maximum total edge weight,

and an approximation ratio of 2 is given in [HRT].

Recently, Goemans (private communication) showed that using semidefinite program-
ming (SDP) one can obtain an approximation ratio arbitrarily close to n/k for DkS. For
some graphs and large values of k, this approximation ratio is better by a constant factor
than that of the greedy algorithm (see Section 3.2). However, for small values of k, algo-
rithms based on SDP are not known to perform as well as our combinatorial approximation
algorithm. For example, when k ~ n'/3, it appears that the SDP approach cannot distinguish
between graphs that have cliques of size k£ and graphs that only have k-vertex subgraphs

with O(k) edges [FS] (in particular, excluding an approximation ratio better than n'/3).

Our algorithm can be extended to handle the weighted version of the DkS problem,
incurring an additional O(logn) factor. This is done in section 5.2.

2 Definitions

Definition 2.1 The density dg of a graph G = G(V, E) is its average degree. That is,
dg =2|E|/|V|. When G is clear from the context, we shall denote the density by d.

There is a polynomial time algorithm for finding the densest vertex induced subgraph of

an input graph. We study the parameterized version of this problem.

Definition 2.2 The dense k-subgraph (DkS) problem has as input a graph G = G(V, E)
(on n vertices), and a parameter k. The output is G*, a subgraph of G' induced on k vertices,
such that G* is of mazimum density. We denote this density by d*(G, k).

Clearly, the problem DkS is NP-hard, by reduction from Clique.

We are interested in polynomial time approximation algorithms for DkS. On input (G, k),
such an algorithm outputs a list of k vertices. Let A(G, k) denote the density of the vertex
induced subgraph returned by algorithm A on input (G, k). We wish to devise polynomial
time algorithms with A(G, k) as close as possible to d*(G, k). We shall bound A(G, k) as a
function of n (the number of vertices in G), k and d*(G, k).

Notation. A(G) is the maximum degree of graph G. dy is the average degree of the k/2
vertices of highest degree in G. Note that A(G) > dy > d*(G, k). deg(v,S) is the number
of edges connecting vertex v to vertices in the set S. cut(A, B) is the number of edges
connecting vertices in set A and vertices in set B. A walk of length ¢ is a sequence of ¢ + 1
vertices in which consecutive vertices are adjacent (hence the walk follows ¢ edges). The
vertices of a walk need not be distinct. Wy(u,v) denotes the number of walks of length ¢
that start at vertex w and end at vertex v. Matrix multiplication (raising the adjacency
matrix of the graph to the /th power) can be used in order to compute W(v;, v;) for all pairs

of vertices simultaneously.

3 An approximation ratio of O(nl/ 3)

Theorem 3.1 There is a polynomial time algorithm A that approrimates DES within a
factor of 2n/3. That is, for every graph G and every 1 < k < n, A(G,k) > d*(G, k)/2n'/3.

Algorithm A employs three different procedures (A;, A and A3) to select a dense sub-
graph, and returns the densest of the three subgraphs that are found.

3.1 A trivial procedure

Without loss of generality, we can assume that G contains at least k/2 edges.

Procedure 1 Select k/2 arbitrary edges from G. Return the set of vertices incident with

these edges, adding arbitrary vertices to this set if its size is smaller than k.

Clearly,
A (Gyk)>1.

3.2 A greedy procedure

Procedure 2 Sort the vertices by order of their degree. Let H denote the k/2 vertices with
highest degrees in G (breaking ties arbitrarily). Sort the remaining vertices by the number
of neighbors they have in H. Let C denote the k/2 vertices in G\ H with largest number of
netghbors in H. Return H|JC.

Recall that dy denotes the average degree (with respect to G) of a vertex in H.

Lemma 3.2 Procedure 2 returns a vertexr induced subgraph satisfying

As(G, k) > kdy/2n .

Proof: Let m; denote the number of edges both of whose endpoints lie in H. Then
cut(H,V\ H) = dy|H| — 2my = dyk/2 — 2m; > 0. By the greedy rule for selecting C, at
least a |C|/|V \ H| > k/2n fraction of these edges are contained in H |JC. Thus the total
number of edges in the subgraph induced by H [JC' is at least

(dyk/2 —2my)k/2n +my > dyk®/4n

and the proof of the lemma follows. O

As dy > d*(G, k), the greedy procedure approximates d*(G, k) within a ratio of at most
2n/k. A different greedy procedure which also has an approximation ratio of O(n/k) is
analyzed in [AITT].

3.3 Walks of length 2

For vertices v,w and integer ¢ > 1, recall that W,(v, w) denotes the number of walks of

length ¢ from v to w.

Procedure 3 Compute Wy(u,v) for all pairs of vertices. Construct a candidate graph H
for every vertex v in G, as follows: Sort the wvertices of G by non-increasing order of
their number of length-2 walks to v, Wy(v,wy) > Wy(v,ws) > ... Let PP denote the set
{wi, ..., wry2}. Compute for every neighbor x of v the number of edges connecting x to Py,
deg(z, PY), and construct a set BY containing the k/2 neighbors of v with highest deg(x, PY).
Let H" denote the subgraph induced on PYUB". (If H" still contains less than k vertices then
it is completed to size k arbitrarily.) Select the densest candidate graph H' as the output.

We now analyze the approximation ratio of this procedure. Let us first note that the
number of length-2 walks within the optimum subgraph G* is at least k(d*(G, k))?. This is
because each v € G* contributes (deg*(v))? to this sum, and 3 ,c- (deg*(v))? > k(d* (G, k))?
by convexity. (Here we used deg*(v) to denote the degree of v in G*. See also remark in the

appendix.)

It follows that there is a vertex v which is the endpoint of at least (d*(G, k))?* length-2
walks in G*. By the greedy construction of PY, there are at least (d*(G, k))?/2 walks of length
2 between this v and vertices of PY. The vertices of BY have at least (d*(G, k))?/2 edges con-
necting them to P if deg(v) < k/2, and at least (d*(G, k))?k/4 deg(v) edges connecting them
to Py otherwise. Since we do not require P and B* to be disjoint, each edge may have been
counted twice. Hence, altogether, H” contains at least min[(d* (G, k))?/4, (d*(G, k))*k/8A(G)]

edges, where A(G) denotes the maximum degree in the graph.

This guarantees:
A3(GLE) > (d*(G, k))?/2 max[k, 2A(G)] .

3.4 Algorithm A

Algorithm A applies the three procedures described above, and outputs the densest of the
three subgraphs obtained by each of these procedures. Procedures 1 and 2 are applied to
the original input graph G. Procedure 3 however is applied to the graph G induced on the
vertices of V' \ H, where H is the set of k/2 vertices of highest degree in G, as defined in
Procedure 2. Hence A(Gy) < dy(G).

For the following lemma to make sense, we assume that k£ < 2n/3. This assumption can

be made without loss of generality, because for k£ > 2n/3 the greedy procedure approximates

DkS within a ratio not worse than 3 (see end of Section 3.2).

Lemma 3.3 The graph Gy contains a k-vertex induced subgraph with average degree at least
d*(G, k) — 2ds, where dy = A3(G, k).

Proof: Let m denote the number of edges of G* with both endpoints in H, and let /¢
denote the number of edges of G* with one endpoint in H. Hence GG, contains a k-vertex
induced subgraph with at least d*(G, k)k/2 — m — ¢ edges. To prove the lemma, we need
to show that Procedure 2 returns a solution with at least (m + ¢)/2 edges. In fact, the
solution has at least m + ¢/2 edges. This is because it clearly contains the m edges internal
to V(G*) N H, and there must be at least [/2 edges between C' and H, since at least one
possible choice for C offers this many edges (namely, taking C' to contain the k/2 vertices of
V(G*) \ H with the highest number of edges into H). O

It follows from the performance guarantees on the three procedures that

kdy (d*(G, k) — 2ds)?
2n " 2max[k, 2dy]

A(G, k) > max][1, dy,].

To prove Theorem 3.1, we can assume that dy < d*(G, k)/n/? (otherwise, the output of
procedure 2 achieves the desired ratio of approximation). Hence, for procedure 3, we have
that d*(G, k) — 2dy ~ d*(G, k), with a negligible error term. The performance guarantee
of algorithm A is at least the geometric mean of the performance guarantee of the three

procedures 1, 2, and 3. Hence

b (d*(G,k))?
2n 2max|k, 2dy]

)1/3 > d* (G7 k)

2n1/3 ’

A(Gv k) > (1)

where the last inequality follows from the fact that & > d*(G, k) and dg > d*(G, k).

4 Improving over O(n!/?)

The approximation ratio for algorithm A was upper bounded as a geometric mean of three
approximation ratios. In order for Algorithm A to give an approximation ratio as bad as
Q(n'/?), it must hold that all three procedures, 1, 2, and 3, give an approximation ratio of
O(n'/?). This happens only if d*(G, k) = O(n'/3), kdy = ©(n), and max[k, dg] = O(n?/?). If
any of the above three conditions is violated by as much as n¢, then the approximation ratio

is O(n'/3=¢/2). The above worst case conditions are satisfied only in the two cases below:

1. d*(G, k) = ©(n'?). k=0 (n'?). dy = 0(n??3).

2. d*(G, k) = O(n'/?). k = 0(n??). dg = O(n'/3).

We present two additional procedures, each giving an approximation ratio better than
O(n'/?) in one of the above cases. Together with algorithm A, this guarantees an approxi-
mation ratio of O(n'/37¢), for some ¢ > 0, for the DkS problem.

Theorem 4.1 There is a polynomial time algorithm B that approximates DkES within a
factor of n*/3<, for some e > 0. That is, for every graph G and for every 1 < k < n,
B(G, k) > d*(G, k) /n'/3~.

A unifying theme of the two new procedures is the use of the following lemma. Recall
that Wi(v;, v;) denotes the number of walks of length ¢ from v; to v;.
Lemma 4.2 Let G be a graph with n vertices and average degree d. There exist two vertices
v;,v; € V such that
d
We(vi,v5) > .
A proof of Lemma 4.2 appears in the appendix.

In section 4.1 we treat case 1. In section 4.2 we treat case 2. In both cases, we assume
that the following step has been performed:

Remove H, the set of k/2 vertices of highest degree, and remain with the graph Gy.

We shall use the fact that A(Gy) < dy. We further assume that d*(G, k) remains virtually
unchanged by the step above. This assumption can be made without loss of generality,
because it fails to hold only if Procedure 2 achieves an approximation ratio better than
n'/37¢ (see Lemma 3.3 and the discussion that follows it). We let G,* denote the k-vertex

induced subgraph of highest density in Gj.

4.1 Walks of length 3

We first present a procedure that handles case 1 above (d*(G, k) = O(n'/?), k = ©(n'/?),

dy = ©(n*?)). Its analysis is based on the following lemma.

Lemma 4.3 There exist two vertices (not necessarily distinct) v;,v; € V such that the

subgraph of G¢* induced by N(v;) U N(vj) has at least (d*(G, k))?/2k edges.

Proof: Consider Lemma 4.2 with ¢ = 3 applied to G,*, and let v;, v; be two vertices with
Wslvi,v;] > (d*(G,k))?/k. Consider the multiset of middle edges of all length three walks
between v; and v;. An edge may appear in this multiset at most twice (e.g., once as (vx, vp),
and once as (vg, vg), if both vy, and v, are in N(v;) N N(v;)). The proof follows. O

We can now present procedure 4.
Procedure 4 1. For all pairs of vertices v;,v; € Gy, apply algorithm A(N (v;)UN (v;), k).

2. Return the densest of the subgraph returned by any of the O(n?) applications of algo-
rithm A.

Lemma 4.4 The performance guarantee of procedure 4 satisfies Ay(Gy, k) > A(G', k), where

G' is a graph on at most n' = 2dy vertices that contains a k-vertex subgraph of average degree
at least d' = (d*(G, k))?/k>.

Proof: Let v; and v; be the two vertices in G,* to which Lemma 4.3 applies. Then
N(v;) U N(v;) contains a k-vertex induced subgraph with at least (d*(G,k))*/2k edges,
implying average degree at least (d*(G, k))*/k*. Moreover, |N(v;) UN(v;)| < 2dyg. O

For case 1, we get A4(Gy, k) > A(G', k) withn' = O(n??) and d' = O(n'/?) = O(d*(G, k)).
Algorithm A achieves an approximation ratio of O((n')!/3) (and in fact even better, for these

parameters), which is certainly better than O(n'/3).

4.2 Walks of length 5

We handle case 2, with parameters d*(G, k) = O(n'/?), k = ©(n*3), dy = O(n'/?) (and
hence A(Gy) = O(n'/?)). These parameters are fixed throughout this section. We present
an outline of procedure 5 that is used in this case. We shall later fill in the missing details

(how step 1 is performed). In what follows, € > 0 is a small universal constant.

Procedure 5 1. Select a subgraph induced over O(n2/3) vertices, with average degree

Q(n°). Remove it from Gy to obtain a new graph.

2. Repeat the above step of selecting subsets of vertices and removing them from the input

graph until one of the following stopping conditions occur:

(a) A total of n*3 vertices have been selected.

(b) One can deduce (by the fact that Claim 4.5 below fails to hold) that the remaining

graph no longer contains a ©(n?/®)-verter induced subgraph with average degree

Q(nl/3).

3. Return the subgraph induced on the union of the vertices selected by applications of
step 1 above. If stopping condition 2b occurred, complete to n*/® vertices in a greedy

way, similar to the selection of C' in Section 3.2.

For the parameters of case 2, procedure 5 guarantees an approximation ratio of O(nl/ 3/nf).
This is clearly the case if the first stopping condition occurs, because then the average degree
of the subgraph found is £2(n¢). The same also applies to the case that the second stopping
condition occurs after n?/3/2 vertices have been selected. The only nontrivial case is when
the second stopping condition occurs before n?/3/2 vertices are selected, but then the ap-
proximation ratio can be shown to be a constant. The reason is that in this case, all but
a small fraction of the edges of G;* have at least one endpoint in the selected vertices. As
long as there are Q(n) edges of G,* that do not have both endpoint in the selected vertices,
there must be some vertex of G,* that was not yet selected and has Q(n'/?) neighbors in
the selected vertices. The greedy rule for choosing C' then ensures that a vertex of degree

Q(n'/?) will be chosen. The average degree of the final subgraph is Q(n'/?).

The main unexplained part of procedure 5 is step 1. It uses analysis based on walks of

length 5. For the parameters of case 2, applying Lemma 4.2 to GG,*, we obtain:

Claim 4.5 There exist two vertices u,v in Gy with

Wi(u,v) > (d°(G, k))°/k = Q(n) .

Let u and v be two vertices with Q(n) length 5 walks from u to v. Let Ny, (Ny, N3, Ny,
respectively) denote the sets of vertices that are first (second, third, fourth, respectively)

along these walks. Let F' denote the subgraph induced by the union of these sets.

Note that a vertex w may appear in several of these sets. E.g., w may be a neighbor of v
but also may lie in a path of length 2 from v. This fact may cause some edges to be counted
several times and affects the constants in our analysis. This effect is taken care of by the
0, (2, © notation that we use.

From the assumption that dg = O(n1/3), step 1 of procedure 5 is applied on graphs with
maximum degree A = O(n'/3). Tt follows that |Ny|, |[Ny| = O(n'/3) and |Ny|, |Ns| = O(n?/3).

4.2.1 Some easy subcases

We make some assumptions regarding the structure of F. Each assumption is justified by
the fact that it can either be enforced on F', or otherwise a subgraph of average degree Q(n¢)

is found (and hence step 1 is completed).

Assumption 1: cut(N,, N3) < n2/3+¢,

Justification: Otherwise, take Ny J /Vs.

Assumption 2: For every w € Ny, Wi(w,v) < n'/3%¢, and for every w € N3, Wi(w, u) <
n1/3+e‘

Justification: Consider the case that w € Ny and Ws(w,v) > n'/3t<. Observe that all the
length 3 walks between w and v must pass through N3 and N,. Consider the graph induced
by the neighbors of w in N3, and the set N,. Since w has O(n'/3) neighbors in Ns, this graph

contains O(n'/3) vertices, and Q(n'/3+¢) edges. Hence step 1 is completed.

Assumption 3: Every edge between N, and Ns lies in at least Q(n'/372¢) walks from v to
u.

Justification: remove any edge between N, and Nj that lies in less than n'/37%¢ length 5
walks from v to u. Since the number of edges between N, and Nj is less than n2/3+€, (see

assumption 1) we “kill” at most O(n'~¢) walks, maintaining Ws(u, v) = Q(n).

4.2.2 The remaining subcase
Let e = (w, z) be an arbitrary edge between w € Ny and z € N3. By assumption 3, e lies in
p = Q(n'/372¢) walks from u to v.
Clearly,
p= deg(wa Nl) : deg(za N4)
Thus, either deg(w, N1) > n'/5~¢ or deg(z, Ny) > n'/5=<. If deg(z, Ny) > n'/~¢, call 2
the “good” vertex of e. Otherwise, call w the good vertex.

Now initiate the following process. The process chooses two subsets Sy C Ny, S5 C Nj
of “good” vertices, i.e., vertices of high degrees. Repeat the following 3 steps:

1. Choose an edge e between Ny and N3. Let w be its good vertex.

2. If w € Ny, add w to Sy, otherwise, add w to Sj.

3. Remove from F' all the edges between N, and N3 that touch w.

Observe that in step 3 above, we only discard the length 5 walks from v to u in F' that go
through w. Assume w.l.o.g. that w € Ny. By assumption 2, Ws(w,v) < n'/**¢. The number
of walks between u and w (which equals deg(w, N)) is bounded above by n'/3. Thus, the
number of walks between v and u that go through w, is bounded by O(n'/3.n!/3+€) = p?/3+e,

10

Since we have 2(n) walks between v and u, and each iteration removes only n?3+¢ of
them, the number of iterations can be chosen to be ©(n/n?3+¢) = ©(n'/3-¢). Thus the total

114

number of “‘good” vertices, found by the algorithm is ©(n'/3~¢).

W.lo.g. assume that |Ss| > |S5]. Now, consider the subgraph induced by S, U N;. It
contains O(n'/3) vertices, out of which ©(n'/3~¢) vertices have degree at least deg(w, N;) >

n'/6=¢. Thus the average degree is Q(n'/572¢) > n¢, for e < 1/18. Hence we obtain:

Lemma 4.6 For the parameters k = O(n?/?), d*(G, k) = O(n'?), and dg = O(n'/?),

procedure 5 achieves an approzimation ratio of O(n®/'8).

4.3 Algorithm B

Algorithm B applies algorithm A and the two procedures 4 and 5. To see that it obtains an
approximation ratio of O(n!'/3=¢), for some € > 0, observe that the analysis of procedures 4
and 5 can withstand small changes in the input parameters. For example, if dy < n' % and
d*(G, k) > k/n/® (implying d’ > k/n) then procedure 4 has approximation ratio O(n'/3~¢).

We have made no attempt to compute the best value of € that can be obtained by
algorithm B, other than verify that e > 0.

5 Extensions

5.1 Better approximation when d = Q(k)

In the case that d*(G, k) = Q(k) it is possible to alternate between our procedures 2 and 4
and obtain an algorithm that for any given € finds an O(n€) approximation to DkS, with
time complexity n?(/€). In each iteration the algorithm first applies procedure 2, and stops
if it produces a subgraph with average degree k/nc. If procedure 2 fails to produce such a
subgraph, the k/2 vertices of highest degree are removed, and procedure 4 is applied. This
results in O(n?) new DkS problems to be solved, but in each one of them the number of
vertices has been reduced by a factor of Q(n€). At least one of these smaller problems must
contain a vertex induced subgraph of density roughly ©(d*(G,k)). Now the process can
be repeated on each of the smaller problems. After O(1/¢) iterations, we remain with DkS
problems on graphs with &k vertices or fewer, and we take the densest of these graphs. The

details are omitted.

11

A simplified version of the above argument is used in [FS] to show that if G' contains a

clique on k vertices, then for every € > 0 a k-subgraph with average degree (1 — ¢€)(k — 1)

: : 1 n
can be found in time nP(c 18 %),

5.2 Arbitrary edge weights

In the weighted version of the DkS problem, edges have nonnegative weights, and the goal
is to find the k-vertex induced subgraph with maximum total weight of edges. This problem
can be reduced to the unweighted DkS problem with a loss of at most O(logn) in the
approximation ratio. We sketch how this is done.

1. Scale edge weights such that the maximum edge weight is n?.

2. Round up each edge weight to the nearest (nonnegative) power of two.

3. Solve 2logn DkS problems, one for each edge weight (with all other edges removed).

4. Select the best of the O(logn) solutions.

References

[AFWZ] N. Alon, U. Feige, A. Wigderson and D. Zuckerman. Derandomized graph prod-
ucts. Computational Complezity 5 (1995), 60-75.

[AKK95] S. Arora, D. Karger and M. Karpinski. Polynomial time approximation schemes
for dense instances of NP-hard problems. 27th Symp. on Theory of Computing,
ACM, 284-293, 1995.

[AITT] Y. Asahiro, K. Iwama, H. Tamaki, T. Tokuyama. Greedily finding a dense sub-
graph. In SWAT 96, LNCS 1097, 136-148.

[Bi] Biggs. Algebraic graph theory. Cambridge University Press.

[F'S] U. Feige and M. Seltser. On the densest k-subgraph problem. Tech-
nical report CS97-16 of the Weizmann Institute, 1997. Available at

http://www.wisdom.weizmann.ac.il.

[GGT89] G. Gallo, M.D. Grigoriadis, and R.E. Tarjan. A fast parametric maximum flow
algorithm and applications. SIAM J. on Comput., 18:30-55, 1989.

12

[HRT] R. Hassin, S. Rubinstein and A. Tamir. Approximation algorithms for Maximum

Dispersion. To appear in Operations Research Letters.

[Law76] E.L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart
and Winston, 1976.

[LR88] F.T. Leighton and S. Rao. An Approximate Max-FLow Min-Cut Theorem for
Uniform Multicommodity Flow Problems with Applications to Approximation Al-
gorithms. 29th Symp. on Foundations of Computer Science. IEEE, 422-431, 1988.

[MM] M. Marcus and H. Minc. A survey of matriz theory and matriz inequalities. Allyn
and Bacon, Inc., Boston, 1964.

[RRT91] S.S. Ravi, D.J. Rosenkrantz, and G.K. Tayi. Heuristic and special case algorithms
for Dispersion problems. Operations Research, Vol. 42, No. 2, 1994, pages 299-310.

Appendix
We restate Lemma 4.2 and present its proof.

Lemma 4.2: Let G be a graph with n vertices and average degree d. There exist two
vertices v;,v; € V' such that Wy(v;,v;) > %Z.

Before proving the above lemma, we recall without proofs some elementary facts from
linear algebra and its relation to graphs. For a more detailed treatment, see [Bi, MM].

Let G(V, E) be a graph with n = |V/| vertices and m = |E| edges where V = {vy,...,v,}.
The adjacency matrix A(G) is the matrix A(G) = (a;j) where a;; is defined as

1, (Ui,vj) el
Q;5 =
’ 0, (vi,v) ¢ E

The matrix is a 0 — 1 symmetric matrix with 0 in the diagonal (as we deal with simple
graphs).

We denote the eigenvalues of A(G) by Ag, ..., A, 1 (some eigenvalues may have multiplic-
ity, i.e, the same value may appear many times). Since A(G) is symmetric, all its eigenvalues

are real. Without loss of generality assume that A\; > A\;11 for 0 <¢ <n —2.

For any square matrix B = (b;;) we denote by trace(B) the sum of elements in the

diagonal of B, i.e., trace(B) = Y!=! b;. If B has eigenvalues py, . . ., ji,_; then:

1=0
trace(B) = Y ;.

i=n—1

13

(Hence the sum of the eigenvalues of A(G) equals 0.)
The largest eigenvalue of the adjacency matrix of a graph satisfies A\g > (X a;;)/n = d.

When raising a square matrix A with eigenvalues Ay, ..., A\, 1 to some power k, the values
of the eigenvalues of A% are (\g)¥,..., (A, 1)F.

We are now ready to prove Lemma 4.2.

Proof: Consider the adjacency matrix A(G), and put P = A(G)* and P = (p;;). Each

entry p;; counts the number of walks of length ¢ from v; to vj, i.e,
Pij = Wi(i, j) -

Now consider the matrix B = P?(= A(G)%*) and put B = (b;;). Consider a diagonal element
bi;. Since b = 377, pijpji, and the graph is undirected, we have that b; = Z;‘:lpij?.

It follows that

i=n—1
> Wi, j)? = trace(B) = trace(A*) = (A)* > (M)* > d* .
(¥

1=0

By averaging, there is a pair (¢,7) such that Wg(i,j)2 > d?*/n? which gives the proof.
(I

Remark: Lemma 4.2 also follows from the fact that the total number of length ¢ walks
in a graph of average degree d is at least nd®. A proof of this fact, but only for even values
of £, is presented in [AFWZ|. Unfortunately, we need to use this fact with odd values of ¢.
We are not aware of any reference to the corresponding result for odd values of ¢, except for

a recent private communication by Noga Alon.

14

