
The Dense k-Subgraph Problem �Uriel Feige y Guy Kortsarz z David Peleg xApril 13, 1999AbstractThis paper considers the problem of computing the dense k-vertex subgraph of agiven graph, namely, the subgraph with the most edges. An approximation algorithmis developed for the problem, with approximation ratio O(n�), for some � < 1=3.1 IntroductionWe study the dense k-subgraph (DkS) maximization problem, of computing the dense k-vertex subgraph of a given graph. That is, on input a graph G and a parameter k, weare interested in �nding a set of k vertices with maximum average degree in the subgraphinduced by this set. As this problem is NP-hard (say, by reduction from Clique), we considerapproximation algorithms for this problem. We obtain a polynomial time algorithm that onany input (G; k) returns a subgraph of size k whose average degree is within a factor of at mostn� from the optimum solution, where n is the number of vertices in the input graph G, and� < 1=3 is some universal constant. Unfortunately, we are unable to present a complementarynegative result giving evidence that for some � > 0, achieving an approximation ratio ofO(n�)is NP-hard. In fact, we do not even know whether achieving an approximation ratio of (1+�)is NP-hard, though we conjecture that this is indeed the case.�A preliminary version of this paper appeared in the proceedings of the 34th Annual Symposium onFoundations of Computer Science, 1993, published by IEEE Computer Society Press, pages 692{701.yDepartment of Applied Math and Computer Science, The Weizmann Institute, Rehovot 76100, Israel.Incumbent of the Joseph and Celia Reskin Career Development Chair. Yigal Alon Fellow.zDepartment of Computer Science, The Open University, Tel Aviv, Israel.xDepartment of Applied Mathematics and Computer Science, The Weizmann Institute, Rehovot 76100,Israel. Supported in part by a Walter and Elise Haas Career Development Award and by a grant from theBasic Research Foundation. 1

Our problem is related to several other problems. We mention two of them.� The Densest Subgraph (DS) problem concerns choosing a subset V 0 (of arbitrary size)such that the vertex induced subgraph has maximum average degree. This problem canbe solved polynomially using
ow techniques (cf. Chapter 4 of [Law76]). The fastestalgorithm known for DS is given in [GGT89] and runs in time O(mn log(n2=m)).One may hope that some algorithmic techniques used in solving the DS problem canhelp approximate the DkS problem, but there seem to be major di�culties involved.Consider for example the case of regular graphs. The densest subgraph of a regulargraph is the graph itself, and hence no algorithmic ideas are involved in solving this DSproblem. On the other hand, �nding the dense k-subgraph remains NP-hard (proofomitted).� The Minimum Flux Cut (FLUX) problem concerns choosing a cut C with minimumratio between the number of edges that cross the cut and the number of vertices inthe smaller side of the cut. This is a measure of the edge expansion of the graph. TheFLUX problem on regular graphs is related to the DkS problem in the following sense:by solving the DkS problem optimally for all values of k in a regular graph, one candeduce the optimal solution to the FLUX problem on this graph. The FLUX problemcan be approximated within a factor of O(logn) [LR88].We mention two special cases of the dense k-subgraph problem that make it easier toapproximate. First, if k =
(n) and the number of edges is
(n2), then the problemhas a polynomial time approximation scheme (PTAS) [AKK95]. Secondly, if the inputgraph is a complete graph with edge weights that obey the triangle inequality, then it isshown in [RRT91] that a greedy algorithm achieves an approximation ratio of 4 for thedispersion problem, which asks for the k-vertex subgraph of maximum total edge weight,and an approximation ratio of 2 is given in [HRT].Recently, Goemans (private communication) showed that using semide�nite program-ming (SDP) one can obtain an approximation ratio arbitrarily close to n=k for DkS. Forsome graphs and large values of k, this approximation ratio is better by a constant factorthan that of the greedy algorithm (see Section 3.2). However, for small values of k, algo-rithms based on SDP are not known to perform as well as our combinatorial approximationalgorithm. For example, when k ' n1=3, it appears that the SDP approach cannot distinguishbetween graphs that have cliques of size k and graphs that only have k-vertex subgraphswith O(k) edges [FS] (in particular, excluding an approximation ratio better than n1=3).2

Our algorithm can be extended to handle the weighted version of the DkS problem,incurring an additional O(logn) factor. This is done in section 5.2.2 De�nitionsDe�nition 2.1 The density dG of a graph G = G(V;E) is its average degree. That is,dG = 2jEj=jV j. When G is clear from the context, we shall denote the density by d.There is a polynomial time algorithm for �nding the densest vertex induced subgraph ofan input graph. We study the parameterized version of this problem.De�nition 2.2 The dense k-subgraph (DkS) problem has as input a graph G = G(V;E)(on n vertices), and a parameter k. The output is G�, a subgraph of G induced on k vertices,such that G� is of maximum density. We denote this density by d�(G; k).Clearly, the problem DkS is NP-hard, by reduction from Clique.We are interested in polynomial time approximation algorithms for DkS. On input (G; k),such an algorithm outputs a list of k vertices. Let A(G; k) denote the density of the vertexinduced subgraph returned by algorithm A on input (G; k). We wish to devise polynomialtime algorithms with A(G; k) as close as possible to d�(G; k). We shall bound A(G; k) as afunction of n (the number of vertices in G), k and d�(G; k).Notation. �(G) is the maximum degree of graph G. dH is the average degree of the k=2vertices of highest degree in G. Note that �(G) � dH � d�(G; k). deg(v; S) is the numberof edges connecting vertex v to vertices in the set S. cut(A;B) is the number of edgesconnecting vertices in set A and vertices in set B. A walk of length ` is a sequence of ` + 1vertices in which consecutive vertices are adjacent (hence the walk follows ` edges). Thevertices of a walk need not be distinct. W`(u; v) denotes the number of walks of length `that start at vertex u and end at vertex v. Matrix multiplication (raising the adjacencymatrix of the graph to the `th power) can be used in order to computeW`(vi; vj) for all pairsof vertices simultaneously.3 An approximation ratio of O(n1=3)Theorem 3.1 There is a polynomial time algorithm A that approximates DkS within afactor of 2n1=3. That is, for every graph G and every 1 � k � n, A(G; k) � d�(G; k)=2n1=3.3

Algorithm A employs three di�erent procedures (A1, A2 and A3) to select a dense sub-graph, and returns the densest of the three subgraphs that are found.3.1 A trivial procedureWithout loss of generality, we can assume that G contains at least k=2 edges.Procedure 1 Select k=2 arbitrary edges from G. Return the set of vertices incident withthese edges, adding arbitrary vertices to this set if its size is smaller than k.Clearly, A1(G; k) � 1 :3.2 A greedy procedureProcedure 2 Sort the vertices by order of their degree. Let H denote the k=2 vertices withhighest degrees in G (breaking ties arbitrarily). Sort the remaining vertices by the numberof neighbors they have in H. Let C denote the k=2 vertices in G nH with largest number ofneighbors in H. Return H SC.Recall that dH denotes the average degree (with respect to G) of a vertex in H.Lemma 3.2 Procedure 2 returns a vertex induced subgraph satisfyingA2(G; k) � kdH=2n :Proof: Let m1 denote the number of edges both of whose endpoints lie in H. Thencut(H; V nH) = dHjHj � 2m1 = dHk=2 � 2m1 � 0. By the greedy rule for selecting C, atleast a jCj=jV nHj > k=2n fraction of these edges are contained in H SC. Thus the totalnumber of edges in the subgraph induced by H SC is at least(dHk=2� 2m1)k=2n+m1 � dHk2=4nand the proof of the lemma follows. 2As dH � d�(G; k), the greedy procedure approximates d�(G; k) within a ratio of at most2n=k. A di�erent greedy procedure which also has an approximation ratio of O(n=k) isanalyzed in [AITT]. 4

3.3 Walks of length 2For vertices v; w and integer ` � 1, recall that W`(v; w) denotes the number of walks oflength ` from v to w.Procedure 3 Compute W2(u; v) for all pairs of vertices. Construct a candidate graph Hvfor every vertex v in G, as follows: Sort the vertices of G by non-increasing order oftheir number of length-2 walks to v, W2(v; w1) � W2(v; w2) � : : : Let P vh denote the setfw1; : : : ; wk=2g. Compute for every neighbor x of v the number of edges connecting x to P vh ,deg(x; P vh), and construct a set Bv containing the k=2 neighbors of v with highest deg(x; P vh).Let Hv denote the subgraph induced on P vh [Bv. (If Hv still contains less than k vertices thenit is completed to size k arbitrarily.) Select the densest candidate graph Hv as the output.We now analyze the approximation ratio of this procedure. Let us �rst note that thenumber of length-2 walks within the optimum subgraph G� is at least k(d�(G; k))2. This isbecause each v 2 G� contributes (deg�(v))2 to this sum, and Pv2G�(deg�(v))2 � k(d�(G; k))2by convexity. (Here we used deg�(v) to denote the degree of v in G�. See also remark in theappendix.)It follows that there is a vertex v which is the endpoint of at least (d�(G; k))2 length-2walks inG�. By the greedy construction of P vh , there are at least (d�(G; k))2=2 walks of length2 between this v and vertices of P vh . The vertices of Bv have at least (d�(G; k))2=2 edges con-necting them to P vh if deg(v) � k=2, and at least (d�(G; k))2k=4 deg(v) edges connecting themto P vh otherwise. Since we do not require P vh and Bv to be disjoint, each edge may have beencounted twice. Hence, altogether,Hv contains at least min[(d�(G; k))2=4; (d�(G; k))2k=8�(G)]edges, where �(G) denotes the maximum degree in the graph.This guarantees: A3(G; k) � (d�(G; k))2=2max[k; 2�(G)] :3.4 Algorithm AAlgorithm A applies the three procedures described above, and outputs the densest of thethree subgraphs obtained by each of these procedures. Procedures 1 and 2 are applied tothe original input graph G. Procedure 3 however is applied to the graph G` induced on thevertices of V n H, where H is the set of k=2 vertices of highest degree in G, as de�ned inProcedure 2. Hence �(G`) � dH(G).For the following lemma to make sense, we assume that k � 2n=3. This assumption can5

be made without loss of generality, because for k � 2n=3 the greedy procedure approximatesDkS within a ratio not worse than 3 (see end of Section 3.2).Lemma 3.3 The graph G` contains a k-vertex induced subgraph with average degree at leastd�(G; k)� 2d2, where d2 = A2(G; k).Proof: Let m denote the number of edges of G� with both endpoints in H, and let `denote the number of edges of G� with one endpoint in H. Hence G` contains a k-vertexinduced subgraph with at least d�(G; k)k=2 � m � ` edges. To prove the lemma, we needto show that Procedure 2 returns a solution with at least (m + `)=2 edges. In fact, thesolution has at least m+ `=2 edges. This is because it clearly contains the m edges internalto V (G�) \ H, and there must be at least l=2 edges between C and H, since at least onepossible choice for C o�ers this many edges (namely, taking C to contain the k=2 vertices ofV (G�) nH with the highest number of edges into H). 2It follows from the performance guarantees on the three procedures thatA(G; k) � max[1; d2; kdH2n ; (d�(G; k)� 2d2)22max[k; 2dH]] :To prove Theorem 3.1, we can assume that d2 � d�(G; k)=n1=3 (otherwise, the output ofprocedure 2 achieves the desired ratio of approximation). Hence, for procedure 3, we havethat d�(G; k) � 2d2 ' d�(G; k), with a negligible error term. The performance guaranteeof algorithm A is at least the geometric mean of the performance guarantee of the threeprocedures 1, 2, and 3. HenceA(G; k) � (1 � kdH2n � (d�(G; k))22max[k; 2dH])1=3 � d�(G; k)2n1=3 ;where the last inequality follows from the fact that k � d�(G; k) and dH � d�(G; k).4 Improving over O(n1=3)The approximation ratio for algorithm A was upper bounded as a geometric mean of threeapproximation ratios. In order for Algorithm A to give an approximation ratio as bad as
(n1=3), it must hold that all three procedures, 1, 2, and 3, give an approximation ratio of�(n1=3). This happens only if d�(G; k) = �(n1=3), kdH = �(n), and max[k; dH] = �(n2=3). Ifany of the above three conditions is violated by as much as n�, then the approximation ratiois O(n1=3��=2). The above worst case conditions are satis�ed only in the two cases below:6

1. d�(G; k) = �(n1=3). k = �(n1=3). dH = �(n2=3).2. d�(G; k) = �(n1=3). k = �(n2=3). dH = �(n1=3).We present two additional procedures, each giving an approximation ratio better thanO(n1=3) in one of the above cases. Together with algorithm A, this guarantees an approxi-mation ratio of O(n1=3��), for some � > 0, for the DkS problem.Theorem 4.1 There is a polynomial time algorithm B that approximates DkS within afactor of n1=3��, for some � > 0. That is, for every graph G and for every 1 � k � n,B(G; k) � d�(G; k)=n1=3��.A unifying theme of the two new procedures is the use of the following lemma. Recallthat W`(vi; vj) denotes the number of walks of length ` from vi to vj.Lemma 4.2 Let G be a graph with n vertices and average degree d. There exist two verticesvi; vj 2 V such that W`(vi; vj) � dǹ :A proof of Lemma 4.2 appears in the appendix.In section 4.1 we treat case 1. In section 4.2 we treat case 2. In both cases, we assumethat the following step has been performed:Remove H, the set of k=2 vertices of highest degree, and remain with the graph G`.We shall use the fact that �(G`) � dH. We further assume that d�(G; k) remains virtuallyunchanged by the step above. This assumption can be made without loss of generality,because it fails to hold only if Procedure 2 achieves an approximation ratio better thann1=3�� (see Lemma 3.3 and the discussion that follows it). We let G`� denote the k-vertexinduced subgraph of highest density in G`.4.1 Walks of length 3We �rst present a procedure that handles case 1 above (d�(G; k) = �(n1=3), k = �(n1=3),dH = �(n2=3)). Its analysis is based on the following lemma.Lemma 4.3 There exist two vertices (not necessarily distinct) vi; vj 2 V such that thesubgraph of G`� induced by N(vi) [N(vj) has at least (d�(G; k))3=2k edges.7

Proof: Consider Lemma 4.2 with ` = 3 applied to G`�, and let vi; vj be two vertices withW3[vi; vj] � (d�(G; k))3=k. Consider the multiset of middle edges of all length three walksbetween vi and vj. An edge may appear in this multiset at most twice (e.g., once as (vk; v`),and once as (v`; vk), if both vk and v` are in N(vi) \N(vj)). The proof follows. 2We can now present procedure 4.Procedure 4 1. For all pairs of vertices vi; vj 2 G`, apply algorithm A(N(vi)[N(vj); k).2. Return the densest of the subgraph returned by any of the O(n2) applications of algo-rithm A.Lemma 4.4 The performance guarantee of procedure 4 satis�es A4(G`; k) � A(G0; k), whereG0 is a graph on at most n0 = 2dH vertices that contains a k-vertex subgraph of average degreeat least d0 = (d�(G; k))3=k2.Proof: Let vi and vj be the two vertices in G`� to which Lemma 4.3 applies. ThenN(vi) [N(vj) contains a k-vertex induced subgraph with at least (d�(G; k))3=2k edges,implying average degree at least (d�(G; k))3=k2. Moreover, jN(vi) [N(vj)j � 2dH . 2For case 1, we get A4(G`; k) � A(G0; k) with n0 = O(n2=3) and d0 = �(n1=3) = �(d�(G; k)).Algorithm A achieves an approximation ratio of O((n0)1=3) (and in fact even better, for theseparameters), which is certainly better than O(n1=3).4.2 Walks of length 5We handle case 2, with parameters d�(G; k) = �(n1=3), k = �(n2=3), dH = �(n1=3) (andhence �(G`) = O(n1=3)). These parameters are �xed throughout this section. We presentan outline of procedure 5 that is used in this case. We shall later �ll in the missing details(how step 1 is performed). In what follows, � > 0 is a small universal constant.Procedure 5 1. Select a subgraph induced over O(n2=3) vertices, with average degree
(n�). Remove it from G` to obtain a new graph.2. Repeat the above step of selecting subsets of vertices and removing them from the inputgraph until one of the following stopping conditions occur:(a) A total of n2=3 vertices have been selected.(b) One can deduce (by the fact that Claim 4.5 below fails to hold) that the remaininggraph no longer contains a �(n2=3)-vertex induced subgraph with average degree
(n1=3). 8

3. Return the subgraph induced on the union of the vertices selected by applications ofstep 1 above. If stopping condition 2b occurred, complete to n2=3 vertices in a greedyway, similar to the selection of C in Section 3.2.For the parameters of case 2, procedure 5 guarantees an approximation ratio ofO(n1=3=n�).This is clearly the case if the �rst stopping condition occurs, because then the average degreeof the subgraph found is
(n�). The same also applies to the case that the second stoppingcondition occurs after n2=3=2 vertices have been selected. The only nontrivial case is whenthe second stopping condition occurs before n2=3=2 vertices are selected, but then the ap-proximation ratio can be shown to be a constant. The reason is that in this case, all buta small fraction of the edges of G`� have at least one endpoint in the selected vertices. Aslong as there are
(n) edges of G`� that do not have both endpoint in the selected vertices,there must be some vertex of G`� that was not yet selected and has
(n1=3) neighbors inthe selected vertices. The greedy rule for choosing C then ensures that a vertex of degree
(n1=3) will be chosen. The average degree of the �nal subgraph is
(n1=3).The main unexplained part of procedure 5 is step 1. It uses analysis based on walks oflength 5. For the parameters of case 2, applying Lemma 4.2 to G`�, we obtain:Claim 4.5 There exist two vertices u; v in G` withW5(u; v) � (d�(G; k))5=k =
(n) :Let u and v be two vertices with
(n) length 5 walks from u to v. Let N1, (N2, N3, N4,respectively) denote the sets of vertices that are �rst (second, third, fourth, respectively)along these walks. Let F denote the subgraph induced by the union of these sets.Note that a vertex w may appear in several of these sets. E.g., w may be a neighbor of vbut also may lie in a path of length 2 from v. This fact may cause some edges to be countedseveral times and a�ects the constants in our analysis. This e�ect is taken care of by theO;
;� notation that we use.From the assumption that dH = O(n1=3), step 1 of procedure 5 is applied on graphs withmaximum degree � = O(n1=3). It follows that jN1j; jN4j = O(n1=3) and jN2j; jN3j = O(n2=3).4.2.1 Some easy subcasesWe make some assumptions regarding the structure of F . Each assumption is justi�ed bythe fact that it can either be enforced on F , or otherwise a subgraph of average degree
(n�)is found (and hence step 1 is completed). 9

Assumption 1: cut(N2; N3) < n2=3+�.Justi�cation: Otherwise, take N2 SN3.Assumption 2: For every w 2 N2, W3(w; v) � n1=3+�, and for every w 2 N3, W3(w; u) �n1=3+�.Justi�cation: Consider the case that w 2 N2 and W3(w; v) > n1=3+�. Observe that all thelength 3 walks between w and v must pass through N3 and N4. Consider the graph inducedby the neighbors of w in N3, and the set N4. Since w has O(n1=3) neighbors in N3, this graphcontains O(n1=3) vertices, and
(n1=3+�) edges. Hence step 1 is completed.Assumption 3: Every edge between N2 and N3 lies in at least
(n1=3�2�) walks from v tou.Justi�cation: remove any edge between N2 and N3 that lies in less than n1=3�2� length 5walks from v to u. Since the number of edges between N2 and N3 is less than n2=3+�, (seeassumption 1) we \kill" at most O(n1��) walks, maintaining W5(u; v) =
(n).4.2.2 The remaining subcaseLet e = (w; z) be an arbitrary edge between w 2 N2 and z 2 N3. By assumption 3, e lies inp =
(n1=3�2�) walks from u to v.Clearly, p = deg(w;N1) � deg(z;N4):Thus, either deg(w;N1) � n1=6�� or deg(z;N4) � n1=6��. If deg(z;N4) � n1=6��, call zthe \good" vertex of e. Otherwise, call w the good vertex.Now initiate the following process. The process chooses two subsets S2 � N2; S3 � N3of \good" vertices, i.e., vertices of high degrees. Repeat the following 3 steps:1. Choose an edge e between N2 and N3. Let w be its good vertex.2. If w 2 N2, add w to S2, otherwise, add w to S3.3. Remove from F all the edges between N2 and N3 that touch w.Observe that in step 3 above, we only discard the length 5 walks from v to u in F that gothrough w. Assume w.l.o.g. that w 2 N2. By assumption 2, W3(w; v) � n1=3+�. The numberof walks between u and w (which equals deg(w;N1)) is bounded above by n1=3. Thus, thenumber of walks between v and u that go through w, is bounded by O(n1=3 �n1=3+�) = n2=3+�.10

Since we have
(n) walks between v and u, and each iteration removes only n2=3+� ofthem, the number of iterations can be chosen to be �(n=n2=3+�) = �(n1=3��). Thus the totalnumber of \`good" vertices, found by the algorithm is �(n1=3��).W.l.o.g. assume that jS2j � jS3j. Now, consider the subgraph induced by S2 [N1. Itcontains O(n1=3) vertices, out of which �(n1=3��) vertices have degree at least deg(w;N1) �n1=6��. Thus the average degree is
(n1=6�2�) � n�, for � � 1=18. Hence we obtain:Lemma 4.6 For the parameters k = �(n2=3), d�(G; k) = �(n1=3), and dH = �(n1=3),procedure 5 achieves an approximation ratio of O(n5=18).4.3 Algorithm BAlgorithm B applies algorithm A and the two procedures 4 and 5. To see that it obtains anapproximation ratio of O(n1=3��), for some � > 0, observe that the analysis of procedures 4and 5 can withstand small changes in the input parameters. For example, if dH � n1�6� andd�(G; k) � k=n�=3 (implying d0 � k=n�) then procedure 4 has approximation ratio O(n1=3��).We have made no attempt to compute the best value of � that can be obtained byalgorithm B, other than verify that � > 0.5 Extensions5.1 Better approximation when d =
(k)In the case that d�(G; k) =
(k) it is possible to alternate between our procedures 2 and 4and obtain an algorithm that for any given � �nds an O(n�) approximation to DkS, withtime complexity nO(1=�). In each iteration the algorithm �rst applies procedure 2, and stopsif it produces a subgraph with average degree k=n�. If procedure 2 fails to produce such asubgraph, the k=2 vertices of highest degree are removed, and procedure 4 is applied. Thisresults in O(n2) new DkS problems to be solved, but in each one of them the number ofvertices has been reduced by a factor of
(n�). At least one of these smaller problems mustcontain a vertex induced subgraph of density roughly �(d�(G; k)). Now the process canbe repeated on each of the smaller problems. After O(1=�) iterations, we remain with DkSproblems on graphs with k vertices or fewer, and we take the densest of these graphs. Thedetails are omitted. 11

A simpli�ed version of the above argument is used in [FS] to show that if G contains aclique on k vertices, then for every � > 0 a k-subgraph with average degree (1 � �)(k � 1)can be found in time nO(1� log nk).5.2 Arbitrary edge weightsIn the weighted version of the DkS problem, edges have nonnegative weights, and the goalis to �nd the k-vertex induced subgraph with maximum total weight of edges. This problemcan be reduced to the unweighted DkS problem with a loss of at most O(logn) in theapproximation ratio. We sketch how this is done.1. Scale edge weights such that the maximum edge weight is n2.2. Round up each edge weight to the nearest (nonnegative) power of two.3. Solve 2 logn DkS problems, one for each edge weight (with all other edges removed).4. Select the best of the O(logn) solutions.References[AFWZ] N. Alon, U. Feige, A. Wigderson and D. Zuckerman. Derandomized graph prod-ucts. Computational Complexity 5 (1995), 60{75.[AKK95] S. Arora, D. Karger and M. Karpinski. Polynomial time approximation schemesfor dense instances of NP-hard problems. 27th Symp. on Theory of Computing,ACM, 284{293, 1995.[AITT] Y. Asahiro, K. Iwama, H. Tamaki, T. Tokuyama. Greedily �nding a dense sub-graph. In SWAT 96, LNCS 1097, 136{148.[Bi] Biggs. Algebraic graph theory. Cambridge University Press.[FS] U. Feige and M. Seltser. On the densest k-subgraph problem. Tech-nical report CS97-16 of the Weizmann Institute, 1997. Available athttp://www.wisdom.weizmann.ac.il.[GGT89] G. Gallo, M.D. Grigoriadis, and R.E. Tarjan. A fast parametric maximum
owalgorithm and applications. SIAM J. on Comput., 18:30{55, 1989.12

[HRT] R. Hassin, S. Rubinstein and A. Tamir. Approximation algorithms for MaximumDispersion. To appear in Operations Research Letters.[Law76] E.L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rinehartand Winston, 1976.[LR88] F.T. Leighton and S. Rao. An Approximate Max-FLow Min-Cut Theorem forUniform Multicommodity Flow Problems with Applications to Approximation Al-gorithms. 29th Symp. on Foundations of Computer Science. IEEE, 422-431, 1988.[MM] M. Marcus and H. Minc. A survey of matrix theory and matrix inequalities. Allynand Bacon, Inc., Boston, 1964.[RRT91] S.S. Ravi, D.J. Rosenkrantz, and G.K. Tayi. Heuristic and special case algorithmsfor Dispersion problems. Operations Research, Vol. 42, No. 2, 1994, pages 299{310.AppendixWe restate Lemma 4.2 and present its proof.Lemma 4.2: Let G be a graph with n vertices and average degree d. There exist twovertices vi; vj 2 V such that W`(vi; vj) � dǹ .Before proving the above lemma, we recall without proofs some elementary facts fromlinear algebra and its relation to graphs. For a more detailed treatment, see [Bi, MM].Let G(V;E) be a graph with n = jV j vertices and m = jEj edges where V = fv1; : : : ; vng.The adjacency matrix A(G) is the matrix A(G) = (aij) where aij is de�ned asaij = 8<: 1; (vi; vj) 2 E0; (vi; vj) =2 EThe matrix is a 0� 1 symmetric matrix with 0 in the diagonal (as we deal with simplegraphs).We denote the eigenvalues of A(G) by �0; : : : ; �n�1 (some eigenvalues may have multiplic-ity, i.e, the same value may appear many times). Since A(G) is symmetric, all its eigenvaluesare real. Without loss of generality assume that �i � �i+1 for 0 � i � n� 2.For any square matrix B = (bij) we denote by trace(B) the sum of elements in thediagonal of B, i.e., trace(B) = Pi=1i=n bii. If B has eigenvalues �0; : : : ; �n�1 then:trace(B) = i=0Xi=n�1�i :13

(Hence the sum of the eigenvalues of A(G) equals 0.)The largest eigenvalue of the adjacency matrix of a graph satis�es �0 � (P aij)=n = d.When raising a square matrix A with eigenvalues �0; : : : ; �n�1 to some power k, the valuesof the eigenvalues of Ak are (�0)k; : : : ; (�n�1)k.We are now ready to prove Lemma 4.2.Proof: Consider the adjacency matrix A(G), and put P = A(G)` and P = (pij). Eachentry pij counts the number of walks of length ` from vi to vj, i.e,pij = W`(i; j) :Now consider the matrix B = P 2(= A(G)2`) and put B = (bij). Consider a diagonal elementbii. Since bii = Pnj=1 pijpji, and the graph is undirected, we have that bii = Pnj=1 pij2.It follows thatXi;j W`(i; j)2 = trace(B) = trace(A2`) = i=n�1Xi=0 (�i)2` � (�0)2` � d2` :By averaging, there is a pair (i; j) such that W`(i; j)2 � d2`=n2 which gives the proof.2 Remark: Lemma 4.2 also follows from the fact that the total number of length ` walksin a graph of average degree d is at least nd`. A proof of this fact, but only for even valuesof `, is presented in [AFWZ]. Unfortunately, we need to use this fact with odd values of `.We are not aware of any reference to the corresponding result for odd values of `, except fora recent private communication by Noga Alon.

14

